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Summary 

Spatial variation of earthquake ground motion over short distances significantly affects the 
dynamic response of engineered structures with large dimensions. In current practices, the 
ground motion excitation across the foundation of a structure is assumed to be spatially 
uniform, which becomes inadequate for spatially extended structures in the near-fault 
region or on sites with inhomogeneity in surface geology and geometry. This PhD thesis 
seeks to understand the key parameters that locally control the ground motion spatial 
variability with the intent of putting forth practical propositions for incorporating such 
effects in seismic design and hazard assessment. 
 
The first part of the thesis addresses the within-event component of the standard deviation 
of ground-motion distribution in near source region by means of numerical simulation of 
ground motions for extended sources with realistic rupture kinematics. The results suggest 
that the within-event variability significantly depends on the rupture type, depicting an 
increase with distance for bilateral ruptures and a decrease for unilateral ruptures. 
 
The second part deals with the characterization of seismic wave field at the Koutavos-
Argostoli site, a small-size, shallow, alluvial valley located in the seismically active 
Cephalonia Island in Western Greece. The seismic wave field was investigated from the 
recordings of a dense seismological array for a set of 46 earthquakes, with magnitude 2 to 5 
and epicentral distance up to 200 km. The MUSIQUE array analysis algorithm was used to 
extract the phase velocity, back-azimuth, type and polarization of the dominant waves 
crossing the array. The results clearly indicate dominant scattering of seismic surface 
waves, mainly from the valley-edge directions, beyond the fundamental frequency of the 
valley. While Love surface waves clearly dominate the wave field close to the resonance 
frequency, Rayleigh waves strongly dominate only in relatively narrow frequency bands at 
higher frequency. Besides, an excellent consistency is observed between the dominance of 
the identified surface wave type in the wave field and the site amplification. 
 
The "lagged coherency" of the most energetic part of the ground motion has been quantified 
for each station-pair within the array. In general, spatial coherency estimated from the 
horizontal components exhibit decays with frequency and interstation distance. Estimates 
from the vertical component exhibit rather larger values at some higher frequencies. 
Although coherency does not show any consistent trend indicating dependence on the 
magnitude, back-azimuth or site-to-source distance of the event, it seems to be primarily 
controlled by the site geometry. Larger coherency is systematically observed when the 
station pair is oriented parallel to the valley axis, while lower values are observed in the 
perpendicular direction. This observation proves to be consistent with the MUSIQUE 
analysis results: the predominance of scattered surface waves propagating across the valley 
implies an in-phase motion along valley-parallel direction and out-of-phase motion along 
valley-perpendicular direction.  
 
The findings of the present research are expected to contribute in enhancing our 
understanding of spatial variability of ground motion and improving the coherency models 
used in engineering. This work also opens up new insights and many questions in need of 
further investigation. 
 
Key-words: earthquake, spatial variation, numerical simulation, seismic array, surface 
waves, coherency 
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Résumé  

La variation spatiale du mouvement sismique a des effets significatifs sur la réponse 
dynamique des structures de génie civil de grandes dimensions. Dans la pratique courante, 
l’excitation du mouvement sismique le long de la fondation de la structure est considérée 
uniforme, approche cependant inadéquate pour les structures de large portance au sol 
localisées à proximité des failles ou sur des sites présentant une structure du sous-sol 
latéralement hétérogène. Cette thèse se propose donc de comprendre les facteurs clefs 
contrôlant localement la variabilité spatiale du mouvement sismique, avec en ligne de mire la 
mise en place de recommendations en vue d’incorporer ces effets dans l’estimation de l’aléa 
sismique et le dimensionnement des structures. 
 
La première partie de cette thèse s’intéresse à la composante intra-évènement de l’écart-type 
de la distribution du mouvement sismique en champ proche à l’aide de simulations 
numériques du mouvement sismique pour des sources étendues présentnat une cinématique de 
rupture réaliste. Les résultats suggèrent que la variabilité intra-évènement dépend 
significativement du type de rupture, cette variabilité augmentant avec la distance pour les 
ruptures bilatérales et diminuant pour les ruptures unilatérales. 
 
La seconde partie traite de la caractérisation de la composition du champ d’onde dans la 
vallée de Koutavos-Argostoli, qui est une vallée de petite dimension et d’épaisseur 
sédimentaire faible,  située sur l’île – sismiquement active - de Céphalonie en Grèce. Les 
champs d’onde générés par 46 séismes, ayant des magnitudes variant entre 2 et 5 et des 
distances épicentrales jusqu’à 200 km, ont été analysés à partir de l’enregistrement par deux 
réseaux denses de capteurs sismologiques. L’algorithme de traitement d’antenne MUSIQUE est 
utilisé pour extraire la vitesse, l’azimut, le type et la polarisation des ondes dominantes se 
propageant à travers le réseau. Les résultats montrent clairement d’importantes diffractions 
d’ondes de surface aux bords de vallée au-delà de la fréquence de résonance de la vallée. 
Tandis que les ondes de Love dominent clairement le champ d’ondes proche de la fréquence de 
résonance, les ondes de Rayleigh dominent à plus haute fréquence dans des gammes de 
fréquences étroites. Par ailleurs, un excellent accord est observé entre les champs d’onde de 
surface diffractés localement et les caractéristiques d’amplification du site.  
 
La “cohérence décalée” de la partie la plus énergétique du signal a été quantifiée pour chaque 
paire de stations du réseau. En général, la cohérence calculée sur les composantes horizontales 
diminue avec la distance entre stations et la fréquence. La cohérence sur la composante 
verticale indique des valeurs relativement fortes à haute fréquence. Les valeurs de cohérence 
apparaissent très faiblement corrélées à la magnitude, l’azimut et la distance épicentrale du 
séisme, mais sont au contraire liées aux caractéristiques géométriques de la vallée. La 
coherence est systématiquement plus forte pour les couples de capteurs orientés selon la 
direction parallèle à l’axe de la vallée, et moins forte pour des couples de capteurs orientés 
dans la direction perpendiculaires. Cette observation est en accord avec les résultats du 
traitement d’antenne: la prédominance d’ondes de surface diffractées sur les bords de la vallée 
conduit à des mouvements en phase le long de la direction parrallèle à l’axe de la vallée. 
 
Les résultats de cette thèse apporte des elements de compréhension sur la variabilité spatiale 
du movement sismique et ouvrent de nombreuses perspectives d’application. 
 
Mots-Clefs: séisme, variation spatiale, simulation numérique, réseau dense, ondes de surface, 
cohérence 
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General Introduction  

Earthquake has been one of the deadliest natural hazards throughout the history of 

human civilization. In a seismically active region, ground shaking caused by 

earthquakes pose inevitable risk to the inhabitants and infrastructure subjected to it. To 

date, a number of urban centers have been developed near major earthquake faults. The 

trend of growing urbanization has been followed by the construction of significant 

numbers of large and extended structure. Hence, one key challenge in modern day 

engineering practices is to better understand the processes associated with ground 

shaking in order to mitigate the effects and to cope with the future earthquakes.  

 

An earthquake occurs when rocks slip suddenly due to the stresses built up in the 

earth’s outer layer. Energy radiates away from the source of this sudden movement and 

propagates as seismic waves rapidly through the earth’s crust reaching the ground 

surface where they produce shaking, i.e. the ground motion. Accordingly, the factors 

that influence ground motion during earthquakes are attributed to the complexity of the 

source, propagation path, and site effects. Seismologists and engineers base their 

understanding on knowledge of these effects in order to estimate as well as to predict 

the level and nature of ground motion.  

 

Generally speaking, the damage caused by earthquakes depends on the strength or 

intensity of the ground motion coupled with the quality of the engineering structure. 

The level of shaking is controlled by the proximity of the affected region or structure to 

the earthquake source as well as the type of geological structure that seismic waves 

pass through en route, especially those at or near the ground surface. On their travel 

path, seismic waves make their final way through the ground structure near the surface 

where they are greatly modified by the local geology and soil conditions. When the 

waves pass from rock to soil, they slow down in propagation speed but become larger in 

amplitude. The more intense shaking of the sedimentary layers cause greater energy 

movement and results in larger waves. Since geometry and soil conditions of the 

sedimentary layer often vary over short distances, nature and levels of ground shaking 

can vary significantly within a small area.  
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As a matter of fact, a number studies have reported large variations in the spatial 

distribution of ground motion during past major damaging earthquakes (e.g. Shabestari 

and Yamazaki, 2003). The degree of damage was often observed to vary from one 

location to another, even for similar structures located within short distances, which 

consistently suggest different levels of ground motion in addition to vulnerability 

variations linked with structural defaults. Some important issues raised by recent 

earthquakes and requiring elucidations are therefore: 

- How do the seismic waves, radiated from the source, affect ground motion 

variability in the near-fault region?  

- What are the physical properties of the source that contribute to this variability? 

- To what extent is ground motion variability caused by the local geological 

structure?  

- What type or characteristics of the seismic waves modify the nature and level of 

ground motion in such sites and within short distances?  

 

Answering such issues is obviously required to improve our understanding of such 

complex source and site effects through a mix of experimental observations and 

numerical simulations. 

 

By definition, spatial variation of earthquake ground motion refers to the differences in 

amplitude and waveform (phase) observed in the seismic time histories recorded over 

extended areas (e.g. within the dimension of a engineered structure) on the ground 

surface. It has significant effect on the dynamic response of engineered structures with 

large dimensions, such as dams, nuclear power plants, or multiple supports such as 

bridges and lifeline facilities. Usually, spatially uniform ground motion excitation is 

assumed in practice for seismic analysis. This assumption becomes inadequate for 

spatially extended structures constructed in the near-fault region or on large sites with 

inhomogeneity in surface geology and geometry, emphasizing the need to include 

spatial variability in earthquake-resistant design and analysis of such structures.  

The effect of source characteristics on the ground motion is profound. In the near-fault 

region, shallow earthquakes can cause severe differences in ground motions depending 

on the direction of the fault rupture. The existing Empirical Ground Motion Prediction 

Equations (GMPEs) provide the distribution of ground-motion in terms of a median and 
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a standard deviation, but these equations are developed by means of regression 

techniques from recorded strong motion data, generally based on very simple 

parameterization with magnitude, distance and site category. On the other hand, the 

standard deviation of the ground motion distribution, commonly referred to as the 

aleatory variability “sigma”, is a fundamental component in Probabilistic Seismic 

Hazard Assessment (PSHA) since it controls the hazard level at very low probabilities of 

exceedance. It is therefore imperative to accurately constrain “sigma” to perform 

reliable seismic hazard analyses.  Though a few recent data analyses suggest that sigma 

is distance-dependent,  development of models describing ground motion variability at 

short distances (<20 km) remains questionable due to the scarcity of near-source 

records of moderate to large events (Mw>6).  

 
Furthermore, it is well known that engineering structures cross sites with irregular 

subsurface topography and ground types (e.g. sedimentary valleys). Such sites give rise 

to the formation of surface waves, which can lead to large amplifications, loss of 

correlation and significant ground strains in the wave field. Besides, seismic waves 

become trapped and amplified by sedimentary valleys during earthquakes. As a result 

strong ground motion of long duration and strong spatial variation in amplitude and 

phase occur, especially near the edges of the basins, which can substantially increase 

the seismic forces on structures and lifelines. Such effects could not be incorporated so 

far in routine seismic hazard assessment and risk mitigation due to their complexity as 

well as the limitations of geophysical investigations. The installation of dense seismic 

arrays worldwide initiated the comprehensive analysis of seismic ground motion. 

However, most of these arrays are located at uniform ground conditions, mostly at soil 

sites. In addition, most of the array analysis studies utilized a stochastic approach 

(coherency estimation) to model the spatial variation of the motions (Zerva, 2009). A 

purely stochastic approach, however, precludes any association of the spatial variation 

of the motions with the physical causes underlying it. Additional research efforts at such 

sites are, hence, necessary to fully capture the physical causes underlying the spatial 

variation of the seismic ground motions for engineering applications.  

 

One of the main (long term) goals of this thesis is, then, to understand the key 

parameters that locally control the ground motion spatial variability, as well as to 
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investigate the relative contributions of scattering and local site effects, in view of aiding 

development and calibration of engineering oriented models, and to put forth practical 

propositions for incorporating the effects of such a variability in seismic design 

(building codes, microzonation studies, critical facilities). It includes two main parts. 

The first one addresses the spatial  "aleatory" variability of ground motion related to the 

aleatory features of rupture kinematics in the near fault region, while the second one is 

dedicated to an analysis of the variability of ground motion over short distances in 

connection to the shallow underground structure at the site : although such a variability 

is usually considered as stochastic, our goal here is to investigate its "deterministic" 

relationship with the composition of the wave field, which includes both source and site 

signatures. The first part of the thesis is based on numerical simulations while the 

second on recorded data.  

 

The PhD thesis begins with the analysis of potential distance dependency of the ground-

motion variability “sigma” (chapter 1). The main goal is to quantify statistical 

properties of ground-motion variability in the near source region where it is poorly 

constrained due to the lack of available records, and look into the relative contributions 

of source complexity and wave propagation effects. Therefore, numerical simulations of 

ground motions were performed for strike-slip events. Synthetic velocity seismograms 

have been generated from a suite of finite-source rupture models of past earthquakes. 

Then the within-event component of the ground-motion variability, in terms of variance 

in peak ground velocity (PGV), was evaluated as a function of distance.  

 

The second, experimental, part of the thesis deals with the identification of seismic 

wave field composition in a site with pronounced shallow underground heterogeneities, 

with the objective to improve the physical understanding and the engineering-oriented 

quantification of spatial variability of ground motion (i.e. spatial coherency). This part of 

the research is based on the temporary seismological experiment that took place at the 

Argostoli basin within the FP7 EU-NERA (Network of European Research 

Infrastructures for Earthquake Risk Assessment and Mitigation) 2010-2014 project. The 

chosen site Koutavos-Argostoli area is a relatively small-size shallow sedimentary basin, 

situated in the Cephalonia Island, Western Greece, where the seismic activity is high and 

dominated by the Cephalonia transform fault (chapter 2). The seismological wave field 
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generated by a significant number of earthquakes was investigated from dense array 

recordings of earthquake ground motion using an array analysis technique MUSIQUE 

(Hobiger et al., 2012) (chapter 3). Unlike the classical array processing methods (high-

resolution frequency-wavenumber analysis [Capon, 1969], MUSIC [Schmidt, 1986]), 

MUSIQUE allows analysis of all three components of a seismic record together and 

identification of the surface wave types as well as retrieval of wave polarization along 

with resolving the wavenumber vector. Thus the results from MUSIQUE analysis 

provide us with slowness and back-azimuth of the dominant wave trains crossing the 

array, discrimination between Rayleigh and Love surface waves, plus, estimates of 

polarization parameters of Rayleigh waves.  

 

Subsequently, the "lagged coherency" of the ground motion has also been quantified for 

each possible pair within the array and for the set of selected events (chapter 4). This 

work focuses on observation of spatial variation of the waveforms over short distances, 

that is, within the dimension of a large structure. The final goal is to associate lagged 

coherency with the results obtained from wave field characterization and investigate 

the dependency of coherency on source parameters (such as magnitude, distance, 

source direction) as well as the site parameters (such as azimuth of station pairs, basin 

axis) based on statistical analyses. 

 

The last section wraps up the main findings from each of the three major components of 

this work concerning the spatial variability of ground motion: even if it is most often 

described as stochastic, it does include some deterministic items. It thus identifies some 

perspectives that now seem at hand, given the data and results obtained here. The 

appendix gathers information that is not critical for the understanding of the main 

chapters, but may be of interest to curious readers or all those who would perform 

some similar studies or use the same data set for other purposes. 



6 Thesis outline 
 

Thesis outline 

The present work is an attempt to understand spatial variation of ground motion 

combining two aspects, analysis from numerical simulation and real data. The chapters 

are, therefore, organized in the following way: 

 

 Chapter 1 presents the study on near source variability of ground motion, in 

terms of amplitude variability, from finite source ruptures simulations. The 

single station within-event variability from peak ground velocities (PGVs) of a 

synthetic network of stations and for a suite of events is estimated. Then the 

distance dependence of this variability has been discussed. 

 Chapter 2 presents the description of the site Argostoli, where the seismological 

experiment of FP7 EU-NERA project (2011-2014) took place. A brief overview of 

the seismotectonics, seismicity, geology and geomorphology of the region is 

provided. Then, a preliminary description of the Argostoli valley followed by an 

overview of the seismological experiment is provided. The catalogue of the 

recorded earthquakes, the quality of the data, and the subset of the events used 

for the data analyses in Chapter 3 and 4, are discussed.  

 In Chapter 3, an advanced array analysis technique, MUSIQUE, is used to 

investigate the seismological wave field with the data recorded from two dense 

seismic arrays (Arrya A and Array B) at Argostoli valley. For a subset of 46 

earthquakes, the azimuthal energy distribution and the energy repartition 

between Love and Rayleigh waves are measured and dispersion curves of the 

valley are retrieved. Finally, the results of the analysis as well as the possible 

interpretations/implications regarding site effects are presented.  

 Chapter 4 presents the analysis of spatial coherency using earthquake data from 

the principle dense seismic array (Array A) located at Argostoli site. The chapter 

begins with a short overview of the available coherency models, the causes of 

incoherency along with the description of coherency and its evaluation 

procedure. Then a detailed description of the time window selection procedure 

for coherency analysis, and some test results have been provided. Finally, results 

from some individual events and the statistical analyses of the entire subset of 

events are presented. 
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Chapter 1: Ground-motion variability from 

finite-source ruptures simulations 

This chapter represents the analysis of potential distance dependence of the ground 

motion variability “sigma”, in the near source region, from numerical simulations of 

ground motions. The within event component of ground motion variability has been 

evaluated, from peak ground velocity (PGV), as a function of distance and the relative 

contributions of some source complexity and propagation effects in ground motion 

variability have been discussed. The chapter represents the article “Is ground-motion 

variability distance-dependent? : Insight from finite-source ruptures simulations”, 

scheduled to be published at the Bulletin of the Seismological Society of America (BSSA) 

and co-authored by Afifa Imtiaz, Mathieu Causse, Emmanuel Chaljub, and Fabrice Cotton 

(Imtiaz et al., 2015). 
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Summary 

The ground-motion variability “sigma” is a fundamental component in Probabilistic 

Seismic Hazard Assessment (PSHA) since it controls the hazard level at very low 

probabilities of exceedance. So far, most of the analyses based on empirical Ground-

Motion Prediction Equations (GMPEs) do not consider any distance dependency of 

“sigma”. This study aims to analyze the potential distance dependency of ground-motion 

variability, especially in the near field region, where the variability is poorly constrained 

due to the lack of available records. We, therefore, investigate the distance dependency 

of “sigma” by performing numerical simulations of ground-motion for some strike-slip 

events. Synthetic velocity seismograms (up to 3 Hz) have been generated from a suite of 

finite-source rupture models of past earthquakes. Green’s functions were calculated for 

a 1D velocity structure using a discrete wavenumber technique (Bouchon, 1981). The 

within-event component of the ground-motion variability was then evaluated from the 

synthetic data as a function of distance. The simulations reveal that the within-event 

component of the ground-motion shows a distance-dependency, subject to the rupture 

type. For bilateral ruptures, the variability tends to increase with distance. On the 

contrary, in case of unilateral events, the variability decreases with distance. 

1.1 Introduction 

Empirical Ground-Motion Prediction Equations (GMPEs) are developed by means of 

regression techniques from recorded strong motion data, generally are based on very 

simple parameterization with magnitude (M), distance (d) and site category (s). The 

distribution of ground-motion for a given M, d and s is then represented in terms of a 

median and a standard deviation, referred to as the aleatory variability sigma, which is a 

fundamental component in Probabilistic Seismic Hazard Analysis (PSHA). Sigma exerts 

a strong influence on the seismic hazard level, especially for long return periods 

(Bommer and Abrahamson, 2006). It is therefore imperative to accurately constrain 

sigma to perform reliable seismic hazard analyses.  

 

In seismic hazard studies two types of uncertainties, termed as aleatory variability and 

epistemic uncertainty, are considered. Aleatory variability is defined as the natural 
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randomness in a process and supposed to be irreducible. On the contrary, epistemic 

uncertainty refers to the scientific uncertainty in the model of the process caused by 

limited data and knowledge, which can theoretically be reduced to zero with models 

better explaining the data. Ideally, sigma should represent the aleatory ground-motion 

variability obtained from repeated events on the same fault and recorded at the same 

station. As such, it includes only the natural randomness of the source rupture process 

(Anderson and Brune, 1999). Nevertheless, the computation of sigma in GMPEs is 

typically performed from records at multiple stations from different earthquakes, and 

hence mixes various paths and site responses. In other words, the variability in ground-

motion due to differences in paths and site response is typically considered as aleatory 

whereas it should be treated as epistemic uncertainty. This assumption is commonly 

referred to as ergodic (Anderson and Brune, 1999).  

 

Thanks to the increasing availability of strong-motion records, several recent studies 

propose to refine ground-motion variability analyses by splitting sigma into various 

components (e.g. Chen and Tsai, 2002; Al-Atik et al., 2010 ; Rodriguez-Marek et al., 

2011;  Edwards and Fäh, 2013). Following the notation of Al-Atik et al. (2010), the total 

variability can then be expressed as: 

 

 (1.1) 

 

where,  refers to the within-event variability (due to the variability in site conditions 

and path effects for a given event recorded at various stations) and  refers to the 

between-event variability (essentially due to the natural source randomness). The 

variability tot can further be refined by extracting the contribution of site-specific 

effects from , to obtain the ‘single-station’ standard deviation (or ‘single-station’ sigma) 

defined as: 

 

  (1.2) 

 

The term SS is then called the event-corrected ‘single-station’ sigma. A very recent work 

by Rodriguez-Marek et al. (2013) addresses the issue of the variation of ‘single station’ 




tot
 2  2




SS
 

SS

2
 2
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sigma with respect to region, magnitude, and distance. First, it is remarkable from their 

work that the mean values of SS appear to be stable (average SS ≈ 0.45) across the 

different regions (California, Taiwan, Japan, Switzerland and Turkey). Second, the 

authors observe that SS depends both on magnitude and distance. They propose 

various models to account for such potential dependencies for moment magnitude (Mw) 

4.5 to 8 and for distances up to 200 km, opening some new insights for improving PSHA. 

Nevertheless, the reliability of such models at short distances (<20 km) remains 

questionable due to the scarcity of near-field records of moderate to large events 

(Mw>6) and potential large epistemic uncertainties associated to small event metadata 

(in particular depth).  

 

The present paper addresses the issue of the ground-motion variability using near-field 

kinematic-rupture simulations. Our strategy is to evaluate sigma from synthetic data, as 

a function of distance. Our study focuses on the within-event component of sigma () 

only. Various published kinematic source models of vertical strike-slip events are 

considered to represent the source process on the fault. Synthetic velocity time series 

are computed up to 3 Hz by convolving slip rate functions with 1D Green’s functions at 

stations placed at various azimuths and distances from the source. For each source 

model, we then extract  for Peak Ground Velocity (PGV) and study the variations of  

with respect to distance. It is important to note that the scope of our study is not to 

provide ground motion variability values, to be directly incorporated in seismic hazard 

analyses, which would require unreasonably large number of source models and 

computation time. We rather limited our selection by considering vertical strike slip 

events with 6 < Mw < 7 only, in order to focus on the overall physical properties that are 

likely to influence the distance dependency of .  

 

While a variety of distance definitions are available, this work will use Rjb, the Joyner-

Boore distance, defined as the shortest distance from the receiver to the surface 

projection of the fault plane (Joyner and Boore, 1981), enabling us to represent the 

finiteness of the fault in the region of near fault plane. The Rjb distance is equivalent to 

the rupture distance Rrup (closest distance to the rupture surface) for vertical strike-slip 

events, especially when the rupture is very close to the surface as for our selected fault 

models. 
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1.2 Ground-motion simulations 

1.2.1 Kinematic source models 

A total of 11 kinematic source models (i.e., the spatio-temporal distribution of slip on 

the fault plane), with magnitudes ranging from Mw=5.8 to Mw=6.8, were generated for 

vertical strike slip events. 8 of the source models are based on published models of past 

events, obtained using kinematic inversion of strong-motion observations, sometimes 

combined with Global Positioning System (GPS) and/or Interferometric Synthetic 

Aperture Radar (InSAR) data. Although they were derived by using various inversion 

techniques, most of them assume uniformity in rupture velocity and rise time (Table 

1.1). These models were extracted from a database of finite-source rupture models 

available online (Mai and Thingbaijam, 2014; see Data and Resources section). Among 

the 8 models, 6 correspond to bilateral rupture and 2 to unilateral rupture. The 

classification of the models into bilateral / unilateral rupture is based on McGuire et al. 

(2002) who proposed to quantify rupture directivity using a directivity ratio (DR) 

computed from the second moments of the slip space-time distribution (see Appendix 

A). Directivity ratio (DR) ranges from 0, for a 1D symmetric bilateral rupture with 

constant slip, to 1, for a unilateral rupture. 

 

In order to properly compute ground-motion up to 3 Hz, a fine grid is required to 

represent the slip history on the fault plane. Since the considered kinematic source 

models are defined on coarse grids (~2 km x 2 km), they have been interpolated on a 

smaller grid (e.g., 200m x 200m), ensuring at least five points per minimum wavelength. 

The interpolation procedure assumes self-similarity of the static slip beyond the 

Nyquist wavenumber of the original model by imposing a k-2 slope of the slip spectrum. 

The resulting numbers of sub-faults are shown in Table 1.1. 

 

These 8 source models were complemented by 3 synthetic models produced using a k-2 

description of the final slip (e.g. Causse et al. 2009). The fault plane configuration and 

other kinematic parameters (rise-time and rupture velocity) are the same as the source 

model derived by Sekiguchi and Iwata (2002) for the 2000 Tottori earthquake (Table 

1.1). The final slip on the fault plane is described in the wave number domain by a k-2  

http://equake-rc.info/SRCMOD/
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asymptotic decay beyond a corner wavenumber kc = K/Lc, where Lc is the characteristic 

rupture length, and K is a non-dimensional parameter. This parameter K can be 

considered as a measure of the degree of roughness of slip heterogeneity. Thus we 

generated 3 source models characterized by a smooth slip distribution (K=0.4), a rough 

one (K=1.6) and an intermediate one (K=0.8), so as to isolate the effect of the slip 

roughness on the ground-motion variability.  

 

Source parameters and computed directivity ratios of the 8 models, extracted from the 

database of Finite-source Rupture Models, are listed in Table 1.1. The corresponding 

source parameter distributions are provided in Figure 1.1 and 1.2. The images of the k-2 

slip models are shown in Figure 1.3. In Table 1.1, magnitude (Mw) and hypocentral 

depth (H) of each event along with the length (L) and width (W) of the source model are 

given. SVF indicates the slip-velocity function considered. Each extracted model from 

the database was interpolated to a finer grid of sub-faults, which is given by ‘Nb. Sub-

faults’. In case of constant rupture velocity (VR) and rise time (TR), the corresponding 

values are indicated. “Nb.TW” refers to the number of time windows used in the 

inversion (Nb.TW > 1 in case of multi-time window linear inversion; Hartzell and 

Heaton, 1983). Note that the Kagoshimaen-hoku-seibu source model has been derived 

assuming constant rise time but variable rupture velocity. Nevertheless, this model has 

been simplified, considering an average constant rupture velocity, due to unavailability 

of the rupture time distribution in the source model database. The Directivity Ratio 

(DR) indicates the rupture type. Imperial Valley and Coyote Lake models (DR>0.5) can 

be considered as unilateral and the rest (DR<0.5) as bilateral. 
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Table 1.1: Information on the kinematic source models from the database 1 

Event Name Event Date Author Mw 
H 

(km) 
L (km) 

W 
(km) 

SVF 
Nb. Sub-

faults 
VR 

(km/s) 
Nb. 
TW 

TR 

(s) 
DR 

Fukuoka 20.03.2005 
Asano and Iwata 

(2006) 
6.7 14 26 18 

smooth 
ramp 

10,248 2.1 6 3.5 0.06 

Yamaguchi 25.06.1997 
Miyakoshi et al. 

(2000) 
5.8 8.2 16 14 triangle 5,751 2.5 2 0.75 0.39 

Kagoshimaen-
hoku-seibu 

26.03.1997 Horikawa (2001) 6.1 7.6 15 10 triangle 15,251 2.5 1 0.3 0.10 

Kagoshima 26.031997 
Miyakoshi et al. 

(2000) 
6.0 7.7 18 12 triangle 14,065 2.5 2 0.75 0.36 

Tottori 06.10.2000 
Semmane et al. 

