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Abstract

In the present work, we tackle the problem of modeling and evaluating
performance in the context of embedded systems design. These have become
essential for modern societies and experienced important evolution. Due to
the growing demand on functionality and programmability, software solu-
tions have gained in importance, although known to be less efficient than
dedicated hardware. Consequently, considering performance has become a
must, especially with the generalization of resource-constrained devices.

We present a rigorous and integrated approach for system-level perfor-
mance modeling and analysis. The proposed method enables faithful high-
level modeling, encompassing both functional and performance aspects, and
allows for rapid and accurate quantitative performance evaluation. The
approach is model-based and relies on the SBIP formalism for stochastic
component-based modeling and formal verification. We use statistical model
checking for analyzing performance requirements and introduce a stochastic
abstraction technique to enhance its scalability. Faithful high-level models
are built by calibrating functional models with low-level performance infor-
mation using automatic code generation and statistical inference.

We provide a tool-flow that automates most of the steps of the proposed
approach and illustrate its use on a real-life case study for image process-
ing. We consider the design and mapping of a parallel version of the HMAX
models algorithm for object recognition on the STHORM many-cores plat-
form. We explored timing aspects and the obtained results show not only
the usability of the approach but also its pertinence for taking well-founded
decisions in the context of system-level design.





Résumé

Les systèmes embarqués ont évolué d’une manière spectaculaire et sont
devenus partie intégrante de notre quotidien. En réponse aux exigences gran-
dissantes en termes de nombre de fonctionnalités et donc de flexibilité, les
parties logicielles de ces systèmes se sont vues attribuer une place importante
malgré leur manque d’efficacité, en comparaison aux solutions matérielles.
Par ailleurs, vu la prolifération des systèmes nomades et à ressources limi-
tés, tenir compte de la performance est devenu indispensable pour bien les
concevoir.

Dans cette thèse, nous proposons une démarche rigoureuse et intégrée
pour la modélisation et l’évaluation de performance tôt dans le processus de
conception. Cette méthode permet de construire des modèles, au niveau sys-
tème, conformes aux spécifications fonctionnelles, et intégrant les contraintes
non-fonctionnelles de l’environnement d’exécution. D’autre part, elle permet
d’analyser quantitativement la performance de façon rapide et précise. Cette
méthode est guidée par les modèles et se base sur le formalisme SBIP que
nous proposons pour la modélisation stochastique selon une approche for-
melle et par composants.

Pour construire des modèles conformes, nous partons de modèles pure-
ment fonctionnels utilisés pour générer automatiquement une implémenta-
tion distribuée, étant donnée une architecture matérielle cible et un schéma
de répartition. Dans le but d’obtenir une description fidèle de la performance,
nous avons conçu une technique d’inférence statistique qui produit une ca-
ractérisation probabiliste. Cette dernière est utilisée pour calibrer le modèle
fonctionnel de départ. Afin d’évaluer la performance de ce modèle, nous nous
basons sur du model checking statistique que nous améliorons à l’aide d’une
technique d’abstraction.

Nous avons développé un flot de conception qui automatise la majorité
des phases décrites ci-dessus. Ce flot a été appliqué à différentes études de
cas, notamment à une application de reconnaissance d’image déployée sur la
plateforme multi-cœurs STHORM.
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Chapter 1
Introduction

1.1 Motivation and Methodology

Computerized systems have become essential for modern societies. Em-
bedded systems, in particular, have deeply impacted our daily lives and rad-
ically influenced our lifestyle. The important growth of transistors and mi-
croelectronics industries has contributed to democratize these systems which
became ubiquitous. According to the ARTEMIS Strategic Research Agenda
2011 1, it is estimated that there will be over 40 billion devices worldwide,
that is, 5 to 10 embedded devices per person on earth by 2020.

Wireless communication capabilities offered by these systems have al-
lowed peoples to get (inter-)connected everywhere, quickly, and easily, e.g.,
in cars, trains, planes. This has changed our perception of many concepts
such as human relationships, where new possibilities have emerged. This can
be clearly observed on the wide use of social networks and the emergence of
Internet of Things (IoT). Emergence of participative models of democracy
and governance, where citizens play a central role would have never been
possible without embedded devices. Carrying out processing power changed
our learning, working, and entertaining habits (allowing for instance tele-
working). Abundance of sensors accompanying these devices, gave rise to
new types of media that give an active role to citizens. For instance camera
and social networks have contributed widely in the recent “arab spring”.

Beyond individual and social scales, embedded systems are becoming es-
sential for companies and even for governments and states. These represent
an important leverage for innovation and competitivity for companies, in
addition to creating new markets. Prosperity and growth of many industries
are due to embedded systems as witnessed by the evolution of the auto-
motive field, where embedded systems are gaining more importance, while

1. ftp://ftp.cordis.europa.eu/pub/technology-platforms/docs/

sra-2011-book-page-by-page-9.pdf

1



2 CHAPTER 1. INTRODUCTION

mechanical-based solutions are stagnating. At the edge of great energetic
challenges, energy efficiency became a must. Global initiatives at the level of
states advocating more effective energy management techniques are increas-
ing. Devices such as smart meters, monitors, sensors and more sophisticated
setups such as micro-grids are hence sought. Embedded systems represent
an opportunity for affordable health care systems. Recent advances in medi-
cal devices are various and ranging from medical imaging to pacemaker, and
artificial heart. Domains benefiting from embedded systems assets, such as
transportation, national security, and education are wide and steadily in-
creasing. This evolution have contributed to draw a completely new lifestyle
where mobility, speed and connectivity are the keywords.

The great impact of embedded systems on our everyday lives, come at
the price of an increasing complexity to design them. More burden is put on
designers that have to produce systems in less time with ever reducing costs.
Designing mixed hardware/software systems that provide sophisticated ser-
vices is inherently challenging. Additional constraints such as the shrinking
time to market make it even harder. Besides, embedded systems are often
used in critical setups involving human lives and wealth. Thus, ensuring
their functional correctness is primordial.

Efficiency is becoming a real concern for modern embedded systems.
As our reliance on these systems increases, so does the expectation that
they will provide us with more mobility and ensure high-performance re-
sponse. Embedded devices are mostly sibling mass consumption and often
rely on batteries. Thus, cost optimization and energy management are of
paramount importance. Moreover, such devices are increasingly integrat-
ing various functionality, hence they are required to provide high and often
real-time performance. Classical views giving more importance to functional
aspects are becoming obsolete and new design methods, equally capturing
both aspects, are becoming a must.

This thesis aims at contributing to bridge the gap between the current
state-of-the-art methods and techniques of embedded systems design and
the growing challenges facing this area. Our main focus is on performance
aspects, since these are still not well supported and represent a considerable
hindrance towards substantial advances in this field. To accomplish our
goal, we will start from concrete challenges and proceed from general to
specific, that is, we will first consider general design challenges, then address
performance issues. The main advantage of such an approach is consistency,
since we are guarantied not to fall into contradictions between general design
and specific performance questions. This way of proceeding will also help
us to analyze existing answers for our problem and to build upon them.
Analysis of challenges will lead us to identify the key requirements that need
to be matched for an appropriate answer. Finally, to enable tackling this
complex task, we will decompose our global objective in term of performance
modeling and performance analysis.



CHAPTER 1. INTRODUCTION 3

1.2 Embedded Systems Design

1.2.1 Design and Challenges

Systems’ design entails building software/hardware artifacts matching
user defined specifications and requirements, which are often seen twofold:

– Functional, which are related to the expected functionality of the sys-
tem. For example, an ATM is expected to deliver the specified amount
of money when the used credit card is valid and when the specified
amount of money is available.

– Extra-functional, that concern resources utilization, such as perfor-
mance, cost, or security aspects. For the previous example for in-
stance, the time to deliver money should be constant and lower that
some bound.

The path leading to a potential design from initial specifications is the design
process. A design method often decomposes the design process to several
activities and provides a clear way these must be performed towards a valid
artifact, that is, conforms to the initial specifications.

The evolution of embedded systems from centralized to more distributed
settings and their deployment in more open and unpredictable environments
have led embedded systems to be confronted with an increasing number of
challenges. Designing such systems requires methods that account for extra-
functional requirements concerning energy, timing, and memory while guar-
antying functional properties such as reactivity, reliability and robustness.
Considering both aspects, i.e., functional and extra-functional, rises several
difficulties at different levels, ranging from theoretical to more technical.

Sophisticated Functionality The wide acceptance of embedded systems
and their success to improve our everyday lives, e.g., for communication,
transportation, and health, induced a move towards new systems with more
capabilities and increasing intelligence. These range from simple individual
devices to widely distributed plans at the scale of cities and states. The IBM
smarter planet is one among many initiatives that aims at using embedded
systems to further improve the quality of life of human being. This initiative
consists of deploying a huge number of embedded devices to manage vital
resources, e.g., water, energy, in smarter way. Consequently, new kinds
of systems, e.g., sensors network, Swarms of devices, which are often bio-
inspired have emerged. These are basically networks of distributed, hybrid,
and autonomous devices with adaptive capabilities and limited resources.
Such systems imply many challenges varying from real-time constraints to
distributed issues.

Critical Tasks In spite of their increasing complexity due to numerous
and sophisticated functionality, embedded systems are increasingly used in
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critical setups where human lives and wealth are involved. Embedded sys-
tems are for instance used to ensure safety, e.g., anti-lock braking systems
(ABS) and air-bag systems. They are also used for industrial control, for
temperature regulation in chemical and nuclear power plants, for traffic con-
trol, in addition to medical devices. These are often known as safety-critical
systems and require rigorous methods of design and especially of verification
to ensure their correctness.

Complex and Unpredictable Environment Embedded devices are re-
active systems that continuously interact with their environment. They are
mostly embedded on larger systems and often embody the control part. A
big challenge in designing such system is to reconcile the physical part of the
system, which is continuous and concurrent by nature with the computer-
ized part, which is discrete and sequential. Furthermore, embedded systems
behave in response to external stimuli perceived through sensors, and oper-
ate changes on the environment performed via actuators, following specified
strategies. The environment has thus an important impact on the system
behavior. Traditionally, embedded systems environments were believed to
be well defined, however, this is not the case for modern systems, which are
deployed in very complex and uncertain contexts. Account for environment
uncertainties is hence quite important.

Heterogeneous Systems The number of functionality that a modern em-
bedded device has to offer is increasingly important. Programmable hard-
ware blocks are thus need, in addition to dedicated ones, to ensure flexibil-
ity. A mix of software and hardware components having different charac-
teristics are thus used. Whereas, software algorithms relies on logical and
sequential reasoning, hardware components have concurrent behavior and
are based continuous notions. In such systems continuous and discrete time,
synchronous and asynchronous communications, analog and digital compo-
nents co-exist. Furthermore, do to the increasing complexity and diversity of
functionality, the different components of an embedded systems are no more
realized by a single team. Instead, various teams with different expertise are
involved and some parts may be purchased as IPs from different suppliers.
Ensuring interoperability of all these components is thus necessary.

Increasingly Computational Power The great move from single core
processors to multi-cores and many-cores architectures due to Moore’s Law
(limit of integration) has brought an important processing power, e.g., multi-
cores and many-cores architectures, for modern systems. However, new chal-
lenges have emerged in parallel to deal with these complex architectures.
Efficiently programming such complex architectures and exploiting the com-
putation power they provide is real concern.
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Competition and Shrinking Time to Market The wide use of embed-
ded devices and their success to metamorphose different application domains
have induced a fast growth of the embedded systems market, which was val-
ued at USD 140.32 billion in 2013, and is expected to reach USD 214.39
billion by 2020 (Grand View Research). An increasing number of players,
from different horizons, such as Google or Microsoft, historically focused on
software services, are showing more interest on this market. The competition
is such that the cost of being late to the market is staggering as witnessed
by phones or cars markets. Products delivery time, namely time to market,
is thus drastically shrinking and costs optimization became very important.

Performance Embedded devices were traditionally used to perform dedi-
cated tasks, often of industrial nature. They were designed using application
specific non-programmable circuits. These ensure low power consumption,
real-time requirements, low cost, and silicon efficiency. The major break-
through of embedded devices in our everyday lives, has important conse-
quences on the way their are designed. The increasing demand in term of
functionality have a direct impact on the number and type of processing
blocks in these devices. For instance, modern TVs are connected to the In-
ternet and have to be able to decode several types of streams, smartphones
provide various services ranging from calling to cameras and music/video
players, and generally home appliances are providing diverse services vary-
ing from Internet access to home automation facilities. Moreover, because
of mobility requirements, battery supplied devices are becoming the rule.
Flexibility, and autonomy are thus essential. However, ensuring such con-
tradictory goals is a real issue, since the former requirement entail using
programmable components, which are known to be more requiring in term
of resources, e.g. battery, and tougher to perform efficiently.

Embedded systems design is expected to be increasingly harder as they
evolve towards more sophisticated settings with tighter connection between
physical and cyber worlds. This requires to abandon ad hoc methods and to
consider more disciplined, and holistic approaches taking into account both
functional and extra-functional requirements. System-level design provides
pertinent guidelines for such systematic approach.

1.2.2 System-level Design

System-level design [127] has emerged to provide a structured way to
answer the growing embedded systems design challenges. In this setting, the
design problem is organized as a sequence of phases, each involving several
design alternatives. Realizing certain functionality can be actually performed
in various manners soliciting different resources. Attaining a valid design
requires to choose, at each step of the process, alternatives that match initial
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requirements, among available choices. The amount of design possibilities
is called the design space. This potentially has an infinite size, albeit only
a finite set of alternatives is conform to initial specifications. For instance,
the choice between wired and programmable logic is mainly related to the
amount of flexibility required in the system (is the system going to evolve in
future ?) and the complexity of the functionality to design (does it involve
real-time constraints ? If any, what is the appropriate scheduling policy ?).
Similarly, the choice of an appropriate communication infrastructure depends
on the required functionality (point-to-point communication, etc.), but also
on the amount of latency and overhead induced by this choice.

The central idea in system-level design is high-level reasoning, which
tends to simplify the design problem and enhance the comprehension of
designers. It is common to accomplish this principal following a model-based
approach. Models allow for building simple representations of sophisticated
concepts and thus help mastering complexity. They allow to explore the
impacts of design alternatives before actually realizing the system, hence
prevent important cost and reduce time. Given certain specifications, they
allow for capturing different levels of details. Models encompassing fewer
details are said to be abstract or high-level. Given an abstract model, in-
troducing additional details is denoted refinement. Due to small amount of
details, high-level models are obtained with less effort and are well-suited for
fast analysis. Abstraction is clearly essential for high-level modeling. How-
ever, great difficulties accomplishing it remain unsolved, such as identifying
the appropriate level of abstraction for trustworthy analysis.

...

...

Application Model Architecture Models

Mapping

...

Figure 1.1: The Y-chart Scheme for mapping application to architecture.
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When building models, separation of concerns is crucial as stipulated
in system-level design. This involves i) the separation of computation and
communication and ii) the separation of application from the architecture.
The latter is particularly useful for the design of programmable systems,
where it is required to distinguish the software application from the hardware
architecture. Different strategies can be then investigated to map application
functionality to architectures components, which is of great importance in
the context of multi-core or many-cores architectures. This is often described
as the Y-chart [128] method depicted in Figure 1.1. The second separation
principal has been further developed and extended in the platform-based
design approach [184]. This advocates using a parameterizable platform for
a class of applications per domain to enhance components reuse and thus
production and reduce cost.

At each step of the design process, making a choice implicitly implies to
eliminate alternatives and thus to reduce the design space as illustrated in
Figure 1.2. The highest importance in system-level design method is given
to the earliest design steps. During these phases, the number of alternatives
is the most important, thus decisions have the greatest impact on the rest of
the process. For instance, bad decisions at this level, may lead to unfeasible
design or to a design where some requirements cannot be met. Systematic
Design space exploration methods are indispensable to investigate the design
alternatives at different phases of the process. Such methods are required to
be fast and accurate to enable well-founded decision at early stages.
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Figure 1.2: Schematic view of exploring the design space [197].
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A generic scheme of design space exploration is presented in figure 1.3. It
consists of an iterative process repeated for each design phase and potentially
leading to next design phases. For the earliest phases, given initial specifi-
cations, high-level models capturing the main functionality in an abstract
way are first built. These models represent different realizations alternatives
of functionality of interest. Following the Y-chart pattern, separate models
of application and architecture are produced. Analysis is then performed
on each alternative to check conformance with the given requirements. The
obtained analysis results are essential to decide which alternative is the most
appropriate with respect to functional and extra-functional aspects.

Specifications

Analysis

Modeling

Alternative Models

Investigation Results

Decision

Model

Refinement

Improvements

Figure 1.3: A generic process of design space exploration.

1.2.3 State of the Art

The generic process of design space exploration is widely adopted in sev-
eral state-of-the-art tools following system-level design guidelines. For many
decades, embedded systems designers were operating at very low-levels of
abstraction, e.g., transistor-level, gate-level, or register transfer-level (RTL).
Due to the increasing complexity and the exponential growth of functionality,
rising the level of abstraction has become inevitable. Methods operating at
higher-levels such as transaction-level modeling (TLM) [53] or system-level
have thus emerged.

The shift of embedded systems towards more programmable and flexible
settings has obliged designers to abandon traditional methodologies pushing
initial specifications, through a sequence of transformations, to a dedicated
wired logic implementation. It is worth to mention that this might still the
case for the design of sub-components of systems.
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Designing heterogeneous systems encompassing programmable and ded-
icated components generally falls within one of three configurations:

1. The first setting concerns architecture exploration, which is for instance
useful to find the most appropriate architecture for a given domain of
application, e.g., multimedia or communication.

2. Another possible configuration is when the architecture is known and
the goal is to design and map software application to this architecture.

3. The third possible setting is the classical co-design situation where
some functionality specification are given and the aim is to find the
best partition into programmable and dedicated components.

These settings may coexist withing a single design process, e.g., at different
phases of the process, or in independent processes for different application
domains.

When confronted with these settings, different design approaches are
possible, mainly in term of potential abstraction choices. For instance, the
first setting requires to consider various applications in a specific domain
that will constitute a benchmark for architectures exploration. To this end,
abstracting functional details of applications is essential to ensure a fast ex-
ploration and a maximum of coverage. This is for example the case for the
SPADE (System-level Performance Analysis and Design space Exploration)
methodology [150], which relies on trace-driven simulation for architecture
exploration. Trace-driven simulation consists of transforming models of ap-
plications into traces containing coarse-grained computation and communi-
cation operations. Similarly, the Artemis Workbench [168] offer the same
functionality, although not limited to.

Partitioning initial specifications into programmable and dedicated com-
ponents is among the most difficult and time consuming design activities
because of the huge number of design alternatives. Only few methodologies
providing assistance towards this goal exist. This is for instance the case
of the POLIS [17] and the VCC methodologies, which start from high-level
models that do not discriminate software and hardware components. An ex-
plicit partitioning process is performed to identify candidate components for
software implementation. The methodologies were actually proposed in the
context of automotive industry, often relying on single processor architec-
tures. The increasing difficulty to partition functionality into hardware and
software components has motivated the emergence of platform-based design
approach [184] where a common denominator architecture is used for a given
application domain. Such an architecture may be found using architecture
exploration methodologies mentioned above.

The current state of embedded systems design mostly consider potential
target architectures in addition to initial specifications, which correspond
to the second setting discussed earlier. This may be following a platform-
based approach, using human expertise, previous knowledge, or experience.
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The considered target architecture may be completely specified or allow pa-
rameterization, e.g., cache size. In such configuration, embedded software
design become very important. Moreover, with the emergence of multi-core
and many-cores architectures, additional challenges such as finding the best
parallelization and the optimal mapping of the application into architecture,
figuring out the best communication mechanism to use, and finding software
components parameters, e.g., queues size, are real concerns.

Most of the state of the art methodologies provide automated support
to find one or several candidate mappings, generally taking into account
functional and performance aspects. In this context, abstraction is more
targeted to the architecture part of the system, although different possibil-
ities are proposed in the literature. Several methodologies rely on libraries
of generic hardware components at different levels of abstractions. For in-
stance, the Artemis Workbench [168], DOL (Distributed Operation Layer)
[198], and VISTA [159] use SystemC to model hardware components at dif-
ferent abstraction levels. Vista provides cycle-accurate TLM components to
build virtual SoC architecture, whereas DOL offers high-level components.
Artemis is based on the Sesame environment [66, 169] for architecture and
application modeling. It provides hardware components capturing only per-
formance information and not functional behavior. Other methodologies
such as Metropolis [18] and MILAN [16] are based on meta-models.

Performance aspects are essential to make well-founded decisions in the
different discussed settings. Integration of these information within high-
level models is quite important for trustworthy design space exploration and
consequently to a successful design.

Besides the important work in industry and academia proposing various
design methods, several technical and theoretical problems remain unsolved.
For instance, a big challenge in this context is building appropriate abstrac-
tions of application and architecture and their combination. Furthermore,
performance aspects are still not very well understood, especially at system-
level. As depicted in the next section, important challenges remains ahead
for modeling and analyzing them faithfully at system-level.

1.3 Performance in System-level Design

For many years, functional aspects were in the center of system-level de-
sign methods, while extra-functional ones were considered as second-class
citizens. Traditionally, ad hoc performance models decorrelated from func-
tional behavior, built late in the design process and coupled with simple
analysis techniques were the unique performance evaluation support.

As stated earlier, in modern systems such as wearable and portable de-
vices, where a limited amount of resources is available and an increasing
number of functionality is required, extra-functional aspects are becoming



CHAPTER 1. INTRODUCTION 11

equally important and not considering them may lead to poor results later
in the design process. For instance, a smartphone that quickly losses energy
or a multimedia device with a considerable response time (latency) is not
going to sell even if it provides all required services. An equally important
issue is to find trade-offs between different extra-functional requirements.
For example, selecting a security strategy, involving cryptography, of some
distributed setting which is monitored through portable devices must take
into account autonomy issues.

Additional requirements concerning the models and the analysis tech-
niques to use for system-level design of embedded systems are therefore
needed. First, building high-level models that only capture the functional
behavior of the system is no more sufficient. Taking into account extra-
functional aspects, especially performance is a must for a successful design,
which rises several questions about traditional models and their convenience.
Second, given the importance of such aspects for well-founded decisions dur-
ing design space exploration, classical performance evaluation techniques are
no more sufficient.

While dealing with functional specifications has reached relatively ma-
ture state (a large body of theoretical and practical results), we still lack
methods and tools to rigorously and systematically handling extra-functional
requirements. These remain not well understood and still difficult to han-
dle, especially at the earliest design phases. Dealing with these aspects at
system-level brings additional difficulties which span from the specification
phase to the analysis of the global system.

Our interest is to contribute advancing the state-of-the-art on system-
level design. In particular, we aim at conceiving techniques and methods for
better support of performance requirements following the system-level guide-
lines above. We approach this problem by first analyzing the current and
sought challenges of dealing with performance at system-level. These chal-
lenges will guide us to identify the main requirements for building or using
the appropriate methods and techniques to achieve our objective. Moreover,
based on the previous analysis, we pinpoint modeling and analysis as the
two main activities of a design process. Thus, in the next section, we will
decompose the identification of requirements into identification of modeling
requirements and identification of analysis requirements.

1.3.1 Challenges

The System Dimension. Because of their weak interaction with the
physical world, classical computer systems are essentially designed based
on strong abstractions of physical artifacts. For instance, building software
applications to run on a computer, entails designing an algorithm for which
physical time and memory complexities are evaluated, using complexity the-
ory, with respect to abstract execution models, e.g., Turing machine. Such
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abstractions are inappropriate for embedded systems because of the tight
connection of the physical and cyber worlds. Performance of embedded sys-
tems is strongly related to the physical part of the system, e.g., execution
of some functionality by specific architecture components; execution time
of a Fourier transform on a processing unit, communication delay of a bus
or a Network on Chip (NoC), amount of consumed energy or dissipated
temperature induced by that function on the corresponding hardware. This
shift from a program view to a system perspective gave rise to important
theoretical and technical issues.

Contradictory Goals, Abstract Vs. Faithful. The modeling activity
at system-level aims at enhancing designers comprehension and reducing ef-
fort by performing high-level reasoning. Thus, on one hand, one wants to
deal with abstract models that minimize the modeling effort and the ex-
ploration time. On the other hand, these models are required to capture
performance details in order to precisely reflect the reality and enable ac-
curate reasoning about the whole system performance. This highlights the
need of building good abstractions.

Availability in Early Design Phases. Because of the tight connection
between cyber and physical worlds, performance aspects of embedded sys-
tems cannot be thought of independently of the hardware part of the system.
However, the latter are rarely available in early design phases since physical
realization of the hardware architecture come relatively late in the design
process. This makes building high-level models encompassing faithful per-
formance details quite challenging. Hence, only approximation or estimation
of such details at different level of details is possible at system-level.

Variability. Performance details are characterized by their significant vari-
ability which obviously cannot be captured by point estimates. This fluc-
tuation is mainly due to three reasons. First, the inputs (or the workload)
are generally variable, albeit some systems are data-independent, that is,
their performance is constant for various input data. Second, the impact of
the environment, which is often unpredictable, is important. This under-
lines robustness requirements of embedded systems. The third reason is the
inherent hardware components behavior, e.g., caches, memory contention,
arbitration mechanisms, etc. These cannot be captured in details in early
design phases because of the lack of detailed specification and the required
high-level of abstraction.

1.3.2 Performance Modeling Requirements

The above challenges rise several natural questions with respect to the
modeling process at system-level. The main question one have to answer is
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How to build high-level models encompassing performance details in addition
to functional behavior while ensuring faithfulness ? This question can be
decomposed to several sub-questions that concern, on one hand the models
to use: i) What is an appropriate characterization of performance details? ii)
What is a well-suited model for capturing functional and performance aspects
at system-level? On the other hand, question concerning the process to
follow: iii) How to capture performance information in early design phases?

Let us first consider the first two questions, that is, i) and ii). Gener-
ally two types of modeling approaches, providing orthogonal abstractions,
exist, namely computational (machine-based, e.g., automata) and analytical
(equation-based, e.g., transfer function) [109]. Because their are executable,
computational models are often used to describe software systems, while an-
alytical ones are more appropriate for hardware, since they capture more
naturally concurrency and quantitative aspects. Whereas analytical models
are inherently mathematically defined, computational models are not neces-
sarily formal. Most of the time, these are obtained using modeling languages
(textual or graphical), where the dynamic behavior is not formally specified,
e.g., Java threads or Unified Modeling Languages (UML) [182]. Formal com-
putational models in contrast, are the result of well-defined modeling lan-
guages, that is, with mathematically specified operational semantics, e.g.,
Petri nets [179].

In this thesis, a mathematically defined framework defining the seman-
tics of a given modeling language is denoted as a formalism. Furthermore,
we distinguish modeling languages used to catch systems functionality from
those used to specify system requirements, e.g., good properties to satisfy
or bad properties to avoid, denoted property specification languages. Back
to the previous questions, based on the identified challenges, we impose the
following constraints on modeling (respectively property specification) lan-
guages and system models (respectively system properties) to capture both
functional and performance aspects at system-level.

Requirements on Modeling and Property Specification Languages

To deal with the above challenges, it is required to dispose of languages
that are sufficiently expressive to cover the different aspects of software,
hardware, and the interactions between them. These should also have clear
semantics to enable rigorous reasoning and interoperability, in addition to
providing support for quantitative aspects.

Expressiveness is the ability of a languages to provide intuitive, read-
able, and succinct mechanisms towards representing the different aspects of
a system. To capture hardware and software aspects, a modeling language
should provide means to express concurrent as well as sequential behaviors,
continuous as well as discrete time, functional and extra-functional aspects.
Another important ingredient concerns communications mechanisms which
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maybe for instance synchronous or asynchronous. Modeling languages should
also enable capturing uncertainties and variability through stochastic and/or
non-deterministic support.

A natural way for building artifacts is incrementally and in a composi-
tional fashion. The system is seen as a set of actors or components having
certain behavior and properties which are assembled in a rigorous manner to
achieve the global required behavior of the system. This entails component-
based modeling languages.

Requirements on Models and Properties

Due to their central role in systems design, models must have clear inter-
pretations which leaves no place for ambiguity. Models are hence required
to be formal, that is, governed by clear semantics free of ambiguity, which is
achieved by adopting a certain formalism. Furthermore, a model in system-
level design is required to capture only the gist of the system behavior re-
quired in the corresponding phase, that is, with respect to taking decision
in that stage or level. In contrast, models should also be faithful in that
they reflect the real specifications of the system. Furthermore, models are
required to be executable to enable fast prototyping and analysis.

Requirements on Performance Modeling Methods

The remaining question from the modeling perspective (iii) concerns the
approach to use in order to capture performance details at system-level.
First, it is worth mentioning that since complete physical details cannot
be obtained in early design phases, such approach is expected to perform
estimation from concrete or low-level hardware descriptions. Second, the
used approach should be able to precisely capture performance variability
while still abstract (not too verbose characterization). Finally, such method
should be automatic (tool-supported) and fast to avoid creating bottlenecks
that will eventually slow down the design space exploration. An important
requirement is that the method keeps separated purely functional models
from models containing in addition performance information (called perfor-
mance models in this work) as shwon in Figure 1.4. This is important in
order to ensure incremental design and separate analysis at different levels
of abstractions.

State of the Art

Modeling and Property Specification Languages. Several represen-
tations were proposed in the literature to model application and architecture.
The most common for architectures description are hardware description
languages (HDLs). These enable modeling architecture behavior at different
levels of abstractions. For example, VHDL and Verilog are often used for
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Figure 1.4: Building separate purely functional and performance models.

RTL descriptions and enable direct synthesis on ASICs or FPGAs, whereas
SystemC 2 covers several abstraction levels (RTL, TLM, System-level). In
addition to architecture, since based on C/C++, SystemC allows for model-
ing application software (with various communication mechanisms) as well.
Architecture description languages (ADLs) allow for modeling systems ar-
chitecture and application in higher levels of abstraction than HDLs. A well
known example is AADL [88, 87].

In the literature, model of computations (MOCs) [58] are often used for
modeling software/hardware systems and cover application as well as ar-
chitecture. An important number of possibilities is available, Communicat-
ing Sequential Processes (CSP), Discrete Time, Continuous Time, Discrete
Events, or Finite State Machine (FSM). The latter is for instance used as
underlying model in the POLIS framework [17]. Other previously mentioned
methodologies use Data Flow models such as synchronous Data flow (SDF) or
Kahn Process Network (KPN) [95], which is the case of DOL [198], Artemis
Workbench [168], and SPADE [150]. More flexible modeling framework rely-
ing on meta-models are also proposed. In this case, no restriction is imposed
on the used model of computation but only a general semantics is provided
to support several choices. This for instance the case for Metropolis [18] and
MILAN [16] methodologies.

Property specification languages are only used in a formal analysis pro-
cess as discussed later. Generally systems properties are specified as pred-
icate formula often using temporal logic such as CTL [176, 62], LTL [171],
or others [140, 149]. A famous example of such languages that has been
standardized by IEEE in 2005 is PSL [84].

Methods for Capturing and Integrating Performance. State of art
techniques for gathering low-level performance information in early design
phases can be classified as follow. The most direct ways is to use docu-
mentations, e.g constructor data sheets [104]. These may be helpful to build
models of certain components but more complicated to capture abstract per-

2. http://www.accellera.org/downloads/standards/systemc
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formance information, especially their variation. Performance details may
also be obtained from source/binary/object code, e.g static analysis or code
inspection [45, 23]. This needs a (cross-)compiler and code profiling, al-
though does not capture the dynamic behavior of the system. The most
accurate and the most used technique relies on executable i.e high/low-level
simulation or execution, albeit it is known to be time and resource consuming
[17, 150, 158, 169].

Several frameworks for system-level design uses these techniques together
with model calibration to improve the accuracy of high-level models. Model
calibration, also referred to as back-annotation, is a well-known and widely-
used technique which consists of adding specific details to a given model.
However, it only received a little attention in the system-level design com-
munity and few frameworks consider and implement it in different ways.

In [170], the authors use low-level simulation and synthesis to calibrate
architecture models in the context of the Sesame simulation framework [169].
The proposed techniques rely on instruction-set simulator (ISS) to calibrate
programmable components and on automatic synthesis targeting FPGAs for
dedicated ones. The goal is to build latency tables associated with architec-
ture components models.

A system-level performance estimation method [158] for the MILAN
framework [16] is proposed to calibrate parametrizable models of virtual
SoC architecture using interpretive simulation techniques. Starting from ini-
tial performance values given by the designer, isolated simulation of specific
application components mapped to specific architecture ones is performed.
The obtained measures concern energy and latency and are characterized as
average estimates. Later on, based on task graph, composite estimate are
derived for energy and latency as well.

In the context of the BIP design flow [44], calibration is performed on two
phases. First, hardware constraints concerning computation and communi-
cation delays are integrated, through refinement, at the level of the system
model, that is the result of mapping application models into architecture.
Application component are also calibrated with low-level performance de-
tails using tow techniques, namely Instruction Weight Tables (static) and
Platform Dependent Code Generation (dynamic).

In [104], an approach is proposed for automatic code generation and cali-
bration of compositional performance models. It relies on high and low-level
simulations in addition to data sheets to obtain components performance
parameters which are mainly used to characterize arrival and service curves
in term of best-case and worst case execution time (WCET) since relying on
Real Time Calculus [199].

An improvement of the VCC methodology using back-annotation of high-
level behavioral models is proposed in [96]. Performance estimation is per-
formed using statistical approach but only consider a single microprocessor.
More specifically, the approach is based on linear regression analysis tech-



CHAPTER 1. INTRODUCTION 17

niques. Similarly, Scope [3] uses statistical regression analysis to perform
power estimation of co-processors.

It is worth to observe that different performance estimation and calibra-
tion approaches provides completely different abstractions. Besides the level
of detail of the initial models, the characterization approach of performance
details (the type of the obtained characterization), the choice to calibrate ei-
ther application or architecture models or both, and the decision to consider
one or both models during the mapping step potentially produce different
system model which might be appropriate for different design phases.

1.3.3 Performance Evaluation Requirements

Analysis of models encompassing functional and extra-functional, soft-
ware and hardware aspects is challenging in different senses. Assuming that
such models are already built, their size is expected to be important. In
spite of the software and hardware aspects of real-life systems, formal mod-
els are often heavier to explore. Thus scalability is a real issue, especially
when using rigorous analysis techniques. Analysis should not be intrusive
to not alter the correct behavior of the model under analysis. The level of
required abstraction for system-level analysis should be carefully chosen to
not mask the relevant details for analysis. It is important that the used
analysis technique provide quantitative results of performance. Moreover
it should report accurate results, that is, approximation not too far from
reality. Another important requirement about performance evaluation tech-
niques is that they have to be fast to enable several analysis iterations in
order to cover a maximum of design alternatives.

State of the Art

State-of-the-art performance analysis techniques at system-level can be
broadly divided in two general families, pure simulation-based and formal
approaches. Nonetheless, some works propose to combine techniques from
both groups towards hybrid approaches.

Pure simulation-based techniques enable to simulate system components,
e.g., independent hardware and software, or to co-simulate both parts at dif-
ferent abstraction levels: cycle-accurate using instruction-set simulator (ISS)
for instance or higher levels such as functional simulations. Industrial tools
often rely on simulation techniques for performance analysis, for instance,
Seamless Hw/Sw Co-verification 3 or Synopsis System Studio 4. Academic
methodologies mostly base their performance analysis on simulation as well.

3. http://www.mentor.com/products/fv/seamless/

4. http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/

Pages/SystemStudio.aspx
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This is for example the case of Artemis Workbench [168], SPADE [150], MI-
LAN [16], and Metropolis [18]. Simulation-based approaches mainly suffer
from long run-time and coverage issues. Some of the above methodologies
propose trace-driven techniques to remedy to long simulation, which use
co-simulation to build abstract event traces that are later used for lighter
analysis such as in the Artemis Workbench and SPADE.

To deal with the increasing complexity and the critical aspects of modern
embedded systems, it is required to rigorously verify that the built system
matches the given specifications and requirements. Traditional methods con-
sist mainly of testing and peer reviewing of code, which are widely used in
industry 5 and are able to capture a wide class of errors. However, they
suffer from several disadvantages such as manual or semi-automated proce-
dures, coverage issues, and more importantly, they can only detect presence
of errors and not their absence. Formal methods provide an automated alter-
native for system verification. Moreover, they offer mathematical guarantees
for the absence (respectively presence) of a bad behavior (respectively good
behavior). Formal methods for performance analysis can be classified into
tow main categories with respect to the used formal models, namely based
on computational models or on analytical ones.

