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Résum é

Ce travail reponda la question de l'identi quation de &quation du mouvemerat partir des
mesures exgrimentales. Les structures coresieks ont soit une soit deux dimensions. La
méthode preseat utilise les rathodes inverses locales qui se basent sur les mesures du champs
vibratoire stationaire. Ces &thodes sont irgpendentes des conditions aux limites qui sont
inconnues pour l'observateur. Deuxéthodes de &ection des modeles sont utéiss pour
choisir I'equation du mouvement la plus adeg@tparmi un ensemble des modeles a priori. La
méthode est applidee a des nombreux cas @jnentaux. Trois proematiques sont trdis:

identi cation de la force axiale dans les poutres et membranes, identi cation de l'orthotropie
de la plaque et identi cation d'un panel sandwigpais.

Mots clés : methodes inverses vibratoires, inverse wave correlation, inverse wave decom-
position, €lection des moeles, Akaike information criterion, Baysian information criterion.
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Abstract

This works deals with a question of identi cation of the equation of motion based on experimen-

tal measurements. The considered structures are either one or two-dimensional plane structures.
The developed methodology employs local inverse methods based on local steady-state vibra-
tion eld and it is therefore independent of boundary conditions. Twerdnt model selection
techniques are used to select the most adapted equation of motion from a set of apriori candidate
models. The method is applied to various experimental case studies as identi cation of axial
force in beams and membranes, identi cation of plate orthotropy and identi cation of thick
sandwich panel model.

Keywords: inverse vibration methods, Inverse wave correlation, Inverse wave decomposi-
tion, Model selection, Akaike information criterion, Bayesian information criterion.
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1.1 Scientic conte xt

1.1.1 Local andglobal description of vibration problems

Vibration problems were among the rst mathematical problems which were treated analytically
in classical mechanics.

Historically, the rstapproach was based on solvingdnerential equation of motion. This
equation puts in relation the kinematic variables and forces. It shows how a physical body moves
under the application of external forces. The most famous example of an equation of motion is
the Newton's second lamx = F !, which describes the translational motion of a rigid bodly.
The equation of motion was rst introduced for a discrete rigid-body motion. But later, similar
equations of motion were developed for deformable continuous structures which are important
for engineering applications like strirgdbeams and plate& In the continuous equation of
motion, the displacement is described by a continuous and derivable fungkp). This
function is the solution of the vibration problem if it satis es the partiakdential equation of
motion described by an operator

L(u) = f (1.1)

wheref is the function of external forces. Eq.1.1 cannot be solved uniquely in most cases,
its solution becomes unique if we applied the boundary and initial conditions requirements to
our solution.

Advances in mathematics in #&entury lead to so-calledariational method®f solution
of mechanical problems. These methods are represented by Lagrangian and Hamiltonian me-
chanics® While the rst approach relies on the local behaviour of the structure and the solution
is obtained by the integration of derential equation, variational methods consist in using the
integral properties of the solution. In the case of Lagrange mechanics, the solution of the vibra-
tion problem must be a stationary pdinf the following functional

JW=T) V(u (1.2)

whereT is the total kinetic energy and is the total potential energy. The boundary (and
eventually initial) conditions must also be added to the Lagrangian. If the boundary conditions

1This lav was rst published by Isaac Newton Principia mathematican 1687.

2Vibration of strings was rst described by equation of motion by d'AlembeiEiaments de musique 1752.

3Euler-Bernouilli beam theory was introduced around 1750.

4Kirchho -Love plate model was introduced i@n the small free vibrations and deformations of elastic shells
published in 1888.

SLagrangian mechanics were introduced in 1788 and Hamiltonian mechanics in 1833. Both formulations are
equivalent.

6In this language @oint means dunctionbecause the arguments of the functional are functions.
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can bedescribed by an integral relatid®(u) = O whereB is a known functional, then the
Lagrangian formalism if modi ed using the Lagrangian multipliers as follows

JU=T() V(@ + B(u) 1.3)

It should be noted that both approaches given by Eq.1.1 and Eqg.1.3 lead to identical results.
One formulation can also be developed from another. For example, the equation of motion
(and boundary conditions) can be obtained from the Lagrangian by so-called Euler-Lagrange
equations (for details see [67]). None the less the great advantage of the integral Lagrange
formulation lies in the mathematical ease in which the stationary points of Eg.1.3 can be found.
While it is sometimes very dicult to nd the general solution of the derential equation of
motion, it is simpler to nd the stationary point of the functional (at least approximdtely)

As it was mentioned in the preceding paragraph, the solut{®t) is obtained either by
integrating the equation of motion or by nding the stationary points of the Lagrangian. In both
cases, the knowledge of the boundary conditions is essential for unique determinairirt)of
However, in this work we are interestedinverse problems These problems consist mostly
of determining the parameters of the model (either equation of matiar the functional
J ) from the observed solution(x;t). Traditionally, global methods like modal methods are
employed for inverse technique. In such a case, the unknown operator is found by tting the
simulated eigenmodes to the eigenmodes of the studied structure. Such an approach works if we
know fairly well the geometry of the problem, especially we should be sure about the boundary
conditions. Moreover, a slight lack of knowledge of the boundary conditions tends to increase
the prediction error with increasing frequency.

This can be demonstrated on the example shown in Fig.1.1. In this case the measurement
was done on the wing part of a small experimental rocket. We can see that the response function
in Fig.1.1B exhibits modal behaviour of two types. In tbe/-frequencyange, the modes are
well separated and modelling error due to lack of knowledge is not drastic. However, in the
mid-frequency range, the modes of all the structure superpose each other, we see an important
modal overlap. The inverse methods based on the modal response are therefore impossible for
the mid-frequency range because the determination of modes is unstable with a lack of boundary
conditions knowledge.

As the matter of fact, the boundary conditions are partially unknown and therefore the use
of the global computational methods for either direct/anéhverse techniques is impossible.

Two such examples treated in this work in Section 4 are shown in Fig.1.2. In the Example 1

the vibrational response of the structure A depends on the whole structure through unknown
boundary conditions. The same hold for the membrane stretched by a number of strings to the
cylinder as shown in Example 2. In both cases the object of interest (beam, membrane) is very
simple but it is coupled to complicated structure and therefore its vibration response cannot be

"The Lagrangiarfiormulation is also basis for numerical methods like Finite Elements Method.
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simply predictedoy some global model. Consequently, the inverse of the global model cannot
be employed easily here.

$",% T T < "

Figure 1.1: An experimental example of a measured displacement spectrum on an wing of a
small experimental rocket (Courtesy of CLES-FACIL team).

Example 1 Example 2

Structure A
Structure B

Figure 1.2:Two examples where the lack of knowledge of boundary conditions restrains the
use of global methods.

The reasons mentioned above lead us to the conclusion that global models are not adapted
for neither direct nor inverse problems in the mid-frequency range. In this thesis the emphasis
is on the use ofocal models Equation of motion is such a local model (Eq.1.1). Without the
knowledge of boundary conditions, it cannot predict deterministically the response. None the
less, the knowledge of the equation of motion in the mid-frequency range is still a bene t. It
can be used to predict dispersion curves and radiation problems. By identifying the equation
of motion we obtain indirectly the information about the structural properties which can be
interesting from the engineering point of view. For example in Section 4.2 the presence and
magnitude of axial force is determined in beams and membranes.
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1.2 General strategy of identi cation of motion equation

The generaktrategy to identify the equation of motion can be decomposed into three parts
as shown in Fig.1.3First, there are some experimental observations of the structure whose
equation of motion we want to identify. In our case these observations consist in a steady-state
vibration eld measured at a number of neighbouring poiscond, there are multiple candi-

date models (set of assumed equations of motion). An inverse method is used to tthese models
to the observationThird, a model selection technique is used to choose the most appropriate
model which describes the best the measurement taking into account that these measurements
cannot give exact data and perfect t tis not the best solution.

4 N\
/7 \
/ \
/ \
/> Model 1 |[—
/ \
! \
1 \
! > Model 2| >
! | i
i . Model selection
1.EObSQNatI<t3n ! (3 Ocdrﬁe?i?)r?Cto The best model?
xperiment 11 .1 Model 3 >
\ . h
\ . !
\ M !
\ /
\ > Model N+
\ /

\ /
\ /7
N 7
~ I
~ -

~—-

2. Inverse method
fit of observation

Figure 1.3:General strategy of the employed for identi cation of the motion equation.

It is important to notice the sequential nature of this identi cation. We cannot consider, for
example, model selection technique without thinking of the nature of the inverse problem and
the observation. It is shown that the choice of the observed quantities and subsequent inverse
problem determines (or restricts) in some way the model selection criterion used.

The plan of this thesis follows this strategy. In this general introduction there is a bibli-
ographical overview of existing inverse methods (Section 1.3) followed by an introduction to
the model selection techniques (Section 1.4). These topics are developed further in Chapters
2 and 3. Chapter 2 describes in detail two inverse methods used in this thesis: Inverse wave
correlation and Inverse wave decomposition. Both methods are adapted in order to be used for
a model selection problem. Although these methods are not new, some new aspects and ap-
plications are presented. Chapter 3 describes in detail how the model selection techniques are
applied as a post-process of the inverse methods, where it is shown the importance of respecting
the hypothesis used by these techniques. It is particularly shown that the di erent nature of the
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two inverse methods leads inevitably to useatent model selection techniques. It is shown
that non-respecting of the preliminary hypothesis leads to largely erroneous results.

Chapter 4 presents some highlight case studies where the equation of motion was identi ed.
There are three distinct cases. The rst is the study of the importance to include the preload
for the description of vibration behaviour. The second deals with the question of mechani-
cal orthotropy of wood and composite plates. The third case deals with the description of an
complicated composite plate.
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1.3 Identi cation of equation of motion

1.3.1 Directand inverse problems

Before starting the description of di erent direct and inverse problems, we can de ne what we
mean by the terms afirectandinverseproblems. Whatever the nature of our research there are
always somenodels. By model it is meant an abstract mathematical description of phenomena
which can predict aimulation(Fig.1.4). Often simulated values can be observed experimen-
tally. If itis possible we can construct the inverse problem which determines the model from the
observed quantities. Mathematically, both problems are equal in nature, they are represented by
a function mapping the variables from the model space into the data (obsefsiatioiation)

space and vice versa. But in most cases the direct problems are much easier, because they are
are well-conditioned, while the inverse problemsesdrom ill-conditioning.

Direct problem

MODEL |—>| SIMULATION

Inverse problem

MODEL |<—|OBSERVATION

Figure 1.4:Direct and inverse problem.

In the following sections there is a bibliographic survey of a number of inverse problems
which have been used in the past to identify parameters of equations of motion. While all these
problems arénverse problems they can be separated into two larger groups depending on the
used methods to solve them:

Inverse problems solved by an indirect method: These methods usessartienof the
equation of motion (solution of the direct problem) and compares this solution to the
observation. Generally, this solution is son@n-linearfunction of the parameters of the
equation of motion. By least-square optimization, an optimal value of these parameters
can be found in order to match the solution to the observation.

Inverse problems solved by a direct metfiothese approaches use transformation of the
partial di erential equation of motion into a an algebraic equation. Goents of this
equation are obtained directly from measured data. Unknown parameters of the equation
of motion appear then linearly in these algebraic equations.

8Attention, notto be confounded with the direct problem.
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1.3.2 Inwerse problems solved by an indirect method

1.3.2.1 Modal methods

Modal methods consist in comparing some modal characteristics determined by the model to
the measurement. The model is then updated until the modelled quantities t optimally the
measured data. The important feature of all modal methods is that the geometry and boundary
conditions must be known because they make part of the model.

A typical example of an inverse method used for identi cation of a composite beam pa-
rameters can be found in Saito [35]. He used a Timoshenko beam theory to a beam with free
boundary conditions. He compared the theoretical natural frequencies obtained by the model to
the measured natural frequencies. Similar studies have been done by Barkanov [10] (cantilever
sandwich beam) or Shi [38] (numerous literature examples of sandwich beams). In recent years,
some authors used other measurements than the natural frequencies. For example, Cunha [18]
used both natural frequencies and mode shapes in the objective function.

The modal methods are not employed in this thesis. Their main drawback is the necessity to
know the boundary conditions and complete geometry of the structure. Approach in this work
is based on local identi cation.

1.3.2.2 Inverse wave correlation method (IWC)

The principle of this inverse method was rst mentioned in works of Ferguson [25] and later
developed by Berthaut in his doctoral thesis {3]its aim is to investigate the correlation of
the local vibration eld (as shown in Fig.1.5a) with a plane wave propagating in some direction
(Fig.1.5b). This value of this correlation depends on the wave nuibssociated with the
propagating wave. Berthaut postulated that the dominant (natural) wave number in the eld can
be found by maximizing the inverse wave correlation cont IWC with respect tkkand 1°

R

i owi(k: ;o )d
IWC(w;K; ; )=quJ (u )

T\ 1

- (1.4)
jwd (k5 )jed

where the functionv represents the vibration eld,is the angle of propagation ands the
propagating plane wave
(k; ) =exp(k(+1i )(xcos +ysin)) (1.5)

with k being the wave number ands the loss factor of the wave number.
We can see the evolution of IWC as functionkodipplied to the vibration eld in Fig.1.5a

9This methods also closely related to so-call&@bntinuous Fourier transform (CFTJescribed in the same
work.
10This is only true for in nite wave elds, more details and discussion of this subject are in Section 2.20.
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Figure 1.5: Principle of the method IWC used by Berthaut.

in Fig.1.5c for dierent angles . We can see that the maximum of the curve is not clearly
distinguished for all the directions. This can be explained by the fact that some plane waves
are badly correlated with vibration eld. Their pattern is not "present” in the vibration eld.
Berthaut systematically eliminated these waves from the nal analysis in order to keep only the
dominant information from the eld. The optimal valuesloin di erent directions are shown
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in theFig.1.5d by circles. The size of the circle shows the level of correlation in the maximal
point in the Fig.1.5c. We can see that the small circles are rather badly placed with respect to
the big ones.
Once the optimal ("dominant”) wavenumbleis determined, the corresponding parameters

of the equation of motion can also be found to give the natural wavenumber equal to the one that
has been found by the inverse technique. It should be noted that the wavenumber "loss factor”

is often badly determined unless there are strongly damped waves. For most of the time in
this work, it is considered that the damping is negligible and thereforé.

1.3.2.3 Inverse methods based on wave decomposition

Decomposition of the vibration eld Let us imagine that we measure a eld functiofx; y)
in the set of discrete pointg(y;). This function can be either represented in the spatq] y;)
or in the Fourier domain as(K!; k{), where“denotes the Fourier transform. Both representa-
tions are complete and there is no loss of information, since the Fourier transform is a bijection.
As we can see in the Fig.1.6, if we deal with special functions like solutions of some vibrational
problems ("displacement eld”) the information in the Fourier space is condensed in a very
small number of unknowns. This idea lead many researchers to look for a decomposition of
some vibration eld into some kind of waves. The motivation was to simplify the numerical
problem because the number of waves explaining the vibration eld might be small (as it can
be seen in the example in Fig.1.6).

The hypothesis made here on the vibration eld is that it satis es sknwevndi erential
equation in the zone of interest

Lu=0 in (1.6)

wherelL is the di erential operator and is some bounded convex zone in 2D cartesian
space.

In this thesis we will be dealing with two di erent approaches to decompose the vibration
eld u(x;y) which is supposed to be a particular solution to Eq.1.6 (this approach was rst used
by Fox, Henrici and Moller in a so-called MPS - method of particular solutions [21],reviewed
by Betcke [34]). The rst decomposition is based on thedamental solutionsf the operator
L and the second is based on fllane-wavesatisfying the Eq.1.6. The comparison of the two
approaches is shown in the Fig.1.7. Both method belong to the so-calléz Methods.

Method of fundamental solutions this is a numerical method developed from the
1970's. A good overview of this method was written by Fairweather [15]. Recent ap-
plication in plate vibration analysis include Reutskiy [33] who used it for detemination
of natural frequencies of a clamped plate, Alves [7] proposed a method for determination
of eigensolutions of an arbitrarily-shapes plate, and a similar work done by Kang [32].
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Figure 1.6:Displacement eld on left and its FFT image on right.

METHOD OF FUNDAMENTAL SOLUTIONS METHOD OF PLANE WAVES

Figure 1.7:Comparison of decomposition in fundamental solutions and the in the plane-waves.

The method of fundamental solutions is based on approximation of theu(&|g) in the
zone by a set of fundamental solutions of the operator

X
u(x;y) = s s(rs(xy)) (1.7)

S

where sis the solutionofL s = (X X5y Ve, Is = p(x Xs)2+ (y Ys)? and

(Xs;Ys) arethe points situated on some closed curve encircling the zofsee Fig.1.7

on left). The number of fundamental solution functions and their origkgs/{) must

be determined by numerical simulations in every independent case. There are some rare
examples of geometry where the optimal distribution of the sources and the geometry of
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the cune @ %are known (for example Katsurada [24] for a circular zones).

The limiting factor in the use of this method is that the fundamental solution of the op-
eratorL must be known. So far, the method has been used for Laplace, Helmholtz and
biharmonic operators (see a review in [15]).

Method of plane-waves this is a simpler approach than the preceding decomposition. In
this method the function(x;y) is decomposed into series of plane waves satisfying the
equation of motion

X
uixy) = Anexp(ixkcos , iyksin )+ (1.8)
n=1
X
+ B.exp( xkcos ,, yksin )

n=1

where , = 2(n 1)=N andk is the wavevector which is a solution of the dispersion
equation associated with Eq.1.6.

The presented wave decomposition was used in many direct problems. Kovalevsky et al.
[17] used this method for solution of vibration of composite plates and the same authors
developed the method for the resolution of room acoustics problems in mid-frequency
domain in [22]. Laghrouche [26] and Ortiz [27] investigated theadition of waves in

two dimensions. Perray [13] studied the wave scattering in three dimensions. Pluymers et
al. [4] discussed the use of plane waves Tre tz methods for interior and exterior acoustic
problems. Vanmaele [9] studied the behaviour of the method in the presence of sin-
gularities in plates. Perray [12] showed the stability limits and precision of the wave
decomposition with increasing. Indeed, even if it was proven by Colton [8] that the de-
composition given by Eg.1.9 is dense in the space of solutions of the Hemlholtz equation
for convex zones, the determination of coe cients A, and B, becomes ill-conditioned

asN grows. Langley [30] demonstrated this phenomenon for Hemlholtz equation. A
proof of denseness of the plane-wave solution in the case of the biharmonic operator us-
ing the propagating and evanescent waves was given by Chardon [5] based on the works
of Moiola [1].

The denseness of the decomposed solution is particularly problematic in the inverse for-
mulation and it will be demonstrated in this work. We are interested in keeping the value
of N as low as possible without severely under tting the measured eld.

Method of Chardon (IWD): Chardon in [6] developed rather sophisticated method for in-
terpolation of vibration eld measured at few points based on the knowledge that the eld is
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solution ofthe Kirchho di erential equation. He was interested mostly in diminishing the
necessary number of measurement points for reliable identi cation of the vibration eld. He
showed that the a priori knowledge that the eld is solution to the Kirchkquation enables
to reconstruct the eld from sparsely randomly distributed points with sampling in sub-Nyquist
range.

Chardon considered that an observed eld is a solution of the Kirehbee equation

D2 <l%u=0 (1.9)

The coe cients of this equation are not necessarily known. But the approximative so-
lution can be expressed by decomposition in the plane waves given by Eq.1.9. If the nor-
mal vectors for particular plane wave arg = [cos ,;sin ,]T and the observation points are
X = [(xq; %2; %) T (Ve Vo, 2 yn) '] then we can express the approximative solution in the ma-
trix form

G(k) = [exp(k:X 1) i exp(ikX ) expkX 1) 1 exp(kX w)] (1.10)

The idea of Chardon was to nd the optimal wave numkeo obtain the best t of the
measured vectar=u(x;y;) with the linear subspace given by Eq.1.10. The problem of tting
the measured vectorcan be written in linear system of equatidds = u. The projection ( t)
of the vectolU into the space spanned Bycan be therefore written ag=GG ! u=Pu, where
P is the projector. The estimation of optimal wave numbean be done by maximizing the
projection of the measured vectoonto the space spanned by the plane waves

k = argminjju  P(Kuiji? = argmaxjP(K)ujj? (1.112)
k k

This equation is holds because the projecigk)u and residual-P(k)u are related to each
other by the Pythagorean triangle (see Fig.1.8). So we jgjfejju  P(K)uji?+jP(Kuijj?. So
the norm of the projectio®(k)u is always smaller or equal to norm of measuremen@he
idea of the nonlinear inversion given by Eq.1.11 is to bring the projector $p@&gas close to
U as possible.

Method of McDaniel: McDaniel at al. in [23] who used an inverse technique based on wave
decomposition for the measurement of the damping factor in steel box beam lled with granular
polymer. But his method is actually a special mono dimensional case of the method of Chardon
developed later. McDaniel considered that the equation of motion describing the box beam in
the frequency domain is of the Euler type

du |,

El— !

o =0 (1.12)
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Projector space
spanned by P(k)

U-F{(k‘)’ﬁ

P(k)U

Y

Figure 1.8:Scheme of the measured vectoand projected vectd?u.

Figure 1.9:Method of Chardon. A. The plane wave approximation of the vibration eld. B.
Vibration eld and randomly displaced measurement points.

in the zone without excitation. The goal of his inverse problem was to determine the com-
plex value of El as function of frequency. The advantage of one-dimensioraatitial equa-
tion of the type 1.12 is that the general equation exists and it is very simple in this case. Every
solution of Eg.1.12 can be written in terms of four waves

u(x) = c;Sinkx+ c,coskx+ cgshkx+ c,chkx (1.13)

P
where the wave vectde= *1 2 | =FI.

Themeasurement was taken at 13 points along the axis of the beam by accelerometers(Fig.1.10).
For a given frequency, the vector of measured displacements can be approximatédl by
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Figure 1.10:Scheme of the experiment undertaken by McDaniel.

u{™ sinkx cokx shkx chkx cy
U™ ¥ Bsinkx cokx shkx chkx Co

(1.14)
u{ sinkx;s coskxs shkxs chkxs Ca

The inverse problem can be formulated as nding the optimal valdeasfdc; which mini-
mize the error between measured vetiandU

Kopt = argrkninjjU Ul (1.15)
C;

Once the optimal value df is known, the bending sti neskl can easily be determined.
We should note, that the mass properties of the beam must be known.

A very similar approach to McDaniel was chosen by Liao in [37]. The work of McDaniel
marks the beginning of experimental methods which use the displacement eld as experimental
entry for the inverse problem. This work was based on the measurements done with accelerom-
eters and was therefore limited to the one dimensional structures but the following researchers
made use of scanning laser vibrometers which became available around the year 2000.