(2005) 
6.7 14.5 32 20 tanhyp 16,261 variable 1 variable 0.13 

Tottori 06.10.2000 
Sekiguchi and Iwata 

(2002) 
6.8 7.8 34 17.6 tanhyp 15,390 1.8 6 3.5 0.11 

Imperial Valley 15.10.1979 Archuleta (1984) 6.5 8.0 35 13 boxcar 211,031 variable 1 variable 0.95 

Coyote Lake 06.08.1979 
Liu and Helmberger 

(1983) 
5.9 8.0 10 10 triangle 10,404 2.8 1 0.5 0.60 

                                                           
1 Mw = magnitude, H= hypocentral depth, L= length, W= width of the sourcemodel, SVF = slip-velocity function, Nb. Sub-faults = number 

of sub-faults of the finer-grid fault-model,  VR = rupture velocity (VR), TR = rise time (TR), Nb.TW = number of time windows used in the 

inversion, DR = Directivity Ratio (DR < 0.5 indicate bilateral and DR> 0.5 indicate unilateral rupture) 
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Figure 1.1: Slip images of the kinematic source models, having constant rupture velocity 

and rise time, extracted from the database of finite-source rupture models and 

interpolated to a finer grid. The models are (a) Fukuoka (2005), (b) Yamaguchi (1997), 

(c) Kagoshimaen-hoku-seibu (1997), (d) Kagoshima (1997), (e) Tottori (2000, 

Sekiguchi and Iwata), (f) Coyote Lake (1979). The symbol ‘star’ shows the location of 

the hypocenter. Contour lines represent lines of constant slip value. 

 

 

 

(a)  (b)  

  

(c)  (d)  

  
(e)  (f)  

 
 

Hypocenter 



15 Ground-motion variability from finite-source ruptures simulations 
 

 

 

Figure 1.2: (a) Slip amplitude, (c) slip duration, (e) rupture front evolution images of 

Tottori (2000, Semmane et al.), and (b) slip amplitude, (d) slip duration, (f) rupture 

front evolution images of Imperial Valley (1979). Both kinematic source models have 

been extracted from the database of finite-source rupture models and then interpolated 

to a finer grid.  

 

 

 

 

 

(a) (b) 

 

 

(c) (d) 

 
 

(e)  (f)  
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Figure 1.3: Slip images of the synthetic source models (a) k2-C04 (K=0.4), (b) k2-C08 

(K=0.8), (c) k2-C16 (K=1.6), produced using k-2 descriptions of the final slip.  

 

1.2.2 Station layout  

A network of 135 hypothetical stations at various distances and azimuths was designed. 

The receiver configuration was set up for the Rjb (Joyner-Boore distance) distances 1, 3, 

10, 20, 30, 60 and 100 km. We remind that Rjb and Rrup distances are the same for 

vertical strike-slip events with rupture reaching the surface. The receivers were 

positioned at the specified distances along a line parallel to the fault as well as beyond 

the ends of the fault extending radially outward. The locations of the stations were 

adapted to the respective rupture lengths of the source models. The station layout is 

illustrated in Figure 1.4 for the source model of the 2005 Fukuoka event (rupture length 

L = 26 km). The azimuth angle (θ) between the direction of the rupture propagation and 

the epicenter-receiver azimuth followed the definition provided in Somerville et al. 

(1997). Since we are considering strike-slip fault-models only, the angle θ is measured 

from the epicenter to the station in the horizontal plane as illustrated in Figure 1.4. 

 

(a)  (b) 

  
                                (c)  
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Figure 1.4: Station network for 2005 Fukuoka event with a zoom on the station very 

close to the fault (at 1, 3 and 10 km distance). The angle θ displayed on the zoomed plot 

represents the definition of azimuth angle between fault plane and ray path to site, 

according to Somerville et al. (1997). The radial angles (0° to 180˚) on the top layout 

represent the alignment direction of the stations at different distances, i.e., the angle 

between the closest point on the fault and the station. 
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1.2.3 Synthetic ground-motion computation 

Green’s functions were computed considering 1D layered velocity structures (as used 

by the respective authors for source inversion, see Appendix B) using a discrete 

wavenumber technique (computer package AXITRA, Coutant 1989). For the 3 synthetic 

k-2 source models, the chosen velocity structure is the one used by Sekiguchi and Iwata 

(2002) to derive the source model of the 2000 Tottori event.  Synthetic ground-motions 

are next computed by convolving the Green’s functions with the slip history of all the 

sub-faults, as defined in the 11 considered kinematic source models. The source velocity 

functions (SVF) were the same as used by the authors. Finally 3-component velocity 

time series were obtained at each receiver location, by summing the contributions from 

the different sub-faults, for the respective source models. Because of the large extent of 

some of the faults considered in this study (Number of sub-faults, Table 1.1), the 

calculation of the ground motions were distributed on a computing grid in order to be 

achieved in a reasonable time. The principle of the decomposition of the computations 

is explained in Appendix C. The synthetics of the fault-normal component from the 2005 

Fukuoka model have been illustrated in Figure 1.5.  
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Figure 1.5: Synthetic velocity time series on the ‘fault-normal’ component of 2005 

Fukuoka source model. Here station azimuth represents the station alignment (the 

angle between the closest point on the fault and the station) as illustrated in the station 

layout on the left. 

 

1.2.4 PGV calculation 

We computed the PGV values as proposed by Boore et al., 2006, using the GMRotD50 

definition. GMRotD50 is an orientation-independent geometric mean using period-

dependent rotation angles. The two orthogonal components of the synthetic time series 

have been rotated from 1° to 90° in 1° steps and the geometric mean for each pair of 

rotated time series were stored. Finally, PGV is taken as the median value of all the 90 

geometric means. Ripperger et al. (2008) compared different PGV approximations from 

the two horizontal components and observed that GMRotD50 is a stable measure of the 

PGV showing a low dependence on the orientation of the horizontal components.  Figure 

1.6 shows mean (with standard deviation error bar) of ground motion in terms of 

natural log of PGV averaged over the different azimuths and along the Rjb distances for 
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the fault models considered in this study. It is interesting to notice that in Figure 1.6 (b), 

the PGV values at Rjb = 1 km seems to indicate a slight reduction compared to those at 

Rjb = 3km. 

 

(a) (b) 

  
 

Figure 1.6: Mean ± std values (bars showing one standard deviation band) of peak 

ground velocity (PGV) with varying Rjb distances for (a) source models from the finite-

source rupture model database and (b) k-2 source models and 2000 Tottori models. 

1.3 Analysis of PGV within-event variability  

We remind that we assessed the within-event component  of the PGV variability 

(corresponding to a single source recorded at several stations) in this work. For each 

earthquake e, the variability at a distance R is calculated as the standard deviation of the 

residuals. The residuals are defined as: 

 




e , R

 ln(PGV)
e , R ,

 ln(PGV)
 e , R

, (1.3) 

where 



ln(PGV)
e , R ,  refers to the predictions for earthquake e at distance R and azimuth 

, and 



ln(PGV )
 e , R

 denotes the average over azimuths. 
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Figure 1.7 (a) illustrates the within-event ground-motion variability  with varying 

distances for the selected source models from finite-source rupture model database. 

Similarly, Figure 1.7 (b) compares the variability for the three k-2 source models along 

with the two 2000 Tottori models.  

 

(a) (b) 

  
 

Figure 1.7: Within-event ground-motion variability () with varying Rjb distances, for 

(a) source models from the finite-source rupture model database and (b) k-2 source 

models and 2000 Tottori event models. 

 

We cannot ascertain any magnitude dependency of the variability due to the narrow 

magnitude range (Mw 5.82 to 6.83) considered. The most remarkable observation is that 

 is dependent on distance. The distance-dependency of  exhibits two main regimes 

depending on the rupture type, i.e., unilateral or bilateral (Figure 1.7, a.). The 

perceptible trends of the PGV-variability along with physical explanations on the origin 

of the variability are described below. 

1.3.1 Variability considering bilateral ruptures only 

We observe two main tendencies of  considering bilateral rupture models only (i.e. 

with directivity ratio < 0.5), which could further be distinguished by the distance from 

the source.  
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1.3.1.1 Variability in the near field (below Rjb ~20 km) 

Considering the tendency of average values of within-event variability computed from 9 

bilateral models (the curve ‘Avg-of-Bilateral-Models’) in Figure 1.7 (a), variability  

demonstrates a fairly steady trend up to about 20 km from the source. However, the 

difference in the  values among different rupture models is large (Figure 1.8). This is 

because at short distances  is controlled by source parameters such as location of main 

slip area, rupture initiation point and hypocentral depth. A comparison of the results 

obtained for the Tottori event (models of Semmane et al., 2005, and Sekiguchi and 

Iwata, 2002) and the synthetic k-2 source models (Figure 1.7, b) highlights the effect of 

the position of the main slip area. The source model derived for Tottori  (Figure 1.1, e 

and Figure 1.2, a) considers the main slip area to be more widespread on the upper part 

in comparison to the synthetic k-2 source models, which assume the main slip area to be 

on the middle of the fault plane (Figure 1.3). This may have caused the lower values of  

at 3 to ~20 km distance for the former models.  Besides, the comparison between the 

three k-2 models (Figure 1.7, b) illustrates the effect of the different degrees of slip 

roughness (represented by the non-dimensional parameter K). According to Causse et 

al. (2010), the natural variability of K can be described by a lognormal distribution with 

log(K)=0.12. Thus, the values of K considered in our study (K=0.4, K=0.8 and K=1.6) are 

expected to cover a wide range of potential degree of slip roughness ([median - 1.5 std, 

median + 1.5 std], i.e. ~85% of the potential values). The comparison indicates that the 

degree of slip roughness alone has little influence on the ground motion variability in 

comparison to the position of the main slip area, except in the very near-field (i.e. at 1 

km), where  ~ 0.15 for K=0.4 and  ~ 0.35 for K=1.6. Note that the sensitivity to slip 

roughness is likely to depend on other source parameters (rise, time, rupture velocity) 

and their potential correlations. For instance, large values of the rise time act as low 

pass filters and could contribute to smoothing the effects of slip heterogeneities. On the 

other hand, shorter values of rise time (i.e. < 3.5 s) may tend to increase the sensitivity 

to slip roughness. 
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Figure 1.8: Mean ± std (bars showing one standard deviation band) of the values of 

within-event ground-motion variability () with varying Rjb distances, for the cases (i) 

bilateral and unilateral events combined (ii) only bilateral events.  

1.3.1.2 Variability in the far-field (beyond Rjb ~20 km) 

Interestingly, the  values for the bilateral events seems to increase gradually above 

~20 km distance (Figure 1.7, a). This tendency can be explained by the fact that in the 

far field extended sources behave like point sources, and accordingly,  is essentially 

controlled by the shape of radiation pattern of S waves and Love waves. This is further 

investigated by analysing the azimuth –and distance dependency of the PGV values for 

the 2005 Fukuoka and 2000 Tottori (Semmane et al., 2005) earthquakes. Figure 1.9 (a) 

represents the PGV values at each receiver station for the respective azimuth angle θ at 

different Rjb distances. Here, we remind that θ is the angle between the direction of 

rupture propagation and the epicenter-station azimuth (Somerville et al., 1997). For 

distances larger than ~30 km, the PGV values over various azimuths along the station-

array form a ‘W’-shape exhibiting radiation pattern effect. Following the SH-wave 

radiation pattern shape, we observe PGV maxima at azimuths 0°, 90° and 180° and PGV 

minima at 45° and 135°. The slower decay of PGV maxima compared to that of PGV 

minima, with increasing distance (featuring the elongation of ‘W’–shape in Figure 1.9, 

a), eventually results in increased variability. Indeed PGV maxima are related to 

maximum SH-wave energy radiation at all distances, whereas the minima, i.e., ground 
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velocity at azimuths 45° and 135° are associated with a decrease of SH-wave energy 

radiation due to finite-source effects as distance increases. 

1.3.2 Variability considering unilateral ruptures only 

Turning now to the two unilateral rupture models (i.e. with directivity ratio > 0.5) of the 

1979 Imperial Valley and 1979 Coyote Lake earthquakes, we can observe that unlike the 

bilateral models, the variability exhibits a decreasing tendency with distance (Figure 1.7 

a), implying higher  values at shorter distances due to the presence of directivity 

effects. For unilateral events, strong forward directivity effects (i.e. amplification of the 

PGV value) are expected for small values of the station-azimuth θ (θ < ~30°). The 

dependence of directivity effects on θ is illustrated in Figure 1.9 (b), where the PGV 

values for the unilateral events are plotted against θ, at each Rjb distance. At short 

distances (< ~10 km) most of the stations are located in the 0°-30° azimuth region  (15 

out of 20 stations at 1 km) and thus associated with a strong PGV amplification due to 

forward directivity effects. The large proportion of high peaked PGV values results in 

large variability  at shorter distances. As the distance increases, fewer stations remain 

in the forward directivity direction (3 out of 20 at 100 km) due to the smaller fault 

dimension relative to the fault-to-station distance, and hence the  values decrease. 

Note that at 100 km, the values of  are of the same order as for bilateral events, 

meaning that the directivity of the rupture propagation is a second order effect far away 

from the source (i.e., beyond 2-3 rupture lengths).   
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(a)  

 

(b)  

 

 
Figure 1.9: PGV values for the stations located at different azimuths along varying Rjb 

distances, for (a) bilateral and (b) unilateral events. Here azimuth represents θ, the 

angle between the epicenter and the station, as illustrated in Figure 1.4. 
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1.4 Discussion and conclusion  

The ground-motion variability ‘sigma’ is a fundamental component of PSHA studies, 

because small variations in sigma values can largely influence seismic hazard analyses. 

So far GMPEs have considered sigma to be constant over distance. Though a few recent 

data analyses suggest that sigma is distance-dependent, such studies remain, however, 

affected by the lack of strong motion data recorded in the near source region (< 10-20 

km). In this chapter we have analyzed sigma from the viewpoint of simulations to 

complement real data studies and to investigate the influence of different source 

parameters on the resulting ground-motion variability. Ground-motion, represented by 

the PGV, is computed from various kinematic source models and Green’s functions 

computed for 1D-layered velocity models. Note that our study focuses on the within-

event component  of sigma. For simplicity we have limited our study to vertical strike-

slip faults.  

 

Our results suggest that the within-event variability  significantly depends on the 

rupture type, with unilateral ruptures resulting in larger  values than bilateral 

ruptures, especially in the near source region. Far away from the source (~100 km), this 

dependency vanishes and  is steady ( ~ 0.3-0.5) for both kind of ruptures. Thus the 

distance-dependency of  presents two main behaviors: (1)  increases with distance 

for bilateral events and (2)  decreases with distance for unilateral events. Interestingly, 

the range of within-event variability values provided by our numerical simulations in 

far field is consistent with the ‘single station’ within-event variability (ss) estimates 

obtained from real data by Rodriguez-Marek et al. 2013 ( ~ 0.4 at 100 km). It should be 

mentioned, however, that our  estimations are not only ‘single-station’ but also ‘single-

path’ since we assume a 1D velocity structure. 

 

Using a global catalog of large shallow earthquakes, McGuire et al. (2002) found that 

approximately 80% of ruptures have directivity ratios larger than 0.5, pointing out the 

overall predominance of unilateral ruptures. This shows the importance of considering 

directivity effects in the estimation of the between-event variability of ground-motions. 

For a given earthquake scenario, prior knowledge about the rupture direction may 

contribute in refining the estimates of . Note that the large variability we obtained at 
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short distance for unilateral ruptures may, however, be strongly reduced if azimuth is 

considered as a predictor. This could be quantified by computing median ground 

motion from prediction models that account for directivity effects (e.g. Spudich and 

Chiou, 2008; Somerville et al. 1997), or simply by assessing the variability in various 

azimuth ranges.  

 

Our simulations are performed up to 3 Hz for simple 1D media. The  values inferred in 

far field are essentially controlled by the shape of the wave radiation pattern. 

Nevertheless the radiation pattern effect, that is clearly observed in our synthetics, 

might be limited to lower frequency range (<~1 Hz) in real velocity structures. The 

theoretical four-lobe S-wave radiation pattern may be limited to low frequencies (<1 

Hz), with a pattern getting isotropic at high frequency due to the scattering of seismic 

waves (e.g. Takemura et al. 2009; Takenaka et al. 2003; Liu and Helmberger 1985). In 

addition, according to Cho et al. (2010), observations suggest that far-field radiation 

patterns change from a distinct double couple pattern, with strong directivity effects at 

low frequencies (<1 Hz), to a more isotropic pattern with diminished directivity effects 

at high frequencies, putting forward the fact that directivity effects are also frequency 

dependent. This frequency dependence of directivity effects has been attributed to 

source incoherency by Bernard and Herrero (1994). Since our rupture models do not 

include any source of incoherency, the strong impact of directivity effects on the  

values computed from our synthetics may be weaker in the case of real earthquakes. 

 

We remind that the results presented in this study are valid in a narrow magnitude 

range (~6 < Mw < ~7) and for vertical strike-slip events only. In addition, due to the 

small number of considered source models, the source variability may be 

underestimated and the inclusion of additional source models may then modify the 

observed overall trends. Considering additional unilateral rupture models would also 

strengthen the conclusions on the role of directivity effects. Finally, the cogency of our 

results relies on the validity of the inverted source models, which may be affected by 

uncertainties (e.g. Mai et al. 2007), due to the non-uniqueness of the inverse problem, 

errors in the forward model, etc. Source inversion models derived from incomplete 

datasets and the ground-motion prediction at a site that is not considered in the 

inversion can be significantly biased. This is especially true if the prediction site is 
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isolated as pointed out by Cirella and Spudich (2013). From a set of accelerograms 

recorded in the area of Niigata, the authors generated thousands of “good” source 

models (i.e. with a good level of data fit) of the 2007 Chuetsu earthquake, that they used 

to predict ground motion at the Kashiwazaki-Kariwa Nuclear Power Plant. They found 

that the ground motion scatter at the Power Plant is of the order of the empirically 

observed between-event variability. Part of this scatter arises from particular choices to 

parameterize the inversion process, which are inherently user dependent. For instance, 

two of the source models considered in our study account for variability in slip, rupture 

velocity and rise time, while the other models assume uniformity in rupture velocity 

and rise time (Table 1.1). These a priori choices partially constrain distributions and 

correlation patterns of source parameters, which may impact the  values. However, the 

fact that we got nearly analogous estimation of  from the two 2000 Tottori models, 

which were obtained by different authors / inversion parameterization, adds credibility 

to our results. Furthermore, our study is intended to focus only on the variability of 

ground motion rather than its absolute value. The overall observed trends of the ground 

motion variability have been related to global source features (rupture directivity, 

depth of the main slip area) that may still be captured by source inversions.  

1.5 Data and resources 

The eight finite-source rupture models used in this study have been extracted from the 

Finite-Source Rupture Model Database (Mai, 2004) available at http://equake-

rc.info/SRCMOD/ (last accessed at 16:15, 21 March, 2014). This website is an online 

database of finite-fault rupture models of past earthquakes obtained using kinematic 

inversion of strong motion data, sometimes combined with  geodetic and/or data. The 

database provides the complete description of the space-time distribution of the co-

seismic slip, except from the model of Horikawa (2001) of  the Kagoshimean-hoku-seibu 

event for which the rupture time distribution is not available.  

 

Institut des Sciences de la Terre (ISTerre) is part of Labex OSUG@2020 (ANR10 

LABX56). Most of the computations presented in this paper were performed using the 

Grenoble University High Performance Computing (HPC) centre, CIMENT, 

infrastructure (https://ciment.ujf-grenoble.fr, last accessed at 9:00, 20 March, 2014), 

http://equake-rc.info/SRCMOD/
http://equake-rc.info/SRCMOD/
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which is supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA: 

http://www.ci-ra.org, last accessed at 9:00, 20 March, 2014) and France-Grille 

(http://www.france-grilles.fr, last accessed at 9:00, 20 March, 2014). For the parallel 

computations of a large number of single jobs, we exploited the available resources of a 

local grid of HPC clusters (totalizing more than 3000 computing cores) in a best-effort 

mode, the grid middleware “cigri” (http://ciment.ujf-grenoble.fr/cigri, last accessed at 

9:00, 20 March, 2014). The results were stored on a distributed data grid operated by 

the IRODS system (https://www.irods.org, last accessed at 9:00, 20 March, 2014). 

http://www.france-grilles.fr/


 

 

Chapter 2: Review of Argostoli site and dense 

array network  

 

This chapter presents a very brief description of the site Argostoli, where the 

seismological experiment took place from September 2011 to April 202 within the 

framework of FP7 EU-NERA project (2011-2014). The chapter starts with an overview 

of the seismotectonics, seismicity, geology and geomorphology of the Cephalonia Island, 

where Argostoli basin is located in, and the surrounding region. Then, a short and 

preliminary description of the Argostoli site followed by an overview of the 

seismological experiment is provided. The catalogue of the recorded earthquakes, the 

quality of the data, and the subset of events used for the data analyses in Chapter 3 and 

4, are discussed.  
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2.1 Introduction 

The importance of spatial variability of earthquake ground motion has been recognized 

in earthquake-resistant design and analysis of horizontally extended structures for a 

long time. At least part of the ground motion variability is generally associated with a 

significant proportion of surface waves in the seismic wave field caused by lateral 

variation of material properties of the site (i.e. surface geology and geometry). Hence, 

recognition of the physical patterns of the wave field caused by the effects of subsurface 

geology and geometry is essential to fully capture the physical causes underlying the 

ground motion variation and incorporate it in engineering applications. Although many 

such instrumental and numerical investigations have been undertaken over the last 

decades, the complexity of the wave field combined with the limitations of geophysical 

investigation techniques and numerical simulation made it impossible till now to 

include effects of spatial variability in seismic hazard and risk assessment, except in 

very rare cases. Consequently, the vast majority of building codes do not have any 

provision for considering such effects.  

 

To this end, one of the goals of the JRA1 & JRA3 work packages (Waveform modeling 

and site coefficients for basin response and topography; coherence of near-fault ground 

motion) of the FP7 EU-NERA 2010-2014 project (Network of European Research 

Infrastructures for Earthquake Risk Assessment and Mitigation) was to perform 

seismological experiment on basin effects and spatial variability of ground motion with 

the long term aim of proposing simple, engineering oriented models to incorporate such 

effects. The experiment took place in, Cephalonia Island situated in western Greece, one 

of the most active seismic sites in Europe. The instrumental setup was carried out at a 

small alluvial valley ‘Koutavos-Argostoli’, located in the south of the town Argostoli in 

Cephalonia. Four European institutions, ISTerre, INGV, ITSAK and GFZ participated in 

the experiment and deployed 64 seismological stations along two profiles (parallel and 

perpendicular to the major axis of the valley) for the period September 2011 to April 

2012. Since seismic arrays are very useful to study the fine-scale structure of Earth’s 

interior as well as the variations of the material properties, and the current 

development of data processing techniques have provided valuable means of 
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understanding seismic wave field, installation of two very dense arrays was also 

included in the experiment. In addition, specific geophysical and geological surveys 

have been performed on the site to constrain the basin geometry and the wave-velocity 

structure.  

 

The experimental part of this thesis deals with the identification of seismic wave field 

composition and analysis of spatial variability of ground motion in Argostoli site based 

on array data acquired from this temporary seismological experiment of Argostoli. the 

French  national  pool  of  portable  seismic instruments SISMOBRESIF, France, provided 

25 seismological stations in the experiment. The principle array, Array-A, consisted of 

21 SISMOB/INSU SISMOBRESIF stations equipped with broadband 30s velocimeters, 

with interstation distance ranging from 5 to 160 m and was located towards the south-

western edge of the valley. Four stations were placed in the linear station-arrangement 

located on the station-profile crossing the valley. A smaller array, Array B, was deployed 

by the project partner German Research Centre for Geosciences (GFZ), close to the 

north-eastern edge. It consists of 10 stations, equipped with 1 Hz velocimeters, with 

interstation distance ranging from 5 to 60 m. In this thesis, earthquake data recorded by 

Array A has been used to perform seismic wave field analysis and spatial coherency 

estimation. For comparison purpose, Array B data of some events have been used in 

seismic wave field analysis. The aim of this chapter is thus to present a review on the 

Argostoli site and earthquake data recorded by Array A. At the same time, a brief 

description of the configuration of Array B has also been included. The detailed account 

of the entire seismological, geophysical and geological experiments held in Argostoli is, 

however, out of the scope of this chapter, and will be found in a forthcoming paper 

(Cultrera et al., 2014).  

2.2 The site: Argostoli, Cephalonia  

2.2.1 Seismotectonics  

The island of Cephalonia falls in the north-westernmost boundary of the Aegean plate. It 

is located in a tectonically active region, mainly formed by the Apulian (Adriatic region) 

microplate (Figure 2.1). This microplate is bounded by three tectonic plates: the stable 
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continental Eurasian plate to the North, the Anatolian plate to the East, and the African 

plate to the South (Lagios et al., 2007). Plate motions showed in the Figure 2.1 indicates 

that the African plate is moving northward relative to Eurasia at a rate of about 10 

mm/yr. The predominant motion between Africa and Arabia (~ 10 mm/yr) seems to be 

left-lateral motion along the Dead Sea transform fault. This northward motion of Arabia 

results in westward displacement of the Anatolian plate, counter-clockwise, relative to 

Eurasia. It is notable that the westward rotation of Anatolia (20-25 mm/yr) does not 

result in a compressional field in the Aegean area.  Rather, an extensional stress field 

dominates the Aegean, which moves with much high velocity (~35 mm/yr) with respect 

to Eurasia. 

 

 

Figure 2.1: Tectonic-plate map of Greece (Taymaz et al., 2007). Yellow rectangle marks 

the study area Cephalonia. 

 

The interaction between the African and the Eurasian tectonic plates where the Eastern 

Mediterranean lithosphere is being subducted beneath the Aegean lithosphere along the 

Hellenic Arc-Trench System, control the tectonic setting of western Greece (Le Pichon et 

al., 1995; Papazachos and Kiratzi, 1996; Lagios et al., 2007). Cephalonia, being one of the 

central Ionian Islands, lies in the western part of the subduction zone (Figure 2.1 and 

Africa 
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2.2). Subduction results in high shallow seismicity along low-angle thrust faults of the 

Hellenic arc and in intermediate-depth seismicity along a well-defined Benioff zone in 

the southern Aegean (Papazachos, 1990). The western part of the Hellenic convergence 

zone, extending from Cephalonia to the south of Zakynthos, is also characterized by a 

positional change of the frontal thrust in this domain. The evolution here could be 

described as a continuation of the Alpine orogeny with a foreland-propagating fold and 

thrust belt of the Hellenides, the front of which jumped during the middle Miocene from 

its position at the Pindos thrust (east of Ionian zone) to the west of this zone at the 

Ionian thrust which is now clearly expressed to the east of Cephalonia and Zakynthos 

(Underhill, 1989; Hatzfeld et al., 1990, Lagios et al., 2007).  

 

Faults of various directions and types (normal, reverse and strike-slip) traverse the 

Cephalonia area. An escarpment in the bathymetry northwest of the island indicates the 

existence of a strike-slip fault trending NE–SW (Finetti, 1976; Underhill, 1989; Tselentis 

et al., 1997). Underhill (1988, 1989) suggested that the strain accommodation within 

the main system of contraction results in this dextral strike-slip faulting. Figure 2.2 

shows the NE-SW trending strike-slip fault system of Cephalonia, known as Cephalonia 

Transform Fault (CTF). CTF is a well-documented offshore active fault and limits the 

Island of Cephalonia to the west. This fault is a major right-lateral strike-slip fault, 

linking the continental collision to the subduction zone, between the Apulian microplate 

and the Hellenic foreland (Le Pichon et al., 1995; Sachpazi et al., 2000) and contributes 

significantly to the region's geodynamic complexity (Le Pichon et al., 1995; Louvari et 

al., 1999). The recent shallow seismic activity in the area is thus associated with this 

strike-slip mechanism. The deeper seismicity, due to mostly compressional 

mechanisms, is related to the subduction. 

 

 



35 Review of Argostoli site and dense array network 
 

 

  

Figure 2.2: Main fault systems of the Cephalonia Island taken from the Seismotectonic 

Map of Greece (IGME) (Lekkas et al., 2001; Lagios et al., 2007). CTF: Cephalonia 

Transform Fault.  

 

From different studies on the analyses of the earthquakes occurring on the fault, it is 

considered that the length of the Cephalonia transform fault is approximately 100 km, 

striking in an almost NNE–SSW direction (Papadimitriou et al., 2006). The slip direction 

of the CTF is N 213° and is in agreement with a south-westwards motion of the Aegean. 