Analytical-based. They mainly rely on the Real Time Calculus (RTC)
method [199], which respectively characterizes workload and processing
power as arrival and service curves. Arrival curves for example, capture
upper and lower bounds of arrival time of a class of events. RTC was
adopted and extended in several researches such as SymTA/S [107],
MAST [100], and modular performance analysis (MPA) [55]. The latter
is used within the DOL methodology [198] for system-level performance
analysis. These methods are actually conceived to be constrained and
often used to compute worst case scenarios.

Computational-based. They are primarily based on model checking (MC)
[176, 62], which is a verification method that considers a formal model
M of a system and formal representation of a requirement φ, and
answers the question if M satisfies φ. As illustrated in Figure 1.5, it
provides a yes or no answer and, when the property is not satisfied, it
gives a counter-example as a witness. The model checking techniques
exploits the formal definition of the inputs, i.e., M and φ, to perform
systematic and exhaustive analysis. Given M and φ formalism, every
state of M might be verified to satisfy or not φ. Exhaustive analysis
constitutes the main limitation of MC techniques since it implies an
exponential exploration, known as state-space explosion. Despite their
advantages, MC methods are still difficult to achieve and hence not yet
widely adopted, especially, for performance analysis. MetaMoc [69] is

5. For instance, between 30% and 50% of the total cost of software development is
allocated to testing [15].
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Figure 1.5: Illustration of the model checking verification method.

one among the tools that use MC for the analysis of embedded software.
It is based on the UPPAAL model checker [30] and mainly targets
Worst Case Execution Time (WCET) and schedulability analysis of
hard real-time systems.

Combining simulation-based techniques and formal approaches could be
a good strategy to bypass weaknesses of each method and strengthen their
advantages. This has been actually suggested by some works in the literature
such as in [135] where RTC [199] is combined with simulation to perform
analysis with respect to the MPARM virtual platform [152], and in [40] where
a hybrid method combining simulation with analytical models is proposed.

1.4 Contributions and Organization

Following the above analysis, we provide hereafter an overview of our an-
swers, which consist of various contributions covering the different identified
requirements. The presentation below is orthogonal to the global organi-
zation of the manuscript. We found it more pertinent to decompose the
manuscript into two parts and to separate more generic contributions from
more specific ones. In the first part, we present a general framework for
quantitative analysis, formal component-based modeling, and automatic ab-
straction of stochastic systems, which may be used in different contexts.
In the second part, we use this framework to conceive a rigorous and tool-
supported method for system-level performance modeling and analysis in the
context of embedded systems design.

The following overview follows the decomposition we made during the
analysis phase above. It first presents our contributions in term of model-
ing of performance aspects at system-level, then depicts our contributions in
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performance evaluation. Finally, it illustrates our global answer to the iden-
tified requirements, which is a rigorous, systematic and integrated method
for performance modeling and analysis for systems-level design of embedded
systems, called ASTROLABE. We opted for such a double decomposition to
match our answers with the above identified requirements and to facilitate
reading the manuscript.

1.4.1 System-level Modeling

Stochastic Component-based Formalism

We propose a component-based modeling language to handle system com-
plexity. This is based on the BIP framework [28], which enables incremental
system design starting from simple components which are later assembled
together to build more complex functionality. This approach enables compo-
nents reuse, hence reduces modeling time and enhance productivity. BIP has
a well defined semantics for components modeling (behavior and interfaces)
and for specifying coordination between them. It offers different communi-
cation mechanisms that are shown to be sufficiently expressive and enables
user-defined scheduling policies. Moreover, BIP supports different timing
models in addition to well-defined real-time semantics.

Our main contribution at this level, is the extension of this framework to
support stochastic systems modeling. We mainly provide a syntactic exten-
sion of the language to enable modeling probabilistic behavior and a formal
specification of the operational semantics of stochastic behavior. As we will
expose in Chapter 3, the proposed stochastic component-based formalism
denoted SBIP, is shown to be well suited to model functional as well as
performance aspects. The latter are captured as probability distributions
or more sophisticated probabilistic models. The semantics of SBIP, is suffi-
ciently expressive to be used as single semantics driving the different design
phases and to separately capture software and hardware models.

Code Generation

To enable gathering accurate performance information in early design
phases, we rely on automatic code generation. Starting from application
functional models, we generate concrete implementations targeting low-level
models of architecture: virtual prototype, or physical implementation (FPGA
or final chip), depending on the design phase. This enable accurate (since
based on concrete execution) yet fast (automatic generation of implemen-
tation and deployment code) prototyping as shown in Chapter 5. This
entails instrumentation of performance dimensions (time, energy, temper-
ature, memory) of interest (obtained from systems requirements) and perti-
nent functionality to measure. Automatic code generation produces parallel



CHAPTER 1. INTRODUCTION 21

implementations for many-cores platforms, which answer the increasing com-
plexity of programming these architecture challenges. An implementation of
a code generator targeting the STHORM platform [155] by STMicroelec-
tronics is presented in Chapter 7.

Statistical Characterization of Performance

To faithfully characterize performance details, we propose to use auto-
matic learning techniques from concrete executions. This enables to capture
the real performance characteristics of the application running on specific
architecture with respect to some portioning. Moreover, we suggest learn-
ing probabilistic models of performance, e.g., probability distributions, to
correctly catch variability. We believe that such models provide good ab-
straction of physical details without losing the gist. In Chapter 6, we detail
how we use statistical inference algorithms to build such probabilistic per-
formance characterizations. In Chapter 7, we provide tool support for the
statistical inference procedure.

Model Calibration

The method we propose to build faithful performance models is to cal-
ibrate functional models (application and architecture), which are timeless
and does not contain any information about energy consumption or temper-
ature for instance, with probabilistic characterizations of performance. This
back-annotation mechanism will produce stochastic models encompassing
the functional behavior of the system in addition to the performance aspects
at a good level of abstraction, that is appropriate for the earliest exploration
phases as we will detail in Chapter 5.

1.4.2 System-level Verification

Performance Analysis

Our contribution at this level is to use a formal verification technique,
namely statistical model checking (SMC) [110, 209], introduced in Chapter 2.
Our proposal is a trade-off between purely simulation-based methods and
analytical techniques, which consists of stochastic (Monte-Carlo) simulation
and statistical tests. It combines benefits of both approaches, that is, the
speed of simulation and the well-founded of analytical approaches. SMC only
provides approximations which can be controlled by using user-defined level
of confidence. Moreover, it allows for quantitative results, which are more
appropriate for performance evaluation. To the best of our knowledge, this
is the first time SMC is being used for performance evaluation of embedded
systems. A second contribution in this context is the implementation of the
BIPSMC statistical model checker presented in Chapter 7.
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Automatic Stochastic Abstraction

To answer the issues induced by analysis of software/hardware models
(the important size of the model) and the challenges of performing specifi-
cally formal verification (state space explosion, important time), we propose
in Chapter 4, a technique for automatically building models abstraction. Our
idea is to perform abstraction with respect the property we want to verify on
the model. The proposed technique is based on machine learning algorithms
and enables to learn an abstraction from execution traces even in case of
black-box models.

1.4.3 Integrated Performance Modeling and Analysis

The above contributions are used in a tool-supported method for per-
formance modeling and analysis at system-level. The proposed approach is
called ASTROLABE and is depicted in Chapter 5, the associated tool-flow
is presented in Chapter 7. It provides a systematic and rigorous way to build
faithful performance models since relying on the SBIP formalism as a single
semantics and by using code generation and statistical inference as shown
in Figure 1.6. The second asset of the method is that it enables fast and
accurate performance analysis using the statistical model checking and the
stochastic abstraction techniques. In Chapter 8, the ASTROLABE approach
and its associated tool-flow is used to design a real-life case-study consisting
of the HMAX models algorithm [160] for image recognition deployed on the
STHORM many-cores platform [155].

Specifications

Modeling

Perf. Characterization

4−Abstraction
Abstract Models

Performance ResultsImplementation

Models
3−Calibration

1−Code Generation

2−Execution & Inference

5−Analysis

Figure 1.6: Overview of the ASTROLABE method for system-level perfor-
mance modeling and analysis.
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Chapter 2
Quantitative Analysis of Stochastic

Models: A Background

In this first part of the thesis, we aim at providing a theoretical foun-
dation upon which we will build our method for system-level performance
modeling and analysis for many-cores embedded systems. We propose a set
of formalisms and techniques for stochastic modeling and performance anal-
ysis at a high-level of abstraction. The part is composed of three chapters,
where the first recalls general formalisms for stochastic systems modeling
and probabilistic requirements specification. It also presents quantitative
techniques for analyzing stochastic systems. In the second chapter, we in-
troduce a component-based formalism for modeling stochastic systems and
discuss its semantics and expressiveness. The third and last chapter of this
first part is about abstraction of stochastic models. There, we propose a
technique based on machine learning to automatically build abstract models
in order to improve scalability and reduce analysis time.

Modeling performance requires rich formalisms that allow for capturing
in the same time sophisticated functional behavior and complex performance
information. In the context of embedded systems, modeling formalisms are
even more important because of the inherent nature of these systems which
evolve in unpredictable environments, are subject to unexpected situations,
hence encompassing a high degree of uncertainty. Stochastic or probabilistic
formalisms are thus needed to correctly and faithfully capture these behav-
iors. On the other hand, analyzing these models rigorously and efficiently
is a challenging task due to the increasing complexity of modern systems.
Quantitative analysis is even more difficult and less understood than classi-
cal qualitative analysis techniques. While several techniques exist, we still
encounter difficulties performing such analysis especially at system-level.

This chapter recalls the main concepts of quantitative analysis of stochas-
tic models following the model checking approach as stated in the introduc-
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tion. It first recalls general stochastic modeling formalisms, namely Markov
Chains and Markov Decision Processes. It then presents the Linear-time
Temporal Logic and its probabilistic bounded variant as a mean for for-
malizing systems requirements. Finally, it introduces the Statistical Model
Checking techniques for analysis of stochastic system models.

Throughout this dissertation, we will adopt a state-based view of stochas-
tic processes unless differently stated. Classically, these are seen as sequences
of random variables evolving over time. Moreover, we will only consider finite
and discrete Markov models, i.e., Discrete Time Markov Chains (DTMCs)
and Markov Decision Processes (MDPs) and do not discuss continuous time
models such as Continuous Time Markov Chains (CTMCs). It is worth
recalling that the state-based representation of stochastic processes entails
two type of labeling, over states and over actions, as we will show allover
the chapter. As a consequence, the notion of non-determinism may have
different meanings accordingly, i.e., we may have non-determinism with re-
spect to state labels or with respect to action labels. In this work, we are
defining DTMCs to be only state labeled. Therefore, they are only con-
cerned with non-deterministic state labels. In contrast, MDPs are assumed
to have labels on both states and actions. Nonetheless, we will only consider
non-deterministic actions as we will explain hereafter.

2.1 Stochastic Systems Modeling

We begin by giving a general background on stochastic models. We
focus on a specific class of models called Markov Models. These have the
particularity to be memoryless, that is, at each time, the decision to move
to a next state only depends on the current state and does not take into
account the whole history of the system evolution. We provide hereafter an
overview of two well-known models, namely Discrete Time Markov Chains
and more general ones called Markov Decision Processes which encompass
non-determinism in addition to probabilistic behavior.

Let AP be a finite set of atomic propositions. We define the alphabet
Σ = 2AP and denote the elements of Σ (all subsets of AP ) as symbols. The
empty symbol is denoted by τ . As usual, we denote by Σω (respectively by
Σ∗) the sets of infinite (respectively finite) words over Σ.

2.1.1 Discrete Time Markov Chains

Along the dissertation, we will use state-labeled Markov Chain, abbrevi-
ated to LMC to refer to Discrete Time Markov Chain (DTMC). The reader
may find both notations.

Definition 2.1 (state-Labeled Markov Chain). A state-Labeled Markov
Chain M is a tuple �S, ι,π,Σ, L� where,
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– S is a finite and nonempty set of states,
– ι : S → [0, 1] is the initial states distribution, such that

�
s∈S ι(s) = 1,

– π : S × S → [0, 1] is the transition probability function, such that for
all states s ∈ S,

�
s�∈S π(s, s�) = 1,

– Σ is an alphabet, and
– L : S → Σ is a state labeling function.

Note that this defines finite LMCs where S and AP are finite sets. The
initial distribution ι(s) specifies the initial states of the system, i.e, where
it starts evolving. The transition probability function π specifies, for each
state s ∈ S, the probability π(s, s�) to move to a state s� ∈ S by a single
transition. For more convenience, we denote a transition from a state s to a
state s� as s −→ s�. The transition probability function π is required to be a
valid probability distribution, i.e,

�
s�∈S π(s, s�) = 1. In the discrete case, π

may be identified by a matrix as shown in Example 2.1. Finally, the labeling
function L assigns to each state a set of atomic propositions that are true in
that state.

Given an LMC M, we define PostM(s) = {s� ∈ S | π(s, s�) > 0} the set
of immediate successors of a state s and PreM(s) = {s� ∈ S | π(s�, s) > 0}
the set of immediate predecessors of s. We also denote as DetM(S) the
set of states that have a single deterministic transition (a transition with
probability 1), that is, DetM(S) = {s ∈ S | ∃s� ∈ PostM(s),π(s, s�) = 1}.
Definition 2.2 (Deterministic LMCs). A LMC M = �S, ι,π,Σ, L� is deter-
ministic (DLMC) if and only if:

1. ∃s0 ∈ S, such that ι(s0) = 1, and

2. ∀s ∈ S, ∀σ ∈ Σ there exists at most one s� ∈ S, such that π(s, s�) > 0
and L(s�) = σ.

Given an LMC M, a path is a possible behavior (infinite execution) of
M. A trace is the sequence of labels associated to the states of a given path.

Definition 2.3 (Paths and Traces of an LMC). Let M = �S, ι,π,Σ, L� be
an LMC. A path r of M is an infinite sequence of states s0s1s2 . . . such that
ι(s0) > 0 and π(si, si+1) > 0, for all i ≥ 0. A trace σ associated to a path is
the infinite word σ0σ1σ2 . . . such that σi = L(si) for all i ≥ 0.

Remark that given an arbitrary LMC, we may identify traces using asso-
ciated paths and not conversely, unless it is a DLMC. In the reminder of this
chapter, we provide definitions for paths. Traces can be implicitly deduced.

We begin by defining two types of operations on paths, namely the suffix
and the prefix of a path (respectively a trace). Given a path r = s0s1s2 . . .,
the ith suffix of r is a path starting at state si and denoted as r[i..] =
sisi+1 . . . . Conversely, the ith prefix of r is a finite path starting at s0, ending
at state si, and denoted as r[..i] = s0 . . . si. A finite path r̂ (respectively trace
σ̂) is any finite prefix of a path (respectively trace).
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We denote by Paths(M) (respectively Traces(M)) the set of all in-
finite paths (respectively traces) in M and by Pathsfin(M) (respectively
Tracesfin(M)) the set of all finite paths (respectively traces) in M.

Probability Measure of a Markov Chain

The first motivation of building such rich models is to be able to question
them to get valuable quantitative answers, that is probabilities of relevant
events, e.g., the probability to reach a good state or to avoid a bad state. To
this end, such models have to be associated with a well defined probability
space which is basically a σ-algebra equipped with a probability measure
(see [15] for a detailed description of this notions).

In order to define a probability space for a given LMC M, we first need
to specify a σ-algebra for it. In the literature, we generally consider the
σ-algebra generated by the cylinder sets each consisting of infinite paths
r ∈ Paths(M) having a common prefix, i.e a finite path r̂ ∈ Pathsfin(M).

Definition 2.4 (Cylinder Set of an LMC). The cylinder set of r̂ = s0 . . . sn ∈
Pathsfin(M) is Cyl(r̂) = {r ∈ Paths(M) | ∃i ∈ [0, n], where r[..i] = r̂}.

Definition 2.5. The σ-algebra associated with an LMC M is the smallest
σ-algebra encompassing all the cylinder sets Cyl(r̂) for all r̂ ∈ Pathsfin(M).
This induces a unique probability measure PM on the σ-algebra of M where
the probabilities of the cylinder sets are as follows. Given r̂ = s0 . . . sn ∈
Pathsfin(M),

PM(Cyl(r̂)) = ι(s0) ·
�

0≤i<n

π(si, si+1).

Two LMCs M1 and M2 are said to be equivalent, denoted M1 ≈ M2,
if they have identical probability measures on all the traces, that is, PM1 =
PM2 (see [83] for more details).

Example 2.1. We consider the Craps Gambling Game introduced in [15].
In this game, a player starts by rolling two fair six-sided dice. The outcome
of the two dice determines whether he wins or not. If the outcome is 7 or 11,
the player wins. If the outcome is 2, 3, or 12, the player looses. Otherwise,
the dice are rolled again taking into account the previous outcome (called
point). If the new outcome is 7, the player looses. If it is equal to point,
he wins. For any other outcome, the dice are rolled again and the process
continues until the player wins or looses.

The behavior of the craps gambling game is captured by an LMC M. We
graphically illustrate the corresponding model in Figure 2.1. A possible path
of M is r = s0s1s1s

ω
7 ∈ Paths(M), where the player wins after three trials.

The associated trace σ with r is start point4 point4 wonω ∈ Traces(M). Let
r̂ =start point4 be a finite path of M. The cylinder set of r̂ is Cyl(r̂) = {start
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Figure 2.1: An LMC model for the Craps Gambling Game.

point4k wonω|k ≥ 1} ∪ {start point4k lostω|k ≥ 1} ∪ {start point4ω}. The
probability of the cylinder set of r̂ is given by PM(Cyl(r̂)) = ι( start ) · π(
start,point4 ) = 1 · 1

12 .

2.1.2 Markov Decision Process

Markov Decision Processes are more general models which encompass
probabilistic and non-deterministic behavior.

Definition 2.6 (Markov Decision Process). A Markov Decision Process
(MDP) M is a tuple �S,Act, ι,π,Σ, L� where,

– S is a finite nonempty set of states,
– Act is a finite set of action labels,
– ι : S → [0, 1] is the initial states distribution, such that

�
s∈S ι(s) = 1,

– π : S×Act×S → [0, 1] is the transition probability function, such that
for all states s ∈ S, and action � ∈ Act,

�
s�∈S π(s, �, s�) ∈ {0, 1},

– Σ, is an alphabet and
– L : S → Σ is a labeling function that maps each state to a set of

symbols satisfied in that state.

An action � is enabled in a state s if and only if
�

s�∈S π(s, �, s�) = 1.

Let Act(s) denote the set of enabled actions in a state s. For any state
s ∈ S, it is required that Act(s) �= ∅. Each state s� for which π(s, �, s�) > 0

is called a �-successor of s, and a transition from s to s� is written as s
�−→ s�

in this context. We denote by ProbM(S) the set of states having a single
enabled action, that is, ProbM(S) = {s ∈ S | |Act(s)| = 1} and DetM(S)
the set of states that have a single outgoing deterministic transition, that is,
DetM(S) = {s ∈ S | ∃�-successor s�,π(s, �, s�) = 1}.
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Intuitively, the behavior of an MDP is as follow. Given ι the initial
distribution, we probabilistically select an initial state s0

1. To move from
state s0 to some other state, we have first to choose non-deterministically
between enabled actions in Act(s0). Once the non-deterministic choice is
taken, say � ∈ Act(s0) has been selected, one of the �-successor of s0 is
probabilistically selected according to the distribution π(s0, �, .), where “.”
stands for any �-successor from s0.

Example 2.2 (Example of an MDP). Consider the MDP depicted in Fig-
ure 2.2 where S = {s0, s1, s2} and s0 is the unique initial state, that is
ι(s0) = 1. The set of enabled actions are Act(s0) = {�, ς}, Act(s1) =
Act(s2) = {ϑ} with respective probabilities, π(s0, �, s1) = 2

3 ,π(s0, �, s0) =
1
3 ,π(s0, ς, s1) = π(s0, ς, s2) = 1

2 ,π(s1,ϑ, s1) = π(s2,ϑ, s0) = 1. In this ex-
ample, non-determinism exists between actions � and ς in s0. Remark that
whatever the choice made between these actions, s1 is reached with a non-
null probability.

�, 23ς, 12

ς, 12ϑ, 1
�, 13

s1s2 s0
ϑ, 1

Figure 2.2: An MDP example.

Similarly to LMCs, a path of an MDP is a potential behavior. How-
ever, in this case, it consists of an alternating sequence of states and actions
obtained by performing non-deterministic choices over actions followed by
probabilistic choices over successors.

Definition 2.7 (Paths and Traces of an MDP). Let M = �S,Act, ι,π,Σ, L�
be an MDP. A path of M is an infinite alternating sequence of states and
actions r = s0�1s1�2s2... such that ι(s0) > 0 and π(si−1, �i, si) > 0 for
all i ≥ 0. A trace σ associated to a run s0�1s1�2s2... is the infinite word
L(s0)�1L(s1)�2L(s2).... A finite path (respectively a finite trace) is any
finite prefix of a path (respectively of a trace). We denote by Paths(M)
(respectively Traces(M)) the set of all infinite paths (respectively traces)
in M and by Pathsfin(M) (respectively Tracesfin(M)) the set of all finite
paths (respectively traces) in M.

1. In the literature, we may find more general MDP models where several initial dis-
tributions are used. In such cases, a non-deterministic choice is performed to select which
initial distribution to use. For the sake of simplicity, we restrict ourselves to one initial
distribution.
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Probability Measure of an MDP

In the case of MDPs, conversely to LMCs, asking a question about a prob-
ability of an event to happen is senseless because of non-determinism. More
precisely, the probability of such an event will depend on the actions choices,
which are performed non-deterministically, that is, they cannot be quanti-
fied. Non-determinism is by definition synonym of absence of knowledge,
i.e, we do not have any information about how the choices are performed.
Defining such a measure is thus not possible unless we fix a clear procedure
to do it. This has to be quantifiable, i.e deterministic or probabilistic. Such a
procedure is called scheduler or adversary. It defines a policy or a strategy to
choose among enabled actions � ∈ Act(s) for any state s ∈ S. The scheduler
does not interfere with the probabilistic choice following the action choice.
In this dissertation, we will rely on probabilistic memoryless schedulers and
we will refer to them by schedulers. They are formally defined as follows.

Definition 2.8 (Probabilistic Memoryless Scheduler). Given an MDP M =
�S,Act, ι,π,Σ, L�, a probabilistic memoryless scheduler for M is a function
S : S × Act → [0, 1] such that for all s ∈ S,

�
�∈Act(s) S (s, �) = 1, that

is a probability distribution over the enabled actions in s, and ∀� ∈ Act(s),
S (s, �) > 0.

A scheduler where S (s, �) ∈ {0, 1} for all s, � is called deterministic
scheduler 2.

Given an MDP M and a Scheduler S , the resulting behavior of M
together with S is a Markov Chain. Non-determinism is resolved by using
the scheduler that assigns a probability to every enabled actions in each state
of the MDP. The behavior of M is thus reduced to a Markov Chain MS

induced by the scheduler S as follows.

Definition 2.9 (Markov Chain Induced by a Scheduler). Given an MDP
M and a scheduler S , the behavior induced by M together with S is a
Markov Chain MS = �S, ι,π�,Σ, L� as in Definition 2.1 where π� contains

transitions of the form s −→ s� corresponding to transitions s
�−→ s� ∈ π,

where � is the action selected by S in state s. The probabilities of such
transitions are given by

π�(s, s�) =
�

�∈s �−→s�

(S (s, �) · π(s, �, s�)).

Example 2.3 (LMC Induced by a Scheduler on the MDP of Example 2.2).
Let us consider a scheduler S that resolves the non-determinism in the MDP
in Figure 2.2 by using the following probability distributions:

2. In the literature, we find different types of schedulers, with memory, memoryless,
deterministic, and probabilistic. We refer the reader to [15] for a detailed survey.
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– S (s0, �) =
1
3 ,

– S (s0, ς) =
2
3 ,

– S (s1,ϑ) = S (s2,ϑ) = 1.
The Markov Chain induced by such a scheduler is depicted in Figure 2.3.

It is obtained by ignoring the set Act of actions (LMCs do not have transi-
tions actions) and by keeping the same state space S, the same alphabet Σ,
the same labeling function L, and the same initial state distribution ι. More-
over, a new transition probability function is computed given the scheduler
S by applying Definition 2.9. For example, transition s0

ς−→ s2 in Fig-
ure 2.2 is preserved without the transition label in the induced LMC (see
Figure 2.3). The probability of this transition is 1

3 , obtained by multiplying
2
3 (the scheduler value for this action) and 1

2 (the corresponding probability
in the MDP). Similarly, transition s0 −→ s1 in Figure 2.3 corresponds to

transitions s0
�−→ s1 and s0

ς−→ s1 in the MDP. The probability of this
transition is 5

9 , obtained by summing (13 · 2
3) and (23 · 1

2), where 1
3 and 2

3 are
respectively the scheduler values for these actions.

Finally, one can easily check that the induced transition probability func-
tion is valid by computing the sum of the outgoing transitions probabilities
in each state and equating it to 1. For instance, in the initial state s0, we
find that 1

6 + 11
24 + 3

8 = 1.

s1s2 s0
1

1
9

1
3

5
9

1

Figure 2.3: Markov chain induced by scheduler S on the MDP of Figure 2.2.

So far, we recalled two widely used formalisms for modeling stochastic
systems behaviors. We will now present a quantitative analysis techniques
for theses models. Before that, we first recall the Linear-time Temporal Logic
(LTL) for formalizing requirements.

2.2 Requirements Formalization

2.2.1 Linear-time Temporal Logic

A Linear-time Temporal Logic (LTL) [171] formula ϕ built over a set of
atomic propositions AP is defined by the following syntax:

ϕ := true | ap | ¬ϕ | ϕ1 ∧ ϕ2 | Nϕ | ϕ1Uϕ2 (ap ∈ AP )

N and U are respectively the next and until operators. Additional
Boolean operators can be inferred using negation (¬) and conjunction (∧).
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Moreover, temporal operators such as G (always) and F (eventually) are de-
fined as Fϕ ≡ true Uϕ and Gϕ ≡ ¬F¬ϕ. LTL formulas are interpreted on
infinite traces σ = σ0σ1 . . . ∈ Σω as follows:

– σ � true;
– σ � ap iff ap ∈ σ0
– σ � ¬ϕ iff σ � ϕ
– σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2;
– σ � Nϕ iff σ[1..] � ϕ
– σ � ϕ1Uϕ2 iff ∃k ≥ 0 s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[ holds σ[j..] � ϕ1;

Definition 2.10. Given an LMC M and an LTL property ϕ, the probability
for M to satisfy ϕ is denoted by P (M � ϕ) and is given by the measure
PM{σ ∈ Traces(M) | σ |= ϕ}. In addition, we say that M satisfies ϕ
denoted by M � ϕ iff ∀σ ∈ Traces(M),σ � ϕ. This is different from P (M �
ϕ) = 1, which is known as almost sure model-checking 3.

2.3 Statistical Model Checking

The model checking approach was shown to be useful for the rigorous
analysis of systems. As stated in the introduction, we are following a model-
driven approach and we are relying on model checking for system-level ver-
ification of performance requirements. This implies the use quantitative
techniques for the analysis of stochastic models.

During the last decades, there has been a great interest to extend classical
model checking algorithms to cover the probabilistic setting. Probabilistic
model checking has emerged in the early eighties [200] and has experienced
many improvements that continue today [183, 59, 117, 113, 52, 14, 173, 67].
It has been successfully implemented in various tools, which reached certain
degree of maturity [139, 126, 51], and has been applied in several case studies
covering various application domains such as automotive [5], industrial pro-
cess control [132], cloud computing [129], power management [161], avionics
communication protocols [27], security [191], and biology [106], to mention
but a few.

Given a stochastic model and a formal property, probabilistic model-
checking aims to answer the following question: what is the probability that
the model satisfies the property of interest ? There are two main categories
of algorithms to solve the probabilistic model checking problem.

The first category, which is also the earliest, contains algorithms perform-
ing exhaustive exploration of the state space of the system. These algorithms
rely upon numerical techniques, such as solving systems of linear equations
or reformulating them as linear optimization problems. Due to their exhaus-
tive nature, these algorithms provide accurate results. This is paradoxically

3. There might be an infinite trace of M that does satisfy the property ϕ and which
has a null probability (See [13] for more details).
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the source of their weakness: a known limitation of numerical techniques, is
actually scalability. Numerical algorithms are not tractable when confronted
with real-life applications having a large state space. To overcome this issue,
there has been several proposals such as abstraction [172, 125], symmetry
reduction [137], symbolic representation through special data structure such
as multi-terminal binary decision diagrams (MTBDDs) [91].

The second category is more recent and emerged as an answer to the
above challenges. It consists of statistical model checking (SMC) which re-
lies on simulation and statistics to bypass the exhaustive exploration of the
state space of the system. SMC explores only a sub-part of the state space
and provides only an estimation. Using statistical techniques allows to gen-
eralize, under certain assumptions, the partial result (obtained on a sample
of observations) to the whole system with a fixed confidence. Two formula-
tions of the problem have been proposed by Younes and Simmons [209, 213]
on one hand, and by Lassaigne and Peyronnet [142] on the other. The for-
mer propose to position the probability with respect to a given threshold
without computing it, while the latter propose to estimate it. Whereas the
first proposal relies on hypothesis testing and provides a qualitative answer,
the second uses probability estimation and could be seen as quantitative.

In the following, we detail statistical model checking, which is the tech-
nique we are adopting in this work for system-level performance evaluation
of many-cores embedded systems.

Formally, given a Markov Chain M and an LTL property ϕ, statistical
model checking refers to a series of simulation-based techniques that can be
used to answer two types of questions:

Qualitative: Is the probability for M to satisfy ϕ greater or equal (lower
or equal) to a certain threshold θ ?

Quantitative: What is the probability for M to satisfy ϕ ?

General Setting. Let Yi be a discrete random variable with a Bernoulli
distribution of parameter p, i.e., Yi ∼ B(p). Such a variable can only take two
values 0 and 1 with P (Yi = 1) = p and Pr(Yi = 0) = 1−p. In the context of
statistical model checking, each variable Yi represents one simulation of the
system model M. The outcome for Yi, denoted yi, is 1 if the ith simulation
satisfies ϕ and 0 otherwise.

Remark that, in the above formulation, in order to be able to evaluate
simulations outcomes yi in a finite time, and hence to ensure the termination
of the SMC procedure, one needs to consider bounded simulation traces.
Thus, the formalism to be used to express system requirements has also to
be bounded. In this case, we usually rely on bounded LTL (BLTL) [89],
a variant of LTL with bounded temporal operators. Furthermore, in order
to allow expressing probabilistic queries, a probabilistic variant of BLTL is
usually used as depicted hereafter.
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2.3.1 Probabilistic Bounded LTL

We use Probabilistic Bounded Linear Temporal Logic (PBLTL) as a for-
malism for describing probabilistic linear temporal properties of a considered
system. As stated earlier, this is required to guarantee the termination of
the SMC procedure and to allow expressing probabilistic requirements. The
bounded fragment of LTL (denoted BLTL) restricts the use of the until op-
erator U to its bounded variant Ui. BLTL formulas over the set of atomic
propositions AP are syntactically defined as follows.

ϕ := true | ap | ¬ϕ | ϕ1 ∧ ϕ2 | N iϕ | ϕ1U
iϕ2 (ap ∈ AP )

Similarly to LTL, additional bounded temporal operators may be inferred
Gi (always) and Fi (eventually). They are respectively defined as Fiϕ ≡
true Uiϕ and Giϕ ≡ ¬Fi¬ϕ. Moreover, we syntactically define PBLTL
formula as BLTL formula ϕ encapsulated within probabilistic operator P ,
i.e. P [ϕ]. The P operator have two variants depending on the type of the
query: when it is qualitative, we use P�θ[ϕ], and when it is quantitative, we

use P=?[ϕ].

The semantics of a BLTL formula is defined with respect to a finite trace
σ = σ0σ1 · · · ∈ Σ∗. It only differs from LTL for the bounded operator Ni

and Ui which have respectively the following semantics:

– σ � Niϕ iff σ[1..] ∩ σ[..i] � ϕ
– σ � ϕ1U

iϕ2 iff ∃k ∈ [0, i] s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[, σ[..j] � ϕ1.

Definition 2.11. Given an LMC M and a BLTL property ϕ, the probability
for M to satisfy ϕ denoted by P (M � ϕ) is given as in Definition 2.10, that
is, PM{σ ∈ Tracesfin(M) | σ |= ϕ}.

Example 2.4. Given the Craps Gambling Game model in Figure 2.1, it is
possible, for instance, to check the following P(B)LTL properties.

– The probability to win in one step: P (true U1 won) = 0.22
– The probability to win in two steps: P (true U2 won) = 0.3
– The probability to eventually loose: P (F lost) = 0.51
– The probability to always win: P (G won) = 0

2.3.2 Qualitative Analysis

The main approaches [209, 188] proposed to answer the qualitative ques-
tion are based on hypothesis testing. Let p = P (M |= ϕ), to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ 4. A simulation-based
solution does not guarantee a correct result but it is possible to bound the
probability of making an error. The strength of a test is determined by two

4. Note that we are illustrating the hypothesis testing for p ≥ θ, however it is similarly
applicable for p ≤ θ.
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parameters, (α, β), such that the probability of accepting K (respectively,
H) when H (respectively, K) holds, called a Type-I error (respectively, a
Type-II error ) is less or equal to α (respectively, β). A test has ideal perfor-
mance if the probability of the Type-I error (respectively, Type-II error) is
exactly α (respectively, β). However, it is impossible to ensure a low prob-
ability for both types of errors simultaneously (see [209, 205] for details).
A solution is to relax the test using an indifference region [p1, p0] (with θ
in [p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. Usually, we use an
indifference region centered on θ by choosing a value δ such that p1 = θ − δ
and p0 = θ + δ.

We now briefly sketch a hypothesis testing algorithm that is called the
sequential probability ratio test (SPRT) [205]. In SPRT, one has to choose
two values A and B (A > B) that ensure that the strength (α, β) of the test
is respected. Let m be the number of observations that have been made so
far. The test is based on the following quotient:

p1m
p0m

=
m�

i=1

P (Yi = yi | p = p1)

P (Yi = yi | p = p0)
=

pdm1 (1− p1)
m−dm

pdm0 (1− p0)m−dm
,

where dm =
�m

i=1 yi. The idea behind the test is to accept H0 if p1m
p0m

≥ A,

and H1 if p1m
p0m

≤ B. The SPRT algorithm computes p1m
p0m

for successive values
of m until either H0 or H1 is satisfied and it is shown to terminate with
probability 1 [205]. Sequentially dealing with observations has the advantage
of minimizing the number of required simulations. In his thesis [209], Younes
proposed a logarithmic based SPRT algorithm that given p0, p1,α and β
implements the sequential ratio testing procedure.

When one has to compare θ to 0 or 1, it is better to use Single Sampling
Plan (SSP) (see [209, 144, 188] for details), another hypothesis testing algo-
rithm whose number of simulations is pre-computed in advance. In general,
this number is higher than the one needed by SPRT, but it is known to
be optimal for the above mentioned values. More details about hypothesis
testing algorithms and a comparison between SSP and SPRT can be found
in [144].

2.3.3 Quantitative Analysis

In [110, 141] Peyronnet et al. propose an estimation procedure to com-
pute the probability p for M to satisfy ϕ. Given a precision δ, Peyronnet’s
procedure, which we call PESTIM, computes a approximation p� such that
|p� − p|≤δ with confidence α, i.e., P (|p� − p|≤δ) ≥ 1 − α. The procedure is
based on the Chernoff-Hoeffding bound [115].

Let Y1 . . . Ym be m discrete random variables with a Bernoulli distribution
of parameter p associated with m simulations of the system. Recall that the
outcome for each of the Yi, denoted yi, is 1 if the simulation satisfies ϕ and 0
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otherwise. Let p� = (
�m

i=1 bi)/m, then Chernoff-Hoeffding bound [115] gives

P (|p� − p| > δ) < 2e−
mδ2

4 .

As a consequence, if we consider a number of simulations m≥ 4
δ2

log( 2α),
then we are guaranteed that P (|p�−p|≤δ) ≥ 1−α. Observe that if the value
p� returned by PESTIM is such that p�≥θ − δ, then P (M |= ϕ) ≥ θ with
confidence 1− α.

2.3.4 Playing with Statistical Model Checking Algorithms

The efficiency of the above algorithms is characterized by the number
of simulations needed to obtain an answer. This number may change from
executions to executions and can only be estimated (see [209] for an expla-
nation). However, some generalities are known. For the qualitative case, it
is known that, except for some situations, SPRT is always faster than SSP.
PESTIM can also be used to solve the qualitative problem, but it is always
slower than SSP [209]. If θ is unknown, then a good strategy is to estimate
it using PESTIM with a low confidence and then validate the result with
SPRT and a strong confidence.