1.3.2.4 Asymptotic inverse methods

In this section the inverse method based on modal densities and mean value of mobility is
presented. This method based on the works of Skudrzyk [14] and Xie [16] was proposed by
Ege in his PhD thesis [19]. This method can be applied to Kirchblate equation given by
Eq.1.9. Plate sti ness parameter D and plate surface densityn both be determined.

The idea behind the method is the determination of two asymptotic quantitaeal density
and mean mobility Both quantities can be determined experimentally and theoretically. The
inverse problem consists in tting both theoretical values to the experimental values.
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Modal density: themodal density is de ned as follows: I&(!) be a number of modes of
the plate with modal frequency beldwThen n(!) = dN(!)=d! is the average modal density.
According to Xie [16], the modal density of a nite plate can be expressed:
p—
n) =p +q =f (1.16)

wherep = S=4, g is a constant depending on the boundary conditidrad = P s=D

depends otthe parameters of the equation of motion.

The modal density can also be calculated experimentally. As we are dealing with a multi-
tude of modes at mid-frequency range with important overlap, traditional methods using local
minima of the Fourier transform of the time signal are not adapted. Recently, the choice was
made by Ege (for example Ege [20]) to use the method ESPRIT (Roy [29]) coupled with the
method ESTER ([28]). This choice enables robust determination of the modal density from
experimental measurements. Once the modal denfSityvas determined from the experiment,
the optimal parametercan be estimated:

-~ X exp P—2
= argmin n p g =f (2.17)
|

wheref; represent th&requencies where the modal density was determined.

Mean mobility: the mobility corresponds to the admittance of a strucksde where V is
velocity and F is input force. The so-called mean mobility is de ned by Skudrzyk [14] as the
mobility of the equivalent structure with in nite dimensions. Under the hypothesis described
by Skudrzyk, the mean mobility can be asymptotically expressed:

(1.18)

Once themean mobility is calculated from the time signals and the paramei®deter-
mined by solving Eq.1.17, the parameter D can also be determined. The details of the inverse
technique are presented by Elie in [11].

The interesting feature of this inverse method is that it is semi-local. Although the size
of the plate must be known, the boundary conditions do not play a major role and the exact
knowledge of the boundary geometry is not crucial. At higher frequencies, this method becomes
local. Its advantage is also the simplicity of the measurement con guration. Theoretically,
only one measurement sensor is ient and measurements are taken from impact hammer
responses. Moreover, there is quite a large dispersion of modal density funtfiabtained
by the ESPRIT method. The determination of the modal density candétdiecause of high

"This dependencis rather simple, for example for a simply supported panel we bave (L + Ly)=2, for a
free edges we hawg= L+ Ly. At higher frequencies this dependence on boundary conditions becomes negligible.
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modal wverlap in the mid-frequency range. To author's knowledge, this method was only use
on isotropic and orthotropic Kirchhoplates.

1.3.2.5 Galerkin inverse methods

The Galerkin method has been used for a very long time in its direct formulation for resolution
of boundary problems. However, a very few researchers use the Galerkin method for inverse
formulation. Shindar [2] used an inverse Galerkin method for the determination of unknown
sources in the parabolic heat-conduction equation. Epstein [36] developed an inverse Galerkin
method for the determination of optical properties of 1D medium. To author's knowledge these
methods have not yet been applied to vibration problems. Both approaches are ogeligsti

so it will be useful to look at them more closely.

Inverse Galerkin method applied to the parabolic di erential equation: In his work [2]
Shidfar considered the non-homogeneous parabolic equation of the type

@u @u
@t @@
whereu can befor example temperature de ned on the integrad; 1 > x < 0;1 > andF
is the source term. The goal of his method was to deterfifrem some measurement oin
the space and time. If the initial and boundary conditions are known the unknown function
can be expressed by the integral formula with known keggel ):

= F(x;t) (1.19)

w Z.Z, !
u(xt) = F(; )g(;t )dd sin(i x) (1.20)
i=1 0 O
The principle of the Galerkin method lies in the approximation of the in nite-dimensional
functionu(x;t) andF( ; ) by a nite sum of basis functions. The sinc functions are used for
the rst function and the polynomials are used for the second. Then Eq.1.20 is approximated
by the system of linear equations:

AX =B

where the vectoX represents the distribution of sourceésand B depends on the mea-
surement of temperature This linear problem is generally ill-posed with matAxclose to
singular. The author addresses the problem of optimal regularization of the inverse problem
and obtains the inverse representatiorFofor several simulated data. The advantage of the
parabolic equation with known boundary conditions is that we can express the solution in the
closed integral form like Eq.1.20. In our case, this would not be possible because the boundary
conditions are unknown.
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Inverse Galerkin method applied optical tomography in 1D: Epshteyn developed in his
work [36] an inverse Galerkin method for the determination of theaemets of absorption
and di usion in the Diusion approximation of the radiative transfer equation. This equation
describes the photon transport in the optical medium. According to Arridge [31] thesioin
approximation equation can be written:

rr Dru + u =f in (1.212)

whereu is the optical densityf is the source termD is the diusion coe cient and is
the absorption coeient. Both coe cients can change in space with respect to the optical
properties of the material. The boundary conditions are of the Robin type

u+ ZD%uz 0 on@ (1.22)

Using the Galerkin approach and the integral identities, the boundary problem given by
Eqg.1.21 and Eqg.1.22 can be expressed in its weak formulation:
Z Z Z Z

Dru:rvd + uvd + %uvdsz fvd (1.23)
@

wherev is the test function from the Galerkin method. As the source téismconsidered
known, we can determine the unknown functiofrom the Eq.1.23. Epshteyn used a sum of
cubic spline functions for approximation of the unknown

The inverse problem consist in nding the appropriate functibnand permit existence
of the solution given by Eg.1.23 and which minimizes the error introduced in the boundary
conditions given by Eq.1.22.

Figure 1.11:Principle of the inverse method used by Epshteyn. The source distriblii®n
considered known.

The inverse problem solved by Epshteyn can be seen on Fig.1.3.2.5. Let us consider that
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the problems de ned between the pointg andx,. The source distributiofi is known (in this
case it is approximated by a Dirac function). The boundary conditions can be experimentally
determined at pointg; and x,. For every discrete approximation of functiobsand , one
can uniquely calculate the optical densit{D; ) with integral formula Eq.1.23. The inverse
problem lies in minimizing the error between the experimental boundary conditions and the
boundary conditions corresponding to the paramdeasid . In this way, the optimalD and
can be determined.

The method proposed by Epshteyn is very similar to the one used in this thesis, but the
di erence is that the RHS of Eq.1.23 is zero in the case of this study. The absence of driving
force f complicates the inversion problem because the excitation comes uniquely from outside
of the zone and it must be approximated by the (experimental) boundary conditions. The
di erence lies also in the dimension of the problem. The Galerkin inverse problem solved in
this work is two-dimensional and hence more complicated.

1.3.3 Inverse problems solved by a direct method

1.3.3.1 Force analysis technique (FAT, RIFF)

The Force analysis techniquéOr RIFF methodf) was developed by é&erat in his PhD the-
sis [41]. It was later developed for applications on plates ([42], [43]) and on thin cylinders
([48]). Its objective is to determine locally the external force applied to the structure from the
vibration shape measurements. This method is an example of output-only inverse problem. No
knowledge of boundary conditions or excitation are required.

The principle can be explained for the case of the Kirchiptate model. This model is
described in its steady-state form by theedential equation

D 2u(xy) !? su(xy)=F(xy) (1.24)

whereu is the displacemenD is the bending stness, s is the surface density, is the
angular frequency anfd is the external excitation force. In the direct problem we suppose that
we know the operator (represented Dy s), the excitationF and the boundary conditions.
Then the solutiom can be calculated by some numerical method. In the inverse logic of the FAT,
the operator is known and the solutiare u®® is also known by measurements. Therefore,
theunknownforce F can be "directly” determined by:

The problem with Eq.1.25 is that only the displaceméfi® can be measured, the derivative
2u®xP) cannot be measured. However, it can be approximated by nigeadices from several

12The originalFrench version is RIFF: &olution inverse ltee fergtrée.
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neighbouring pointsSo replacing the derivative operatot by its nite di erence estimator 4
we obtain:

F=D %P 12 gyen (1.26)

The main di culty of the FAT is the regularisation of the inverse problem. Although Eq.1.26
is theoretically correct, there is potentially a very important noise coming from the estimation
of the fourth derivative (derivation "ampli es” noise). Therefore a lot of e ort has been put in
place in order to regularize the problem. Most methods rely on spatial low-pass ltering of the
identi ed force F. For details see the works cited at the beginning of the section.

The principal goal of the FAT was the estimation of excitation force. However, as it was
mentioned by Bzerat in [41] the same methodology can also be used for the determination of
the operator of the structure. Let us suppose that we are measuring the zone which is not excited
(i.e. F = 0), then we can write:

D 4P 12 y®n =0 (1.27)

If the density of the structures is known, then the parameter D can be determinedlly.
This is particularly interesting because this formulation permits to measure heterogeneous plates
where D varies spatially. This method was investigated by F. Ablitzer (see [46]).

Another derivation of the FAT was investigated for localization of defects in beam structures
by Xu [47]. He considered an similar beam equation like 1.27 with absence of external force
(zero RHS). He showed that the presence of a damage was manifested by a non-zero values at
the RHS of Eq.1.27. Another application of the FAT for detection of faults in plates was used
by Renzi [44]. Therefore, from this point of view, looking for a damage is somewhat equivalent
to a localisation of point force.

1.3.3.2 Continuous time identi cation

A method known a€ontinuous time identi catioms basically very close to FAT(RIFF) method
described in the preceding section. The idea is to transform the pargatmlial equation
describing the motion into a system of algebraic equations. Let us consider the method as it
was employed by Chochol [40],[39]. She considered an equation of motion of an Euler beam
without external excitation
@u @u
EI@ + S@ =0 (1.28)

The goalwas to determine the ratiaI< S ) from measured displacement In order to
do this, the measured displacement in space and time was put into a atex u(x;; t;).
This measurement was expanded to a linear combination of Chebychev polynbiiats
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« k k(:). Similarexpansion was done in the space coordinate. With these expansions coe

cients can be calculated by least-square tting of measured data and then the partial derivatives
in Eg.1.28 can be evaluated by derivation of the Chebychev polynomials.

Another application of this method was done by Rouby in [45]. He considered several meth-
ods for expansion of the measured displacements as well as application of wavelets. However,
he only dealt with simulated data of discrete systems of a few-of-degrees of freedom.

Actually, the di erence from FAT(RIFF) method is in the way how the derivatives of the
partial di erential equation are obtained. In the FAT method they are obtained via a nite
di erence scheme and spatial Itering. In the case of the Continuous time identi cation method
these derivatives are found by interpolating the measured signal by suitable set of polynomial
functions. Both methods face similar problems. The rst relies strongly on suitable spatial
Itering in order to avoid strong noise, the second is strongly dependent on the size of the
functional basis used for expansion. If this basis is too small the expansion is not precise. If this
basis is too large, then the expansion ts the noise and the inverse problem becomes ill-posed.
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1.4 Model selection

1.4.1 Introduction

The model selection is a statistical discipline which deals with problems of nding the appro-
priate mathematical model for some physical phenomena. Let us consider ttraethedels
described by a functiog(x), wherex is an independent variable. There are number of models
which might describe the same phenomenon. They are desigreathdslate modelM ; and

are putinto asd?l = [M 1(p1); M 2(p2); :::Mn(pn)]. Vector of parameterg; determines the i-th
model. Function describing the i-th model is desigyg®; p;) (x is the independent variable).
The real function (ground truth) which is usually unknown to observer is desigix@dHow

do we choose a optimal mod#l,,; from the set M? There are several way of tackling this
problem.
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There are methods searching for a model which minimizesxpectation of the residual
between the true model and the candidate model. The optimal model's index minimizes:

opt= argminEx(iy()  ¥i(x )ii?) (1.29)

whereE, means the average value over all the admissible values of explanatory variable
X. Methods searching the best model by minimizing the above quantity include Mallow's
C,, Subspace information criterion (SIC) and Cross-validation (details in Section 1.4.2).

There are methods which look for a modaihimizing the Kullback-Leibler distan¢see
Section 1.4.3 for details) between the true model and candidate models. In this case the
optimal model is obtained as

opt= argminKL(y;Vy;) (1.30)
i
These methods include well-known Akaike information criterion (AIC) and its general-
ization Takeuchi information criterion (TIC).

There in theBayesian information criteriofBIC) (see Section 1.4.4 for details) which is
based on looking for maximized posterior probability of the model if the truth (measure-
ment) is given. Mathematically, we can write

opt= argmaxP(yjy) (1.31)

whereP(yjy) is the conditional probability of modéli; (described by function;) given
the measurement from the real functiyn



Finally, there is is theMinimum description length principDL). This principle chooses

a model which describes the measurement and has the least complexity. This method is
not treated in this work. Readers are referred to the works of Hansen [59] and Barron [49]
for further details.

1.4.2 Methods based on minimizing the expectation of residuals

The problem of minimizing Eqg.1.29 is that we are always dealing with nite measurements
with noise so we cannot do the average over all the valueinstead we have a nite set

of measurement poinfs=[ x;; X;; :::Xn,] and the corresponding measurement values/a.

Let us consider a mod&l . Its optimal parameters are identi ed by minimizing the residual
function as shown below:

X

P« = argmin  jiy(q)  yi(x; Puif” (1.32)
Pk i

Then, we can estimate the variance of residuals

. 1 X .
k(estimatedy N1 WO v Pu)ii? (1.33)
i
In this estimation, measurement points 1 to P are used. Generally, this variance always
diminishes with growing complexity of mod&l  (black line in Fig.1.12). However, if we
have a look at the true variance (see Stone [60] for reference)

f(true)= Var(y yi(:; Px)) (1.34)

we can see that this variance reaches a minimum for a certain model complexity but it
increases for a very complex models (red line in Fig.1.12).

The problem of variance estimation given by Eq.1.41 is that it can underestimate the true
variance given by Eq.1.34. This happens when the model is either more complex then the
reality (in such a case, the inversion becomes unstable, its parameters of theMnoded
badly determined) or there are not enough measurement points (in such a case, an excessively
complex model ts more the noise instead of physics of the phenomenon measured).

There are several methods which try to nd the minimum §¢true). Mallow'sC, and SIC
methods use the estimated(estim:) function with some penalty in order to take into account
for the model complexity. The Cross-validation method tries to obtain estimaté(tfie)
directly.
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Figure 1.12:Typical curve of the modelling errors as function of model complexity.

1.4.2.1 Mallow's Cp

The method based on statistiCs was developed by Mallows (see for example Mallows [51]).
This method is adapted for problems where the molleform all nestedinear models. Model
M  is de ned as:

X

Yk(X) = i(K) (X (1.35)

i=0

where ; is some known functions ot (for example Taylor Polynomials). Coeients
represent the model parametgrs Model M ¢ contains all the preceding models. In other

words,M; M , i M . Therefore we call these modeisstedmodels. The statistiC,

for the k-th model is de ned as:

RS&
Cp(K) = —

~2

Np + 2k (1.36)

where 7 is the estimation of variance of the measurem@latjs the number of measure-
ment pointsk is the number of parameters. The residual sum of squares for the k-th model
RSS is de ned as:

X
RSS = jiy() k(% Pl (1.37)
|
The estimation of 2 is crucial. It should be estimated from measurement conditions. How-

ever, it can be estimated also a posteriori from the t of the models. FunGjaepresents a
statistics whose minimum with respect to the number of paramlketghsuld yield an optimal
model in terms of minimizing the variance of residuals (Eq.1.34). There are two important
terms: the residual R{$liminishes with growing as the model ts better the measurement.
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However, the term 2kncreases with model complexity and eventually its increase becomes
larger than the decrease in the rst term. Cugas a function ok looks similar to the red
curve in Fig.1.12.

The limitation of Mallow's method is that it can only be used for nested models and, more
importantly, to linear model¥’.

1.4.2.2 Subspace information criterion

The subspace information criterion (SIC) was rst published by Sugiyama and Ogawa in [61].
The SIC criterion can be applied to any problem that can be expressed in terms of so-called
learning operator. If we consider k-th mod®l  its learning operator iX and the estimate of

the model is:

Yi(X) = Xy (X) (1.38)

Typical example where Eq.1.38 can be used is the linear tting problems. If we consider a
y = Ax function, then the estimation gfusing model A isy = AA 'y and therefore, in this
case, we obtaiX = AA L.

Then, we suppose that there exists a mddiglwhich gives unbiased estimateygfin other
wordsE(yy) =y, wherey, = X y.* In these requirements are met, then the SIC criterion is
de ned for k-th model as:

SIC =iy Yu? tr(XoQXg) + tr(XkQXy) (1.39)

whereXy = X Xy andQ is a matrix of noise covariance. The model with lowest value
of SIC is chosen. It should minimize the variance of residuals given by Eq.1.34. There are
two main limitations of the SIC method. The rst is that the noise covariance matrix should
be known with a fair precision. The second is that the matrKgsnust exist. This is not
always the case. Especially, in the case of nonlinear t, such a relation as Eq.1.38 does not
exist. Unfortunately, the inverse problem as it is discussed in Section 3 is non-linear and the
noise matrix is a priori unknown.

1.4.2.3 Cross-validation techniques

The cross-validation technique is very simple to use. Its theoretical basis was established by
Stone [60]. The principle lies in the division of the measurement into two'3dtise rst set is
calledtraining set This set serves for the identi cation of the model parameperBhesecond

13This meanghat the value of function representing the model isear function of model parameters.

In practice Sugiyama uses often the most complex model among the candidate models and supposes that the
estimate would be unbiased (see Fig.1.12).

15The way, how this division should be done is somewhat arbitrary. None the less, there should be more mea-
surement points in the validation set.
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set iscalled thevalidation set. This set of measurements serves for the validation of the model.
In other words, the predictive capacity of the identi ed model are tested. Using the notation
employed in this section, we consider our measurement de ned over P prinks; [::Xn,]-
Let us consider that all the measurement points with indicesN;2yelong to the training set
and all the points with indicel+1,Nt+2,. Np to the validation set.

Then, the k-th model is identi ed from the training set of measurements:

X
P = argmin  jiy(x)  Yi(%; p)ii® (1.40)

Pk i=1
The residual of derent models in the training phase is not of importance. The important

quantity is the residual of the identi ed model when applied to the validation set of measure-
ments:

X
jiy)  yO6; Pii? (1.41)

i=Nt+1

2 ; H —

validation)= ——

If we have su ciently independent measurements in the validation set then the validation
variance should converge to the true variance de ned by Eq.1.34 (see Fig.1.12):

2(validation)!  Z(true) (1.42)

The conditions of this convergence are, however, veguttito asses. The advantage of the
cross-validation method is its versatility. There are no a priori presumptions. The models can be
linear or non-linear. Their complexity and number of parameters does not matter. If the model
is too complex it would naturally get ill-posed and its prediction would become unstable and
therefore increasing the validation error given by Eq.1.42. On the contrary, models which are
too simple should be biased with respect to the validation set of measurements. The limitation
of the cross-validation method is an absence of the theoretical framework. The open question
is also the statistical importance of(validation). If, for example, Z(validation) is close to

2., (validation), can we make a choice between these two models? This question is treated in
Section 3.

1.4.3 Methods based on minimizing Kullback-Leibler distance

The Kullback-Leibler distance is a sort of information gain when we pass from fungtion
f.1® It was de ned by Kullback and Leibler in [58] as:

Z

|
KL(f:g) = fooin —

9(x )

8Another equialent formulation can be: How much information is lost when we use fungtiostead off.

dx (1.43)
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If f = gthen theKL(f;g) = 0. In the model selection problem treated by Akaike (AIC)
and Takeuchi (TIC), the Kullback-Leibler distance given by Eg.1.43 is a quantity which is
minimized, wheref is considered as the truth agdepresents dierent models. Even though
the true functionf is not known, Akaike and Takeuchi nd ways to asymptotically estimate
the lowest value of Kullback-Leibler distance ofatient models. The details of the Kullback-
Leibler distance and AIC criterion are discussed in Section 3.2.1.

1.4.3.1 Akaike information criterion (AIC)

Akaike information criterion (AIC) was invented by Akaike [54]. He found that maximized the
log-likelihood function is a asymptoticallpiasedestimate of the Kullback-Leibler distance.
The bias of this estimate is equal to the number of parameters of a idodéle AIC criterion

is de ned as:

AIC = 2In( L(M( p)jdata)+ 2K (1.44)

whereL(M( p))jdata) is the maximized value of the likelihood function for the mddel
The optimal value corresponds to the lowest value of AIC. We can see that even though the goal
of the AIC criterion are dierent from the methods based on the minimization of the expectation
of residuals, the resulting form of the criterion looks similar to criteria such as MallGyveand
SIC. There is a rst term decreasing with model complexity and the second increasing with
model complexity.

1.4.3.2 Takeuchi information criterion (TIC)

Takeuchi derived a more advanced criterion (Takeuchi [57]) by omitting some a priori hypoth-
esis made by Akaike. Notably, he dropped the assumption that the true model is among the
candidate models. The criterion named TIC is de ned as:

TIC= 2In(L(M( p)jdata)+ 2tr nJ@)n ()] ° (1.45)

where J is the expectation of the Hessian of thé(li( p)jdata)) and g is the expectation
of the Fisher information. For details, see Burnham [56]. The optimal model has the lowest
value of TIC. Although the TIC criterion is more general and it is based on fewer assumptions,
due to the di culty of evaluating the penalty term, it is rarely used in practice. In this work,
this criterion is not used, either. The reason is that in the vibration problems, we can expect that
at least one of the candidate models is rather close to the reality. For discussion on the subject
of the selection of candidate models see Section 3.1.1.
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1.4.4 Bayesiannformation criterion (BIC)

The Bayesian information criterion was developed by Schwarz [53]. Its principle is very dif-
ferent from the preceding two methods. The target model for BIC is the mddehich has
asymptotically the largest probabili§(Mjdata). In other words, we are looking for a model
which would be the most "likely” if thedatais given. Some elements of derivation of BIC are
presented in Section 3.2.2. Finally, the criterion BIC is de ned as:

BIC = 2In L(datajM(p)) + KInNp (1.46)

whereNp is number of independent measurements knd the number of parameters of
the modeM. The optimal model has a lowest value of BIC. We can see that the resulting form
of BIC 1.46 is very much similar to the AIC 1.45. This is quite surprising if we consider that
di erent approaches were used at the beginning. We can see that if we have moré thame
pointsNp then the penalty of the BIC is more strict than the penalty of AIC. BIC is therefore
considered more conservative than AIC. It tends to choose simpler models.

