Computed radiography system modeling, simulation and optimization

Résumé : Depuis plus d’un siècle, la radiographie sur film est utilisée pour le contrôle non destructif (CND) de pièces industrielles. Avec l’introduction de méthodes numériques dans le domaine médical, la communauté du CND industriel a commencé à considérer également les techniques numériques alternatives au film. La radiographie numérique (en anglais Computed radiography -CR) utilisant les écrans photostimulables (en anglais imaging plate -IP) est une voie intéressante à la fois du point de vue coût et facilité d’implémentation. Le détecteur (IP) utilisé se rapproche du film car il est flexible et réutilisable. L’exposition de l’IP aux rayons X génère une image latente qui est ensuite lue et numérisée grâce à un système de balayage optique par laser. A basse énergie, les performances du système CR sont bonnes ce qui explique son utilisation importante dans le domaine médical. A haute énergie par contre, les performances du système CR se dégradent à la fois à cause de la mauvaise absorption de l’IP mais également de la présence de rayonnement diffusé par la pièce qui, étant d’énergie plus faible, est préférentiellement absorbée par l’IP. Les normes internationales préconisent l’utilisation d’écrans métalliques pour améliorer la réponse des systèmes CR à haute énergie. Néanmoins, la nature et l’épaisseur de ces écrans n’est pas clairement définie et la gamme des configurations possibles est large. La simulation est un outil utile pour prévoir les performances d’une expérience et déterminer les meilleures conditions opératoires. Les méthodes Monte Carlo sont communément admises comme étant les plus précises pour simuler les phénomènes de transport de rayonnement, et ainsi comprendre les phénomènes physiques en jeu. Cependant, le caractère probabiliste de ces méthodes implique des temps de calcul importants, voire prohibitifs pour des géométries complexes. Les méthodes déterministes au contraire, peuvent prendre en compte des géométries complexes avec des temps de calcul raisonnables, mais l’estimation du rayonnement diffusé est plus difficile. Dans ce travail de thèse, nous avons tout d’abord mené une étude de simulation Monte Carlo afin de comprendre le fonctionnement des IP avec écrans métalliques à haute énergie pour le contrôle de pièces de forte épaisseur. Nous avons notamment suivi le trajet des photons X mais également des électrons. Quelques comparaisons expérimentales ont pu être menées à l’ESRF (European Synchrotron Radiation Facility). Puis nous avons proposé une approche de simulation hybride, qui combine l'utilisation de codes déterministe et Monte Carlo pour simuler l'imagerie d'objets de forme complexe. Cette approche prend en compte la dégradation introduite par la diffusion des rayons X et la fluorescence dans l'IP ainsi que la diffusion des photons optiques dans l'IP. Les résultats de différentes configurations de simulation ont été comparés.
Type de document :
Thèse
Imaging. INSA de Lyon, 2014. English. 〈NNT : 2014ISAL0128〉
Liste complète des métadonnées

Littérature citée [85 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01149072
Contributeur : Abes Star <>
Soumis le : mercredi 6 mai 2015 - 11:33:26
Dernière modification le : mardi 12 juin 2018 - 10:32:58
Document(s) archivé(s) le : lundi 14 septembre 2015 - 19:36:27

Fichier

these.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01149072, version 1

Collections

Citation

Min Yao. Computed radiography system modeling, simulation and optimization. Imaging. INSA de Lyon, 2014. English. 〈NNT : 2014ISAL0128〉. 〈tel-01149072〉

Partager

Métriques

Consultations de la notice

310

Téléchargements de fichiers

888