2.4 Conclusions and Related Work

In this first chapter, we recalled a set of preliminary concepts aimed to
be a background reference for the different notions introduced in the forth-
coming chapters of the dissertation. Along the chapter, we tried to explain
the main principles of statistical model checking, and to recall some widely
used stochastic formalism for system modeling, namely, LMCs and MDPs.
We also presented probabilistic bounded LTL as requirements specification
formalism.

Statistical model checking has received an increasing interest during the
last decade. A considerable amount of work in both theoretical and practical
sides have been done around. It has been also used in different case studies
in various application domains such as avionics communication protocols
[27, 26], sensor networks [147, 146], multimedia applications [178], Microgrids
[56], analog and mixed-signal circuits [60, 61, 206], subway control systems
[86], energy aware buildings [73], wireless networks [50], satellite systems
[156], and biology [63, 157, 101, 216]. In the sequel, we enumerate, without
claiming to be exhaustive, a panel of related works in term of technical and
theoretical contributions.

Besides various emerging full-fledged statistical model checkers, an in-
creasing number of existing probabilistic model checkers have also adopted
the statistical approach in addition to their classical numerical techniques.
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Most of these tools implements both probability estimation and hypothe-
sis testing procedures and mainly differ in term of the provided systems
modeling/properties specification formalisms and slight implementations de-
tails. For instance, Prism [139], which is originally a symbolic model checker
and relies on numerical techniques, considers Discrete Time Markov Chains
(DTMCs), Continuous Time Markov Chains (CTMCs), Markov Decision
Process (MDPs), Probabilistic Automata (PAs) [185, 186], and recently Prob-
abilistic Timed Automata (PTAs) [138] for systems modeling. As for require-
ments specification, it accepts a variety of inputs such as PLTL, Probabilis-
tic Computation Tree Logic (PCTL) [105], and Continuous Stochastic Logic
(CSL) [12, 11]. Uppaal-smc [51] is a statistical model checking extension
for the UPPAAL model checker. It accepts Priced Timed Automata (PTAs)
[74] as a system modeling formalism and Weighted Metric Temporal Logic
(WMTL) [131, 46] as properties specification language. Other tools like
Vesta [190] supports, in addition to DTMCs and CTMCs, a rewrite-based
specification languages, namely PMaude [134, 2] for modeling stochastic sys-
tems, and Quantitative Temporal Expressions (QuaTEx) [2] in addition to
CSL for requirements specification. Cosmos [19] is another statistical model
checker that considers Generalized Semi-Markov Processes (GSMPs) [98, 7]
(specified as Generalized Stochastic Petri Net), a more general formalism not
restricted to finite state space and to the Markovian assumption 5. It relies
on the Hybrid Automata Stochastic Logic (HASL) [20] for requirements spec-
ifications. Plasma Lab [119] is a modular and extensible statistical model
checker that may be extended with external simulator and checkers. The de-
fault configuration accepts discrete-time models specified in the Prism format
and requirements expressed in PBLTL. Ymer [210] is one of the first tools
to implement sequential hypothesis testing algorithms. It considers GMSPs
and CTMCs specified using an extension of the Prism input language and
accepts both PCTL and CSL for requirements specification. MRMC [126]
is originally an explicit-state model checker. It accepts classical DTMCs,
CTMCs in addition to a rewards-enriched variants: Discrete Time Markov
Reward Models (DMRMs) and Continuous Time Markov Reward Models
(CMRMs) and Continuous Time Markov Decision Processes (CTMDPs). It
accepts different logic such as PCTL,CSL, Probabilistic Reward Computation
Tree Logic (PRCTL), and Continuous Stochastic Reward Logic (CSRL).

In [162], we present a new statistical model checking tool called BIPSMC ,
which is briefly discussed in Chapter 7 among others technical contributions.
The tool accepts a component-based stochastic formalism called SBIP hav-
ing an MDP semantics for systems modeling. The latter is introduced in
detail in the next chapter. For requirements specification, BIPSMC consid-
ers for now PBLTL properties.

5. In a GSMP, the used probability distributions are not limited to memoryless distri-
bution, e.g., Exponential.
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It is worth mentioning that some of the above tools implement different
variants of the hypothesis testing algorithm. For example, MRMC uses
confidence intervals [214], while Vesta implements simple hypothesis testing
[188] rather than the sequential one as in the case of Ymer, Prism, and
Plasma Lab. We refer the reader to [117, 123] for a comparison between
some statistical model checking tools and techniques.

A key advantage of statistical algorithms is that they are easy to paral-
lelize, since they rely on independent samples. In his thesis [209], Younes
addressed this question and proposed a parallel implementation of the se-
quential hypothesis testing procedure in Ymer. Other tools in the aforemen-
tioned list also provide distributed implementation such as [6, 119].

Far from the initial time-bounded properties verification, statistical model
checking has evolved to cover properties with unbounded until operator and
to verify steady states [189, 212, 85]. It has been also extended to handle
black-box systems [188, 211]. In [121, 217], a Bayesian approach of both
hypothesis testing and probability estimation procedures is proposed. It
is shown that, in specific cases, the Bayesian hypothesis testing algorithm
requires fewer observations compared to the classical SPRT algorithm [121].

Statistical model checking has also some disadvantages, such as provid-
ing only probabilistic guarantees with respect to requirements satisfaction.
This is a real issue when using statistical model checking algorithms to ver-
ify safety-critical systems. However, in less constrained contexts such as
verifying QoS requirements, this becomes less important. This is why we
believe that SMC is more suited for performance evaluation. Another well-
known limitation is that it cannot effectively handle rare events [181], that
is, event with very small probabilities of occurrence. Several recent work
tackle this issue, for instance, using coupling and importance sampling [21],
importance sampling and cross-entropy optimization [64, 118], or using im-
portance splitting [120]. Another potential hindrance towards applying SMC
is non-determinism, as explained in the beginning of this chapter. Given an
MDP, one can only compute the minimal and maximal probability bounds.
Various solutions were proposed to remedy to this issue, such as partial or-
der reduction [41] which rarely works, or the use of re-enforcement learning
to find an optimal scheduler maximizing the probability of satisfying the
property under consideration [108].

In the next chapter, we introduce a new stochastic modeling formalism
called SBIP. This enables building MDPs models in a component-based
fashion. It also allows defining probabilistic schedulers on top of them in
order to produce analyzable LMCs models using statistical model checking
techniques, in particular through the BIPSMC tool.





Chapter 3
Stochastic Component-based

Modeling

In the previous chapter we introduced the Statistical Model Checking
technique for quantitative analysis of stochastic systems. We also recalled
some general stochastic formalisms and provided some basis on requirements
formalization. More precisely, we saw that, given a stochastic system model
and a set of formalized requirements (properties), Statistical Model Check-
ing enables to estimate the probabilities for the considered stochastic model
to satisfy the requirements of interest using simulation and statistical tech-
niques.

Component-based modeling approach allows for building independent
and reusable components that can be assembled together for different mod-
eling purposes. Different parts of the whole system can be actually managed
separately by different teams, which has the advantage to lighten the mod-
eling burden and considerably reduce time. Modeling is henceforth seen as
a matter of reconfiguring and reorganizing existing components, which is
not always trivial and should not be neglected. Although, this allows sys-
tems designers to focus on what to model instead of how to model. From
an enterprise point of view, more efficiency and flexibility is brought to the
production process. In this context, we introduce a new formalism for mod-
eling stochastic systems in a component-based fashion. This is built as an
extension of the component-based modeling formalism BIP [22].

The remainder of this chapter is organized as follow. We first recall
the main aspects of the BIP formalism, then detail the proposed stochastic
extension called SBIP. Our construction follows a recursive scheme, that is,
in a first time, we extend basic building blocks (atomic components) with
probabilities and show that their underlying semantics is an MDPs. Then,
we tackle assembly of such stochastic building blocks using BIP composition
operators, and show that they induce new components having the same

41
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semantics. In order to enable Statistical Model Checking on these models,
we show in the second part of the chapter, how to resolve non-determinism
and hence obtain purely stochastic Markov Chains. We then illustrate the
use of the SBIP extension together with SMC on a real-life multimedia
example. Finally, in the last part, we focus on the expressiveness of our
construction. We show how it is straightforward to model LMCs as well as
MDPs in SBIP and discuss equivalence and state space size issues.

3.1 Background on BIP

BIP (Behavior -Interaction-Priority) [22] is a formal framework for build-
ing complex systems by coordinating the behavior of a set of atomic com-
ponents. Behavior is defined as a labeled transition system extended with
data. The coordination between components, also referred to as the Glue,
is layered. The first layer describes the interactions between components,
whereas, the second layer describes dynamic priorities between interactions
and is used to express scheduling policies. BIP has a clean operational se-
mantics that describes the behavior of a system model as the composition
of the behaviors of its atomic components. This allows a direct relation be-
tween the underlying semantic model (labeled transition systems) and its
implementation.

Before moving to BIP definitions, let us first recall Labeled Transition
Systems (LTS), which represents the underlying semantics of atomic BIP
components. In the literature, one can find several formulations of LTSs.
In this dissertation, we adopt a definition where labels are action names on
transitions.

Definition 3.1 (Labeled Transition System). A labeled transition system
is a tuple (Q,Act,→, Q0), where

– Q is a set of states,
– Act is a set of action names, that is transition labels.
– → ⊆ Q × Act × Q is a set of labeled transitions. For convenience, if
(q,κ, q�) ∈ →, we write q

κ−→ q�,
– Q0 ⊆ Q is a set of initial states.

3.1.1 Atomic Components

Atomic components are the elementary building blocks for modeling a
system. They are described as labeled transition systems extended with
variables used to store local data. Transitions are steps, labeled by ports,
from a control location to another. They have associated a guard and an
update function, that are, respectively, a Boolean condition and a compu-
tation defined on local variables. Ports are action names generally used for
synchronization with other components. States denote control locations at
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which the components await for synchronization. In BIP, data and their re-
lated computation are written in C/C++ language. The syntax of an atomic
component in BIP is formally defined as follow.

Given a set of variables V , we denote Bool(V) the set of Boolean condi-
tions over V , Expr(V) the set of expressions over V , and Func(V) the set of
functions over V .

Definition 3.2 (Syntax of Atomic Components). An atomic component is
a labeled transition system extended with data B = (L,P, T , l0,V), where:

– V = {v1, . . . , vn} is a set of local variables,
– (L,P, T , l0) is a labeled transition system, with L = {l1, l2, . . . , lk} a

set of control locations, P a set of communication ports, T is a set
of transitions of the form (l, prt, g, f, l�), where l, l� ∈ L, prt ∈ P, g ∈
Bool(V) is a guard, and f ∈ Func(V) is a deterministic update func-
tion on a subset of V . Finally, l0 ∈ L is the initial location.

Let D be a finite universal domain. Given a set of variables V , we define
valuations for variables as functions X : V → D that associate each variable
in V with a value in D. We denote the set of valuations of variables in
V as DV = {X0, X1, . . .}. Given a valuation X ∈ DV and an expression
e ∈ Expr(V), we denote by e(X) the value of e under the valuation X. A
set of variables V is initially associated with a default valuation X0 ∈ DV .
We use small scripts x to denote valuation of single variables v ∈ V .

update

tick

t = 0

l2

l1

out

v = h(...)

[t ≥ 10]

t = t+ 1

[t < 20]

Figure 3.1: An example of a BIP atomic component.

Example 3.1. Figure 3.1 shows a graphical representation of a BIP atomic
component. This contains two control locations, l1 the initial location, and
l2, related through transitions labeled with ports out, tick, and update. From
l1, the out transition is always enabled 1 and leads to location l2. This tran-
sition deterministically updates the variable t = 0. From l2, two transitions
are possible, tick and update. These respectively lead to l2 and l1 and are
associated with guards t < 20 and t ≥ 10. These guards state that the
tick transition is enabled whenever t < 20 and that the update transition is

1. We will conventionally consider, throughout the dissertation, that omitted guards
evaluate to true.
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enabled whenever t ≥ 10. Given that variable t is set to 0 on transition out,
only the tick transition is first enabled. Executing tick increments the vari-
able t until it reaches 10, where the update transition becomes also enabled.
In such a situation (when several transitions are simultaneously enabled), a
non-deterministic choice among the enabled transitions is performed, that is,
each transition has an unknown likelihood to be selected. When tick is se-
lected it continues incrementing t and remains in location l2, whereas update
moves to location l1 and executes function h that updates variable v.

To summarize, within a BIP atomic component, for a given valuation
of variables, a transition can be executed if and only if its associated guard
evaluates to true. When several transitions are simultaneously enabled, a
non-deterministic choice is performed to select one of them. Firing a transi-
tion implies an atomic execution of its internal computation f . Formally:

Definition 3.3 (Semantics of Atomic Components). The semantics of an
atomic component B = (L,P, T , l0,V) is an LTS (Q,Act,→, Q0), such that

– Q = L × DV is the set of states,
– Act = P is the set of transitions labels,
– → is a set including transitions of the form ((l;X), prt, (l�;X �)) such

that, g(X) evaluates to true and X � = f(X) for some τ = (l, prt, g, f, l�) ∈
T ,

– Q0 = {(l0;X0)} ⊆ Q is the initial state.

Remark 3.1. The unique source of non-determinism at the level of atomic
components is when several transitions are enabled simultaneously. Such
non-determinism, like the one appearing in location l2 in the previous exam-
ple, may be resolved by using disjoint guards or priorities, as shown in the
next section. These force a single transition to be enabled each time.

It is worth to mention that, in the BIP semantics, it is not permitted
to have, from the same control location, several outgoing transitions labeled
with the same port, unless having disjoint guards.

Example 3.2 (An Abstract Model of a Processing Unit). We provide a
second example to illustrate how to model real-life systems using BIP. We
consider the processing unit of a video decoding system depicted farther in
this chapter. The role of this unit within the whole system is to sequentially
read input macro-blocks, then to decode them and write them to a buffer.
An abstract view of the processing unit behavior is shown in Figure 3.2.
It consists of a component having two states, namely, IDLE and PROCESS.
The former models a state where the processing unit is waiting to read a
macro-block, while the latter models the processing state of the unit.

Moving from one state to another is performed through the read and write
transitions which respectively model reading a macro-block and writing it to
a buffer. Read and write are actually the ports of the component that allow
for composition with other components as we will see in the next section.



CHAPTER 3. STOCHASTIC COMPONENT-BASED MODELING 45

In both states of the component tick transitions are added to model time
progress. In the IDLE state, this models the waiting time until a macro-block
is available for read, whereas, in the PROCESS state, tick models the time
for processing a macro-block, which is proportional to its size.

Note that in this example, there exists also non-deterministic choices
between tick and read transitions at the IDLE state, and between tick and
write transitions at the PROCESS state.

IDLE
tick

read
period = token.cycles / frequency

tick
PROCESS

[period = 0]
write

t = t + 1

period = period − 1t = t + 1

Figure 3.2: A BIP component of a processing unit of a video decoding system.
The processing unit decodes macro-blocks at a pre-specified frequency. The
processing time of each macro-block corresponds to its size.

Atomic components capture individual sub-behaviors of a more complex
structure. These have to be assembled together in order to produce a de-
sired global behavior, which is achieved by using compositional or glue oper-
ators. BIP provides several operators that allow composing and coordinating
atomic components. The next section introduces these operators.

3.1.2 Composition Operators

In component-based design, systems are defined by assembling atomic
components using composition operators. BIP offers a layered glue which
provides mechanisms for coordinating components behaviors, namely inter-
actions and priorities.

Interactions

The first layer of the BIP glue relies on connectors. These provide mech-
anisms to relate ports from different sub-components towards composition.
They represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. For every such interaction, the underlying con-
nector provides a guard and a data transfer function, that are, respectively,
an enabling condition and an exchange of data across the involved ports.

For a model built from a set of component B1,B2, . . . , Bn, where Bi =
(Li,Pi, Ti, l0i ,Vi), we assume that their respective sets of ports and variables
are pairwise disjoint, i.e. for any i �= j in {1 . . . n}, we require that Pi∩Pj = ∅
and Vi∩Vj = ∅. Thus, we define the set P =

�n
i=1 Pi of all ports in the model
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as well as the set V =
�n

i=1 Vi of all variables. An interaction is formally
defined as follow.

Definition 3.4 (Interaction). An interaction a is a triple (Pa, ga, fa) where
Pa ⊆ P is a set of ports, ga is a guard, and fa is a data transfer function. We
restrict Pa so that it contains at most one port of each component, therefore
we denote Pa = {prti}i∈I with prti ∈ Pi and I ⊆ {1 . . . n}. The guard ga and
the data transfer function fa are defined on the variables of the interacting
components.

Given a set of interactions γ, the composition of components B1, . . . ,Bn

using γ is an atomic component in which, for a given valuation of variables,
an interaction a ∈ γ can be executed if its associated guard ga evaluates
to true and all its involved ports Pa are enabled. The execution of a is an
atomic sequence of two micro-steps:

1. Execution of the interacting ports {prti}i∈I ∈ Pa, which is a synchro-
nization between the underlying components, with an exchange of data
through the execution of the data transfer function fa, followed by

2. Execution of internal update functions fi associated with the respective
transitions τi labeled with ports {prti}i∈I ∈ Pa.

We denote by f1 � f2 the sequence of execution of function f1 followed by
the execution of function f2. The composition operations is formally defined
as follow.

Definition 3.5 (Composition). The composition γ(B1, . . . ,Bn) of n atomic
components using the set of interactions γ, where Bi = (Li,Pi, T i, l0i ,Vi) is
an atomic component B = (L, γ, T , l0,V), where

– L = L1 × . . .× Ln is the set control locations,
– γ is the set of ports,
– T contains transitions of the form τ = ((l1, . . . , ln), a,Ga, Fa, (l

�
1, . . . , l

�
n))

obtained by synchronization of sets of transitions {τi = (li, prti, gi, fi, l
�
i) ∈

Ti}i∈I such that, a = {prti}i∈I ∈ γ, Ga = ga ∧ �
i∈I gi, Fa = fa ��

i∈I fi, and l�j = lj if j /∈ I.

– l0 = l01 × . . .× l0n is the initial control location,
– V =

�n
i=1 Vi is the resulting set of variables.

Example 3.3. Figure 3.3 shows the component System consisting of three
interacting sub-components, Sender, Buffer and Receiver assembled using
three connectors io1, io2, and toc. We graphically represent ports involved
in interactions by boxes containing ports names. Furthermore, when such
a port is associated with variables, they are represented in a second box
near the port. Black bullets in the connectors ends state that the un-
derlying synchronizations are of type rendez-vous, that is a strong syn-
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chronization between the participating ports 2. A rendez-vous connector
yields one interaction. For instance, the io1 connector gives the interac-
tion a = (Pa = {out1, in2}, fa = (v2 = v1), ga evaluates to true). Note that
the data transfer function is optional as for the toc connector.

Sender

in2

tick3

Buffer Receiver

tick1

tick1

tick3

toc

System

update1 update3

out1

tick2

out2 in3

tick2

t = 0

io1 io2

l5

l4

l2

l1

v1 v2 v2 v3

t = t+ 1

[t ≥ 10]

v1 = h(...)

v2 = v1 v3 = v2v1 = x0

in3
t = 0v4 = h�(v3)

[t ≥ 5]

t = t+ 1

out2l3out1
in2

Figure 3.3: BIP example: Sender-Buffer-Receiver system.

The System component models a producer-consumer scheme through a
buffer. The Sender produces new data values, represented by v1, using
the update function h, and write them to the Buffer. This is performed
after 10 time units as forced by the tick1 transition and the guard t ≥ 10.
Communication between the Sender and the Buffer is performed through the
io1 connector which provides a data transfer function v2 = v1, where v2 is the
Buffer local variable representing the buffer memory. Similarly, the Receiver
component communicates with the Buffer through the io2 connector. This
ensures data transfer from the Buffer to the Receiver (v3 = v2). The latter
reads from the Buffer after 5 time units and uses the received data for some
local computation v4 = h�(v3). The toc connector synchronizes the tick
transitions of the different components to enable overall time progress.

Non-determinism appears at this level when several interactions are en-
abled simultaneously. In the previous example for instance, from location
l4 of the Receiver, ports tick3 and in3, involved in interactions toc and io2
respectively, are both enabled when t ≥ 5.

Given the composition semantics above, assembling deterministic compo-
nents provides no guarantee that the produced component will be determin-
istic. Similarly, assembling non-deterministic ones does not imply necessarily
that the obtained component is non-deterministic. This really depends on
the used connectors and their respective guards. In addition to the use of
disjoint guards, another mechanism to deal with non-determinism appearing
at this level is to use priority rules introduced below.

2. BIP offers different types of connectors, e.g broadcast which are out of the scope of
this dissertation. We refer the reader to [22] for more details.
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Priorities

Priorities represent the second layer of the BIP glue. They provide means
to coordinate the execution of interactions within a BIP system. Priorities
are used to specify scheduling or similar arbitration policies between simul-
taneously enabled interactions. More concretely, priorities are rules, each
consisting of an ordered pair of interactions associated with a condition.
Formally:

Definition 3.6 (Priority). A priority rule is a strict partial order over inter-
actions ≺ ⊂ γ×Bool(V)× γ, where γ is the set of interactions and Bool(V)
is a set of Boolean conditions on variables V . Given two interactions a and b,
the priority rule (a, C, b) states that whenever the condition C holds, inter-
action a has less priority than interaction b. Given a priority rule (a, C, b),
we write it as a ≺C b for more convenience.

gb

b
ga gb

ba

� : a ≺C b

l3

l1l1

l2 l3l2

B B�

(C =⇒ ¬gb)

a
g�a = ga∧

Figure 3.4: Priority restriction example.

We denote � the set of priority rules or the priority model. Given a
component B = (L, γ, T , l0, V), we call restriction the operation of applying
the priority model � on B, which results on disabling interactions having
lower priorities. This is achieved by using guards transformations as follow.
Consider the left component in Figure 3.4 which shows a component B hav-
ing two interactions a and b from the control location l1. Component B is
associated with a priority layer � consisting of a single rule, a ≺C b stating
that whenever condition C holds, interaction b has the priority to execute
over interaction a. Component B�, shown in the right side of Figure 3.4, is
the result of applying the priority model on B. This is obtained by trans-
forming the guard ga in B to g�a, where g�a = ga ∧ (C =⇒ ¬gb), that is by
adding the complement of gb to ga whenever C holds. Restriction operation
is formally defined as follow:

Definition 3.7 (Restriction). Given an atomic component B = (L, γ, T , l0,
V) and a priority model �, the restriction �(B) gives an atomic component
B� = (L, γ, T �, l0,V) as in Definition 3.5, where T � contains transitions of the
form τ = (l, a, g�a, fa, l

�) such that, g�a = ga ∧
�

a≺Cb∈�(C =⇒ ¬gb).
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Example 3.4 (Following Example 3.3). In Example 3.3, the goal is to have
a model acting as follow. Whenever the Sender writes data to the Buffer, the
Receiver reads it before it gets overridden by a new data, since the Buffer has
a single memory location. That is, we should never have successive writes
nor reads. The expected behavior is shown in Figure 3.5a.

In the model presented in Figure 3.3, this is performed using time syn-
chronization. The Sender is forced to write data after 10 time units while
the Receiver reads it after 5 time units. In this way they are expected to
alternate production and consumption. As previously mentioned, the model
in Figure 3.3 exhibits non-determinism which actually alters the desired be-
havior. Consider a situation where the Sender is writing data to the Buffer
through the io1 connector. Meanwhile, the Receiver is waiting in location
l4. When t ≥ 5, both tick3 and in3 become enabled. A non-deterministic
choice is then performed among them. What may happen is that tick3 is
taken 10 consecutive times, which implies that tick1 has also been taken 10
times (ticks are strongly synchronized using toc connector). This enables
the Sender to write new data to the Buffer while the previous one is not yet
consumed by the Receiver as shown in Figure 3.5b.

time

toc toc

Sender.out Receiver.in Sender.out

0 5 10
. . .

(a) Expected behavior of the System

model

time

toc

Sender.out Sender.out Receiver.in

0 5 10
. . .

(b) System actual behavior

Figure 3.5: Behavior of the System component in Figure 3.3.

To resolve such a situation, one may change the Buffer model in such
a way it does not allow successive reads nor writes which is very restrictive
since it does not allow components reuse. Another alternative consists to
use priorities to force in and out actions, when enabled, to execute over tick.
A priority model consists thus on

� : toc ≺C io1, toc ≺C io2

. The C condition in this case is simply true. The priority model � stipulates
that whenever the participating ports in io1 or io2 are enabled simultane-
ously with a tick, they will have the priority to execute. For instance, when
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t ≥ 5, both tick3 and in3 are enabled, but because of priorities, in3 will be
taken. Hence, we get the expected behavior shown in Figure 3.5a.

So far, we recalled the component-based formalism BIP and its associated
semantics. We are now ready to build our stochastic construction as an
extension of the previously introduced formalism.

3.2 SBIP: A Stochastic Extension

We recall that our goal is to build stochastic models capturing perfor-
mance information to enable quantitative analysis in early design phases. In
this section, we introduce SBIP, an extension of the BIP formalism above.
This will constitute the foundation upon which we will build our approach for
performance modeling and evaluation in system-level design context. SBIP
was first introduced in [32]. It allows (1) to specify stochastic aspects of
individual components and (2) to provide a stochastic semantics for the par-
allel composition of components through interactions and priorities. We first
introduce stochastic atomic components and define their underlying seman-
tics. Then, we provide an MDP semantics for their parallel composition.
Finally, we show how to obtain a purely stochastic LMC semantics towards
analysis using SMC.

3.2.1 Stochastic Atomic Components

Syntactically, we add stochastic behavior at the level of atomic compo-
nents by allowing the definition of probabilistic variables. These are, in con-
trast to deterministic variables, attached to given probability distributions
and thus updated probabilistically. Probability distributions are defined as
functions that associate possible valuations of probabilistic variables with
some weight. Formally,

Definition 3.8 (Distributions of Probabilistic Variables). Let D be a finite
universal data domain. A probability distribution over D is a function µ :
D → [0, 1] such that,

�
xi∈D µ(xi) = 1 for all xi ∈ D.

Definition 3.9 (Syntax of Stochastic Atomic Components). A stochastic
atomic component is an atomic component extended with probabilistic vari-
ables Bs = (L,P, T , l0,V), where

– L = {l1, l2, . . . , lk} is a set of control locations,
– P is a set of communication ports,
– V = Vd

�Vp, with Vd = {v1, . . . , vn} the set of deterministic variables
as in Definition 3.2 and Vp = {vp1 , . . . , vpm} the set of probabilistic vari-
ables attached to a set of probability distributions µVp = {µ1, . . . , µm}.

– T is a set of transitions of the form τ = (l, prt, g, f, l�), where l, l� ∈
L, prt ∈ P, g is a guard over Bool(V), and f is a pair (fd, fp), where
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fd is a deterministic update function on V as in Definition 3.2, and
fp ⊆ Vp is the subset of probabilistic variables to be updated on τ ,

– l0 is the initial location.

We define valuations of probabilistic variables as in the deterministic
case. We denote the set of valuations of a set of probabilistic variables
Vp as DVp

. Vp is initially associated with a default valuation Xp
0 ∈ DVp

.
Each probabilistic variable vp ∈ Vp is attached to a probability distribution
µ ∈ µVp , denoted as vp ∼ µ. Note that the used probability distributions are
discrete and assumed to be independent. We use small scripts xv

p
to denote

valuations of single probabilistic variables vp ∈ Vp.

Semantics of Stochastic Atomic Components

The introduction of probabilistic variables at the level of atomic compo-
nents engenders a probabilistic behavior over transitions. Let us consider
the atomic component Bs in Figure 3.6a. We graphically represent update
of probabilistic variables using � near variables names. Component Bs has a
unique transition going from location l1 to location l2 using port prt which
updates the probabilistic variable vp, defined over domain Dvp ⊆ D, accord-
ing to the distribution µ : Dvp → [0, 1]. Assuming the initial value of vp

is xv
p

0 , when executing Bs, there will be several possible transitions, having
the same label prt, from state (l1, x

vp
0 ) to states (l2, x

vp
i ) for all xv

p

i ∈ Dvp as
illustrated in Figure 3.6b. According to the definition of probabilistic vari-

l1

prt

vp = xp
0

vp ∼ µ

vp�

l2

(a) A Stochastic Atomic Component Bs

(l1, x
vp

0 )

µ

(l2, x
vp

i )

prt prt

(b) Behavior of Bs

Figure 3.6: Example of a stochastic atomic component Bs and its behavior.

ables, the probabilities of these transitions will then be given by µ. Note
that when several probabilistic variables are updated, the resulting distribu-
tion on transitions will be the product of the distributions associated to each
variable as will be shown in Example 3.5. We recall that these distributions
are fixed during variables declaration, and are considered to be independent
as stated in the beginning of this section.

Adapting the semantics of an atomic component in BIP as presented in
Definition 3.3 to atomic components with probabilistic variables leads to be-



52 CHAPTER 3. STOCHASTIC COMPONENT-BASED MODELING

haviors that combine both stochastic and non-deterministic aspects. Indeed,
even if transitions are either purely deterministic or purely stochastic 3, sev-
eral transitions can be enabled in a given state. In such a case, the choice
between them is non-deterministic as explained in the BIP background sec-
tion.

Consider a stochastic component Bs = (L,P, T , l0,V). Given a state

(l;Xp;X) in L×DVp×DVd
, we denote by Enabled(l;Xp;X) the set of transi-

tions in T that are enabled in that state, i.e. transitions τ = (l, prt, g, f, l�) ∈
T , such that g(Xp;X) is satisfied. Remark that the set Enabled(l;Xp;X)
may have a cardinality |Enabled(l;Xp;X)| ≥ 1, as explained earlier. In
the associated semantics of Bs, a non-deterministic choice between ports
in Enabled(l;Xp;X) is first performed. Then, probabilistic selection of the
next state is done according to distributions attached to probabilistic vari-
ables updated on the transition labeled by the selected port. The semantics
of a stochastic atomic component is thus an MDP as formally stated below:

Definition 3.10. The semantics of a stochastic atomic component Bs =
(L,P, T , l0,V) is a Markov Decision Process M = �S,Act, ι,π,Σ, L�, where

– S = L × DVp × DVd
is the set of states,

– Act = P is the set of actions,
– ι(l0) = 1 is the initial probability distribution,
– Σ is the set of atomic proposition over V ,
– L : S → Σ is the state labeling function,

– π : S ×Act× S → [0, 1] contains transition of the form s
prt−→ s� where

s = (l;Xp;X) and s� = (l�;X �p;X �) for some τ = (l, prt, g, (fd, fp), l�) ∈
Enabled(l;Xp;X) where,

X �p(vp) = Xp(vp) for all vp /∈ fp

X �p(vp) = xv
p

for each vp ∈ fp, where xv
p ∈ Dvp ,

(X ��p, X �) = fd(X �p, X), and the probability to take a transition is
defined using µVp , the set of probability distributions attached to Vp

as follow:

π(s, prt, s�) =
�

vp∈fp

µvp(xv
p
)

Let Bs be a stochastic atomic component and M be the associated
MDP. A state s ∈ S is seen as the combination of a control location l ∈ L
with the valuations of the probabilistic and deterministic variables, respec-
tively Xp and X. We write s = (l;Xp;X). The set of enabled actions
in some state Act(s) corresponds to the set of ports labeling transitions
τ ∈ Enabled(l;Xp;X), where s = (l;Xp;X). That is, Act(s) = {prt ∈
P | τ = (l, prt, g, (fd, fp), l�) ∈ Enabled(l;Xp;X)}.

3. In the sense that they are associated or not with probabilistic variables.
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From now on, we will use Act(s) to denote the set of ports enabled in
some state s of a stochastic atomic component and ports labels to denote
transitions. We will also adopt the prt-successor notation from the MDP
definition in Chapter 2.

In each state s ∈ S, we select a port prt ∈ Act(s) non-deterministically.
We recall that all variables vp ∈ Vp are defined over domains Dvp ⊆ DVp

and are associated with distributions vp ∼ µvp . A prt-successor state s� =
(l;X �p;X �) is obtained by:

1. Keeping valuations of non-updated probabilistic variables on prt un-
changed, i.e., ∀vp /∈ fp, X �p(vp) = Xp(vp),

2. Assigning new valuations xv
p ∈ Dvp to updated ones, i.e., ∀vp ∈

fp, X �p(vp) = xv
p
, and

3. Updating variables according to fd, i.e., (X ��p, X �) = fd(X �p, X).

The probability of a transition s
prt−→ s� is the product of the distributions

µvp of all vp ∈ fp, that is
�

vp∈fp µvp(xv
p
).

Example 3.5. Consider a stochastic atomic component Bs having three lo-
cations l1, l2, and l3 and two enabled transitions prt1 and prt2 from l1 to l2
and l3 respectively, as shown in Figure 3.7a. Transition prt1 is associated
with a probabilistic variable vp1 ∼ µ1 and prt2 is associated with two proba-
bilistic variables vp2 ∼ µ2 and vp3 ∼ µ3. Moreover, vp1 is defined over domain
D1 = {1, 2}, and vp2 and vp3 are respectively defined over domains D2 = {3, 4}
and D3 = {true, false}. The probabilities of variables valuations are given
by the associated distributions.

In the underlying MDP semantics depicted in Figure 3.7c, we find the
enabled actions prt1 and prt2, each unfolded with respect to its associated
probability distribution as defined in the Bs component. For instance, we
identify two transitions labeled prt1 having probabilities µ1(1) and µ1(2). For
prt2, since its is associated with two probabilistic variables in Bs, we obtain
four transitions labeled prt2, due to the product µ2µ3, having the probabil-
ities µ2(3)µ3(true), µ2(3)µ3(false), µ2(4)µ3(true), and µ2(4)µ3(false).

Example 3.6 (Part of a Stochastic Multimedia Stream Source). In this
example, we model the stochastic behavior of an MPEG2-coded video stream
source. This will actually be part of the input stream model for the video
decoding system initially introduced in Example 3.2. In this sub-model of the
input stream source, we only consider frames generation. An MPEG2-coded
stream is composed of coded video frames of three types, namely I,P, and B
[133]. These are organized following a predefined Group Of Pictures (GOP)
pattern: IBBPBBPBBPBB, IBBPBBPBBPBB, . . . Figure 3.8 shows
an SBIP component modeling this behavior, where frames sizes are produced
in a probabilistic fashion following three different probability distributions
(µi, µp, µb), each corresponding to a frame type.
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l2

vp1 ∼ µ1vp1 = 1
vp2 = 3 vp2 ∼ µ2

vp3 = false
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(b) Underlying Behavior of Bs
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(c) The MDP semantics of Bs

Figure 3.7: Example of a stochastic atomic component Bs and its underlying
semantics when several transitions are simultaneously enabled.
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Figure 3.8: Stochastic Multimedia Stream Source model: frames generator
component.

Till now, we saw that the semantics of an SBIP component is defined as
a Markov Decision Process. In the next section we provide definitions for
assembling stochastic components using BIP composition operators.
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3.2.2 Composition of Stochastic Components

In this section we define the semantics of the parallel composition of
stochastic atomic components. In this context, compositional operators are
unchanged, that is, we adopt the same definitions of interactions (Defini-
tion 3.4) and priorities (Definition 3.6). For the sake of simplicity, we restrict
data transfer functions on interactions to be deterministic. Thus, probabilis-
tic and deterministic variables are transferred in a deterministic way.

When considering a system with n stochastic components Bs
i = (Li,Pi, Ti,

l0i ,Vi) and a set of interactions γ, the construction of the product component
Bs = γ(Bs

1, . . . ,Bs
n) is performed as in BIP. Formally:

Definition 3.11. (Composition of Stochastic Components) Given a set of
interactions γ, the composition of n stochastic components γ(Bs

1, . . . ,Bs
n),

where Bs
i = (Li,Pi, Ti, l0i ,Vi) is a stochastic atomic component Bs = (L,γ, T ,

l0,V) where,

– L = L1 × . . .× Ln, is a set of control locations,
– γ is the set of ports,
– T contains transitions of the form τ = ((l1, . . . , ln), a,Ga, (F

d
a , F

p
a ),

(l�1, . . . , l
�
n)) obtained by synchronization of sets of transitions {τi =

(li, prti, gi, fi, l
�
i) ∈ Ti}i∈I such that,

– a = {prti}i∈I ∈ γ,
– Ga = ga ∧

�
i∈I gi,

– F d
a = fd

a ��
i∈I f

d
i ,

– F p
a =

�
i∈I f

p
i , and

– l�j = lj if j /∈ I,

– l0 = l01 × . . .× l0n,
– V =

�n
i=1 Vi, is the set of deterministic and probabilistic variables.

Restriction operation over stochastic atomic components is performed
using priority rules in Definition 3.6. It consists of the same guards trans-
formation operation presented in Definition 3.7. Thus, it produces a new
stochastic component.