The rate of seismic slip in the CTF varies from 7 to 30 mm/yr based on DGPS 

measurements (Anzidei et al., 1996; Hollenstein et al., 2006), which is consistent with 

seismological data and considered to be the highest observed in the whole Aegean area 

(Papazachos and Kiratzi, 1996).  

C
TF
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2.2.2 Seismicity 

Greece is currently considered as the highest seismic activity area in Europe and 

characterized by the occurrence of large earthquakes. Figure 2.3(a) shows the shallow 

seismicity (h≤40km) in the Aegean and surrounding region after Kiratzi et al., 2007. The 

plot includes historical seismicity from 464 BC to 1910 and instrumental seismicity 

from 1911 to 2005. The highly frequent occurrences of large magnitude (Mw> 6.5) 

earthquakes are quite evident from the plot, especially in and around Cephalonia. Figure 

2.3(b) illustrates the significant seismicity in the Ionian Sea for the time period from 

1964 to 2005 where epicentres and fault plane solutions of moderate to large events 

that occurred in this period are presented (Papadimitriou et al, 2012). Fault plane 

solutions of all major events reveal right-lateral strike-slip faulting with a small thrust 

component striking in a SW–NE direction and dipping in SE.  

(a) (b) 

 

 

Figure 2.3: (a) Shallow seismicity (h ≤ 40 km) in Greece and surrounding region. Yellow 

rectangle shows Cephalonia area. (Kiratzi et al., 2007; taken from Pitilakis, 2014). (b) 

Seismotectonic map of Ionian Sea and surrounding area (Papadimitriou et al, 2012). 

Small circles represent epicentres with Mw > 3.6 for the time period from 1964 to 2005, 

large circles labelled 1–10 correspond to historical and instrumentally recorded strong 

(Mw > 6.0) events before 1964. The fault plane solutions of the events with Mw > 4.5 for 

the same time period are also shown. Black lines represent main active faults. 
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In view of the seismicity, Cephalonia Island is, hence, one of the most active seismo-

tectonic regions in Greece. The area is included in the highest seismic hazard class of the 

Greek building code. High seismicity in the central Ionian Sea is considered to be the 

result of intense crustal deformation associated with right lateral strike–slip faulting 

along the CTF which supports earthquake magnitudes up to M = 7.4 (Louvari et al., 

1999).  Historical data show that seismicity rate of the strong (M ≥ 6.5) main shocks in 

this zone remained stable during the last four centuries with an average of about one 

such shock per decade (Papadimitriou and Papazachos 1985; Kokinou et al., 2006). 

More than 10 earthquakes of magnitudes between 6.5 and 7.5 occurred in the area 

between 1900 and 1998 causing major destruction.  The past large events (1469-1983) 

in Cephalonia and surrounding areas plotted from Papazachos et al. (2000) and (2010) 

are shown in Figure 2.4(a). It is remarkable that these past large events often appear 

clustered in time (showed in different colors).  

 

In 1953, the city of Argostoli was devastated by a sequence of three Ms > 6 earthquakes 

that took place within 4 days, destroying 80% of the houses, and killing more than 450 

people. The largest event, M = 7.2, occurred on 12 August 1953, at an epicentral 

distance less than 20 km from the town. Another large magnitude event, M = 7.0, 

occurred on 17 January 1983, at an epicentral distance of about 30 km, with, however, a 

low damage impact on Argostoli. Some other recent strong events include Mw = 6.5 

earthquake in August 14, 2003 to the west of Lefkas, a sequence of Mw = 5.6 earthquakes 

in October 2005 and Mw = 5.5–5.7 earthquakes in April 2006 to the south of Zakynthos. 

Smaller events of 4 < Mw < 5 occur in the area in a regular interval and at least one event 

of Mw≈5.0 is expected in the broader region every year. Very recently, two strong 

earthquakes occurred on 26 January (Mw = 6.1) and 03 February 2014 (Mw = 6.0) in the 

western coast of Cephalonia, within 20 km distance from the city of Argostoli and 

damaged a significant number of structures. According to the Seismological Centre of 

the Aristotle University of Thessaloniki, the events were shallow crustal events with 

depth about 10 km. These two events were followed by a number of aftershocks up to 

Mw 5.5. The epicentres of the January 26 and February 3, 2014 strong events and the 

epicentre of the January 26 aftershock (M 5.5) are shown in the Figure 2.4(b). Focal 

mechanisms for these three events along with the typical focal mechanism of 

Cephalonia region are also provided. From the epicentre and the focal mechanism of the 
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main shocks of 2014 events, it could be deduced that the focal mechanism of Cephalonia 

earthquake sequence resembles to the typical mechanism of the region and thus related 

to the well-known Cephalonia Transform Fault (CTF) zone.  

(a) (b) 

 

 

Figure 2.4: (a) The spatial distribution of epicenters of the large past earthquakes for 

the period 1469-1983 (Papazachos et al. (2000) and (2010); Pitilakis, 2014).  (b) 

Epicenters and the faulting mechanisms of the January 26 and February 3, 2014 

earthquakes.  Red stars show the epicenters of the two main shocks. Yellow star shows 

the epicenter of the M = 5.6 aftershock of January 26, 2014 18:45 GMT. The aftershock 

distribution (M >= 4) of the seismic sequence in Cephalonia one month after the first 

event are also shown (source: Hellenic Unified Seismological Network-HUSN) The focal 

mechanisms of these events (source: GCMT solutions) are shown in respective color 

balloons. The typical focal mechanisms for Cephalonia area (Papazachos and 

Papazachou, 2003) is shown by the grey ballon. The grey squares and pink triangles 

denote the sites of accelerographs and seismographs (GEER Report, 2014) 
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2.2.3 Geology and geomorphology 

Cephalonia comprises the western part of the fold-belt of the External Hellenides 

(Himmerkus et al., 2007; GEER Report, 2014). The island was formed during Tertiary 

times as a result of the convergence between the African and the Eurasian plates that 

initiated at the end of the Cretaceous (Kamberis et al., 1996). It mainly consists of Alpine 

Mesozoic and Cenozoic sedimentary rocks belonging to the External Hellenides, the 

Paxos or Pre-Apulian zone and the overthrusted Ionian zone (Lekkas et al., 2001). The 

Pre-Apulian zone forms the major part of Cephalonia. This rock unit (Pre-Apulian or 

Paxos) consists mainly of a thick sequence of carbonates (limestone and dolomite) of 

Triassic to Middle Miocene age, overlain by a much thinner fine clastic sequence of marl 

and pelite of Middle Miocene to Lower Pliocene age. The zone has experienced 

significant late Neogene and Quaternary shortening (Underhill, 1989). Figure 2.5 shows 

the geological formations of Cephalonia after Underhill (2006). The study area, 

Argostoli block (south and south-western part of the island) is seen to be mainly 

composed Pilocene-Pleistocene marine deposit and bounded by Cretaceous-Palaeocene 

formation in the east and west.  According to Lekkas et al. (2001), the study area, 

Argostoli block (south and south-western part of the island) is seen to be mainly 

composed of Hollocene-Pleistocene alluvial deposit in the center and surrounded by 

Pilocene –Pleistocene marine deposit in the south-west and by carbonate sequence in 

the east. 
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Figure 2.5: Geological formations of Cephalonia (Underhill, 2006). Red rectangle shows 

the study area at Argostoli.  

 

 

Figure 2.6: Geological formations of Argostoli area, after Lekkas et al. (2001) and 

modified from Valkaniotis, et al., 2014. Red rectangle shows the study area at Argostoli.  
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2.2.4 Argostoli Valley 

Argostoli is a relatively small alluvium valley situated in the eastern part of the Gulf of 

Argostoli (Figure 2.7). The gulf opens towards the Ionian Sea in the south and extends 

to the entrance of the Bay of Argostoli. The Kutavos Bay branches off from the main gulf 

and extends approximately 5 km to the southeast. Kutavos Bay is surrounded by the 

Tilegrafos hills and the city of Argostoli to the west, the coastal plain of Krane to the 

south and the foothill of the Aenos mountain range to the east. The dense seismic arrays 

under Nera experiment were deployed at the Koutavos park, just to the south of the 

Bay.  

 

Figure 2.7: Topographical overview of the test site Argostoli (Hadler et al, 2011). 

Existing literature demonstrates that 3 km long and 1.5 km wide Argostoli valley is 

surrounded by hills of limestone and marl, and covered by soft Neogene sediments up 

to 40-50 m depth (Protopapa et al., 1998). The NE-SW cross-section of the valley, 

proposed by Protopapa et al. (1998), is presented in Figure 2.8. The cross-section shows 

shear-wave velocities (Vs) ranging between 140 m/s and 500 m/s in the sedimentary 

core.  

TEST SITE 

Argostoli 

Town 
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(a) 

 

(b) 

 

Figure 2.8: (a) The SW-NE cross-section and (b) 2D model of the SW-NE section of the 

Argostoli valley (Protopapa et al., 1998).  

 

The available description of Argostoli valley is very preliminary. Therefore, further 

geological and geophysical studies have been carried out by NERA project for the better 

characterization of the basin. Prior to conducting NERA seismological experiment, H/V 

spectral ratio was calculated based on ambient noise recorded by Güralp CGM6TD 

acquisition unit at the centre of the valley (EF2 site in Figure 2.8,b). The H/V estimation 

outlined a very clear fundamental frequency of the site of about between 1.5-2 Hz 

(Figure 2.9).   

 

 

Figure 2.9: H/V average spectral ratios (±1σ) at the center of the valley, site EF2, based 

on ambient noise recordings of about 1 hour. 
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2.2 Seismological experiment 

A total of 62 seismological stations were deployed in the Koutavos-Argostoli basin 

during NERA seismological experiment that took place on 20 September 2011, and were 

operational until 17 April 2012. Two more stations were installed in two distant sites in 

order to improve the hypocentral locations of the earthquakes recorded during the 

experiment. In addition, specific geophysical (single-station noise, passive and active 

surface waves measurements) and geological surveys have been performed to constrain 

the basin geometry and the wave-velocity structure. Other investigations have been 

performed within the SINAPSC project (founded by French research Agency ANR) and 

their data were made available to NERA partners under a specific formal agreement 

(Cultrera et al., 2014). Analyses of geological and geophysical data are going on 

presently in order to properly characterize the basin geology and geometry as well as 

the wave-velocity structure. However, providing details of the entire seismological, 

geological and geophysical experiments is beyond the scope of this thesis. Here, we will 

only focus on the array experiment.  

 

Figure 2.10 shows H/V peak frequencies estimated at the instrumental sites during 

NERA and SINAPSC projects. R01 and R02 are the two reference stations and A00 and 

B01 are the central stations of the two arrays. Distance between R01 and R02 is about 2 

km.  Figure 2.11 shows locations of the NERA seismological stations only. The stations 

were distributed along two profiles (parallel and transversal to the major axis of the 

valley); the one crossing the basin had inter-station distances of about 50 meters, and 

included two very dense arrays, Array A and B (Cultrera et al., 2014). From Figure 2.10 

we can consider the average fundamental frequency of the basin at the location of our 

seismological experiment as ~1.5 Hz. Preliminary results of geological and geophysical 

investigations showed that location of the arrays are on the soft Quaternary sediments. 
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Figure 2.10: Map of fundamental frequency estimated at all the stations from 

seismological and geophysical investigations carried out by NERA and SINAPSC projects 

(Boxberger et al., 2014). Black dots indicate sites that do not exhibit any H/V peak. 

 

Figure 2.11: Location of NERA seismological stations. Circles of different colors indicate 

the location of the stations. S01, S03, S05, S07 and Array-A constitute the deployed 

stations by ISTerre. 
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Array A was deployed by the NERA project partner team from ISTerre (Institut Sciences 

de la Terre, Grenoble, France), located approximately 550 m away from R02 station (i.e. 

from the NE edge of the valley). It consists of 21 stations (Güralp CMG40T with 

eigenperiods between 30 and 60 s) connected to Nanometrics Taurus digitizers, 

belonging to the French mobile national seismological pool INSU/SISMOB. The stations 

are placed along four concentric circles, with radii of 5, 15, 40 and 80 m, around the 

central station A00 (Figure 2.12). All stations are located on the same geological unit. 

The other 4 stations installed by ISTerre are named as S01, S03, S05 and S07, and they 

are located on the linear profile of the stations between Array A and R02 (Figure 2.11). 

A smaller array was deployed by the project partner GFZ (German Research Centre for 

Geosciences), close to the north-eastern edge of the basin, named as Array B. It consists 

of 10 stations, Mark 1Hz sensor, with interstation distance ranging from 5 to 60 m. The 

central station B01 was located at about 260m from R02. Geometry of Array A and 

Array B are shown in the Figure 2.12 and 13, respectively. The coordinates of the 

stations of both arrays are given in Appendix D. 

 

 

Figure 2.12: Geometry of Array A. A00 is the central station. Stations are located around 

A00 in four concentric circles at radii 5, 15, 40 and 80 m. Five stations are placed on 

each concentric circle. The stations branch off from A00 in five directions: N 39, N112, 

N183, N255 and N 328.  
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Figure 2.13: Geometry of Array B. B01 is the central station. Other stations are placed 

around B01 at distances ranging from 5 to 60 m. 

2.3 Data acquisition 

This section includes information about only the stations deployed by ISTerre, 

especially Array A. Figure 2.14 illustrates a typical instrumentation and Figure 2.15 

shows a global picture of Array A stations. The stations were well maintained 

throughout the entire duration of the experiment. A routine-maintenance was 

performed every month in order to ensure better functioning of the stations. Although 

good quality data has been acquired by the stations, there are still data gaps due to 

some difficulties faced at the site. Our experiment site Koutavos Park is full of grown up 

trees which made it difficult to find enough solar power for the batteries. The weather 

conditions during winter worsened the power problem. Another issue was the 

behaviour of the CMG40T velocimeters. The sensors start malfunctioning (stepping the 

signals) after moderate earthquakes. Figure 2.16 shows the data status during the 

experiment duration.  
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Figure 2.14: Typical set-up of a station. 

  

 

Figure 2.15: A view of central part of the Array A stations. 
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(a) 

 

(b) 

 

 

 

Figure 2.16: Day-by-day data availability of ISTerre stations for the period (a) 

September 2011 to December 2011, and (b) January 2012 to April 2012. 
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2.4 Catalogue preparation 

Continuous records of about 7 months from the station A00 was considered for 

catalogue preparation. Probable seismic events were first identified from the 

continuous records through visual inspection. Then catalogues obtained from the 

earthquake data portal of NERA, school of geology at the Aristotle University of 

Thessaloniki (AUTH), and European-Mediterranean Seismological Centre (EMSC) were 

used to identify the origin time and characteristics of the events. Over the seven months 

of experiment in Argostoli, more than 3000 local, regional and teleseismic events, with 

M ≥ 2.0, occurred in the broader Agean area and about 1700 events were detected from 

visual inspection. However, after careful inspection 711 events with high signal-to-noise 

ratio were selected for catalogue preparation. The catalogue of these events is given in 

Appendix E. It includes some large worldwide events such as Mw 7.2 Van earthquake on 

October 23, 2011, Mw 7.4 Mexico earthquake on March 20, 2012, Mw 8.6 and Mw 8.0 

Sumatra earthquakes on April 11, 2012. From the catalogue, 461 events, within 80 km 

epicentral distance, have been re-localized (Appendix E.1) using the local network and 

the local crustal velocity model by AUTH seismological center (NERA Report, 2014). For 

the remaining 258 earthquakes, mainly regional and a few teleseismic events above 

epicentral distance 80 km (Appendix E.2), the best location solutions have been taken 

either from the Hellenic Unified Seismographic Network or from EMSC. In the next step 

452 events were sorted out from the 711 events based on the quality of data and event 

parameters. Figure 2.17 (a) shows the locations of 452 good quality local, regional and 

teleseismic events recorded by station A00. A zoomed in view of the local and regional 

events is shown in Figures 2.17 (b) and (c). Magnitude and estimated peak ground 

velocity (PGV) of these 452 events are presented in Figures 2.18 (a) and (b), 

respectively. It can be observed from the figures that most of the recorded events have 

occurred within 200 km of hypocentral distance of the site having magnitudes about 1 

to 5 and PGV 0.01 to 6 mm/s. There are also some M > 5 events within the hypocentral 

distance 200 and 10,000 km but their PGV values are around 0.1 mm/s or less. The 

distribution of PGV values of the events are shown in Figure 2.18 (c) where we can see 

that PGV of most of the recorded events range from 0.02 to 0.2 mm/s. 
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Figure 2.17: Location of (a) 452 good quality local, regional and teleseismic events. (b) 

Zoomed in view of the local and regional events from the area marked by yellow 

rectangle on the (a). (c) Zoomed in view of the events occurring around Argostoli site. 

Legend on the map represents event locations; the circle-sizes are proportional to the 

magnitude of the event. The red rectangle on (c) marks the location of the site. 

(a) 

(b) 
(c) 
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(a) 

 

 (b) 

 

(c) 

 

Figure 2.18: (a) Magnitude and (b) Peak ground velocity (PGV) over the hypocentral 

distance, and (c) Distribution of peak ground velocity (PGV) of the 452 good quality 

events. 
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2.5 Selection of subset of events 

A subset of events with very good signal to noise ratio, recorded by more than 15 

stations of Array A, was selected for the seismic wave field and coherency analyses 

(Chapter 3 and 4, respectively). A total of 46 events (Appendix F), within 200 km 

distance from the Array having magnitude 2 to 5, were selected. Most of the events are 

shallow and they were chosen such that a homogeneous distribution of epicentral 

distance, magnitude and azimuthal coverage can be achieved. Table 2.1 shows the 

number of selected events for each back-azimuth, epicentral distance and magnitude 

group analyzed for the arrays A. Origin date and time, latitude, longitude, peak ground 

velocity, magnitude as MW or ML, hypocentral depth, epicentral distance, hypocentral 

distance, and back-azimuth of the subset of events are given in Appendix F.1. Different 

parameters used in the analyses of the events, in Chapter 3 and 4, are listed in Appendix 

F.2. Since Array B data was used for seismic wavefield analysis (using MUSIQUE 

technique) in Chapter 3, the events for which Array B data was analyzed are indicated 

also in Appendix F.2. However, good set of recording was not available for all the events 

in case of Array B data. Thus 16 out of 46 events recorded by Array B were considered 

for seismic wavefield analysis (Table 2.1).  Figure 2.19 (a) and (b) show the location of 

the subset of events selected from Array A and Array B, respectively. Time series of the 

events recorded at central station, A00, of Array A and rock stations, R01 and R02, are 

provided in Appendices G, H and I, respectively. 

Table 2.1: Number of events selected for each back-azimuth, epicentral distance 

and magnitude group for the analysis of Array A and Array B data 

Name 
Back-

azimuth 
Nb. of 
Events 

Range of 
epicentral 

distance (km) 

Nb. of 
Events 

Range of 
Magnitude 

(MWL) 

Nb. of 
Events 

Array A 

NE 10 0-30 17 2-3 23 

NW 12 30-60 10 3-4 17 

SE 13 60-100 10 4-5 6 

SW 11 100-200 9   
Total 46  46  46 

Array B 

NE 2 0-30 5 2-3 7 

NW 5 30-60 2 3-4 7 
SE 4 60-100 5 4-5 2 

SW 5 100-200 4   
Total 16  16  16 
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Figure 2.19: Map of the analyzed events from (a) Array A (46 events) and (b) Array B 

(16 events). Catalogue of the events are provided in Appendix F. Orange to red circles 

(legend) on the map represent event locations; the circle-sizes are proportional to the 

magnitude of the event. The red circles mark location of the central stations A00 and 

B01. The events are plotted on SRTM data-maps, available from 

http://srtm.csi.cgiar.org (Jarvis et al., 2008). 

A00 

B01 

(a) 

(b) 
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2.6 Example wave forms 

In this section, some example waveforms from local and regional events are provided 

along with their respective Fourier spectra and signal-to-noise (S/N) ratios. We have 

selected three events at epicentral distances about 3, 56 and 190 km (no. 36, 31 and 46, 

respectively, in Appendix F.1). Figure 2.20 shows the locations of the events and the 

station A00. Magnitudes of the events are M 3, M 4.3 and M 5.2 and hypocentral depths 

are 18.5, 13 and 33 km, respectively. Time series recorded at station A00, Fourier 

amplitude spectra and signal-to noise-ratio (from the same station) of each event are 

given in Figures 2.21 to 2.23  

 

 

Figure 2.20: Location of the three example events, no. 36, 31 and 46 in Appendix F.1. 

Orange rectangles on the map mark the event locations and red one marks the central 

station A00.  

 

36 

46 

31 

A00 
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(a) 

 

(b) (c) 

  

 

Figure 2.21: (a) Velocity time series (b) Fourier amplitude spectra and (c) signal-to-

noise ratio, of the three components (EW, NS and UP) recorded at A00 station, for the 

event no. 36, occurred on March 20, 2012 at UTC 18:50:51. Magnitude, hypocentral 

depth and epicentral distance of the event are M 3, 18.5 km and 3.1 km, respectively. 
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(a) 

 

(b) (c) 

  

 

Figure 2.22: (a) Velocity time series (b) Fourier amplitude spectra and (c) signal-to-

noise ratio, of the three components (EW, NS and UP) recorded at A00 station, for the 

event no. 31, occurred on February 14, 2012 at UTC 13:21:43. Magnitude, hypocentral 

depth and epicentral distance of the event are M 4.3, 13 km and 56 km, respectively. 
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 (a) 

 

(b) (c) 

  

 

Figure 2.23: (a) Velocity time series (b) Fourier amplitude spectra and (c) signal-to-

noise ratio, of the three components (EW, NS and UP) recorded at A00 station, for the 

event no. 46, occurred on April 16, 2012 at UTC 11:23:42. Magnitude, hypocentral depth 

and epicentral distance of the event are M 5.2, 33 km and 190 km, respectively. 



 

 

Chapter 3: Seismic Wave Field Analysis of 

Argostoli Dense Array Network 

 

This chapter presents the description of the seismic wave field analysis from dense 

seismic array data and the corresponding results. First, an overview of the seismic wave 

field analysis and relevant techniques has been provided. Then the two dense arrays 

(Array A and B) are presented. Next, the array analysis technique MUSIQUE, the 

methodology used in this part of the work, along with the data processing procedure 

has been described. Finally the post-processing criteria and the results of the analysis as 

well as the possible interpretations of the results have been provided. 
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3.1 Introduction 

Site-specific characteristics of the observed ground motions are considered important 

for the estimation of seismic design parameters in engineering applications. 

Seismological observations have indicated that effects of surface geology and geometry 

(e.g. sedimentary valleys, topography) significantly contribute to ground-motion 

amplification and variability. These effects are generally associated with a substantial 

proportion of surface waves in the seismic wave field. Among them, the surface waves 

diffracted by the basin edges do contribute significantly to the site effects in modifying 

the wavefield and the resulting ground motion(e.g. Moczo and Bard, 1993; Field, 1996; 

Chavez-Garcia et al., 1999; Cornou and Bard, 2003; Bindi et al., 2009; Scandella and 

Paolucci, 2010). An understanding of the seismic wave field crossing the site, hence, is 

the key aspect to characterize and quantify these effects. 

 

Studies investigating the properties of the wave field have shown that seismic arrays 

are very useful to characterize the fine-scale structure of Earth’s interior and the 

variations of the material properties. A single seismometer is unable to determine both 

velocity and direction of the incident seismic waves while arrays of seismic sensors 

enable us to study the phase delays that normally cannot be identified in seismograms 

of single stations. Yet, a one dimensional seismic array can only determine the 

component of the wave vector which lies in the array direction. Therefore, two-

dimensional arrays are needed to retrieve the back-azimuth and velocity of the 

incoming waves.  

 

In this study, the two-dimensional dense seismic arrays, deployed during the 

seismological experiment in Argostoli basin, as a part of the FP7 EU-NERA (Network of 

European Research Infrastructures for Earthquake Risk Assessment and Mitigation) 

2010-2014 project, was used to analyze the seismic wave field composition. As 

presented in Chapter 2, the principal dense array (Array A) was located close to the 

south-western edge of the basin and consisted of 21 velocimeters located in concentric 

circles with radii of 5 m, 15 m, 40 m and 80 m around the reference station. Another 

smaller array was deployed near the north-eastern edge and consisted of 10 
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velocimeters with interstation distances ranging from 5 to 60 meters. A subset of 46 

events recorded by Array A was used for the MUSIQUE analysis. This subset was 

carefully selected so that the corresponding events are characterized by a homogeneous 

back-azimuth distribution, local magnitudes ranging between 2 and 5, and epicentral 

distances ranging between 3 and 200 km from the array center (see chapter 2). 

 

Among the various available array techniques, we have chosen and applied the 

MUSIQUE algorithm (Hobiger et al., 2012) to analyze our selected events. This 

algorithm, combining the two algorithms MUSIC (MUltiple SIgnal Characterization; 

Schmidt, 1986; Goldstein and Archuleta, 1987) and quaternion-MUSIC (Miron et al., 

2005; Miron et al., 2006), offers an advanced three-component seismic array processing 

technique. In addition to the estimation of slowness of the incoming waves, MUSIQUE 

allows identification of Love and Rayleigh waves, and estimation of the polarization 

parameters, i.e., ellipticity and sense of rotation of the Rayleigh wave particle motion. 

The array analysis was performed over a frequency range of 1 to 20 Hz considering 

entire duration of the signals. The present chapter focuses on the results of array 

analysis which include identification and characterization of the diffracted wave fields.  

3.2 Seismic wave field analysis 

When an earthquake occurs, seismic waves are generated as rupture occurs along the 

fault and propagate towards the site or point of observation after being diffracted, 

reflected, or scattered, through regional and local earth’s structure. Especially, near-

surface geology plays an important role in modifying earthquake ground motion and, 

hence, the damage distribution, as witnessed by most of the past destructive 

earthquakes (e.g. Mexico, 1985; Loma Prieta, 1989; Kobe, 1995; Izmit, 1999). Generally, 

four types of seismic waves form the seismic signal, namely, pressure (P) and shear (S) 

waves, Love and Rayleigh surface waves. P- and S-waves are linearly polarized. P-waves 

are compressional waves propagating along the wave propagation direction. S-waves 

propagate perpendicularly to the wave propagation direction and consists of two 

components, SH and SV. SH waves have a motion parallel to the horizontal plane while 

SV wave motion is perpendicular.  Love and Rayleigh surface waves travel along the free 

surface of the earth and that is the reason they are known as surface waves. Love waves 
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are horizontally polarized shear waves resulting from the superposition of multiple 

reflected of SH waves at the free surface. Rayleigh waves originate from the 

superposition between P and SV waves at the free-surface.  The coupled P-SV type 

displacement of Rayleigh waves results in a phase-shift of ±π/2 between the horizontal 

and vertical components of particle motion which can be represented by an ellipse. The 

ratio of amplitudes between horizontal and vertical axes of the ellipse defines the 

ellipticity. In uniform half-space, at shallower depths (at and near the surface), 

horizontal movement advances the vertical movement by π/2 in phase and the motion 

(fundamental mode) becomes retrograde. Since P-wave component of the motion 

decays faster than the SV motion, at sufficiently greater depth, SV motion dominates, 

and the particle motion becomes prograde corresponding to a phase difference of -π/2. 

When the direction of wave propagation is from left to right, counter-clockwise particle 

motion is retrograde while clockwise is prograde. For multi-layered structure, ellipticity 

of Rayleigh waves depends on the velocity structure and frequency.  Amplitude (energy) 

of surface waves decays exponentially with depth within a medium. Due to geometric 

spreading in 2-D, surface wave energy decays with distance r from the source as 1/r 

whereas it is 1/r2 for body waves making them less prominent on a seismogram. It is 

also to be noted that different types of waves travel at different velocities depending on 

the material characteristics of propagation media. P-waves are the fastest and marked 

by early arrival on a seismogram followed by the S-waves and then surface waves. Love 

and Rayleigh surface waves involve different mode of propagation (fundamental and 

higher modes) that propagate at different frequency-dependent velocities whose 

asymptotic values for the low and high frequencies are close to the shear-wave 

velocities, in the deep and surficial layers, respectively.  The later arrivals on a 

seismogram are called coda waves that are caused by multipathing/scattering of waves 

through a heterogeneous structure. In terms of frequency content of a seismogram, the 

high frequency seismic wavetrain is usually dominated by the arrivals of P and S waves 

while the low frequency content is dominated by surface waves.  