1.4.5 Comparison of dierent model selection methods

We have seen that there are multiple possible strategies of model selection. The choice of
strategy depends strongly on the mathematical nature of the problem which is employed (inverse
method). Some of the characteristics of the model selection methods are presented below in
Tab.1.1.

Method Inverse problem| Meas. errors True model Other limits
among candidates
Co linear reagr. indep. knavn no only for
nested models
SIC linear reyr. anyknown no
Cross-valid. any indep. (unknan) no need forlarge
independent samples
AIC non-linear rgr. | indep. (unknan) yes asymptotic
TIC non-linera rgr. | indep. (unknan) no asymptotic,
dicultto use
BIC non-linear rgr. | indep. (unknan) no asymptotic

Tablel.1: Chosen characteristics of@lient model selection methods.
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1.4.6 Examples olse of the model selection in mechanical problems

1.4.6.1 Identi cation of models from seismic measurements (BIC)

Beck et al.[55] used the BIC criterion for the selection of an adequate model in the seismic
mechanical models. Two examples were considered.

The rst exampleis a system with one DOF described by the equation of motion:

mX + cx + fs(X; kq; ko; xy) = f(t) (1.47)

where the seismic excitatiof(t) is known. Beck considers three possible forms of Eq.1.47
(see Fig.1.13A). The rst model class is a linear damped model witk» 0, ¢; > 0, and
X, ! 1. The second model corresponds to a elastic-plastic model wikh> 0,k, = 0,c =0
andx, > 0. The third model is a bilinear hysteretic oscillator wkh> 0, k, > 0,c = 0
andx, > 0. None of this models is theue model used for the simulated measurements. BIC
criterion used by Beck uses the measurement output time signal and compares it with the signal
simulated by di erent models.

Figure 1.13:A. Hysteresis loop considered by Beck to describe the non-linear response to the
seismic excitation. B. Ten-story building approximated by a model with springs and dampers.
The excitation is forced by the ground motign

Thesecond exampleonsist in choosing the appropriate number of modes to describe a re-
sponse of a ten-story building (see Fig.1.13B). This building is excited by a random stationary
seismic ground motion. The spectrum obtained from the measurgragtite top of the build-
ing is used for comparison with a model of di erent modal size. The optimal number of modes
is obtained by minimizing the BIC criterion.
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1.4.6.2 Use othe cross-validation for the selection of the fatigue crack growth laws

Hombal et al. [62] used a modi ed cross-validation technique to select an optimal model to de-
scribe the law of propagation of fatigue cracks. As shown in Fig.1.14 there exist three distinct
crack propagation behaviours shown by the zones I, Il and Ill. Paris proposed a well-kmown

ear law describing the part Il ([78]). The nonlinear behaviour of the tail zone Ill was described
by Lukas [76]. Hombal developed a cross-validation method which permits to split the space
of K into the regions where the Paris law is optimal and the regions where the Klesnil-Lukas
law gives better predictions. It should be noted that both models (Paris and Klesnil-Lukas) are
purely empirical, so none of them can be considered as the "true” model.

Figure 1.14:Typical curve of the propagation of the crack with three distinct zomss=dN
means the stands for the change of crack length per stress cycls,the eective amplitude
of the stress intensity factor.
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1.5 Outline of the thesis

The outlineof this thesis is as follows. After the introductory Chapter 1, the following chapters
deploy the ideas of this work.

The Chapter 2 further develops two of the inverse methods discussed in Section 1.3: Inverse
wave correlation (IWC) and Inverse wave decomposition (IWD). These methods belong to a
class of inverse methods which use the local measurement of the vibration eld and determine
the parameters of the equation of motion. These two methods were chosen for their performance
and relative robustness, because other methods are quite sensitive to the measurement noise.

The Chapter 3 presents the basic elements of the model selection developing the introduction
part in Section 1.4. Itis shown that each of the inverse problems must be treated with di erent
model selection technique. The information theory criteria (AIC and BIC) are used for the
IWC inverse problem and Cross-validation technique is used for the IWD inverse problem. A
particular attention is given to show why the information criteria cannot be used generally. It is
shown, that residuals of the inverse problem are rarely statistically independent.

In Chapter 4, three typical experimental cases are treated. The rst case consists in deter-
mining the presence of axial force in beams and membranes, the second addresses the question
of the orthotropy of unknown composites, the third case represents a problem of identi cation
of unknown structures with complicated vibration behaviour.

Chapter 5 concludes the thesis and presents the perspectives of this work.

Appendix A describes the experimental details of the measured structures presented in the
manuscript. Appendix B describes the modi ed version of the three-point static test employed
on beams. Appendix C discusses the problem of coupling the vibration of plates with surround-
ing air. Appendix D describes the Dym-Lang sandwich model used in the identi cation of the
eqguation of motion.
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Inver se methods

"Make things as simple as possible, but not simpléklbert Einstein)
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2.1 Statement of the inverse problem

Traditionally, the problem of calculating vibration response can be separated in three parts (see
Fig.2.1): input (excitation), system (model) and output(measurement, simulation). In the direct
approach we calculate the response (output) from the known input (excitation) and from the
known system. Typically, the inverse problems either seek to determine the excitation from the
known system and output or the system from the known excitation and the known output and
input.

Figure 2.1:Typical direct and inverse problems in vibroacoustics.

There are three dirent inverse methods presented below in this section:
Inverse wave correlation (IWC)
Inverse wave decomposition (IWD)
Inverse Galerkin method

They all belong to the second inversion scheme in Fig.2.1, their goal is to determine the
system. However, the derence is that they do not determine the system completely but only
partially as can be seen in Fig.2.2. They use only output as inversion data and their only goal
is to determine thequation of motiorof the system. The boundary conditions, geometry and
initial conditions are not determined. This weakness is also a strength in some sense because
the inverse methods are at the same tintependentdf boundary conditions and geometry of
the structure.

Typical problems solved by the mentioned inverse methods can be seen in Fig.2.3. On the
left, we can see a complicated engineering structure which can be nevertheless modelled as a
structure composed of several linear elements joined together. Although we know neither the
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Figure 2.2: Schematics of the inverse methods used. The important feature of the inverse
methods used in this work is that they enable only the estimation of the equation of motion.

excitation force represented by point force F nor the boundary conditions we can employ the
inverse methods to determine tloeal equation of motion of the linear structure between the
points A and B.

Another problem can be represented by the measureneated on guitar backboard rep-
resented in Fig.2.3 on right. Although we know neither the excitation nor the boundary condi-
tions and complicated geometry of the guitar ag®leobject, we can still use the local inverse
method on planar wooden plate part designed aand determine local equation of motion
adapted for the zone
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1D-example 2D-example

Figure 2.3:Two exemplary problems which could be solved by the presented inverse methods.
a) A beam-like structure between the points A and B. b) Backboard vibration eld of the
acoustic guitar.
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2.2 Considered equations of motion

2.2.1 Equations ofmotion in one dimension

Let us suppose that we are dealing with a following self-adjoint linear opdratdrich has the
form

2 4 6
ddux(zX) + C4ddu)54x) + %ddu)fax) +:0= f(X) (2.2)

whereu is the transverse ( exural) displacement of the string or beam described by the

coordinate and is the external generalized force. This force is considered zero in our zone of
interest (see Fig.2.3). Several 1D models will be studied in this thesis, their overview is in
the Tab.2.1.

L(u) = cou(¥) + ¢z

Model Coe cients

A String Co= !°?
=T

A, Euler Co= !°?
cq, = El

A; | Euler+Force| cg= !?
=T
cq = El

A, | Timoshenk | co= (! 240
Cp=1!7? le(l"’—%)
Cq = El

As Nilsson [ co="!%, | !2GeH .
c, = 2(D1 L+2D, |+ |pGeH)
Cs= GeHD; 2D, ! 2
Cs = 2D1D;

Table2.1: Overview of 1D models.

TheString model describes the thin string under an axial ten$iand a linear density, .

The bending sthess of the string is neglected. Unlike the other operators, this operator
is of second order. Its general solution is composed uniquely of propagation waves, while
all the other operators have also evanescent waves as solution.

The Euler model represents the most simple model for the exural vibration of thin
beams. The shear deformationeets are neglected and it is supposed that the sections
of the beam remain plane during deformation. This model describes well the behaviour
at low frequencies. The terfal represents the bending sti ness, withthe Young's
modulus and the moment of inertia of the beam section.
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TheEuler+Force modelis the mix of the preceding two models. It can either be a beam
which is submitted to some external axial force (can be a traction or compression). Or
it can be a string submitted to some traction axial force T where the bendintgess

is not negligible. The later case can typically be a steel cable used in suspended bridge
constructions or a low E bass guitar string.

TheTimoshenkomodel is adapted for vibration of beams at higher frequencies where the
Euler model is not precise enough. This model takes into account the sheetr& the
initially plane sections of the beant is the shear modulug) is the beam section and

= 5=6 for rectangular sections.

TheNilssonmodel was specially developed by Nilsson [77]. It is adapted to the exural
vibration of relatively thin sandwich beams with rigid thin faces and light and soft core
(see Fig.2.2.1). There are three unknowns related toass of the bear®;; D, andG..

Ge is the shear modulus of the core. CagentsD depend on Young modulus of the core
and the laminated layers

D,
D,

E.H3=12+ Ex(H?h=2 + Hh? + 2h3=3) (2.2)
E,h®=12 (2.3)

whereh is the thickness of the layer atlis the thickness of the core. Generalty, h
andD;  D,. The mass moment of inertia per unit widthis de ned as

l,= (H3=12+ |(H?h=2+ HK? + 2h°=3) (2.4)

Figure 2.4.Geometry of the Nilsson sandwich beam.
The sixth-order equation of the Nilsson model can be approximated by equivalent fourth-

order equatiorc;""u) + cou = 0 wherec, = ! 2 and cﬁf‘pp) is the solution of the
following equation :
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H 9 Cap 3=2
ie é(“p) DI? +¢” 2D,=0 (2.5)

Figure 2.5:Typical evolution of apparent (equivalent) bending&ss cﬁf‘pp) with frequency of
the Nilsson sandwich beam.

This approximation can be seen as an equivalarier beam with changing sthess

El = cP(1). A typical example is shown in the Fig.2.5. We can see the relevance of
the parameter®. The parameted, represents thstaticor low-frequency sti ness while

the high-frequency shess is represented by double the séss of the layers D,. This

can be a disadvantage of sandwich beams which might be verynsstatic conditions

but they soften rapidly at higher frequencies. It should be noted that itdslidto

use the Nilsson model at high frequencies because the vibration eld becomes two and
three-dimensional and the simplifying hypothesis of beams are no longer true.

2.2.2 Equations of motion in two dimensions

2.2.2.1 Isotropic models

Theisotropicalmodels (in the plane (x,y) can be described by the following equation of motion:

L(u) = cu+c, u+cy 2u=f (2.6)

where the coe cientsc are described in Tab.2.2. The external force is considgpeq) = 0
in the zone of observation
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Model Coe cients

B, Membrane [co= g!?
=T

B, Kirchho o= ¢g!?
c,=D

B; | Kirchho/memb. | co= g!?
=T
c,=D

B, Mindlin Co= o 1 BC
Cyq = zg—lg

Bs | Dym (sandwich)| in thetext

Table2.2: Overview of 2D isotropic models.

Membranemodel describes thin membrane with surface densjtgnd uniform tension

T. The exural stiness of the membrane is neglected. Due to the lightness of membrane
structures, the conditioh = 0 is not always respected due to the coupling with air. This
question is treated in appendix.

Kirchho model describes the vibration of thin plate. It is equivalent to Euler-Bernoulli
model for thin beams. The shearingé is neglected and plane section remain plane
during the deformation. The model is generally considered valid for lower frequencies
until the wavelength gets below ten times the thickness of the plate. Paranisténe

plate sti ness. For homogeneous isotropic materials it can be calculated from the elastic
parameters

Eh?

D=Ta o

2.7)

whereh is thethickness of the platé is the Young's modulus, is the Poisson ratio.

Kirchho /membrane model is the mix between the two preceding models. It can be
either seen as a thick membrane with non-negligible bendingess D or as a thin plate
pre-stressed by isotropic tensidn

Mindlin model is plate equivalent of the Timoshenko model for beams. It is adapted
to vibration of thick plates (or thin plates at higher frequencies). In the domain of low
frequencies itis equivalent to Kirchhanodel. In Tab.2.25 stands for the shear modulus,

is the Poisson ratidy is thickness of the plate, = 12.

Dym sandwich modelas proposed by Dym and Lang in [68]. This model considers a
composite sandwich with two identical thin faces and a thick core (see Fig.D.1A). Core



and skinsare supposed made from isotropic material. The somewhat lengthy mathemati-
cal description of the model can be found in Appendix D.

2.2.2.2 Orthotropic models

From the family of anisotropic models only tleethotropic models are considered due to their
technical importance. Orthotropic models can be applied to most wooden plates as well as
a majority of reinforced composites. The equation of motion takes the following form (later
referred to as model g}

Lu) = ! ?u+ Dl% + Ds%"‘ (D2 + D4)@?;é?:

This equatiorcorresponds to the Kirchhomodel applied to the orthotropic symmetry of
the plate. Orthotropic model becomes isotropic wilgn= D3z = D andD, + D4 = 2D. In
the orthotropic model there are four séss parameters but the equation of motion depends
only on three P4; D3 and the sunD, + D,4). For brevity, we will establish a new parameter
D24 = Dy + Dg.

There are many more models developed for vibration problems of plates (mostly the com-
posite plates). However, their description is complicated and they cannot be expressed in single
equation of like EQq.2.6 or 2.8. The problem from the inverse point of view is that they often
necessitate a multitude of parameters which cannot be determined with con dence with the
methods proposed in this thesis. The maximum of parameters determined from vibration eld
measurement in this thesis is three (orthotropic model).

0 (2.8)
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2.3 Inver se wave correlation method (IWC)

The Irverse wave correlation method is described in introduction section 1.3.2.2. In this work
the original method of Berthaut is used with small changes.

We assume that a particular equation of motion is given by the operator:
L(u) =0 (2.9)

The di erential operatot depends on an unknown vector of paramepershe goal of the
inverse problem is to determine these parameters, to estfinalée inverse method used in
this work consists of two parts.

First, the IWC method is used to determine the optimal wavenumber from the vibration
elds. We assume the vibration eld is measured fdfq frequencies and each eld is in-
vestigated inNg;; directions (see 1.3.2.2). For a particular directicand vibration eld w;
corresponding to th¢th frequency, the (experimental) wave number is:

[K}"] = argmaxtwowik; ; 1) (2.10)

where the IWC value is given by Eq.1.4 ak@" stands for the complex wave number
k(1+ ). In this work a modi ed method of Berthaut is used. The plane wave “correlation”
function de ned by Berthaut is given by Eq.1.5

(k; ) =exp(k(™+1i )(xcos +ysin)) (2.11)

has zero phase at the coordinate origin, which does not always correlates well with the
vibration eld where the origin is arbitrary. In this work the plane wave correlating with the
measured eld is enlarged by a frehaseterm

(k; ;) =exp(ik(l+i )(xcos +ysin + )) (2.12)

the modi ed IWC value is then obtained by nding optimal phasghich maximizes the
correlation betweew and (k; ; ):

.R -
joowik; ;o )d

IWCr(w;k; ; )= max ¢ (2.13)

jwpd  j(k; 5 )i
The advantage of using Eqg.2.13 instead of Eq.1.4 will be shown in Section 2.3.2.2.

Second, optimal parametgiof the equation of motion (Eg.2.9) is found by minimizing the
distance between the modelled wave numlk??é and the experimental ones:
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X X
p=argmin (k¥ K'(p))*=argmin (r;(p))* (2.14)
Py P i)

Wherek{POd(p) is the wave number corresponding to the propagating waventmgiven by
the dispersion equation associated to the operator Eg.2.9. The residual sum of squares RSS is
de ned as:

X ~
RSS=  (r(P))’ (2.15)
i

Another way of nding the estimat@ instead of minimizing the residual function is to
maximize the likelihood function. If we suppose that the residygals Ig(jex" ki°Y(p) are iden-
tically independentlynormally distributed with zero mean and variance then the likelihood
function can be written as (for example ([56], page 11))

P
Yoo 1 BrEg 1w E} J20)
L(p) = ﬁz_—expé; K 5 exp 12—”2 (2.16)

i=1 j=1

whereN = NNy iS the total number of identi ed wave numbers. The variance can be
estimated as

2 _ RSS
N
Forthe statistical purposes, the natural logarithm of Eg.2.16 is rather used. It is equal to:

X B2
InL(p) = gln(z) gln 2 % é@é (2.18)

i]

(2.17)

The maximunof the log-likelihood function determines the solution of the inverse problem.

2.3.1 Estimation of errors

2.3.1.1 Using the log-likelihood function

Log-likelihood function is not only used for estimation of the optimal parameter of a model
but it can also serve for estimation of interval of con dence of this parameter. One technique
is to see how fast the log-likelihood function drops down from its maximum. For a normal
distribution the con dence interval of 67% is the union of the points satisfying the following

1This wavenumber can be complex if the damping is present. In the original method of Berthaut, complex
values of wavenumber were considered, but author of this work discourages the use of the complex wavenumbers
unless we deal with a highly-damped structures. The reason is that the inverse problem given by Eq.2.10 becomes
much more unstable

2For a independence consideration see Section 2.3.2.5
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inequality IrL(p) > (InL(p) 1) ([56], page 11). This can be demonstrated on the maximum
likelihood estimation using IWC on the real data of the measurement of aluminium plate of
2mm thickness. The log-likelihood function corresponding to the Eqg.2.18 is shown in Fig.2.6.
Here we consider a Kirchhoplate equation and the unknown parametesrthe plate thickness

D.

Figure 2.6:Comparison of two way to estimate the con dence interval of the IWC method. The
green line represents the log-likelihood function. The blue dots represent the re-sampled solu-
tions using the jackknife method. This example was taken from the analysis of the measurement
done on 2mm thick aluminium plate.

2.3.1.2 Jackknife method

Thejackknifemethod is based on re-sampling the initial set of measurements. Let us suppose
we measured a vectdy = [wq;Wy; ::wy] (w can be seen as the displacement eld for one fre-
guency in our case). This vector of measurements can serve to determine a model (represented
by p) by some inverse technique as IWC. Schematically, we can write

IWC
[Wq; Wa; sw]! p

But if we omit the i-th componeritfrom the vectoW we would get di erent resulp®:

C

W (i
Wi Wo; Wi g Wier; ]! PO

In this way we can obtain N slightly di erent value®P; p@;::p™]. These so-called

3This procedurés calledleave-one outechnique. There exist also di erent schemes of jackknife where mul-
tiple entries in the vectdN are omitted at the same time.
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jackknife estimatesan be used to estimate some statistical properties @f ther our purposes,
we will use the estimate of the covariance of the identi ed ve@oFrom Bontempi [70], the
jackknife estimate of the covariance matrixfois:
LN

(

. N
COV(p)ij = —

= 60 E0 B (2.19)

k=1
: P . . —
wherep® = 12N, p®. The scheme of the described method can be seen in Fig.2.3.1.2.
It should be noted that the estimgiebased on the complete set of measurem@vts not

necessarily the same as the mean of particular jackknife estiffdtés

Figure 2.7:Scheme of the jackknife method. On left we have a set of independent displace-
ment elds. When all displacement elds are used in the inverse problem (IWC) we obtain the
parameter vectds. If the k-th vibration eld is omitted we get the solutigit®.

The advantage of the jackknife method is that it does not necessitate any hypothesis about
the distribution ofp or W. Neither the problem does necessitate to be linear. Otherwise, the
estimated covariance seems to be too optimistic with respect to the preceding method. In case
of the two estimates, the better choice is to take the estimate with the larger value.

2.3.2 Some remarks about the IWC method

As it was discussed in Section 1.3.2.2 the IWC function is maximized for the natural wave
number which describes the vibration eld. This is true, however, only for in nite wave elds.
Two remarks are presented below to show how IWC function behaves on nite wave elds.

2.3.2.1 Asymptotic properties of the IWC function

As it was mentioned in Section 1.3.2.2, the estirﬂé(Eq.Z.lO) approaches asymptotically to
the natural wavenumber of the equation of motion which de nes the displacement function

4Actually thedi erencell 1)(Y p) is an estimate of the bias of the jackknife estimator. Its large value can
show that the estimation is biased (the distribution is not symmetric).
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This behaiour can be shown easily in one dimensional space. Let us consider a sine function
w =sin(kx¥). This function is correlated with a "correlation” wave=sin(k,x). Both functions
are de ned on the nite intervak0,L>. The IWC value for the two functions is:

RL
sin(kx)sin(k,x)dx
IWC = g— i R(k") (2.20)
. Si(kxdx - sir(kpX)dx
It can be shown that the integral 2.20 can be evaluated as fotlows
N(k; ky; L
IWC = (I Kpi L) (2.23)

"2KL sinkL 2K, sinZkL

where thenominator N is independent of the length L and can be boundﬁrljby4pm<:jk
Koj. However, the denominator of Eq.2.23 is unbounded and asymptotically behdvexid .
Consequently, if the wave numbérandk, are not the same the IWC function vanishes to zero
with growing interval L. However, if the wave numbers are the s&mek, than the IWC value
is always equal to 1 regardless to the interval length L.

2.3.2.2 Question of correlation wave phase

In the original works of Berthaut the non-zero phase shiftas not included in the plane wave
formulation Eq.2.12. It can be shown that this omission can bias the maximum of the IWC
function. It is reasonable to use this phase shift because the origin of the coordinate system
(x,y) is freely chosen so we should not prefer a plane wave which has zero phase at the origin.

Example of the in uence of free phase parametershown in the case of an one-dimensional
wavew = sin(2x + =3) de ned over the interval [Qt]. This wave is correlated with the wave
having a zero phase shift given by Eqg.2.11 and with the wave having the free phase given by
Eq.2.12. In Fig.2.8 we can see the comparison of the IWC function as de ned by Eq.1.4 and its
modi cation given by Eq.2.13 applied to the functien We can see that the maximum of the
IWC function is then biased if the phase shifis not taken into account. However, it should be
noted that the inclusion of the free phasenlarges the width of the IWC peak and consequently
leads to bigger standard deviance estimators of the wavenumber estimate.

SWe use the following identities:
Z L

. . b a .
. sin(aysin(bXdx = ﬂsm(al_)cosbL) + mcos(al.)sm(bL) (2.21)

Z

sirf(ax)dx = i(2aL sin(2aL)) (2.22)
0 4a
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Figure 2.8:Comparison of the two methods of obtaining IWC function with correlation wave
with and without free phase

2.3.2.3 Wave correlation with a plane-wave eld

Let us consider gingleplane wave propagating in the x-direction with wavelengite ned
over a two-dimensional domair[0,| ][0,| ]as shown in the Fig.2.9. This plane wave is
correlated with a plane wave of the same wavelength. Tleeattice of angles of propagation
of these waves is.