By construction, as assembling stochastic atomic components using com-
position operators (composition and restriction) produces a stochastic atomic
component, its semantics is a Markov Decision Process given by Defini-
tion 3.10.

Example 3.7. Consider the stochastic BIP components Bs
1 and Bs

2 given in
Figure 3.9a. Bs

1 has a single probabilistic variable vp1 , defined over domain
D1 and attached to distribution µ1, and a single transition from location
l11 to location l12 using port prt1, where vp1 is updated. In location l11, the
variable vp1 is assumed to have value xp0 ∈ D1. Bs

2 has two probabilistic
variables vp2 and vp3 respectively defined over domains D2 and D3, to which
are attached distributions µ2 and µ3 respectively. Bs

2 has two transitions: a
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transition from location l21 to location l22 using port prt2, where vp2 is updated,
and a transition from location l21 to location l23 using port prt3, where vp3 is
updated. In location l21, the variables vp2 and vp3 are assumed to initially have
value yp0 and zp0 in D2 and D3 respectively. Let γ = {a = {prt1, prt2}, b =
{prt1, prt3}} be the set of interactions resulting from connectors C1 and C2

respectively. Interactions a and b have the same priority since we are not
specifying any priority rules. The semantics of the component Bs = γ(Bs

1,Bs
2)

is given in Figure 3.9e.
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Figure 3.9: Illustration of the stochastic semantics of composition in SBIP.

In state s1 = ((l11, l
2
1); (x

p
0, y

p
0 , z

p
0)) of the composition, a non-deterministic

choice between interactions a and b is performed. After choosing the inter-
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action, the corresponding transition is taken, updating the corresponding
probabilistic variables with the associated distributions. As an example, the
probability of going to state ((l12, l

2
2); (x

p
i , y

p
j , z

p
0)), where xpi ∈ D1 and ypj ∈ D2,

after non-deterministically choosing interaction a is µ1(x
p
i )µ2(y

p
j ), while the

probability of going to state ((l12, l
2
3); (x

p
i , y

p
0 , z

p
k)), x

p
i ∈ D1 and zpk ∈ D3, after

non-deterministically choosing interaction b is µ1(x
p
i )µ3(z

p
k).

Example 3.8 (Stochastic Multimedia Stream Source). This example depicts
the full stochastic multimedia stream source model started in Example 3.6.
The underlying model is a composition of three components consisting of
the Frames Generator (see Example 3.6), a Splitter, and a Transfer Media
component. The generated output stream is made of macro-blocks which
are going to be stored in the input buffer of the decoding unit. The number
of bits (the size) of every macro-block, together with a bit-rate parameter
of the transfer media, determine the arrival time of the macro-block to the
buffer. This number of bits is specific for each macro-block type (w.r.t frame
types) and follows a specific probability distribution (µmb) parametrized by
frame sizes.

Figure 3.10 shows the SBIP component modeling this behavior. Frames
are produced following the GOP pattern as explained earlier in Example 3.6.
Each frame is split into 330 micro-blocks, having probabilistically distributed
sizes, by the Splitter component. Each macro-block is then sent for storage
through the Transfer Media component which model the arrival time of
macro-blocks to the buffer.

The components are assembled together using two connectors C1 and
C2 providing data transfer facilities. The first connector enables delivering
frames to the Splitter, whereas the second ensures the transfer of the gener-
ated macro-blocks to the Transfer Media component. Finally, it is worth to
mention that the transfer and tick ports of the Transfer Media component
are made available as interfaces for the Source component to communicate
with the rest of the video decoding system model presented later in the
chapter.

Stochastic atomic components as well as their composition have an MDP
semantics that encompasses non-deterministic and probabilistic decisions.
However, to be able to perform quantitative analysis such as SMC on these
models, it is required to resolve any non-determinism. In the following, we
show how to reduce SBIP models to produce a purely stochastic semantics.

3.2.3 Purely Stochastic Semantics

Building rich stochastic performance models and using SMC to quanti-
tatively analyze them is the main motivation behind the proposed stochastic
extension. To this end, one needs to produce a purely stochastic behavior
where only probabilistic choices are possible. Given the SBIP construction
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Figure 3.10: SBIP component of an MPEG2 Stream Source.

above, we propose to use probabilistic schedulers in order to produce a purely
stochastic LMC semantics of SBIP models. We first define the semantics of
a purely stochastic component. Then, adapt the definition of schedulers in
Chapter 2 and provide definition of the induced LMC in this context.

In chapter 2, we introduced schedulers and shown that it yields Markov
Chain semantics, when applied on MDPs. We build upon chapter 2 defini-
tions to define schedulers for SBIP models. We recall that non-determinism
occurs in SBIP models, whenever several interactions are simultaneously
enabled. A scheduler, in this context, provides probability distributions to
select among enabled interactions in global states as in Definition 2.8. Given
a stochastic atomic component and a scheduler S , the produced behavior
is purely stochastic. It allows probabilistic choices between transitions in
Act(s) instead of non-deterministic choices. The resulting underlying be-
havior is thus a Markov Chain as given by Definition 2.9.

Let Bs = (L,P, T , l0,V) be a stochastic atomic component and M =
�S,Act, ι,π,Σ, L� the associated MDP semantics. In the Markov Chain
MS = �S, ι,π�,Σ, L� induced by the scheduler S on Bs, the probability

of taking transition s −→ s� ∈ π� corresponding to transition s
prt−→ s� ∈ π,

where s = (l;Xp;X) and s� = (l;X �p;X �) ∈ S and τ = (l, prt, g, (fd, fp), l�) ∈
Act(s) is computed as follows. A probabilistic choice over enabled transitions
in Act(s) using the distribution provided by S is performed first, followed by
a probabilistic choice using probability distributions attached to probabilistic
variables as earlier, that is,

π�(s, s�) =
�

s
prt−→s�

(S (s, prt) ·
�

vp∈fp

µvp(xv
p
))

Example 3.9 (Induced Markov Chain by a Uniform Scheduler on the MDP
Figure 3.7c). Consider the SBIP model and its associated MDP in Exam-
ple 3.5 where non-determinism appears only on state s1 = (l1; 1, 3, false),
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where Act(s1) = {prt1, prt2}. In order to resolve this non-determinism and
produce a fully stochastic behavior, we may use a scheduler S that uniformly
selects among enabled actions in each state. Hence, ∀s ∈ S, each prt ∈
Act(s) has an equal probability to be selected. In this case,

S (s1, prti) =
1

|Enabled(s1)|
=

1

2
, where 1 ≤ i ≤ 2.

Figure 3.11 depicts the induced Markov Chain. In this example, the differ-
ence between the MDP and the induced LMC is at the level of probabili-
ties of transitions (no structural transformation has been operated). These
are obtained by multiplying the probabilities of the MDP transition by the
scheduler value, that is, 1

2 .

s1

s2

s3

s4

s5

s6

s7

1
2µ2(3)µ3(false)

1
2µ2(4)µ3(false)

1
2µ2(3)µ3(true)1

2µ1(1)

1
2µ1(2)

1
2µ2(4)µ3(true)

Figure 3.11: LMC induced by a uniform scheduler S on the MDP Fig-
ure 3.7c.

It is worth mentioning that defining probabilistic schedulers for SBIP
models that encompass non-deterministic behavior requires a bit of care. Let
us consider a component Bs and its associated MDP semantics M. Given a
state s ∈ S, where three actions are possible {�, ς,ϑ}, it is not sufficient to de-
fine a single probability distribution over them, but we need to specify a prob-
ability distribution for each possible Act(s). Actually, the non-determinism
implies that we don’t have any apriori knowledge about which actions will be
enabled each time, that is, Act(s) ∈ {{�, ς,ϑ}, {�, ς}, {�,ϑ}, {ς,ϑ}, {�}, {ς}},
or {ϑ}. This is tedious to do for each state of the model especially in for
industrial-size models. In the current state of this work, we stick to uni-
form distributions which implicitly takes into account the number of en-
abled actions in Act(s), i.e. ∀� ∈ Act(s),π(s, �, s�) = 1

|Act(s)| . Details on
investigating possible representation of probabilistic schedulers with others
probability distributions in SBIP are discussed as perspective work in the
conclusion chapter of the manuscript.
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Formalism Composition Semantics

BIP �γ(B1, . . . ,Bn) � B B → LTS

SBIP �γ(Bs
1, . . . ,Bs

n) � Bs Bs →MDP ���S LMC

Table 3.1: Summary of the stochastic extension of the BIP formalism.

3.3 Performance Evaluation of a Multimedia SoC

Before going further with the SBIP extension, it is important to consider
a real-life example in order to concertize the previously developed theory for
component-based stochastic systems modeling and analysis. To this end, we
consider an abstraction of a multimedia SoC shown in Figure 3.12.

In the abstract SoC model, an input coded video stream is assumed to be
initially stored in the SoC memory. It is then transferred, with a constant bit-
rate, to an input buffer in terms of stream objects, such as macro-blocks. A
pipeline of functional units process the input stream in a sequential fashion.
Processed items are then temporarily stored in an output (also called play-
out) buffer before being displayed by a video player. In this example, we
assume that the multimedia SoC contains a single processing unit consisting
of an MPEG2 video decoder.

Core

Functional

Units

Stored

Coded

Videos Display

Video

Output BufferInput Buffer

Figure 3.12: An abstract view of a multimedia SoC. The functional units of
the decoder can include variable length decoding, motion compensation, etc.

The main challenge when designing such systems is to ensure a good
trade-off between quality of service (QoS), usually expressed as soft real-
time constraints, and resources usage, in order to keep the cost of the final
product as low as possible. This is known as resource constrained or best-
effort design. Such trade-off implies to tolerate certain quality degradation
which will not jeopardize the final system. In the multimedia literature [207],
acceptable video degradation is usually specified as: less than two consecutive
frame loss within 30 frames, less than 17 aggregate frame loss within 100
frames, etc. Moreover, such systems exhibit an important uncertainty due
to the high variability present in the input multimedia stream, in terms of
number and complexity of items that arrive per unit time to the system,
which justify a stochastic characterization.

Our goal in this example is to build a component-based stochastic model
of the multimedia SoC (using the SBIP formalism) and to analyze it (using
Statistical Model Checking) towards reducing resource usage while guaran-
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tying a tolerable loss in video quality. We will mainly focus on the first
specification of tolerable video degradation, i.e., less than two consecutive
frame loss within 30 frames, while trying to reduce the buffer sizes. A Frame
loss is seen at the player end. The latter starts reading decoded items after
an initial delay (also called play-out delay). Reads are then performed peri-
odically from the output buffer. A loss happens when the player do not find
the required items to display in a specific period. This is denoted as buffer
underflow and can be interpreted as a deadline miss, that is, the decoding
unit failed to provide the required items in time. Figure 3.13 illustrates such
behavior.
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Figure 3.13: Evolution of the play-out buffer fill-level over time. It also
shows the buffer underflow evolution. This is obtained by simulating the
SBIP model below with an initial delay equal to 75 ms.

Our goal is to estimate the probability that buffer underflow (denoted
U) is less than two consecutive frames in 30 frames, given the following
parameters of the multimedia SoC:

– A set of video clips of certain bit-rate (r) and resolution,
– The maximum frequency of the MPEG2 decoding unit (f),
– The consumption rate of the player device (c),
– The start-up values for the initial delay (d), input buffer size (ibs), and

play-out buffer size (obs).

3.3.1 SBIP Model of the Multimedia SoC

The SBIP model of the multimedia SoC is obtained in a straightforward
manner from the description above. It has a component for each part of
the SoC shown in Figure 3.12. This model captures the stochastic behavior
of the system in the following way. The coded object’s arrival time to the
input buffer follows defined probability distributions which are constructed
from a given set of video clips (See Figure 3.14). Thus, the decoded object’s
arrival to the output buffer is also probabilistic, which leads to probabilistic
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buffer underflow. Next, we explain how to estimate the probability of certain
amount of buffer underflow.
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Figure 3.14: Frequency distributions of I,P, and B frames. I frames are larger
in size but less frequent than the B and P frames.

Figure 3.15 shows the SBIP model of the multimedia SoC, essentially
performing video decoding tasks. It consists of three functional components,
namely, Source, Decoder, and Player. The Decoder and the Source compo-
nents were introduced in Example 3.2 (see Section 3.1) and Example 3.8 (see
Section 3.2) respectively. The former is deterministic and models MPEG2
macro-blocks decoding, while the latter is stochastic and is made of three
different components, respectively corresponding to GOP frames production,
frames splitting into macro-blocks, and stochastic transfer time.

pop

Source (r) Decoder (f) Player (c, d)

tick1 tick2 tick3

read write push

Input Buffer (ibs)

push pop

Playout Buffer (obs)

transfer get

toc

S2B B2D D2B B2P

Figure 3.15: SBIP model of the multimedia SoC with a single functional
unit consisting of an MPEG2 decoder.

Functional components communicate through the Input Buffer and the
Play-out Buffer, represented, in the model, as deterministic atomic compo-
nents. Figure 3.16 shows a generic SBIP model of a buffer component. It
maintains an array of macro-blocks parametrized by a maximum capacity
and updated through push/pop primitives executed when interacting with
other components accordingly.

The SoC’s components are assembled, in the usual way in SBIP, using
connectors S2B,B2D,D2B,B2P which enable macro-blocks transfer be-
tween functional components and buffers. An additional toc connector is
used to synchronize timed components (Source, Decoder, and Player). This
explicitly models the progress of the absolute (global) time.
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[ size < capacity ]
push

f_push(mb,b)
size = 0

b = (array)malloc(...)
SND_RCV

mb

push

[ size > 0 ]
pop

mb = f_pop(b)

size = size + 1

size = size − 1

mb

pop

Figure 3.16: A generic SBIP model of a buffer component. It has a capacity
parameter which fixes the upper size limit and may be instantiated as input
or output buffer.

The Player component models the display of the stream of decoded macro-
blocks. After an initial play-out delay d, it starts reading macro-blocks
from the play-out buffer at a constant rate c, as shown in Figure 3.17. A
buffer underflow occurs whenever the requested number of macro-blocks is
not available in the buffer. In this case, the request is postponed for the
next iteration and the underflow is accumulated. For example, if the current
buffer underflow is 2, then, at the next request, the Player seeks 3 macro-
blocks. If the buffer is still empty, the underflow became 3. Else, if the
play-out buffer has (at least) 3 items, then all three items are read at once
and the buffer underflow is reset to 0, etc.

REQUEST DISPLAY

q=1
id=d

request

[id=0]

WAIT

u=0

tick
t=t+1
p=p−1

request
[p=0]

mbsq

tick

p

p=c

id=id−1
t=t+1
tick

get
if (mbs = null) {

q=q+1
u=u+1}

else {
q=q−mbs.size+1
u=u−mbs.size}

get

Figure 3.17: SBIP model of the Player component. It has two input param-
eters, id and c corresponding respectively to the initial delay and the display
rate.

It is important to remark that the designed components of the multimedia
SoC encompass non-determinism. This is the case for the SoC components
introduced in the previous sections (Source, and Decoder). For instance, we
recall that the MPEG2 decoder component depicted in Example 3.2 has non-
determinism between read, write, and tick transitions. Other components in
the model, such as the Player above, have similar non-deterministic choices.

In order to be able to use SMC for analysis, we use priorities and rely on
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a uniform scheduler to resolve such non-deterministic behavior. For instance
the following priority model is used to enable components progress:

� : toc < S2B, toc < B2D, toc < D2B, toc < B2P.

This gives high priority to decode macro-blocks and to transfer them, when
enabled, over time progress.

3.3.2 QoS Requirements Evaluation

To evaluate QoS requirements of the multimedia SoC, we apply statistical
model checking on the SBIP model presented above. Before presenting the
experiment details, it is worth to report some important observations with
respect to the SoC model operation.

We previously stated that play-out buffer underflow is observed at the
Player end, and that this component has two parameters c and d, respec-
tively defining the initial delay after which it has to start reading from the
buffer, and the periodicity of reading. Both parameters, together with the
decoder frequency and the arrival time of macro-blocks to the input buffer,
have an impact on buffer underflow. Actually, when the initial delay is high,
and when both the decoder and the arrival time are not too slow, the play-
out buffer will accumulate an important number of macro-blocks before the
player starts reading 4, which reduces the probability of occurrence of un-
derflow later on. In the opposite scenario, the probability of having buffer
underflow becomes higher.

In the following experiments, the decoder frequency, the macro-blocks
arrival time to the input buffer 5, as well as the periodicity of the Player
are considered to be fixed. We will try to tune the remaining parameters,
such that to obtain a good trade-off between the play-out buffer size and the
probability of having two consecutive frames loss within 30 frames.

In order to estimate the probability of this requirement, we use an Ob-

server which monitors the occurrence of the frames loss. This will run in
parallel with the SoC components and reacts to relevant events related to
the property of interest, that is, play-out buffer pops. We exploit BIP ex-
pressiveness to encode the observer behavior as an atomic component which
will be connected to the B2P connector between the play-out buffer and the
Player. As shown in Figure 3.18, the Observer has three states: OK, PAR-

TIAL, and FAIL. The FAIL state capture the fact that two consecutive frames
within 30 have been lost. The component starts in the OK state. When a
single frame is lost, the observer moves from state OK to PARTIAL. Later,
if there is an additional frame loss, within the same window of 30 frames,

4. A very high initial delay requires an big play-out buffer size and may induce a buffer
overflow. In this experiment, we are only focusing on buffers underflow.

5. This is defined by the bit-rate of the considered video clips.
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[ lost = true ]
lost1frame

observe

[ lost = true ]
lost2frames

lost

success

if ( frames = 30 )
frames = frame + 1

{     lost = false
     frames = 0 }

PARTIALOK FAIL

[ frames = 30 v lost = false ]

observe
frames = frame + 1

lost = false
if ( frames = 30 )
    frames = 0

    frames = 0

lost = false

observe

Figure 3.18: SBIP model of the Observer component. It models the QoS
property to be verified. The variable frame counts the number of frames to
check if two consecutive loss occurs within a second (i.e. within 30 frames).
The read port of the Observer is synchronized with the read port of the
Player. A variable lost is associated with the read port records a frame loss.

the Observer moves to the FAIL state. Otherwise, when no additional losses
happen within that widow, it moves back to the OK state.

Analysis and Results

This section sketches QoS requirement probabilities estimated using the
statistical model checking technique. The experiments were conducted for
low bit-rates and low resolution clips (352 ∗ 240) obtained from an open
source 6. The bit-rate of the input videos is 1.5 Mbits per second and the
frame output rate is 30 frames per seconds (fps). We used an MPEG2
implementation optimized for speed 7. The MPEG2 source was annotated
to get the number of bits corresponding to each compressed macro-block.
The execution cycles for each macro-block is obtained from the processor
simulator SimpleScalar 8. We chose the video files cact.m2v, mobile.m2v,

and tennis.m2v for our experiments.
Recall that we used the observer component to monitor events corre-

sponding to two consecutive frames loss within 30 frames (which is equiva-
lent to 1 second given the frame output rate of 30 fps). As explained earlier,
this raises a flag denoted lost whenever it catches that event. Thus, we used
the following BLTL property to query the SoC model with respect to the
probability to never get two consecutive frames loss within a second.

φ = Gt(¬lost)

We choose t = 1500000 steps, such that to display all the macro-blocks of
each video clip. Note that all the considered clips are composed of 148500

6. ftp://ftp.tek.com/tv/test/streams/Element/index.html

7. http://libmpeg2.sourceforge.net

8. http://www.simplescalar.com/
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macro-blocks, that is, 450 frames. Finally, we applied SMC with inputs the
SoC model, the BLTL property φ and the confidence parameters δ = 5 10−2

and α = β = 10 −2. We did measure the probability of φ for different play-
out delay values and observed the play-out buffer fill-level evolution. We
repeated the same experiment for the three video clips selected previously.
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Figure 3.19: Play-out buffer fill-level and probability of φ for various play-
out delay values for cact.m2v. For this video clip, the processor frequency
is set to 109 Mhz.

Figures 3.19, 3.20, and 3.21 plots the results of the play-out buffer fill-level
for various play-out delay values, and corresponding probabilistic bounds. In
these figures, we report, in the X axis, the probability of eventually having
two consecutive frames loss withing a second, i.e., (1− P (φ)). The play-out
buffer fill-level and the play-out delay evolution are respectively depicted in
the Y and Z axis (in the top).

Let us first focus on the impact of the play-out delay on the probability
of φ. As expected, one can see that increasing the play-out delay reduces
the probability of eventual underflow (1−P (φ)) for the different video clips.
With respect to the buffer fill-level, we observe that it reduces substantially
even for a small decrease of probabilistic value. For instance, there could be
a buffer size reduction of 40% for an increase in the value of the probabilistic
bound from 0 to 0.2 (Figures 3.20). In fact the buffer savings can be larger
if we compare the buffer size required for no underflow and the memory
required for the QoS property to be always true. It is worth mentioning
that these results confirm our claim that, for tolerable degradation in video
quality, output buffer size could be significantly reduced compared to the
buffer size required for playing lossless videos.
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Figure 3.20: Play-out buffer fill-level and probability of φ for various play-
out delay values for mobile.m2v. For this video clip, the processor frequency
is set to 94 Mhz.
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Figure 3.21: Play-out buffer fill-level and probability of φ for various play-
out delay values for tennis.m2v. For this video clip, the processor frequency
is set to 94 Mhz.

We report that for each probability estimation, the number of traces sta-
tistical model checking required ranged from 44 to 1345 and that for each
trace, the method took around 6 to 8 seconds to verify the property, that
is, in the worst situation it took around 3 hours to give the final verdict.
The experiments were performed using BIPSMC , a statistical model check-
ing engine for SBIP models. This will be introduced with more details in
Chapter 7, later in the dissertation.
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In this example, we used the SBIP formalism to model an abstraction
of a multimedia SoC performing MPEG2 video decoding. We were able to
capture the stochastic behavior of the SoC and to model it using stochastic
components with realistic probability distributions of macro-blocks arrival
time. These were obtained from a software MPEG2 decoder executed on
the SimpleScalar simulator for concrete video clips. In the second part of
the dissertation, in Chapter 6, we present a systematic approach for learning
probability distributions characterizing performance information at system-
level. QoS requirements analysis were performed using statistical model
checking techniques. We were able to find good trade-offs between buffer
sizes and acceptable video degradation in small time.

We illustrated the combined use of the SBIP formalism and the statistical
model checking technique to capture systems stochastic behavior and to
perform quantitative analysis on a real-life example. Next, we show how
the SBIP formalism is able to capture any MDP or LMC behavior in a
systematic way.

3.4 SBIP Expressiveness

So far, we introduced the SBIP stochastic extension for the BIP formal-
ism and we showed that its underlying semantics is either an MDP or an
LMC when using schedulers. In this section, we are interested in evaluating
the expressiveness of our stochastic formalism. SBIP inherits BIP expres-
siveness which is shown, not only theoretically [37, 38] but also in practice
[29, 24, 23], to be sufficiently expressive to model a variety of systems in dif-
ferent application domains. In the sequel, we show how the SBIP extension
enables to capture more general stochastic models such as MDPs and LMCs.

3.4.1 Modeling LMCs in SBIP

Given an LMC M = �S, ι,π,Σ, L�, we build the corresponding stochas-
tic atomic component Bs = (L,P, T , l0,V) by defining its set of control
locations from the set of states of M, where the initial location is simply
the initial state of the LMC. The set of ports of Bs consists of two ports
{sample,move}. The set of variables V is induced from the LMC states and
their labels. The distributions of the probabilistic variables Vp are obtained
from the probability transition function of the LMC. Finally, two type of
transitions will compose the set T as formally defined hereafter.

Definition 3.12 (Syntactic Transformation of LMCs to SBIP). Given an
LMC M = �S, ι,π,Σ, L�, we define the syntactic transformation from M to
a stochastic atomic component Bs = (L,P, T , l0,V) as follows:

– L = S ∪ {s̄ for each s /∈ DetM(S)},
– l0 = s0, such that ι(s0) = 1,
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– P = {sample,move} is the set of ports,
– V = Vd ∪ Vp, where Vd = {vap | ap ∈ AP} and Vp = {vps | s /∈
DetM(S) for each s, µs : S → [0, 1] and µs(s

�) = π(s, s�)},
– T contains transition of the form (s, prt, g, (fd, fp), s�), where s, s� ∈
L, prt ∈ P, g is defined over Bool(V), and fd and fp are respectively
the deterministic and probabilistic update functions, such that,

s −→ s� ∈ π, π(s, s�) < 1

(s, sample, true, (∅, vps), s̄), (s̄,move, vps == s�, (�(s, s�), ∅), s�) ∈ T (3.1)

s −→ s� ∈ π, π(s, s�) = 1

(s,move, true, (�(s, s�), ∅), s�) ∈ T (3.2)

where �(s, s�) is a function that assigns deterministic variables with their
corresponding valuations in each state as follow: for all s, s� ∈ S,�(s, s�) =
{vap := x | (ap ∈ L(s) ∧ x = false) ∨ (ap ∈ L(s�) ∧ x = true)}.

{a,b}

{b,c}

s

s�

π(s, s�)

(a) An LMC transition

sample

move

s

s̄

s�

vps�

vb := true
va := true

vc := false

va := false
vc := true

[vps == s�]

(b) Bs transition (Rule 3.1)

move

s

s�

va := false

va := true
vb := true
vc := false

vc := true

(c) Bs transition (Rule 3.2)

Figure 3.22: Transformation rules of LMCs to SBIP model.

Intuitively, this transformation states that each transition s −→ s� ∈ π
having probability π(s, s�) < 1 is associated, in the corresponding Bs com-
ponent, with two transitions as shown by rule (3.1), where:

– The first is a stochastic transition (s, sample, true, (∅, vps), s̄) from lo-
cation s to s̄, where vps is a probabilistic variable attached to a distri-
bution µs obtained from π such as µs(s

�) = π(s, s�).
– The second transition (s̄,move, vps == s�, (�(s, s�), ∅), s�) is determin-

istic. It leads to location s� given a guard that checks if vps == s�, that
is, corresponding to the target state.

The second case considered by the transformation concerns transitions s −→
s�, where π(s, s�) = 1. In such cases, a unique deterministic transition
(s,move, true, (�(s, s�), ∅), s�) is produced in Bs as specified by rule (3.2).
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Remark 3.2 (LMCs with Several Initial States). Note that in the above def-
inition, we only mentioned the case where ι(s0) = 1. An LMC may have a
more general initial distribution than ι(s0) = 1, i.e., ι(si) = [pi] for different
states si ∈ S and were

�
i pi = 1. In such a case, we use a transformation

similar to rule (3.1). Concretely, this requires adding two control locations
denoted l and l̄, where l will be the initial control location of the corre-
sponding SBIP component, and a probabilistic variables vpι following the ι
initial distribution. Then, we will have a sample transition from l to l̄ which
samples vpι , and several move transitions from l̄ to initial states si having
respective guards [vpι == si].

Example 3.10 (SBIP model of an LMC). Let us consider the LMC in
Figure 3.23a consisting of two states, s1, the initial state, having label a and
s2 having label b. From s1, two transitions are possible, leading to s1 with
probability 1

3 and to s2 with probability 2
3 . Similarly, from s2, it is possible

to stay in the same state with probability 1
2 or to move back to s1 with the

same probability.

{a}

{b}

2
3

s2

s1

1
2

1
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1
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(a) An LMC Example
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va := true
vb := false

vps1 ∼ µ1

vps2 ∼ µ2

va := true
vb := false

(b) Corresponding stochastic atomic component

Figure 3.23: An example of transformation of an LMC to an SBIP model.

We apply the transformation rules (3.1) and (3.2) above to build the
corresponding stochastic component shown in figure 3.24b. It consists of
a single stochastic component having four control locations s1, s̄1, s2, and
s̄2, where s1 is the initial control location. In the obtained component,
probabilistic variables vps1 ∼ µ1 and vps2 ∼ µ2 model the probability transition
function in states s1 and s2 of the LMC. These are defined over domains
D1 = D2 = {s1, s2}. Moreover, deterministic Boolean variables va and vb are
used to model the labeling of the LMC states as follow. In the initial control
location, we assign va = true, vb = false, and vps1 = vps2 = s1.
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From location s1, a sample transition associated with vps1 leads to s̄1
from which a move transition to location s1 or s2 is performed depending
on the outcome of vps1 (s1 or s2). When moving to s2, variables va is set to
false, vb is set to true, and vps2 is set to s1. The same behavior is replicated
from location s2, that is, a sample transition associated this time with vps2
and leading to s̄2 is performed. This is followed by a move transition to s1
or s2 depending on the valuation of vps2 (s1 or s2). When moving to location
s1, va is set to true, vb is set to false, and vps1 is set to s1.

The SBIP component Bs obtained by the construction in Definition 3.12
is an LMC MBs

. While in general SBIP models have an MDP semantics,
relying on disjoint guards to capture the original model purely stochastic
behavior, prevents any non-determinism and produces an LMC semantics.

Obviously, the state space engendered by this component is bigger than
the original state space of M. This is due to locations {s̄ ∈ L}, added for
each state s /∈ DetM(S). Therefore, the state space of MBs

grows linearly
when compared to the original state space. Nevertheless, MBs

is equivalent
to M, when observing the relevant set of atomic propositions.

To prove the statement above, let us first take a look to the paths gen-
erated by MBs

. These are of the form r = s −→ s̄ −→ s� −→ . . ., where
s = (l;Xp;X). The corresponding traces are of the form σ = (Xp;X) −→
(X �p;X) −→ (X �p, X �) −→ . . ., that is, a succession of two steps, the first is a
sampling of probabilistic variables and the second is a deterministic update.
Whereas probabilities of probabilistic steps are given by π(s, s�), the tran-
sition probability function of M as specified by the transformation above,
deterministic steps have a probability one, hence they do not contribute on
the probability of the generated transition.

When considering Example 3.10 above, one should note that sample
transitions from s to s̄ induces two transitions (since vps1 is defined over D1).
For instance, the sample transitions from s1 to s̄1 induces transitions from
state (s1; (s1, s1); (t, f)) to states (s̄1; (s1, s1); (t, f)) and (s̄1; (s2, s1); (t, f))
respectively with probabilities 1

3 and 2
3 . Similarly, the one from s2 to s̄2 gen-

erates two transitions from state (s2; (s2, s1); (f, t)) to states (s̄2; (s2, s1); (f, t))
and (s̄2; (s2, s2); (f, t)) with the same probability 1

2 . This behavior is shown
in Figure 3.24a, which gives a clear idea about the type of traces that the
SBIP component may generate. For instance,

– σ1 = ((s1, s1); (t, f))
2
3−→ ((s2, s1); (t, f)) −→ ((s2, s1); (f, t)) −→ . . .,

when vps1 evaluates to s2 on transition sample from s1 to s̄1, and

– σ2 = ((s1, s1); (t, f))
1
3−→ ((s1, s1); (t, f)) −→ ((s1, s1); (t, f)) −→ . . .,

when vps1 evaluates to s1 on the same transition.

Coming back to the equivalence statement. Given the generated traces,
it suffices to specify the set of observable atomic propositions to be the
one of M. This is because building the corresponding stochastic atomic
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(a) Behavior of the SBIP component in Figure 3.24b.
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(b) Collapsed behavior of the SBIP component in Figure 3.24b.

Figure 3.24: Behavior of the obtained SBIP component from an LMC.

component entails additional labels (represented by probabilistic variables),
which are not relevant to observe. Furthermore, we do not observe states
induced by locations {s̄ ∈ L}. Concretely, given a trace σ = (Xp;X) −→
(X �p;X) −→ (X �p, X �) −→ . . . ∈ Traces(MBs

), we only observe those labels
corresponding to the state labels of M on locations L \ {s̄ ∈ L}. The
obtained traces are thus σ� = X −→ X � −→ . . ., where each transition have
a probability π(s, s�) since the ignored deterministic steps does not contribute
to the final probability. For instance, in the case of traces σ1 and σ2 shown

earlier, we get σ�
1 = (t, f)

2
3−→ (f, t) −→ . . . and σ�

2 = (t, f)
1
3−→ (t, f) −→

. . ., which are respectively equivalent to traces σM
1 = a

2
3−→ b −→ . . . and

σM
2 = a

1
3−→ a −→ . . . generated by M, the original LMC.

3.4.2 Modeling MDPs in SBIP

In this section we show that SBIP models can also capture general
MDP models. The transformation has the same philosophy as for LMCs,
albeit slightly different because of non-determinism, which engenders in this
case an additional step corresponding to the non-deterministic choice. Thus,
given an MDP M = �S,Act, ι,π,Σ, L�, the set of locations of the corre-
sponding SBIP component Bs = (L,P, T , l0,V) includes {s̃} in addition
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to S and {s̄} previously. Moreover, locations, are identified using actions
names when several actions are enabled from a given state. The set of ports
of the component is obtained by the set Act of M plus additional Act and
{sample}. Deterministic variables are obtained from the state labels as
for LMCs, while probabilistic ones are induced from probabilistic distribu-
tions associated with the MDP actions. Finally, Bs transitions are of three
types, corresponding respectively to a non-deterministic step (labeled with
�̄ ∈ Act), followed by a probabilistic step (labeled with sample), and finally
the actual move to the successor state (labeled with � ∈ Act). Formally,

Definition 3.13 (Syntactic Transformation of MDPs to SBIP). Given an
MDP M = �S,Act, ι,π,Σ, L�, we define the syntactic transformation from
M to a stochastic atomic component Bs = (L,P, T , l0,V) as follows:

– L = S ∪ {(s̄×Act) for each s /∈ ProbM(S)} ∪ {(s̃×Act) for each s /∈
DetM(S)},

– l0 = s0, such that ι(s0) = 1,
– P = Act ∪ Act ∪ {sample} is the set of ports,
– V = Vd ∪ Vp, where Vd = {vap for each ap ∈ AP} and Vp = {vps,� for

each s /∈ ProbM(S) and s /∈ DetM(S) | ∀s� �-successor of s, µs : S ⊂
D → [0, 1] and µs,�(s

�) = π(s, �, s�)} ∪ {vps for each s ∈ ProbM(S) and s /∈
DetM(S) | ∀s� �-successor of s, µs : S ⊂ D → [0, 1] and µs(s

�) =
π(s, �, s�)},

– T contains transition of the form (s, prt, g, (fd, fp), s�), where s, s� ∈
L, prt ∈ P, g is defined over Bool(V), and fd and fp are respectively
the deterministic and probabilistic update functions, such that,

s
�−→ s� ∈ π, such that |Act(s)| > 1 and π(s, �, s�) < 1

(s, �̄, true, ∅, (s̄, �)), ((s̄, �), sample, true, (∅, vps,�), (s̃, �)),
((s̃, �), �, vps,� == s�, (�(s, s�), ∅), s�) ∈ T

(3.3)

s
�−→ s� ∈ π, such that |Act(s)| > 1 and π(s, �, s�) = 1

(s, �̄, true, ∅, (s̄, �)), ((s̄, �), �, true, (�(s, s�), ∅), s�) ∈ T (3.4)

s
�−→ s� ∈ π, such that |Act(s)| = 1 and π(s, �, s�) < 1

(s, sample, true, (∅, vps), (s̃, �)),
((s̃, �), �, vps == s�, (∅,�(s, s�)), s�) ∈ T

(3.5)

s
�−→ s� ∈ π, such that |Act(s)| = 1 and π(s, �, s�) = 1

(s, �, true, (�(s, s�), ∅), s�) ∈ T (3.6)

In the previous definition, one can distinguish two general cases with
respect to the type of the transition to deal with in the given MDP. The
first situation is when the transition label is the unique enabled action �
from state s, that is, Act(s) = {�}. This corresponds to Rules (3.5) and
(3.6) illustrated respectively in Figures 3.25d and 3.25e. In such case, we
have almost the same rules for building an LMC transition (see Figure 3.22c
and 3.22b), since there is no non-determinism. With the difference of the
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(e) Rule (3.6)

Figure 3.25: Transformation rules of MDPs to SBIP model.

ports names here given by the MDP actions. The second case is when the
transition is labeled with an action, which is one among many other enabled
from the corresponding state s, that is, |Act(s)| > 1. In this case, there are
two possible situations. Depending whether the transition have a probability
one (deterministic) or not, Rule (3.3) or (3.4) is applied. The first, have a
non-deterministic step from s to (s̄, �) followed by a probabilistic step from
(s̄, �) to (s̃, �), and finally a deterministic step from (s̃, �) to s�, while the
second does not have a probabilistic step and moves directly from (s̄, �) to
s� as shown in Figures 3.25b and 3.25c.

