G. E. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, vol.86, issue.1, pp.114-117, 1965.
DOI : 10.1109/JPROC.1998.658762

R. Carlson, The Pace and Proliferation of Biological Technologies. Biosecurity and 79 Fundamentals of Microfabrication: The Science of Miniaturization, Madou, M.J, p.776

M. A. Hillmyer, Nanoporous Materials from Block Copolymer Precursors, Block Copolymers II2005, pp.137-181
DOI : 10.1007/12_002

D. A. Olson, L. Chen, and M. A. Hillmyer, Templating Nanoporous Polymers with Ordered Block Copolymers ?. Chemistry of materials, pp.869-890, 2007.

J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen et al., Templating Nanoporosity in Thin-Film Dielectric Insulators, Advanced Materials, issue.13, pp.10-1049, 1998.

H. P. Hentze, M. Antonietti-lalande, L. , C. J. Plummer, J. E. Manson et al., Template synthesis of porous organic polymers. Current Opinion II.9 References 1 The influence of matrix modification on fracture mechanisms in rubber toughened polymethylmethacrylate, Polymer, issue.7, pp.47-2389, 2006.

L. Lalande, C. J. Plummer, J. E. Manson, and P. Gérard, Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Engineering fracture mechanics, pp.73-2413, 2006.

L. Lalande, Structure et mécanismes de microdéformation de polyméthylméthacrylates renforcés au choc, 2007.

A. Ruzette, S. Tencé-girault, L. Leibler, F. Chauvin, D. Bertin et al., Molecular Disorder and Mesoscopic Order in Polydisperse Acrylic Block Copolymers Prepared by Controlled Radical Polymerization, Macromolecules, vol.39, issue.17, pp.39-5804, 2006.
DOI : 10.1021/ma060541u

URL : https://hal.archives-ouvertes.fr/hal-00096984

L. Corté, K. Yamauchi, F. C. Court, M. Cloître, T. Hashimoto et al., Annealing and Defect Trapping in Lamellar Phases of Triblock Terpolymers, Macromolecules, vol.36, issue.20, pp.36-7695, 2003.
DOI : 10.1021/ma034169j

P. Gerard, L. Couvreur, S. Magnet, J. Ness, and S. Schmidt, Controlled architecture polymers at Arkema: synthesis, morphology and properties of all-acrylic block copolymers. Controlled/living radical polymerization: progress in RAFT, pp.361-373, 2009.

S. Maiez, Relations entre la structure d'un copolymère à blocs et la nanostructuration d'un polymère réticulé, 2007.

T. A. Tran, F. Leonardi, S. Bourrigaud, P. Gerard, and C. Derail, All acrylic block copolymers based on poly (methyl methacrylate) and poly (butyl acrylate). A link between the physico-chemical properties and the mechanical behaviour on impact tests, Polymer Testing, vol.27, issue.8, pp.945-950, 2008.
DOI : 10.1016/j.polymertesting.2008.08.008

E. Solórzano, J. Escudero, J. Pinto, M. A. Rodriguez-perez, J. A. De et al., Evolution of Polymers during the Gas Dissolution Process Polymer?CO2 systems exhibiting retrograde behavior and formation of nanofoams Polymer international, International Conference on Diffusion in Solids and Liquids. 2011. Algarve, Portugal. 10. Nawaby, pp.67-73, 2007.

S. K. Goel and E. J. Beckman, Generation of microcellular polymers using supercritical CO2. Cellular polymers, pp.251-274, 1993.

M. Ulbricht, Advanced functional polymer membranes, Polymer, vol.47, issue.7, pp.47-2217, 2006.
DOI : 10.1016/j.polymer.2006.01.084

URL : http://doi.org/10.1016/j.polymer.2006.01.084

D. Schmidt, V. I. Raman, C. Egger, C. Du-fresne, and V. Schädler, Templated cross-linking reactions for designing nanoporous materials, Materials Science and Engineering: C, vol.27, issue.5-8, pp.27-1487, 2007.
DOI : 10.1016/j.msec.2006.06.028

J. Pinto, E. Solórzano, M. A. Rodriguez-perez, and M. Dumon, Thermal Conductivity Transition Between Microcellular and Nanocellular Polymeric Foams: Experimental Validation of the Knudsen Effect, SPE FOAMS 2012 Conference, 2012.

M. A. Hillmyer, Nanoporous Materials from Block Copolymer Precursors, Block Copolymers II, pp.137-181, 2005.
DOI : 10.1007/12_002

H. P. Hentze and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications, Reviews in molecular biotechnology, pp.90-117, 2002.

E. A. Jackson and M. A. Hillmyer, Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration, ACS Nano, vol.4, issue.7, pp.3548-3553, 2010.
DOI : 10.1021/nn1014006

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2002.

Y. , D. Hwang, and S. W. Cha, The relationship between gas absorption and the glass transition temperature in a batch microcellular foaming process, Polymer Testing, vol.21, pp.269-275, 2002.