Figure 2.9:Scheme of the correlated plane wave.

First, we consider = 0 and we change the dimensions of the domaitt can be seen
from Fig.2.10 that if more wavelengths are present in the wave- eld, better is the resolution of
the maximum of the IWC function.

Second, we X the size of the domainio = 4 and we vary the angle It can be seen from
Fig.2.11 that even for very small anglethe IWC function drops fast to zero and its maximum
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disappears. Thisan also be demonstrated in Fig.2.12 where the IWC function is shown as
function of thek vector of the correlating wave. We see distinctly the two symmetrical maxima
showing the presence of a unique plane-wave.

The conclusion we can make out of this paragraph is that:

The good resolution of the IWC function is achieved for wave- elds larger than four
wavelengths.

The maximum of the IWC is achieved only in the presence of the wave propagating in
the direction of the correlation wave as shown in Fig.2.12.

Figure 2.10:In uence of the size of the domain with respect to wavelength on the resolution
of IWC function.

Figure 2.11:n uence of the misaligning of the plane wave on their correlation.

The behaviour of the IWC in the presence of multiple waves is discussed in the following
paragraph.

2.3.2.4 Wave correlation with complex vibration eld

To understand the behaviour of the IWC function on complex eld we use the real experi-
mentally measured wave elds on aluminium plate 2mm thick(experimental details are in the
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Figure 2.12:IWC function in the space [kcosksin ] de ning the correlating wave.
Appendix A.2). Its average spectral density function of displacement is shown in Fig.2.13. Two
wave- elds are chosen. One is a modal wave- eld corresponding to 2768Hz (Fig.2.14A) and

the other a non-modal steady state vibration eld at 2850Hz (Fig.2.15A). This eld is apparently
constructed by superposition of a number of modes.

Figure 2.13:Average spectral density of the vibration response of the Aluminium 2mm plate.

In Fig.2.14B, we can see a IWC function in the k-space. It can be clearly seen that there are
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two strong maxima (four if mirror images are counted) corresponding to the dominant waves
which construct the mode at 2768Hz. Otherwise, there are no maxima in the y-direction show-
ing that the mode is composed mostly of the waves in the x-direction.

Figure 2.14:Aluminium 2mm plate. A - vibration shape at 2768Hz. B - IWC as a function of
the wave numbers of the correlating wave.

Figure 2.15:Aluminium 2mm plate. A - vibration shape at 2850Hz (modal frequency). B -
IWC as a function of the wave numbers of the correlating wave.

In Fig.2.15B, we see a derent situation. This time a vibration shape is composed of mul-
titude of modes and it seems that there are waves in many directions. This case is bene cial
because the natural wave number can be determined in more directions than in the preceding
example.
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In conclusionwe can say that in the case of modal vibration elds the waves are concen-
trated in a few points of the k-space and the maximum value of IWC is high but it repartition on
the circle of the natural wave numbers is poor. For the non-modal vibration elds the repartition
of the IWC function is more distributed.

2.3.2.5 Question of coupling of independent plane waves in the IWC method

So far, we have seen the behaviour of the IWC image corresponding to a plane-wave and a
complex wave eld. However, the question of the independence of the estirﬁz}itdel ned
by Eq.2.10 has not yet been answered. The independence with respect to the frequency can
be easily addresse&;j is independent fronk, because the vibration elds corresponding to
the j-th andl-th frequencies are independent. However, the independence with respect to the
correlation wave direction represented by the rst indéx more delicate to prove rigorously
by mathematical means. None the less, we can get some insight to the problem considering the
following.

The estimatqu,- is obtained by nding a maximum of the function IW@Y,.,., ;) while
the estimatd?kj is found by maximizing the function IW@y,.,., x). Both estimates are ob-
tained independently, if functions IW®(,.,., ;) and IWC{w;,.,., «) are independent. This can
be achieved if the plane wave functions = (k j; i; ) and ¢ = (k¢ k ) areorthogo-
nal. Then, the projections de ned by the IWC function (Eq.2.13) are independent. To see the
orthogonality between; and , let us de ne the correlation coecient:

R
Ci= p———— (2.24)
i e W
If the integral in EQ.2.24 goes over the in nite domain, then @ye= 0 unless; =  and

ki = k¢ (thenCj, = 1). However, if the domain of integration is nite, then the correlati@pis
not zero even if the angles and  are di erent and its value depends on a number of param-
eters. Here we shall consider a numerical example close to typical experimental con guration
used in this work. Let us consider a doma#f0, L ] [O,L ]. A plane wave ; and | are
de ned over this domain witl;, = 20 rad/m. The number of ( ctional) measurement points is
N=400. The correlatiorCy, as a function of the relative wavenumberk and =  ;is
shown in Fig.2.16A. In Fig.2.16B, there is the dependence only. We can see that a certain
limit can be found (represented by the dotted line) where the correlation coe cient ceases to de-
crease and reaches a certain plateau. We consider this limit as a limit for correlation of functions
iand . After this limit, these functions are considered (approximately) uncorrelated.

In Fig.2.17 we can see the in uence of @irent parameters on the correlat©p The num-
ber of pointsN (Fig.2.17A) does not have a crucial in uence as long as the Shannon criterion is
respected. However, the surfagef the zone is very important, as shown in Fig.2.17B. Big-
ger the surface, more uncorrelated are the functigrend . A similar situation is observed
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Figure 2.16:A.Cartography ofCy as a function ok,=k and angle derence . Dependence of
Ckon .

if the wavenumber of the functions increases (Fig.2.17C).

Practically, this analysis shows that we can use the estirﬁ@taed ki ; as (aproximately)
independent variables if the ddrence between anglesand  is upper than 20 Of course,
this result is not general but it depends on the parameters describing the geometry of the mea-
surement as shown in Fig.2.17.

Figure 2.171n uence of dierent parameters on the correlati@j. A. In uence of the number
of points in the zone . B. In uence of the zone size S. C. In uence of the wavenumker

2.3.2.6 Question of Gaussian distribution ok obtained by IWC method

So far, we have seen how the estimfapés obtained from the measurement by Eq.2.10 and we
have seen under which conditions is the estinﬁ@tmdependent fronk,, Another important
guestion is the distribution d}ij in the probabilistic sense. As it was mentioned abﬁ}yés
only an estimate of the real wavenumlzeA particular shape of the vibration eld, noise, size
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of the eld and number of measurement points, they all in uence in some way the est&mate
We do not know the way how all these factors in uence the estimate, so we must coksider
as a variable with probabilistic distribution.

In order to have some insight into the distributiorkgfet us consider a following numerical
example. Consider a pseudo-vibration elg as the sum of plane wavés

5
Wa(X;y) = * Msin(30(cosix + sin iy) + ) (2.25)
i=1
where ; = 2( 1)=35and i(”) is a random variable distributed uniformly over (-0.5,0.5)
interval and i(”) a random variable uniformly distributed over (0,2 ) interval. All the these ran-
dom variables are independent. We dispose with 10000 pseudo-vibration velds {v10000)-
The size of the vibration elds is (x,(0,1) (0,1). The number of "measurement” points is
2500. Each pseudo-vibration eld, gives rise to an independent estim@té. Ideally, the es-
timatesk, should form a normal distribution with mean 30 (wavenumber in the vibration eld)
and some standard deviance. However, as we can see in Fig.2.18 the probability density func-
tion of k, is not really Gaussian. It is much magueaked The irregularities in this gure comes
from the fact that a nite set of random observations was used.

Figure 2.18:Comparison of the "experimental” distribution of estimakesbtained by appli-
cation of the IWC method and the optimal t of this distribution by a normal distribution (this
distribution has the mean and the variance from the estimatgs of

The values in Tab.2.3 show that the estimateare slightly biased downwards (mean 29.8

®By this form we try to obtain the maximum possible vibration elds.
"Without the lack of generality we consider that this estimation is performed along the x-direction, there is no
privileged direction in the random vibration eld.
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Mean 29.80
Standard dgance 0.78
Skewness -2.42
Kurtosis 30.3

Table 2.3: Characteristics of the estimi&te

instead of 30). This bias is also present in the estimation of skewness which i&. -T4@
skewness of the Gaussian distribution is 0. The ku?@&ds3 shows the "heaviness of the tails”
of the distribution ofk,. The kurtosis of the normal distribution is 3.

Considering the above points, we can conclude that the distributiérisofinfortunately
quite far from the Gaussian distribution. However, we will still use the hypothesis of the Gaus-
sian distribution later because it is a prerequisite for the statistical methods employed in the
model selection. High value of kurtosis is also disadvantageous because its means that the
distribution ofk has heavy tails (observation far from the mean can occur).

. P _ P oy 3 .
8A sampleskewness is calculated gs= (1=n L,(x X)3)=(1=n L,(x X)?)*?) .Negative skewness often
tends to bias the mean to the lower values. =
%A sample kurtosis is calculated gs= (1=n L;(x X)*)=(1x L, (x %??) 3
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2.4 Inverse wave decomposition method (IWD)

The inverse wave decomposition method (IWD) is inspired by the inverse methods used by
Chardon described in the introduction section 1.3.2.3 and by McDaniel described in 1.3.2.3.
This method can also be classi ed as a special so-called Tre tz method'he dierence
between the method of Chardon and the IWD is that Chardon was interested in reconstruction
of vibration eld, whereas the goal of IWD is to nd suitable parameters of the equation of
motion. Suitable equation of motion should also lead to a good reconstruction of the vibration
eld as will be shown in this section. While Chardon was working uniquely with Kirchho

Love equation, in this work the IWD method is applied to a variety of equations describing
vibration of isotropic and orthotropic bi-dimensional structures. The method of McDaniel is
a special case of IWD method applied to one-dimensional structures considering the Euler-
Bernoulli operator. However, more operators can be used in one dimension as shown in the
section 2.4.3.

2.4.1 Description of the method

The equation of motion is described by a di erential operator. The general form of this equation
in the frequency domain (in one or two space dimensions) can be expressed by:

L(u) =0 (2.26)

wherelL is the linear dierential auto-adjoint operator describing the vibration anig the
transverse displacement eld. We will call the parameters describing the opératorector
p. We can write symbolically_(p) to show the dependence of the operator on the vector of
parameters. The goal is to determine the appropriate vpdtmrgiven experimental data and
for a given operatok.

Let us consider that we have a particular solutiafthe Eq.2.26 (measured experimentally)
at our disposal. This solution (vibration eld) is measuredNggis discrete space coordinates
x®. The discreet eld can be expressed in the vectanith elementsy; = u(x?). Physically,u
represents a steady-state vibration response for a given frequency.

Now, one applies the principle of Tre tz-like solution described in section 1.3.2.3. The
general solutiod! of Eq.2.26 is expressed as:

10Tre tz methods are numerical methods for solution of partial di erential equations with boundary conditions.
The solution is approximated by a sum of particular solutions of tleeatitial equation (for example plane waves
for the wave equation or exponentials for heat-conduction equation). Theieste of this decomposition are
found by applying the boundary conditions.

actually, when we talk about the general solution, we have in mind an approximation of general solution in
the proper mathematical sense, because the general solution of the Eq.2.26 does not often exist in the closed form.
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X _
a. = iQE) (2.27)
I

where allthe functionsgf) are particular solutions of Eq.2.26. The choice of the functions
gE) should be done in the way that the functignshould be close to the general solution of
Eq.2.262

Theinverse wave decomposition methdd/D, Chardon's method) described in this thesis
is based upon comparing the general solution of the operator which we want to identify with the
measured vibration eld (designed). The main idea is that, even though we do not know of
the real boundary conditions during the experiment the vibration elnust lie in the general
solution function spacg, . So, if we succeed in nding the operatbrwhose general solution
ts perfectly the measured eldi we consider that this operator is the correct representation of
the equation of motion. We want to solve the equation

u 9" (p) (2.28)

i
where the measurement vectouiand the general solution functions ayﬂ%(p). The prob-
lem is that both ; andp are unknown, so the problem given by Eq.2.28 is strongly non-linear.
The solution is done by minimizing the residual cost functiéin

X _ Nyoints
2LE) s w=ju gif=iv P ERE P (2.29)
[ =1
where the vector is composed of the dirences between the measuremenand the gen-
eral solutiong. . We can write a similar residual cost function for all vibration elds available
[u®, u@, u®,  .uMN]. If we call the residual cost function for every of these vibration elds
r2(p) = r?(:;; p; u®) then the total residual sum is de ned as

, X
RSS=r2(;p;fuflg) = rZ(p) (2.30)
i
where RSS means thesidual sum of squares. The cost function RSS is minimized with
respect to the parametgosdescribing the operatdr and the free parametersThe inverse
method consists in nding the optimal operator (optimal vegipt. = L(p) and the optimal
value of the parameters ~

[p; 1 = argmin(r®(L(p); );fu®q) (2.31)
p:

The more detailed scheme of the inverse method is shown in the Fig.2.19. The particu-

12The «act form of these functions is described in the section 2.4.3.1 for the 1D structures and in 2.4.4.1 for 2D
structures
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larity of this inverse problem is that thairect problem depends on the data as well. So the
inverse problems consists of two consecutive problems: for a given pargmtagegeneral so-
lution space is de ned and then the minimal distance of the measured vibration w€itisif?,
u®...u™] from the general solution is determined (represented by residual elfsd RSS).
This distance is minimized over the space of the paranget&vhile the rst optimization is
linear, the second is non-linear.

Figure 2.19:Scheme of the inverse problem of the IWD method.

For further considerations we de ne several quantities. The best t corresponding to the
data belonging to the paramefieand "is called (for a particular vibration eld)
A X ~ M
O = igL(ﬁ) (232)
The normalized square residual of the inverse prolii€represents at the solution normal-
ized by the norm of the vibration eld vector. It is de ned as follows for one vibration eld
w
L L
F(L(p); ; u) = 2L O 2.33
CORD R (2:33)
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If 72 tendsto zero the models ts perfectly the vibration eld. If it tends to unity the model
is completely uncorrelated with the vibration eld.

2.4.2 Estimation of errors

The statistical treatment of the IWC and IWD methodseaits and so does the estimation of
errors. The IWC inverse problem can be written in terms of a system of non-linear equations
with unknown parametgy

kT°(p) = kP (2.34)

wherek™9 are the wave vectonsiodelledby some equation of motion andf*? are the
wave vectors determineekperimentally A number of techniques can be employed to treat
statistically the problem given by Eq.2.34 especially if the RHS components are independently
identically distributed random variables.

The problem of the IWD inverse method cannot be expressed in the same way. From Eq.2.28
we can write an equation describing the goal of the inverse method (measured eld equals the
general solution eld)

g(p;u)=u (2.35)

We can see that the problemimsplicit in its nature. Both the LHS and RHS depend on the
measurement. A unique solution of Eq.2.35 with respeptds we be obtained by minimizing
the least squares of the residuals as is shown by Eq.2.31. However, the statistical treatment
of EQ.2.35 is very dcult and most methods fail to give prediction about the estimatepof
Fortunately, the Jackknife method can still be used in this case for estimation of varigmce of
as it is shown below.

2.4.2.1 Jackknife method

The jackknife method is used for the IWD inverse method in the same manner as was shown
for the IWC in section 2.3.1.2. In Fig.2.20, we can see an example of pseudo sofpftlons
calculated by Jackknife method and the con dence interval calculated by Eq.2.19. The same
experimental data as in the section 2.3.1.2 were used (aluminium plate of 2mm thickness).
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Figure 2.20:Example of pseudo-solutiofi§? (here the vectop is represented by plate stiess
D) obtained when using the jackknife method with IWD method. The data comes from real
measurement on thin 2mm thick aluminium plate. Supposed opédratKirchho model.
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2.4.3 Inverse wave decomposition for 1D structures

As it was mentioned in the preceding chapter, the IWD method in 1D is somewhat special
because the wave solutign de ned by Eq.2.27 is not only the general solution of the homoge-
neous equation but it is also composed of nite number of functions. Number of those functions
is relatively small, it ranges from 2 to 6 depending on the degree of the equation of motion. This
is a great advantage with respect to the problems in 2D where the number of functions in the
spaceg, can be around 50 and they represent agproximativelythe general solution. Given
all those facts, the IWD method applied on 1D structures is more stable and precise than the
method applied to the 2D structures.

Let us suppose that we are dealing with the following self-adjoint linear opdravdrnich
has the form (for list of the possible operators see Section 2.2.1)

du®x) . du)  du(x)
e +Cy I + Cs Ve +::=0 (2.36)
whereu is the transverse ( exural) displacement of the string or beam described by the

coordinate. Several 1D models will be studied in this thesis, their overview is in the Tab.2.1.

L(u) = cou(X) + C,

2.4.3.1 Construction of general solution of equation of motion

The construction of general solutiap for the equation Eqg.2.1 is very simple. For a given
frequency ( xed coecients c) all the functions of the forng = exp(k¥ wherek is the solution
of the dispersion equation

Cot G2+ ekt +::=0 (2.37)

verify the equation of motion Eq.2.36. If we designall the independent solutions of
Eq.2.37 we can write the general solution in the form

X X
o= o= expkx (2.38)
| |
For example, in the case sfring model we have two independent solution of the dispersion

equation withky, = 1! T=. Inthe case of Kirchho model we have four independent solu-
tionsky, = T “El=|andks, = | Pr “El= . The rsttwo solutions represent evanescent
waves while the second two solutions represent propagating waves. For the string model, only
the propagating waves exist.

2.4.3.2 Lower-frequency threshold for the IWD

IWD is not stable unless we have su cient information about the wave of the vibration eld.
This is especially true when dealing with low-frequency measurements. On Fig.2.21 we can see
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the inversion results for the Euler operator applied to a measurement of a steel beam. We can
see that inversion becomes stable for frequencies upper than a given frequency which is about
200Hz and the vibration eld is about "one-wavelength” long. In general, we can say that we
need at least one wavelength in the observed zone to be able to use the IWD technique.

Figure 2.211nversion results in frequency dependence. We see that unless 200Hz is reached the
inverse problem is unstable and apparently ill-posed. In general, one wavelength is necessary
to have stable decomposition.

2.4.3.3 Question of uniqueness of IWD solution

Uniqueness considerations can be well demonstrated in the case of Faregoperator (4).
The corresponding equation is of the type
du _d% )

where thaunknowns ard& | and the axial forc&@ . For our purposes we considerH.05kg.n{/s?,
T=-300N, _=1kg/m. To simplify the uniqueness considerations, imagine that we measure
somewhere in the middle of the beam where only propagative waves exist, so experimentally
we measure only the sine standing waves of the wave nukit€r The wave vectok(!)
corresponding to the dispersion equation of Eq.2.39 is solution to

EIK* Tk [1%=0 (2.40)

Apparently, if we search inversely the unknowBkandT for which we getk®P=k then
there is an in nite number of solutions forming a line in the space qf&T). These lines can
be seen in Fig.2.22. We can clearly see, that there exists a common solution, which can be
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revealed only ifmultiple frequencyneasurements are considered. In other words, this means
that when more than one unknown are to be determined, these unknowns have to be considered
independent of frequency at least in a certain frequency range. From Fig.2.22 we can see also
that the in uence of the axial force is more important at low frequencies, while it is almost non-
existent at high frequencies. It means that it is very di cult to determine the axial force from
high frequency measurements only. All the above considerations correspond to inversion done
on a dispersion curve and in nite objects. Our case is a bérent, we are dealing with nite

objects, where the evanescent waves take place. Their presence is bene cial for the stabilisation
of the inverse problem. However, the presence of the evanescent waves drops down very fast
with frequency.

Figure 2.22:Lines giving all the solutions for particular frequencies.
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2.4.4 Inverse wave decomposition for 2D structures

2.4.4.1 Construction of pseudo-general solutiog,

In the Section 2.4.1 the vibration eld was decomposed into a set of functions which were
all the solutions of the operatdr in the domain . This functional space was calleg. In

the case of one-dimensional structures, this functional space was composed of sine and cosine
functions together with their hyperbolic counterparts. This functional space constitutes the
general solution of the equation of motion Eq.2.1 with zero RHS.

Figure 2.23:Wave decomposition is ected on a small (local) part of an complex vibration
eld. Circular zone is chosen inside the vibration eld. There may be several zongside
the eld belonging to the same frequency.

In the case of 2D structures the construction of the general solution of Eg.2.6 is impossible.
There is an in nite number of linearly independent solutions of Eq.236S0, approximative
solutions of Eq.2.1 are considered; they should be, howeveigestly close to the general
solution and not to contain too many independent functions.

In this thesis, the choice was to use the plane waves travelling in several discrete directions.
This approach was previously proposed by Chardon [6]. This decomposition is always localized
on a small zone (patch) (see Fig.2.23). For the reasons of symmetry and simplicity, the
geometry of these zones is a circle. In the following, the indices of zones will not be mentioned

13For example there exist plane waves with adequate wave vector which can travel in all directions - so there is
an in nity of solutions possible. Another solutions can be fundamental solutip(rs ) whereug is solution of
the equatiorL(Ur(x; )) = (X ). Aswe can choose freely the poinbutside the zone we can get in nity of
solutionsug(x; ) all satisfying the the equation of motidru(x; )) =0in .
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in theformulas unless it is not necessary. All the considerations below applied to one zone can
be applied to all the zones;;.

So, if we consider one particular zone (patch), we can de ne the pseudo-general solution
for some isotropic model as

Keir X
a(x) = ijexp(k(x:cos; + y:sin i)) (2.41)
i=1 ]
where ; = (i 1) =Ng; is the angle of the plane waug,is the j-th solution of the dispersion
equation corresponding to the equation of motion Eq.2.26. This solgtionill be called
pseudo-generadolution. It is not the general solution in the proper sense. BiNgaggrows
higher the functiorg. approaches the general solution. Colton [8] has shown that a solution
like 2.41 is dense in the general solution of thembranesquation in theconvexzone . A
similar proof for thefourth-order Kirchho equation was done by Chardon [5].
If the equation of motion is anisotropic, then the pseudo-general solution must be modi ed
to:

Hair X
gL(x) = iiexXpkK;( i)(x:cos; + y:sin;)) (2.42)
=1

wherek;( ;) is the j-th solution of the orthotropic dispersion equation:
s! 2+ [K( 1)]* Dicog ; + Dgsin’® | + (D, + Dy)sin® jco€ ; =0 (2.43)

In Fig.2.24, we can see the principle of the IWD in 2D. The vibration eld measured in the
the circular zone is decomposed into several propagating and evanescent waves which are
all particular solution of the equation of motion in the zoné\Ve try to nd the best equa-
tion of motion (the best pseudo-general solutgph to obtain the optimal t of the measured
displacement eld.