Example 3.11 (Transforming MDPs to SBIP Components). Figure 3.26a
shows an MDP M consisting of states S = {s1, s2, s3} labeled respec-
tively by atomic propositions a, c, and b. Form s1, the initial state, a non-
deterministic choice exists between actions � and ς, i.e., Act(s1) = {�, ς},
where π(s1, �, s1) = 3

4 , π(s1, �, s2) = 1
4 and ,π(s1, ς, s3) = 1. From states

s2 and s3, only purely probabilistic choice exists, i.e., Act(s2) = {κ} and
Act(s3) = {ϑ}, where π(s2,κ, s2) = 1, π(s3,ϑ, s3) =

1
2 , and π(s3,ϑ, s2) =

1
2 .
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Figure 3.26: An example of transformation of an MDP to an SBIP model.

To build the SBIP component corresponding to M, we proceed stepwise.
First, deterministic variables va, vb, vc are obtained directly from labels a, b, c
of M. Moreover, we will have two probabilistic variables vps1,� ∼ µ1,� corre-
sponding to action � from s1, and vps3 ∼ µ3 corresponding to action ϑ from s3.
Note that the probabilistic variable vps1,� is identified using the action name
in addition to the state name because s1 /∈ ProbM(S), whereas, variable vps3
is only identified using the state name since s3 ∈ ProbM(S). Let us also
remark that states s2 ∈ ProbM(S) and s1, s2 ∈ DetM(S). The probabilistic
variable vps1,� is defined over domains D1,� and vps3 is defined over domain
D3. Transitions labeled with � from s1 are transformed using Rule (3.3)
since |Act(s1)| > 1 and π(s1, �, s1/s2) < 1 as shown in Figure 3.26b. In
the same figure we can see that the transition s1

ς−→ s3 is transformed
using Rule (3.4) because |Act(s1)| > 1 and π(s1, ς, s3) = 1, transitions la-
beled with ϑ from s3 are transformed using Rule (3.5) because |Act(s3)| = 1
and π(s3,ϑ, s3/s2) < 1. Finally transition s2

κ−→ s2 is transformed using
Rule (3.6) since |Act(s2)| = 1 and π(s2,κ, s2) = 1.

As expected, the built SBIP component Bs has an MDP semantics MBs
.

Similarly to LMCs, capturing MDPs behavior results on a bigger state space.
Definition 3.13 shows that, besides locations corresponding to the original
MDP states, additional locations are added for each state, in case of non-
determinism as stipulated by the construction rules. Rule (3.3) induces three
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locations for each state in the MDP enabling non-deterministic and proba-
bilistic choices, while Rule (3.6) induces one location for each state enabling
purely deterministic choice. Finally, Rules (3.4) and (3.5) induce two loca-
tions for each state in the MDP. All these cases engender a stochastic atomic
component with linearly bigger state space. Nonetheless, several generated
states does not bring useful information and thus will be ignored as for
LMCs. Concretely, we only consider states induced by locations L \ {s̄∪ s̃}.
Furthermore, we only observe deterministic variables corresponding to the
MDP labels. Hence, we can follow the same procedure for LMCs and observe
that MBs

is structurally equivalent to the original MDP M.

(s1; (s1, s1); (t, f, f))

p�2

p2

(s2; (s2, s1); (f, f, t))
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((s3,ϑ); (s1, s2); (f, t, f))

p�1((s̃1, �); (s2, s1); (t, f, f))

(a) Corresponding stochastic atomic component behavior.
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4
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4
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2

(b) Corresponding stochastic atomic component collapsed behavior.

Figure 3.27: Behavior of the obtained SBIP component from an MDP.

For instance, when considering Example 3.11, the induced behavior of Bs

in Figure 3.26b is given in Figure 3.27a. This shows the potential traces that
may be generated when executing Bs. For instance, given a run (s1; (s1, s1);

(t, f, f)) −→ ((s̄1, �); (s1, s1); (t, f, f))
3
4−→ ((s̃1, �); (s1, s1); (t, f, f)) −→ (s1;

(s1, s1); (t, f, f)) −→ . . ., the associated trace when observing all the states

and variables is σ = ((s1, s1); (t, f, f)) −→ ((s1, s1); (t, f, f))
3
4−→ ((s1, s1);

(t, f, f)) −→ ((s1, s1); (t, f, f)) −→ . . ., whereas, if we only observe the spec-
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ified set of states and variables we obtain σ� = (t, f, f)
3
4−→ (t, f, f) −→ . . .,

which is equivalent to the trace σM = a
3
4−→ a −→ . . . of the original MDP.

3.5 Conclusions

The proposed stochastic extension of the BIP formalism enables build-
ing stochastic models in a component-based fashion, that is, in an itera-
tive and incremental way as explained in [24]. It allows for capturing non-
deterministic as well as purely stochastic behaviors by using priorities and
schedulers.

We draw the reader’s attention that in this work, we are not concerned
with finding an optimal scheduler given certain requirements as in [108]. This
is a separate problem that has its own challenges and is out of the scope of
this dissertation. Our concern here is, to build a purely stochastic SBIP
model, and to use SMC to analyze it with respect to different properties of
interest.

As stated in the beginning of the previous section, our stochastic exten-
sion inherits BIP expressiveness. We have shown how straightforward it is to
model MDPs or LMCs using the SBIP formalism. This have been already
used in many case studies covering a multitude of domains such as ran-
domized distributed protocols [165], automotive [147, 146], avionics [25, 27],
many-cores embedded systems [163], multimedia [178], etc. Although, we
recognize some limitations and possible amelioration discussed in more de-
tails in the conclusion of the dissertation. For instance,

– The size of the induced state space when modeling MDPs or LMCS
in SBIP is significant. However, this is not an issue in the context of
this work since analysis using SMC do not require to build the whole
state space and store it. Furthermore, in the next chapter, we propose
a technique aiming to reduce state space size and hence to improve the
performance of SMC.

– Uniform schedulers to resolve non-determinism is the default choice we
made and the easiest to implement. Other alternatives enabling the
use of different probability distributions is discussed in the perspective
section of the conclusion of the dissertation.

– Currently, SBIP allows only to capture discrete time models. Nonethe-
less, it may be extended to cover continuous time by allowing contin-
uous data domains for example. We speculate that this will have a
Generalized Semi Markov Process (GSMP) semantics.

– For now, we capture MDPs and LMCs behaviors in a single BIP com-
ponent. What would be interesting is to capture it over several SBIP
components. This is quite challenging because it will need to synthe-
size the corresponding glue.
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From the application perspective, one may ask where to find the proba-
bility distributions to be used in the model under construction. The origin
of such distributions depends on the application domain of the system to
be modeled. For instance, this work focuses on the design of manycore em-
bedded systems. In Chapter 6, we present an approach based on statistical
inference to learn probability distributions for the SBIP model. Before reach-
ing that point, in the next chapter, we introduce an abstraction technique
aiming to improve statistical model checking scalability.



Chapter 4
Stochastic Abstraction

In the previous chapters, we recalled the probabilistic model checking
(PMC) setting and we saw that it is recognized among the most success-
ful approaches for quantitative analysis of stochastic models. We discussed
the two main techniques that implement it (numerical and statistical) with
more focus on SMC, which we are adopting in this work for system-level per-
formance evaluation. These are shown to be more efficient handling bigger
models, since relying on simulation and statistics.

In spite of its wide use and acceptance, probabilistic model checking tech-
niques still encounters significant difficulties when used on real-life systems.
First, the stochastic modeling of these systems might be extremely cumber-
some. Actually, high expertise is generally required to produce any kind of
meaningful formal model. For stochastic models, besides functional aspects,
they must include stochastic information in form of probabilities. These are
hardly available and usually incomprehensible by an average system designer.

Second, whenever such stochastic models exist, they can be very detailed
and contain too much information than actually needed for analysis purposes.
This is usually the case when stochastic system models are automatically
generated from higher level descriptions, e.g., as part of various design flows
[22]. For instance, in the case of SMC, Monte-Carlo simulation becomes
problematic as individual simulation time (time to obtain a single execution
trace) could be very long. Henceforth, it could not be possible to obtain any
but only a limited number of traces and consequently, prevent the use of
SMC techniques 1. Moreover, it is worth mentioning that for verification of
system-level properties, the observation of any such trace in detail is rarely
needed. Most of the time, such properties are expressed in terms of few
observable actions/states of the system while the remaining are completely
irrelevant and can be safely ignored.

1. Similarly, numerical techniques could not be applied in such settings because ex-
haustive exploration will not be feasible due to size of the generated models.

79



80 CHAPTER 4. STOCHASTIC ABSTRACTION

In this chapter, we aim at improving the general applicability of proba-
bilistic model checking, especially the SMC technique which will be used in
the next part of the dissertation for system-level performance analysis. To
this end, we propose the combined use of projection and machine learning
techniques to automatically construct faithful abstractions of system mod-
els and therefore to overcome the issues discussed earlier. To decide on the
appropriate level of abstraction to produce, we suggest using the properties
under verification as a guide.

Nowadays, machine learning is an active field of research and learning
algorithms are constantly developed and improved in order to address new
challenges and new classes of problems (see [202] for a recent survey on
grammatical inference). In our context, learning is combined with projection
as follows. Given a property of interest and a (usually large) sample of
partial traces generated from a concrete system (or system model), we first
use projection to restrict the amount of visible information on traces to
the minimum required to evaluate the property and then, use learning to
construct an abstract, probabilistic model which conforms to the abstracted
sample set. Under some additional restrictions detailed later in this chapter,
the resulting model is a sound abstraction of the concrete model, in the
sense that the probability to satisfy the property is approximately the same
in the learned and the original model. Hence, it can be used to correctly
predict/generate the entire abstract behavior of the system, in particular, as
an input model for SMC.

The above approach has multiple benefits. First of all, the sample set of
traces can be generated directly from an existing black-box implementation
of the system, as opposed to a concrete detailed model. In many practical
situations, such detailed system models simply do not exist and the cost
for building them using reverse-engineering could be prohibitive. In such
cases, learning provides an effective, automated way to obtain a model and
to get some valuable insight on the system behavior. The use of projection
is also mostly beneficial. In most of the cases, the complexity of the learning
algorithms as well as the complexity of the resulting models are directly
correlated to the number of distinct observations of traces. Moreover, under
normal considerations, a larger alphabet requires a larger size for the sample
set. Intuitively, the more complex the final model is, the more traces are
needed to learn it correctly. Nevertheless, one should mention that a bit of
care is needed to meaningfully combine projection and learning. That is,
projection may change a deterministic model into a non-deterministic one,
and henceforth has an impact on the learning algorithms needed for it.

We start the chapter by a brief reminder of some probabilistic model-
ing and learning techniques. Then, we detail the joint use of projection and
learning as a method to compute an appropriate system abstraction for anal-
ysis. The convergence and the correctness of the proposed method are then
discussed and assumptions are clearly stated. We finally show the concrete
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use of the method on Herman’s Self Stabilizing Algorithm with an increasing
number of processes, before concluding the chapter and presenting a bench
of related works.

4.1 Preliminaries

We first recall and define some important notions for the forthcoming
development. We mainly recall the concept of determinism in the context
of LMCs. We also provide a definition for probabilistic automata as an
alternative model for stochastic systems. These are also the models that most
of the learning algorithms were designed for. Finally, we give an overview of
probabilistic learning techniques.

4.1.1 Additional Stochastic Models

Probabilistic Finite Automata

Probabilistic finite automata (PFA) represent an alternative for modeling
probabilistic systems. They are defined similarly to LMC with the difference
of having termination states.

Definition 4.1. (Probabilistic Finite Automata) The probability transition
function π is now defined on S×S ∪ {$} and π(s, $) stands for the probability
to terminate execution at state s. Henceforth, the associated notions of
paths and traces correspond to finite paths and finite traces for an LMC.
The probability of a finite path r = s0s1...sn of a PFA is

P (r) = ι(s0) · (
n−1�

i=0

π(si, si+1)) · π(sn, $).

Deterministic PFA are defined similarly to DLMCs and are denoted as
DPFA.

4.1.2 Probabilistic Learning Techniques

Learning probability distributions over traces is a hard problem [76] with
potential applications in a wide range of domains, far beyond formal veri-
fication. Many methods have been proposed in the research literature and
are continuously improved and challenged on learning research competitions
[202]. The family of state merging techniques is one of the most success-
ful nowadays. Intuitively, these techniques proceed by first constructing
some large automata-based representation of the set of input traces and
then progressively compacting them, by merging states, into a smaller au-
tomaton, while preserving as much as possible trace occurrence frequen-
cies/probabilities. Different algorithms in this family can learn either DPFA
models [54, 78, 77] or general PFA models [193, 180, 81].
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The AAlergia Algorithm

AAlergia [153] is a state merging algorithm that exclusively learn de-
terministic models. It is a variant of the Alergia algorithm [54] proposed
by Carrasco and Oncina in early nineties. Given a sample of traces, the
algorithm proceeds in three steps, as depicted in Figure 4.1.

Step 1: it builds an intermediate representation, named Frequency Pre-
fix Tree Acceptor (FPTA), which is a restricted form of DPFA that
represents all the traces in the input sample and their corresponding
frequencies (number of occurrence in the sample).

Step 2: based on a compatibility criterion parametrized by αA (see [153]
for details), it iteratively merges states of the FPTA having the same
labels and similar probability distributions until reaching a compact
DPFA.

Step 3: it transforms the obtained DPFA into a DLMC model by normal-
izing the probabilities of termination.

Step 3Step 2 DLMC
A sample of N traces

Step 1
FPTA DPFA

αA

Figure 4.1: Main steps of the AAlergia algorithm.

AAlergia is proven to converge to the correct model in the limit 2 if the
input traces are generated randomly, and with random lengths, from an
LMC model [153]. A first consequence concerns verification on DLMCs and
ensures that, in the limit, a given LTL property will hold on the original and
the learned model with approximately the same probability. This result is
partially extended to LMC. That is, for arbitrary Markov chain models, the
algorithm might not converge to the good model in general. In the case of
input traces from a non-deterministic LMC model (which moreover, does not
have an equivalent deterministic representation), as the sample size increases,
AAlergia will build a sequence of DLMCs (usually, of increasing size) tending
to approximate the original model. It is proven that, in the limit, these
learned DLMC models provide an increasingly better approximation for the
initial (prefix) behavior, and hence preserve the satisfaction of bounded LTL
properties.

2. When the sample size tends to be infinite, the learned model converges to the original
system. This is known as identification in the limit and is widely used in grammatical
inference [99].
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4.2 Abstraction via Learning and Projection

The verification problem in the stochastic setting amounts to compute
P (M |= ϕ) for an LMC model M and an LTL property ϕ. In several cases,
M is not explicitly known, that is, it could be a black-box probabilistic
system which can be executed arbitrarily many times in order to produce
arbitrarily long traces. As stated in the introduction of the chapter, produc-
ing any stochastic system model is inherently difficult. Moreover, deciding
on the appropriate level of abstraction of the model, that is, the amount of
details to model/ignore, is an open question and is quite challenging. Finally,
the verification complexity is proportional to the produced model size.

Due to these reasons, we would like to avoid the verification of ϕ on
the original model M. Instead, we would like to perform it on a smaller,
abstract model M� which preserves the satisfaction probability of ϕ, that is,
P (M |= ϕ) = P (M� |= ϕ). We propose hereafter a method to compute such
an abstraction M� by combining learning and a projection operator on traces
parametrized by the property ϕ. The idea is based on the observation that,
when checking a model against a property, only a subset of the propositions
is really relevant. In fact, only the atomic propositions mentioned explicitly
in the property are useful while the others can be safely ignored.

The proposed approach is depicted in Figure 4.2. It consists of initially
generating a finite set of random finite traces T (with random lengths) from
M (the sampling operation). In a second step, a projection is applied on
traces T in order to restrict the atomic propositions to the ones needed for
the evaluation of the property ϕ. The projection is guided by the property
ϕ as detailed below. Third, the set of projected traces is used as an input
to a learning algorithm. For the experiments, we will use the AAlergia
algorithm [153], however, any other algorithm could be used. The output
of the learning step denoted M� on Figure 4.2 will be used to evaluate the
property of interest ϕ.

traces
(Learning)(Execution)

(Learning)
traces

(Relabeling)

(Execution)

T M �

Ta (M� ≈ Ma)

(M� ≈ M)

M�

(Projectionϕ)

M = �S, τ,π,Σ, L�

Ma = �S, τ, π,Σ, La�

Figure 4.2: Illustration of our approach for learning abstract models.

It is worthwhile to mention that, in our approach, the sampling step
(which could be time consuming depending on the used sample size) is done
only once, while the following steps (projection and learning) are repeated
given different properties 3. Our approach ensures a significant time reduc-

3. This is not always need as will be shown later. Basically, we redo projection only
for those classes of properties that have different sets of symbols.
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tion with respect to applying SMC directly on the black-box system since
it generally requires trace re-sampling every time. In [188], a method is
proposed to avoid re-sampling in a slightly different setting, but it raises
confidence issues as discussed in the related work section at the end of the
chapter. In addition, some SMC algorithms, besides their termination guar-
antee, might potentially need a huge number/length of traces depending on
the required confidence level.

The proposed approach is sound under some conditions. Note that a
projection may potentially introduce non-deterministic behavior at the level
of traces. Consequently, we need to distinguish several cases. The first one
is when the traces are generated from a DLMC and the projection operation
does not introduce any non-determinism. In this case any learning algorithm,
for instance AAlergia, works. Another case is when the traces are generated
from an LMC and/or the projection introduces non-determinism. This case
is divided into two sub-cases depending on the type of non-determinism.
If the non-deterministic model has an equivalent deterministic one, then
any learning algorithm can be used. Otherwise, one needs to use learning
algorithms capable to learn non-deterministic models such as [193, 81].

Next, we detail the main steps of the approach and illustrate them on
the Craps Gambling Game example. The correctness is formally established
by Theorem 4.1.

4.2.1 Abstraction Steps

In this subsection, we illustrate the different steps of the abstraction
approach on the Craps Gambling Game model presented in Chapter 2. We
first define the projection operation and depict the learning phase using the
AAlergia algorithm. We then show the learned models obtained for two
example properties. Finally, we provide verification results on the obtained
models using SMC.

Projection

The projection operation is defined on sample traces generated from the
stochastic system, so as to reduce the number of labels and henceforth, later
on, the number of states in the learned model. In this work, we introduce
a first syntactic definition of a projection operator. It intuitively consists of
ignoring the atomic propositions that are not relevant to the property under
verification as formally defined below.

Definition 4.2. Given a property ϕ, we define Vϕ ⊆ AP the support of ϕ
as the set of atomic propositions occurring explicitly in ϕ.

Definition 4.3. The projection operator Pϕ : Σ∗ → Σ∗ is defined as

Pϕ(σ0σ1...σn) = σ�
0σ

�
1...σ

�
n
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where σ�
i = σi ∩ Vϕ for all i ∈ [0, n].

Given the definitions above, one can easily see that for two different
properties ϕ1 and ϕ2, the projection operation may produce the same set
of traces, if they have the same support, that Vϕ1 = Vϕ2 . We define a class
of properties as the set of properties that have the same support. For such
properties, the projection and learning steps are required once. Furthermore,
if the support of ϕ1 is only a subset of ϕ2 (Vϕ1 ⊂ Vϕ2), then the learned model
given ϕ2 may be used to verify both properties.

Example 4.1 (Projection on the Craps Gambling Game Traces). Given a
set T of traces generated from the Craps Gambling Game model in Fig-
ure 2.1 and the properties ϕ1 = F won and ϕ2 = F (won ∨ lost), we apply
Definitions 4.2 and 4.3 respectively to compute the corresponding supports
Vϕ1 = {won}, Vϕ2 = {won, lost} and the sets of projected traces Ta1 and
Ta2 below.

– T = {start won, start lost lost, start won won won won won won won
won won, start point5, start point10 point10 point10 point10 point10,
start point9 point9, . . .};

– Ta1 = {τ won, τ τ τ , τ won won won won won won won won won,
τ τ , τ τ τ τ τ τ , τ τ τ , . . .};

– Ta2 = {τ won, τ lost lost, τ won won won won won won won won won,
τ τ , τ τ τ τ τ τ , τ τ τ , . . .}

Learning

We briefly illustrate the learning phase using AAlergia on the running
example. Figure 4.3 shows three abstract models of the Craps Gambling
Game obtained from the set T of 5000 traces generated from the model in
Figure 2.1 (partially presented in Example 4.1). One can note from this figure
the important reduction of the sizes of the obtained models with respect to
the original one. Figure 4.3a shows the model learned by AAlergia taking
as input the set Ta2 , that is, with respect to property ϕ2 = F (won ∨ lost).
Figure 4.3b is obtained by applying AAlergia on the set Ta1 , that is, projected
with respect to ϕ1 = F won. Remark that this model is not equivalent but
only an approximation of the original model in Figure 2.1. That is, in the
latter there exists some non null probability to never reach the won state,
whereas, in the learned model the won state is reachable with probability 1.
This approximation could however improve if a larger set of traces is used
for learning as stated in the previous section. Finally, the third learned
model shown in Figure 4.3c is equally obtained from Ta1 but when using an
algorithm able to learn non-deterministic models such as the one in [193].
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Figure 4.3: Learned Abstract Models of the Craps Gambling Game. 4.3a
and 4.3b are obtained using AAlergia, while 4.3c is obtained using [193]. For
all of them, we used 5000 traces generated from the model in Figure 2.1 and
performed projection with respect to properties ϕ1 and ϕ2.

Abstract Model Analysis

Once the model is learned, we evaluate the property used for projec-
tion on the obtained abstraction. Table 4.1 provides results of verifying the
property ϕ1 = F won on the obtained Craps Gambling Game models. It
shows that the model in Figure 4.3a exhibits similar probability to the orig-
inal Craps Gambling Game model, whereas the one in Figure 4.3b shows
a different result. The reason is that the projection performed in this case
introduced non-determinism in the input sample. In addition, it seems that
in this case there is no equivalent deterministic model that could be learned
by AAlergia. Finally, note that the model in Figure 4.3a is obtained with
respect to ϕ2 having the support Vϕ2 = {won, lost} and that we were able
to use it to verify ϕ1 since Vϕ1 = {won} ⊆ Vϕ2 as explained earlier.

Models P (ϕ1)

Scenario 1(Figure 4.3a) 0.485

Scenario 2 (Figure 4.3b) 1

Original Model (Figure 2.1) 0.493

Table 4.1: Verification results of ϕ1 on the original and the abstract Craps
Gambling Game models using SMC (PESTIM).

4.2.2 Correctness Statement

The correctness of our approach is formally stated as follows.
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Theorem 4.1. Let M be an LMC model and let ϕ be an LTL property. Let
M� be the learned model from a sample set of size n of traces generated from
M and projected according to ϕ as in Definition 4.3. Then, in the limit, M�

is a correct abstraction for the verification of ϕ, that is

P ( lim
n→∞

P (M |= ϕ) = P (M� |= ϕ)) = 1

if either
i) ϕ belongs to the bounded fragment BLTL and the learning algorithm

converges for DLMC models, or
ii) the learning algorithm converges for arbitrary LMC models.

Proof. First, let us remark that M� is constructed as illustrated by the thick
line in Figure 5.1. Let us moreover observe that any sample set of projected
traces Ta obtained from M is equally obtained from Ma, that is, from the
"abstracted" version of M where only the labeling function has changed from
L into La by taking La(s) = L(s) ∩ Vϕ, for all s ∈ S. In other words, the
left-hand side of the diagram shown in Figure 5.1 commutes. Henceforth, M
and Ma are identical with respect to the satisfaction of ϕ. The underlying
set of runs and their associated probabilities are the same in M and Ma.
As the atomic propositions occurring in ϕ are preserved by relabeling, it
obviously holds that P (M |= ϕ) = P (Ma |= ϕ).

Moreover, learning from the sample set Ta leads eventually to Ma. That
is, under particular restrictions specific to the learning algorithms and limit
conditions, the learned model M� will be an equivalent representation of
Ma, that is, M� ≈ Ma. We distinguish two cases depending on the learning
algorithm:

i) In the case of deterministic models learning (e.g., AAlergia), the learned
model M� is provable equivalent only for a deterministic input model
Ma. But, in addition, for the general case, this models is also pro-
viding good approximations for the initial (prefix) behavior of Ma

and hence preserve the probability of satisfaction for properties in the
BLTL fragment (see Theorem 3 in [153]). Thereof, by using AAlergia
or a similar learning algorithm, it holds that P (limn→∞ P (Ma |= ϕ) =
P (M� |= ϕ)) = 1 whenever ϕ belongs to BLTL.

ii) In the general case of non-deterministic models learning, it is guar-
anteed in the limit that Ma ≈ M�. Thereof, one can safely conclude
that P (limn→∞ P (Ma |= ϕ) = P (M� |= ϕ)) = 1 for any ϕ.

Henceforth, in both cases it holds that

P ( lim
n→∞

P (M |= ϕ) = P (M� |= ϕ)) = 1 (4.1)

Table 4.2 summarizes the key results of the abstraction approach. The �
symbol identifies the case where the used learning algorithm is only able to
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learn DLMCs (such as AAlergia) and when M is non-deterministic (either
inherently or because of projection) and ϕ is an LTL property. In general,
equality 4.1 does not hold in this scenario. However, when there exists an
equivalent deterministic model to M, this may hold.

Learning Algorithm

Converge to a DLMC M� Converge to an LMCM�

M DLMC LMC (D)LMC

ϕ (B)LTL BLTL LTL (B)LTL

Equality 4.1 � � � �

Table 4.2: Summary of the possible settings and the corresponding results.

4.3 Herman’s Self Stabilizing Algorithm

To experiment our approach, we use the Herman’s Self Stabilizing Pro-
tocol [111]. The goal of such a protocol is to perform fault tolerance by
enabling a distributed system starting in an arbitrary state to converge to a
legitimate one in a finite time. Given a token ring network where the pro-
cesses are indexed from 1 to M (M must be odd) and ordered anticlockwise,
the algorithm operates synchronously. Processes can possess tokens, which
circulate in one direction around the ring. At every step, each process with
a token tosses a coin. Depending on the outcome, it decides to keep it or to
pass it on to the right neighbor. When a process holds two tokens, they are
eliminated. Thus, the number of tokens remains odd. The network is said
to be stable if exactly one process has a token. Once such a configuration is
reached, the token circulates forever, fairly, around the ring.

We apply our abstraction approach to several configurations of the pro-
tocol (M = {7, 11, 19, 21}). Note that as the number of processes in-
creases, the state space becomes very large and makes the verification quite
heavy even using simulation-based methods such as SMC. We use AAler-
gia for learning and show that we are able to reduce the state space while
still accurate for several properties. We consider the bounded properties
ϕL = P (true UL stable) and ψL

M = P (tokenM UL stable) where M is the
number of processes in the network and L is a bound. The first property
states that the protocol reaches the stable state in L steps whatever the
intermediate ones are. The second specifies in addition that the protocol
directly moves from M tokens to the stable state (1 token), that is, all the
states before stable are tokenM. We first apply the projection on the traces
generated from the different configurations using the properties supports
VϕL = {stable} and VψL

M
= {tokenM, stable}. Then, we use AAlergia to

learn the corresponding models shown in Figure 4.4. The models obtained
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for M = {19, 21} are similar to M = 11. Finally, we verify the obtained
abstractions with respect to different instances of the properties ϕL and ψL

M ,
that is, for various values of L and M .
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Figure 4.4: Abstract Herman’s Self Stabilizing Protocol models learned using
AAlergia with respect to ϕ and ψ, for M = 7 (a,b) and M = 11 (c,d).

Table 4.3 summarizes the learned models characteristics, AAlergia perfor-
mance when combined with projection, and verification results using PRISM
[139]. In this table, the first two columns list the used configurations and
their corresponding sizes. The third column depicts the properties under
consideration. Information about the learning process are then detailed: αA

is the AAlergia compatibility criterion parameter, Size is the learned model
size, and Time is the learning time in seconds. The last part concerns the
comparison of the original and the learned model in term of properties prob-
abilities and verification time. The verification part relies on the PESTIM
algorithm which is parametrized by two confidence parameters δ and α.

The results in Table 4.3 point out two important facts. The first is the
drastic reduction of the learned models sizes and SMC time compared to the
original Herman’s Self Stabilizing protocol model. Figure 4.5 summarizes the
SMC time of ϕ10 for the learned and the original models when increasing
the number of processes M . Figure 4.5 and the Table 4.3 allow us to see
how big is the SMC time of the original model with respect to the abstract
one. Figure 4.5 shows in addition the learning time which is also far below
the SMC time of the original model for M > 11. Moreover, one can see that
the time to learn plus the time to verify the abstract model is below the
SMC time of the original model for M > 11, which confirms the pertinence
of our approach for big models. For instance, for M = 19, learning takes
about 83 seconds and verification takes about 0.307 seconds while verifying
the original model takes about 13 hours. Furthermore, since the sampling
step is done only once in our approach, its time impact is reduced when
considering many properties. The second fact shown in Table 4.3 is that,
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Size Prop.
Learning SMC

δ,α
Learned Model Original Model

αA Size Time(s) Prob. Time(s) Prob. Time

M = 7 27

ϕ10 [2−9, 20] 3 69.70
10−2, 10−1 0.874 0.180 0.874 3.40 s
10−2, 10−2 0.880 0.320 0.873 5.44 s

ψ30 [2−6, 26] 3 45.98
10−2, 10−1 0.112 0.050 0.112 0.93 s
10−2, 10−2 0.109 0.111 0.111 1.51 s

φ [2−8, 20] 4 167.50 – 0.160 0.005 0.167 0.02 s
Sample Size = 5000

M = 11 211

ϕ10 [2−4, 26] 2 54.67
10−2, 10−1 0.517 0.250 0.543 33.1 s
10−2, 10−2 0.518 0.440 0.543 58.3 s

ψ30 [2−6, 26] 3 60.22
10−2, 10−1 0.011 0.039 0.012 12.1 s
10−2, 10−2 0.012 0.070 0.011 21.7 s

Sample Size = 5000

M = 19 219

ϕ10 [2−4, 26] 2 82.95
10−2, 10−1 0.197 0.180 0.148 8.1 h
10−2, 10−2 0.191 0.307 0.151 13.3 h

ψ30 [2−6, 26] 3 172.58
10−2, 10−1 0.000 0.040 0.0001 5.7 h
10−2, 10−2 0.000 0.074 0.0008 10.1 h

Sample Size = 10000

M = 21 221
ϕ10 [2−10, 20] 3 253.71

10−2, 10−1 0.169 0.355 0.172 34 h
10−2, 10−2 0.163 0.616 − > 5 d

Sample Size = 10000

Table 4.3: Abstraction and verification results of ϕ10 and ψ30 using PESTIM.

besides this reduction, the models are quite accurate in terms of probability
measures as clearly shown in Figures 4.6, 4.7a, and 4.7b as well. These
figures show the verification results of ϕL (for different L) on the original
protocol versus the learned model for all the considered configurations. For
example, for M = 21, the probability to satisfy ϕ10 is 0.172 for the original
model and 0.169 for the learned one, that 3. 10−3 of inaccuracy.

It is worth to mention that the results for M = 21 shown in Figure 4.7b
are obtained using the PESTIM algorithm with confidence δ = 5.10−2,α =
5.10−3. That is, with less confidence when compared to the results in Table
4.3. This choice is made to reduce the experiments time since the goal of
the figure is to show the global behavior of the learned model with respect
to the original one. It was sufficient in this case to take low confidence level
to get very similar shapes.

In addition to PESTIM, we used the SPRT technique to validate with
more confidence the results of the property ψL

M = P (tokenM UL token1) ≥ θ
for M = 7, 11. We fixed the confidence parameters to α = β = 10 −3

and δ = 10−3. Table 4.4 shows the verification results and performance
of the SMC algorithm (verification time and number of traces) for different
L values. Note that for this experiment, we used the same model learned
previously. In this table, θ is the probability range to satisfy ψL

M , Traces
is the number of traces used by SPRT, and Time is the SMC time. This



CHAPTER 4. STOCHASTIC ABSTRACTION 91

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

Number of processes in Herman's Protocol

T
im

e
 in

 s
e

c
o

n
d

s

7 11 19 21

SMC Time - Original model
SMC Time - Learned model
Learning Time

Figure 4.5: Statistical Model Checking Time of ϕ10: original vs. abstract
Herman’s Self Stabilizing Protocol model. Obtained using PESTIM algo-
rithm with δ = 10−2,α = 10−2.

Figure 4.6: ϕL verification results using PESTIM for M = {7, 11}.

table confirms the observation made in the previous experiment, that is,
the reduction of the SMC time when using the abstract model while the
probability estimation is still accurate.

Results on Unbounded LTL using Numerical PMC We did an ad-
ditional experiment on the Herman’s Self Stabilizing protocol with M = 7
in order to investigate the usability of this instance of the approach for un-
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(a) M = 19.

(b) M = 21.

Figure 4.7: ϕL verification results using PESTIM for M = {19, 21}.

bounded LTL properties (all the considered properties so far were bounded).
We considered the property φ = P (N(token5 U stable)) which queries the
model with respect to the probability to reach a stable state directly from a
state with 5 tokens. N is the Next operator and is used for technical reasons.
Since the initial state of the Herman’s Protocol with M = 7 has 7 tokens,
we use Next to avoid this state. Otherwise, the probability of φ will be 0.

The learned abstract model corresponding the this experiment is shown
in Figure 4.8 and the verification results are depicted in Table 4.3. The
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L
Original Model Learned Model

θ Traces Time(s) θ Traces Time(s)

M = 7
L = 1 [0.109, 0.110[ 622018 25.643 [0.107, 0.108[ 588357 1.363
L = 30 [0.111, 0.112[ 622834 25.749 [0.108, 0.109[ 533885 1.282
L = 65 [0.111, 0.112[ 651434 26.756 [0.108, 0.109[ 476883 1.118

M = 11
L = 1 [0.011, 0.012[ 147178 85.135 [0.012, 0.013[ 163600 0.411
L = 30 [0.011, 0.012[ 105362 60.206 [0.013, 0.014[ 098493 0.262
L = 65 [0.011, 0.012[ 137469 80.648 [0.013, 0.014[ 248300 0.564

Table 4.4: Statistical Model Checking of ψL
M on the original and the learned

Herman’s Self Stabilizing Protocol models. Obtained using the SPRT algo-
rithm with α = β = 10 −3, δ = 10−3.
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Figure 4.8: Abstract Herman’s Self Stabilizing Protocol model with M = 7
using the AAlergia algorithm. Obtained with respect to property φ.

obtained results show that the probability of satisfying φ is almost the same
for the abstract and the original protocol models. Concretely, we obtained
0.160 for the abstract model and 0.167 for the learned one. This is possible
(to check unbounded LTL properties on the abstract model with a good
accuracy) because, in this case, there exist an equivalent deterministic model
for the original Herman’s Self Stabilizing protocol (which encompasses non-
determinism) that AAlergia was able to capture. For the verification part, we
used numerical probabilistic model checking algorithm implemented within
PRISM to show that the proposed abstraction method is also beneficial for
this category of algorithms.

4.4 Conclusions and Related Work

Conclusions and Future Work

Reducing the PMC time, and more specifically the SMC time, of a given
LTL property on large stochastic models is the primary benefit of our abstrac-
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tion approach. This gain is achieved through the combined use of projection
on traces and machine learning. Projection is performed by considering the
support of the property of interest, that is, the set of symbols explicitly
appearing in that property, while learning automatically infers a compact
model using state merging techniques. The proposed approach could be in-
stantiated with any learning algorithm, under the assumption that it respects
the conditions discussed earlier. It produces accurate models preserving the
probability of satisfying the property of interest. Experimental results show
that (1) verifying the property of interest on the abstract model is faster than
doing it on the original one, and (2) that the estimation of the probability
of satisfying the properties is accurate with respect to the one obtained on
the original system.

In the current stage of work, the proposed projection definition is quite
simple. It allowed us to instantiate our methodology and to implement it
for validation. As future work, we are planning to improve it to obtain
coarser abstractions, yet preserving the probability of the underlying prop-
erty (as opposed to a class of properties currently). This could be potentially
achieved by taking into account the semantics of the LTL operators. We shall
also apply the approach to other real-life systems and consider using other
algorithms able to learn non-deterministic models. An important extension
would be to adopt it for learning SBIP components and their correspond-
ing glue. Furthermore, the proposed approach is only applicable to discrete
stochastic systems. An interesting direction to investigate is its extension to
continuous systems such as continuous time Markov chains or probabilistic
timed automata. We provide hereafter some pertinent works that may help
obtaining such an extension.

Related Work

In this section, we first provide an overview of studies that applied learn-
ing techniques for systems verification in general. These are not necessarily
state merging, nor in the limit identification techniques. For more details, we
refer the reader to the literature survey by Martin Leucker [148]. With refer-
ence to the future research directions mentioned above, we present a bench
of algorithms that allow for learning non-deterministic behavior of systems
in addition to probabilities. In the same perspective, we introduce other
algorithms for learning stochastic continuous-time models such as CTMCs
and GSMPs.