 

Although initially it was believed that the body wave trapped in the sedimentary layers 

are responsible for amplification of the ground motion, the contribution of locally 

generated surface waves in amplification, duration lengthening and spatial variation of 

ground motion and related damage has been recognized (Kawase, 1996). .  At present 
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many urban areas have been developed on sedimentary basin structures, hence, the 

effects of surface waves need particular attention in the seismic hazard assessments and 

risk estimation of such sites. In other words, knowledge of the local soil structure and 

complex wave field propagation of a given site is of utmost importance in order to 

investigate the physical causes underlying spatial variation of earthquake ground 

motion and estimate associated risk. 

 

The investigation of complex wave field in view of better understanding and better 

assessing spatial variation of ground motion is especially important in small or medium 

size (width smaller than a few hundred meters and thickness within tens of kilometers) 

valleys where direct S-waves and basin-edge induced waves are mixed, and ground 

motions are affected by both 1D and 2D/3D effects (Cornou et al., 2003a).  

 

Seismic arrays of ground-motion recording stations are considered very handy for such 

purpose. It is a common practice in seismology to use dense seismic array analysis for 

source and path characterization of wave types and their polarization, investigation of 

heterogeneous ground-structure, and analysis of seismic ground strains. To date, many 

studies have been undertaken using analysis of very dense seismic arrays (Caserta et al., 

1998;  Gaffet et al., 1998; Chavez-Garcia et al., 1999; Rovelli et al., 2001; Cornou et al., 

2003a, and 2003b) to characterize wave propagation from earthquake ground motion 

and identify the diffracted waves.  

 

A seismic array is a combination of a set of seismographs distributed over an area of the 

earth's surface. The spacing among the seismographs or seismic stations within an 

array is generally small so that correlated signal waveforms could be recorded between 

adjacent seismometers. Three-component seismographs are made of three colocated 

sensors recording the ground motion in three orthogonal directions (output signal is a 

3D vector-valued time series) aligned in north-south, east-west and vertical direction. 

Three-component stations are being used more and more in array configurations 

(Kværna and Doornboos, 1986) for many permanent as well as most of the temporary 

networks for their diverse usability. The single component arrays (vertical arrays) are 

unable to capture significant portions of P, SV, and Rayleigh waves as well as the entire 

SH and Love wave part of the wave field. On the contrary, addition of horizontal 
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components records in three-component arrays facilitates capturing this polarization 

information.  Contrary to arrays of seismic sensors, a single three-component 

seismometer is unable to determine both the velocity and the direction of the incident 

seismic waves. 

 

A one dimensional seismic array can only determine the component of the wave vector 

which lies in the array direction. Therefore, analysis of two-dimensional seismic arrays 

is needed to retrieve the wavenumber vector of any incident wave, in terms of back-

azimuth (defined as the angle measured from north to the direction from which the 

energy arrives at a given station) and slowness. The basic principle of any array analysis 

technique is to measure the arrival time delays of an incident wave-front recorded at 

the different stations and then estimating the wave velocity v (or its inverse, the 

slowness s) and station-to-event azimuth (back-azimuth).  

 

The underground earth-structure is heterogeneous and consists of different layers 

having different material properties. The vector velocity information of propagating 

incident wave helps to identify different seismic phases in the complex wave field, 

characterize waves from different seismic events and also to improve the signal-to-

noise ratio by stacking the recorded waveforms with respect to the varying slowness of 

different phases. Therefore, analyzing the properties of different wave types, observed 

at a site, is particularly useful in obtaining insight into the local soil structure, material 

properties and topographic effects. The direct seismic waves, P and S-wave generally 

propagate at the actual velocity of the current medium. Use of these waves in the 

earthquake analysis is limited by the fact that the source location and time are needed 

to be determined if we want to acquire information on the entire propagating medium 

of the body waves (Hobiger et al., 2012). On the other hand, surface waves of varying 

wavelengths penetrate to different depths and travel at the velocity of the mediums 

they are travelling through. Thus, the velocity of these waves is directly linked to the 

underground structure that makes the analysis of surface waves a good means to 

investigate local underground structure. Now, short wavelengths correspond to high 

frequencies and only sample very superficial layers while the larger wavelengths 

(linked to lower frequencies) sample deep layers. Usually deeper layers are composed 

of stiffer materials which cause larger velocities compared to those at near-surface 
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layers. As a consequence, the larger wavelength (lower frequency) surface waves travel 

faster than the smaller wavelength (higher frequency) ones. This frequency dependent 

characteristic of wave propagation velocity is termed as dispersion and can be captured 

by the vector velocity information retrieved from the array analysis. The dispersion 

curve, i.e. the phase velocity as a function of frequency, of surface waves directly 

depends on the shear wave velocity profile of the soil structure and can be inverted to 

constrain local underground structure. In addition, polarization properties of Rayleigh 

waves are also closely linked to the underground structure, especially the ellipticity is 

complementary in inverting dispersion curves.  

 

Estimation of polarization parameters helps us to better characterize different seismic 

phases. Distinction of the sense of particle motion at a given frequency can help in 

distinguishing between the fundamental and the higher harmonic modes of Rayleigh 

waves. Three-component array analysis of seismic data allows us to perform such 

ground motion decomposition at a site and acquire useful descriptions of propagating 

seismic wave field characteristics. Therefore, three-component 2D arrays were used in 

many studies for the analyses of P wave codas, polarization of waves, scattering, and the 

study of regional wave propagation (among others Jurkevics, 1988; Dainty, 1990; 

Wagner and Owens, 1993; Kuwahara et al., 1997; Wagner, 1997; Bear et al., 1999; 

Cornou et al., 2003a, and 2003b; Poggi and Fäh, 2010; Marano et al., 2012; Hobiger et 

al., 2012).  

 

Various methods based on signal processing techniques are available for the analysis of 

dense seismic arrays. Three commonly used methods (Zerva and Zhang, 1996; Roulle 

and Chavez-Garcia, 2005; Wathelet et al., 2008) are: conventional f-k (frequency-

wavenumber; Lacoss, 1969), high resolution f-k (Capon, 1969) and the Multiple Signal 

Characterization, MUSIC (Schmidt, 1981, 1986). The comparative studies among these 

methods suggested that MUSIC is less sensitive to noise. It has better resolving power in 

the case of multiple, closely spaced arrivals, and is able to handle difficult scenarios 

involving highly correlated (waves with different azimuths but the same frequency and 

phase content crossing the array at the same time) waves when applying an additional 

spatial smoothing technique (Goldstein and Archuleta, 1987, 1991; Krim and Viberg, 

1996; Zerva and Zhang, 1996; Bokelmann and Baisch, 1999; Almendros et al., 2000; 
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Cornou et al., 2003a; Roulle and Chavez-Garcia, 2005). Goldstein and Archuleta (1987) 

showed that MUSIC is particularly well suited for frequency-wavenumber estimation 

with seimic arrays because (1) it has the ability to resolve multiple, closely spaced 

sources, (2) it works with both stationary and nonstationary signals, (3) it is most 

sensitive to the strongest sources and (4) it provides a unique solution to the 

wavenumber estimation problem. Roulle and Chavez-Garcia (2005) concluded that 

MUSIC is more useful in case of data with high coherence and small time delays. 

However, the limitation indicates that this method requires a number of parameters, 

including the number of signals, to be known a priori which may significantly affect its 

reliability in actual applications.  

 

Keeping the aforementioned advantages of MUSIC technique in mind, we have chosen 

an advanced three-component seismic array processing technique, MUSIQUE (Hobiger 

et al., 2012), to analyze dense seismic array data in this study. This algorithm combines 

original MUSIC (Schmidt, 1981, 1986; Goldstein and Archuleta, 1987) with Quaternion-

MUSIC (Miron et al., 2005, 2006). In addition to the estimation of slowness of the 

incoming waves, MUSIQUE allows the identification of Love and Rayleigh waves, and the 

estimation of polarization parameters, i.e., ellipticity and sense of rotation of the 

Rayleigh wave particle motion as a function of frequency. Hobiger et al. (2009, 2011) 

presented the application of MUSIQUE on synthetic seismic data and showed its 

potential in identifying different surface wave types as well as separating both Rayleigh 

wave polarizations.  Hobiger et al. (2014) used MUSIQUE to analyze seismological data 

of Santa Clara valley and showed that this technique is capable of separating the 

contributions of Love and Rayleigh waves successfully. 

3.3 Argostoli experiment and dense array characteristics  

The experimental setup and dataset of Argostoli as well as the description of the site 

have been presented in the chapter 2. As mentioned in chapter 2, Array A consisted of 

21 stations in four concentric circles, with radii of 5, 15, 40 and 80 m, around A00. All 

stations were located on the same geological unit. The configuration of the array and its 

location is recalled in Figure 3.1 (a). The minimum and maximum interstation distances 

are 5 m and 160 m, respectively, which indicates that the array can capture planar 
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waves with wavelengths from a few meters up to 360 m. Figure 3.1 (b) and (c) show the 

theoretical array response and the array resolution capability, respectively (Wathelet et 

al., 2008). Average FK dispersion curves and related standard deviation were derived 

from the phase velocity histograms (probability density functions) for wavenumbers 

above the classical array resolution (kmin),  defined as the mid-height width of the main 

lobe peak in the array response function. For HRFK processing, the lower wavenumber 

limit is half the classical array resolution (kmin/2) (Asten & Henstridge 1984; Wathelet 

et al. 2008). 

 

A smaller array was deployed by the project partner GFZ (German Research Centre for 

Geosciences), close to the north-eastern edge of the basin, named as Array B. It consists 

of 10 stations, with interstation distance ranging from 5 to 60 m. The central station 

B01 was located at about 0.29 km from A00 and 0.26 km from the northeastern valley-

edge. The array configuration and resolution capability are shown in Figure 3.2. 
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(a) 

 
(b) (c) 

 
Figure 3.1: (a) Layout of the Argostoli Array A in the seismological experiment of NERA. 

(b) Theoretical array response function, and (c) resolution limit: the continuous and 

dashed black lines, respectively, correspond to the theoretical array resolution limit for 

the use of classical frequency wavenumber technique, and to half the classical array 

resolution using high-resolution frequency-wavenumber techniques (Lacoss et al., 

1969; Asten & Henstridge, 1984; Cornou et al., 2006; Wathelet et al., 2008).  

 

~450 m 
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(a) 

 
(b) 

 

(c) 

 

 

Figure 3.2: (a) Layout of the Array B in the seismological experiment of NERA. (b) 

Theoretical array response function and, (c) resolution limit: the continuous and dashed 

black lines, respectively, correspond to the theoretical array resolution limit for the use 

of classical frequency wavenumber technique, and to half the classical array resolution 

using high-resolution frequency-wavenumber techniques (Lacoss et al., 1969; Asten & 

Henstridge, 1984; Cornou et al., 2006; Wathelet et al., 2008). 

 

~260m 
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3.3.1 Dataset 

This study considers a subset of 46 events from the catalogue of Argostoli data, 

recorded by the dense array, Array A. Out of these 46 events, total 16 events have also 

been analyzed for Array B. Selected dataset has been discussed in chapter 2 and the 

catalogue with event parameters are given in Appendix F.1. Different parameters used 

in the MUSIQUE analysis are listed in Appendix F.2. Time series of the events recorded 

at central station, A00, of Array A are provided in Appendices G.  

 

Figure 3.3 shows some example velocity time series, filtered within 1-5 Hz frequency 

band, recorded across the width of the valley for an event arriving from the south-east 

direction (back-azimuth = N134) of the site (event no. 15 in Appendix F). Hypocentral 

depth of the event is 16.5 km and epicentral distance is 9 km. Figure 3.3 (a) illustrates 

records for the vertical component. The waveform at 400 m corresponds to a station at 

stiffer site near the western border of the valley. Rock stations, R01 and R02, are shown 

at 0 m and 2000 m, respectively. We observe from the waveforms that apparantly 

surface waves are not visible at rock station. One can clearly identify the waves 

propagating from the southwest towards the northeast edge, associated to surface wave 

generations and diffractions the later arriving phases, especially between 1200 to 1600 

m distances where the basin is supposed to be deeper. On the NS component records in 

Figure 3.3 (b), the complex mixing of surface waves is evident. We can also observe 

duration lengthening from the valley center towards the northeast edge. 

 

 

 

 

 

 

 

 
 
 
 



70 3.3 Argostoli experiment and dense array characteristics 
 

 
 
 
(a) 

 
(b) 

 
Figure 3.3: Band-pass filtered (1 to 5 Hz) velocity waveforms from (a) vertical 

component and (b) NS component, recorded across the width of Argostoli valley for an 

earthquake of M=3.4, Depth = 16.5 km, Back-azimuth=N 134 and Epicentral distance=9 

km (event no. 15 in the table in Appendix F.1). Time series recorded at R02 rock site are 

displayed in red color. Records from R01 station were not available for this event. The 

corresponding arrangement of the stations on the site is shown at the left. 
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3.4 Methodology 

We have used MUSIQUE technique (Hobiger, 2011; Hobiger et al., 2011, 2012 and 2014) 

in order to perform wave field characterization of the Argostoli array data. MUSIQUE 

consists of a combination of the "classical" MUSIC (Schmidt, 1986) and the quaternion-

MUSIC (Miron et al., 2006) algorithms. First, it retrieves the azimuth and velocity (or 

slowness, respectively) of the wave with "classical" MUSIC. Then, the horizontal 

components are rotated to radial and transverse components and the polarization 

parameters between the vertical and the radial component are estimated by using the 

quaternion-MUSIC approach. The advantage of the quaternion formulation compared to 

other approaches is that the phase information and the sense of rotation of the particle 

motion is naturally preserved. MUSIQUE, thus, allows the distinction between 

retrograde and prograde Rayleigh wave motion.  Hobiger (2011) has elaborately 

discussed the technique. Here we will only describe the principle of the technique.  

3.4.1 MUSIC 

The Multiple Signal Characterization (MUSIC) method is an array analysis technique 

based on the calculation of the eigenstructure of the cross-spectral matrix to determine 

signal parameters. It was originally developed by Schmidt (1986). Goldstein and 

Archuleta (1987) applied MUSIC in seismology and showed that it could resolve 

multiple, closely spaced sources. It works both with stationary and non-stationary 

signals and is more sensitive to the strongest sources (Roulle and Chavez-Garcia, 2005).  

 

Basic principle of the method is to separate signal and noise subspace and then to 

estimate the signal parameters. Let us assume a dataset recorded by an array of N 

single-component sensors. As a first step, MUSIC calculates the cross-correlation matrix 

(in time domain) or cross spectral matrix (in frequency domain) for each frequency and 

time windows of interest, and defines the eigenstructure of the covariance matrix. The 

eigenvectors corresponding to the K strongest eigenvalues define the signal subspace 

(K<N) while the N-K weakest eigenvalues define the noise subspace.  Then, from the set 

of array manifold vectors, the vectors that give the minimum projection onto the noise 

subspace are determined through the search of the maxima of the directional function 

(the so-called MUSIC spectrum). Once the signal vectors are determined, propagation 
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direction and phase velocity of the signals can be computed, as functions of time and 

frequency.  

 

The extension of MUSIC algorithm for three-component signals is explained in Hobiger 

et al. (2014). Suppose we have an array composed of N three-component seismic 

sensors. Then three complex data vectors Xi(f), of size N×1, can be used to store the data 

for frequency f, where i = 1 denotes the vertical, i = 2 the eastern and i = 3 the northern 

component. The covariance matrix (size N×N) calculated for each component is given 

by, 

 

Si,jk(f) = E[Xi,k(f) Xi,j
∗(f)]                                                                                                               (3.1) 

 

where E denotes the expectation value, j and k are the station indices, and *-operator 

denotes complex conjugation. The expectation value is realized by summing over a 

small number of frequencies around the central frequency, f. Then a covariance matrix, 

S(f), is derived by simply summing up the covariance matrices of the single components, 

and the eigenvectors and eigenvalues are calculated. The propagation back-azimuth (θ) 

and the slowness (s) of this dominant wave arrival are identified by maximizing the 

MUSIC functional P by a two dimensional grid search. 

 

P =
1

a∗GG∗a
                                                                                                                                        (3.2) 

where G denotes the noise subspace and a is the steering vector given by 

 

a =
exp(−i𝑹 k(f))

√N
                                                                                                                            (3.3) 

here R is the matrix of the sensor positions , k(f) is the wave vector given by 

 

k(f)  = −2π. f. s(f) (sinθ, cosθ, 0)T                                                                                                (3.4) 

 

Radial and transverse motions of the waves are determined by projecting the horizontal 

components (X2(f) and X3(f)) of the signal into the identified back-azimuth direction θ, 

while the vertical signal (X1(f)) remained unchanged: 
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Xradial(f) = −sinθ .  X2(f) −  cosθ .  X3(f)                                                                               (3.5) 

Xtransverse(f) = cosθ .  X2(f) −  sinθ .  X3(f)                                                                           (3.6) 

Xvertical(f) =  X1(f)                                                                                                                         (3.7) 

 

The energies of the different components for each station are calculated by 

 

Evertical(𝑓𝑐) = ∑ X⃗⃗ 1
∗

f=fc+∆

f=fc−∆

(f)  X⃗⃗ 1(f)                                                                                              (3.8) 

Eeast(𝑓𝑐) = ∑ X⃗⃗ 2
∗

f=fc+∆

f=fc−∆

(f)  X⃗⃗ 2(f)                                                                                                    (3.9) 

Enorth(𝑓𝑐) = ∑ X⃗⃗ 3
∗

f=fc+∆

f=fc−∆

(f)  X⃗⃗ 3(f)                                                                                                (3.10) 

 

Eradial(𝑓𝑐) = sin2 θ .  Eeast(𝑓𝑐) + cos2 θ .  Enorth(𝑓𝑐)                                                           (3.11) 

 

Etransverse(𝑓𝑐) = cos2 θ .  Eeast(𝑓𝑐) + sin2 θ .  Enorth(𝑓𝑐)                                                    (3.12) 

 

where, fc denotes the frequency to be analyzed and ∆ is the number of frequency values 

around fc.  

 

An energy criterion is then considered to discriminate between Love and Rayleigh 

surface waves. If the transverse component carries more energy than the radial and 

transverse components together, the wave is identified as a Love wave. In the opposite 

case, it is considered as a possible Rayleigh wave and its identification is done based on 

the determination of polarization parameters in the next step. 

3.4.2 Quaternion-MUSIC 

In order to estimate polarization parameters, the data of radial and vertical components 

are stored in a single data matrix by using hyper-complex numbers, such as 

quaternions. Quaternions are indeed considered as an extension of complex numbers 

into four dimensions (e.g. Ward 1997). Two complex-valued data matrices 
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corresponding to different components can be stored in a single quaternion-valued data 

matrix (4 dimensions) or all three components of the seismic signals can be stored in a 

single biquaternion matrix (8 dimensions). Hobiger (2011) shows that since the 

polarization of a pure seismic wave is always confined to two components maximum, 

the quaternion-MUSIC (Miron et al. 2005, 2006) approach is sufficient to characterize 

the polarization parameters of an incident wave.  This way, use of quaternions allows 

the algorithm to merge both the complex-valued data vectors of radial and vertical 

components into a single data vector and thus the polarization relation between both 

components remains naturally preserved in the data. The quaternion data matrix Xq(f) 

is given by (Hobiger et al., 2014) 

 

Xq(f) = Re[Xvertical(f)] + i. Re[Xradial(f)] +  j. Im[Xvertical(f)] +  k. Im[Xradial(f)]      (3.13) 

 

where i, j and k are imaginary units such as i2 = j2 = k2 = ijk = -1. 

 

Following Equation 3.1, the quaternion-valued covariance matrix Sq(f) is then built. The 

quaternion-MUSIC functional, which is maximized by the correct polarization 

parameters φ and ρ, remains analogous to Equation 3.2. The modified steering vector is 

then given by 

 

aq = [cosρ + isinρ exp (jφ)] . exp(−j𝑹k) /√N                                                                       (3.14) 

 

where, φ (with 0 ≤ φ ≤ 360°) is the phase difference between the vertical and radial 

components and  ρ (with 0 ≤ ρ ≤ 90°) is the amplitude parameter. Quaternion-MUSIC 

approach uses a four-dimensional grid search for identifying four unknowns, azimuth, 

slowness, phase difference and amplitude parameter. In case of MUSIQUE algorithm, 

azimuth and slowness of the wave are estimated in the first step using classical MUSIC. 

Then only determination of the two polarization parameter is required which can be 

done in an analytical way rather than using the time consuming four-dimensional grid 

search.   
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3.5 Data processing 

MUSIQUE code is written in Matlab programming language (Hobiger, 2011). The steps 

followed and parameters considered for the analysis of Argostoli array data are 

described in this section. Classical MUSIC is able to identify multiple sources. Due to the 

projection of the horizontal signals with respect to the identified wave back-azimuth for 

the estimation of polarization parameters, MUSIQUE code is limited to a single wave 

contribution, i.e. to the most dominant source (K=1). However, multiple sources can be 

identified by MUSIQUE if estimation of polarization parameters is excluded from the 

analysis. The single-source approach is suitable when the wave field is truly dominated 

by a single wave. If not the case, however, for example, if there are two dominating 

sources, assumption of single-source will cause a biased estimation of noise subspace 

and thereafter wave propagation parameters (velocity, azimuth, polarization 

characteristics). In this study we have, thus, performed two separate analyses based on 

single source (K=1) and double source (K=2) assumptions. For the double-source 

assumption, steps (1) to (4) have been performed while for the single-source case all 

the following steps have been considered. 

 

(1) Our array analysis using MUSIQUE requires dividing the entire signal into smaller 

time windows within a certain frequency range of interest. From the array transfer 

function of Array A, the resolvable frequency range was found to be between 1 and 20 

Hz for slownesses larger than 0.002 s/m. The same frequency range has been used for 

Array B data..   Therefore, we chose 200 log-based frequency bands between 1 to 20 Hz. 

 

(2) The signals of all components and available stations are band-pass filtered using a 

Chebyshev filter with a bandwidth of 0.1 times the respective frequency. For instance, 

the signal is filtered between 0.18 and 0.22 Hz for a central frequency of 0.2 Hz. 

 

(3) Then, for each frequency band, filtered signals are cut into time windows of duration 

equals to five periods the central frequency by considering also 50% overlapping of the 

windows. For example, at 1 Hz frequency the signal is divided into 5 s-long time 

windows while at 10 Hz it is 0.5 s with 2.5 s and 0.25 s overlapping, respectively. A 50 s 



76 3.5 Data processing 
 

duration signal will, therefore, provide 19 windows at 1 Hz and 199 at 10 Hz, leading to 

an increase of time windows with frequency.  

 

(4) The following processing is done for each time window and each frequency band. 

The "classical" MUSIC algorithm (Schmidt, 1986; Goldstein and Archuleta, 1987) is 

applied to the three components in order to identify back-azimuth and absolute 

slowness of the most energetic wave arrivals through a two-dimensional grid search on 

the values maximizing the MUSIC functional. To assure a well-conditioned covariance 

matrix, we consider spectral averaging over five frequencies samples centered on the 

central frequency. 

 

(5) In the next step for each time window and each frequency band, radial and 

transverse components are computed by projecting the east-west and north-south 

components of the signals into the direction of the identified back-azimuth and its 

orthogonal direction. Here, an energy criterion is used to distinguish between Love and 

Rayleigh surface waves. Transverse energy will be larger than the sum of vertical and 

radial energies when predominant wave is a Love wave and smaller in case of Rayleigh 

waves. If the transverse energy is more than 70% of the total energy, the wave is 

identified as a Love wave (Equation 3.15):  

 

Etransverse > 2.33 × (Eradial + Evertical)                                                                                   (3.15) 

 

Conversely, when the sum of radial and vertical energy is more than 70% of the total 

energy, the wave is treated as a possible Rayleigh wave and the analysis proceeds to the 

step (6) In case none of this energy criterion is fulfilled, no wave is identified for the 

analyzed frequency-time window signal block. 

 

(6) The quaternion-valued covariance matrix is built by using the radial and vertical 

components and the quaternion-MUSIC functional is maximized to estimate the phase 

difference (φ) between vertical and radial components and the amplitude parameter 

(ρ). As azimuth and slowness parameters have already been estimated, the remaining 

two parameters, φ and ρ, are determined in an analytical way. As a final step, the 

retrograde and prograde particle motions are distinguished from the estimated φ 
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values. Theoretically a shift of φ=90° corresponds to a retrograde particle motion while 

φ=270° to a prograde one. In our analysis, φ values ranging from 45° to 135° is 

identified as retrograde motion and from 225° to 315° as prograde, the other values 

being neglected. The wave is identified as a Rayleigh wave if it satisfies either of these 

criteria, otherwise no wave is identified from the frequency-time window signal-block 

3.6 Post-processing 

Aside from retrieving the estimates of wave vector, slowness (s) and back-azimuth (θ), 

identified Love wave, and retrograde and prograde Rayleigh waves, energy for each 

frequency-time window [fw, tw] signal block is also estimated. In order to keep the most 

reliable and significant results, we then applied some filtering thresholds to keep only 

the most coherent part of the seismograms containing the most energetic signals. We 

thus compute the following quantities: 

 

(1) The average Fourier amplitude spectra (FASavg), signal-to-noise ratio (SNRavg) at 

central frequency (fc) of the frequency band (fw) are estimated by using Fourier 

amplitude spectra computed over the entire signal length. For SNR computation, the 

entire length of the signal and 60 s duration of noise were considered and then their 

spectral ratio was estimated. To put equal weight to the different durations, both signal 

and noise spectra were corrected by dividing with square root of their respective 

lengths.  

 

FASavg(fc) =
1

3Nst
∑[FASE(fc, m) + FASN(fc, m) + FASZ(fc,m)]

N𝑠𝑡

m=1

                                (3.16) 

SNRavg(fc) =
1

3Nst
∑[SNRE(fc, m) + SNRN(fc,m) + SNRZ(fc, m)]

N𝑠𝑡

m=1

                             (3.17) 

 

where, Nst  is the number of stations, m is the sensor index. We denote the Fourier 

amplitude spectra and signal-to-noise ratio at three components by FAS and SNR with 

corresponding suffixes for north, east and vertical components, respectively.  
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(2) The lagged coherency is estimated (Equation 3.18) as modulus of the ratio of the 

smoothed cross-spectrum  (S̅jk) of the time series between the stations j and k, to the 

geometric mean of the corresponding auto power spectra (S̅jj and S̅kk) (details 

procedure is given in Chapter 4). 

 

COH(tc, fc, j, k) =
|S̅jk(tc, fc)|

√S̅jj(tc, fc)S̅kk(tc, fc)

                                                                                   (3.18) 

The average coherency for each frequency-time signal block over all station pairs is 

then 

 

COHavg(tc, fc) =
1

3Np
∑[COHE(tc, fc, m) + COHN(tc, fc, m) + COHZ(tc, fc, m)]

N𝑝

m=1

        (3.19) 

 

where, Np is the number of station pairs, m is the sensor pair index, tc is the central time 

of the time window tw. COHE, COHN and COHZ are the coherencies computed on north, 

east and vertical components, respectively.  

  

(3) For each component (E, N, Z), the energy (EE, EN, EZ) carried in each time-frequency 

signal block is computed as the square absolute values of the Fourier amplitude 

spectrum (by using the time window length) evaluated at the central frequency. The 

window energy is then computed by summing up the three components’ energies as, 

 

Ewindow(tc, fc) = EE(tc, fc) + EN(tc, fc) + EZ(tc, fc)                                                            (3.20) 

 

Here, at each frequency band, we eliminate MUSIQUE estimates obtained from the 

waves containing average SNR (SNRavg) less than 5, energy less than the median energy 

of all available time windows, average lagged coherency (COHavg) less than 0.5. We also 

considered only the results having slowness 0.0004 ≤ s ≤ 0.008 s/m (i.e. apparent 

velocities between 125 m/s and 2500 m/s) to avoid misidentified results and aliasing.  

 

In case of identified Love waves, retrograde and prograde Rayleigh motion, MUSIQUE 

uses 1 for the corresponding time-frequency signal block and 0 if no wave is identified; 
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the resulting matrices are denoted as L, Rretro and Rpro, respectively. Energies of the 

identified surface waves are then estimated (Equation 3.21 to 3.23) by using their 

identification index (1 or 0) and the energies computed from the radial, transverse and 

vertical components (Equation 3.5, 3.6 and 3.7.). 