P. Alessi, A. Cortesi, I. Kikic, and F. Vecchione, Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperatures, Journal of Applied Polymer Science, vol.20, issue.9, pp.88-2189, 2003.
DOI : 10.1002/app.11881

Z. Zhang and Y. P. Handa, Anin situ study of plasticization of polymers by high-pressure gases, Journal of Polymer Science Part B: Polymer Physics, vol.36, issue.6, pp.36-977, 1998.
DOI : 10.1002/(SICI)1099-0488(19980430)36:6<977::AID-POLB5>3.0.CO;2-D

I. Tsivintzelis, A. G. Angelopoulou, and C. Panayiotou, Foaming of polymers with supercritical CO2: An experimental and theoretical study, Polymer, vol.48, issue.20, pp.48-5928, 2007.
DOI : 10.1016/j.polymer.2007.08.004

J. A. Ruiz, P. Viot, and M. Dumon, Microcellular foaming of polymethylmethacrylate in a batch supercritical CO2 process: Effect of microstructure on compression behavior, Journal of Applied Polymer Science, pp.118-320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01006872

V. Kumar and N. P. Suh, A process for making microcellular thermoplastic parts, Polymer Engineering and Science, vol.15, issue.20, pp.30-1323, 1990.
DOI : 10.1002/pen.760302010

A. V. Nawaby, Y. P. Handa, X. Liao, Y. Yoshitaka, and M. Tomohiro, Polymer???CO2 systems exhibiting retrograde behavior and formation of nanofoams, Polymer International, vol.26, issue.1, pp.56-67, 2007.
DOI : 10.1002/pi.2112

B. Krause, R. Mettinkhof, N. F. Van-der-vegt, and M. Wessling, Microcellular foaming of amorphous high-T g polymers using carbon dioxide, Macromolecules, pp.34-874, 2001.

D. Miller, P. Chatchaisucha, and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure, Polymer, vol.50, issue.23, pp.50-5576, 2009.
DOI : 10.1016/j.polymer.2009.09.020

D. Miller and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. Tensile and impact properties, Polymer, vol.52, issue.13, pp.52-2910, 2011.
DOI : 10.1016/j.polymer.2011.04.049

S. Siripurapu, J. M. Desimone, S. A. Khan, and R. J. Spontak, -philic Surfactants, Macromolecules, vol.38, issue.6, pp.38-2271, 2005.
DOI : 10.1021/ma047991b

S. Costeux and L. Zhu, Low density thermoplastic nanofoams nucleated by nanoparticles, Polymer, vol.54, issue.11, pp.54-2785, 2013.
DOI : 10.1016/j.polymer.2013.03.052

S. Costeux, H. Jeon, S. Bunker, and I. Khan, Nanocellular foams from acrylic polymers: Experiments and modeling, SPE FOAMS 2012 Conference, 2012.
DOI : 10.1557/jmr.2013.100

P. Spitael, C. W. Macosko, and R. B. Mcclurg, Block Copolymer Micelles for Nucleation of Microcellular Thermoplastic Foams, Macromolecules, vol.37, issue.18, pp.37-6874, 2004.
DOI : 10.1021/ma049712q

T. Shinkai, M. Ito, K. Sugiyama, K. Ito, and H. , Ordered and foam structures of semifluorinated block copolymers in supercritical carbon dioxide, Soft Matter, vol.94, issue.21, pp.5811-5817, 2012.
DOI : 10.1039/c2sm07085e

J. Pinto, M. Dumon, M. Pedros, J. A. Reglero, and M. A. Rodriguez-perez, Nanocellular CO 2 foaming of PMMA assisted by block copolymer nanostructuration, Chemical Engineering Journal, pp.243-428, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01372308

S. Costeux, S. P. Bunker, and H. K. Jeon, Homogeneous nanocellular foams from styrenic-acrylic polymer blends, Journal of Materials Research, vol.227, issue.17, pp.2351-2365, 2013.
DOI : 10.1021/ma001291z

]. B. Aher, N. M. Olson, and V. Kumar, Production of bulk solid-state PEI nanofoams using supercritical CO2, Journal of Materials Research, vol.19, issue.2, pp.2366-2373, 2013.
DOI : 10.1002/adv.20219

J. A. Ruiz, M. Dumon, J. Pinto, and M. A. , Rodriguez-Pérez, Low-Density Nanocellular Foams Produced by High-Pressure Carbon Dioxide, Macromolecular Materials and Engineering, pp.296-752, 2011.

J. A. Ruiz, M. Pedros, J. Tallon, and M. Dumon, Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers ??? One step foaming process, The Journal of Supercritical Fluids, vol.58, issue.1, pp.58-168, 2011.
DOI : 10.1016/j.supflu.2011.04.022

URL : https://hal.archives-ouvertes.fr/hal-00956649

P. Cloutet and . Viot, Block Copolymer-Assisted Microcellular Supercritical CO2 Foaming of Polymers and Blends, Cellular polymers, pp.31-207, 2012.