Pena et al. propose to use machine learning for the purpose of state
reduction in incompletely specified finite state machines (for which for all
states and all inputs, the next state or outputs are unknown) [167]. The
main motivation of this work is that (a) it is proven that the state reduction
in incompletely specified finite state machines is NP-complete, and (b) the
exact and heuristic existing solutions are time consuming. The authors ap-
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proach the problem using learning techniques to obtain a minimal system for
given input/output mappings. Based on Angluin’s L* algorithm, which com-
putes the minimal DFA in polynomial time, the authors propose a learning
technique to obtain an equivalent FSM to the given input.

Cobleigh et al. propose to use learning for assumptions generation in
assume-guarantee style compositional verification to address state space ex-
plosion problem in verification of systems [65]. Verification is achieved in
an incremental fashion, that is, an assumption that characterizes a certain
component C context is first generated and combined with a property, then
checked with respect to C. If the assumption is satisfied by C and on the rest
of the system as well, it is proven that the property is verified on the whole
system. This iterative process is shown to terminate. In fact, the algorithm
converges to an assumption that is necessary and sufficient for the property
to hold on the underlying system.

Peled et al. propose to combine model checking, testing, and learning to
automatically check properties of systems whose structure is unknown [166].
This paper motivates black-box checking where a user performs acceptance
tests and does not have access to the design, nor to the internal structure
of the system. The authors, however, conclude that the complexity of their
algorithms could be reduced if an abstract model of the system would be
available. Additionally, the authors point out the need to take into account
the property of interest to tackle verification complexity.

In the same context, (of black-box systems), we also mention the work
by Sen et al. which propose an SMC algorithm to verify this kind of sys-
tem [188]. In this work, systems are assumed to be uncontrolled, that is,
traces cannot be generated on demand. The approach cannot guarantee cor-
rect answers within required error bounds. It computes instead a p-value as
a confidence measure. In contrast to our approach, [188] uses pre-generated
traces as direct input to their SMC algorithm. This raises confidence issues
but makes it faster since no learning is performed.

Habermehl et al. propose to use learning for regular model checking
infinite-state systems [102]. The learning technique enables generating a
sample of reachable configurations of the given system. Methods for inference
of regular languages are used to generalize the sample towards obtaining the
full reachability set or an over-approximation where the property of interest
holds.

In the first part of the chapter, we briefly mentioned some algorithms for
learning non-deterministic models such as PFAs. These are all following a
state merging approach. Here, we introduce additional algorithms using a
different technique and detail both categories.

Recently, Mao et al. proposed a new algorithm called IOAlergia to learn
MDPs [154] from sample traces, following the same assumptions and pro-
cedure in AAlergia [153]. IOAlergia is an adaptation of the Alergia algo-
rithm [54] in the context of non-deterministic models, specifically for de-
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terministic labeled MDPS. Stolcke and Omohundro propose a Bayesian al-
gorithm for learning the parameters and the structure of Hidden Markov
Models (HMMs) [177] 4 following a state merging fashion [194, 193]. In this
work, similarly to Alergia, an initial specific representation consisting of the
training input data is first built. Then, based on Bayesian posterior proba-
bility, a more general model is derived by merging states. Ron et al. propose
an algorithm for learning a subclass of acyclic PFAs [180]. This work also
uses state merging starting from an initial representation of input traces.
The merge criterion is based on frequencist statistics in contrast to the pre-
vious Bayesian approach. The above mentioned algorithms are all proven to
learn the correct target model in the limit.

In contrast to the previous merging-based algorithms, more recent work
[81, 103] proposes to learn more powerful models 5 such as Multiplicity Au-
tomata (MA). These works performs identification of underlying rational
languages residuals and iteratively solve equations over them.

The previously mentioned works essentially focus on discrete-time mod-
els. However, others work, albeit few, exists for learning continuous-time
models. For instance, Verwer et al. propose to learn Timed Automata (TA)
from timed systems observations [203]. The algorithm start by a prefix tree
and performs merging and splitting based on hypothesis testing and well-
known statistical tests. This work learns models in the deterministic con-
text, in the sense of no probabilistic behavior. In the following, we present
two algorithms for learning stochastic continuous-timed models. Sen et al.
proposed an algorithm to learn CTMCs models from sample traces [187].
In this work, the authors follow the state merging approach by providing a
variant of the Alergia algorithm. In [79], Pedri et al. propose an algorithm
following the same strategy to learn more general continuous-time models,
namely GSMPs. This uses new statistical clocks estimators, in addition to
the state compatibility criterion of Alergia.

So far, we presented a set of formalisms and techniques for both prob-
abilistic modeling and analysis of stochastic systems. This first part of
the dissertation could be seen as a stochastic framework for component-
based stochastic modeling, automatic stochastic abstraction through ma-
chine learning, and stochastic model analysis using probabilistic model check-
ing and more specifically, statistical model checking.

In the next part, we will introduce a method for dealing with performance
aspects at system-level in the context of embedded systems design. There, we
will be using our stochastic framework to build functional high-level models
encompassing performance details and to analyze them with respect to global
extra-functional requirements.

4. These could be seen as PFAs where the strings generation is performed according
to probability distributions of state symbols.

5. For more details about the classification of the above mentioned models in term of
expressiveness, we refer the reader to [202].
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Chapter 5
Rigorous System-level Performance

Modeling and Analysis

The first part of the manuscript has set up most of the foundations of the
present work. It depicted our contributions in terms of formalism for stochas-
tic modeling of systems, that is, the SBIP component-based formalism, in
addition to techniques for probabilistic analysis of these systems and their
abstraction. In this second part, we will use these ingredients to construct a
rigorous approach for system-level performance modeling and analysis of em-
bedded systems. The part is split into four chapters. The first introduces the
ASTROLABE approach and its different steps. In the second chapter, we
give a detailed view on the method we propose for statistical characterization
of performance data. The third chapter presents a tool-flow implementation
for the approach and finally in the fourth chapter, we illustrate the proposed
approach and tool-flow on a real-life case study for image recognition.

The increasing complexity of modern embedded systems together with
the growing competition and the time-to-market constraints, forced design-
ers to consider more elaborated and systematic ways for system design. Al-
though several design methods were proposed in the last decades, a tangible
lack of support for performance aspects remains. Extra-functional aspects
in general are becoming as important as functional ones. As discussed in
the introduction, performance has become very important due to the pro-
liferation of electronic and multimedia devices in our everyday lives. These
are expected to ensure several functionalities, that is, they must be designed
in a flexible and programmable manner. At the same time, they must be
efficient and provide good performance while delivering services.

In this chapter we propose an approach for modeling and analyzing per-
formance in early design phases. We first explain the choices we made to
conceive this method with respect to the identified challenges for embedded
systems design in general and for dealing with performance at system-level.
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We then depict the different steps of the method in the following sections.

5.1 ASTROLABE : An Integrated Approach

5.1.1 Answering General Design Challenges

Rigorous design approaches, in contrast to empirical approaches, specify
systematic and methodical ways to transform a set of specifications or ideas
to a concrete artifact or to an unambiguous design which is realizable in
a straightforward manner, e.g., a net-list for circuits design, a plan of a
building. To be successful, a design approach must decompose an initial
problem to a set of humanly tractable sub-problems addressed in iterative
and incremental fashion [192]. Iterative is intended in the sense of repetition
while incremental means to consolidate results when moving from a step to
another, that is, preserving previous results and improving them in the next
steps.

As explained in the introduction, in addition to the divide and conquer
approach, system-level design allows to handle systems complexity by en-
abling reasoning at high-level of abstraction. Moreover, model-driven ap-
proaches help representing and capturing the considered concepts and antic-
ipating potential errors. Besides, models helps realizing the previous aspects
as they may be initially abstract then refined in an incremental manner. Sev-
eral iterations may be also necessary to converge to good refinement. Fur-
thermore, rigor imposes to rely on unambiguous models, which have clear
semantics and that are not subject to divergent interpretations. This may
be applied using formal models and analysis techniques.

Design space exploration is among the most important activities in system-
level design. It aims at finding the most appropriate design alternatives
matching the initial requirements. This must be performed following the
previous guidelines, i.e., iteratively and incrementally as illustrated in Fig-
ure 1.3. System-level design also advocates separation of concerns, which
distinguishes between communication and computation on one hand, and
between application and architecture on the other hand. This is actually
a realization of the more general divide and conquer principle. From this
perspective, the Y-chart pattern proposed in [17] is a concrete implementa-
tion of this principle. It consists of considering an application model, several
target architecture models, several mappings, and trying to figure out the
best configuration with respect to given requirements, generally concerning
performance.

Following these guidelines, we propose a rigorous approach that enables
performance modeling and analysis during early systems design phases:

– It is rigorous because it relies on formal methods for modeling, model
transformations, abstractions, and analysis.
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– It is model-based because it is centered around the SBIP formal mod-
eling language which guides the different design activities.

– It operates at system-level because of the high-level of abstraction en-
abled by the used formalism and abstraction techniques.

– It is iterative as it proposes a limited number of steps to repeat until
reaching an optimal design. These steps consists mainly on modeling
and verification steps as detailed later.

– It is incremental since moving from an iteration to another preserves
properties as guaranteed by the used formalism.

– It also applies the divide and conquer principle through the Y-chart
pattern. It explores different models of applications and architecture,
in addition to several mapping.

5.1.2 Answering Performance Specific Challenges

As discussed in the introduction, extra-functional aspect, especially per-
formance, have become as important as functional ones, and taking them into
account in the earliest design phases is a must for successful designs. Hence,
we need rigorous methods to characterize them faithfully, to build models
that integrate them in addition to functional behavior, and to analyze them.

Performance details are related to the physical part of the system, that
is, the execution of application functions on architecture components, e.g.,
execution time of a specific functions, say a Fourier transformation, by a
processing unit, communication delay of a bus or a NoC used by some com-
ponent, amount of consumed energy or dissipated temperature induced by
performing a specific functionality. Nonetheless, such details are rarely avail-
able in early design phases, which makes the process of building high-level
performance models quite challenging.

Moreover, following the system-level philosophy, one wants to deal with
abstract models that minimize modeling effort and enable fast exploration.
These models are required to capture low-level performance details in or-
der to precisely reflect the reality and enable accurate reasoning about the
whole system performance. These contradictory goals raise several natural
questions. How to capture performance information in early design phases ?
What kind of formalism is appropriate to characterize them ? And, how to
integrate them in the abstract system model ?

The above challenges maybe classified into modeling and analysis chal-
lenges. The proposed approach is thought in term of these steps which
constitute its main activities. One great modeling challenge is to enable
building abstract models while being faithful. Ensuring these contradictory
goals clearly requires trade-offs. Moreover, these models must correctly cap-
ture performance variability. The approach has also to enable an easy way to
produce distributed models for many-core platforms. For the analysis part,
contradictory objectives are also to satisfy. It is required to enable accurate
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Figure 5.1: The ASTROLABE approach for building and analyzing faithful
high-level performance models.

analysis while being as fast as possible to permit rapid iteration. Another
challenge from this perspective is the scalability of the analysis technique,
which has to handle real-life systems models.

To answer these challenges, we conceived the ASTROLABE approach
illustrated in Figure 5.1. In line with the Y-chart scheme, it takes as input
an application model, one or several architecture models, and one or several
mappings of the application functionality to the architecture components. It
also accepts a set of requirements, which are formalized in temporal logic. We
mainly focus on performance requirements, albeit functional requirements
are also accepted. The considered input application and architecture models
are purely functional and are built in the BIP formalism. These may be
obtained automatically through refinement from higher level specifications
[22] or provided directly by the designer.

To enable iterative and incremental construction, the proposed approach
sets up a closed-loop schema where analysis feed-backs are used to refine the
input models. A macro view of Figure 5.1 shows that the approach is made
of tow main activities, a performance modeling followed by a performance
evaluation step. The former aims at producing a performance model that is
in an appropriate level of abstraction, while the latter aims at performing
accurate and fast analysis. Together, these ensure trustworthy and rigorous
design space exploration. Each one of these two activities is composed of
sub-tasks orchestrated towards implementing the global objectives of the
approach. The performance modeling phase is conceived following a meet-
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in-the-middle scheme to ensure the targeted abstraction trade-off, whereas
the analysis part is top-down as explained hereafter.

A Meet-in-the-Middle Modeling Solution

Top-Down Trajectory. The top-down branch of the modeling phase con-
sists of generating a distributed implementation of the application and an
associated deployment strategy on the target architecture with respect to
the input mapping. This take advantage of the component-based modeling
formalism we are adopting. This task is twofold, first a functional systems
model consisting of the combination of the application with the architecture
with respect to the given mapping is automatically built [44]. Then, auto-
matic code generation is performed to produce a concrete implementation of
the application functionality and the corresponding deployment schema with
respect to the mapping on the target platform given some runtime support.
The target platform could be, depending on the design phase, an already
existing board, a virtual prototype, or an Instruction-Set Simulator (ISS).
The code generation step produces instrumented code with respect to the
input requirements. This specifies the performance dimension to estimate.

Bottom-Up Trajectory. The bottom-up branch of the modeling phase is
performed on the traces obtained by execution of generated code on the
target platform. This consists of first learning a probabilistic characterization
of the specified performance aspects. As we will explain later in detail, this
relies on a statistical inference procedure. This choice is made to capture
performance variability in a probabilistic manner. The second step in this
bottom-up part is the calibration of functional system models. This will
augment the BIP system model with performance information.

The meet-in-the-middle solution for performance modeling produces SBIP
models encompassing functional behavior and performance details. We claim
that such an approach produces models with a good level of abstraction,
which are sufficiently faithful for the earliest phases of the design.

A Formal Analysis Approach

In the ASTROLABE approach, we propose to use formal verification
as means to quantitatively analyze the obtained model with respect to the
input requirements. This is enabled because of the formal semantics of the
SBIP formalism. We rely on statistical model checking since it combines
simulation and statistical techniques and thus provides a good trade-off be-
tween speed and accuracy. For scalability issues, we will use our stochastic
abstraction technique proposed in Chapter 4 to compute smaller models for
faster analysis.

The remainder of the chapter describes the different steps of performance
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modeling. Performance evaluation techniques has been already introduced
and discussed in the first part of the manuscript. We first present the code
generation technique for gathering realistic performance information. Then,
we depict the statistical inference step to derive probabilistic characterization
of these information. Finally, we illustrate how to calibrate functional models
with probabilistic performance data in the case of timing information.

5.2 Gathering Low-level Performance Details

This phase aims at generating a concrete runnable implementation of the
application part of the system. The goal is to run this implementation on
the target hardware architecture in order to extract performance measures.
This has to be performed automatically to avoid bug injection and quickly
to enable rapid exploration. Furthermore, since we target multi and many-
cores architectures the generated implementation should be distributed with
respect to a given mapping and the deployment must be straightforward.
In order to enable measurements, the generated code must be instrumented
with respect to the targeted performance dimensions.

5.2.1 Automatic Implementation Generation

The BIP framework encompasses different code generation back-ends for
centralized and distributed targets [42]. In the context of many-core ar-
chitectures, we mainly consider the application model and the mapping,
in addition to the performance requirements to instrument the generated
implementation accordingly. For the sake of simplicity, we consider applica-
tion model in BIP with restricted form of interaction and coordination, e.g.,
send/receive, KPN BIP models for which producing distributed implemen-
tation is straightforward and natural. Often in these models we distinguish
between computational components, e.g., processes and threads, and com-
munication components, e.g., FIFOs and shared memory. There are basically
two steps in order to produce implementations from BIP models.

Computation/Communication Objects Generation

In this phase, each computational BIP component is systematically trans-
formed to a process. The notion of process is used in an abstract meaning. Its
concrete interpretation depends on the target runtime, e.g. POSIX threads.
The behavior of each generated process consists of the corresponding BIP
component automaton where synchronizations are transformed to commu-
nication primitives calls provided by the target runtime. Communication
objects are usually shared memory objects, e.g. fifo channels. This are
similarly generated given the target runtime.
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Deployment/Glue Code Generation

This produces code that maps the generated objects on the target hard-
ware architecture. That is, the processes to specific processing units and the
communication objects to memory.

Remark that the above process is strongly related to the target runtime
and that we only provide a generic description of the main steps. Additional
details are presented in Chapter 8 where we consider STHORM [155] as a
target architecture and an implementation of the MCAPI 1 standard as the
underlying runtime.

5.2.2 Instrumentation

Instrumentation consists of annotating the generated implementation
with specific function calls for measuring performance, e.g., timing, tem-
perature. At this level, both communication and computation functionality
are handled similarly. Each communication routine or computation function-
ality is enclosed withing specific annotations that specify the desired segment
to measure its time or energy consumption for instance. This is currently
done manually and depend on the provided support of the target runtime.

5.3 Characterizing Performance Information

Depending on the observed performance dimension, collected data may
reflect timing behavior of computation or communication, temperature dis-
sipation, energy consumption, or memory utilization. These performance
aspects are necessary together with functional behavior to enable trustwor-
thy system analysis. Our goal is to characterize these details in order to
obtain a faithful and abstract representation of performance data.

An important characteristic that must be considered is variability. Per-
formance behavior is ideally deterministic, although due to several reasons,
it is affected by some fluctuation which should be taken into consideration
for trustworthy analysis. Variable workloads are among these reasons, al-
beit, there exist systems which have constant performance with respect to
variable inputs. Another source of fluctuation is the environment where the
system will be deployed. For example, when considering temperature as a
performance metric, the role of the environment is preponderant since it
directly impacts components temperature. Furthermore, some mechanisms
such as caches and arbitration impact performance evolution.

In general, variability induced by the above reasons may be determisti-
cally characterized. However, besides being in contradiction with the system-
level design guidelines, this is generally unfeasible. Precisely characterizing
the environment is unfeasible unless the system is designed for very specific

1. www.multicore-association.org/workgroup/mcapi.php
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missions and targeted to a well known and controlled environment. Similar
arguments apply for the input data. Moreover, this requires to have detailed
specifications, which are rarely available in early design phases. Assuming
that such details are available, this will induce a considerable understanding
and interpretation efforts, and consequently huge models. This eventually
leads to an ad hoc approach which is tedious and error prone. We recall that
the goal is to build faithful high-level models. Abstraction of details is thus a
must. For instance, low-level arbitration and conflict resolution mechanisms
cannot be modeled in details during early design phases.

Our proposal is to consider that performance evolves probabilistically.
We argue that this approach provides very natural abstractions. Let us con-
sider a coin tossing experiment. In such a setting, it is common to consider
that the coin have a probabilistic outcome. However, this is an abstract view
of reality. Actually, if we are able to precisely characterize the coin, e.g., its
weight, the environment where the experiment is happening, e.g., wind speed
and direction, and the flipping power, we would be able to precisely compute
the outcome of the experiment using physics laws. Probabilistic modeling is
a natural choice to abstract details either because we don’t care about them
at the moment, or because we are not able to handle all of them, e.g., we
don’t have access to details, it takes too much time, they are too complex.

...

Shared Memory

Arbitration

f1 f2 fn

Figure 5.2: Memory access and arbitration mechanism.

Let us consider a situation where the goal is to characterize the execution
time of a function (or a process) f running periodically on a specific pro-
cessing unit. The latter is assumed to execute only f , that is, no scheduling
(context swap) overhead is induced. However, data to be processed by f is
stored in a shared memory which is accessible by different processing units
executing similar functions as shown in Figure 5.2. Thus, the execution time
of f will vary depending on the number of processes and the way they are
accessing the shared memory each time. Formally, if at time t, f tries to
access the memory alone, the execution time will be x1. If P is the peri-
odicity of f , and at time t + P f accesses the memory with y concurrent
processes (in competition), the execution time will be x2 = x1 + �, where
� is an arbitration overhead which depends on the number of processes y.
Figure 5.3 below illustrates this setting.
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Figure 5.3: Impact of arbitration mechanism on execution time.

Characterizing such behaviors probabilistically avoids modeling arbitra-
tion mechanisms precisely and enables capturing the context in which the
considered function is evolving, denoted interference, faithfully and in an ab-
stract fashion. Again, it is possible to build a detailed model of interference,
where the execution time evolves with respect to the number of processes
accessing the shared memory and given the used arbitration mechanism but
this is not our objective. This maybe need for refining the abstract model.

Probabilistic modeling provides various abstraction possibilities, ranging
from simple point estimate, e.g., mean, variance, to more sophisticated mod-
els, e.g., probability density function, stochastic processes. This depends on
the level of details required to resolve a given problem but also on the used
method to build such models. In our case, we aim to summarize performance
details obtained from concrete executions while being faithful. Such proce-
dure may be seen as learning general characteristic of some process, assumed
to be probabilistic, by only observing some of its manifestations, e.g, running
data. This bottom up approach, in contrast to building probabilistic models
from specifications, is often called Statistical Inference.

We use Distribution Fitting, which will be detailed in Chapter 6, together
with and overview of statistical inference, to probabilistically characterize
performance information. In distribution fitting, we consider probability
distributions as potential model for the data, i.e, it is only possible to char-
acterize the data as a probability distribution. It is based on the three
following steps detailed in Chapter 6:

1. Exploratory Analysis: in this first step, we explore the data in term of
its shape to get a first idea on possible standard probability distribu-
tions that may match.

2. Parameters Estimation: once we have some candidate distributions,
we estimate their parameters using known estimation techniques.

3. Evaluation: finally, we evaluate the obtained fits using established sta-
tistical tests.
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5.4 Calibrating Functional Models

The calibration process aims to augment functional BIP models with
performance information, learned using distribution fitting. This transfor-
mation produces stochastic BIP models that enables probabilistic analysis.
The inferred probabilistic characterizations are used as probability distribu-
tions related to the SBIP probabilistic variables that are added to model the
desired performance dimensions.

We focus on calibration of functional application models. The reason
for this choice is to avoid building architecture components in the very early
design phases. Moreover, we are positioning this work in the setting where we
are given a target architecture as part the system specifications. The main
question is thus how to map the different application functionalities into
the target architecture. However, we claim that the proposed approach can
be easily extended to handle architecture models as well. A previous work
in the context embedded systems design in BIP [44] proposed a library of
architecture components. We can rely on this work to calibrate architecture
components in a similar manner.

5.4.1 Timing Information

Functional models are generally untimed or limited to functional use of
time, e.g., timeouts specification. They only concern the functional behavior
of the system. Calibrating such models with timing information has two
main consequences. First, it produces a timed model out of a “zero-time” or
untimed functional model. Second, since the timing information is proba-
bilistically characterized, this will engender a stochastic model. The result is
thus a new model, denoted performance model, that encompasses in one hand
the functional behavior of the system and in the other hand the stochastic
characterization of timing behavior.

Timing information may be of two types, Computation time or Commu-
nication time. The first is the result of executing some application func-
tionality on certain architecture component. Application functionality may
be a software process running on a programmable processing unit or de-
signed as dedicated hardware component. Communication time is induced
by software or hardware components that solicit communication resources
such buses, NoCs, etc. These are handled differently when calibrating func-
tional models.

In order to introduce computation time of a specific function within a
component, a probabilistic variable related to the corresponding learned dis-
tribution is first added then the learned computation time behavior is in-
jected trough a waiting time using a tick interaction. Communication time
are slightly more complicated since are decomposed into begin and end ac-
tions as shown in the remainder of this section.
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Computation Time

Let B be the functional BIP model of the component to calibrate. In this
model, f is the function that induces a computation time when executed on
a target architecture. We call µf the learned probability distribution of the
computation time of f obtained using the distribution fitting approach, and
cf related to µf the probabilistic variable that models this timing behavior.
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cf�
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Figure 5.4: Calibration of functional models with computation time.

The calibration of component B with computation time, gives rise to a
stochastic component Bs as shown in Figure 5.4. First, variable cf is related
to µf and correctly initialized as specified in Chapter 3. The transformation
mainly concerns the transition α that calls function f in component B. This
is transformed in component Bs as follows. A sampling step (cf�) that
probabilistically updates cf is introduced on α. The value of cf specifies the
amount of time to be spent as computation time induced by f . For timing
aspects, we currently use time transitions called tick that models discrete
time progress in BIP. In the tick transition, the variable cf is decremented
as to model time evolution. Guards are then used to prevent firing the next
transition before the sampled time has completely elapsed. Therefore, each
time f is called, a certain amount of time, modeling the computation time
of f on the hardware architecture, is spent by the component Bs.

Communication Time

Calibrating components with communication time is slightly more tricky
than calibrating them with computation time, because communication in-
volves more components. Communication naturally happens between two
or more components. Hence, we nedd to take into account the coordination
between communicating components.

In this setting, we decompose each communication action (write and
read), to begin and end : begin_read/end_read and begin_write/end_write.
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We can then interpose a tick transition between the beginning and the ending
of each action as shown in Figure 5.5.
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Figure 5.5: Calibration of functional model with communication time.

Given a transition α from li to lj that calls a communication primitive,
say write for instance, a probabilistic variable (cw in Figure 5.5), related to
the corresponding learned probability distribution (µw in the same figure)
and modeling the communication time to integrate, is introduced as for the
computation time. A begin_α transition leading from li to an additional
location l̂i is added. In this transition the corresponding probabilistic vari-
able is sampled (cw�). Time elapsing is again modeled using tick transition
as earlier. Finally, the end_α transition leads from location l̂i to lj when
cw = 0 as specified by the associated guard in Figure 5.5.

Let us consider the case where communication is occurring between two
components, namely Producer and Consumer, through a FIFO Buffer as
shown in Figure 5.6. In this example, the Producer writes data into the
Buffer (when it is not full) using the write,push interaction and the Con-
sumer read data from it (when it is not empty) using the read,pop interaction.
Remark that, in this example, the three components are untimed.

write

write read

read

Producer Buffer Consumer

l4l1

l3

push pop

l2 l5

[!isFull()]
push
...

[!isEmpty()]
pop
...

Figure 5.6: Example of communication through a fifo buffer.



CHAPTER 5. RIGOROUS SYSTEM-LEVEL PERFORMANCE
MODELING AND ANALYSIS 111

Given two probability distributions corresponding to the writing and
reading time into/from the buffer, we will calibrate this model to intro-
duce communication timing aspects. We will only calibrate the Producer
and Consumer components and keep the Buffer untimed. This is Because
we generally learn the communication time from the initiating processes per-
spective (in this case Producer and Consumer). In such a setting, applying
the transformation illustrated in Figure 5.5, requires to modify the push and
pop actions of the Buffer as follows, begin_push, end_push, and begin_pop,
end_pop. It is then straightforward to see that begin actions (respectively
end actions) are synchronized together for all components as illustrated in
Figure 5.7, which show the obtained model after calibration.

end_pop

...

end_push

Producer

end_pop

bgn_pop

end_rd
tick3

bgn_rd

end_push

ConsumerBuffer

tick3

tick

tick1

bgn_wrt

end_wrt

tick1

bgn_wrt

tick1

end_wrt

...

bgn_push

... ...

bgn_rd

tick3

end_rd
...

...

bgn_push

[!isFull()]

[!isEmpty()]
bgn_pop

l3

l6

l7

l̂6

l5

l4
l1

l̂1

l2

Figure 5.7: Calibration of the functional model in Figure 5.6.

The obtained execution sequence when applying the transformation illus-
trated in Figure 5.5 is the following. When the Producer wants to send some
data, the interaction begin_write,begin_push is executed. This is only pos-
sible when the Buffer have sufficient free memory. Otherwise, the Producer
is blocked (tick1 transition in l1 is executed until some memory is freed).
When begin_write,begin_push is executed, the corresponding probabilistic
variable is sampled and the tick1 transition in l̂1 becomes enabled. During
this time, the Consumer is blocked until writing has completed. The tick3
transition on l6 enables correct time progress through the tick interaction.
Omitting this transition engenders a deadlock (same as tick1 transition in
l1). The sampled time elapses in l̂1 through the tick interaction. When it
is done, the end_write,end_push is performed, which enables the Consumer
to read following the same scheme. That is, begin_read,begin_pop, tick, then
end_read,end_pop. A complete typical execution sequence is thus 2

begin_write, begin_push → tickm → end_write, end_push →

begin_read, begin_pop → tickm → end_read, end_pop.

2. The used notations are as follow. action1, action2 depict an interaction, that is the
strong synchronization of the involved actions (see Chapter 3 for more details). The →
stand for a sequence of actions. Finally, tickm means that the action is performed m time.
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Remark 5.1 (Read/Write Blocking Time). It is important to remark from
this example that the blocking time when reading or writing data is already
captured by the functional part of the model. The push (respectively the pop)
action of the Buffer component is blocking if the buffer is full (respectively
empty). We have to take this into account when learning communication
time distributions in order to correctly model it. To avoid modeling blocking
time redundantly, we have to learn only the communication time that does
not include blocking parts. Such observation is quite important and enables
to precisely instrument the pertinent parts of the generated code to observe
right timing aspects.

Observe that for the communication time, we didn’t used the same cal-
ibration technique as for the computation time, that is, independently cali-
brating components. The latter approach will not actually work correctly in
the case of communication as shown below.

Following the computation time calibration approach, illustrated in Fig-
ure 5.4, will consist to calibrate the Producer by the time to write to the
buffer and the Consumer by the time to read from the buffer as shown in
Figure 5.8. What is expected is that the producer performs the write action,
then a certain time modeling the communication elapses before the consumer
can perform read from the buffer. Then, some time modeling the reading
from the buffer will elapse. That is,

write, push → tickm → read, pop → tickm

write read

Producer Buffer Consumer

write

tick1

read

tick1

tick1

tick3

tick3

tick3

tick

l3

push pop

[!isFull()]
push
...

[!isEmpty()]
pop
...

l1

l2

cw�

[cw > 0]

cw −−

l4

l5
[cr > 0]

cr −−

cr�

[cr == 0][cw == 0]

cw ∼ µw
cw = w0

cr ∼ µr

cr = r0

Figure 5.8: Bad calibration of the functional model in Figure 5.6.

However, if we transform the Producer and the Consumer as in Fig-
ure 5.4, what will happen when running the system is the following. When
the Producer wants to send some data, the interaction write, push is per-
formed (when the buffer is full or empty, the same reasoning as previously is
applied). As a consequence, in the Producer component, the tick1 transition
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in l2 becomes enabled. Similarly, the pop action in the Buffer component be-
comes enabled since the push action is performed instantaneously. We recall
that this component is kept untimed. The Consumer component is thus en-
abled to read data. The interaction read, pop is assumed to become enabled
whenever pop is enabled. As specified in Chapter 3, the interaction involving
tick transitions is often given the lowest priority to enable system progress
deterministically. Hence, the interaction read, pop has a higher priority and
is thus performed. The obtained execution sequence is thus

write, push → read, pop → tickm.

This sequence implies that the communication time (or at least a part
of it) induced by writing data and the one induced by reading data (or at
least a part of it) are spent in parallel, which is not the desired behavior.
Thus, the previous approach is not appropriate to calibrate components with
communication time.

To correctly represent time in BIP, all the timed components, having tick
transitions, have to be correctly synchronized to enable overall time progress.
A bit of care is needed to build such representations since bad synchroniza-
tion of timed components lead inevitably to deadlocks as discussed for the
l6 location in the previous example. It is possible to rely on the real-time
capabilities of BIP [1] instead of discrete tick transitions to capture time
evolution. This enable using built-in clock variables and transition firing
with respect to specified deadlines instead of guards. It is worth to men-
tion that we are learning continuous probability distributions, while the the
SBIP semantics introduced in Chapter 3 assumes finite models, hence finite
data domains. We are thus performing a discretization step of the obtained
probability distributions to match the SBIP semantics.

5.5 Conclusions

In this chapter we presented the ASTROLABE approach for rigorous
performance modeling and analysis for system-level design of embedded sys-
tems. The proposed approach combines several activities which are organized
together to answers various design challenges. The latter have been identi-
fied as general ones and to more specific to performance aspects, which is the
primary goal of this work. The approach consists of first building abstract
and faithful performance models. These are then analyzed with respect to
performance requirements in order to obtain quantitative feed-backs which
are used to refine initial models.

Starting from purely functional models of application and architecture,
the modeling step first generates a distributed implementation for a target
hardware architecture. The generated implementation is instrumented with
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respect to given requirements to report on performance metrics. Execution
traces obtained by running this implementation on the target platform are
then statistically analyzed to learn a probabilistic characterization of per-
formance behavior. Finally, the latter are injected into functional models
through a calibration step to obtain stochastic performance models encom-
passing functional and performance behavior.

The analysis phase takes as input the stochastic performance model and
the formalized requirements and operates an abstraction step to reduce the
model size. This is followed by a statistical model checking step that checks
if the considered model that represents a given design alternative verify the
given performance requirements or the expected properties. The results are
then used to refine the initial models or to modify the input mapping.

The described process enables vertical evolution through models refine-
ment but also horizontal exploration of different performance dimensions for
a given configuration, that is, a specific mapping with a fixed set of pa-
rameters, e.g., FIFOs sizes. In the above description we mainly focused
on timing. Other performance aspects such as energy or temperature, can
be similarly handled in the approach by introducing probabilistic variables
modeling temperature evolution or energy consumption. This will constitute
the subject of future work and further discussions in the conclusion. Before,
we detail in the next chapter the distribution fitting technique we use for
probabilistically characterizing performance information.



Chapter 6
Statistical Characterization of

Performance

In the previous chapter, we presented the ASTROLABE approach and
overview its different steps. We briefly discussed how to statistically char-
acterize performance information obtained from concrete executions. In this
chapter, we present in more detail the general statistical inference procedure
and introduce specifically distribution fitting, the method we use to learn
probability distributions that characterize low-level performance data.

6.1 Statistical Inference

Probabilistic modeling often consists of deriving probabilistic character-
izations from specifications of an artifact. Another possible approach, in
this context, is when we are given data obtained from running the artifact
(this may be for instance polling data, or data from a dice experiment). In
this case, inferential analysis, that is bottom up trajectory must be taken to
build probabilistic model. Statistical inference is thus the process of proba-
bilistically characterizing the behavior of an artifact from data. In our case,
data concern performance information obtained from concrete execution or
low-level simulation of functional models on a target hardware platform.

From this perspective, data is assumed to be generated by a stochas-
tic process for which the governing law is unknown. Our goal is to infer
such a law from a subset of observations, called a sample, since the whole
population is generally not available. Formally, given x1, ..., xn a set of ob-
servations, we assume that there exist X1, ..., Xn independent and identically
distributed (iid) random variables such that xi is a possible realization of Xi.
Independence is to be understood in the sense that one outcome of a random
experiment does not affect the outcome of another. Identically distributed
random variables basically means that they all follow the same probability

115
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distribution D(ω) where ω ∈ Θ is the set of parameters of the distribution
defined over the space Θ.

One should pay attention to the independence assumption above since
this will enable accurate generalizations of the inference results. Note that
the goal is not only to characterize the available data. The most important
is to be able to generalize the result to the generating process. That is,
to conclude that the generating process follows some probability distribu-
tion. Concretely, the independence assumption states that observations are
obtained randomly. Two possible configurations are generally possible:

– The first is when an experiment is conceived with the aim to observe a
specific phenomenon. In such a case, independence is easy to guarantee
since the procedure is completely controlled.

– The second case is when we perform observations on a process which
is not under our control (or partially controlled), e.g simulation or
execution of a system.

We are in the latter setting, where independence cannot be assumed but
must be checked. Several ways exists to check independence albeit not always
easy to understand. One can, for example, use specific plots, e.g., Lag plot,
which require expertise for interpretation or rely on existing statistical tests
such as Box-Pierce [47], Ljung-Box [151], and runs test 1.

Several inference approaches giving different abstractions are available.
These learning procedures may be automatic or not and may produce various
probabilistic models ranging from probability distributions to Markov or
more general stochastic models. In section 4.4, we detailed several automatic
techniques based on machine learning that allow to learn such probabilistic
models. These could be used in this context to characterize performance
information.

It is worth to mention that adopting a method or another, in addition
to being dependent on the desired abstraction, also depends on the available
data which reflect the artifact dynamics under certain circumstances. Data
may show a certain structure, that is, dependency on other factors. For
instance, the execution time of a certain function may depend on its inputs,
the communication delay may depend on the number of process that solicit
the communication media at that time, the temperature of a component at
a time t depends on its temperature at time t − 1 but may also depend on
the temperature of others components or the ambient temperature. This
suggest a state-based characterization of the data or an analytical formula
that capture this relationship. The latter are for instance obtained using
time series methods such as regression analysis approaches [8, 96, 175, 3]
that characterize data as a random variable called dependent obtained as a
linear or non-linear relations of a set of other variables called independent
and some random error, called noise.

1. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
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In the present work, we introduce a technique that enable learning proba-
bility distribution of performance data. This is motivated by the question we
asked in Chapter 3 on how to get probability distributions for SBIP models.
Moreover, our focus is on systems which are data-independent. As we will
see later in the case study presented in Chapter 8, the system is conceived
such that different input data do not affect execution time for example. We
also assume that the impact of the environment can be neglected since we
are mainly interested on timing aspects (no temperature or energy for now).
We are thus left with the effect of internal mechanisms such as arbitration,
caches, interference, etc. As stated earlier, our ambition to capture them in
an abstract way, motivates us to consider them as stochastic processes.