 

ELove(tc, fc) = L(tc, fc) × Etransverse(tc, fc)                                                                             (3.21) 

 

Eretro(tc, fc) = Rretro(tc, fc) × [Eradial(tc, fc) + Evertical(tc, fc)]                                      (3.22) 

 

Epro(tc, fc) = Rpro(tc, fc) × [Eradial(tc, fc) + Evertical(tc, fc)]                                           (3.23) 

 

ERayleigh(tc, fc) = [Eretro(tc, fc) + Epro(vtc, fc)]                                                                    (3.24) 

 

In each frequency band, percentage of the total analyzed surface wave energy compared 

to the total window energy is given by Equation 3.25, 

 

EWpercent(fc) = ∑
EW(m, 𝑓𝑐)

Ewindow(m, 𝑓𝑐)
 × 100

𝑁𝑡

𝑚=1

                                                                            (3.25) 

 

where, m is the time index, Nt is the number of time windows and W stands for different 

surface wave types: Love, Rayleigh, retrograde and prograde Rayleigh waves. 

 

An estimation of normalized window energy is provided in Equations 3.26 and 3.28. The 

normalizing factor here is the squared Fourier amplitude spectra and the estimation is 

log scaled. This has been done to ensure equivalent weights to all the frequency-

dependent windows and for the sake of clarity of the figures.  

 

Enorm(tc, fc) = log10 [
Ewindow(tc, fc)

(FASavg(fc))2
]                                                                                     (3.26) 

 

EWnorm(tc, fc) = log10 [
EW(tc, fc)

(FASavg(fc))2
]                                                                                    (3.27) 
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Finally, in order to combine MUSIQUE estimates from different events and different 

wave types, energy at each time-frequency signal block for a given event is normalized 

by the maximum energy computed over all the time windows available for that event as,  

 

SUMEWnorm(𝑡𝑐, 𝑓𝑐) = ∑ log10

N𝑒𝑣

m=1

[
EWnorm(𝑡𝑐, 𝑓𝑐 , m)

max(EWnorm(𝑓𝑐,m))
]                                                      (3.28) 

 

where, W denotes different wave types, Nev is the number of events. This procedure  

leads to normalized energy values between 0 to 1 in order to perform an equally 

weighted summation over all the events. 

3.7 Results from single dominant source : example event 

We begin with results obtained based on the assumption that a single source dominates 

the wave field. First we will present the wave field characterization for one event and 

then combine and summarize results obtained from all the events. 

3.7.1 Event characteristics 

We consider the results obtained from the array analysis of an example event using 

Array A data. The event (index 12 in Appendix F) occurred 14th October 2011 at UTC 

01:11:32 with a magnitude ML=3.5, a hypocentral depth of 12 km, at an epicentral 

distance of 36 km and a back-azimuth of N125 from the central station A00. Figure 3.4 

(a) and (b) display the waveforms recorded at the rock station R02 (northeast edge) 

and at the central station A00, respectively. From the comparison of the recordings of 

these two stations, amplification and locally generated surface wave-trains are evident 

on the seismograms of A00 station. Figure 3.5 shows the Fourier amplitude spectra 

(FAS) and signal-to-noise-ratio (SNR) of the velocities at A00 station.  The SNR of this 

event between 1 to 20 Hz frequency range, which is the range considered for array 

analysis, is observed to be higher than 10.   
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(a) 

 

(b) 

 
Figure 3.4: Velocity time series of the event no. 12 (ML=3.5) recorded (a) at rock station 

R02 and (b) at the central station, A00, of Array A.  

 
(a) 

 

(b)  

 
Figure 3.5: (a) FAS and (b) SNR for the event no. 12 (ML=3.5) at the central station, A00, 

of Array A. 

 

3.7.2 MUSIQUE results   

Figure 3.6 shows spectrogram of the identified waves from raw results. The colorbar 

indicates normalized energy calculated by Equation 3.26.  Each point on the plot 

corresponds to the spectrogram value at a given time-window and a given frequency 

band. P- and S- wave onsets from the spectrogram occur at about 1s and 6 s, 

respectively. It is to be noted that the normalized energy estimation amplifies the lower 

energy results for achieving almost equivalent weighted over all the analyzed frequency 
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dependent windows.  Therefore the energy values showed through the colorbar do not 

represent absolute energy of the windows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Velocity time series of the EW component (top) and spectrogram (bottom) of 

unfiltered results obtained for the identified dominant waves from array analysis of the 

event 12. Colorbar represents normalized window energy estimated by Equation 3.26. 

 

In order to observe the effect of post-processing filtering on the results, we now present 

the filtered spectrograms in Figure 3.7 (a) and (b). Figure 3.7 (c) and (d) illustrate the 

filtered signal blocks which have been identified as Love or Rayleigh surface waves.  

Figure 3.7(a) presents the spectrogram after applying SNR, coherency and slowness 

filtering criteria on the results shown in Figure 3.6. By comparing these two 

spectrograms we observe that only a very small portion of the results has been left out. 

For this particular event, this is already partly explained by the very good SNR over the 

analyzed frequency range (Figure 3.5 (b)). Furthermore, since the array is very dense 

and the interstation distance is less than 100 m, the coherency is expected to be high for 

most of the station pairs.  However, when we consider the energy filtering on the 

currently filtered results (Figure 3.7(a)), a significant change is observed as presented 

     
Time [s] 
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in Figure 3.7 (b). We see that most of the high frequency (f > 10 Hz) time-frequency 

signal blocks, for which the absolute energy estimation is low, are discarded due to the 

application of post processing filtering.  

 

Spectrograms in Figure 3.7 (c) and (d) show signal blocks for which the dominant 

source has been identified as Love and Rayleigh surface waves, respectively.  Figure 3.7 

(e) and (f) represent the signal blocks characterized as retrograde and prograde 

Rayleigh motion.  From Figure 3.7(c) and (d), it appears that most of the lower-energy 

signal windows do not contribute to the wave identification and the dominant source is, 

primarily, a Love wave at lower frequencies (f < 3 Hz) and Rayleigh at higher 

frequencies (3 < f < 6 Hz). It can also be said that at around 3 to 4 Hz retrograde 

Rayleigh motion is prominent. 
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

Figure 3.7: Spectrogram of the filtered results from the analysis of event no. 12, when 

(a) SNR, coherency and slowness filtering is applied and (b) energy filtering is added to 

the previous filtering. The identified dominant sources characterized as (c) Love (d) 

Rayleigh (e) retrograde Rayleigh and (d) prograde Rayleigh surface waves from the 

filtered results. Colorbar represents normalized window energy estimated by Equation 

3.26. 
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3.7.3 Identified back-azimuth 

Figure 3.8 shows identified back-azimuth distribution of the dominant sources as a 

function of time and frequency. When the dominant waves’ back-azimuths are plotted 

against the time (Figure 3.8 (a)), direct S wave arrivals (the energetic data points close 

to the event’s back-azimuth direction marked by a red line) are observed at the onset at 

~6 s. Some diffracted waves are observed close to the east, while most diffracted wave 

trains appear very early in seismograms from south to south-west direction.  

 

Figure 3.8 (b) shows the histogram of back-azimuth distribution over analyzed 

frequencies. The red line marks the event’s back-azimuth. Here colorbar is the summed 

normalized windowenergy (Equation 3.26) for time-frequency signal block that 

provided back-azimuth estimates falling into specific frequency-backazimuth grid cell 

[fgrid1, θgrid]. For the back-azimuth histogram we have considered 72 grid points 

between 0° and 360° angles (i.e. interval = 5°). For frequency axis, we have considered 

31 log-based grid-points between 1 and 20 Hz. The sum of normalized window energy 

is estimated by, 

 

For θ1 < BAZ(tc, fc) < θ2 and fc1 < fc < fc2   : 

SUMEnormbaz(fgrid1, θgrid) = ∑ ∑Enorm(m, j)

j2

j=j1

N𝑡

m=1

                                                               (3.29) 

 

where, m is in time index and Nt is the number of time windows, fc is the central 

frequency of the time-frequency signal block,  j1 and j2 and θ1 and θ2 are the minimum 

and maximum frequencies and back-azimuths of the grid cell [fgrid1, θgrid], 

respectively. BAZ(tc, fc) is the back-azimuth estimate for a given time-frequency signal 

block.  

 

The back-azimuth distribution (Figure 3.8 (c)) outlines that, over the entire frequency 

range, most of the wave-energy is coming from the south-west direction (roughly 

N210±30° back-azimuth), which corresponds to the south-west edge of the valley. 
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(a) 

 

 

 

 Origin Date = 20111014 

 Origin Time = 01:11:32 UTC 

 ML = 3.5, Baz= N 125° 

 Repi = 36 km, H=11.9 km 

(b) 

 

(c) 

 

 

Figure 3.8: Identified back-azimuth distribution of the dominant waves, for event 12, 

propagating across the Array A. (a) Location of the event with respect to the central 

station A00. (b) Identified back-azimuths as function of time with colorbar indicating 

normalized energy as estimated in Equation 3.26. (c) Histogram of identified back-

azimuths as a function of frequency with colorbar indicating the summation of 

normalized energy as estimated in Equation 3.29. Red line indicates the back-azimuth of 

the event.  

3.7.4 Identified slowness 

Figure 3.9 displays the histogram of slowness distribution over analyzed frequencies. 

Here colorbar is the summed normalized windowenergy (Equation 3.30) for time-

frequency signal block that provide slowness estimates falling into specific frequency-

slowness grid cell [fgrid2, Sgrid]. For the histogram we have considered 100 grid-points for 

slownesses ranging between 0.0003 and 0.008 s/m. For the frequency axis, we have 
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considered 61 log-based grid-points between 1 and 20 Hz. The sum of normalized 

window energy is estimated by, 

 

For s1 < S(tc, fc) < s2 and fc1 < fc < fc2 

SUMEnormslowness(fgrid2, Sgrid) = ∑ ∑Enorm(m, j)

j2

j=j1

N𝑡

m=1

                                                       (3.30) 

 

 

where, m is in time index and Nt is the number of time windows, fc is the central 

frequency of the time-frequency signal block,  j1 and j2 and s1 and s2 are the minimum 

and maximum frequencies and slownesses of the grid cell [fgrid2, Sgrid], respectively. 

S(tc, fc) is the slowness estimate for a given time-frequency signal block.  

 

From the slowness distribution (Figure 3.9) we can observed mostly dispersive phase 

velocities related to surface waves propagation characteristics with a possible 

fundamental mode within 1 to 3 Hz frequency and some indication of higher modes at 

higher frequencies. 

 

 

Figure 3.9: Histogram of identified slowness distribution of the dominant waves, for 

event no. 12, propagating across Array A. Colorbar indicates summation of normalized 

window energy estimated by Equation 3.30.  
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3.7.5 Energy repartition 

Figure 3.10 provides the evolution of identified Love and Rayleigh wave energies for 

various frequency ranges for event no. 12. First we describe the estimation procedure of 

this normalized energy. We divided the identified back-azimuths into 36 bins of 10 

degrees interval from N0 to N360. From the estimated window energy and identified 

back-azimuth, we sort out the time-frequency signal blocks having back-azimuths 

falling into each back-azimuth bin and then find out the corresponding energy. Then the 

energies of all available time windows, within our desired grouping, corresponding to 

each frequency are summed up to get the total energy contributions of Love and 

Rayleigh surface waves as SUMEilove (fc, θi) and SUMEiray (fc, θi), respectively. We find out 

the minimum nonzero value between the total energy estimations as, 

 

emin = min (SUMEiray(fc, θi) > 0, SUMEilove(fc, θi) > 0)                                                   (3.31) 

 

Then the normalized energy for Love and Rayleigh waves are computed as,  

 

NSUMEilove(f, θi) = log10 [
SUMEilove(fc, θi)

emin
]                                                                        (3.32) 

 

NSUMEiray(f, θi) = log10 [
SUMEiray(fc, θi)

emin
]                                                                           (3.33) 

 

We used log scale for the sake of clarity when plotting the energy distribution for 

various frequency bands. We indeed normalized the energy by the minimum value in 

order to ensure final values equal to or above 1 so that negative values can be avoided 

in our log scale.  

 

Finally, for each frequency group of interest (values ranging from fi to fk), the 

normalized total energy estimations of a specific back-azimuth range falling into the 

frequency range are summed up as, 
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FNSUMEilove(θi) = ∑ NSUMEilove(m, θi)

fk

m=fi

                                                                           (3.34) 

 

FNSUMEiray(θi) = ∑ NSUMEiray(m, θi)

fk

m=fi

                                                                              (3.35) 

 

In the plots Figures 3.10 (a) to 3.10 (h), normalized energies for various frequency 

ranges as quantified by Equations 3.34 and 3.35 are plotted radially over the back-

azimuth groups. The back-azimuth of the event is marked by a blue dot. Note that here 

the energy amplitudes not necessarily reflect the actual energy values. They rather 

correspond to the relative energy distribution among surface wave types where the 

smaller quantities are amplified for better visualization. These plots are more relevant 

for observing the evolution of propagating waves’ back-azimuths.  

 

From Figure 3.10 (a) and (b) we can observe that at frequencies below or close to the 

fundamental frequency of the valley (~1.5 Hz), although surface waves do propagate 

from the source direction (~N125), there is a significant proportion of energy arriving 

from the south-west (up to N240) and a relatively smaller proportion from the north-

east (approximately N60-N90). These scattering directions can be attributed to the two 

edges of the valley structure, with the south-west edge being the dominant scatterer. As 

frequency increases (Figures 3.10, (c)-(h)), the principal scattering direction is still 

observed to be the south-west, with scattering contribution being relatively in a broader 

azimuthal range for the Rayleigh wave while Love wave seems to be arriving more from 

the source direction. 
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(a) 1-1.5 Hz 

 

(b) 1.5-2 Hz 

 

(c) 2-2.5 Hz 

 

 

(d) 2.5-3 Hz 

 

(e) 3-3.5 Hz 

 

(f) 3.5-4 Hz 

 

 

(g) 4-4.5 Hz 

 

(h) 4.5-5 Hz 

 

              (i) 1-20 Hz 

 
 

Figure 3.10: (a) to (h) Distribution of the estimated Love (green dashed line) and 

Rayleigh (red dashed line) surface-wave normalized energies over 10 degrees back-

azimuth interval and various frequency ranges. The blue dot indicates back-azimuth of 

the event. The normalized energies have been estimated by using Equations 3.34 and 

3.35. (f) Proportion of identified Love and Rayleigh surface wave energies (Equation 

3.25) with respect to the total window energy as a function of frequency. The bar colors, 

red and green, indicate Rayleigh and Love waves, respectively.  

 

The bar chart in Figure 3.10 (i) represents actual percentage of analyzed energy carried 

by the surface waves compared to the total energy estimated from all the time-windows 

over the frequencies considered (Equation 3.25). The bar colors, red and green, 

correspond to Rayleigh and Love surface wave energies, respectively, showing relative 
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contribution (%) of each wave in the total energy. We observe that, on an average, more 

than 50% of window energy has been explained up to a frequency about 3.5 Hz while 

about 20% for 3.5-4.5 Hz frequency band. Clearly, Love surface waves dominate the 

wave field within the 1 to 3 Hz frequency range, Rayleigh surface waves start providing 

very significant contributions to the analyzed wave field at 3 Hz, and the wave field 

becomes a mixture of Love and Rayleigh surface waves above 4 Hz. This outlines the 

frequency dependence of the partition of energy between Rayleigh and Love surface 

waves. 

3.7.6 Results from Array B 

We analyzed the same event (no. 12) for Array B data and the results are presented in 

Figure 3.11. The back-azimuth distribution over time and frequency are shown in 

Figure 3.11 (a) and (b), respectively. We can see that diffracted waves are arriving from 

northeast to southwest directions. This is more or less consistent with the previous 

observation from Array A results. However, the histogram shows that the dominant 

back-azimuth direction is more towards the east, within N60 to N120, especially at 

higher frequencies. This could be attributed to the northeast basin-edge effect.  

 

The histogram of slownesses in Figure 3.11 (c) shows dispersive velocities with 

existence of fundamental and higher modes.. Figure 3.11 (d) represents the percentage 

of identified Rayleigh and Love surface wave energies compared to the total window 

energy. This bar chart reveals that lesser proportion of energy could be analyzed: on 

average 30% of the energy is indeed analyzed up to 5 Hz frequency, with the presence 

of some sparse higher proportions at some specific frequencies. Love surface waves 

dominate up to 1.5 Hz and in the 2 to 3 Hz frequency range, while both Rayleigh and 

Love surface waves are equally contributing at other frequencies. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.11: Main results from the analysis of Array B data for event no. 12. (a) 

Distribution of identified back-azimuths over time. Colorbar shows the normalized 

energy estimated by Equation 3.26. (b) Histogram of identified back-azimuths over 

frequency. Colorbar shows the normalized energy estimated using Equation 3.29. Red 

line indicates the back-azimuth of the event. (c) Histogram of identified slownesses over 

frequency. Colorbar shows the normalized energy estimated using Equation 3.30. (d) 

Proportion of identified Love and Rayleigh surface wave energies (Equation 3.25) with 

respect to the total window energy as a function of frequency. The bar colors, red and 

blue, indicate Rayleigh and Love surface waves respectively.  
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3.8 Robustness of the results 

In order to investigate robustness of the MUSIQUE estimates, five events occurring in 

different azimuths for both arrays were selected. Figure 3.12 shows the location of the 

selected five events. The events are numbered as 6, 21, 24, 3 and 7 in Appendix F. 

 

Figure 3.12: Locations of five example events occurred at different directions around 

the experiment site (Event no. 6, 21, 24, 3 and 7 in Appendix F.1).  

 

Histograms of identified back-azimuth over frequency, from Array A and B results are 

compared in Figure 3.13. Figure 3.14 represents the corresponding bar charts of 

analyzed Love and Rayleigh surface wave energy proportions. From the identified back-

azimuth, we observe a consistent trend whatever the event back-azimuth is. The 

dominant diffracted back-azimuth for Array A lies between N210 and N240 while it is 

ranging between N60 and N120 for Array B, corresponding to the southwestern and 

northeastern edges of the basin, respectively. We also observe diffracted waves coming 

from back-azimuths within these two dominant directions. Interestingly, though 

estimates from Array A do not indicate diffraction from the north-east, estimates from 

Array B indicate a second dominant diffracted wave field from the south-west direction. 

This observation is more evident when the event back-azimuth lies between the 

northeast and southeast directions as in case of event no. 21 and 24. One possible 

6 
21 

24 
3 

7 
Site 
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implication from this observation is that the dominant diffraction of the wave field is 

controlled mostly by the southwestern basin-edge compared to the northeastern one. 

Figure 3.14 demonstrate that for Array A, Love surface wave is dominating at 

frequencies below 2.5-3 Hz while a mix of Love and Rayleigh surface waves are 

observed above ~3 Hz. A similar tendancy is observed for Array B except for events 6 

and 24 where significant proportion of Rayleigh wave energy is observed at frequencies 

below 3 Hz.  

 

(a) Array A 

Event #6 Event #21 Event #24 Event #3 Event #7 

 

(b) Array B 

Event #6 Event #21 Event #24 Event #3 Event #7 

 

 

Figure 3.13: Histograms of identified back-azimuths for (a) Array A and (b) Array B data 

as a function of frequency for five earthquakes occurring in five different back-azimuths 

(Figure 3.12). Colorbar indicates the summation of normalized energy estimated by 

Equation 3.29. Red line indicates the back-azimuth of the event.  
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(a) Array A 

Event #6 Event #21 Event #24 Event #3 Event #7 

 

(b) Array B 

Event #6 Event #21 Event #24 Event #3 Event #7 

 

 

Figure 3.14: Proportion of identified Love and Rayleigh surface wave energies 

(estimated by Equation 3.25) with respect to the total window energy as a function of 

frequency, for (a) Array A and (b) Array B data. The bar colors, red and green, indicate 

Rayleigh and Love surface waves, respectively.  

3.9 Summary results for all events 

This section summarizes the main observations by combining results from all the events 

for both arrays.  First, in order to focus on characteristics of diffracted wave field only, 

the contributions from direct arrivals were eliminated by removing the results 

corresponding to each event’s back-azimuth ± 20°, as illustrated in Figure 3.15 (a). Then 

estimates from the single events were summed. Figure 3.15 (b) illustrates how the 

summation has been performed in order to get a summary plot of back-azimuth 

distribution. The same procedure has been followed to summarize the slownesses 

distribution and the proportion of analyzed Rayleigh and Love surface waves energy.  
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(a) 

 

(b)

 

Figure 3.15: (a) Estimates corresponding to event back-azimuth ± 20° are removed for 

each event. (b) Then all the estimates from individual events are stacked together to 

obtain a summary plot. The red line indicates back-azimuth of the event. For all the 

individual plots, x-axis represents frequency (Hz) and y-axis indicates back-azimuth 

(degrees). 

3.9.1 Back-azimuth distribution of the diffracted wave field 

The identified back-azimuths obtained from Array A and Array B data for all events 

were combined into a single summary plot to retrieve the dominant tendency. The 

cumulative normalized energy totals the individual event’s normalized energy 

(Equation 3.29) and is given by, 

  

CSUMEnormbaz(fgrid1, θgrid) = ∑ SUMEnormbaz(fgrid1, θgrid, m)

Nev

m=1

                                   (3.36) 

where, Nev is the number of events 

 

Figure 3.16 (a) shows the combined results of all analyzed events from Array A. 

Normalized energy for each event is quantified by Equation 3.29 and then they are 

summed up to obtain the cumulative normalized energy as in Equation 3.36. The 

dominant wave scattering over the entire frequency range is observed from the south-
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west direction (N210 ± 30°), as already been observed on the subset of 5 events. 

However, some scattering is also observed at low frequencies from the north-east (N70 

± 10° at 1-2 Hz) and south-east (N110 ± 10° at 2-3 Hz). After separating the 

contributions of Love and Rayleigh surface waves (Figures 3.16 (b) and (c)), Love 

surface wave arrivals are seen to dominate the low frequencies (1-3 Hz), while Rayleigh 

surface waves dominate the wave field between 3 and 5 Hz. Finally, Figure 3.16 (d) 

schematizes the main diffraction directions with respect to the location of Array A.   

 

The summary plots for Array B (Figure 3.17 (a) to (d)) reflect the same conclusions that 

were drawn from the individual plots of Figure 3.8. The wave field is diffracted 

primarily from the northeast to eastern directions. The low frequency wave field (below 

3 Hz) is mainly composed of Love surface waves and significant diffraction is observed 

from the east to southwestern directions as well. Interestingly, we observe (Figure 3.17 

(b)) a significant Love surface wave diffraction from northeast to east direction and 

southwest direction below the resonance frequency of the site. This is also observed for 

estimates from Array A (Figure 3.16 (b)) even though corresponding energies are 

rather low. However, this could argue the presence of regional scatterers causing Love 

surface waves diffraction at long wavelengths. 
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(a) All Identified Waves 

 

(b) Love Wave 

 

   

(c) Rayleigh Wave 

 

(d) Diffraction Directions 

 

 

Figure 3.16: Overall cumulative distribution for the whole set of events of the diffracted 

wave field directions for Array A data, after removing the direct arrivals (event back-

azimuth ± 20°). Contributions from (a) all waves, (b) Love waves, and (c) Rayleigh 

waves. Color bar represents the sum of the normalized energy, obtained by Equation 

3.36. (d) Direction of dominant diffracted wave arrivals with respect to the array site 

location.  
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(a) All Identified Waves 

 

(b) Love Wave 

 

   

(c) Rayleigh Wave 

 

(d) Diffraction Directions 

 

 

Figure 3.17:  Overall cumulative distribution for the whole set of events of the diffracted 

wave field directions for Array B data, after removing the direct arrivals (event back-

azimuth ± 20°). Contributions from (a) All waves, (b) Love waves, and (c) Rayleigh 

waves. Color bar represents the sum of the normalized energy, obtained by Equation 

3.36. (d) Direction of dominant diffracted wave arrivals with respect to the array site 

location.  

3.9.2 Dispersion curve (slowness) 

Figure 3.18 (a) represents, for array A, the overall cumulative slownesses distribution 

for the whole set of events obtained from all the analyzed time windows after removing 

the direct arrivals (event-back-azimuth ± 20°). The extracted slowness values are 

frequency-dependent, confirming the surface-wave nature of the diffracted wave field. 

Figures 3.18 (b) and (c) provide slowness estimates for Love and Rayleigh surface 

waves, respectively, together with the  dispersion curves obtained from classical array 

analysis performed on seismic ambient noise and active surface wave measurements 
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(Boxberger et al., 2014). The cumulative normalized energy sums up the individual 

event’s normalized energy (Equation 3.30) and is given by  

 

CSUMEnormslowness(fgrid2, sgrid) = ∑ SUMEnormslowness(fgrid2, sgrid, m)

Nev

m=1

                   (3.37) 

 

Figure 3.18 (b) indicates that the very clear dispersion curve, at frequencies below 3 Hz, 

observed in Figure 3.18 (a), is dominated by the Love waves, and most probably the 

fundamental Love wave mode. Higher Love wave modes are observed at higher 

frequencies. On the other hand, the Rayleigh wave dispersion data (Figure 3.18 (c)) do 

not exhibit clear dispersion curve branches and seems to be a mixture of different 

propagation modes. The split of the dispersion estimates into retrograde and prograde 

Rayleigh wave particle motions (Figures 3.18 (d) and (e)) allows better distinction 

between the different mode branches, between 1.5 and 3 Hz, and 3 and 4 Hz, which is 

most likely to be corresponding to the fundamental and the first higher mode, 

respectively. From the H/V average spectral ratios (Figure 2.9, Chapter 2) indeed, the 

particle motion should be prograde between ~1.5 and 3 Hz, i.e. between the H/V peak 

and trough frequencies, for the fundamental mode of Rayleigh wave, and retrograde at 

higher frequency. Therefore, our observation of the fundamental mode corresponding 

to the prograde component fits perfectly. Given the estimated phase velocity range, the 

retrograde motion for higher frequencies is then probably the first harmonic mode. 

 

The dispersion curves obtained from the analysis of Array B are shown in Figure 3.19. 

The dispersion curve at low frequency (Figure 3.19 (a)) is again observed to be 

dominated by the Love surface waves. The Rayleigh surface wave dispersion curve is a 

mixture of fundamental and higher harmonic modes, in consistence with observations 

at Array A. The split of the dispersion estimates into retrograde and prograde Rayleigh 

wave particle motions suggests a probable Rayleigh wave fundamental mode between 1 

and 2 Hz (prograde particle motion) and  a higher mode between 3 and 4 Hz 

(retrograde particle motion). 
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(a) All Identified Waves 

 

(b) Love Waves 

 

(c) Rayleigh Waves 

 

(d) Prograde Motion 

 

(e) Retrograde Motion 

 

Figure 3.18: Overall cumulative slowness distribution for the whole set of events for 

Array A after removing the direct arrivals (event-back-azimuth ± 20°): (a) For all waves 

types, (b) Love waves, (c) Rayleigh waves, (d) Retrograde Rayleigh motion and (e) 

Prograde Rayleigh motion. The color bar represents the sum of normalized energy 

obtained by Equation 3.37.  Black lines represent dispersion curves obtained from 

classical analysis of ambient noise recorded at Array A and from active surface wave 

measurements (Boxberger et al., 2014). 
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(a) All Identified Waves 

 

(b) Love Waves 

 

(c) Rayleigh Waves 

 

(d) Prograde Motion 

 

(e) Retrograde Motion 

 

Figure 3.19: Overall cumulative slowness distribution for the whole set of events for 

Array B after removing the direct arrivals (event-back-azimuth ± 20°): (a) For all waves 

types, (b) Love waves, (c) Rayleigh waves, (d) Retrograde Rayleigh motion and (e) 

Prograde Rayleigh motion. The color bar represents the sum of normalized energy 

obtained by Equation 3.37.  Black lines represent dispersion curves obtained from 

classical analysis of ambient noise recorded at Array B and active surface wave 

measurements (Boxberger et al., 2014). 
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3.9.3 Energy repartition between Rayleigh and Love surface waves 

Figure 3.20 (a) and (b) show the arithmetic mean ±1σ of analyzed energy for Rayleigh 

and Love waves for all 46 events from Array A and 16 events for Array B, after removing 

the energies of the direct arrivals corresponding to the event-back-azimuth ± 20°.  Once 

again, we observe the frequency dependency of the wave energy distribution, namely 

Love waves being dominant between 1 and 2.5 Hz for both arrays while Rayleigh waves 

is dominating between 3 and 4 Hz for Array A and above 3 Hz for Array B.  The total of 

mean Rayleigh and Love energy (black line in Figure 3.20)  indicates that we were able, 

in average, to explain about 80% of the total window energy up to about 6 Hz frequency, 

for both arrays. 