As we are dealing with approximative pseudo-general solution of equation of motion in 2D,
the very important point is the optimized number of plane waves used in the construagion of
The zone is a circle with diameteR which depends on the wavelength of the vibration eld.
For our purposes, it is useful to work with the correlation length parametecase of a plane
wave the value of would be the wavelength of the vibration eld. In case of a general steady
state vibration eld this value is close to the natural (or dominant) wavelength corresponding to
the given frequency.

The value of gives the dimension scale of our vibration eld. All the dimensions are taken
with respect to this variable. The relative radius is de med= R = . The number of necessary
approximative plane wave functions can be obtained by examining the evolution of the error
function de ned by Eq.2.29 with number of plane wave directiblag. We see an example of
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this functionin Fig.2.25. The optimal number of independent plane-wave directions lies in the
in exion point of the curve because the error function diminishes very slowly after this point,
while the ill-posedness of the inverse problem increases.

Figure 2.24:Principle of decomposition of the vibration eld into the bagis

Figure 2.25:0Optimal number of plane-wave directions for given sizes of the circular zone
This example is for = 1.
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2.4.4.2 Question ofuiniqueness of the IWD solution

Poor conditioning of the IWD method is discussed and some remedies are presented. The
problem of non-uniqueness is also discussed and some examples are shown.

A. Regularisation omitting the evanescent waves As it was mentioned above the number

of functions in the general solution spage (Eq.2.41) is crucial to a successful inversion. If

this number is too high, then the inverse problem is ill-posed, if the number is too low, the
inverse problem is well-posed but biased. So, we are interested in minimizing the size of the
basis of the general solution without diminishing the precision of the inversion. This can be
achieved for example by dropping annecessary functions from the sum of Eq.2.41. These
unnecessary functions can be thenescent waveghen we are dealing with vibration eld at

high frequency or far from the physical boundary, where the presence of the evanescent waves
is not likely. This regularization is bene cial as it divides the number of plane waves by two.

An example is taken from the measurement of the aluminium plate 2mm thick. The nor-
malized residual squares function de ned by Eqg.2.33 is shown in Figs.2.26 and 2.27 for two
frequencies 1000 and 2400Hz. Both gures show the non-symmetry of the residual function.
This non-symmetry is particularly visible when the evanescent waves are used. We can see
that in both cases the residual function of the IWD without the evanescent waves has more dis-
tinct minimum (the inversion is more well-posed). Otherwise, the minima of the original (with
evanescent waves) and regularized (without evanescent waves) curvesiamt dit 1000Hz.

This is due to the regularization assumption, the general solution does not contain the
evanescent waves. This assumption is correct at high frequencies (far from boundary, Fig.2.27)
but it is not at low frequencies (close to boundary, Fig.2.26).
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Figure 2.26:Normalized residual square of the IWD as a function of model parameter D (Kirch-
ho plate stiness) for 1000Hz vibration eld. In the upper left corner a size of the zones
compared to the size of the plate. Results taken from measurements on an aluminium plate

2mm thick.

Figure 2.27 Normalized residual square of the IWD as a function of model parameter D (Kirch-
ho plate stiness) for 2400Hz vibration eld. In the upper left corner, the zones positioned
with respect to the plate. Results taken from measurements on an aluminium plate 2mm thick.
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B. Unique determination of multiple inversion parameters The inverse problem de ned by
Eq.2.31 should have unique solution in order to exploit the method. However, the uniqueness
of the solution of Eq.2.31 depends partly on the measured data. Typically, the problem of
the non-uniqueness of the inverse problem arises when we want to determine the othotropic
coe cients from a single vibration eld. If this vibration eld is as shown in Fig.2.28, we

can only determine thB; coe cient. It is an important point that in order to determine more
then one parameter we need to run the inverse technique for more independent vibration eld
measurements (basically this means for di erent frequencies). If only one parameter is to be
determined, one vibration eld is stient.

Figure 2.28:In uence of the complexity of the vibration elds on the stability of IWD tech-
nique. Results taken from measurements on an aluminium plate 2mm thick.
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2.5 Conclusion

The Sectior? starts with a brief description of inverse problems in general. The inverse problem
treated in this thesis is then explained. In the following of this section we have seen in detail two
inverse methods used in this thesis: IWC - Inverse wave correlation and IWD - Inverse wave
decomposition.

The IWC method was invented by Berthaut [3]. It permits to determine the dominant
wavenumber of the vibration eld. In Section 2.3, the original theory of Berthaut is further
developed. The asymptotic properties of the IWC function are presented in Section 2.20. They
justify the use of the IWC function to estimate the dominant wavenumber of the vibration
eld. The question of phase of the correlation plane wave is discussed in Section 2.3.2.2. It
is shown that the adding a phase shift as a free parameter to the correlation wave formulation
brings more stability to the inverse problem. Sections 2.3.2.3 and 2.3.2.4 show the behaviour
of the IWC function when dierent vibration elds are considered. The in uence of geomet-
rical/measurement parameters is also shown. Section 2.3.2.5 treats with an important question
of statistical independence of the estimates of the dominant wavenumbers by the IWC method.
Section 2.3.2.6 deals with a question of statistical distribution of the estimates of the dominant
wavenumber. It is shown that the Gaussian distribution is not obtained.

The IWD method was rst used by Chardon in [6].

The IWD method determines the optimal general solution to the equation of motion. Both
these methods originate from the previous research.
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Model selection

Figure 3.1:What is the di erential equation describing the roof of Aquarena swimming pool in
Arras?

"Entia non sunt multiplicanda praeter necessitatem.”
"Entities must not be multiplied beyond necessifWilliam Ockham O.F.M.)
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3.1 Introduction

As it was described in Section 1.4 there are several model selection techniques depending on the
nature of mathematical probleemd on theargetof the model selection. It was also mentioned

in Section 2 that we consider two distinct inverse methods identifying the parameters of the
equation of motion: IWC and IWD.

In the case of IWC, the inverse problem is describgdivalentlyby minimization of non-
linear least-squares optimization (Eq.2.14) and the maximization of the likelihood function
(given by Eqg.2.16). The target of the model selection is to nd an equation of motion which:

describes the best the dispersion curve of the unknown structure (AIC criterion).

leads to the most probable description of the dispersion curve if the measurements are
given (BIC).

The application of information criteria to the IWC problem is described in Section 3.2.

In the case of IWD, however, the problem is given by minimizing the residual function given
by Eq.2.30. Contrary to the IWC method the likelihood formulation does not exist because we
do not know the likelihood function. As it is explained in Section 3.2.4, the properties of the
residuals used by the IWD method disable the construction of the likelihood function. Without
the likelihood function, information criteria (AIC and BIC) cannot be used. Therefore, a cross-
validation approach was chosen to select the target of a model selection. The target of this model
selection can be seen as the optimal functional subspace which would t the displacement eld
at any point. TheCross-validatiorntechnique used to obtain this target is described in Section
3.3.

3.1.1 Choice of the candidate models

As it was mentioned earlier, it is sometimes very di cult to make a preliminary choice of
candidate models. There are basically three possible situations:

We know which model is true. Then no model selection is necessary. This situation is
very rare in a real world. This situation is depicted in Fig.3.2a.

We know that a model should belong to some nite class of models, but we do not know
which one is the best. This situation is optimal for a model selection. It corresponds to
Fig.3.2b.

We do not know which model could describe the problem. We are in the situation de-
scribed by Fig.3.2c.
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Let ushave a look at Fig.3.2. It shows a hypothetical problem of model selettidine
measurement is shown by a point M. The ellipses belonging to trexeint models show possi-
ble outputs of these models. In the rst case on left, the model E describes entirely the measured
phenomenon. This situation does never happen in the real world when experimental data are
considered. In the second case in the middle, the whole reality of possible outcaroesred
by candidate models. This situation is optimal from the point of view of the model selection,
because the best model is likely to be chosen (model D in this case). In the third situation on
right, we do not know which models might describe the phenomenon, so some models like C
and D are missing. In this case model B is wrongly chosen instead of D which is missing from
the candidate models.

Figure 3.2:0n left - Ideal model choice. In the middle - a good choice of candidate models. On
right - a bad choice of candidate models.

Our goal in the choice of candidate models is therefore to be in the situation of Fig.3.2b
where the candidate models represent together all "reality”. What does that really mean in the
terms of vibration problem treated in this work? We shall demonstrate a choice of candidate
models with a help of some examples.

1. Let us consider that we want to determine the model of vibration of an aluminium plate
having an unknown thickness (for example the plate is mounted in such a way that the
thickness cannot be measured). In this case, the full reality of models can be described by
a Kirchho and a Mindlin models. If the plate is thin then the Kirchhmodel would be
chosen, if the plate is thick then the Mindlin model would be chosen. There are no other
reasonable possibilities.

2. We want to identify the model of vibration of a bass guitar string. There are three possi-
bilities: if the section is too important it would behave as Euler beam, if the axial tension
force is high it would behave as a string and if none of the two does take over it would

1n this simpli ed case we do not consider the model complexity which comes afterwards. We can imagine as
if all the models were equally complex.

75



be amixed model of Euler and string. A full reality of possible situations is therefore
achieved with these three models.

3. We are dealing with a thin composite plate. We know that there are two principal axes
of symmetry due to the fabrication. The possible models are then either isotropic or
orthotropic Kirchho plate model. One of them is right while the other is wrong.

However, often we face the situation of missing models in Fig.3.2c. This is especially true
for complicated thick composite plates, where the full reality can bmuillito achieve by a
few candidate models.
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3.2 Information criteria adapted for Inverse wave correla-
tion

Eventhough, the AIC and BIC information criteria haveatient selection targets (see Section
1.4), both can be applied as post-processing of the IWC method. Both information criteria are
particularly adapted for problems of non-linear curve tting. A short description of both criteria
are presented below.

3.2.1 Akaike information criterion (AIC)

The target of the AIC is to nd the model which minimizes the Kullback-Leibler distance. AIC
criterion was introduced by Akaike in 1973 [54] a brief description is given below. For further
information see Burnham [56].

3.2.1.1 Kullback-Leibler distance and AIC

Kullback-Leibler distance [58] (or information) describes how close two models are. Itis based
upon their probability distributions. Assume that we have two models represented by their
probability density functiond andg. We consider that both models are known and that
represents dull reality or truth 2 andg is a model approximating the full reality. We can
say that this model depends on some free paramgteys Then the Kullback-Leibler (K-L)
distance frongto f is de ned as:

Z

|
(hg)=  fooin X g

94 )
If the two models are equdl = g then their distance is zeilgf;g) = 0. Otherwise, it is
always positive’. The goal of the model selection based on the K-L distance would be to choose
the model which minimizes this distance. This distance cannot be determined if we do not know
f but AIC permits to approximate this distance.
Expression 3.1 can be further developed as:

(3.1)

Z Z
I(f;g)=  f(¥)Inf(x)dx F(x)Ing(x)dx = E¢[In(f(x)] E¢[In(g(x ))] (3.2)

where E stands for expected value in the probability sense. The rst term of 3.2 depends
only on the truef and it is independent of modglso it can be omitted from the model selection
considerations. Akaike [54] showed that the second term in Eq.3.2 can be written as:

2Unless weare dealing with arti cial problems with simulated data, this function is never known.
3K-L distance is not a metric on the space of the probability distributions bed¢éfisp , 1(g; f).
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E¢[IN(@(4 )] = E,ELIN@(4 (¥)))] (3.3)

wherex andy are independenmandom samples from the true distributién Expression
3.3 cannot be evaluated exactly unless we know the true distribfitiohkaike found that a
log-likelihood function is a asymptotically biased estimator of 3.3. The bias of this estimation
is equal to the number of estimated paramekersor a large samples we can write:

I(f;9)=C EEN@X N C In(L()jdata)+ K (3.4)

Dropping the unnecessary const@nand multiplying* the Eq.3.4 by 2 we obtain the AIC
criterion:

AIC = 2In( L()jdata)+ 2K (3.5)

As it was later shown the AIC de ned by Eq.3.5 is valid only asymptotically (i.e. for large
samples). If only smaller samples are available it is advised to use modi ed second order AIC
de ned as

2K(K + 1)
N K 1
whereN is thenumber of measurements (sample sizeN If K thenAIC = AIC.. Later
in this work, AIC. is always used regardless to the sample size.
The principle of use of the AIC criterion is very simple. If we dispose several mggleie
can calculate the maximal likelihood function for each of them and compareAh@ivalues.
The model with lowest value of AIC is the one selected by AIC criterion. It should be noted
that the absolute value of AIC is not important. However, the relativerdnces between the
AIC values of dierent models are important because they correspond to likelihood of models.
If we de ne the AIC di erence as

AIC, = AIC + (3.6)

/= AIC; min(AICy) (3.7)

then the selected model has= 0 and the other models have > 0. Akaike interpreted
these di erences with the so called "Akaike weights”:

_ o&xp(i=2)
' exp( (=2)
Akaike weightw; ranges from 0 to 1 and has a meaning of model probability of being the
best model to minimize the K-L distance. Empirically, we can class the models according to
their ; using the rule given in Tab.3.1 (from Burnham [56]):

(3.8)

4This isunnecessary, Akaike did this for "taking the historical reasons into account.”
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i Level of support for model

0-2 Substantial
4-7 Minor
>10 Essentially none

Table 3.1: Rule of thumb for an AIC model selection.

3.2.2 Bayesian information criterion (BIC)

The Bayesian information criterion (also called Schwartz-Bayes information criterion) was de-
veloped by Schwarz in 1978 [53]. Although BIC has similar behaviour as AIC the derivation
of this criterion is dierent. BIC is a criterion which chooses among a set of models the model
which is themost probabldor given data. Moreover, if the true models among the candidate
models then BIC chooses this model with probability 1 if the sample size goes to in nity. This
is not necessarily true for the AIC model.

Let us consider that we dispose some data X and a nite set of candidate n\ddels
[M 1;M 5;::M ]. The target of the BIC is to nd which of the models maximizes the posterior
probability:

M gic = argmaxP (M jX) (3.9
M

The expression 3.9 is developed according the principle of the Bayes theorem. The deriva-
tion of the Eq.3.9 is beyond the scope of this work, detailed derivation can be found for example
in [52]. Itis shown that IIP(M ;jX) can be approximated asymptotically as:

INP(M;jX) InL(Xj ;M) %mN (3.10)

wherelL is thelikelihood function,N is the number of measurements (sample sike)s
the number of parametersdescribing the i-th modeVl ;. Multiplying this equation by -2 we
obtain the BIC criterion:

BIC; = 2In L(Xj ;M) + KiInN (3.11)

Then the optimal model (with highest posterior probability) is chosen by minimizing the
BIC criterion over the set of models:

M gic = argminBIC; (3.12)

M
The absolute value of BIC is not important, it is only the elience between the BICs of
di erent models which counts. As it was the case for the AIC criterion it is common to de ne

5In otherwords the data come from the model which is included in the set of candidate models.
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the BICdi erence as:

/= BIC;  min(BICy) (3.13)

The best model according to the BIC haBIC = 0 all the other models haveBIC > 0.
The BIC di erences can also serve to estimate the posterior probabilitiesepédt models in
the candidate set. Similarly to the AIC, the probability that the i-th model is the true model can
be expressed as:

_ pexp( i=2)
T exp( =2) 349

3.2.3 Application of the AIC and BIC to the IWC-based model selection

In both AIC and BIC approaches the log-likelihood function is necessary. Under the hypotheses
given in Section 2.3.1.1, the log-likelihood function can be expressed according to the Eq.2.18

as:
X B2
InL(p) = gln(Z) gln 2 % é@é (3.15)

i]

Figure 3.3:Red cedar plate: example of a least square t of wavenumber function obtained by
IWC method (blue points) by an orthotropic model. Angleepresents the angle of a plane
wave correlated with the vibration eld.

Residuals;;(p) are represented by dérences of the "experimental” wave numbers obtained
by IWC and the wave numbers given by the model. An idea of these residuals is shown in
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Fig.3.3 shawing the experimental data of the red cedar plate. For the maximized value of the
log-likelihood we have rizj(f)) = (N 1) 2and therefore the maximum of the log-likelihood
function is

InL(p) = gln(Z) gln 2 %N (3.16)

and omittingthe unnecessary constants not depending on the model we obtain

InL(p) gln 2 (3.17)

Then theAIC and BIC criterions can be expressed in terms of the residual variance

N
= 2+ -
AIC=NIn 2+2K ——- (3.18)

BIC = NIn 2+ KInN (3.19)

This form shows very well the model selection "trade-between the model precision and
its complexity. The precision term is represented by an estimated variance of the? aatan
the model is employed and its complexity is represented by a number of estimated parameters
K.

Comparing Eq.3.18 and 3.19 we can see that although the principles for derivation of AIC
and BIC are quite dierent resulting criteria look similarly. They dér only in the second term
representing the penalty for the model complexity. Typically, the penalty of the BIC is more
important than the penalty of the AIC. That is the reason why the BIC criterion is sometimes
called more conservative, it tends to choose simpler models than AIC.

On Fig.3.4 we can see an example of use of AIC and BIC on the data obtained from mea-
surement done on 2mme-thick aluminium plate (description in Appendix A.2). Five models are
considered B1, B2, B3, B4 and B6. On the left, we can see that appart from the B1 (membrane)
model all the other four models t the dispersion data in a similar way. Therefore the selection
of the model based on their residual of t would be diult. Moreover, we can see clearly in
Fig.3.4 right that both AIC and BIC criteria favour the simplest model of the three - B2 (Kirch-
ho plate). We can also see that BIC is more conservative, it chooses the simplest model with a
greater margin.

A di erent example is shown in Fig.3.5 corresponding to the IWC analysis applied on the
measurement of paper membrangescription in Section 4.2.3). Three models are considered:
B1, B2 and B3. We can see that the t of the three models is vegreit with model B3 being
visibly the best model. In this case, theadence in the number of parameters in the penalty
termin Eq.3.18 and 3.19 is too small compared to the di erence of t obtained by those models.
Therefore even if the number of parameters of the model B3 is the highest, this model is a surely
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Aluminium 2mm Papemembrane

AlIC BIC AlIC BIC

Model i W, i W, Pl W R

B1 (membrane) || 271 | 0.00| 272 | 0.00|| 292| 0 | 288 | O
B2 (Kichho ) O |046| 0O |0.82|143| 0|140| 0

B3 (Kirch/memb.)|| 1.82| 0.18/ 478/ 008 0 | 1| O | 1
B4 (Mindlin) || 1.60| 0.20| 457|0.08| - | - | - | -

B6 (Kirch.ortho.) || 2.29| 0.14 | 8.17| 0.01 - - - -

Table3.2: AIC and BIC values for IWC analysissetuated on 2mm aluminium plate and paper
membrane.

chosen with probability 1 (see Tab.3.2).

Figure 3.4:Example of the t of the dispersion curve for aluminium 2mm plate obtained by
IWC by di erent models on left and the AIBIC analysis on right. The B1 model is not shown
in the graph on right because its values are too high.

3.2.4 Why information criteria cannot be used with IWD inverse prob-
lem?

As we have seen in the preceding section, AIC and BIC criteria are very simple to use, their
application give the possibility to choose the best model and to see whether other models are
close or far from the best model. Moreover, in case of several models which are close to the
best model, we can even do a multi-model inference (making a somewhat mixed model) as
described in Burnham [56] So, why not to use these criteria for all model selection problems
(i.e. for all inverse problems)?

5This procedurés, however, nor applicable in our case, because parameters of #renli equations of motion
do not have the same units.
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Figure 3.5:Example of the t of the dispersion curve for paper membrane obtained by IWC by
di erent models on left and the AIC/BIC analysis on right.

Let us take for example the case of the AIC applied on the aluminium 2mm plate measure-
ment (see Appendix A.2). Without any further investigation we try to use the formula for AIC
given by Eq.3.18:

N

AIC=NIn 242K ——
N K 1

(3.20)

In this case, we apply this formula on the IWD inverse problem, N is the number of mea-
sured points, K is number of parameters (i.e. the number of all the constantd all the
parameters ok in Eq.2.27). Actually, the number of all the coeients is the same for all
models, so it might be omitted as long as we are only interesteddaredces in AIC values.
Then 2= ij(ij))=(N 1) where j; is the residual from tting the i-th vibration shapes mea-
sured at j-th point as described in SectioB 2.4. Then, if we consider that weNgawibration
shapes and each halp points thenN = ile Np. Consequently, N is very large. In this
example N-12808. The resulting AIC values are shown in Tab.3.3 in the rst column. We can
see that the model selection is erroneous. The orthotropic model B6 is chosen instead of the
Kirchho model B2 which is found to be the best model when using the AIC with IWC. Why
do we come to a dierent and highly suspicious conclusion (our plate is not orthotropic)?

The problem with IWD lies in its mathematical formulation. Let us have a look at the
mathematical formulation of both inverse problems. Both problems can be expressed as non-
linear optimization problem to nd the estimafe= argmin ;; rﬁ However, the residuals;
are dierent in the two cases (see Eq.2.14 for IWC and Eq.1.11) for IWD):
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IWD | IWC
Model i i
B1 (membrane) | 43814 | 271
B2 (Kichho ) 4 0
B3 (Kirch/memb.)| 5 1.8
B4 (Mindlin) 15 1.6
B6 (Kirch.ortho.) 0 2.3

Table3.3: Fictional values of AIC when applied to IWD inverse problem on aluminium 2mm

plate ( rst column). The second column contains the comparison to AIC applied to IWC inverse
problem.

IWC IWD
np = k" Kp)  rj=u; P(p)u;
p= !

where the estimatefﬁxpare independently obtained by the IWC method as described in Sec-
tion 2.3.2.5. Fig.3.6 shows graphically theedlence of the residuals considered by these two
inverse problems. Even though the displacementare independent, the residuajsobtained
by the IWD method are not because the proje&aouples the individual point measurement

u;; with all the measurement in the zone Z represented.hyAccording to the nomenclature
of Section 2.4.1 the elements of the matriare 4 = g*(x;).

Figure 3.6:Explication of the dierence of the residuals of the IWC and IWD methods.

An example of the projector matriR taken from the measurement of the aluminium 2mm
plate is shown in Fig.3.7. We can see that this matrix is not unity matrix. This means that
each column is coupled with multiple lines. From the statistical point of view, this coupling
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introduces alependence between the residuglebtained by by IWD method. And dependent
residuals’j; lead to erroneous estimation of AIC criterion as it was shown at the beginning of
this section.

Figure 3.7:An example of the projector matrRR used by the IWD method. In this gure only
the absolute values are shown.