6.2 Distribution Fitting

Distribution fitting is a special case of a more general approach known
as model fitting [143], where the target model is a probability distribution.
As stated earlier, the idea is to fit a good probabilistic model to the per-
formance data obtained from concrete executions. In general, this could be
a probability distribution, e.g., Exponential, or a more sophisticated model
such as a combination of distributions, a regression, or a Markov model. We
consider probability distributions as potential model and use Distribution
Fitting [143, 204] as to probabilistically characterize the performance data.
Given execution traces, that is, a set of observations of the performance
metric, distribution fitting allows to statistically learn the best probability
distribution that fits the data.

We propose a three-steps process to fit a probability distribution to a
set of observations. It consists of an exploratory analysis step, followed by
parameters estimation, and finally the evaluation of the obtained fit. In the
following, we detail the different steps of this fitting process and illustrate
them on a data set of size n = 500 observations generated from a Normal
probability distribution with parameters ω = [µ = 6,σ = 10].

6.2.1 Exploratory Analysis

In this first step, one aims at identifying a set of candidate distributions
that may potentially fit the data. This essentially relies on the shape of the
data and its similarity to a known distribution. Such exploration may be
performed qualitatively using well-known plots such as histograms or Box-
Whisker plots, and/or quantitatively using summary parameters of the data
such as mean, median, variance, symmetry, skewness 2, number of modes 3,
etc (see [82] for more details).

2. This reflects the existence of a heavy tail. Data may be left skewed or right skewed.
3. A mode can be identified as a prominent peak in the histogram. Data can be

unimodal, bimodal or multimodal.



118
CHAPTER 6. STATISTICAL CHARACTERIZATION OF

PERFORMANCE

Histogram of data

data

D
e
n
s
ity

-20 0 20 40

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

Figure 6.1: Histogram of 500 Normally distributed observations.
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Figure 6.2: Box-Whisker Plot of 500 Normally distributed observations.

Figures 6.1 and 6.2 present respectively a histogram and a Box-Whisker
plot of the 500 Normally distributed observations. The histogram shows that
the data is unimodal, that is, having a single mode, and is symmetric. The
Box-Whisker plot summarizes the data as median, quartiles (Q1 and Q3),
and whiskers. It confirms the symmetry of the data since the quartiles are
equidistant from the median. During this phase, one would also verify the
independence assumption using the statistical tests or the plots mentioned
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earlier. A straightforward and direct check is possible through a Lag plot
as the one shown in Figure 6.3. The data is uniformly spread and no clear
shape is emerging then there is potentially no dependency in the data.
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Figure 6.3: Lag Plot of 500 Normally distributed observations.

6.2.2 Parameters Estimation

The goal of this step is to estimate, from the data, the parameters of
the candidate distributions identified during the previous step. To this end,
one may use one of the methods detailed below [68, 130]. It is important to
stress the fact that each candidate distribution actually represent a family of
distributions {D(ω) | ω ∈ Θ}, with respect to a possible rang of parameters.
Note also that ω may represent a vector of parameters.

Maximum of Likelihood Estimate (MLE) In this approach, the vector of
parameters estimators is denoted ωMLE and obtained by selecting the dis-
tribution parameters that maximize a likelihood function. Formally, given
a finite data sample x1, ..., xn as introduced earlier, ωMLE is the maximum
likelihood estimate of ω if

ωMLE = Argmaxω∈Θ P (x1, ..., xn | ω)

which is equivalent to say that

P (x1, ..., xn | ωMLE) = maxω∈Θ P (x1, ..., xn | ω).

The likelihood function in this case is P (x1, ..., xn | ω) =
�n

i=1 P (xi | ω),
since xi are independent observations. The intuition behind this approach
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is that the probability to obtain the observations xi when selecting the good
parameters ω is expected to be the highest, otherwise (when the selected
parameters are not good) it is low. It is worth to mention that MLE estimates
might be not unique or even, in some cases, not exist.

For the considered 500 observations, using the MLE method we obtain
ωLME = [µMLE = 4.82,σMLE = 9.78]. We also report a standard error
(SE) of the estimates: 0.44 for the mean and 0.31 for the standard devia-
tion. This reflect the marge of error due to data fluctuation. When fixing a
confidence level of 95% for instance, we can provide a confidence interval for
the estimations [82]. For the mean for example, this interval is equal to 4

5.74± (1.96× 0.44) � [3.96, 5.68].

This meas that if we generate several data sets of size 500 from a Normal
distribution with µ = 6 and σ = 10, then 95% of these sets will have a mean
estimator within this interval.

Moments Matching Estimate (MME) We denote the vector of parameters
estimators as ωMME . In this approach, the idea is to resolve a system of
m independent linear equations. These are obtained with respect to the
different moments of the considered iid random variables Xi, where m is
the number of parameters of the underlying distributions. That is, it is
required to have exactly 5 as many moments as the number of parameters
of the distributions. In the case of the Normal distribution for instance,
we have only two parameters (µ,σ). Then, we will have a linear system
composed of two equations to resolve. Concretely, the vector of estimators
is ωMME = [µMME ,σMME ].

The moments m of a random variable following a certain probability
distribution corresponds to the expectation values E[Xm

i ] of that variable.
For instance, for a Normal distribution, the first moment is simply the mean,
i.e., E[Xi] = µ and the second moment is E[(Xi − µ)2] = σ2. Based on the
weak law of large numbers [8], in the case of n = 500 normally distributed
observations, the system of equations is

µMME = 1
n

�n
i=1Xi

σ2
MME = 1

n

�n
i=1(Xi − µMME)

2

That is, we are simply estimating the mean of the population by the mean
of the considered sample and similarly for the standard deviation. The es-
timated values are ωMME = [µMME = 4.73,σMME = 9.17]. This approach

4. The general formula to compute a confidence interval (CI) for the mean, under the
assumption that the data is drawn from a Normal distribution, is CI = PE± (1.96×SE)
for a 95% confidence level and where PE is the point estimate obtained using MLE for
instance.

5. In generalized method of moments (GMM), we may have more equations than the
parameters to estimate. This induce the existence of several possible solutions.
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do not provide a standard error, that is it does not enable to compute a
confidence interval.

Percentile Matching Estimate (PME) This approach is similar to the previous
one. It consists of matching arbitrary selected percentile values instead of the
random variable moments in the previous approach. As in the MME method,
it is required to resolve a system of linear equations, where the number of
equations is equivalent to the number of parameters to estimate. The vector
of parameters estimators is denoted ωPME in this case. Concretely, the
idea is to equate the Cumulative Distribution Function (CDF) (which is a
function of ω, the distribution parameters) of the fitted distribution, denoted
F (x), to the selected percentiles, denoted gk, k = 1 . . . p. Formally,

F (πgk | ω) = gk, for k = 1 . . . p

where πgk is the values of the gthk percentile. The estimation of ω is obviously
based on the data sample. That is, we may write the above equation as

F (π̂gk | ωPME) = gk, for k = 1 . . . p

where π̂gk is the values of the gthk percentile observed from the data set.
For our example data set of size n = 500 which is drawn from a Nor-

mal distribution N(6, 10), we selected the 1st and 3rd quantiles (Q1 and
Q3), that is, matching the upper and lower border of the box shown in Fig-
ure 6.2. These match respectively 25% and 75% of the data. The obtained
estimations of ωPME = [µPME = 4.73,σMPE = 9.17].

Another estimation method, denoted Maximum Goodness-of-fit Estimate
(MGE), may be also used. This tries to maximize the goodness-of-fit statis-
tics that we will detail in the next section. It is worth mentioning that
besides the MLE method, all the other ones does not provide the possibil-
ity to compute a confidence interval for their estimate. In Figure 6.4, we
show four fits to the 500 normally distributed observations using the above
methods. We took the Normal distribution as potential candidate.

6.2.3 Evaluation of the Obtained Candidates

This third step aims to evaluate the obtained candidate distributions and
to select the best that fits the data. The most direct approach to this end
is to use plots like the density function (see Figure 6.4 for the 500 Normally
distributed observations for example), Q-Q plot, P-P plot, or Cumulative
Distribution Functions (CDF) to visually compare the candidate distribu-
tions with respect to the data. Figures 6.5 and 6.6 show respectively the
Q-Q plot and the CDFs of the fitted Normal distributions to the 500 obser-
vations example.
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Figure 6.4: Fitted Normal distributions obtained using the MLE, MME,
QME, MGE methods. The MLE and MME density functions are superposed
and are the closet to the original Normal distribution.
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Figure 6.5: Q-Q plot of the different fits obtained by MLE, MME, QME,
and MGE estimation methods.
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Using plots requires human interpretation, which may be subjective and
change from a person to another. It is thus better to rely on numerical
measures or scores that quantify how close or far a candidate fit is from the
data. This is usually performed using a goodness-of-fit test which is based on
well-known statistics especially designed for this task, such as Kolmogorov-
Smirnov (K-S), Anderson-Darling (A-D), and Carmer-Von Mises (C-VM)
[204, 130] in the case of continuous distributions, or on the χ2 test [68, 8]
when the fitted distribution is discrete. We illustrate hereafter the main in-
tuition of the statistics used in the continuous case since these are our target.

Goodness-of-fit test A goodness-of-fit test is a special case of a hypothesis
test where the goal is to give a measure of how well the null hypothesis H0 is
compatible with the considered data, without using an alternative hypothesis
H1 [68] (as was the case for example in Chapter 2). This may be performed by
constructing a test static whose value reflects the agreement degree between
the null hypothesis H0 and the data. In this case, the hypothesis H0 states
that observed data is coming from a population governed by a candidate
distribution (obtained in the previous steps).

Let us consider again the coin tossing experiment. Assume one tosses
the coin N times and obtains h heads and t = N − h tails. Let us consider
the hypothesis H0 as “the coin is unbiased or fair ”, that is the probabilities
for heads and tails are equal. Our goal is to quantify to what extent the
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observed h and t for certain N are consistent with H0. In this case, one can
for instance use the number of heads h as a test statistics (h is a random
variable). This is known to follow a binomial distribution, h ∼ B(N, p),
where N is the number of tosses and p is the probability to obtain a head
outcome in each toss. When the coin is assumed to be fair, that is, H0 is
true, the probability p = 0.5. Given these, we can compute the probability
to observe h heads in N tosses using the following formula

f(h,N, p) = P (h) = CN
h ph(1− p)N−h. (6.1)

We take N = 20 tosses and we assume we observed h = 17 heads.
Given N = 20 and p = 0.5, we know that the expected value for h is
E[h] = Np = 10 (expectation of a Binomial random variable). We can
observe a clear difference between the expected value of number of heads for
this configuration and what we actually observed. In order to quantify the
level of this discrepancy, one may give the probability to obtain such results
or more extreme given the hypothesis H0 is true, that is,

P (to obtain the observed results or more extreme | H0 is true),

which is known as p-value [8]. In this case, the observed result is h = 17
and more extreme results would be h = 18, 19, 20 but also h = 0, 1, 2, 3
(symmetrical values). Using equation 6.1, and by summing the probabilities
for each h above, one obtain P = 0.0026. When specifying a significance
level α, we may take a decision with respect to hypothesis H0 as follow.

– If the p-value is lower than α, we conclude that it is very unlikely to
get the observed data when the null hypothesis were actually true, and
hence we reject H0.

– If the p-value is greater than α, we conclude that it is likely to get the
observed data even if the null hypothesis were true, and hence we do
not reject H0.

In general, we specify α = 0.05 or 0.01. In this example, for both α, the
hypothesis H0 is rejected since 0.0026 < 0.01. That is, given the observations
of 17 heads in 20 tosses, we reject the hypothesis that the used coin is fair.

The test statistics presented above were specifically designed to test if
a given sample was drawn from a certain distribution. They use different
constructions for testing such hypothesis. For instance, the Kolmogorov-
Smirnov [130] statistic is based on the measure of the difference between the
theoretical and the empirical cumulative distribution function. Similarly the
Anderson-Darling [130] and the Carmer-Von Mises [204] statistics are based
on difference measure of the cumulative distributions function. However,
they perform weighted and quadratic tests. The For example, the Anderson-
Darling statistic gives more weight to the information on the tail.

For the 500 normally distributed observations, the obtained evaluation
results using the above methods are presented in Table 6.1. We observe
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that the K-S statistic is lower than the significance level α = 0.05 fixed in
this case, and suggests to reject the Normal fit, while both A-D and C-VM
are greater. We thus accept the hypothesis that the data is drawn from a
Normal process.

Kolmogorov-Smirnov Carmer-Von Mises Anderson-Darling

MLE 0.0355 0.1090 0.5778

MME 0.0355 0.1090 0.5778

QME 0.0331 0.0852 0.8180

MGE 0.0295 0.0678 0.5954

Table 6.1: Results of the goodness-of-fit tests of the fitted distributions ob-
tained using the previous estimation methods on the 500 considered obser-
vations with a significance level α = 0.05.

The last phase of the distribution fitting process is quite important since
it allows to select the best distribution that fits the data. In addition to
the aforementioned test statistics, other tools may be of use, like Bayesian
Information Criterion (BIC) and Akaike Information Criterion (AIC) [130]
which provide a way to quantitatively compare the candidate models based
on the likelihood function and the number of parameters used in the model.
The latter is mainly aimed to prevent over fitting issues, that is, to choose
a model (in our case a distribution) with an important number of param-
eters. For instance, for the 500 Normally distributed observations, we are
considering the AIC and BIC scores are shown in Table 6.2 below.

BIC score AIC score

MLE 3713.4 3705.0

MME 3713.4 3705.0

QME 3718.1 3709.6

MGE 3715.3 3706.9

Table 6.2: BIC and AIC scores for the four previously illustrated parameters
estimation methods on the 500 normally distributed observations.

By crossing the quantitative results with the obtained plots, it is clear
that the Normal distribution is a good fit for the data (which is expected
in this example, because we initially generated these observations using a
Normal distribution). Moreover, we may use the estimation obtained by the
MLE and MME methods since they are the closest to the original parameters.
In the general case, where the original parameters are unknown, we choose
the fit which is accepted by a maximum number of tests, having great p-
values, and lower BIC/AIC scores.
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It is important to mention that in some cases, a pre-processing phase of
the data may be required before performing the fitting. For instance, data
may need scaling, outliers analysis (we will give an example about outliers
in the next chapter), and/or log transformations. Such requirements are
usually detected during the exploratory analysis phase.

6.3 Conclusions

In this chapter, we presented the general statistical inference setting and
introduced a distribution fitting process in order to characterize performance
information in a probabilistic fashion. The proposed process is composed
of three steps potentially leading to a probability distribution that fits the
input data. We recall that for distribution fitting to work properly, it is
required that the data do not show any dependency. This assumption must
be checked during the first exploratory analysis step, which also enables to
identify candidate distributions that characterize the data. The second step
in the process is to estimate the parameters of the identified distributions.
Finally, an evaluation step of the obtained distributions and estimated pa-
rameters is performed.

In the next chapter, we will present a tool that assists designers to ac-
complish this process, as part of a complete tool-flow covering most of the
steps of the ASTROLABE approach.



Chapter 7
The ASTROLABE Tool-flow

In the previous chapters of this part, we presented ASTROLABE, a rig-
orous method for performance modeling and evaluation for early phases of
system-level design. We mainly depicted the approach philosophy and its
different steps, that is, code generation and instrumentation together with
statistical inference and model calibration for building faithful performance
models, followed by stochastic abstraction and statistical model checking for
performance evaluation.

Design automation has become essential for modern companies to be
proactive and to be able to bring quick answers to rapidly evolving markets.
Besides time reduction, automation reduces manual tasks which are error
prone and hence reduces debugging and testing efforts and tends to increase
designer efficiency. The ASTROLABE approach is in line with this view
in that it is conceived to enable a maximum of automation. This chapter
describes a tool-flow set-up to automate and materialize the proposed ap-
proach. The flow is composed of several interconnected tools that automate
most of the approach tasks, that is:

– Automatic generation of distributed implementations,
– Assisting designer to perform distribution fitting,
– Automatically learning stochastic abstraction for faster analysis,
– Statistical model checking the obtained models with respect to perfor-

mance requirements.

Model instrumentation and calibration are still performed manually at the
current state.

7.1 Overview

The tool-flow is centered on the BIP and the SBIP models. All the
manipulated models are either BIP models or stochastic ones expressed in
SBIP. Figure 7.1 shows the different tools used in the different phases of
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the approach. For code generation, we implemented the BIP2MCAPI tool
that, given BIP representations and a mapping, generates an executable code
and a deployment scheme targeting the MCAPI runtime implementation for
the STHORM many-cores platform, which will be described in detail in the
next chapter. Model instrumentation to observe specific performance dimen-
sions is still done manually at this state of the work. It is performed after
code generation and does not appear explicitly in the figure. FitDist is a
distribution fitting tool which, given a set of execution traces, enables check-
ing independence, and applies the steps presented in the previous chapter to
learn the best probability distribution that fits the input data. For stochastic
abstraction, we rely on existing implementation of the AAlergia algorithm.
We present the projection part (see section 4.2.1) we built on top of it. The
model calibration step is still performed manually as stated earlier. Finally,
the statistical model checking phase is based on the BIPSMC engine we built
for SBIP models.
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Figure 7.1: Illustration of the ASTROLABE tool-flow.

7.2 BIP2MCAPI Code Generator

This tool generates a distributed C implementation of the input BIP
system model. The tool only generates code for the application part of the
system, since the architecture components will be replaced by a physical
or a virtual platform for execution or simulation/emulation. This imple-
mentation targets the MCAPI runtime, that is, it uses provided primitives
for communication and processes management for instance. The considered
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MCAPI implementation is provided by CEA 1 in the context of the SMECY
project 2 and is specifically designed for the STHORM many-cores platform,
which is designed by STMicroelectronics 3. Given the functional BIP model,
a set of design parameters, e.g., buffers sizes, and a mapping, this step con-
sists to generate the low-level running C/MCAPI code for STHORM plat-
form. This is performed in two main steps: (1) Object generation, that is
processes, queues, and shared objects, and (2) Deployment/Glue code gen-
eration, which maps the generated objects on the target platform.

7.2.1 Process Generation

During this step, each BIP component is transformed to a C/MCAPI
process. A challenging point at this level is to generate small set of process
local variables to fit the small amount of available memory per process stack
on STHORM. The generated processes are basically composed of two parts:

– Initialization: in this part, BIP components interfaces (ports) are
transformed into equivalent MCAPI endpoints. The generated process
endpoints are initialized, opened, and connected to other processes in
this same block. Moreover, endpoints memory attributes are generated
to allocate FIFO buffers and shared objects (given their sizes) and to
map them into specific memory locations. MCAPI implementation
for STHORM provides several possibility to map buffers into specific
target memory as shown in Table 7.1. Buffers could be mapped either
in L3, L2 or L1 memory using the attributes shown in the table. For
L1 memory, it depends on the sender/receiver processes location. If
these run in the same cluster, the buffer is allocated in the L1 memory
of that cluster. Otherwise, it is mapped in the L1 of the cluster where
the sender (respectively the receiver) runs.

Target Memory Sender Attribute Receiver Attribute

L3 Remote Remote
L2 Shared Shared

Receiver L1 Shared Local
Sender L1 Local Shared

Table 7.1: MCAPI endpoints memory attributes.

– Behavior: in this part, BIP component behavior is transformed to
equivalent C code with MCAPI primitives calls. It consists essentially
on an infinite while loop with several steps (using Switch/Case state-
ments) reproducing the BIP automata behavior. In the generated code,

1. Commisariat à l’energie atomique et aux energies alternatives, http://www.cea.fr
2. http://www.artemis-ia.eu/project/25-smecy.html

3. http://www.st.com
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all BIP synchronizations are transformed to C/MCAPI Read/Write
primitives.

7.2.2 Glue Code Generation

This code is composed of two parts as well: a generic and a generated
part. The generic part is parametrized by the amount of memory to be al-
located for each stack of the generated processes. It is meant to allocate the
generated processes memory and to launch them on the specified hardware
location (given the mapping). The generated part is the one that specifies
the mapping of the generated objects on the target platform. This is ob-
tained based on the input mapping. In addition, parametric Makefiles are
automatically generated to compile and run the generated C/MCAPI code
on the STHORM test-board.

7.2.3 Distributed Code Generation within BIP

The BIP tool-set 4, provides several code generators producing distributed
implementations for different targets platforms. The default code generator
targets classical computers and enables simulation, analysis, and formal ver-
ification. This is often based on POSIX threads and a scheduler that im-
plements the BIP coordination semantics. When the coordination between
components is not complex, it is possible to get rid of the scheduler. For in-
stance, code generation of distributed implementation of BIP models using
asynchronous message passing is presented in [42].

For many-cores platforms, a code generator targeting the MPARM vir-
tual platform and its runtime [152] was presented in [44]. Similarly, a work
targeting Kalray 5 MPPA platform [75] is under development. It is also possi-
ble to generate distributed implementations targeting sensors networks [145]
from BIP models.

In [35], we presented an algorithm and a prototype implementation of
a distributed scheduling algorithm for probabilistic components with non-
deterministic interactions. This work is based on the idea introduced in
[124] for stochastic Petri nets. The proposed implementation is based on
the Java compare-and-swap primitive and uses shared memory. It does not
require any additional support e.g., an operating system. This prototype
implementation only supports a subset of the BIP semantics (it does not
consider priorities for instance) and is not yet integrated within the BIP
tool-set.

4. http://www-verimag.imag.fr/BIP-Tools,93.html

5. http://www.kalrayinc.com/
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7.3 FitDist: A Distribution Fitting Tool

As stated in the previous chapter, the distribution fitting process is quite
difficult and requires expertise and thus human intervention. The aim of the
DistFit tool is to simplify this process by providing assistance to the designer.
The tool covers the three steps of the process, that is, exploratory analysis,
parameters estimation, and evaluation of the fit as shown in Figure 7.2. In
the first step, the tool performs quantitative tests, e.g., Box-Pierce and draws
several plots, e.g., ACF and Lag Plots to check independence of data. If
dependency is detected, the tool stops. The tool does not yet provide support
for this setting. The designer has to perform more advanced explorations (see
perspective section in the conclusion), and potentially, data treatment such
as scaling or outliers analysis for instance.

Parameters Estimation

Fit Evaluation

Dipendency

Cadidate Distributions

Estimations

Best Fit

Bad Fits

Data

Exploratory Analysis

Figure 7.2: DistFit Tool: the different steps, inputs, and outputs.

When the independence assumption is verified, other plots such as his-
togram, Box-Whisker plots are drawn to enable the designer to identify can-
didate distributions based on the shape of the data. For instance, the tool
draws the Cullen-Fray diagram that positions the data given its skewness
and kurtosis with respect to a family of standards distributions. The tool
then tries to estimate the parameters of the candidate distributions using the
different methods shown in the previous chapter. It then performs a com-
parison between the obtained evaluations results as in the previous chapter,
e.g., comparisons of CDFs, QQ-plots, and provides quantitative results of
goodness-of-fit tests and AIC/BIC scores. Although the tool can select a
distribution based on the latter information, it is preferable that the de-
signer chooses by combining this information with the graphical results.
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The tool is built in the R 6 statistical environment [196]. It uses a specific
package called fitdistrplus, that offers various facilities for fitting a distribu-
tion to a set of input data [80], in addition to the lawstat package[116] for
specific statistical tests.

7.4 Stochastic Abstraction Tool

As explained in Chapter 4, the stochastic abstraction is mainly based
on machine learning algorithms. The illustrated results are based on the
AAlergia algorithm [153], for which a Matlab implementation is provided 7.
We built upon this existing work and implemented the projection phase of
the stochastic abstraction in Python. We created a set of scripts that, given
a set of input strings and the support of an LTL property φ, i.e., the set
of symbols explicitly appearing in φ, produces a set of projected strings by
replacing the irrelevant symbols in the strings by a special symbol.

7.5 BIPSMC: An SMC Engine for SBIP Models
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- executable - 
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Figure 7.3: BIPSMC tool architecture: diagram of the main modules.

The BIPSMC tool implements several statistical testing algorithms for
stochastic systems verification, namely, Single Sampling Plan (SSP), Sim-

6. http://www.r-project.org/

7. http://mi.cs.aau.dk/code/aalergia/



CHAPTER 7. THE ASTROLABE TOOL-FLOW 133

ple Probability Ratio Test (SPRT) [205, 209], and Probability Estimation
(PESTIM) [110]. Figure 7.3 shows the most important modules of the tool
and how they interact in order to perform statistical model checking. The
tool takes as inputs a stochastic model description in SBIP format, a PBLTL
property to check, and a series of confidence parameters needed by the statis-
tical test. During an initial phase, the tool performs a syntactic validation
of the PBLTL formula through a parser module. Then, it builds an exe-
cutable model and a monitor for the property under verification. Next, it
will iteratively trigger the stochastic BIP engine to generate independent
execution traces which are monitored to produce local verdicts. This pro-
cedure is repeated until a global decision can be taken by the SMC core
module (that implements the statistical algorithms). As our approach relies
on SMC and since it considers bounded LTL properties, we are guaranteed
that the procedure will eventually terminate.

7.5.1 SBIP Modeling Language

We consider the following example of binary signal generator to illustrate
the SBIP modeling language. Figure 7.4 shows a DTMC model of the gen-
erator and its corresponding SBIP model. The textual description of this
component is given hereafter.

/* Declares an atomic component */

atomic type binary_generator

data int v0, v1 // Declares probabilistic variables

data distribution_t d0 // Declares probabilistic distributions

...

export port Port print_0() // Declares and exports ports

...

place l0, l1, l0’, l1’ // Declares BIP locations

initial to l0 do {

d0 = init_distribution(’distribution0.txt’); // Initialize d0

... }

...

on internal from l0 to l0’ do { // Transition from l0 to l0’

v0 = select(d0); // Update v0 w.r.t. d0

}

/* Transition from l0’ to l0 */

on print_0 from l0’ to l0 provided (v0 == 0)

/* Transition from l0’ to l1 */

on print_1 from l0’ to l1 provided (v0 == 1)

...

end
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(a) A DTMC model for binary signal generation.
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(b) Graphical Representation of the corresponding SBIP model.

Figure 7.4: Example of a DTMC model and its specification in SBIP.

Besides empirical discrete distributions, the SBIP modeling language
allows using standard distributions, such as Uniform, Normal, Exponential,
etc. For a Uniform distribution, select function could be called without
initialization phase and by providing it with interval bounds as parameters.
For instance, select(100, 500) will uniformly sample values in the interval
[100, 500].

In addition to probabilistic helper functions, the tool provides tracing ca-
pabilities that are needed to monitor state variables involved in the property
to check. In the previous example, assume that the v0 variable is subject
to verification, then the following function call should be used in order to
monitor it:

trace_i(‘‘binary_generator.v0’’, v0);

7.5.2 Properties Specification Language

The properties specification language over stochastic systems in BIPSMC

is a probabilistic variant of bounded Linear-time Temporal Logic. Using this
language it is possible to formulate two type of queries on a given system:

– Qualitative queries : P ≥ θ [φ], where θ ∈ [0, 1] is a probability thresh-
old and φ is a bounded LTL formula, also called path formula.

– Quantitative queries : P =? [φ] where φ is a path formula.

Note that it is possible through those queries to either ask for the actual
probability of a property φ to hold on a system (using the second type of
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queries) or to determine if the property satisfies some threshold θ (using the
first type of queries).

Path formulas, in SBIP, are defined using four bounded temporal oper-
ators namely, Next (N{l} ψ), Until (ψ1U{l} ψ2), Eventually (F{l} ψ), and
Always (G{l} ψ) where l is an integer value that specify the length of the
trace to consider and ψ,ψ1,ψ2 are called state formulas, that is, Boolean
predicates evaluated on system state. For example, the following PBLTL
formula

P =?[G{1000}(abs(Master.tm− Slave.ts) ≤ 160)]

asks "what is the probability that the absolute value of the difference between
variable tm and variable ts is always under the bound 160 ?".

In this example, the path formula is

G{1000}(abs(Master.tm− Slave.ts) ≤ 160)

and the state formula is abs(Master.tm−Slave.ts) ≤ 160. Variables names
are always specified as component_name.variable_name. Note that SBIP
gives the possibility to use built-in predefined mathematical functions in
state formulas. For the example above, abs() function is called to compute
the absolute value of the difference between tm and ts.

Monitoring LTL Properties

For applying statistical model checking on stochastic systems it is manda-
tory to be able to evaluate the BLTL property under consideration on system
execution traces. Indeed, this monitoring operation shall generate binary ob-
servations xi = {0, 1} (single trace verdict) which are requested by the sta-
tistical algorithms to provide a global verdict that concerns the whole system
(final verdict). In theory, monitoring consists to check if some word (labeling
the current execution trace) belongs to the language generated by some au-
tomaton encoding the property. Actually, there exist an important research
literature about the efficient transformation from LTL to Buchi [93, 208] or
alternating [201] automata. Some of these works cover bounded LTL [89, 94].

In BIPSMC , we syntactically restricted BLTL to a fragment where the
temporal operators cannot be nested. This simplification restricts the defini-
tion to a finite number of automata patterns that covers all property classes.
Moreover, this fragment has been expressive enough to cover all properties
of interest in practical applications. Furthermore, it is always possible to
enrich this set with additional patterns, as needed.

7.5.3 Technical details and Tool Availability

BIPSMC is fully developed in Java programming language. It uses JEP
2.4.1 library 8 (under GPL license) for parsing and evaluating mathemati-

8. http://www.singularsys.com/jep/
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cal expressions and ANTLR 3.2 9 for PBLTL parsing and monitoring. At
this stage, BIPSMC only runs on GNU/Linux operating systems since it is
coupled to BIP. The first release of the tool only works on command line
mode. We are working on a graphical user interface that will be available
in the next release. The model checker can be downloaded from http:

//www-verimag.imag.fr/Statistical-Model-Checking.html, where you
can find additional resources on how to install it and use it with the BIP
framework.

7.6 Integration within the BIP Design Flow

The presented tool-flow completes a set of already existing tools within
the BIP design flow. This offers a rigorous approach for tackling embedded
systems design challenges. As shown in Figure 7.5, it offers an ensemble of
tools for formal modeling, model transformations, formal verification, and
code generation. We present hereafter the one which are in direct relation
with the present work.

7.6.1 DOL and DOL2BIP

DOL stands for Distributed Operation Layer [198]. It is a framework
devoted to the specification and analysis of mixed hardware/software sys-
tems. DOL provides languages for the representation of particular classes of
applications software, multi-processor architectures and their mappings. In
DOL, application software is defined using a variant of Kahn process net-
work [95] model. It consists of a set of deterministic, sequential processes (in
C) communicating asynchronously through FIFO channels. The hardware
architecture is described as interconnections of computational and commu-
nication resources such as processors, buses and memories. The mapping
associates application software components to resources of the hardware ar-
chitecture, that is, processes to processors and FIFO channels to memories.

DOL2BIP [44] is a tool that transforms DOL specifications into BIP
models. Figure 7.6 shows a KPN model composed of six processes, namely
Config, Splitter, Joiner, and three Worker instances. The communication
between these processes is based on blocking Read/Write primitives on FIFO
channels following the DOL semantics. In this example, the initial step
consists of configuring (data size, data type, etc.) the Worker processes.
It is performed by the Config process. Generic processes are considered to
enable the processing of different data types/sizes. After configuration, the
data to be processed is split and sent by the Splitter to the workers that run
in parallel. Finally, the results is collected by the Joiner.

9. http://www.antlr3.org/
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Figure 7.5: The ASTROLABE tool-flow extended with several tools: DOL,
DOL2BIP, BIPWeaver, the BIP Hw library, and D-Finder.
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Config

Figure 7.6: A KPN model example consisting of a split/join schema: A
splitter, Several parallel workers, and a joiner process.

Given the KPN model in Figure 7.6, the generation of the corresponding
BIP representation is straightforward. As shown in Figure 7.7, each process
is transformed to an atomic BIP component modeled as an extended automa-
ton following the BIP formalism. Additional components modeling commu-
nication through FIFOs are explicitly introduced. In each BIP component
corresponding to a DOL process, the DOL Read/Write calls are transformed
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to equivalent BIP interactions (ports) synchronized with FIFO components
that provide push/pop primitives. Parametrized FIFO components (with
a maximum capacity) are explicitly inserted for each inter-process commu-
nication. The connection of the processing components (Splitter, Worker,
Joiner) with the FIFO components is made through BIP render-vous con-
nectors that models strong synchronization.
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Figure 7.7: The BIP model of the Worker example Figure 7.6. Additional
FIFOs components are introduced between communicating processes.

7.6.2 BIPWeaver and the BIP HW Components Library

The BIPWeaver tool [43, 45] generates the full model (called system
model) of the application software mapped into the hardware architecture
components with respect to the input mapping. The inputs to the tool are
the BIP application model, the library of BIP HW components, the archi-
tecture description in XML format, and the discretion of the mapping also
in XML. The tool operates in several steps. It first validates the input files
especially the XML descriptions with respect to given schema. Then, it loads
HW component corresponding the architecture description from library of
BIP components. These range from communication infrastructure, to pro-
cessing and scheduling components. Finally given the mapping, connectors
are synthesized to relate application components to the instantiated archi-
tecture components.

7.6.3 D-Finder

D-Finder 10 [33, 34] is a compositional verification tool that enable func-
tional verification of BIP models, that is checking safety properties and dead-

10. http://www-verimag.imag.fr/DFinder.html
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lock freedom. It uses an abstraction technique based on invariant and reach-
ability analysis to avoid exhaustive and costly verification. To this end, it
enables an efficient generation of components and communication invariant.
The tool has been used to verify several case-studies and has been recently
extended to invariant generation of timed models [10].

7.7 Conclusions

In this chapter, we presented a tool-flow implementation associated with
the ASTROLABE approach introduced in Chapter 5. The goal of this tool-
flow is to enable rigorous and especially automatic performance modeling
and analysis at system-level. We mainly presented a code generator for
the STHORM platform and the MCAPI runtime, denoted BIP2MCAPI, an
assistance tool for distribution fitting, an automatic way to build stochastic
abstractions, and a statistical model checker, namely BIPSMC .

The BIPSMC model checker consists of 22 Java classes summing up to
∼ 3500 lines of code (loc), the BIP2MCAPI code generator consists of 7 Java
classes summing up to ∼ 1740 loc, and the DistFit tool is one R file that
contains about 650 loc. As stated earlier, the stochastic abstraction tool
is based on an existing Matlab implementation of the AAlergia algorithm.
We implemented on top of it a set of Python scripts for the projection part
which is about 130 loc.

In the next and last chapter of this part, we present a case study that
illustrates the use of the ASTROLABE approach and the associated tool-
flow. The case study consists of an image recognition application running
on a many-cores platform.





Chapter 8
Image Recognition on Many-cores

In this chapter we illustrate the use of the ASTROLABE approach and
its associated tool-flow for the design of an embedded system for image recog-
nition and contour detection. The application part of this system consists of
the HMAX models algorithm for object recognition that operates on several
steps as detailed hereafter. In this case study, the architecture part is com-
pletely specified and consists of a many-cores platform, namely STHORM.
With reference to the possible design configurations (see Section 1.2.3 in
Introduction), this falls within the second setting, where the goal is to effi-
ciently design and map the application into the specified architecture. For
this case study, we will be considering timing as the main efficiency criterion.

8.1 Application Overview

HMAX models algorithm [160] is a hierarchical computational model of
object recognition which attempts to mimic the rapid object recognition of
human brain. Hierarchical approaches to generic object recognition have be-
come increasingly popular over the years, they indeed have been shown to
consistently outperform flat single-template (holistic) object recognition sys-
tems on a variety of object recognition task. Recognition typically involves
the computation of a set of target features at one step, and their combination
in the next step. A combination of target features at one step is called a
layer, and can be modeled by a 3D array of units which collectively repre-
sent the activity of set of features (F) at a given location in a 2D input grid.
HMAX starts with an image layer of gray scale pixels (a single feature layer)
and successively computes higher layers, alternating “S” and “C” layers:

– Simple (“S”) layers apply local filters that compute higher-order fea-
tures by combining different types of units in the previous layer.

– Complex (“C”) layers increase invariance by pooling units of the same
type in the previous layer over limited ranges. At the same time, the
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number of units is reduced by sub-sampling.

1 × Y × X

1 × Y × X (× S)

F1 × Y × X (× S)

F1 × Y × X (× S)

F2 × Y × X (× S)

F2

Dimension Names

C2 (max)

S2 (grbf)

C1 (max)

S1 (ndp)

SI (scaled images)

Layer name

RI (raw image)

Figure 8.1: HMAX models algorithm overview.