 

(a) 

 

(b) 

 

 

Figure 3.20: Arithmetic mean ±1σ distribution of analyzed energy for Rayleigh and Love 

waves as function of frequency, after removing the direct arrivals (event-back-azimuth 

± 20°) from the estimates of each single event for (a) Array A and (b) Array B. The 

analyzed energy is expressed as the percentage of the total energy and estimated for 

each event using Equation 25. Then estimates from all the events are averaged. Red 

curve corresponds to Rayleigh waves while blue ones to Love waves. Black line shows 

the mean curve for the total of Rayleigh and Love energy. 
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3.10 Results from double source identification 

So far we have presented the results obtained from MUSIQUE analysis by assuming that 

only a single source propagates throughout the array at a given time. This assumption 

would still be valid if more than one source is propagating across the array but only one 

is carrying most of the energy. However, if several sources carry almost equal 

proportion of energy, the assumption of a single dominating source will cause bias in 

the estimation of noise subspace and hence our final estimates. MUSIQUE, like MUSIC, 

algorithm is able to consider multiple sources for resolving the wavenumber vector 

velocity, that is, back-azimuth and slowness of the waves for a given time window and a 

given frequency band. In such a case however, it is not possible anymore to discriminate 

Love and Rayleigh surface waves since such discrimination relies on the projection of 

horizontal components on the identified back-azimuth direction, which can be done 

accurately if only a single wave contribution effectively propagates across the array. 

Therefore, with the assumption of two or more sources propagating at the same time 

across the array, only wavenumber vectors can be resolved. This is the reason why we 

have assumed a single dominant source in the previous analysis. In order to evaluate 

suitability of this assumption, we performed MUSIQUE analysis once again for all the 

events for both arrays by considering that two dominant sources are present in the 

wave field. The obtained back-azimuth and slowness estimates are discussed in the next 

sub-sections. 

3.10.1 Array A results 

Figure 3.21 shows the histogram of identified back-azimuths and slownesses for event 

12. Plots in the left and right panels show the results from the first and the second 

dominant source, respectively. In both cases, colorbar shows the normalized window 

energy estimated using Equations 3.29 and 3.30. Note that this estimate of energy does 

not correspond to the respective energies carried by the two sources: it just provides an 

idea about the energy carried out by the signal blocks under consideration. From the 

back-azimuth distribution, as shown in Figure 3.21 (a) and (b) we observe a fairly 

similar trend of the dominant diffraction for the first and second source: the principal 

diffraction direction is always observed within N210 and N240. However, in case of the 

second source, a second direction of dense wave arrivals seems to appear around N60-
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N120. The slowness distribution of the second source (Figure 3.21(b)) seems 

comparable with that of the first (Figure 3.21 (a)), estimates being, however, more 

scattered. 

 

(a) 

 

(b) 

 

(c) 

 

(d)

 

 

Figure 3.21: Histogram of back-azimuth distribution for event 12 for Array A from (a) 

the first source and (b) the second source. Red line marks the back-azimuth direction of 

the event. Colorbar indicates normalized window energy estimated by Equation 3.29. 

Histogram of slowness distribution for event 12 for (c) the first source and (d) the 

second source. Colorbar indicates normalized window energy estimated by Equation 

3.30. 
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Figure 3.22 shows the summarized back-azimuth and slowness histograms for the first 

and second sources using estimates from the 46 events following the procedure 

described in sections 3.9.1 and 3.9.2. In case of the second source, the main diffraction 

direction (as seen in Figure 3.22 (b)) seems fairly identical with that from the first 

source (Figure 3.22(a)).  However, a second dominant diffraction direction within N60 

to N120 is well depicted.  First, these observations confirm the previously identified 

main diffracted wave field from the southwest direction. Second, it outlines that 

diffracted waves, although carrying lesser energy, are also arriving from a second 

direction which corresponds to the northeastern border. However, the second direction 

was not very clear in the previous results obtained from MUSIQUE analysis considering 

single dominant source. It suggests that for some time-frequency signal blocks, inside 

which diffracted waves from the northeastern and southwestern borders are mixing, 

MUSIQUE algorithm may lead to slight bias in the estimates of wave propagation and 

polarization parameters when considering a single dominating source only (Cornou et 

al., 2003a). The summary of slowness histogram obtained for the second source (Figure 

25(d)) is similar to the one obtained for the first source (Figure 25(c)), the latter 

exhibiting however clearer dispersion estimates.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

 
Figure 3.22: Histogram of cumulative back-azimuth distribution for Array A for (a) the 

first source and (b) the second source. Red line marks the back-azimuth direction of the 

event with colorbar indicating normalized window energy estimated by Equation 3.29. 

Histogram of cumulative slowness distribution for (c) the first source and (d) the 

second source with colorbar indicating normalized window energy estimated by 

Equation 3.30. 

3.10.2 Array B results 

Figure 3.23 shows the identified back-azimuth and slowness distributions extracted 

from estimates obtained at Array B data for event 12. We filtered out the results 

corresponding to the slowness values above 0.0035 s/m to avoid aliased estimates. The 

summarized results from all the 16 events are shown in Figure 3.24. Comparison of the 

estimates obtained from the first and second source indicates identical trends in both 

cases, with main diffracted wavefield coming from the eastern and southwestern 

direction (Figures 3.23(a), 3.23(b), 3.24(a), 3.24(b)), estimates from the second source 
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being, however, rather scattered. The summary of slownesses histogram (Figures 3.24 

(c) and 3.24(d)) indicates rather clearer dispersion curves for the first source than the 

second one. These observations support the hypothesis of single source dominance.  

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

 

Figure 3.23: Histogram of back-azimuth distribution for event 12 from Array-B data for 

(a) the first source and (b) the second source. Red line marks the back-azimuth 

direction of the event. Colorbar indicates normalized window energy estimated by 

Equation 3.29. Histogram of slowness distribution from (c) the first source and (d) the 

second source. Colorbar indicates normalized window energy estimated by Equation 

3.30. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

 

Figure 3.24: Histogram of cumulative back-azimuth distribution for Array B for (a) the 

first source and (b) the second source. Colorbar indicates normalized window energy 

estimated by Equation 3.36. Histogram of cumulative slowness distribution for (c) the 

first source and (d) the second source. Colorbar indicates normalized window energy 

estimated by Equation 3.37. 

3.11 Interpretation of the energy partition between Rayleigh 

and Love waves  

Shear-wave velocity structure at Array A and Array B were derived by inverting 

dispersion curves inferred from active and passive surface-waves measurements 

(Boxberger et al., 2014). Figure 3.25 (a) and (b) display the ensemble of inverted shear-

wave velocity profiles that explain the observed dispersion data (Figures 3.18 and 3.19) 

within their uncertainty bound. From the ensemble of shear-wave velocity structure, we 

computed group velocities of Love and Rayleigh surface waves for the first 5 modes 
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(Figure 3.25 (c) and (d)). Group velocities indicate that the Airy phase occurs between 

1.5 and 2 Hz for fundamental Love wave mode while between 3 and 4 Hz for the 

fundamental and first higher Rayleigh wave mode. Airy phase is defined as a local 

minimum on the group velocity curve that results in a large amount of energy arriving 

at the same time. Surface-waves trains within the range of frequency around Airy phase 

will travel with nearly the same velocity and arrive at a seismic station at about the 

same time, thus superimposing to large amplitudes. When we compare these group 

velocity curves with the results corresponding to energy repartition between Love and 

Rayleigh wave, shown in Figure 3.25 (c) and (d), we observe that Love wave energy 

dominates between 1.5-2 Hz which is consistent with the Love and Rayleigh wave 

partition inferred from MUSIQUE analysis at both arrays. For array A, the Airy phases of 

fundamental and, especially, the first higher mode of Rayleigh waves, that exhibit the 

lowest group velocity, occur within a narrow frequency range between 3.3 and 4 Hz. 

This is consistent with the high proportion of higher mode Rayleigh waves within that 

frequency band (Figure 3.18).  Similar observations, much less striking though, can be 

made for Array B.   
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Array-A 
(a) 

 

Array-B 
(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 

 

 
Figure 3.25: Ensemble of inverted shear-wave velocity profiles that explain the 

observed dispersion data within their uncertainty bound at (a) Array A and (b) Array B. 

Group velocities computed from the ensemble of shear-wave velocity profiles for the 

first 5 modes of Rayleigh (black lines) and Love (gray lines) waves for (c) Array A and 

(d) Array B. Mean ±1σ distribution of the cumulative analyzed energy for (e) Array A 

and (f) Array B (see Figure 3.20 for details).  
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3.12 Interpreting observed site amplification 

It is also important to verify whether our results provide clues in interpreting observed 

site effects, such as amplification. We use here the Standard Spectral Ratio (SSR), a 

standard measure to characterize site amplification. SSR is defined as the ratio of 

Fourier amplitude spectra of a soil-site record to that of a nearby rock-site record from 

the same earthquake and component of motion. Assuming source and path effects are 

the same for both records, SSR reflects only the effect of local soil conditions at the site. 

Figure 3.26 (a) shows the geometrical average ± 1σ of SSR computed between the 

horizontal component recorded at sediment station A00 and at hard rock station, R02, 

from 164 events (Cultrera et al., 2014). The energy partition between Rayleigh and Love 

waves and the back-azimuth distribution as a function of frequency of Rayleigh and 

Love waves have been added in Figure 3.26 (c), (d) and (b), respectively. Amplification 

observed on the SSR plot between 1 and 2.5 Hz could be caused by the Love diffracted 

waves . Similarly, amplification between ~3 and 5 Hz frequency could be explained by 

the Rayleigh diffracted wave, which is likely to be the first harmonic mode 

corresponding to retrograde motion (Figure 3.18(e)). 

 

For Array B, we selected a station, KES04, located 23 m away in the northeast direction 

from the central station B01. Mean ± 1σ of SSR computed between the horizontal 

component recorded at sediment station B01 and at rock station R02 are shown in 

Figure 3.27 (a). Energy repartition and back-azimuth distribution as a function of 

frequency of Love and Rayleigh wave are shown in Figure 3.27 (c), (b) and (d), 

respectively. Again, we can see that the observed amplifications between 1 and 2.5 Hz 

seems to be controlled by Love diffracted waves while amplifications between 3 and 6 

Hz might be related to Rayleigh diffracted waves. 

 

 

 

 

 

 

 



113 Seismic Wave Field Analysis of Argostoli Dense Array Network 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.26: Comparison of estimated standard spectral ratio (SSR) with wave type and 

wave energy repartition for Array A. (a) Standard spectral ratio (SSR) from the 

horizontal components of A00 and R02 stations obtained by averaging SSRs from 164 

events (Cultrera et al., 2014). Black line shows the geometric mean of SSR and grey-

shaded region indicates ±1σ. (c) Mean ±1σ distribution of the cumulative analyzed 

energy for Array A as shown in Figure 3.20 (a). Histogram of back-azimuth distribution 

as a function of frequency for (b) Love and (d) Rayleigh waves as also shown in Figure 

20 (b) and (c), respectively. In (b), (c) and (d) blue and red arrows and rectangle 

indicate frequency range dominated by Love and Rayleigh waves, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d)

 

 

Figure 3.27: Comparison of estimated standard spectral ratio (SSR) with wave type and 

wave energy repartition for Array B. (a) Standard spectral ratio (SSR) from the 

horizontal components of KES04 and R02 stations obtained by averaging SSRs from 164 

events (Cultrera et al., 2014). Black line shows the geometric mean of SSR and grey-

shaded region indicates ±1σ. (c) Mean ±1σ distribution of the cumulative analyzed 

energy for Array B as shown in Figure 3.20 (b). Histogram of back-azimuth distribution 

as a function of frequency for (b) Love and (d) Rayleigh waves as also shown in Figure 

20 (b) and (c), respectively. In (b), (c) and (d) blue and red arrows and rectangle 

indicate frequency range dominated by Love and Rayleigh waves, respectively. 
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3.13 Discussion and conclusion 

 This study presents results from the analysis of two arrays and explores the wave field 

characteristics generated by a set of local and regional earthquakes in the basin of 

Argostoli, Greece. MUSIQUE algorithm was utilized to estimate the apparent 

propagation characteristics of the waves, to identify the energies carried by Love and 

Rayleigh surface waves, and to distinguish the retrograde and prograde particle motion 

of the latter.  

 

The results from array analysis clearly indicate significant scattering corresponding to 

2D or 3D effects beyond the fundamental frequency (~1.5 Hz) of the valley. The 

identified back-azimuth distribution from Array A and Array B shows that whatever the 

back-azimuth of the earthquake, the wave field is dominated by scattered waves. In 

order to focus on the scattered wave field, for each event, all the waves coming from a 

direction lying within ±20˚ of the event’s back-azimuth, were removed so that the direct 

arrivals from the source could be avoided. Then, meaningful statistics and robust 

conclusions were derived by “stacking” the results from each individual events for the 

whole set of 46 events and 16 events for Array A and B, respectively. 

 

At array A, diffracted waves within 1.5 to 15 Hz are coming primarily from the south-

west (N210-N240), which corresponds to the closest edge of the valley. The identified 

back-azimuth distribution from Array A shows that whatever the direction of the 

earthquake is, local scattering comes primarily from the south-west edge (N 210°-N 

240°). Significantly higher proportion of Love waves dominate the wave field at lower 

frequencies whereas Rayleigh waves seem more scattered over all frequencies. 

However, the identified surface waves may also contain a small portion of body waves, 

especially SH waves since MUSIQUE algorithm is yet unable to separate SH waves from 

Love waves. The summary of energy repartition from all 46 events reveal that about 

60% of the total energy between 1.5 to 2.5 Hz frequency is carried by Love waves while 

within the 3-4 Hz and 5-6 Hz frequency range, Rayleigh waves carry about 70% and 

50% of the energy, respectively.  
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Likewise, the results from Array B data exhibit a relatively higher proportion of Love 

wave energy (50%) at about 1.5-2.5 Hz frequency and an invariably larger dominance of 

Rayleigh waves at frequencies above ~2.5 Hz containing about 40-50% of the energy. 

However, for this eastern array, the identified waves within 1.5 and 15 Hz come 

primarily from the northeastern edge (N60 - N120) of the valley.  

 

Interestingly, from the resonance frequency (at about 1.5 Hz) to 2.5 Hz, although the 

dominant diffracted waves are coming from the south-western and north-eastern 

directions for Array A and B, respectively, some diffracted wave trains from the north-

eastern direction for Array A and south-western direction for Array B, i.e. from the 

farthest valley edges from the arrays locations, are also observed.  

 

The results from both arrays also show that at frequencies lower than the fundamental 

resonance frequency of the site, both Rayleigh and Love waves impinge the array from a 

range of back-azimuths (N30-N90), which probably manifests influence of some 

regional diffractors located outside the Argostoli basin.  

 

Overall, from the analysis of both arrays about 80% of the total energy, within the 

frequency range approximately from 1.5 to 6 Hz, could be characterized as Rayleigh or 

Love surface waves. The dispersion estimates obtained from the analyses of two array 

data show that the fundamental mode (at 1-3 Hz) is evidently dominated by Love 

waves, while there is also some contribution (at 1.5-3 Hz) from the less energetic 

prograde Rayleigh waves. Within the frequency range from 3 to 4 Hz, dispersion 

estimates are most probably related to the first harmonic mode of Rayleigh wave with 

retrograde particle motion.  These observations can be explained by the velocity 

structure beneath the arrays and related frequency of Rayleigh and Love Airy phases. 

 

The estimated standard spectral ratios at two stations within the two array locations 

with respect to a nearby rock reference demonstrate that there is an excellent 

consistency between the dominance of the surface wave type identified in the wave field 

and the site amplification. The amplification between 1 and 2.5 Hz is controlled by Love 

diffracted surface waves while amplification between 3 and 5 Hz is most likely to be 

controlled by the first higher mode of Rayleigh diffracted waves. Alongside, the 
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characterization of wave types from MUSIQUE analysis shows that the various signal 

time windows throughout the duration of the event are usually complex mixture of 

different types of waves. The scattered waves apparently dominate the wave field 

composition of the most energetic part of the signal, even in the earlier time segments 

where a significant proportion of surface waves can be identified in the energetic 

windows classically considered as dominated by direct body waves.  



 

 

Chapter 4: Coherency analysis of Argostoli dense 

array network 

 

This chapter presents the analysis of spatial coherency using the earthquake data from 

the dense seismic array (Array A , discussed in Chapter 3) recorded at Argostoli site. 

The chapter begins with a short overview of the available coherency models, the causes 

of incoherency along with the description of coherency and its evaluation procedure. 

The dataset is briefly repeated after Chapter 3. Then a detailed description of the time 

window selection procedure for coherency analysis, and some test results have been 

provided. Finally, results from some individual events and the statistical analyses of the 

entire subset of events along with their interpretations are presented. 
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4.1 Introduction 

The observed difference in seismic ground motions measured at different locations 

within a short distance (e.g. within the dimensions of typical large engineered 

structures) is simply termed as spatial variation of earthquake ground motions 

(SVEGM). It refers to the differences in amplitude and phase of seismic motions. This 

spatial variation of earthquake ground motion has an important effect on the response 

of large foundation (i.e. bridges, nuclear power facilities, and dams), multiple support 

(bridges), and very long (lifelines such as, pipelines, power lines, communication 

transmission systems, etc.) structures. Different supports of these long structures or 

continuous points along the foundations of a large structure may undergo different 

motions during an earthquake. Similarly, the behavior of large structures with rigid 

foundations can also be affected by ground motion variability, resulting in reduction of 

translational response at foundation level and increase in the rocking and torsional 

response (Abrahamson et al., 1991b). It may also induce increased localized 

deformations and strains in the structures with flexible foundations and/or with 

multiple supports (Luco and Wong, 1986). 

 

In current engineering practices, generally the seismic ground motion excitations at the 

supports of the structures are assumed to be identical and excitations at all locations 

are considered to be coherent. In such cases, the presence of a non-negligible, not 

accounted for, differential motion can yield response beyond the design-expectations of 

the structure and can pose threat to structural safety. Therefore, spatially variable 

seismic ground motions are needed to be considered in the seismic response analysis 

and design of large and extended structures. At the same time, a better understanding of 

the physical causes underlying the spatial variability needs to be achieved in order to 

include it in the procedures applied in engineering practices. It might also be important 

for damage assessment and microzonation at a local scale. 

 

The spatial variation of seismic ground motion was recognized as a potentially 

important component of the seismic wave field since the 1930s. But dense seismic 

arrays and extensive analyses of the corresponding ground-motion records are required 

for a quantitative estimation of this spatial variability of ground-motion. That is why 



120 4.1 Introduction 
 

this scientific field started being investigated about three-four decades ago with the 

actual installation of several strong motion instrument arrays. Developing models 

capable of simulating broad-band earthquake process would also be ideal in predicting 

the ground-motion spatial variation. Nevertheless, this remains unachievable because of 

the difficulty in modeling both complexity of fault rupture mechanism and seismic wave 

propagation path at regional and local scale in the frequency of interest (from 0.5 to 20 

Hz) in earthquake engineering (Harichandran, 1991).  

 

The data recorded at dense seismograph arrays have provided valuable information in 

understanding and modelling spatial variation of the motions. Up to date, many 

permanent and temporary dense arrays have been installed at many sites around the 

world. One of the first few arrays was the Imperial Valley array (Bycroft, 1980); one of 

the most investigated arrays is SMART-1 array (Iwan, 1979). There are many other 

arrays such as Chiba array (Yamazaki and Turker, 1992), USGS Parkfield array 

(Abrahamson et al., 1991) and so on (for a review, see Zerva and Zervas, 2002). Most of 

these arrays are (or have been) located at uniform ground conditions, mostly at soil 

sites. Majority of the studies utilized a stochastic approach (coherency estimation) to 

model the spatial variation of the motions during the prominent strong-motion shear 

wave window. A purely stochastic approach, however, precludes any association of the 

spatial variation of the motions with the physical causes underlying it.  

 

One of the difficulties in getting some insights on the physics of spatial variability is the 

identification and characterization of the different seismic phases contributing to the 

recorded signal (i.e. scattering in the vicinity of stations, source directivity, velocity and 

attenuation, ground structure, etc.). Second, it is difficult to compare results from 

different datasets, because of the various experimental setups (different coverage of 

interstation distances), site conditions, source mechanisms and data processing. Studies 

so far have observed a loss of coherency with increasing frequency and interstation 

distance. However, the frequency range to be characterized depends on the interstation 

distance. Interpretation of incoherency at high frequency (> 10 Hz) requires arrays with 

very short interstation distance (< 20 m) (Abrahamson, 1992a). Furthermore, it is well 

known that engineering structures cross sites with irregular subsurface topography and 

ground types. Such sites give rise to the formation of surface waves that can lead to 
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large amplifications, loss of correlation and significant ground strains in the wave-field 

(e.g. Bard and Bouchon, 1980; Moczo and Bard, 1993; Cornou et al., 2003; Scandella and 

Paolucci, 2010). A recent study (Zerva and Stephenson, 2011) also highlighted the 

significance of irregular subsurface topography and formation of surface waves in the 

physical understanding and modelling of the spatial variation of seismic ground 

motions. 

 

In this context, the dense seismic array installed in Argostoli basin, as a part of the FP7 

EU-NERA 2010-2014 project, gives us the opportunity to study the loss of coherency 

over a rather wide range of station separation distances, namely from 5 to 160 m, from 

a large number of closely located earthquakes. The deployed dense array was located in 

the western part of the inner, softer basin and consisted of 21 velocimeters in 

concentric circles with radii of 5 m, 15 m, 40 m and 80 m around the reference station. A 

subset of 46 events recorded by the array (named as Array A) was used for the analysis 

of spatial variation of ground motion in terms of spatial coherency. The selected events 

are characterized by a homogeneous back-azimuth distribution, local magnitudes 

ranging between 2 and 5, and epicentral distances ranging between 3 and 200 km from 

the array center. Lagged coherency of the most energetic part of the ground motion 

(beginning from S-wave onset) has been quantified for each possible pair within the 

array A. This chapter presents a comprehensive investigation on the sensitivity of the 

coherency (and its dependence on frequency and inter-station distance) to various 

potentially impacting factors : source characteristics (magnitude, distance, back-

azimuth), component of ground motion (which may be oriented with respect to source: 

radial and transverse, or to site: parallel and perpendicular to valley axis), and 

orientation of the considered station pair with respect, once again, either to source or to 

site, main directions. A great attention has been put on the statistical meaning and the 

robustness of the results, which includes an analysis of the sensitivity to the choice of 

the time domain windows, and a careful averaging of the results associated to each 

individual event. Only robust results with possible significances for engineering practice 

should thus be considered.  
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4.2 Short review on coherency models 

As mentioned earlier, spatial variation of earthquake ground motions (SVEGM) refers to 

the differences in amplitude and phase of seismic motions. This study focuses on the 

phase variation of ground motion. The spatial variation of the phase can be 

characterized by parameters such as correlation or coherency. Correlation is a time 

domain measure while coherency is a frequency domain measure. Previous studies 

have shown that the spatial variation of strong ground motion is strongly dependent on 

frequency (Loh et la., 1982; Smith et al., 1982; McLaughlin, 1983; Harada, 1984, 

Abrahamson, 1985). That is why coherency is commonly used to describe the spatial 

variation. In this study the spatial variation of ground-motion has been evaluated in 

terms of spatial coherency, which is the variation in Fourier phase, as functions of 

frequency and station separation distance.  

 

An extensive number of studies investigated the effects of the SVEGM on the response of 

extended and large structures (Harichandran and Wang, 1990; Ramadan and Novak 

1993; Zerva, 1994; Harichandran et al., 1996; Chen Harichandran, 2001; see Zerva and 

Zervas, 2002 for a review), and demonstrated the need to characterize these effects. In 

recent engineering practices, the effect of SVEGM has started to be considered. In the 

retrofitting of the great California bridges, as, e.g., the Coronado Bridge in San Diego, 

spatially variable seismic ground motions were utilized as excitations (Abrahamson, 

1993). EUROCODE8 is presently providing provisions for its incorporation in the design 

of bridges, and Caltrans is seeking approaches for its incorporation in the design of 

California highway bridges (Liao, 2006). This emphasizes the importance of estimating 

and modeling spatial variability in a more realistic approach. 

 

Dense array recordings are required to measure the spatial coherency. A review of some 

available seismic ground motion dense arrays has been provided in Liao (2006). Several 

dense arrays have recorded weak motions and a few have recorded strong ground 

motions. Among a number of weak-motion arrays some examples are the USGS Coaling 

temporary array (Schneider et al, 1992), the USGS/SCSD Anza Array (Fletcher et al., 

1987), and the EPRI Parkfield array (Schneider et al, 1992). Examples of strong-motion 

arrays are the El Centro Differential array (one of the first arrays installed and recorded 
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the 1979 Imperial Valley earthquake (Spudich and Cranswick, 1984)) located in 

southern California and the SMART-1 array located in Lotung, Taiwan (Bolt et al, 1982).   

 

The availability of dense seismic array data contributed to development of a large 

number of empirical functions to model the spatial variation of seismic motion, most 

often by using lagged coherency.  Liao (2006) lists some of these coherency models. In 

these representations, coherency is generally modeled as exponential functions 

decaying with increasing frequency and separation distance between stations (e.g., Luco 

and Wong, 1986; Sommerville et al., 1988) or a double exponential decay 

(Harichandran and Vanmarcke, 1986).  For frequencies lower than a specific distance 

dependent value, lagged coherency is observed to be approximately constant, while it 

decays with increasing frequency beyond a specific value, which can be treated as a 

‘corner’ frequency (Harichandran and Vanmarcke, 1986). However, these empirical 

coherency models differ significantly depending from one site/array to another, even 

from one event to another recorded at the same site/array, mostly due to the 

complexity of propagating seismic wave-field and the inherent variance in the spectral 

estimation procedure adopted by different investigators. Moreover, these empirical 

models obtained by purely statistical approach generally do not refer to or account for 

the physical causes underlying the spatial variation of ground motion and hence cannot 

be reliably extrapolated to different sites and events. Some researchers also introduced 

analytical or semi-empirical models by combining functional forms from analytical 

consideration with parameter evaluation from spectral estimation of real data (e.g. Luco 

and Wong, 1986; Zerva et al., 1987; Der Kiureghian, 1996; Zerva and Harada, 1997). 

However, these models also may not capture the reality because of the simplified 

assumptions they are based on (Zerva and Zervas, 2002). 

 

The SMART-1 array data has been used by various researchers to study spatial 

coherency (Harichandran, 1988; Harda, 1984; Harda and Shinzouk, 1988; Sawada and 

Kamada, 1988; Abrahamson, 1985, 1988). However, the smallest station separation in 

the SMART-1 array is about 100 m, which is larger than the dimensions of most 

engineered structures. A very dense and smaller scale three-dimesional free-field array, 

named as LSST array, was then installed within SMART-1 array.  The spatial coherency 

of several events recorded by both SMART-1 and LSST array was studied by 
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Abrahamson (1988). The analysis of SMART-1 data yielded estimates of coherency at 

station separation distances from 100 to 4000 m while the LSST array analysis 

(Abrahamson, 1992b) extends the coherency estimates down to distances as small as 6 

m. At a spacing of about 100 m, the coherencies computed from both arrays were in 

agreement. At separation distances greater than 1000 m, the coherency values were 

quite low. Abrahamson (1988) derived empirical coherency models using SMART-1 

data and then extrapolate these models for short station separations (<100 m) in order 

to compare with the results from the LSST array. He observed that the coherencies 

predicted by these extrapolated models were larger than the coherencies measured 

using LSST array data, especially at frequencies greater than 5 Hz. This indicates that 

extrapolating empirically adjusted model would not produce reliable results when 

different separation distances are considered. From the results of LSST array data 

analysis Abrahamson concluded that, over the distance range of 6 to 85 m, coherency 

decays much faster with increasing frequency than with increasing separation distance. 

The author also examined the effects of earthquake magnitude, source distance, and 

source dimension on the coherency and observed that lagged coherency does not show 

a strong dependence on either earthquake magnitude or source distance.  

4.3 Causes of incoherency 

Spatial coherency refers to the similarity between ground motions in amplitude and 

waveform observed in the seismic time histories recorded over extended areas on the 

ground surface. Mathematical expression of coherency will be discussed in the next 

section. The ground motion at a given site can be affected by different factors that can 

be broadly grouped into source (magnitude, slip distribution etc.), path (site-to-source 

distance, travel path geology, attenuation etc.), and site effects (local geology and 

topography). However, in the literature three main causes of spatial incoherency have 

been recognized (Harichandran 1999; Hao et al. 1989), namely, wave passage effect, 

incoherence effect and site effects. Figure 4.1 and 4.2 illustrate schematically some of 

these principal physical causes underlying the spatial variation.  