3.2.5 Why information criteria can(not) be used with asymptotic inverse
methods?

In this section, we shall see a possible application of information criteria in the case of asymp-
totic inverse method as described in Section 1.3.2.4. We will concentrate on the use of the
modal density functiom(!) = n(2 f). This function is described analytically by Eq.1.16. If

we want to build some inverse method, we must determine a discrete data-based ffgtion

We shall see that an inappropriate choicen@ff) leads to the destruction of the information
criteria usability. Let us imagine that some reliable and robust method permits to identify all
the modes of the structure and that these modes are determaeggendently. Then, we can

de ne the modal density as:

Nm( f; f=2;f + f=2)
f
whereNq(fy; fo) isthe number of eigen frequencies between frequerfgi@sdf,. Then, the
modal density can be approximately determined by Eq.3.21 for a number of eigen frequencies
and the parameterf needs to be adjusted. However, if the averaging inter¥ak larger than
the distance betweefy and f;;1, one mode is used for calculation of several modal densities

n(fi) =

(3.21)
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n(f;). Thereforethe calculated modal densities arat independenrom each other.

A numerical example shows this phenomenon. Let us consider a 2mm-thick rectangular
simply-supported aluminium plate wittFZOGPa and=2700kg/m?3. Its dimensions are, =
1m andL, = 0:8m. Its eigen frequencies can be calculated analytically (Gerardin [75]):

: !Zés
1Bm n D
fom= — + — — .22
™= 5 ET R (3.22)

X

The asymptotionodal density is independent of frequenayf = 1) = 0:128Hz. In
this case we choosef=200Hz. So, considering the approximative formula Eq.3.21, we can
conclude that a single mode in uences 200128 25 estimations of modal densities. Clearly,
these estimations cannot be independent one from another. This example of using a moving
average is shown in Fig.3.8 by black crosses. What is happening here is a multiplication of
information into interdependent variables. This approach would lead to erroneous results when
information criteria such as AIC or BIC were to be used.

Figure 3.8:Two di erent ways of estimating the modal density lead to the same tted function
but resulting statistical meaning of information criteria is not the same.

The correct approach to this problem would be to split modesnateoverlapingsets. For
example, we can choose octave bands of audible sound. Then the modal density is evaluated in
each octave banithdependently The results are shown in Fig.3.8 by red circles. In this case
we obtain fewer points but these points are independent one from another and the information
criteria based statistics as AIC and BIC can be used.
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3.2.6 Whyinformation criteria can(not) be used with FAT(RIFF) inverse
method?

The FAT(RIFF) method is described in section 1.3.3.1. It was shown that this methods consists
of verifying locally the equation of motion. Here, we discuss the possibility to use the informa-
tion criteria for the selection of models. Let us imagine that at the i-th spatial point, the residual
of the RIFF problem is de ned as (see Eq.1.27):

=D 44®P 12 oy (3.23)

If we want to use the criteria as AIC and BIC with the least-squares de ned by the residuals
given by Eqg.3.23, we must ensure that these residuals are independent. Due terdredi
scheme used to estimate the fourth derivative, the residdepends on thirteen adjacent points.
However, if the i-th and j-th points are su ciently far away (Fig.3.9A) they useeatient points
then the residuals andr; are independent. This is only valid for a non-regularized version
of RIFF. As the regularization is crucial for stable inversion a low-pass spacial Iter is applied.
This Iter, however, links the pointsand j which were disconnected before (Fig.3.9B). So the
independence of residuaisandr; is lost.

Figure 3.9: A. In case of the RIFF without regularisation, the solution at poirdaad j are
independent. B. In the case of the regularized RIFF, the solution atipsitinked to point;|
by a low-pass spatial Iter function.

In order to be able to use the information criteria and the residpalstained from regular-
ized RIFF method, then we would need a su cient spacial distance between the points where
the residual is evaluated. This spatial distance should be superior the characteristic size of the
low-pass Iter function.
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3.3 Cross-v alidation adapted for Inverse wave decomposi-
tion

The Cross-validationtechniqueis one of the most popular and simple techniques for model
selection ([63]). Its objective is to judge the capability of the identi ed model to predict the
measurement. Due to its versatility it was employed with the IWD inverse technique which is
otherwise too complicated to be used with other model selection methods. The principle of the
cross-validation is very simple. Let us consider that we have some data "ect(al;; d,; :::d,)

and a modeM(p) depending on the parametgr We suppose that the data can be simulated
by the model and that the model can be identi ed from the data by some inverse technique.
Then, the principle of the cross-validation is to separate the observation deatortwo sets:
thetraining setd; and thevalidation setd,. These sets should have null intersection drwdl

[fd +;dyg. The training set serves to estimate the parameter of the mppodehen, we can
simulate the outcome of the moddl( p) on the setl, and compare it to the measured values.

Figure 3.10: Principle of the cross-validation method used together with the IWD inverse
method.

The problem of this method is its non-uniqueness of choosing the decomposition of the
training and validation sets. In the review paper [50], Arlot gives exhausting list of possible
ways to choose this decomposition. As this method is rather empirical, there is almost no
general rule which applies to all kind of problems. In our case of vibration problems considered
in this thesis, the individual vibration shapes are considered as elements of the data vector
U = (ug,; ug,; ug ) “ wheref; are the steady-state oscillation frequencies. As it was mentioned
in the section 2.4, the IWD method does not use all the vibrationugllit only its part forming

"w; are consideretike column vectors. Each vector represents the measured displacement at all the points.
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a circularzone with a diameter related to the approximative wavelength of the eld. So we
basically dispose with a few independent zonesvhich can serve for an IWD within each

i-th wave eld u;. Schematic example of the zones and the application of the IWD is shown in
Fig.3.10. Here the vibration eld contained in the green zonegis used to identify the model
parameters by the IWD and then these model parameters are usedverdecomposition
(i.e.WD) of the vibration elds in the zones;, and ;3. The mis t of this decomposition is an
indicator of the quality of the identi ed model and its comparison among multiple models can
be a basis for a model selection. In this work a number of zones used for testing and training
was either equal or 1:2 (more testing zones).

In the following examples the residual error function de ned by Eq.2.33 is applied to the
validation set.

3.3.1 Example of red cedar wood plate

The red cedar musical wood plate of 2mm thickness represents an anisotropic plate (mea-
surement described in Appendix A.5). We consider ve possible models for model selection
(B1,B2,B3,B4,B6). Fifteen steady-state vibration elds were in data the space vdctor

each vibration eld, there was one zonefor training and two forvalidation (testing) There

was fteen vibration elds used for building the models and thirty for testing the identi ed
models. The resulting cross-validation error function (see Eq.1.41 for de nition) is shown in
Fig.3.11B. We can see that the orthotropic model B6 is by far the best among the ve models.
On the second position there is a group of models B2,B3 and B4 all having similar testing resid-
uals. The last is the membrane model B1. It seems easy to choose the best model in this case,
however, the situation may be less clear as we shall see in the next example.

Figure 3.11: Two examples of residuals obtained byedent models when using cross-
validation.
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3.3.2 Example ofthe thin aluminium plate

The thin 2mm aluminium plate (measurement described in Appendix A.2) was investigated by
the inverse method IWD and the results were post-processed to show the performance of the
cross-validation method on this measurement sample. As in the preceding example, there were
the same number of testing and training zones. The same set of ve candidate models (B1,
B2, B3, B4, B6) is considered. This time, however, we cannot see clearly the best model in
Fig.3.11A. There is one bad model (B1-membrane), three models (B2,B3,B4) giving almost
identical predictions and model B6 slightly behind them. Which of the competing models
should be chosen in this case? The question can be answered in two ways. If we are in the sit-
uation of a red cedar in Fig.3.11B where one and only model gitasstically lowerresiduals

then it should be chosen. However, if there are more models whose residuals are comparable
(hypothesis of their equality cannot be rejected) then the simplest model of them should be cho-
sen. The next chapter deals with a question of statistical comparison of residuals of di erent
models.

3.3.3 Statistical treatment of residuals of the IWD problem

3.3.3.1 Considering one testing zone

In the last section, we encountered a situation when it was necessary to decide, if residuals ob-
tained by one model are statistically @rent (lower) from residual obtained by another model
(typically the case of Fig.3.11A for models B2,B3,B4 and B6). In order to decide we shall
employ a statistical test as described in the following.

Figure 3.12:Explanation of the residuals The true vibration eld is represented by the black
line. The t obtained by IWD method is represented by the red dashed line. Measurement
points are black circles.

In Fig.3.12 there is a ctional 1D vibration eld. This eld is represented by a black line.
This function is unknown to us, but we dispose the measurement at a number of points (black

90



circles). Havever, these measurements areadactlysituatedon the black line because there

is some noise which makes each measurement a random variable. We de ne a vériable

as the di erence between the true value of displacement and its measured value at a particular
point (see the detail in Fig.3.12). Due to the measurement uncertainty, this variable is a random
variable. We suppose that the distribution @fue) is:

Gaussian with zero mean
independent of the space coordinate

variables (true) are statistically independent from one point to ancther

It should be noted that the true displacement represented by the black line is unknown, but
we know a displacement tted by the IWD method (red line in Fig.3.12). So we can de ne
as a dierence between the measured value and the tted value (see Eq.2.29 for de nition of
). Generally, (true), , butif the tis close enough to the true underlying function, we can
consider these two (random) variables equal and therefore their distributions identical.
Let us suppose that we are dealing with a zonghere the IWD is performed for two
di erent models designed by indices 1 and 2. The number of measurement points in the zone
is N . The residuals between the ts and measurement are desighehd @10 As it
was discussed in the preceding paragraph, we can suppose that eleméntarefidentically
independently normally distributed random variables with zero mean and varidn&milar
supposition holds for the model 2.
However, we do not know the real values ofand 3. Our goal would be to determine if
2> Z21lor 2= 2 |fthe latter is true, then the model 1 gives statistically shenet on
the zone as the model 2. Otherwise, the model 2 performs better. To this end, we employ a
standard F-test with the following hypothesis:

Ho: 2= 2 (null hypothesis)
Hi: 2> 2 (alternative hypothesis)

Because the true variance$ and 3 are not known we must use their estimassnd s
12 1f the null hypothesi$, is true than the ratio

F=g= (3.24)

8This meanghat the measurement noise is the same for every points. This is, however, true only in the ideal
experimental conditions.

9This can be assumed because the scanning laser vibrometer measures each point separately.

0n this case M and @ are vectors witiN elements.

Lwithout the loss of generality we suppose that Ighe residual of the model 2 is smaller.

12The estimate of variance can be calculated’as  ,j =N 1).
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has Fishedistribution with (N ,N ) degrees of freedom. If the Fisher statistic F is close to
1, than the hypothesid, is likely (variances are equal). Otherwise, as F grows the hypothesis
Ho becomes less and less likely. More precisely, the null hypothésis rejected on the
signi cance level if

F>F.n N (3.25)

whereF; .y N IS @ quantile obtained from the cumulative distribution function of the
Fisher distribution. Otherwise, if F<k . then the null hypothesisannot be rejected. If
the cumulative distribution df (x; N; N) is designed F(x; N; N) then the quantile is de ned as

CF(F1 ;nnsNN)=1 (3.26)

The signi cance level used in this work is always 0.6%

Two concrete examples of testing the t of the IWD method are shown in the following.

In Fig.3.13, we can see a detailed example of residuals obtainetetesting zone for
the aluminium plate and the red cedar (see for comparison Fig.3.11). In Fig.3.13, the residuals
for di erent models are shown{ for B1 (membrane), @ for B2 (Kirchho), © for B3
(Mindlin) and ©® for B6 (Kirchho orthotropic). The indices of the measurement points inside
the zone were permuted in order to make the displacement function monotonically growing
with index number to facilitate the reading of the graphs. From Fig.3.13, we can conclude that
the residuals do not depend on the amplitude of the measured displacement. This con rms one
of the hypothesis used for the random variaftieie) in the preceding section.

In the case of the measurement made on 2mm aluminium plate (Fig.3.13 A), three residuals
displayed are displayed!?), @ and ®). We can see that while the residué is much bigger
that the other two, @ and © are almost identical. Indeed, the statistical analysis yields the
Fisher statisticd;, = sf=s5 = 29:02 andF,;3 = s5=s; = 1:0001. This zone hasl = 343
points. From the Fisher distribution we obtain the quarfid@s.sss.zs3= 1:195. We can see
that the statistical di erence of the residual® and @ is without a question becauseg, =
29:02> 1:195 (hypothesisly is rejected). In the second case, however, we cannot reject the
null hypothesis becaude,; = 1:0001< 1:195. This means from the statistical point of view
the models B2 and B3 perform equally on this particular zone.

The second example is shown in Fig.3.13B, there are two competing models: B2(isotropic
plate) and B6 (orthotropic plate). The situation is less clear than in the latter case, but still
the orthotropic model B6 outperforms the isotropic Kirchhmodel B2. In this case we have
N = 211 points and the quantile Bogs.211.211= 1:256. Since the Fisher statisticsHs=
s=s2 = 4:91> 1:256 the null hypothesis is rejected. This means that the residuals of the B2

13This doesnot mean that this hypothesis is true, but that there is not enough evidence to con rm that it is false.
140f course, this level is arbitrary, however, 0.05 is the most popular choice in statistics.
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Figure 313: Examples of the residuals obtained on testingzone using di erent models.
A. Aluminium plate 2mm measurement, B. red cedar wood plate. The black line represents the
measured displacement in the zone

model are statistically higher than the residuals of the B6 model.

3.3.3.2 Considering multiple testing zones

So far, we were only considering one zon®ut the method presented above can be applied
to any testing zone.

In this section we shall see how a hypothesis testing shown in the preceding section can
be displayed graphically. As it was shown, the variablele ned by Eq.3.24 is a random
variable with the Fisher distribution. Let us consider hypothetical models 1 and 2 and a ctional
measurement on number of zones. The distribution (probability density function) of the the F
statistics applied to the zone 6 is shown in Fig.3.14A. A con dence intervaf fardelimited
by valuesF, andFg. This means that the true value of F is inside the inteFyak F < Fg
with the probability 95%. In Fig.3.14B we can see the probability density functidn fafr
zones 6 and 24. We can see that in the case of the zone 6, the distribukiaa afound unity
and the hypothesis df = 1 cannot be rejected. In other words, it means thak 1 < Fg.
However, in the case of zone number 24, the distributiof @ far from unity andF, > 1.

In this case, the hypothesis = 1 is rejected on a signi cance level 5%. In the following,

the kind of gure Fig.3.14B would be used. For each model, the estimated valbeohot
shown, but instead, the con dence interval (poiRtsandFg) is shown. If the lower con dence
interval limit Fo < 1, then the hypothesis about the equality of models (hypotli&3isannot

be rejected. Otherwise, ifs > 1, then the hypothesis is rejected (it means that model 1 is worse
than model 2). The curve like Fig.3.14B helps us to see how many testing zones are equally
tted by model 1 and 2, and how many zones are tteetterby model 1 and 2 respectively.
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The two previously mentioned examples of 2mm aluminium plate and red cedar plate are
used to show the statistical treatment explained above. The con dence intervals are shown in
Fig.3.15.

In the case of the aluminium plate, the variasgeorresponds to the B2 model (Kirchho
plate). The variance; corresponds to dérent models (B1,B3,B4,B6). In Fig.3.15A, we can
see that while the statistic F for model B1 is far away from 1 for most of the testing zones, all
the other models are equivalent with the B2 model.

In the case of the Red Cedar plate the denominator of the F statistics is the B6 (Kirchho
orthotropic plate) and the nominator is the B2 model (Kirch. isotropic). We can see that all the
testing zones are statistically better tted by the orthotropic model and the F statistics is always
higher than 1. The choice of the model B6 is uncontested.

Figure 3.14:An illustrative example explaining the F statistics as a random variable.
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Figure 3.15:F-statitics applied to 2mm aluminium plate and red cedar measurements. On left
we can see equivalence in the ts of several models. On the right the F-statistics comparing
the orthotropic and isotropic Kirchhomodels shows clearly the statistically better t of the
orthotropic model.
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3.4 Conclusion

In this section, we have seen the application of the general model selection techniques in the
case of the IWC and IWD inverse methods.

The problem of preliminary choice of candidate models was discussed in Section 3.1.1. It
was shown that a wise choice of the candidate models (equations of motion) is necessary for a
good model selection. If a good models is to be chosen, it must be already present in the set of
candidate models.

The Section 3.2 was devoted to the information criteria AIC and BIC. These criteria are
exposed with a brief mathematical background. The application of these criteria as a post-
processing of the IWC inverse problem is presented in Section 3.2.3. Several typical experimen-
tal examples are discussed. The advantages and setback of these criteria are shown. Sections
3.2.4, 3.2.5 and 3.2.6 discuss the possibility to use the information criteria for model selection
based on other inverse methods. It is shown that the requirements of the information criteria
are too restrictive for the IWD and RIFF methods. It is shown, that statistically independent
residuals are quite rare among the inverse problems.

As it was shown, the IWD inverse methods cannot be used with the information criteria
model selection. The Section 3.3 presents an alternative to the information criteria: a cross-
validation technique. This technique is adapted for the IWD inverse technique. Some practical
aspects of the implementation are exposed. Especially, the use of F-statistics is presented.
This statistics permits to tell which model has statistically higher residuals. The application
of the cross-validation is shown on several experimental examples. Two typical situations are
presented, the rst is when one model is clearly better then the others, the second example
is when several models give comparable results. The applicability of the model selection is
discussed in both cases.
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"All models are wrong but some models are usefiiZeorge Box)

Case studies
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4.1 Introduction

In this section we shall look at three experimental applications of the model selection technique
treated in this thesis.

The rst case study deals with determination of axial forces in membranes and beams (for
details see Section 4.2). The goal of this study is to show if the axial force is important for
the description of the vibration of the structure. In this section three separate cases are tested:
aluminium beam under tensile force, silicon microbeams under unknown axial force and a paper
membrane under unknown tensile tension.

The second case study consists of determination of the in-plane symmetry of the measured
plates (for details see Section 4.3). The question is whether a plate should be considered
isotropic or orthotropic. A model selection technique is applied to three experimental cases:
an aluminium plate, a composite plate and a wooden plate. The importance of this study is
particularly shown in the case of the composite plate, where the symmetry is a priori unknown.

The third case study deals with the determination of the most appropriate model for a "com-
plicated” structure. It is represented by a thick sandwich plate with steel faces and tissue core.
The discussion of this study is in the section 4.4.

All the estimated model parameters are calculated together with their standard deviances
which are shown by the ”” sign in Tab.4.1 - 4.10. The standard deviance of the parameters
identi ed by the IWC method is calculated using the log-likelihood function as described in
Section 2.3.1.1. The standard deviance of the parameters using the IWD method is calculated
using the Jacknife method as described in Section 2.4.2.1.

The standard deviance of the identi ed parameters (some kind of scattering of the inverse
method) is not directly linked to the model selection criteria. However, an excessive scattering
(standard deviance) is a sign of ill-posedness of the inverse problem and therefore a bad predic-
tion capabilities of the identi ed model. So, we can expect that a model with large parameter
scatter would perform badly on the validation set of data (see Section 1.4.2.3 for details).

The meaning of con dence interval gures like Fig.4.3 is explained in Section 3.3.3.2.
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4.2 Determination of in-plane static forces in beams and
membranes

4.2.1 Aluminium beamunder axial tension

Thin aluminium-based alloy beam of dimensions 420 2mm was mounted on a Delta ex-
perimental device which permits to pre-stress a beam to a given and controlled axial force (see
Fig.4.1). This force can be approximately determined by means of measuring the deformation
of the frame of Delta device with a micrometer. Consequently, ve levels of axial force were
applied: 0, 500, 1000, 2000 and 3000N. For each level of force vibration response of the beam
was measured at 43 points by scanning laser vibrometer. The excitation was a pseudo-random
signal covering the frequency range from 0 to 10kHz. A phase reference signal was measured
by an accelerometer mounted on the end of the beam. The average vibration spectrum is shown
in Fig.4.2. The model selection analysis was applied to the 25 vibration shapes for frequencies
between 2100 and 7000Hz (Fig.4.2).

Figure 4.1:Experimental mounting of the aluminium beam on a Delta device.

4.2.1.1 Using AIC and BIC for model selection

Two models were considered for the model selection probkePaEulerandA3-Euler+Force

The idea behind this selection was to see when the axial force becomes important for the de-
scription of the vibration of the beam. The results obtained by the IWC method are summarized
in Tab.4.1. We can see that both the AIC and BIC criteria favour the mixed A3 model if the
applied force is 500N and higher. At zero applied force, however, the A2 model (Euler) is
correctly chosen as being the optimal. From the results in Tab.4.1, we can see that the force is
determined with lower precision than the rigidity cdent EI.
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Figure 4.2:Spectrum of the aluminium beam without axial tension. The analysis was done on
vibration shapes corresponding to frequencies from 2100Hz to 7000Hz.

Appl. force ON 500N 1000N 2000N 3000N
Euler EI=1.010.03 | EI=1.006 0.01 | EI=1.128 0.02 | EI=1.23 0.02 | EI=1.34 0.03
AIC=0 AlC=14.4 AIC=22.4 AIC=53.7 AIC= 79.5
BIC=0 BIC=13.6 BIC=21.6 BIC=52.8 BIC =78.7

Euler+Force| T=-98 114 T=469 129 T=1114 204 T=2066 125 | T=2869 87

ElI=1.030.02 | EI=1.010.01 | EI=1.000.03 | EI=0.997 0.02| EI=1.02 0.01
AIC= 1.33 AlIC= 0 AIC=0 AIC=0 AIC=0
BIC =2.18 BIC =0 BIC=0 BIC=0 BIC=0

Table4.1: Optimal results for Euler and Euler-Force models identi ed by IWC method. The
units of bending sthess El are [kgni#/s’] and units of axial tensile force T are [N].

4.2.1.2 Using Cross-validation for model selection

The Cross-validation technique was used together with IWD method as described in section
3.3. There were the same 25 training vibration shapes that were used for the IWC analysis and
there were additional 25 vibration shapes used for validation of obtained results. The A3 model
(Euler+Force) was considered as reference for the F-test because it had a lesser tresiduals than
the A2 model (Euler). The testing statistics is tHer si=s; wheres are the estimators of the
variances corresponding to the t of the validation vibration shape. Index 1 corresponds to the
Euler model and index 2 corresponds to the Euarce model. We test hypothesis Fwhich

means that a particular validation vibration shape was tted with statistically equal precision.