]. L. Lalande, C. J. Plummer, J. E. Manson, and P. Gérard, The influence of matrix modification on fracture mechanisms in rubber toughened polymethylmethacrylate, Polymer, vol.47, issue.7, pp.47-2389, 2006.
DOI : 10.1016/j.polymer.2006.02.016

L. Lalande, C. J. Plummer, J. E. Manson, and P. Gérard, Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers, Engineering fracture mechanics, pp.73-2413, 2006.

J. Pinto, E. Solórzano, M. A. Rodriguez-perez, J. A. De-saja-abràmoff, P. J. Magalhães et al., Characterization of the cellular structure based on user-interactive image analysis procedures, Image processing with ImageJ, Biophotonics international, pp.555-575, 2004.
DOI : 10.1177/0021955X13503847

]. S. Hilic, S. A. Boyer, A. A. Pádua, and J. E. Grolier, Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling, Journal of Polymer Science Part B: Polymer Physics, vol.25, issue.17, pp.39-2063, 2001.
DOI : 10.1002/polb.1181

S. K. Goel and E. J. Beckman, Generation of microcellular polymers using supercritical CO2, Cellular polymers, vol.12, pp.251-274, 1993.

Y. P. Handa and Z. Zhang, A new technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase, Journal of Polymer Science Part B: Polymer Physics, vol.34, issue.5, pp.38-716, 2000.
DOI : 10.1002/(SICI)1099-0488(20000301)38:5<716::AID-POLB9>3.0.CO;2-N

P. D. Condo, I. C. Sanchez, C. G. Panayiotou, and K. P. Johnston, Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents, Macromolecules, vol.25, issue.23, pp.25-6119, 1992.
DOI : 10.1021/ma00049a007

J. Pinto, S. Pardo, E. Solórzano, M. A. Rodríguez-pérez, M. Dumon et al., Solid Skin Characterization of PMMA/MAM Foams Fabricated by Gas Dissolution Foaming over a Range of Pressures, Defect and Diffusion Forum, pp.326-328, 2012.

X. Lu, Correlation between structure and thermal conductivity of organic aerogels, Journal of Non-Crystalline Solids, vol.188, issue.3, pp.226-234, 1995.
DOI : 10.1016/0022-3093(95)00191-3

C. B. Roth and J. R. Dutcher, Glass transition and chain mobility in thin polymer films, Journal of Electroanalytical Chemistry, vol.584, issue.1, pp.13-22, 2005.
DOI : 10.1016/j.jelechem.2004.03.003

C. Jo, J. Fu, and H. E. Naguib, Constitutive modeling for mechanical behavior of PMMA microcellular foams, Polymer, vol.46, issue.25, pp.46-11896, 2005.
DOI : 10.1016/j.polymer.2005.09.054

D. Schmidt, Templated cross-linking reactions for designing nanoporous materials, Materials Science and Engineering: C, vol.27, issue.5-8, pp.5-8, 2007.
DOI : 10.1016/j.msec.2006.06.028

D. Miller and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. Tensile and impact properties, Polymer, vol.52, issue.13, pp.52-2910, 2011.
DOI : 10.1016/j.polymer.2011.04.049

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties
DOI : 10.1017/CBO9781139878326

R. Pérez and M. Á. , Mechanical Behaviour at Low Strains of LDPE Foams with Cell Sizes in the Microcellular Range: Advantages of Using these Materials in Structural Elements, Cellular polymers, issue.6, pp.27-347, 2008.

M. A. Rodriguez-perez, The effect of cell size on the physical properties of crosslinked closed cell polyethylene foams produced by a high pressure nitrogen solution process, Cellular polymers, vol.21, issue.3, pp.165-194, 2002.

T. G. Fox, P. J. Flory, and M. K. , The Glass Temperature and Related Properties of Poly-styrene. Influence of the Molecular Weight Fluorescence studies of confinement in polymer films and nanocomposited: Glass transition temperature, plasticez effects and sensitivity to stress relaxation and local polarity, Journal of Polymer Science European Physical Journal -Special Topics, vol.14, issue.141, pp.143-151, 1954.

J. Kraus, Confinement effects on the chain conformation in thin polymer films, Europhysics Letters (EPL), vol.49, issue.2, pp.210-216, 2000.
DOI : 10.1209/epl/i2000-00135-4

J. Yong-park and G. B. Mckenna, Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions, Physical Review B, p.61, 2000.

J. A. Forrest, K. Dalnoki-veress, and J. R. Dutcher, Interface and chain confinement effects on the glass transition temperature of thin polymer films, Physical Review E, vol.56, issue.5, p.56, 1997.
DOI : 10.1103/PhysRevE.56.5705

S. H. Anastasiadis, K. Karatasos, and G. Vlachos, Nanoscopic-Confinemente Effects on Local Dynamics, Physical Review Letters, p.84, 2000.