 

1. Wave passage effect: It is the most commonly recognized cause for the spatial 

incoherency of the motions defined as the systematic spatial variation due to difference 
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in arrival times of seismic waves over a short distance (e.g. across a foundation) due to 

inclined incidence of propagating plane body waves or horizontally propagating surface 

waves. As shown in Figure 4.1 (a), due to the inclined incidence of plane wave arriving 

at the site, seismic waves arrive at different times at different stations on the ground 

surface (stations 1 and 2). The wave passage time delay between two locations 

introduces a shift in the Fourier phases of earthquake ground motions, which is possible 

to estimate in a deterministic way. However, the coherency of signals with only travel 

time difference should be 1, unless the travel time depends on frequency (surface 

waves). 

 

2. Incoherence effect: Spatial incoherency is caused by complex wave propagation.  

Differences in the way multiple waves are combined (a) arriving from an extended 

source, and (b) scattered by irregularities and local heterogeneities along the 

propagation paths of the incident wave and at the site, causes a loss of coherency. Figure 

4.1 (b) presents the extended source effect, which illustrates, as rupture propagates 

along an extended fault, especially when the rupture kinematics is highly heterogeneous 

(variable slip, variable rake, rise time, rupture velocity), it transmits energy that arrives 

delayed on the ground surface, resulting in variability in the waveforms at the various 

locations. Figure 4.1 (c) shows the scattering effect where waves propagating away 

from the source encounter scatterers along their path that modify their waveforms and 

direction of propagation, and cause differences in the waveforms at the various 

locations on the ground surface. Complex waveform scattering occurs as the seismically 

generated body waves encounter heterogeneities along their source-to-site travel path. 

Scattering causes random Fourier phase and amplitude variations. Stochastic 

contributions dominate the phase variations at high frequencies and also cause a 

significant level of amplitude variability.  

 

3. Local site effect: Differences in local soil conditions at each station may alter the 

amplitude, frequency content and duration of the bedrock motions differently. Local site 

effects refer to a set of different physical phenomena arising from the propagation of 

complex seismic waves in near-surface geological formations (shallow substructures) 

or in geometrically irregular configurations at the earth surface. Earthquake ground 

motion affected by these irregularities tend to increase in amplitude, and often also in 
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the duration. In case of sedimentary valleys, the seismic waves get trapped within the 

valley and surface waves develop at the basin edge leading to large amplification on the 

sediment sites compared to the rock site (e.g. Graves, 1993).  

 

However, Abrahamson (1992b) suggests that for site conditions being assumed to be 

homogeneous, SVEGM would be caused by the wave passage effect and complex source-

site wave scattering. This could be a result of deviations from 1-D plane layered velocity 

models or from scattering. According to the author, the incoherency observed over 

distances of tens of meters could be caused by scattering in the top 500 m though this 

requires confirmation from additional data and analysis of numerical simulations.  

 

(a) Wave Passage Effect 

 

(b) Extended Source Effect 

 

(c) Scattering Effect 

 

 

Figure 4.1: Illustration of the physical causes underlying the spatial variation of the 

seismic ground motion. The different parts of the figure show schematically (a) the 

wave passage effect, (b) the extended source affect (c) the scattering effect. The graphic 

illustrations are presented after Zerva (2009). 

4.4 Coherency- a stochastic estimator 

Here we follow the stochastic (or probabilistic) procedure for the estimation of spatial 

variability in terms of coherency from the seismic data recorded at our dense 

instrument array. This allows the estimation of deterministic or ‘coherent’ and 

stochastic or ‘incoherent’ part of the ground motion. The time histories recorded at the 

instrument stations are here considered as the realizations of a bivariate stochastic 

process (space-time random fields) and our preferred stochastic estimator ‘coherency’ 

is evaluated by applying signal processing techniques to the recorded time histories. 

The joint descriptors of the bivariate process, cross covariance function in the time 
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domain and the cross spectral density in the frequency domain, describe the joint 

characteristics of the time histories at two discrete locations on the ground surface. 

Hence, the spatial variation of the ground motion can be described by the parameters: 

correlation in time domain or coherency in frequency domain. Generally the second-

order statistics (e.g. covariance function) between the seismograms recorded at 

different stations are used to characterize ground motion spatial variation in 

engineering practices. Because of its mathematical convenience in random vibration 

analysis, the frequency domain description of the second-order statistics, which is cross 

spectral density, is used in most cases (Matsushima, 1977; Abrahamson et al., 1990; 

Harichandran, 1991; Zerva and Zervas, 2002). It is, however, customary to work with 

the coherency of spatially variable ground motions rather than directly with the cross 

spectral density (Zerva, 2009). Coherency of the seismic motions is obtained from the 

smoothed cross spectrum of the time series between the two stations.  

 

Zerva and Zervas (2002), describe the assumptions to be applied in order to extract 

valuable information from the available limited amount of data, such as the recorded 

time histories at the array stations during an earthquake. The assumptions are briefly: 

 

a) The ground motion random field is homogenous in space, i.e. the probability 

distribution function and joint probability distribution function are functions of 

the separation distance between stations, but independent of absolute location. 

This assumption implies that the frequency content (amplitude) of the seismic 

motions at different recording stations does not vary significantly. 

b) The seismograms are realizations of stationary random processes, i.e. the 

probability functions of the random process are only the functions of time lags. 

c) The stationary random processes at stations are ergodic. In other words, the 

time averages of the recorded accelerograms are equal to the ensemble averages, 

i.e., the information contained in each realization is sufficient for the full 

description of the process. 

 

Apparently such assumptions are strong. They could be adopted for continuous 

recordings of ambient vibrations but are less applicable for transient high amplitude 

signals. However, Zerva and Zervas (2002) argue that since majority of the dense 
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instrument arrays are located on fairly uniform soil conditions, the assumption of 

homogeneity is valid.  The assumption of stationarity appears to be unrealistic, but it 

can be justified in the sense that most characteristics of seismic ground motions for 

engineering applications are evaluated from the strong motion shear (S-) wave window, 

which, in fact, can be viewed as a segment of an infinite time history with uniform 

characteristics through time. The assumption of ergodicity is considered as necessary 

by the authors since the description of the spatially variable seismic ground motions 

would require, ideally, recordings at the same site from many earthquakes with similar 

characteristic, so that averages of the ensemble of data can be evaluated; although in 

reality, there is only one set of recorded data at the array for an earthquake with 

specific characteristics. The authors point out that though reality does not fully conform 

to these assumptions, actual data recorded at dense instrument arrays during the 

strong motion S-wave window may be viewed as homogeneous, stationary, and ergodic 

in a limited or weak sense.  

  

The mathematical formulation of coherency is described here following Abrahamson 

(2007). Let Uj(t) be a recorded ground motion at location j. A taper window, v(t), is 

applied to Uj(t) that envelopes the strong shaking. The tapered time series is, then, given 

by Uj(t).v(t).  The Fourier transform, Uj(ω), of the tapered time series is: 

 

Uj(ω) = ∑v(𝑙) Uj(𝑙)

N𝑡

l=1

 exp(−iω𝑙)                                                                                               (4.1) 

 

where Nt is the number of time samples, 𝑙 is the time sample, and ω is the pulsation (in 

radians/sec). The cross-spectrum from recordings at sites j and k is a complex number 

given by Uj(ω) Uk*(ω), where the *-operator indicates the complex conjugate. For 

coherency estimates, the cross-spectrum is smoothed over a constant frequency band. 

The smooth cross-spectrum, S̅𝑗𝑘, is given by, 

S̅jk(ω) = ∑ am U𝑗(ωm) Uk
∗(ωm)

Mℎ

m=−Mℎ

                                                                                         (4.2) 

 

where 2Mh+1 is the number of discrete frequencies smoothed, ωm = ω + 2πm/𝑁𝑡 and 

am are the weights used in the frequency smoothing.  
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4.4.1 Complex coherency 

The complex coherency of the seismic motion, γ̅jk(ω), is given by the ratio of the 

smoothed cross-spectrum of the time series between the stations j and k, to the 

geometric mean of the corresponding smoothed auto power spectra: 

 

γ̅jk(ω) =
S̅jk(ω)

√S̅jj(ω)S̅kk(ω)

                                                                                                                 (4.3) 

 

The phase, termed as smoothed phase spectrum, φ̅jk(ω), is derived from the ratio 

between imaginary part, Im[γ̅jk(ω)] and real part, Re[γ̅jk(ω)], of the complex coherency. 

This is also same as the phase spectrum of the smoothed cross spectral estimator. 

 

φ̅jk(ω) = tan−1
Im[γ̅jk(ω)]

Re[γ̅jk(ω)]
 = tan−1

Im[S̅jk(ω)]

Re[S̅jk(ω)]
                                                                     (4.4) 

 

 

Finally, the complex function of coherency can also be expressed as (Zerva, 2009): 

 

γ̅jk(ω) = |γ̅jk(ω)| exp [i φ̅jk(ω)]                                                                                                    (4.5) 

 

where i denotes the complex number √−1. The complex term in the above equation, 

exp [i φ̅jk(ω)], includes the wave passage effect, i.e., the delay in the arrival of the 

waveforms at the further away station caused by the propagation of the waveforms. 
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The complex coherency is obviously a complex number and the square of its modulus, 

termed as the coherence, is a real number assuming values 0 ≤ |γ̅jk(ω)|2 ≤ 1 (Zerva, 

2009): 

 

|γ̅jk(ω)|2 =
|S̅jk(ω)|2

S̅jj(ω)S̅kk(ω)
                                                                                                            (4.6) 

 

Figure 4.2 shows the typical shapes of an auto spectral density function, absolute 

coherency, and wrapped and unwrapped phase as a function of frequency (f), after 

Harichandran (1999). 

 

(a)      (b) 

 

(c)      (d) 

 

Figure 4.2: Typical shapes of (a) auto spectral density function, (b) absolute coherency, 

(c) wrapped phase, and (d) unwrapped phase, after Harichandran (1999). 

 

Though the terminologies ‘coherency’ and ‘coherence’ are sometimes used 

interchangeably to indicate qualitatively the similarity between two time series, their 

mathematical expressions are not exactly the same. In this study, the term ‘coherency’ 

has been used throughout to avoid confusion. Coherency can be described in several 

ways, namely, lagged coherency, plane-wave coherency, and unlagged coherency.  In 

this work we will focus on the lagged coherency and thus the other two measures of 

coherency will be introduced briefly. 
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4.4.2 Lagged coherency 

The lagged coherency is the most commonly cited coherency measure. It indicates the 

degree of linear correlation (i.e. similarity) between the random processes recorded at 

the two stations under consideration. The two time histories are aligned using the time 

lag that leads to the largest correlation of the two ground motions. Thus this coherency 

measure is assumed to remove the effects of systematic delay due to the simple inclined 

plane wave propagation, often called as the wave-passage effect. 

 

Let us consider two ground motions, Uj(t) and Uk(t), recorded at locations j and k, 

respectively, where Uj(t) be a recorded ground motion at location j. The Fourier 

transform, Uj(ω), of the ground motion at location j is given in Equation (4.1). Now, if we 

align the ground motion at location k by ∆𝑙 time samples, then Fourier transform can be 

expressed, following the former notations, as, 

 

Uk(ω) = ∑v(𝑙 + ∆𝑙) U𝑘(𝑙 + ∆𝑙)

N𝑡

l=1

 exp(−iω(𝑙 + ∆𝑙))                                                            (4.7) 

 

The lagged coherency between the stations j and k is given by the modulus of their 

complex coherency, 

 

|γ̅jk(ω)| =
|S̅jk(ω)|

√S̅jj(ω)S̅kk(ω)

                                                                                                              (4.8) 

 

The value of lagged coherency is zero for uncorrelated processes and it is equal to one 

for linearly correlated processes; thus, it is obvious that the value of lagged coherency 

ranges from 0 to 1. At low frequencies (large wavelengths) and small separation 

distances, the ground motions between two stations are supposed to be identical, which 

results in coherency estimates tending to unity; but the motions will become 

uncorrelated at higher frequencies (small wavelengths) and large separation distances, 

making the coherency tend to zero. Therefore, it is perceived that the value of coherency 

will decay with increasing frequencies and separation distances. Coherency analyses 

from recorded data have validated this expectation and the functional forms describing 
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the lagged coherency at any site and any event consider exponential decay with 

separation distance and frequency (Zerva and Zervas, 2002). However, the lagged 

coherency does not tend to zero at large separations and high frequencies due to the 

bias in the estimation. It also depends strongly on the selected frequency smoothing. 

The lagged coherency is always unity if no frequency smoothing is used. Zerva and 

Zervas (2002) refer to another important characteristic of lagged coherency, namely, 

that it is only minimally affected by the amplitude variability between the motions at 

the two stations. Spudich (1994) illustrated this characteristic with an example and 

concluded that the absolute value of the coherency is not sensitive to amplitude 

variations regardless of whether the motions at the various stations are multiples of 

each other or not.  

4.4.3 Plane-wave coherency 

The plane-wave coherency is also estimated after removing a time shift which is 

constrained to be the same (consistent with a single wave direction and apparent 

velocity) for each station (Abrahamson, 2007). The idea is to consider the deviations of 

the motions from a single plane wave at all frequencies where plane waves are 

accompanied by other wave components, such as scattered energy or noise, which is 

quite common in reality. It is estimated by taking the real part of the smoothed cross-

spectrum after aligning the ground motions based on the best plane-wave velocity. 

However, such velocities are rarely directly measured at site, instead, only rough 

estimates are used. The value of the plane-wave coherency is less than or equal to the 

lagged coherency. Since real part of the smoothed cross-spectrum will have both 

positive and negative values, coherency estimates will approach zero at high 

frequencies and large separation distances.  

4.4.4 Unlagged Coherency 

Unlike lagged coherency, the unlagged coherency estimate considers no time lag 

between the pair of stations, which means, it includes the wave-passage effects. The 

wave-passage effect is absent in case of pure vertical wave propagation. Such a case is 

purely idealistic and almost never exists at frequencies of engineering interest. The real 

part of the complex coherency, Re[γ̅jk(ω)], is referred to as the unlagged coherency. Its 

values are less than or equal to the plane-wave coherency and can range from -1 to 1. 
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The negative values result from the coherent part of the wave-passage effect and 

indicate out of phase ground motions between the pair of stations. For very short 

separations, a few hundred meters or less, the wave passage effects will not be 

significant because of the small travel time among the stations and the unlagged 

coherency will be similar to the plane-wave coherency (Abrahamson, 2007). 

4.5 Evaluation of coherency 

To evaluate coherency functions, the three items on the right side of Equation (4.8) 

need to be identified by applying spectral estimation techniques to recorded 

seismograms. The main techniques to estimate the spectra of time series are: 

Conventional Spectral Analysis, Maximum Likelihood Method and Maximum Entropy 

Method (Marple, 1987). Both Maximum Likelihood Method and Maximum Entropy 

Method can yield higher resolution than the Conventional Spectral Analysis method. For 

broadband seismic ground motions, however, the resolution of spectral estimate of the 

Conventional Spectral Analysis method is sufficient and appropriate for practical 

engineering application (Harichandran and Vanmarcke, 1986; Harichandran, 1991). 

Consequently, the current coherency estimation studies are mainly based on the 

Conventional Spectral Analysis (Zerva, 2009).  

4.5.1 Smoothing parameter 

It is important to define the frequency smoothing criteria for the estimation of 

coherency. The information about the differences in the phases of the motions at the 

stations is introduced in the estimate of the covariance function through the smoothing 

process. When no smoothing window is used, the phase difference terms disappear 

from the covariance spectra and the lagged coherency estimate will be unity for any 

frequency and any station-pair (Jenkins and Watts, 1968). Smoothing also controls the 

statistical properties (variance and bias) and resolution of the coherency estimates. The 

more frequencies are smoothed, the larger the decrease in uncertainty in the coherency 

estimation, but this in turn causes a corresponding loss of resolution in frequency. 

 

According to Harichandran (1991) the common smoothing windows of  different types 

yield similar results as long as the equivalent bandwidths of the spectral windows are 
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the same Therefore, selection of an appropriate equivalent bandwidth of spectral 

windows is more important than choosing smoothing spectral window types. 

Abrahamson et al. (1991) suggests that the selection of optimal smoothing parameters 

should not only depend on the statistical properties of the coherency, but also on the 

purpose for which the coherency is estimated. In order to use coherency estimates in 

structural analysis, for time windows less than approximately 2000 samples and for 

structural damping coefficient 5% of critical, an 11-point Hamming window (Mh=5 for 

the am in Equation 4.2) is suggested by the authors. This means, averaging the complex 

cross spectrum over 11 frequencies can provide with a reasonable trade-off between 

the frequency resolution and the bias and uncertainty. The Hamming window is a 

smoothed version of a triangle window, shown in the Figure 4.3. 

 

 

Figure 4.3: Example of an 11-point (Mh=5) Hamming Window 

4.5.2 Selection of time window 

With the assumption of homogeneity, stationarity and ergodicity, it is a common 

practice to choose some specific time windows, usually the shear (S-) wave part of the 

seismograms, to estimate the coherency function, because in most cases the shear wave 

carries the strongest energy in earthquake recordings and, generally, is the most 

damaging component from the engineering point of view. The selected time window is 

seen as a segment of a stationary process with limited duration. Different time window 

lengths have been used depending on specific earthquake events and the recorded time 

histories (for example: 5, 9, 10, 21 seconds [Hao et al., 1989]; 2 seconds [Schneider et al., 
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1990]; 10 seconds [Harichandran, 1991; Boissieres and Vanmarcke, 1995a]). It is 

sometimes difficult to identify a clear S-wave part of the signal since it can be often 

accompanied by other wave components. In such cases there is actually no standard 

“rule” available for selecting the time windows. One idea could be to identify shear wave 

windows of one single main wave with unique velocity and back-azimuth. However, for 

a shallow sedimentary site like Argostoli, it is almost impossible to identify such 

windows. This would be further discussed in section 4.6.1 and in the conclusion (4.11) 

segments.  

 

4.5.3 Statistical properties of coherency: distribution, bias and variance 

Bias and variance are obvious in the estimation of coherency functions from finite-

length time series by using spectral estimators. As discussed by Abrahamson (1992b), 

the statistical properties of coherency do not seem to be very straightforward. The 

uncertainty of the estimate increases as the coherency values decrease. When the 

lagged coherency, |γ̅jk(ω)|,  is not small,  its tanh−1  (or, ATANH)  transformation 

produces an approximately normal distribution with a bias that can be estimated and 

removed (Enochson and Goodman, 1965); this makes the uncertainty nearly constant. 

That is why, the statistical analyses of coherency are suggested to be performed on the 

tanh−1|γ̅jk(ω)| instead of |γ̅jk(ω)| (Harichandran, 1991; Abrahamson et al., 1991). 

Abrahamson (2007) shows through the estimated plane-wave coherency an example 

that the variability of the coherency is not constant; the variability is small for low 

frequencies and large for high frequencies (heteroscedastic). With the tanh−1 (or, 

ATANH) transformation, coherency values are observed to be approximately normally 

distributed about the median tanh−1|γ̅jk(ω)| curve and thus the scatter of coherency 

becomes independent of frequency (homoscedastic).  

 

However, the assumption of normal distribution of tanh−1|γ̅jk(ω)| is a poor 

approximation when the coherency values are small. The statistical properties of 

coherency are dependent on the selection of frequency smoothing. Lagged coherency is 

affected by the number of frequencies smoothed for small values of Mh (as in Equation 

4.2). The estimated lagged coherency values, |γ̅jk(ω)|, that are not small, become biased 
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(Abrahamson et al, 1991; Abrahamson, 1992c). The expected value and variance of the 

estimated coherency are given by (Bloomfield, 1976; Abrahamson, 1992b, 1992c), 

 

E[tanh−1|γ̂jk(ω)|]  ≈  tanh−1|γjk(ω)| + 
g2

2(1 − g2)
                                                                (4.9) 

VAR[tanh−1|γ̂jk(ω)|]  ≈   
g2

2
                                                                                                        (4.10) 

 

where |γ̂jk(ω)| is the estimate of the ‘true’ coherency  |γjk(ω)|,  g2 includes mainly the 

effects the frequency smoothing (Abrahamson, 1992c),  

 

g2 = ∑ am
2                                                                                                                                  (4.11)

Mℎ

m=−Mℎ

 

 

When the chosen frequency smoothing is a Hamming window with Mh = 5, the bias and 

standard deviation of tanh−1|γ̅jk(ω)| are 0.08 and 0.26, respectively (Figure 4.4). The 

50% and 90% confidence levels for “noise” (the coherency resolvability threshold) are 

0.34 and 0.63, respectively for tanh−1|γ̅jk(ω)| (Figure 4.5(a)) while 0.33 and 0.57, 

respectively for  |γ̅jk(ω)| (Figure 4.5(b)). 
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Figure 4.4: The bias and standard deviation of the coherency smoothing for different 

Hamming window frequency weights and a 1000 point 5% double cosine taper data 

window, after Abrahamson (1992b). 

 

(a) (b) 

 

Figure 4.5: Example of the 50% and 90% confidence levels for different Hamming 

window frequency weights for (a) tanh−1|γ̅jk(ω)| and (b) |γ̅jk(ω)|, after Abrahamson 

(1992b). 

 

 

 

Mh 

Mh Mh 
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The underlying assumption in the statistics of  tanh−1 (or, ATANH) transformation is 

that the spectra of the processes, Uj(ω) and Uk(ω), have approximately constant 

amplitude over the bandwidth of the frequency window; if this is not the case, then a 

second source of bias is introduced in the estimates. This bias is not easily quantifiable 

and it increases as the frequency band increases. It is not also not included in the 

equation 4.8, that is, in the estimation of the first bias. Abrahamson (1992a) mentions 

that this second bias can be reduced by using a triangular shaped smoothing window 

where the frequency weight, am, is subjective towards the central frequency of the 

window; but this essentially increases the first bias. Therefore, smoothing window type 

and sufficient number of frequencies are the key aspects in the statistical analysis of 

coherency. 

 

Coherency functions can be considered as biased estimators since the estimation is 

performed over limited, finite segments of data. Some sources of bias are discussed 

here, after Zerva and Zervas (2002). Bias can be introduced due to the sensitivity 

characteristics of seismometers and the use of finite length series (Harichandran, 1991). 

Additional uncertainty is introduced by inaccuracies in recorder synchronization, and 

by imperfect elimination of time lags caused by wave passage effects. The time lags 

caused by the wave passage effect appear as deterministic. However, the wave passage 

effect also incorporates random, station dependent time delay fluctuations around these 

deterministic delays that affect the coherency and should be given proper 

consideration.  

4.5.4 Prewhitening 

The importance of prewhitening in coherency computation has been discussed here 

after Abrahamson (1992b). Prewhitening aims to make a time series contain equal-

strength components at every possible frequency (i.e., a flat spectrum).  In case of 

spectral leakage indeed at a given frequency, the coherency estimates may get biased by 

the more coherent energy at other frequencies. This leakage can be minimized by 

prewhitening the time series before performing the Fourier transform (Abrahamson, 

1992b). This is particularly of interest when coherency is estimated at frequencies with 

a large dynamic range of Fourier amplitudes. However, Abrahamson (1992b) found that 
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the coherency estimates were not significantly affected by prewhitening for the LSST 

data and this was not performed for the present study. 

4.6 Dataset 

The experimental setup and dataset of Argostoli as well as the description of the site 

have been presented in the chapter 2. This study considers a subset of 46 events from 

the catalogue of Argostoli data, recorded by the dense array, Array A. Figure 4.6 

represents the location and configuration of the array in the experimental setup at 

Argostoli.  The coordinates of the array stations are given in Appendix D. Selected 

dataset for coherency analysis has been discussed in chapter 2 and the catalogue with 

event parameters are given in Appendix F.1. Figure 4.7 shows the magnitude 

distribution of the events over hypocentral distance. Different parameters used in the 

coherency analysis are listed in Appendix F.2. Time series of the events recorded at 

central station, A00, of Array A and rock stations, R01 and R02, are provided in 

Appendices G, H and I, respectively.  

 

Figure 4.6: Layout of Array A in the seismological experiment at Argostoli. Distance 

between the rock stations R01 and R02 is about 2 km. The central station of the array, 

A00, is located about 550 m away from R02 station in the northeast and 450 m away 

from the southwest edge of the valley.  

~450 m 
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Figure 4.7: Magnitude-distance distribution of the selected subset of events 

4.7 Selection of time-window for coherency estimation 

From visual inspection of the recorded signals the most energetic part of the signal, 

from the onset of S-wave, has been selected as the time-window for coherency analysis. 

The duration (TS) of the selected time windows are listed in Appendix F.2; TW-C1 marks 

the begin time and TW-C2 is the end time on the extracted time series. For the visual 

inspection, signals from the rock stations R01 and R02 (locations shown in Figure 4.6) 

have been considered since they are less contaminated by surface waves and located 

very close to the array. R02 is the hard-rock station located at a distance around 550 m 

northeast of A00 while R01 is the soft-rock station at about 1.45 km southwest of A00. 

For the selection of time window, dataset of R02 station has been used for 33 events 

while R01 was used for 13 events (when R02 is unavailable). This has been indicated in 

Appendix F.2 (column no. 12).  During our visual inspection, the horizontal components, 

exhibiting the strongest shaking of the ground motion records were considered. Since 

we expect to include S-waves, the time windows were selected such as the energy of the 
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signal within the window is spread over a wide frequency range, and includes high 

frequencies. Therefore, our selected windows are supposed to include the most 

energetic phase that contains a mix of S-waves along with some converted body waves 

and surface waves. Begin and end time, and the duration of the selected time windows 

have also been listed in Appendix F.2 (column no. 10, 11 and 12, respectively. Selected 

time-window segments have been indicated on the time series of R01, R02 and A00 

stations, and are provided in Appendices G, H and I. Figure 4.8 shows the distribution of 

durations of the selected time windows with their corresponding hypocentral distances 

and magnitudes. 

 

 

Figure 4.8: Duration of the selected time windows, from 46 events, plotted against the 

hypocentral distances of the respective events. The colorbar represents the magnitude 

of the events. 

4.7.1 Sensitivity test of the time-window selection 

In order to perform a sensitivity analysis on the selection of time windows, an 

automatic procedure has also been used. A new series of time windows were selected 

again based on the duration of the normalized Arias intensity of the two horizontal 
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components of velocity following Equation 4.12, as described in Abrahamson (2007). To 

estimate the normalized Arias intensity, an initial data window was applied that starts 

10 seconds before the peak velocity and ends 10 seconds after the peak velocity. The 

peak velocity is defined as the largest velocity on either of the two horizontal 

components. The normalized Arias intensity (I) is then given by:  

 

I(τ) =
∫ (𝑉1

2(𝑡) + 𝑉2
2(𝑡))𝑑𝑡

𝜏

𝑇𝑝−10

∫ (𝑉1
2(𝑡) + 𝑉2

2(𝑡))𝑑𝑡
𝑇𝑝+10

𝑇𝑝−10

                                                                                               (4.12) 

 

where, Tp is the time of the peak velocity, V1 and V2 correspond to the velocities of two 

horizontal components and τ indicates time.  The final time-window was then estimated 

based on the time at which the normalized Arias Intensity (AI) reaches a value of 0.10 

and 0.75, denoted as T0 .1 and T0.75, respectively. The rock-station data used for visual 

inspection based time-window selection were primarily used to perform the AI-based 

time-window estimation. Afterwards, the sedimentary station (A00) data was also used 

for AI-based time-window estimation. Figure 4.9 shows the estimated Arias Intensity 

for all the rock station records and also marks the T0 .1 and T0.75 lines to show the 

estimated durations.  

 

The length of the time windows selected from visual inspection and automatic (AI-

based) estimation have been compared in Figure 4.10 and 4.11. Figure 4.10 shows the 

time windows selected from rock station by using visual inspection and automatic 

estimation. Here almost all the windows from both methods seem to be overlapping, 

indicating a high consistency of the selection. Nevertheless, there is slight differences in 

the begin and end times of the windows. This discrepancy arises mainly because of the 

difference in the principle of these two methods. Moreover, considering two different 

rock stations located at different directions and distances may also cause slight shifts of 

the arrival times. During visual inspection, S-wave onset is considered as the begin time 

of the window and the end time is marked where the most energetic cycle of the signal 

seems to end. In case of AI estimation, on the other hand, begin and end times are 

considered, consecutively, with 20 s window starting 10 s earlier and ending 10 s later 

the peak velocity. This may automatically stretch the begin and end points of the 
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selected time window for very short duration signals (closer events). Similarly, the S-

wave onset could be overlooked in case of longer duration (distant events). The 

maximum difference between the selection from visual inspection and automatic 

estimation is observed for the M 5.2 event (hypocentral distance 193 km) in Figure 4.10. 