The resulting optimal solution obtained by tting the training set of measurements is shown
in Tab.4.2. We can see that both methods, IWC and IWD, lead to similar optimal results. The
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validationzone t shows for how many validation (test) vibration elds is F statistically higher
than 1 (That means that model A3listterthan A2). We can see, for example, that for a zero
applied axial force, F is never statistically higher than 1, which means that model A2 can be
used with equal precision and because this model is more parsimonious it should be chosen.
However, for higher applied axial forces, there are more and more validation data sets which
are better tted by A3 model (¥1). This phenomenon can be seen in Fig.4.3 for applied forces
1000 and 3000N. In this gure we see the 95% interval of con dence for the F function for

di erent testing data sets. For example, for the applied force 3000N we see that there are about
an half of the testing data sets which are under- tted by the Euler model.

Appl. force ON 500N 1000N 2000N 3000N
Euler El=1.02 0.006 | EI=1.06 0.01| EI=1.12 0.01| EI=1.23 0.01| EI=1.34 0.02
Valid.zonet 0% mis t 8% mis t 24% mis t 32% mist 52% mis t
Euler+Force T-95125 T=527 78 T=1083 106 | T=2001 178 | T=2825 180
ElI=1.030.01 | EI=1.01 0.03| EI=1.00 0.02| EI=1.01 0.02| EI=1.03 0.02

Table4.2: Optimal results for Euler and Euler-Force models identi ed by IWD method. The
units of bending sthess El are [kgni/s’] and units of axial tensile force T are [N]

Figure 4.3:Con dence intervals for F-statistics comparing the equivalence of t obtained by
Euler model to the t obtained by Euler-Force model.

4.2.1.3 Conclusion

In Fig.4.4 we can see the comparison of the optimal results obtained for thetEoitee
model by IWC and IWD methods. These results are also compared to the static estimates
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of the same variables. The cagent ¢, was statically estimated by a three-point method to

be 1.020.07kgm?3/s> (see Appendix B for details on this method). The static axial force was
determined by a calibrated micrometer which measures the deformation of the mounting frame.
In Fig.4.4 the markers represent the optimal values and boxes the scattering.

We see quite a good correlation of the three independent inverse methods. The model selec-
tion problem addressed by the information criteria and Cross-validation technique showed that
the axial force should be included in the modelling for all forces superior to 500N. For the case
of zero axial force, both model selection methods showed that added force term is unnecessary.

Figure 4.4:Determination of the parameters of the equation of motion of the aluminium beam
under static tension. We can see the comparison of the results obtained by the IWC (green),
IWD (red) methods and the static estimates (blue). The rectangles represent standard deviance
estimates.

4.2.2 Silicon microbeams

Silicon microbeams were fabricated by the laboratory LAUM in Le Mans. They represent part
of the research in the MEMS technology domain. The beams are cut within a much larger silicon
wafer (see Fig.4.5). The length of the beams is 3mm. Their width s @icrobeam A) and

153 m (microbeam B). The thickness of the beams is known precisely, from the geometry
considerations we only know that it is inferior to 36 m. The direction of beam axis corresponds

to the (100) crystallographic orientation. The measurement was realized by a Polytec scanning
laser microscope in the frequency bandwidth 1MHz. The excitation was done by a piezoelectric
elements glued to the silicon wafer. The phase reference signal comes from a second laser
measuring xed point on a wafer.
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Figure 4.5:Silicon wafer with two microbeams designed A and B.

During the fabrication process of these microbeams, there are number of undesired phe-
nomena which can occur. Among them, there is, for example, buckling under the presence of
axial compressive force. Such a buckling would be manifested by a change in the equation of
motion. If we consider the Euler beam equation as correct description of the model, then the
(small) buckling would be manifested by a change of vibration in lower frequencies, while the
vibration at higher frequencies would follow the Euler model. Such a behaviour can be approx-
imately described by EuleForce model (model A3 in Section Ref.2.2). Such a model is like
the Euler model in high frequencies but the low frequency response is in uenced by the axial
force. Therefore, these two models were candidates in the model selection.

4.2.2.1 Using AIC and BIC for model selection

As mentioned earlier, two models were chosen as candidates for a model selection problem:
Euler (A2 model) and Euler+Force (A3 model). The IWC method was applied to 12 vibration
shapes for the microbeam A and 20 vibration shapes for microbeam B. The dispersion curves
obtained by IWC method were tted by the two models and the optimal parameters of these
models were determined. Both AIC and BIC analysis show that the Htdece model is
unnecessary.

4.2.2.2 Using Cross-validation for model selection

The cross-validation technique was employed together with IWD method on 12 training and
12 testing zones. The Eutéforce model was taken as reference for F-statistics de ned by
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Model Parameters AIC BIC
Microbeam A Euler Ell \=(3.70.06)10°m%s | O 0

Euler+Force| EI/ = (3.70.09)103m%s? | 2.1 2.6
T/ \=(1.8 3)103m?/<
Microbeam B Euler Ell .=(3.40.07)103 m*/¢ 0 0

Euler+Force| El/ \=(3.30.01)103m%s*> | 2.0 2.5
T/ (=(4.6 7)103m?/<?

Table4.3: Optimal parameter and model selection criteria obtained by IWC method.

Figure 4.6:Dispersion curves obtained by IWC method on two microbeam examples. We see
the t with two competing models is almost identical.

Eq.3.24. We can see in Fig.4.7 that in neither testing zone the value of Feisrdifrom

unity. That means that both models are statistically equivalent from the point of view of IWD
method. Considering the application of model selection criteria in Section 3.3, the Euler model
is preferred instead of the Euler+Force model.

In Tab.4.4 we can see the optimal parameters of the IWD inversion applied to both beams
and both models. It should be noted that in this case both inverse methods IWC and IWD vyield
the same results.

Model Parameters Valid.zone t
Microbeam A Euler El/ =(3.7 0.04)10° m*s’ 100%
Euler+Force| EI/ \=(3.80.07)103 m%/s? -

T/ | =(5.48 4)103m?/<
Microbeam B Euler El/ .=(3.30.05)10° m*/s? 100%
Euler+Force| EI/ |=(3.30.015)103 m*/¢ -
T/ (=(1.47 1)103m?/<?

Table4.4: Optimal parameter and model selection criteria obtained by IWD method.
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Figure 4.7:Con dence interval for F statistics applied on 12 (microbeam A) and 20 (microbeam
B) testing zones.

4.2.2.3 Conclusion

Both model selection criteria showed that the hypothesis of the presence of axial force cannot
be armed. Taking into account the hypothesis about possible buckling of the microbeams and
its e ect on the vibration behaviour, we can conclude that the buckling does not take place, or
its e ect is negligible.

4.2.3 Paper membrane

The paper membrane was made of thick wallpaper cut in the circular form of 0.15m in diameter.
Its thickness was approximately 0.2mm and its surface density was @ni’Zkgwas mounted

on a plastic cylinder as shown in Fig.4.8 on left. There were sixteen holes along the perimeter
of the paper. There was a string passing through each of the holes. These strings were stretched
by eight identical tension springs placed along the cylinder perimeter. Its was assumed that
approximately homogeneous tension plane-stress conditions can be achieved if all the deformed
springs have the same length. This tension is, howeverculi to estimate from the static
deformation of the springs because the tension string passes a right angle and there are unknown
losses in force due to this passage. Only the upper limit of this tension can be estimated from
the static measurements. There were two levels of tensile force which were applied to the paper
membrane.

The excitation of the whole structure waseeted by a shaker as shown in Fig.4.8 back
side. The phase reference accelerometer was also mounted on the back side of the cylinder. The
excitation was a pure sine function. The response was measured at 671 points for 15 frequencies
between 400 and 2500Hz. The vibration shapes for the lowest and the highest frequencies are
shown in Fig.4.9.
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Figure 4.8:Experimental mounting of the paper membrane and excitation of the support frame.

Figure 4.9:Vibration shapes of the paper membrane for the lowest and highest measured fre-
guencies.

4.2.3.1 Using AIC and BIC for model selection

The model selection problem consisted in determining the appropriate equation of motion of
the paper membrane. This time, the operator of the structure was unknown, its physical prop-
erties could be estimated with only very rough approximation. Three candidate models were
considered: Bl - Membrane, B2 - Kirchhand B3 - Kirchhdmembrane. Although, the
membrane model seems to be the natural choice, the resulting IWC analysis shows that this
model is actually the least adapted to describe the behaviour of the structure. In Fig.4.10 and
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Fig.4.11, wecan see the dispersion curves of the optimal models B1, B2 and B3 compared to
the wave-numbers obtained by IWC. It is clearly visible that in the case of both tension forces,
the membrane model is not adapted. Surprisingly, in the case of the tension level 1, the Kirch-
ho model seems to be better than the membrane model. In other words, the paper behaves
more like a thin plate. The model most adapted in both cases of the tension force is the mixed
Kirch./membrane model. The identi ed parameters of all the models are shown in Tab.4.5.

Figure 4.10:Tension level 1: Optimal dispersion curves predicted by Membrane, Kirchhd
Kirch./membrane models with wave vector estimated obtained by IWC.

| Optparam. | AIC | BIC

Tensionlevel 1

B1l:Membrane T=195 18 125 130
B2:Kirchho D=(3.50.4).10° 4.9 1.5
B3:Kirch./membrane T=39 11 0 0
D=(2.80.3).10°

Tensionlevel 2

B1l:Membrane T=2335 292 290
B2:Kirchho D=(4.10.2).103 143 140
B3:Kirch./membrane T=819 0 0

D=(2.4 0.2).10°

Table4.5: Overview of the results obtained by the IWC method and the information criteria.
The units of tension T are N/m and the units of the plate bendingasis D are kgits?.
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Figure 4.11:Tension level 2: Optimal dispersion curves predicted by Membrane, Kirchhd
Kirch./membrane models with wave vector estimated obtained by IWC.

4.2.3.2 Using Cross-validation for model selection

In the case of the rst level of tension, fteen vibration shapes were used for identi cation
of operators by IWD and 30 shapes were used for validation. In the second level of tension,
there were 17 shapes for identi cation and 34 for validation. The resulting parameters for the
identi ed operators by the IWD method are shown in the Tab.4.6. The best t of the data in
the validation set was achieved by the Kidamembrane model. The t of the other two models
was compared to this t by the means of F statistics as shown in Section 3.3. It can be seen
in Fig.4.12 that the F statistics is very far away from 1 for almost all the validation zones for
the membrane model while the F statistics for the Kirchimeodel is much closer to 1 for a
number of validation zones. This is a similar result to the one obtained by model selection
AIC and BIC in the preceding Section 4.2.3.1 where the Kirchihmodel was closer to the

best model (Kirchmembrane). For the second tension level, the performance of the Kirchho
model drops and the membrane models slightly increases. However, in both cases, the mixed
Kirchho /membrane model is the optimal choice. The "patch mist” term in Tab.4.6 shows
how many validation data sets (patches) are under- tted (which means that statisteh)ly F

4.2.3.3 Conclusions

Both model selection methods chose the mixed Kircithembrane model as being the optimal
model in the among the three candidate models. This result is not surprising, however, the
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| Optparam. | Patchmis t

Tensionlevel 1
B1:Membrane T=141 69 96%
B2:Kirchho D=(3.90.3).10° 37%

B3:Kirch./membrane T=30.6 3 -

D=(2.80.1).10°

Tensionlevel 2
B1:Membrane T=170 22 91%
B2:Kirchho D=(5.50.6).10°3 64%

B3:Kirch./membrane T=62 10 -

D=(2.8 0.3).10°

Table4.6: Overview of results obtained by IWD method and the Cross-validation method. The
units of tension T are N/m and the units of the plate bendingieis D are kgris?.

Figure 4.12Tension level 1. Con dence interval of F statistics applied on validation data set for
Membrane and Kirchhomodels. The reference model is supposed to be the Kineimbrane
model.

surprising fact is that the membrane model which seems to be a natural choice ended up as the
last choice behind the Kirchhamodel. This means that although the rigidity of the paper may
seem negligible, it must be considered at higher frequencies.

The parameters of the identi ed Kirdmembrane model are di cult to be veri ed from
other independent methods. Concerning the rigidity of the paper, if we consider the paper equal
to very thin isotropic plate with Young modulus close to a wood (1-10GPa) we get the static
estimate of ranging from 0.73.2kg.n?/s? to 7.3.1C° kg.n¥/s* as shown in Fig.4.14. The
estimate of the static membrane tension T is quite tricky. Although we know approximately the
total force applied by the deformed springs, we do not know the real force at the points where
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Figure 4.13:Tension level 2: Con dence interval of F statistics applied on validation data set for
Membrane and Kirchhomodels. The reference model is supposed to be the Kinembrane
model.

the strings are attached to the membrane. This force is surely diminished by the passage of
the string through the right angle at the perimeter of the cylihdarFig.4.14, there is only the
estimate of the static tension considering that there is no friction at the perimeter of the cylinder.
This estimate is indeed superior to the values obtained by the inverse methods. Although, both
static estimates cannot verify directly the results obtained by the inverse methods, they are not
in the contradiction to the obtained results and show the utility of the inverse methods.

It should be noted that if we used the "natural” choice - membrane model, its parameters
would be false. For example, the IWC method predicts the tension in the rst case TAH90ON
while the maximum tension from the static estimates is BNA wrong model gives wrong
physical parameters.

1This couldbe overcome if we knew the friction caéent, but its determination is beyond the scope of this
thesis.
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Figure 4.14:0verview of the optimal results for the Kirchho /membrane model obtained by
two inverse methods. Static estimates of the "plate rigidity” of the paper and the upper estimate
of the membrane tension are also shown.
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4.3 Question of orthotropy

In this study case, the question of orthotropy is treated. The statement of the problem is as
follows: If we have some unknown plate-like structure with known axes of symmetry, how can
we determine if the orthotropic model is needed for its description? The situation is illustrated
on three di erent examples: Cedar wooden back-board plate of an acoustic guitar, aluminium
2mm plate (already mentioned in Section 3.2.1 and 3.3) and Epoxy glass composfteAilate
of these three plates are described in Appendix A. From the common knowledge, we would
naturally consider the wooden plate as orthotropic and the aluminium plate as isotropic, but
how is the case of the composite plate? It is surely made of anisotropic layers of bres so the
mechanical behaviour is likely to be anisotropic as well. However, manufacturers try to put
di erent layers in such a way that the mechanical properties are homogeneous and isotropic.
So the question we could pose is: Is such a plate isotemcighthat the isotropic equation of
motion is chosen by the model selection criteria?

In this section we consider only two competing candidate models: B2-isotropic Kirchho
plate and B6-orthotropic Kirchhoplate.

4.3.1 Using information criteria for model selection

Fifteen vibration elds were used for the identi cation of the Aluminium plate, 24 for the Guitar
back-board plate and 25 for the Epoxy-glass composite plate. In Fig.4.15, we can see a repre-
sentative example of a cartography of IWC functions in the k-space for the three considered
plates. According to this gure, itis evident that the Guitar back-board plate has an anisotropic
behaviour (Fig.4.15 right). However, the other two cartographies are inconclusive. Both alu-
minium and epoxy-glass seem fairly isotropic. Further analysis, however, shows that while the
aluminium plate is isotropic according to the information criteria AIC and BIC (see Tab.4.7),
the epoxy-glass composite is de nitely not. The factdklC=16.1 shows that the isotropic
model is far less adapted for this composite plate (see Tab.3.1 for the rule of thumb concerning
the values of AIC). This result looks surprising because the isotropic model does not seem
too bad when we look at the cartography in Fig.4.15 middle. To understand why information
criteria exclude the isotropic model, we must take into account that these criteria do not look
at the goodness of t of models in an absolute value. They merely compare this t to the t
obtained by other models. In this case, the isotropic model is not bad in the sense of the absolute
value but it is de nitelynot the best modél

2This compositepanel was made by CETIM under the project AMORTI which included CETIM, LAUM,
LRCCP, GeM, OPERO andé&gion des Pays de la Loire.

30f course, the best model is meant in the sense of choice between the two candidate models - isotropic and
orthotropic Kirchho model.
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Figure 4.15:IWC cartography for the three vibration elds taken from the measurement of
three di erent plates. The green line corresponds to the isotropic model t, the cyan dash-dot
line shows the orthotropic t.

| Optparam. | AIC | BIC
Aluminium 2mm

B2:Kirchho D=530.2 0 0
B6:Kirch. orth. D;=55.32 2.3 8.2
D24:95 8
D3:55 2
Epoxy-glass
B2:Kirchho D=7.20.3 16.1 9.2
B6:Kirch. orth. D;=9.2 0.3 0 0
D,=752.4
D;=7.7 1.2
Guitar back-side
B2:Kirchho D/ s=4.49 0.37 35 30
B6:Kirch. orth. | D;/ s=3.02 0.37 0 0
D24/ 327.85 2.8
D3/ 5:10.4 2.2

Table4.7: Overview of the results obtained by the IWC method and the information criteria.
The units of the plate bending sti ness D are kggA.

4.3.2 Using cross-validation for model selection

The same vibration shapes were used fot the IWD analysis and the cross-validation scheme.
There were 15 training and 30 zones for the aluminium plate, 24 training and testing zones for
the Guitar back-board plate, 25 training and 100 testing zones for the epoxy-glass composite.
We can see the resulting optimal parameters obtained by the IWD method in Tab.4.8. The
test Fischer statistics F is shown in Fig.4.16 for the three plates. The B6 model (Kirchho
orthotropic) was considered as reference for the F-test because it had a lesser t residuals than
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the B2model (Kirchho isotropic). The testing statistics is thén= si=s3 wheres” are the
estimators of the variances corresponding to the t of the vibration shape in the testing zones.
Index 1 corresponds to the Kirchhasotropic model and index 2 corresponds to the Kirchho
orthotropic model. We test hypothesis Fwhich means that a particular validation vibration
shape was tted with statistically equal precision. We can see that while this hypothesis can
never be rejected in the case of the aluminium plate, it is always rejected for the guitar back-
board and epoxy-glass plates. This bring us to the same conclusion that the information criteria
in the preceding section: epoxy-glass plate is not tted siently well by the isotropic model.

It is therefore statistically less adapted than the orthotropic model.

Figure 4.16: Con dence interval for F statistics comparing the Kirchhsotropic and or-
thotropic models.

| Opt.param. | Patchmis t
Aluminium 2mm

B2:Kirchho D=510.2 0%
B6:Kirch. orth. D,;=51.13 -
D,,=100.9 12
D;=51.2 3
Epoxy-glass
B2:Kirchho D=7.70.8 100%
B6:Kirch. orth. D,=9.091 -
D24:9.7 1.2
D;=8.91.5
Guitar back-board
B2:Kirchho D/ s=3.480.14 100%
B6:Kirch. orth.| D;/ s=2.42 0.04 -
D24/ S=5-36 0.35
Ds/ s=9.510.24

Table4.8: Overview of the results obtained by the IWD method and the cross-validation. The
units of the plate bending sthess D are kgais’.
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4.3.3 Conclusions

In this case study, we have seen how both model selection tools can be employed to determine
whether an unknown structure is orthotropic or not. We have seen especially the case of the
epoxy-glass composite which is an example of unknown structure. It might be isotropic as well
as anisotropic. Everything depends on the fabrication process which is often unpredictable.
In this particular case of the composite plate, we have seen that although the dispersion curve
represented by the IWC cartography in Fig.4.15 middle seems rather isotropic, ortotropic model
is much more adapted as shown by both model selection tools.

Otherwise, we have seen that the aluminium plate was con rmed as being isotropic and the
Guitar back-board con rmed as orthotropic.
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4.4 Double-face thick composite plate

A double-face composite panel is constituted of two steel plates joined together by a solidi ed
tissue. The geometry of this core is quite complicated. It can be seen in detail in Fig.4.17 right.
The steel plates and the core are glued together. The dimensions of the plate wer@L50

5 cm. The thickness of the steel faces was 0.8mm. Its density was supposed/#850Kke

average density of the core was estimated to 166kgThe surface density of the composite

plate was 12.9kgn®>. The plate was suspended as shown in Fig.4.17 left and it was excited

by a shaker at the lower part of the plate. Excitation was a pure sine signal. The response
was measured by a scanning laser viborometer and an accelerometer which served for the phase
reference signal. There were 17 excitation frequencies from 200 to 1000Hz.

Figure 4.17:Double-faced thick composite panel represents a structure with complex behaviour
at higher frequencies.

Unlike the other experimental examples mentioned in this work, this plate is considerably
thick. Its vibrational behaviour is more complicated and probably there are more than one
variable needed to describe the vibration of the plate. Especially, we can imagine that the two
steel faces do not necessarily vibrate in phase with each other as it is the case for thin plates.
However, in the low-frequency domain there may exist some thin-plate approximation. Indeed,
the complicated behaviour at higher frequencies can be seen on the dispersion curve obtained
by IWC in Fig.4.18. According to this gure there seem to be a multitude okdent wave-
numbers for frequencies higher than 550Hz. This phenomenon can also be observed on the
map of the IWC function over the k-space in Fig.4.19. At 300Hz, we can see clearly maxima
distributed along a circle, however, at 600Hz this circle disappears and there are multiple local
minima inside the circle. These minima correspond to the waves with longer wavelength.

This change in behaviour around 550Hz makes us believe that thin plate approximation
reaches its limit around this frequency. For higher frequencies, it seems that the two steel faces
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vibrate morendependently of each other and there may be a multitude of modes of vibration
possible. This hypothesis was truly shown when a measurement was tdiath faices of the
plate.

Figure 4.18:Dispersion curves obtained by IWC method. Cross points show which data were
used for the inversion.

Figure 4.19:Cartography of an IWC as a function of the wave vector of the correlating wave.
Example corresponds to the displacement eld measured at 300Hz and 600Hz.
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Measurement oboth faces were done for six frequencies. At rst, one face was measured
and the position of the measurement points was noted. Then, the laser viborometer was placed
on the other side of the plate and the set-up was done in a way that the measurement points
were approximately the same. This procedure is quite di cult to be done precisely and there
are numerous possible errors. However, in Fig.4.21 we can compare the two measured vibration
elds. It can be seen that until 500Hz, there are similar patterns in both measurements and there
is important correlation between the two elds. However, from 650Hz, the correlation between
both elds drops quickly and we are witnessing growing independence of these elds. This
means that the vibration at higher frequencies than 600Hz cannot be described by means of a
unique variable describing the transverse displacement of one face. This conclusion con rms
the hypothesis of multiple mode of vibration present in higher frequencies. This hypothesis
can also be con rmed in Fig.4.20 where the IWC is shown as a function of frequency and
wave number. There is an abrupt change in this cartography between 600 and 700Hz which
roughly corresponds to one of the dispersion curves associated with symmetric motion of the
Dym model (see Appendix D). However, the measurement is not good enough to make further
conclusions.

Figure 4.20:Cartography of an mean value of IWC as a function of the wave vector and fre-
guency. In purple we see the dispersion curves obtained by Dym model.