In the present case study, we only focus on the first layer of the HMAX
Models algorithm (see Figure 8.1) as it is the most computationally intensive.
In a pre-processing phase, the input raw image is converted to grayscale
input (only one input feature: intensity at pixel level) and the image is
then sub-sampled at several resolutions, 12 scales in our case 1. For the
S1 layer, a battery of three 2D-Gabor filters is applied to the sub-sampled
images and then for C1 layer, the spatial max of computed filters across
two successive scales is taken. Figure 8.2 shows an example of an input
image (8.2a), an example image obtained after the pre-processing and the
sub-sampling phases, scale 180 (8.2b), and the outputs of the S1 layer (three
direction with respect to three 2D-Gabor filters, 8.2c 8.2d, 8.2e). In this
application, parallelism can be exploited at several levels. First, at layer
level, where independent features can be computed simultaneously. Second,
at pixel level, that is, the computation of contribution to a feature may be
distributed among computing resources.

8.2 Hw Architecture Overview

8.2.1 The STHORM Platform

STHORM [155] is a many-cores system consisting of a host processor
and a many-core fabric. The host processor is a dual-core ARM cortex A9.
The STHORM fabric comprises computing clusters, inter-connected via a
high-performance fully-asynchronous (2D mesh structure) network-on-chip
(NoC), which provides communication with high, scalable bandwidth. Each
cluster aggregates a multi-core computing engine, called ENCore, and a clus-

1. 256, 214, 180, 152, 128, 106, 90, 76, 64, 52, 44, 38
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(a) Input image (b) Sampled gray
scale image

(c) Output image
direction 1

(d) Output image
direction 2

(e) Output image
direction 3

Figure 8.2: Example of input and output images of the HMAX S1 layer.

ter controller (CC). The ENCore embeds a set of tightly-coupled processor
elements (PE) which are customizable 32-bit STxP70-v4 RISC processors
from ST Microelectronics. On the STHORM test-board used in our exper-
iments, the fabric comprises 4 clusters, with 16 PEs each. The PEs in one
cluster share a multi-banked level-1 (L1) data memory of 256 KBytes. The
banks of the L1 memory can be accessed in parallel in one processor cycle.
Each PE has its private instruction cache with a size of 16 KBytes.

The CC consists of a cluster core (STxP70-v4), a multi-channel advanced
DMA engine, and specialized hardware for synchronization. The latter two
are accessible also by the PEs. The CC interconnects with two interfaces: one
to the ENCore and one to the asynchronous NoC. All clusters share 1 MByte
of level-2 (L2) memory, accessible via the NoC. The access time is several
tens of cycles. A DDR3 level-3 (L3) memory is available off-chip (1 GByte);
this memory has a large size, however its access time and bandwidth are
much slower than the ones of the on-chip memory.

In summary, due to area and power constraints, the fast memory available
on the chip is scarce. Furthermore, the host processor and the cores on the
fabric have a different instruction-set-architecture. These two aspects make
efficient programming on STHORM a challenging task.

8.2.2 The Multi-core Communication API

The main objective of the MCAPI implementation on STHORM is to
offer a homogeneous programming interface for the entire platform (fabric
and host). This uniform representation covering the entire platform can per-
fectly integrate the full design flow targeting STHORM, which significantly
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eases code generation and analysis. The current MCAPI implementation
features five domains: one for each cluster on the fabric, and one for the
host as shown in Figure 8.3.

Figure 8.3: MCAPI domains on STHORM.

The five domains naturally reflect the STHORM hardware organization.
Furthermore, in each cluster-domain each MCAPI node is mapped on a PE.
The host-domain has only a single node corresponding to the ARM dual-
core processor. The host node is responsible for the deployment of the entire
execution, as it is the main entry point of an application. The MCAPI ini-
tialization of the host node automatically loads the fabric binary code into
the L2 memory, and starts the fabric MCAPI nodes. The MCAPI imple-
mentation totally hides from application the complexity dynamic loading of
of binary and symbols dependency solution. A single semantic for the entire
STHORM platform is exposed for homogeneous programming.

The channels are implemented using FIFO buffers allocated in any of the
memory levels available on STHORM. The size of the allocated buffer and
its memory placement can be set by using endpoint attributes, as specified
in the MCAPI standard. The sending endpoint and the receiving endpoint
must have consistent attributes definition for the creation of a channel. No
MCAPI node is mapped on the CCs, meaning that they are not directly
visible to the programmer. Instead, they are used internally in the MCAPI
implementation to support the various communication mechanisms and syn-
chronizations. DMA engines are also hidden from the programmer, but used
by the implementation to transfer data between memory levels and domains.

8.3 Performance Requirements Overview

As stated in the beginning of this chapter, we will mainly focus on the
timing dimension of the system, which will constitute the efficiency criterion.
We are interested on the overall execution time and the time to process single
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lines of the input image. More precisely, we will compute the probabilities
that the overall execution time is always lower than a given bound Δ and that
the variability in the processing time of successive lines is always bounded
by Ψ . To this end, we specify the above requirements in BLTL as follows:

1. Overall execution time: φ1 = Gl(t < Δ), where t is the monitored
overall execution time.

2. Variability of the time of processing successive lines : φ2 = Gl(|tl| < Ψ),
where tl is the difference between the processing time of successive
lines.

8.4 Functional and Performance Modeling

8.4.1 High-Level Reconfigurable KPN Model

We developed a parametric KPN model for the S1 layer of HMAX in
DOL. The model is based on the worker pattern presented previously. It
uses a certain number of reconfigurable processes for implementing the 2D-
Gabor filtering and image splitting/joining. Every image is handled by one
processing group consisting of one Splitter, one or more Gabor (Worker)
and one Joiner, connected through blocking FIFO channels as illustrated
in Figure 8.4. This model exploits parallelism both at image level, as dif-
ferent images are processed in parallel by different processing groups and
at pixel level, as different stripes of the image are processed in parallel by
different Gabor processes. Moreover, parallelism is exploited between pure
computation on Gabor processes and data transfer from/to main memory
by Splitter/Joiner processes.
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Splitter  Joiner Main 
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Figure 8.4: An abstract view of the S1 layer of HMAX models algorithm.
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The computation of the entire S1 layer is coordinated by a single main
process. Several image scales are handled concurrently. That is, the twelve
scaled images are statically pre-allocated and mapped on different processing
groups. For every image scale, the processing is pipelined as follows. Initially,
the main process sends the first 10 + P lines to the corresponding processing
group, where P ≥ 0 is an integer parameter called line pressure that specifies
the pipelining rate. In normal regime, one input line is sent and one output
line is received, for every filter rotation (that is, actually three output lines).
Finally, once all the input image has been sent, the main process receives P
more output lines. At this point, the processing group is ready (empty) and
can be reconfigured to restart computation for another image scale.

/** DOL Gabor Process **/

void gabor_init()

{ status = CONFIG; }

void gabor_fire(){

if(status == CONFIG){

/* Read configuration parameters

from input configuration FIFO */

read(CONF_FIFO, &config);

/* Update number of steps */

step = config.step;

/* Update status */

status = EXEC; }

if(status == EXEC){

/* Read data from input data FIFO */

read(DATA_FIFO_IN, &data);

/* Execute computation function */

compute_filter(&data);

/* Write data to output FIFO */

write(DATA_FIFO_OUT, data);

/* Update number of steps */

step--;

/* Update status */

if(step == 0) status = CONFIG;

}

}

Within the processing group, the Splitter receives input images, line by
line from the main process. Every line is split into a number of equal length
(and overlapping) fragments, one for every Gabor process, and sent to these
processes. Gabor processes implement the computation of the 2D-filter itself
(A DOL code sample of the Gabor process is given above). Filter size is fixed
to 11 × 11 in the case study. Hence, Gabor processes need to accumulate 11
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line fragments in order to perform computation. Henceforth, they maintain
and compute the result operating on an internal "sliding" window of 11 line
fragments. Finally, the resulting fragments are sent further to the Joiner,
which packs them into complete output lines and sends them to the main
process.

In this experiment, for the sake of simplicity, we only consider one image
scale (256×256), that is, one processing group will be actually used as shown
in Figure 8.5. Besides, reducing the model size, this restriction relaxes data-
dependency since a single input size is considered. It is worth mentioning
that, given one image scale as input, each process will always handle the same
workload (amount of data) which increases the statistical learning confidence.

Gabor 

Gabor 

Gabor 

… x 14 

Splitter  Joiner Main 
246 

Main 
256 

Cluster 

Host  Host 

Figure 8.5: The simplified model of the S1 layer of HMAX models algorithm.

Given the KPN model above, we generate a BIP model using the DOL2BIP
tool described in the previous section. We depict in Figure 8.6 the obtained
BIP component for the Gabor process, which consists of an automaton that
reproduces the behavior described earlier. That is, a configuration step in l0
given the configuration data (this specifies for instance the number of frag-
ment to process denoted steps in Figure 8.6), followed by several iterations
(from l1 to l4, which depends on the number of steps to perform) consisting
of reading a fragment from the input queue DATA_FIFO_IN, computing
the filer, and writing the results into the output queue DATA_FIFO_OUT.
The DOL2BIP transformation produces in addition FIFO components, as
described earlier. Figure 8.7 shows such a component.

write_data

compute_filter(&data)

read(DATA_FIFO_IN, &data)

read_data

[steps != 0]

steps−−

[status==EXEC]

[steps == 0]

status = CONFIG

data

write_data

read(CONF_FIFO, &config)

status = EXEC

steps = config.steps

read_conf

[status == CONFIG]

data

write(DATA_FIFO_OUT, data)read_conf

config
read_data

status = CONFIG

l0 l1 l2

l3l4

Figure 8.6: A functional BIP model of the Gabor process.
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data

receive

data

b = new Queue(max)
push(b, data);

receive

[b.size < max]

send

[b.size > 0]

pop(b,&data);

send

l0

Figure 8.7: A BIP model of a FIFO buffer.

Once we generate the functional BIP model of the application, we pro-
duce a distributed implementation using the BIP2MCAPI code generator
tool. Note that in this case study we are not producing a complete system
model (composed of the application mapped to the architecture) as described
in in Chapter 5. Since we are given the target platform, we are not consid-
ering a model of the architecture but only a model of the application and a
mapping. A sample of generated code, corresponding to the Gabor process,
is shown below. The produced code is instrumented in order to observe ex-
ecution and communication time of each process. In this case study, we rely
on a physical STHORM test-board in order to gather low-level performance
data. The generated implementation is therefore deployed and executed and
the corresponding performance traces can be directly produced.

void gabor_ins_execute(void* args) {

/* Initialization part */

...

/* Behavior part */

while(Wlcontinue){

switch(BIP_CTRL_LOC){

case L0 : {

if (status == CONFIG){ ...

status = EXEC; BIP_CTRL_LOC = S0; }

if (status == EXEC) BIP_CTRL_LOC = S1;

break; }

case L1 : {

mcapi_pktchan_recv(h_WORKER_read_data, (void**)&mcapi_buffer,

&mcapi_received, &mcapi_status);

if((mcapi_received != size) || (mcapi_status != MCAPI_SUCCESS))

ERR_RAISE("FAIL TO READ DATA");

memcpy(data, mcapi_buffer, mcapi_received);

size = mcapi_received;

mcapi_pktchan_release(mcapi_buffer, &mcapi_status);

if(mcapi_status != MCAPI_SUCCESS) ERR_RAISE("FAIL TO RELEASE CHANNEL");

BIP_CTRL_LOC=S2 ;

break; }

case L2 : {

compute(&data); BIP_CTRL_LOC=S3;

break; }
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case L3 : {

mcapi_pktchan_send(h_WORKER_write_data, data, size, &mcapi_status);

if(mcapi_status != MCAPI_SUCCESS) ERR_RAISE("FAIL TO SEND DATA");

step--; BIP_CTRL_LOC=S4;

break; }

...

}

}

}

8.4.2 Performance Characterization and Model Calibration

Now that we dispose of execution traces that concern the performance
dimension of interest, that is time, we apply the distribution fitting process
to learn probability distributions that characterizes these data. We illustrate
the different steps of the process on the execution time of the Gabor process.
Exploratory Analysis is first performed to observe if the data provide any
clues to resemble to a standard probability distribution. Runs and Box plots
are initially used to observe the data shape and evolution. The corresponding
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Figure 8.8: Box-Whisker and Runs plots of the Gabor execution time. Ex-
treme observations correspond to the end of the process execution.

plots are presented in Figure 8.8, which reveal the presence of very extreme
values clearly deviating from the other observations, these are considered as
outliers 2 and are eliminated from the sample under study. Figure 8.9 shows
the same plots after removing outliers.

2. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
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Figure 8.9: Box-Whisker and Runs plots of the Gabor execution time obser-
vations after outlier elimination (observation are more compact).
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Figure 8.10: Lag plot of the Gabor execution time observations. It shows
random spread of the data (no specific shape is appearing).

To check if the data observations are independent, we first use the Lag
plot. This draws the observations xi in the y-axis and xj in the x-axis,
where i− j is the fixed lag. For instance, Figure 8.10 shows the Lag plot of
the Worker execution time with lag equal to 1. The figure clearly shows a
random dispersion of the observations. To get more confidence, we used the
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Ljung-Box and the Box-Pierce tests at significance level of 0.05. These gave
respectively 0.0531 and 0.0533 as p-values which confirms the independence
assumption.
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Figure 8.11: Histogram and CDF of the Gabor execution time observations.

Finally, we use the histogram and the CDF shown in Figure 8.11 to
observe the shape of the data. One can see out of this figure that the data is
uni-modal and symmetric which means that it may be potentially generated
from bell-curved process. We use the Cullen and Fray graph illustrated
in Figure 8.12 to get more insight with respect to the Skewness and the
Kurtosis of the data. The figure shows that the observations are seemingly
Normal, however, according to the same figure, Lognormal, Gamma, and
Beta distributions are also good candidates.

The second step in the distribution fitting process is to fit the candidate
distributions to the data, that is, Parameters Estimation from the data.
Note that all the identified candidates have the same number of parameters,
which is 2. Concretely, the Normal and the Lognormal distributions are de-
fined in terms of a mean µ and standard deviation σ. The Beta distribution
has two shape parameters α and β, and the Gamma distribution has a shape
parameter k and the scale parameter θ. Moreover, the Beta distribution is
defined over [0, 1], thus a pre-processing of the data is first required before
the parameters estimation. Since it does not provide any advantage with
respect to the other candidates, like using less parameters, we are not going
to consider it for the fitting. We are thus left with the Normal, the Lognor-
mal, and the Gamma candidates. Since the Normal and the Lognormal are
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Figure 8.12: Cullen and Frey graph for the Gabor execution time.

quite similar 3, we only consider the Normal and the Gamma distributions as
pertinent candidates for the fitting process. Observe that the above choices
are mostly subjective and are mainly based on human interpretation.

We now move to estimate the parameters of the retained candidates. To
this end, we used the method of moment (MME) described in the previous
chapter, which gives the following estimates:

– For the Normal candidate: µ = 677.52µs and σ = 0.626µs.
– For the Gamma candidate: k = 1172721.38µs and θ = 1730.909µs

The final step in this fitting process is to Evaluate the Obtained Fits
through a goodness-of-fit test. We used the different test statistics described
in the previous chapter, that is, Kolmogorv-Smirnov (K-S), Carmer-Von
Mises (C-VM), and Anderson-Darling (A-D), for which the results are given
in Table 8.1.

K-S C-VM A-D AIC BIC

Normal 0.0331 0.1931 1.342 1398.534 1407.731

Gamma 0.0330 0.1930 1.340 1398.517 1407.714

Table 8.1: Goodness of fit evaluation results for the Normal and the Gamma
distributions.

3. They can be obtained from each other using a Log transformation.
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The goodness-of-fit tests were performed at a significance level of 0.05. In
Table 8.1, two results out of three (Carmer-Von Mises (C-VM) and Anderson-
Darling (A-D)) show that both candidates provide good fits, since the ob-
tained p-values in each case are greater that 0.05. Thus the we cannot
reject the hypothesis stating that the data is normally distributed with
µ = 677.52µs and σ = 0.626µs, neither the hypothesis stating that the
data follows a Gamma distribution with k = 1172721.38 and θ = 1730.909.
In Table 8.1, we give in addition the obtained AIC and the BIC scores, which
are very similar in this case and do not help us to select. We rely on addi-
tional plots to visually compare the two candidates. In Figure 8.13, we show
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Figure 8.13: Graphical comparison between the Normal and the Gamma fits.
The obtained curves for both fits are very similar.
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a comparison between the obtained candidates in terms of their probabil-
ity density functions (PDFs) and cumulative distribution functions (CDFs).
The two fits provide very similar fits to the observations and it is almost im-
possible to distinguish between them. In such a situation, the decision is left
to the designer. For instance, in our case, we choose the Normal distribution
since it provides interesting properties and is easier to implement.

We applied the same steps for the processes communication times and
learned similar distributions. In Figures 8.14 and 8.15 we show plots illustrat-
ing the fitting process: a Cullen and Fray Graph (8.14a), a Lag plot (8.14b),
a Box-Whisker plot (8.14c), and a histogram (8.14d) for the reading time of
the Splitter process. These shows that the data are basically Normal. The
parameters estimation using the MME method provides that µ = 9649.83
and σ = 105.92. The goodness-of-fit evaluation at 0.05 significance level
gives the following: using K-S, 0.0592, using C-VM, 0.0861, and using A-D,
0.4619. These results provide no clues against our hypothesis that the data
is normally distributed with the estimated parameters µ and σ. Figure 8.15
shows a graphical summary of the obtained Normal fit (PDF, CDF, Q-Q
plot, and P-P plot). The learned communication time only concern the data
transfer time and does not include the blocking time as it is already captured
in functional part of the model as explained in Section 5.4.
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Figure 8.14: Exploratory Analysis for Splitter reading time.
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Figure 8.15: Normal Fit Summary for Splitter reading time.

It is worthwhile mentioning that, in this case study, only the Gabor pro-
cess computation time, that is, the compute_filter function was considered
since we observed that it is the most time consuming. For the other pro-
cesses (Splitter and Joiner), only the communication time was character-
ized. These are actually doing very light computation consisting of cutting
and assembling data. We also draw the reader attention to the fact that
the learning of the computation time behavior of the Gabor process is per-
formed only for one process. Since all the running Gabors in the system are
instances of the same component which run the same compute_filter func-
tion and execute on identical cores, it is safe to calibrate them with the same
probability distribution. This actually an advantage of using probabilistic
characterization.

Once all the performance aspects of interest are characterized (in this
case, we recall that we only consider time), calibration is performed by anno-
tating the functional BIP model using the learned distributions as illustrated
in Chapter 5. Figure 8.16 shows an example of calibrated BIP component.
This corresponds to the Gabor process in Figure 8.6, which is augmented
with timing information that concerns communication, i.e read and write
time, and the computation time of the compute_filter function, which rep-
resents the core computation part of the process. Three different probability
distributions where learned to this end, namely µr for the read time, µw for
the writing time, and µc for the computation time. Note that the calibration
phase implies also to modify the FIFO components, as we did in Chapter 5,
that is, by decomposing the push and pop actions into begin and end.
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Figure 8.16: The calibrated model of the Gabor process. An SBIP model
that represents a part of the obtained performance model of the designed
system.

8.5 Performance Evaluation

Before using SMC to check the system-level timing requirements, we
wanted to validate the calibrated model with respect to the actual imple-
mentation. To this end, we compared the overall execution time obtained
by 1) running the generated HMAX implementation on the test-board and
2) simulating the calibrated SBIP model. We observed that the time on the
model is about 20% lower than what we obtained on the test-board. This
result is expected since the calibrated model does not take into account all
the implementation delays. For instance, the splitting and joining time were
not introduced in the model. Moreover, high-level models are generally more
optimistic due to abstraction.

Now that we built a high-level performance model that encompasses the
functional behavior and which is calibrated with timing information, it can
be used for performance evaluation using SMC. We recall that the obtained
model is an SBIP model where non-determinism is resolved using priorities
on one hand, and uniform schedulers on the other (see Chapter 3 for more
details). We use the SPRT algorithm implemented within The BIPSMC

statistical model checker with confidence parameters α = β = 0.001 and
δ = 0.05. We checked the aforementioned performance requirements, i.e.,
φ1 = Gl(t < Δ) and φ2 = Gl(|tl| < Ψ), for different pipelining rate P ∈
{0, 2}. For this case study, we have used arbitrary FIFOs sizes as follows:
Main-Splitter= 10 KB, Splitter-Worker= 112 B, Worker-Joiner= 336 B,
and Joiner-Main= 30 KB. Note that such a choice might be also explored
using our approach.
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Δ (ms) 572.75 572.79 572.8 572.83 572.85 572.87 572.89 572.91 572.95

P (φ1) 0 0.2 0.28 0.57 0.75 0.91 0.98 0.99 1

Traces 66 457 1513 1110 488 954 171 89 66

Table 8.2: P (φ1) and number of used SMC traces when varying Δ (P = 0).

Table 8.2 shows the probability evolution of φ1 for different Δ and the
corresponding required SMC traces. This first analysis is performed with no
pipelining, i.e., P = 0. One can for instance conclude out of this table that
the overall execution time is always lower than 572.95ms with probability 1.
What would be interesting to verify is for instance a trade-off between the
obtained timing bound and the used resources in terms of memory utilization.
That is, when decreasing the FIFOs sizes, how the overall execution time is
impacted? This is an ongoing work for the moment.

In Figure 8.17, Tables 8.3 and 8.4, we present two results of verifying
φ2 when varying the bound Ψ . The curve on 8.17a is obtained with no
pipelining, i.e., (P = 0), while the one on 8.17b is obtained with P =
2. The two curves have similar evolution with a small difference in the
bounds. The second curve (P = 2) has actually greater values, which reflect
more variation. We recall that when P = 0, all the processes are perfectly
synchronized which yields to small variation over line processing time. Using
P > 0 leads to greater variation since it somehow alter this synchronization.
We finally mention that the SMC time was relatively small given the model
size: 5 hours in average for each property. The BIP model has 47 BIP
components and ∼ 6000 lines of code. Components have in average 20
control locations and 10 integer variables each, which induces a big state
space.

Ψ (µs) 2095 2100 2110 2115 2120 2125 2130

P (φ2) 0 0.1 0.24 0.47 0.76 0.94 1

Traces 66 65 255 1036 2371 410 66

Table 8.3: P (φ2) and number of used SMC traces when varying Ψ (P = 0).

Ψ (µs) 2280 2285 2290 2300 2305 2310 2315 2320

P (φ2) 0 0.1 0.14 0.64 0.89 0.98 0.99 1

Traces 66 418 394 752 853 206 65 66

Table 8.4: P (φ2) and number of used SMC traces when varying Ψ (P = 2).
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Figure 8.17: Probabilities of φ2 for P ∈ {0, 2}.

8.6 Conclusions

This chapter covered a case study that concerns an image recognition
application running on a many-cores platform. The application consists of
the HMAX models algorithm for objects recognition, which is originally a
sequential algorithm. The goal was to design a parallel version of this applica-
tion and to efficiently deploy it on the target many-cores platform, that is in
this case, STHORM. We used the ASTROLABE tool-flow to this end. First,
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we built a KPN model of the application following a join/split schema. Using
the DOL2BIP tool, we obtained a functional BIP model, which was used to
generate a distributed implementation of the application and to deploy it on
STHORM given a certain mapping. We then performed statistical learning
to characterize timing information and to derive a performance model, which
was finally analyzed using SMC against the timing requirements.

Due to time and technical issues, we were not able to explore several
aspects of the system. Actually, the STHORM project was unfortunately
shut-down by STMicroelectronics and we were only able to experiment on a
test-board provided by CEA for limited use. We hence performed only timing
analysis for a single mapping and on a sub-part of the system. What would
be interesting is to explore the full version, that is, processing all the input
image scales and to analyze trade-offs between time and memory, especially
because memory is scarce on the fabric side of the platform. Exploration
could also cover several mappings and various images allocation settings. A
preliminary work in this direction can be found in a technical report [164].
It is worth mentioning that for this study, we did not use the abstraction
technique introduced in Chapter 4, since the obtained performance model
was affordable using bare SMC algorithms.





Chapter 9
Conclusions and Perspectives

Conclusions

The main objective of the present work is to enable better support of
performance aspects in system-level design of many-core embedded systems.
As exposed along the manuscript, our belief is that such support can only be
possible within a holistic and rigorous approach that provides systematic and
tool-supported steps performed in an iterative and incremental fashion. Our
goal was thus to conceive an approach that follows these guide-lines and that
eventually leads to a correct and efficient implementation of a given system.
To precisely identify how to handle performance at system-level, we analyzed
the existing and sought challenges in this area. We were able to identify
modeling and analysis as essential activities and to specify requirements that
must be satisfied to answer the identified challenges.

We proposed the SBIP stochastic component-based modeling language
and its associated formal semantics as answer to rigorousness, incrementality,
and expressiveness requirements. The proposed modeling language is seen as
the spine of the conceived approach. It enables to capture different aspects of
embedded systems, especially performance and induced variability, through
the proposed stochastic semantics that allows for modeling probabilistic and
non-deterministic behaviors, i.e., MDPs. Designing following a component-
based fashion enables natural thinking and building of systems and helps
mastering complexity. Furthermore, formal semantics allows for rigorous
and automated reasoning about the designed system.

On top of the SBIP formalism, we built a probabilistic model checker,
namely BIPSMC , in order to perform quantitative analysis, which is of
paramount importance for performance evaluation. This tool uses a mix
of simulation and statistical-based approaches, which provide a good trade-
off between accuracy, rapidity, and scalablity requirements. We presented
an example of using the SBIP formalism and the BIPSMC tool for verifying
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a multimedia system. As for any formal analysis technique, SMC suffers
from state space explosion issues. To bypass this hindrance, we proposed
an abstraction technique that computes a smaller stochastic model given a
certain requirement. The suggested technique uses projection with respect
to a given property to keep only the relevant behavior of the system, and
machine learning to build a compact representation. The method was shown
to converge in the limit to a small yet accurate representation of the original
system.

The above contributions, which were presented in the first part of the
manuscript, besides being an important part of the theoretical foundation of
the proposed performance modeling and analysis approach, they represent
a generic and a formal framework for rigorous modeling and quantitative
analysis of stochastic systems. They may be used in a different context than
performance modeling and analysis at system-level. This is the reason we
choose to present them in a separate part.

An important challenge that was identified during the analysis of require-
ments for system-level performance modeling is to figure out the appropriate
level of abstraction of the system model to build. To produce a trustwor-
thy design, such models must capture a sufficient amount of information that
concern functional and performance aspects of the system, that is, they must
be faithful. Given this requirement, we conceived a modeling approach that
aims at producing performance models offering good trade-offs between the
level of abstraction and the degree of faithfulness required in early design
phases. The proposed method follows a meet-in-the-middle scheme and is
composed of three main tasks, namely, code generation, distribution fitting,
and models calibration. The idea of the approach is to combine behavioral
information coming from high-level functional models and low-level perfor-
mance details obtained from real executions or low-level simulations.

In spite of being part of the performance modeling approach, the code
generation contribution answers the requirement of quickly programming and
software prototyping on many-cores platforms. The goal of this task is to
generate a distributed implementations and the associated deployment of a
given high-level functional model on a target many-cores platform. Such im-
plementation allows for concrete executions and thus for observing real per-
formance evolution, which is enabled through code instrumentation with re-
spect to the performance dimension of interest. In order to faithfully capture
such information and to characterize it, we opted for probabilistic modeling
which enables to capture performance fluctuations and allows for operating
natural abstraction of irrelevant details. To this end, we used a statistical
inference process, more precisely distribution fitting, which consists of learn-
ing the best probability distribution that characterizes the performance data.
Finally, we combine the high-level functional behavior with the probabilis-
tic performance characterization to obtain a stochastic performance model
using a model calibration step. Calibration consists of injecting the learned
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probability distributions within the functional model by introducing prob-
abilistic variables and time progress in the case of timing performance for
instance.

All the above steps compose the ASTROLABE integrated approach we
proposed for performance modeling and analysis at system-level. In this
approach, performance modeling relies on the steps above and the obtained
performance model is analyzed with respect to performance requirements us-
ing the stochastic abstraction and the statistical model checking techniques.
We also depicted a tool-flow covering most of the steps of the ASTROLABE
approach, e.g., DistFit tool for distribution fitting and BIP2MCAPI code
generator for the STHORM many-core platform and the MCAPI runtime.
The approach and its associated tool-flow was illustrated on a fragment of
a real-life case study for image recognition. The initial results of this study
were encouraging and showed that good performance models can be ob-
tained quickly and easily from high-level specifications. Moreover, analysis
using statistical model checking provided quick and accurate results. Anal-
ysis is for now done only for timing aspects and we are planning to extend
it for further performance dimensions as stated in the perspective section
hereafter.

Perspectives

In the above contributions, several amelioration and extensions are sought
to enable covering additional aspects and hence ensure more generality for
the proposed approach for system-level performance modeling and analysis.

The SBIP Extension

The SBIP formalism can be extended at different levels. First, with re-
spect to time granularity. As presented in Chapter 3, the proposed semantics
only covers discrete-time, i.e., MDPs and LMCs. It would be interesting to
extend this semantics to cover in addition continuous time. Such extension
would help to build models that capture timing aspects more naturally. For
instance, when calibrating functional models with probability distributions
characterizing computation or communication time, one can think of adding
stochastic clocks that evolve continuously with respect to the learned prob-
ability distributions, instead of adding probabilistic variables and modeling
time evolution via discrete transitions. To do so, we may rely on the real-time
semantics of the BIP formalism [1] where time is a first-class concept, that
is, a full-fledged part of the semantics. In contrast, to the BIP semantics, in
real-time BIP, time is not explicitly simulated using discrete transitions, e.g.,
tick, but is implicitly handled by an engine that implements the real-time
semantics.
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Considering stochastic clocks is not trivial, especially in a component-
based formalism because of the induced complexity of parallel composition
of components. Various works have proposed models combining time and
stochastic behavior such as Stochastic Petri nets [4], stochastic process al-
gebra [112, 114], stochastic automata [71, 72], stochastic timed automata
[70, 36] used for instance in MoDest, and priced timed automata used in Up-
paal [74]. These models often have CTMCs or more general GSMPs [98, 7]
semantics.

A second amelioration in SBIP may cover the probabilistic schedulers,
which are currently limited to uniform distributions. As stated in Chapter 3,
this is the default choice we made for simplicity of implementation. Allow-
ing additional probability distributions for schedulers, implies to extend the
SBIP modeling language. This can be done for instance using weights added
on interactions or on the ports of the components. Given a set of enabled
interactions at some point, a normalization is then performed in order to
compute the underlying probabilities and to accordingly select the interac-
tion to fire. We may also extend the proposed formalism with a reward
semantics. This will be useful when considering other performance aspects
such as energy and temperature. We believe that such extension is straight-
forward if we use SBIP variables and associate them with reward functions.
This is for instance the case in Uppaal [74] and Prism [139].

Stochastic Abstraction

In the present work, we used the AAlergia algorithm to instantiate our
approach for automatically building sound abstractions. We recall that the
approach is limited to bounded LTL properties when using algorithms only
able to learn deterministic models such as AAlergia, and when the used data
contains non-determinism. This represents a hindrance towards checking
unbounded properties using probabilistic model checking for instance, espe-
cially that the proposed projection potentially introduces non-determinism
in the data. We may use other algorithms able to learn non-deterministic
models, such as 1 [194, 193, 154, 180] to remedy to this issue. However, we
recall that when learning non-deterministic models, it is only possible to
compute upper and lower probability bounds for various schedulers required
to resolve non-determinism.

With respect to the projection part, there are also possibilities of im-
provement. The current projection definition enables building abstraction
for classes of properties since it considers the support of a given property as
the set of its explicitly appearing symbols. We may for example take into
account the semantics of LTL operators to define coarser projections and ob-
tain consequently more compact abstractions, albeit this has the limitation

1. Additional work are presented in the related work section in Chapter 4.



CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 165

of recalculating a new abstraction for each single property.

Remark that the models obtained by using our abstraction technique
are LMCs or MDPs. These may be easily transformed into SBIP models
as shown in Section 3.4. However, the proposed transformation captures
the given model as a single SBIP component, that is, we loose composi-
tionality. It would be interesting to learn SBIP models in a compositional
fashion, that is, models having different interacting components. Such ap-
proach would require in addition to learn connections or a glue between the
obtained components, which is a challenging task. Some work has been done
in this direction within the BIP framework [25, 27, 26, 39], although still in a
preliminary state. This approach may be directly integrated within a learn-
ing algorithm, which is quite difficult, or performed post learning, that is,
once an LMC or MDP model is obtained.

Statistical Inference

The statistical inference procedure described in Chapter 6 is another
learning technique that aims at inferring probabilistic models from input
data. In the present work, we used distribution fitting as to learn probability
distributions. A more general approach is model fitting that fits an arbitrary
model to the data. In the case of distribution fitting, the target model can
be only a probability distribution and obey to some assumptions such as
data independence as discussed in Chapter 6. A well known family of model
fitting techniques is regression analysis [8, 96, 175, 3]. Techniques as such
ARMA and ARIMA can be used to characterize the behavior of a certain
random variable as a linear or non-linear function of a single or several other
variables.

A learned lesson from the case study we performed in this work is that
statistical inference techniques require human expertise and intervention.
Various activities in such process rely on human interpretation and are thus
difficult to automate, such as the exploratory analysis phase in the proposed
distribution fitting approach. A possible fully automated procedure may
rely on machine learning. In the related work section in Chapter 4, we
discussed several algorithms that are able to learn probabilistic and timed
models for instance. These may be appropriate to characterize in more
detail timing aspects of embedded systems. Consequently, they may be used
in advanced phases of the design to learn more detailed description. Such
algorithms produce Markov models and not probability distributions. Thus,
model calibration will consist of transforming the learned model to an SBIP
component and to inject it in the functional model, which requires to add
extra connectors for synchronization.
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The ASTROLABE Approach

At the level of the proposed ASTROLABE approach, we suggest ad-
ditional future directions. The proposed approach provides quantitative
analysis results with respect to performance requirements. However, such
feed-backs do not explicitly guide the designer to improve or modify specific
parts of the input models or mapping. In design space exploration, the idea is
to keep, at each design phase, configurations ensuring functional correctness
and good trade-offs between the explored performance aspects. Coming-up
with different design alternatives is a separate matter which is more related
to human expertise.

Design trade-offs may be obtained by exploring the space of quantitative
feed-backs that concern the performance dimensions of interest, e.g., timing,
memory utilization, energy consumption. Exploration can be performed
manually [92], or using exhaustive [215] or randomized [49, 9] search for
instance. Additional possibilities exist such as the reduction to a single
objective [57] or problem-dependent approaches [195] (see [136, 31] for a
detailed classifications and discussion). These exploration techniques rely on
different search and optimization algorithms often multi-objective since they
concern various aspects of the systems, which are generally contradictory
and of different nature. A well known technique that enables comparison of
such heterogeneous aspects is Pareto Dominance, which allows for a partial
ordering. Example of approaches used for design space exploration rely on
genetic algorithms [48], multi-objective optimization [174, 122], dependency
[97] and Pareto sensitivity [90] analysis techniques.

We recall that in our work, we rely on statistical model checking to quan-
titatively evaluate design alternatives with respect to performance require-
ments. Such evaluation is based on verifying formal properties expressed in
LTL for example. We can formalize properties that cover the different per-
formance dimensions as a conjunction of several aspects. Consequently, one
obtains a single probability measure, that quantify the different performance
dimensions, per configuration. Now for different configurations it is easier to
pick the highest probability.

Note that in the current state of the work we only cover one performance
dimension, that is, timing. The reason for this limitation is the distribution
fitting approach and the strong assumption of data independence. If we
extend our statistical inference technique as discussed in the previous section,
it is possible to handle other dimensions such as energy and temperature,
which often expose dependencies.

Technical Improvements

In addition to the above improvement, we may think of technical en-
hancement for the tool-flow we implemented. For instance, the BIPSMC
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tool may benefit from a graphical interface instead of command-line. Sev-
eral optimization may be also operated, such as the properties monitoring
algorithm, in addition to the possible extension of the property specification
language to cover nested operators, which requires systematic procedure for
generating more complex monitors. It is also worth continuing the explo-
ration of the image processing case study with respect to trade-offs between
time and memory utilization and to consider the full S1 layer to challenge
the statistical model checking technique we are using for analysis. This may
require using the abstraction technique for instance as the obtained model
might be too big. The instrumentation of the generated code to get per-
formance data can be automated through the use of special annotations.
The latter could be introduced at the level of the functional BIP model and
deduced from the performance properties under consideration. Later, when
performing code generation the introduced annotations may be transformed
to specific functions calls, given the target runtime and platform support.
We can also automate the calibration process, at least for timing information,
following the rules defined in Chapter 5.
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