Modelling congestion in passenger transit networks

Abstract : A structural model is provided to capture capacity phenomena in passenger traffic assignment to a transit network. That has been founded on a bi-layer representation of the transit network : on the lower layer the model addresses each network sub-system (line, station and access-egress) separately, on the basis of specific capacity effects ; on the upper layer a leg-based representation is used with respect to the sub-systems' costs and operating characteristics to address the trip maker's path choices. We establish a novel framework for modelling capacity effects and develop the CapTA network model (for Capacitated Transit Assignment). It is systemic and modular and addresses in particular the following capacity phenomena, the in-vehicle quality of service is linked to the comfort of the passengers on-board. The occupation of heterogeneous comfort states (seats, folding seats and standing at different passenger densities) influences the perceived arduousness of the travel ; the vehicle capacity at boarding influences the waiting time of the passengers and their distribution to the transit services ; the track infrastructure capacity relates the dwelling time of the vehicles (and by extent the alighting and boarding flows) with the performance of the transit services and their service frequency. These phenomena are dealt with by line of operations on the basis of a set of local models yielding specific flows and costs. Accordingly, they modify the local conditions of a transit trip for each individual passenger. However, these should be addressed within the transit network in order to capture their effect on the network path choices; essentially the economic trade-offs that influence the choice between different network itineraries. Their treatment in a network level assures the coherence of the path choice. Equivalently, a station sub-model addresses specific capacity constraints and yields the local walking conditions, sensible to the interaction of the passengers in the interior of a station : the instant bottleneck created at the entry of the circulation elements delays the evacuation of the station platforms; the passenger density and presence of heterogeneous passenger flows slows down the passengers who circulate in the station; and the presence of real-time information influences the decision making process of the transit users exposed to. These effects do not only impact locally the in-station path choice, but most notably they modify the choices of transit routes and itineraries on a network level. The Paris Metropolitan Region provides an ideal application field of the capacity constrained transit assignment model. It is mainly used as a showcase of the simulation capabilities and of the finesse of the modelling approach. The transit network involves 1 500 bus routes together with 260 trains routes that include 14 metro lines and 4 light rail lines. Traffic assignment at the morning peak hour is characterized by heavy passenger loads along the central parts of the railway lines. Increased train dwelling, due to boarding and alighting flows, and reduction in the service frequency impact the route and the line capacity. The generalized time of a transit trip is impacted mainly though its in-vehicle comfort component. Detailed results have been provided for the RER A, the busiest commuter rail line in the transit network
Complete list of metadatas

Cited literature [95 references]  Display  Hide  Download
Contributor : Abes Star <>
Submitted on : Monday, May 4, 2015 - 3:07:57 PM
Last modification on : Wednesday, June 28, 2017 - 12:40:01 PM
Long-term archiving on : Monday, September 14, 2015 - 6:25:39 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01148406, version 1



Ektoras Chandakas. Modelling congestion in passenger transit networks. Architecture, space management. Université Paris-Est, 2014. English. ⟨NNT : 2014PEST1011⟩. ⟨tel-01148406⟩



Record views


Files downloads