4.4.1 Using AIC and BIC for model selection

In the preceding section, we have seen the limit frequency of a "thin plate” approximation
of our panel. In the following analysis only the measurements up to 600Hz are considered.
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Figure 4.21:Cartography of an IWC as a function of the wave vector of the correlating wave.
Example corresponds to the displacement eld measured at 300Hz and 600Hz.

Four isotropic models are considered for models selection: B1-Membrane, B2-Kir&8io
Kirch./membrane and B5-Dym sandwich. The Dym sandwich model is considered only in
its antisymmetric form given by Eq.D.8. Its symmetric solution is not taken into account in
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the inverse problem. However, the prediction of the anti-symmetric dispersion curve is shown
in Fig.4.18. This prediction is obtained using Eq.D.7 and the inversion results from the anti-
symmetric dispersion curve. The resulting t of the dispersion curve obtained by IWC method
are shown in Fig.4.18. The parameters of the best models are show in Tab.4.9. Both AIC and
BIC criteria show that the mixed Kircimembrane model is the best model. However, the Dym
sandwich model is quite close behind. TR&C value for a Dym model is 2.4 which means

that this model has a substantial level of con dence with respect to the other candidate models.
Its drawback is that it contains three parameters while the Kirgmibrane model contains

only two. It can be seen from the results in Tab.4.9 that the value of the Poissof oftioe

core is badly determined. The inversion values of the Young modulus of the sandwich faces
yield 100GPa which is inconsistent with values for steel (which is around 200GPa). This is a
sign that the description by the Dym model is good enough from the performance point of view
but the model parameters do not represent physical quantities.

Model Ident.param. AIC | BIC
Membrane (B1) T=52069 1735 25.6 | 245
Kirchho (B2) D=31.93 40.6 | 394

Kirch./memb.(B3) T=34700 750 0 0
D=9.40.3
Dym (B6) E;=(100.2 16)GPa| 2.4 3.5
E.=(2.08 0.4)MPa
=0.04 0.24

Table4.9: Optimal parameters for the three considered models using the IWC method.

4.4.2 Using Cross-validation for model selection

The IWD method was applied with a cross-validation technique. There were eight vibration
elds corresponding to eight frequencies and on each eld, there were two training zones and
two testing zones. In total, there were 16 training and 16 testing zones. The four models
described in the preceding section were identi ed by IWD method on the training set of data.
The resulting optimal parameters are shown in Tab.4.10. These parametereamt diom
the results obtained in Tab.4.9. This is normal because the objective error function is not the
same in both cases, so the "wrong” models are adjusted to measurement in non-equal way.
Moreover, if the model is correct (full representation of reality), then the optimal parameters
obtained by both method should be the same. It seems that the/Kiechbrane model is not
far from the reality because both methods predict similar optimal values.

The validation of models was done on 16 testing zones and the technique described in Sec-
tion 3.3 was used. In Fig.4.22, we can see con dence intervals for the F-statistics de ned by

4Actually thePoisson's ratio does not have a physical sense as in the case of isotropic materials, because the
core of the sandwich is not a homogeneous isotropic material (see Fig.4.17).
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Eq.3.24. Thistatistics shows how derent are the ts of the four models in the considered test-
ing zones. The reference model for the F-statistics is the Dym model which gives the best ton
the training data. As we can see from Fig.4.22 that the Kirch./membrane model is statistically
equivalent to the Dym model on all the testing zones. Other two models are less performant:
there are 4 testing zones tted equally (with respect to the Dym model) by the Kircimualel

(25%) and 10 tted equally by Membrane model (62.5%).

Model Ident.param.
Membrane (B1) T=47400 3770
Kirchho (B2) D=5411

Kirch./memb.(B3) T=33455 204
D=120.5
Dym (B6) E¢=(130 19)GPa
E.=(2.23 0.8)MPa
=0.16 0.3

Table4.10: Optimal parameters for the three considered models using the IWD method.

Figure 4.22:Con dence intervals of the F-statistics de ned for the t of the testing zones on
the double plate measurements.

4.4.3 Conclusions

This thick composite plate was investigated in the frequency range 200-550Hz. Above this
range it has been shown that the motion of the two faces becomes independent. There are prob-
ably dierent modes of vibration kinematics taking place simultaneously at higher frequencies
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as isshown in Fig.4.19. However, the dispersion curves corresponding to these modes were not
identi ed. Therefore, only the (anti-symmetric) bending vibration was considered. Four mod-
els (Membrane, Kirchho Kirch./membrane and Dym) were investigated by IWC and IWD
techniques. Model selection criteria associated with IWC showed the Kirembrane model

as the most adapted with Dym model close behind. Similar conclusion was found using the
IWD and a model selection criterion. Both Kirchhand Membrane models were substantially
lacking behind. However, the Membrane model is better then the Kirchiadel according to

both model selection criteria.
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Conclusion In this thesis the possibility of identi cation of the equation of motion from ex-
perimental vibration response was studied. A so-catedel selectiompproach was chosen.

This general approach consists of a number okdent mathematical techniques. It has been
shown, however, that these techniques cannot be used blindly, but some preliminary hypothesis
must be respected.

This work was divided into two big parts. The rst part, Section 2, describes the inverse
techniques which can be used for identi cation of parameters of some model (equation of mo-
tion). A special attention was given to two inverse techniques judged adapted for our purpose:
IWC and IWD. The second part, Section 3, describes more in detail some model selection tech-
niques and shown how they can be used together with the inverse techniques described earlier.
It is shown that the crucial question is the mathematical nature of the estimators obtained from
the measurement. By estimators we mean any numerical value obtained from the measurement
and which can be deterministically calculated from a model. It was shown that these estimators
are rarely statistically independent. Their dependence hampers the use of many model selection
techniques as it is shown in Sections 3.2.4-3.2.6. However, it was shown that the estimators
of the natural wavenumbers by the IWC method can be considered independent under some
constraints. In this case, traditional methods AIC and BIC can be used for selection of models.
The advantage of these model selection techniques is the simplicity and easy evaluation of the
results. However, it was shown that it is morecdit or impossible to obtain independent
estimators when using the IWD, FAT(RIFF) or asymptotic methods. Therefore, a special ver-
sion of cross-validation technique was developed for the IWD inverse method to overcome this
problem. Although the use of the cross-validation technique is less restrained than the other
methods of model selection, its disadvantage is the need for large measurement samples. The
problem with the cross-validation is how to evaluate its results. To overcome this, a test based
on Fisher statistics was employed with the cross-validation technique.

The proposed methodology was employed on a number of experimental measurements.
Three main problems were treated: the presence of axial force, the question of plate orthotropy
and identi cation of complex composite structures.

Perspectives Even tough this thesis reaches its end, there are still open questions and possibly
a new work can be done in the years to come.

The author believes that more inverse methods dealing with 2D vibration eld are still to
be discovered. Especially, there is a potential to use a Galerkin approach proposed in other
scienti ¢ problems (see Section 1.3.2.5). Another new inverse problem would be to use the
method of fundamental solutions (see Section 1.3.2.3) in its inverse sense (similar to IWD).
Both of these new inverse problems could also have model selection post-processing.

The proposed methodology can be further applied in other physical problems. So far, the
model selection criteria were used in statistics but their use in concrete physical (mechanical)
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problems vas limited. The author would like to point out several possible ways to exploit this
mathematical tool. In theelds of dynamics there is a possibility to apply the model selec-

tion for a choice of models for composite plates. Especially, when a number of competing
models is at hand. It would be probably necessary to measure the vibration eld at both sides
of the composite panels, especially if these panels are thick, as it was shown in Section 4.4.
Another application would be in the experimentally-based model reduction techniques. These
techniques (see for example Nowakowski [66]) are often based on direct calculations. But the
inverse identi cation or validation of reduced models from experiments would also be pos-
sible. A modal-based inverse problem of determination of elasticity symmetry of processed
polycristaline copper as shown by Seiner [71] might be further developed by adding the model
selection techniques. A very interesting seems an application to the domain of porous mate-
rials. There exists a substantial number of models describing the acoustic behaviour of these
materials. A review paper by Sagartzazu [80] mentions serelint models, he also shows the
comparison of these models with some measured quantities. A number of possible applications
are in the domain ofmaterial science. This need is especially true for the physical phenom-
ena which are described by a number of competing models. Let us consider, for example, the
long-lasting question of metal plasticity. The plastic behaviour of metals is rather complicated
and a very large number of analytical and empirical models includingrdnt phenomena like
hardening, softening, cycle-loading, strain-rate, relaxation etc. were developed (see Chaboche
[73]). Another problem consists of a choice of an appropriate model for a contact fatigue life
prediction (Tallian [79] mentions 11 physical and empirical models). Also the problem of ul-
timate strength of materials is under question. There exist a number of criteria for composites
(see Dharan [65]) and there are 12 criteria for brittle failure of rocks (see Lakirouhani [64]).
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Measurements o0 verview

A.1 General remarks

In thisappendix there are some issues believed useful to describe the experimental conditions of
measurements done in this research work. All the measurements were done with Polytec scan-
ning laser viborometer with mobile head. The experimental scheme was more or less changed
in function of di erent structures measured but it follows the same connection logic as shown
in Fig.A.1. Apart from the signal from the laser vibrometer there are also two reference signals
from the force sensor and the accelerometer. The force sensor is located between the shaker
head and the structure. The location of the accelerometer can be versatile. Most often it is
advantageous to place it at the corners of the structure where the signal is maximal regardless
the frequency of excitatioh The measurement was taken at a number of points (200-1000)
inside the borders of the structure. Nevertheless, the excitation force was always outside of this
zone in order to comply with the conditions imposed by the inverse methods used in this work.
The excitation signal was of three types:

Pure sine signal This excitation gives the best results, however, the measurement needs
to be repeated for every frequency separately and therefore it takes a lot of manipulation
when more excitation frequencies are to be measured.

White random noise. This excitation permits to recover the vibration response at a very
large number of frequencies at one time. Unlike the preceding excitation, this measure-
ment can be automated but as more averages are needed, it takes a lot of time.

Pseudo-random noisePseudo-random noise behaves similarly like the white noise, but
its advantage is that it excited the structure nalbafrequencies equally but only on the
frequencies that are later used for the FFT transform. In this way less vibration energy

IActually, the problem occurs when the reference signal is close to zero, because we use transfer function and
in the transfer function the reference function is in the denominator. The reference signal can become zero for
example on nodes of vibration for the accelerometer and on the modal frequencies for the force sensor.
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is "lost” on frequencies which are not present in the FFT decomposition. This excitation
yields generally better coherence between the reference signal and the vibration signal
measured by laser. The advantage of pseudo-random excitation is discussed by Jacobsen
in [69].

broadband excitation was used, broadband transfer functions were recovered. As the

information present in these transfer functions is often redundant, we choose only several best
vibration shapes. The judgement is based upon the coherence function. The shapes with highest
coherence function are chosen.

Figure A.1:Schematic signal routing of the measurement set-up.

Many dierent mountings of the beams, plates and membranes were used. In Fig.A.2 we
see a measurement set-up for the aluminium 4mm plate. The boundary conditions are not of
importance for the inverse methods used in this work, sereit boundary conditions were

used.
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Figure A.2:An example of the measurement set-up for the aluminium 4mm plate. In detail we
see a mounting of the excitation shaker.

Figure A.3:lllustrative example of aligning the measurement plane to the coordinate system of
the scanning laser vibrometer. Paper membrane measurement.
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A simplemethod was used for aligning the coordinate system of the laser vibrometer to the
coordinate system of the measured structure. The reason is that the internal system of Polytec
assumes that all the measurement points are on a plane surface normal to the axis of the laser.
With a help of a CD this alignment can be done ve steps:

Point the laser beam straight ahead (zero degrees in x and y-axes)
Place the plate to suitable distance with the laser beam in the middle.
Place the mirror CD onto the plate to re ect the laser spot.

Rotate with the plate until the re ected and incident beams are common.

Remove the re ective CD (if possible).

One illustrative example is shown in Fig.A.3. Theadity of the presented approach is
that we must be sure that the plane of the CIpasallel to the plane the measured structure.
This is easy if the structure is solid and well-attached. Then the CD can be glued onto it. If the
structure is more subtle this can be a bit tricky.
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A.2 Aluminium 2mm plate

A rectangulaplate made of aluminium-based alloy had dimensions 4820 mm. Its nominal
thickness was (2 0.05)mm. The surface density of the plate was 5.&8kgVibration mea-
surement was ected at 571 points de ned over 30800 mm domain. The reference signal

was taken from the accelerometer situated in the corner of the plate. Boundary conditions were
free except for one side of the plate whose one part was clamped. The excitation signal was
pseudo-random in the bandwidth 0-3200Hz.

If a standard Young moduluss70GPa is considered and0.33, than we can we obtain
the plate sti ness after Eq.2.7$52 4)kg.m?/s2.

Figure A.4: Above: average spectral density of measured displacement. Below: Average co-
herence function as function of frequency. The green circles represent vibration shapes chosen
for further analysis.

In total there were 3200 vibration shapes measured. From these fteen shapes for frequen-
cies from 1000 to 3200Hz were selected for the identi cation of equation of motion. These mea-
surements had locally a maximum of coherence function as shown by green circles in Fig.A.4.
These maximum do not correspond necessarily to the modal frequencies as it is shown in the
above gure.
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A.3 Acoustic guitar backboard

The measurementere eected on the backside of the acoustic guitar. The zone is situated
between two stieners placed on the inner side of the guitar. The excitation is done by shaker
placed on the front-side of the guitar as shown in Fig.A.5C.

Figure A.5: A: Back-side of the guitar with the zone of measurement (green). B: Front-side
of the acoustic guitar with the excitation shaker. C: X-ray image of the guitar, we can see the
wooden stieners inside the guitar. The green measured zone is without transversasts.
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Pseudo-random signaf 6400Hz bandwidth was used for excitation. Response was mea-
sured at 214 points by scanning laser vibrometer. The thickness and surface mass density are
unknown. The direction of the bers corresponds to the y-direction of the Cartesian coordinate
system.

A.4 Epoxy-glass composite plate

Epoxy dass composite plate was measured at LAUM laboratory in LeMans (courtesy of F.Ablitzer).
This panel was fabricated by CETIM as a part of the project AMORTI [72] which studied the
damping of composite plates. This project was done in partnership between CETIM, LAUM,
LRCCP, GeM, OPERP andé&gion Pays de la Loire. The panel of 0@83m was suspended

at two ends. The excitation shaker was placed at the border of the plate. Excitation was sweep
sinus signal from 200 to 2000Hz. The excitation response was measured at 10797 points by
scanning laser vibrometer. These points were placed inside a rectangle 6fZB&bdimen-

sions. The reference signal for the transfer function was taken from the force sensor B&K 8001
mounted on the excitation impedance head. The surface mass density is 5.2kg/m

A.5 Red cedar plate

A platecut from red cedar wood (Fig.A.6) had dimensions 390 2mm. Its long dimensions

was parallel to wood bres (x-direction). Its surface density was 0.868kdT his wooden plate

is used for manufacture of the soundboard of musical instruments like guitars. The particularity
of this wood is its homogeneity and relatively low damping.

Figure A.6: A: Mounting of the red cedar plate during vibration measurement. B: Position of
the wooden plate in a tree trunk.
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Figure A.7: Above: average spectral density of measured displacement. Below: Average co-
herence function as function of frequency. The green circles represent vibration shapes chosen
for further analysis.

The vibration measurement wageted at 377 points. The driving force was measured and
served as a reference for the transfer function. Excitation was a pseudo-random in the bandwidth
0-3200Hz. Fifteen vibration elds between 800 and 2000Hz were selected for model selection
analysis. Chosen frequencies can be seen in Fig.A.7. The chosen vibration elds had locally
the best coherence function (the best signal).
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Three-point bending test

The traditional 3-point bending test were performed on numerous samples to verify the results
obtained from dynamical inverse problem. For practical experimental reasons it was sometimes
necessary to change the symmetrical geometry of the test to a non-symmetrical (see Fig.B.1.
According to the theory of thin beams in bending the acceptance of the beam at the point of
displacement measurement is

Sobicl, i Li> L,

[ERN

ij=L
P (B.1)

— Tl"‘

_ 1 L LsL3 .
= 5 ot Calm+Cy if Ly <Ln

3N

wherey is thedisplacement measured by micrometers the force of mas< | is the beam
rigidity, L is the length of the bearn,, is the position of the measuremeht, is the position of
the applied force, coeienst C are de ned as follows

! L L, 2 3 6L
L3 L.L
C = _m —m=
3 6L 3
L3
C4 = Fm (BZ)
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Figure B.1: Schematical setup for modi ed 3-point bending test on left and a realisation on
right.

Figure B.2:Experimental setup for 3-point bending test. Micrometer was used for displacement
measurement. On lower gure we can see typical force-displacement data set and the linear t

of the data.

138



Question of plate coupling with air

So far we neglected the in uence of surrounding media upon the vibration of the plate. Math-
ematically, it means that the acoustic presqareon RHS of the Eq.2.6 is equal to zero. This
approach is true for most plate-like structures which are relatively heavy with respect to the
mass of surrounding air. However, for some light membranes the level of acoustic presure
might in uence the vibration of the structure. To estimate the in uence of the pregsueedo
several assumptions.

We consider the plate (or membrane) in nite
We neglect all the external sources of acoustic pressure

We consider the perfect anechoic conditions of the testing room with no re ections

Figure C.1:Coordinate system of the thin plate coupled with surrounding air.
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Under theseassumptions it can be shown that the acoustic pressure is proportional to the
displacement eld of the plate corresponding to the plane wave with wave vegipr The
plate lies in the plane XY, its displacemai(k; y) is normal to the plane positive in the positive
z-direction, the air is the both sides of the plate (see Fig.C.1. According to Maxit [74]
i! 2 air
p(xy;z=0)= =u(xy) (C.1)
2 kkair Kk I(pla'[ekz

whereky, is the wave vector of the plane waves in the air agdis the density of the air.
In the domain of our frequency range we have alwidgsk Kk Kyjaek SO we can simplify the
Eqg.C.1

12

xy;z= 0+) —2 y(x; C.2
Py ) 2kkp|ate|<( y) (C.2)

The wave vectokp . can be approximately estimated from the measured vibrational eld.
Because of the symmetry of the problem we hagey;z= 0 ) = p(x;y;z = 0+) and the
di erence between the pressure on the two sides of the plate(g;y) = p(x;y;z = 0+)
p(x;y;z=0) = 2p(x;y;z= 0+). To see the in uence of the air upon the equation of motion
let's consider the equation of the Kirchhplate

D2y 12qu= p=12_3ar c.3
) st P 2kkplateku ( )

Thepressure term on th RHS can be seen as mass added to the surface mass density of the
plate s

2 12 + air — '
D “u !'"“(s —Zkkplatek)u 0 (C.4)

If we de ne following quantitieplate mass= s andair mass=4;=(2 kKyjarek) We can
plot the ratio of these two mass components (air mass)/(plate mass) on Fig.C.2. It can be seen
that the in uence of the air coupling is not important for metallic plates but it can become
important for lightweight structures at low frequencies.
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Figure C.2:Ratio of the air and plate mass in function of the frequency for various tested plates
and membranes. We can see, that the most importance of the air is at the low frequencies for
light structures like paper membrane.
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Dym sand wich model

Under some simplifying hypothesis described in [68] the kinematics of the section of the Dym
sandwich plate can be entirely described by ve independent variables,uw;, w, andg.
Variablesu,., describe the in-plane displacement of the skins and variableslescribe the
transverse displacements of the skins. Then the transverse and in-plane displacements in the
core can be expressed as

U1(X) + Up(X)

U(x2) = ————+9( (D.1)
wxz) = MO L ) wa(o) 02

As itis shown in [68], if we de ne the symmetric displacements as

Up + U

u = D.3

L 5 (D.3)

w= 22 W (D.4)
2

and theanti-symmetric displacements as

0 = ”22“1 (D.5)
+

W= N 2""2 (D.6)

then thedi erential equation of the Dym plate can be uncoupled into two systems of inde-
pendent equations:
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Figure D.1:Model of symmetric sandwich proposed by Dym and Lang.

(D.7)

(D.8)

The matrix for anti-symmetric motion (classic bending) is a two-by-two symmetric matrix

constructed of a partial di erential operator

a - o= @ 4, . @
DI = 2|51Q; + 1 hg
@ @ @
X 1
(22) _ ~. 2~
Dai = 2D1—; + Zm@ §h m R

the constantssed above are de ned by following relations

C,=Ci+iC C=( +2G)h
ﬁ1:F1+ %ZCh I51:D1+2_14CI’]2

m= 1t1+%h m = 1th+%h i
Ci= L FE Gru? G

Di=3 G+t)° (§)°

(D.9)
(D.10)

(D.11)

where , G, , h are the density of the core, shear modulus, Lame constant and thickness
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of the core respectivelyE, t;, 1 are the Young modulus, thickness and Poisson ratio of the
face respectively. It should be noted that if we know the geometry and mass properties of the

sandwich, then the term of the operafy,; depend on three independent parametBisG,

1
¢

Similarly, the terms of a symmetric three-by-thii2g,, can be developed

o = o mE (0.12)
o = 2 S (0.13)
DY) = ch 2 h@% (D.14)
D&Y = 251§+%c (2h + 2Gh:3g2+2mg; %hz_@z@@ (D.15)
D& = ch+f( + ZG)§+}h2% (D.16)
0 = 28 o2 hd (017)

The constantssed in the above expressions are de ned as

61:C1+%C C:( +ZG)h
f]_: F]_"'%Ch 51: D:|_+%Ch2
m=m m =

A numerical example of dispersion curves is presented below. One considers a sand-
wich panel with two equal 1mm thick aluminium faces and 80mm thick polystyrene core.
The following values of sandwich parameters are employed= 70GPa, ;=0.3, t;=1mm,

1=2700kg/n¥, G=0.7MPa, .=0.4, =40kg/m?3, t.=80mm. The analysis of dispersion curves
determined by the two systems of equations D.7 and D.8 are shown in Fig.D.2. Dispersion
cuves represent points where the determinant of these systems is zero.

In Fig.D.2 there are two branches of antisymmetric motion. One represents antisymmetric
shear motion (motion in plane of the sandwich). The other represents antisymmetric bending.
However, this bending is coupled to the in-plane motion as well (shear). Symmetric motion has
three branches of dispersion curves. Typically, these motions have a very low wave-number fro
frequencies below some cut-drequency (around 700Hz in this case). Then we see apparition
of these dispersion curves. The symmetric branch with highest wave-number is asymptotically
approaching the antisymmetric bending dispersion curve.

1Evidently,this choice is arbitrary, other combinationstbfeeindependent elastic parameters are possible.
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Figure D.2: Symmetric and antisymmetrix motion dispersion curves of sandwich model pro-
posed by Dym and Lang.
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