The time-windows considering rock and sedimentary station (A00) records, estimated 

by automatic procedure (AI-based), have been compared in Figure 4.11. Though there 

are some exceptions, most of the window-lengths look consistent between rock and 

sediment records. The difference is caused by the location of peak velocity considered in 

AI estimation.  

 

 

Figure 4.9: Time windows from the rock-stations based on normalized Arias Intensity 

estimations for the 46 events.   
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Figure 4.10: Comparison between the time windows based on visual inspection and AI 

method, from the rock-stations.   

 

Figure 4.11: Comparison between the time windows from rock (R01, R02) and 

sedimentary (A00) stations based AI method.   
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Figure 4.12, 4.13 and 4.14 represent three examples showing the time window lengths 

selected using visual inspection and automatic method. The time series for the rock and 

sediment stations are plotted for the events 20110930_003052, 20111009_184220, 

20120416_112342 (event index 5, 8 and 46 in Appendix F) having magnitudes 2, 3.3, 

5.2, and the shortest, intermediate, the longest duration, respectively. The windows 

from visual inspection are selected starting from the S-wave onset; however, the S-wave 

onset for the event no. 46 is not very clear. From all the three cases we can observe the 

bias of automatic (AI-based) method towards the peak velocity segment of the time 

series.   

 

(a) 

 
(b)  

 

Figure 4.12: Time series of the horizontal components from (a) R02 and (b) A00 for the 

event no. 5 (Appendix F). The red segment of signal shows the visual selection on R02 

seismogram (66.5-67 s) and corresponding window on A00. The brackets on R02 and 

A00 seismogram show the selections from AI-method on rock (66.5- 67.3 s) and 

sediment (66.7-67.6 s), respectively. 
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 (a) 

 
 (b) 

 

Figure 4.13: Time series of the horizontal components from (a) R02 and (b) A00 for the 

event no. 8 (Appendix F). The red segment of signal shows the visual selection on R02 

seismogram (89- 95 s) and corresponding window on A00. The brackets on R02 and 

A00 seismogram show the selections from AI-method on rock (90.5-97 s) and sediment 

(95.5-100.8 s), respectively. 
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 (a) 

 
 (b) 

 

Figure 4.14: Time series of the horizontal components from (a) R02 and (b) A00 for the 

event no. 46 (Appendix F). The red segment of signal shows the visual selection on R02 

seismogram (115.6-129.8s s) and corresponding window on A00. The brackets on R02 

and A00 seismogram show the selections from AI-method on rock (131.9-142.5 s) and 

sediment (131.4-137.2 s), respectively. 

 

Figure 4.15 represents the comparison of durations estimated from rock and sediment 

site records using visual inspection and automatic procedure along with 10 % error 

band. We can observe from Figure 4.15 (a) that the difference between two methods 

(from same site, rock stations) lies within the 10% error band except from a few closer 

events (30-50 km) whose duration is overestimated by the automatic method.  On the 

other hand, Figure 4.15 (b) shows that difference due to sites (using same method, AI-

based) appear mostly in case of the distant events (e.g., >80km). From the comparison 

between the selection methods (Figure 4.10 and 4.15, a) and recording sites (Figure 

4.11 and 4.15, b), we can infer that the automatic system may be used for time window 

selection from a large dataset. However, in this study we have used the windows 

selected from the visual inspection based on rock data since we believe that our 

selection also includes precise judgments and, thus, is better suited for the analysis. 
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(a) 

 

(b) 

 

 

Figure 4.15: Comparison of the durations, estimated based on (a) rock station records 

using AI-method and visual inspection (b) rock and sediment station records using AI-

method. Blue lines show the ±10% band of error. Colorbar shows the hypocentral 

distance. 

4.8 Estimation of Coherency from the Array Data 

Amongst the several techniques available to estimate the ground motion spectra, 

Conventional Spectral Analysis method is considered to be sufficient and appropriate 

for practical engineering application (Harichandran and Vanmarcke, 1986; 

Harichandran, 1991).  Prior to that, the time series data of the recorded stations for all 

the events have been checked and corrected.  The time windows to be analyzed for all 

the events have been selected by visual inspection from the rock station records (the 

procedure described in the previous section). Lagged coherency has been estimated for 

the vertical and two horizontal components of the recorded data and for each possible 

combination of pairs in the array (max. 210 pairs). The available number of pairs for 

each event has been listed in Appendix F.2 (column no. 13). The interstation distance 

and angles of the stations in each pair has been given in Appendix J. Since we have used 

lagged coherency estimates in this work, we have often used the terminologies ‘lagged 

coherency’ and ‘coherency’ interchangeably. The coherency has been estimated in the 

following way: 
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1) For lagged coherency estimation, arrival time perturbations have been removed from 

the data by aligning the records from each station in the array with respect to the 

reference station A00. The time lags in the alignment were determined by estimating 

the cross-correlation between stations and evaluating the positive maximum 

correlation coefficients (Boissieres and Vanmarcke, 1995a). In theory, the alignment 

operation does not affect the lagged coherency but the phase spectrum. However, since 

the concentric circles of station in Array have very small radii, ranging from 5 m to 80 m 

from the reference station A00, there is no significant time lag among the records. For 

an instance, in case of the event with longest duration from the subset (no. 46 Appendix 

F), maximum time lag estimated was 0.14 s at station separation distance 80 m for the 

time window of 14 s. This shows that the alignment operation has minimal effect on the 

phase arrivals in case of our data. Thus it can be said that the time windows considered 

for the coherency estimation represent almost absolute timescale and account for the 

realistic case of propagating wave field. 

 

2) The time step for the recorded data is taken as 0.02s (sampling frequency, fs = 50 Hz). 

The selected time windows have been segmented from the original time history by 

applying a 5% cosine bell window taper at each end. These windows are assumed to be 

the segments from infinite time histories with uniform characteristics through time 

(stationarity assumption).  

 

3) The power spectral densities and cross-spectral density, as indicated in Eq. (4.8), 

were estimated. In order to estimate the respective discrete-form smoothed power-

spectral densities, 𝑆𝑗̅𝑗(𝜔𝑛)of the two stations (j=k), and the smoothed cross-spectrum 

between them, 𝑆𝑗̅𝑘(𝜔𝑛), Equations (4.13) and (4.14) have been followed (Zerva and 

Zervas, 2002). 

 

𝑆𝑗̅𝑘(𝜔𝑛) = ∑ 𝑊(𝑚∆𝜔) 𝐴𝑗
∗(𝜔𝑛 +  𝑚∆𝜔)  𝐴𝑘(𝜔𝑛 +  𝑚∆𝜔)                                          (4.13)

+𝑀ℎ

𝑚=−𝑀ℎ

 

𝑆𝑗̅𝑗(𝜔𝑛) = ∑ 𝑊(𝑚∆𝜔) | 𝐴𝑗(𝜔𝑛 +  𝑚∆𝜔)|2                                                                     (4.14)

+𝑀ℎ

𝑚=−𝑀ℎ
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where the duration of the time windows is T=NΔT, with time window length being 0 ≤ t 

≤ T, N being the number of samples in the recorded time series for the window, and Δt 

the time step; *-operator indicates complex conjugate, ω being the angular frequency in 

rad/sec, Δω (= 2π/T) is the angular frequency step, W(ω) denotes spectral smoothing 

window and 2Mh+1 is the number of point of the Hamming smoothing window. Aj(ω) 

and Ak(ω) are the scaled discrete Fourier transforms of the time histories Uj(t) and 

Uk(t), respectively, given by: 

 

𝐴𝑗,𝑘(𝜔𝑛) = √
∆𝑡

2𝜋𝑁
∑ 𝑈𝑗,𝑘(𝑙∆𝑡)𝑒𝑥𝑝−𝑖𝜔𝑛𝑙∆𝑡                                                                              (4.15)

𝑁−1

𝑙=0

 

 

Where  𝑙 is the time sample and 𝑖 = √−1 . It is to be noted that the Fourier spectra of the 

motions at different stations will not be identical but the assumption of homogeneity in 

the random field implies that the power spectrum of the motions is station independent. 

In this study we have used velocity time histories for the coherency analysis. In addition 

to that acceleration time histories and displacement time histories can also be used. 

Theoretically, due to stationarity, the coherency functions obtained from acceleration, 

velocity and displacement time histories are the same; nevertheless, there are minor 

differences between the estimated coherency functions due to the different dominant 

frequency ranges and the smoothing operations, but the general trend is similar in all 

cases.  

 

4) The power-spectral and cross-spectral densities have been smoothed before being 

used in the coherency estimation. Considering the tradeoff between the bias and 

variance of the estimators, in this study, an 11 point (frequency weight Mh=5) Hamming 

window for smoothing has been used. The frequency band smoothed can be calculated 

as, 

𝑓𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = 2𝑀ℎ ∗  
𝑓𝑠
𝑁𝑓

                                                                                                                   (4.16) 

 

where fs is the sampling frequency and Nf is the number of frequency points for the 

signal duration.  
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For our data, frequency sampling (fs) is 50 Hz and time step (ΔT) 0.02s. Thus, for a 2.5 s 

time window (N = 250,) and Nf = 256 points, the smoothing corresponds to 1.95 Hz 

bandwidth of frequency smoothing. Equivalent number of smoothing points has been 

used for the longer durations of time windows so that the band of frequency smoothed 

remains constant.  

 

5) Finally, the lagged coherency, |γ̅jk(ω)|, values for frequency upto 25 Hz have been 

estimated as the ratio between cross spectrum of the pair of stations (j, k), normalized 

by the corresponding square root of the product of the power spectra at the stations by 

using Equation 4.8. No prewhitening of the time series has been performed. The bias 

and standard deviation of tanh−1|γ̅jk(ω)|  for the smoothing considered above are given 

as 0.008 and 0.26, respectively, in Abrahamson et al. (1991). The 50% and 90% 

confidence level for noise are given as 0.34 and 0.63, respectively for tanh−1|γ̅jk(ω)|by 

the authors. 
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4.8.1 Verification of the algorithms used for coherency estimation  

The coherency code is written in MATLAB. The code has been verified by using SMART-

1 array data and comparing the results with those of Zerva (2009). As illustrated in 

Figure 4.16, the results are almost identical. 

 
(a) 

 
Frequency (Hz) 

(b) 

 
 

Figure 4.16: The lagged coherency estimation between the stations C00-I12 and C00-

I06 for the Event-5 recorded by SMART-1 array. (a) Results of the estimation from this 

study (b) Results from Zerva (2009). 

 

4.8.2 Sensitivity of lagged coherency to duration of time window  

The effect of different considerations of time-window length is illustrated in Figure 4.17 

using the event no. 46 (Appendix F), for which the selected time window is the largest 

and exhibits maximum difference between visual inspection and automatic selection 

procedures. This event has a magnitude of M 5.2 and hypocentral depth is about 193 

km. The time series for the two horizontal components of station A00 and R01 are 

shown in Figure 4.14. We considered 6 different time lengths for testing. The first group, 

test 1 to 4 consider 4 different lengths (116-130s, 116-138s, 116-142s, 116-150s) of 

time windows starting from the begin time identified by visual inspection of R01. The 

second group, test 5 and 6 consider two different lengths (132-142s, 132-150s) with 

respect to the automatic time window estimation from R01 records. The plot shows the 

estimated coherency of the EW component for 5 station pairs having separation 
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distance 15 m (See Appendix K for the results at separation distances 40 m and 80 m). 

The plots reveal that in case of test 1 to 4 the estimated coherency is identical for all 

pairs despite the length of time windows is increasing. The same is observed in case of 

test 5 and 6. Therefore, it can be perceived from the results of this test that the 

estimated coherency is less sensitive to the window length. Abrahamson (1992a) also 

concludes that coherency is relatively insensitive to the window length provided that 

the strongest motions are included; he found that low amplitude motions contribute 

little to the coherency estimates. However, some discrepancies are observed between 

the two groups of time windows, especially at higher frequencies (>5 Hz). It is worth 

mentioning that the window lengths considered in test 1 to 4 include the time segment 

116-132s while it is not considered for test 5 and 6.  
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(a) (b) 

 

(c) 

 

 

Figure 4.17: (a) Array A geometry, (b) velocity time series of event no. 46 (Appendix F) 

and (c) sensitivity of estimated lagged coherency to duration of selected time window. 

The plots represent the estimated coherency (EW component) between A00 and the 

stations on the 15m-radius circle of the Array A. The time histories from R01 are given 

in Figure 4.14 (a). The colorbar ‘Test ID’ indicates the index of the test time windows. 

Test 1 to 4 consider 4 different lengths (116-130s, 116-138s, 116-142s, 116-150s) of 

time windows starting from the begin time identified by visual inspection of R02. Test 5 

and 6 consider two different lengths (132-142s, 132-150s) with respect to the 

automatic time window estimation from R02 records.  
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4.9 Results of coherency analysis from single events  

First the coherency estimates from a single event are shown. We take the event 

occurred on October 9, 2011 at 18:42:20 UTC (M=3.3, Rhyp=93.3 km, Baz= N 117, S-

tw=5.88s). Figure 4.18 shows the time history, Fourier amplitude and signal to noise 

ratio for the event. The estimated lagged coherency of the EW component has been 

plotted for the pairs along a single array direction (N 39) at 4 different separation 

distances (A00-A01, A00-A06, A00-A11 and A00-A16 at 5, 15, 40 and 80m inter-station 

distances, respectively). Figure 4.19 shows that the coherency decays with frequency as 

well as with increasing inter-station distances. As mentioned earlier, the resolvability 

threshold of coherency is considered to be 0.33 for the frequency smoothing applied 

here (M=5); hence coherency values below 0.33 bear no significance in terms of 

interpretation. The bumps in the coherency values above 0.33 appear when the spectra 

for the motions of two stations exhibit a simultaneous peak at similar frequency range. 

These peaks can be interpreted as to be dominated by coherent energy coming from 

direct waves. On the contrary, the troughs in the coherency estimates (low coherency 

values) could be dominated by incoherent energy coming from the scattered waves or 

destructive interference between two waves of comparable amplitude. When we 

compare this inter-station distance variability for all 5 array directions (Figure 4.20), 

we still observe the same tendency. The coherency plots at separation distance 15 m 

(the blue line) seem to be larger along directions N328 and N112.  

 

Now for the same earthquake, Figure 4.21 shows the lagged coherency at 5 different 

array directions (pairs A00-A11, A00-A12, A00-A13, A00-A14, A00-A15 at N39, N328, N 

255, N183, N112, respectively), located around 15 m radius from the central station 

A00. In this plot, the coherency is observed to decay faster, especially at N39 and N255 

directions specific for this event at least. Again, when we compare the coherency 

estimates from 5 different directions over 4 different distances (the 4 concentric circles 

of the array), we find out that the previously observed trend is considerable only for the 

intermediate distances 15m and 40m (Figure 4.22). At 5m and 80 m, the directional 

variability appears to be less important. 
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(a) 

 

(b)        (c) 

              

 

Figure 4.18: (a) Time history, (b) Fourier amplitude spectra and (c) signal to noise ratio 

for the event occurred on October 9, 2011 at 18:42:20 UTC (M=3.3, Rhyp=93.3 km, Baz= 

N 117, tw=5.88s). The event index is 8 in Appendix F. Red segment on the time history 

plot marks the window used for coherency estimation. 

 

 

 

 

 

 



157 Coherency analysis of Argostoli dense array network 
 

 

(a) 

 

(b) 

 

 

Figure 4.19: (a) Array configuration angle at N39 and (b) Lagged coherency (EW 

component) at interstation angle N39 for 4 inter-station distances (event no. 8). The 

black arrow shows the event back-azimuth.  

 

Figure 4.20: Lagged coherency variability (EW component) of event no 8. Each plot 

represents 4 interstation distances for the pairs lying in 5 array-branch directions.  

 

N 117 
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(a) 

 

(b) 

 

 

Figure 4.21: (a) Array configuration for 5 array directions and (b) Lagged coherency 

(EW component) of event no 8 at 5 array directions for inter-station distance 15m. The 

black arrow shows the event back-azimuth. 

 

 

Figure 4.22: Lagged coherency variability (EW component) of event no 8. Each plot 

represents station pairs lying in 5 array branch directions at 4 interstation distances. 

N 117 
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In order to investigate the variability in the coherency due to different source 

parameters (magnitude, hypocentral distance, Rhyp, and event back-azimuth), we choose 

one horizontal component (EW) of a group of events for which only one parameter 

varies and the rest two remain similar. Then we plot the estimated coherency for one 

pair at 5 array directions and 3 different inter-station distances (as in Figure 4.23, 4.24 

and 4.25).  Note that the coherency curves of some pairs are absent because some 

stations are missing for some of the events. The missing stations are listed in Table 

Appendix F.2. 

 

In Figure 4.23, we have plotted 5 events (M~3.1, Baz~ N220) with hypocentral 

distances (Rhyp,) 103, 22, 20, 94 and 56 km (event no. 3, 4, 20, 28, 33, respectively, in 

Appendix F). The magnitudes of the events are around 3.1 and back-azimuths are 

around N220. The figure shows that the decay of coherency with frequency is faster in 

case of the farthest event (Rhyp=103 km) at all the directions and inter-station distances. 

The other two distant events (Rhyp=93 and 56 km) seem to follow the trend of the 

farthest event, especially at larger separation distances.  

 

Figure 4.24 shows the lagged coherency for events (M~2.8, Rhyp~20km) with different 

back-azimuths N334, N283, N206, N220, N74 (event no. 9, 13, 16, 20 and 36 in 

Appendix F).  No clear event back-azimuth dependence is observed.  

 

Figure 4.25 represents the lagged coherency for events (Rhyp~20km, Baz~N220) with 

three different magnitudes M 3.5, M 2.3 and M 2.8 (event no. 4, 11 and 20 in Appendix 

F). Again, no clear magnitude-dependence tendency is observed; however, the 

magnitude range considered here is too narrow to represent a good comparison.  

 

Figure 4.26 illustrates one example of how the lagged coherency varies with different 

interstation distances at specific frequencies (~1, ~2.5, ~ 5 and ~7.5 Hz). We have 

taken the EW component of the event with M = 4.5, Rhyp = 173 km and Baz = N 128 

(event no. 10, Appendix F) as an example. At each array direction, we have taken the 

pairs on the 4 array circles (e.g., for N 39 direction, the pairs taken are A00-A01, A00-

A06, A00-A11 and A00-A16 at interstation distances 5, 15, 40 and 80 m, respectively). 

From the plots, it is evident that the coherency declines with increasing inter-station 
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distances for all the frequencies. The decay of coherency with distance seems smoother 

but slower than that of with frequency. The rate of decay also looks faster for higher 

frequencies. From the comparison among the five array directions, it seems that the 

coherency declines relatively faster in N39, N255 and N112 directions for this event. 

This could possibly be an indication that for this array, the assumption of isotropy may 

not be valid. At N39 direction low coherency is observed (<0.4) within separation 

distance 20 to 40 m. This might be event-specific, and corresponds to resolvability 

threshold of coherency estimate. 
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Figure 4.23: (a) Array configuration, (b) valley cross-section and (c) lagged coherency 

variability (EW component) from the events (M~3.1, Baz~ N220) with different 

hypocentral distances, at 5 array directions (indicated on the top of each panel) and 4 

interstation distances (indicated at the left of each row of figures).  Legend indicates the 

hypocentral distances.  
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Figure 4.24: (a) Array configuration, (b) valley cross-section and (c) lagged coherency 

variability (EW component) for the events (M~2.8, Rhyp~20km) from different back-

azimuths, at 5 array directions (indicated on the top of each panel) and 4 inter-station 

distances (indicated at the left of each row of figures). Legend indicates the event back-

azimuths.  
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Figure 4.25: (a) Array configuration, (b) valley cross-section and (c) lagged coherency 

variability (EW component) of the events (Rhyp~20km, Baz~N 220) with different 

magnitudes, at 5 array directions (indicated on the top of each panel) and 4 inter-

station distances (indicated at the left of each row of figures). Legend indicates the 

magnitudes of the events.     
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Figure 4.26: (a) Array configuration, (b) valley cross-section and (c) lagged coherency 

variability (EW component) with increasing interstation distances for different 

frequencies, at 5 array directions.     

 



165 Coherency analysis of Argostoli dense array network 
 

 

4.10 Statistical analysis considering all the events 

It is evident from the figures above that lagged coherency (which ranges between 0 and 

1) estimates exhibit a high variability. It is small for low frequencies and large for higher 

frequencies, that is, coherency variability is frequency dependent (heteroscedastic). 

Moreover, the observed variability may be significant from earthquake to earthquake, 

and it is difficult and dangerous to draw conclusions from observations on single 

earthquakes. Our main goal is thus to investigate the dependency of coherency on 

various site and source parameters on the basis of average values derived from a large 

and representative set of events. For such an averaging process, as for any kind of 

statistical analysis on the coherency estimates, normally distributed data is preferable. 

Therefore, a tanh-1 (or, ATANH) transformation is applied to the coherency to produce 

approximately normally distributed data about the median (Enochson and Goodman, 

1965; Abrahamson, 2007). Abrahamson (2007) shows through an example how scatter 

of the coherency becomes independent of frequency (homoscedastic) with such a 

transformation. The author also shows that ATANH coherency distributions are skewed 

to the lower coherency values, and that the differences between mean and median 

estimates are small. Therefore, median coherency can be used as an estimate for the 

mean coherency for simplicity.   

 

In this study, ATANH lagged coherency values have been used for statistical analysis in 

order to investigate the dependence of coherency on different source and site 

parameters. Four interstation distance ranges (5-10, 15-25, 35-40 and 65-80 m) have 

been chosen and the coherency estimates of the pairs available for each distance range 

have been used to derive the ‘individual median’ curve for a single event. The ‘global 

median’ of all the events at a given interstation distance range has also been derived by 

combining all the pairs available from 46 events. The residuals for each event have been 

computed from the difference between ‘individual median’ and ‘global median’. 

Distribution of the ATANH coherency values at different interstation distances and 

frequency ranges has also been evaluated. The coherency estimates used for all the 

analyses, in this work, are based on the manual selection (from visual inspection) of 

time windows. However, in the subsection 4.9.3, coherency estimates from automatic 
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selection (AI-based method) of time windows have also been discussed and compared 

with those from manual selection. 

 

Three cases have been considered for the direction of horizontal components of our 

ground-motion data: (1) EW and NS, (2) ‘valley-perpendicular’ and ‘valley-parallel’ 

where the originally recorded horizontal components (NS and EW) are rotated along 

the valley-perpendicular (or N40), and valley-parallel (or N130) directions, 

respectively, and (3) ‘baz-parallel’ and ‘baz-perpendicular’ where horizontal 

components are rotated with respect to the event-back-azimuth (i.e, radial component) 

and its perpendicular (i.e., transverse component) directions, respectively. Note that in 

the following segment the terminologies ‘coherency’ and ‘lagged coherency’ have been 

used interchangeably. 

4.10.1 Estimation of Confidence Interval (CI) 

In some of the following sub-sections we compared the median curves along with their 

85% confidence intervals. Therefore, in this sub-section the estimation procedure of 

confidence interval (CI) has been described after Le Boudec (2011). 

  

Confidence interval has been estimated for each curve in order to verify how precisely 

the median curves have been estimated. Here the interval has been considered at 85% 

confidence level. The underlying assumption is that all the values were independently 

and randomly sampled from the dataset and they are distributed according to a 

Gaussian distribution. We could say that there is an 85% chance that the 85% CI 

contains the true median of the dataset. In other words, if we generate many median 

coherence estimates from many samples, we can expect the 85% CI to include the actual 

median in 85% of the cases, and not to include the median in the other 15%. 

 

When n coherency values are ranked in ascending order (from lower to higher values), 

the upper and lower limits of the 85% CI can be estimated from the jth and kth coherency 

estimates, derived from the following equations, 
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j = nq –  η ∗  √(nq (1 − q))                                                                                                       (4.17) 

k = nq +  η ∗  √(nq (1 − q)) + 1                                                                                             (4.18) 

where,  

n = number of observations (number of available pairs from 46 events) 

q = quantile-value, which is 0.5 for Median 

η = reliability factor, which is 1.44 for 85% confidence level 

 

The calculated j and k values are rounded to the next integer then the 85% CI is 

considered as the values between the j-th and k-th observations in the ordered dataset. 

4.10.2 Coherency estimates from the subset of events 

First we show the median estimates, ‘individual’ and ‘global’, of ATANH lagged 

coherency values from all the events (Figure 4.27) at four distances ranges (Dij) and for 

the three components EW, NS and Z. The corresponding lagged coherency values are 

also marked at the right-side axis of the figure. The time windows considered here are 

the ones selected manually from visual inspection using rock station records.  We 

observe the decay of coherency with increasing interstation distance and frequency 

from Figure 4.27. Note that the median coherency resolvability threshold of ATANH 

coherency estimation is 0.34, hence not allowing the lower values to be interpreted. 

However, the estimated median curves in the plots are observed to be well above the 

coherency resolvability threshold (the limit has been marked by a blue line on the 

figure). The two horizontal components show very similar tendencies while the vertical 

component looks somewhat different. Coherency of the vertical component drops 

sharply between 0 and 5 Hz and an increasing trend is observed after 10 Hz at shorter 

distances (5-10 m and 15-25 m). This increase at higher frequencies could be attributed 

to the presence of P-waves in the vertical component. We also observe a significant 

dispersion of individual event’s median from the global median. Figure 4.28 shows the 

corresponding residuals where we can clearly observe higher variation at interstation 

distance above 10 m and frequency above 5 Hz. Distribution of ATANH coherency 

values for EW component in different frequency bands and at different interstation 

distances (Dij) are shown in Figure 4.29. Similar figures for all three components are 
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provided in Appendix L.1. The distribution of ATANH coherency from EW component is 

clearly skewed to the lower values with increasing frequency and interstation distance. 

 

Figure 4.27: ATANH median curves of 46 events from the time windows selected 

visually from rock stations. The thick red curve shows the ‘global median’. Dij stands for 

interstation distance and EW, NS, Z stand for the ground-motion components. Blue line 

marks the coherency resolvability threshold. 
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Figure 4.28: ATANH Coherency residuals of ‘individual median’ estimates with respect 

to the ‘global median’, from the time windows selected visually from rock stations. Dij 

stands for interstation distance and EW, NS, Z stand for the ground-motion components.  
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Figure 4.29: Distribution of ATANH estimates of 46 events (EW component), from the 

time windows selected visually from rock stations, at different distance and frequency 

ranges (indicated at the left of each row of figures). Red line shows the coherency 

resolvability threshold.  Dij stands for interstation distance. 
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4.10.3 Variation from different time-window selection approaches 

We evaluated lagged coherency from an automatic normalized-Arias-Intensity (AI) 

estimation based method using both rock station and sedimentary station (A00) 

records and then compared the results with the coherency estimates from on manually 

selected time window. Figure 4.30 shows the comparison of global median estimates of 

lagged coherency from three different time-window selection approaches (See 

Appendix L.2 for comparison from the ATANH coherency estimates). The individual 

median and residual plots (similar as Figure 4.27 and 4.28) of ATANH coherency 

estimated from both AI based window selections are provided in Appendix L.3 and L.4. 

The comparison shows that all three time selection procedure result in the same 

averaged values at all distances and frequencies. Thus it can be concluded that there is 

no significant difference between the estimates coming from time windows based on 

visual selection or automatic procedure, rock station or sedimentary station.  

 

Figure 4.30: Global median estimates of lagged coherency from three different time-

window selection approaches. Red, green and blue curves indicate the time windows 

selection from visual inspection on rock, AI-based estimation on rock and AI-based 

estimation on A00, respectively. Dij stands for interstation distance and EW, NS, Z stand 

for the ground-motion components. Blue line marks the coherency resolvability 

threshold. 



172 4.10 Statistical analysis considering all the events 
 

4.10.4 Variation associated to the orientation of horizontal components  

As mentioned in the beginning of the section, we considered three different pairs of 

orthogonal directions for the horizontal components of ground motion (manually 

selected windows) and compared the respective coherency estimates. Figure 4.31 

shows comparison of ATANH coherency estimates between the two horizontal 

components, at four interstation distance ranges, of each direction pair : (a) EW and NS, 

(b) ‘valley-perpendicular’ and ‘valley-parallel’ where horizontal components are rotated 

along the valley-perpendicular or N 40°, and valley-parallel or N 130° directions, 

respectively, and (c) ‘baz-parallel’ and ‘baz-perpendicular’ where the horizontal 

components are rotated, for each event, along the event-back-azimuth ("radial" 

component) and its perpendicular directions (transverse component), respectively. In 

the figure, global medians of ATANH coherency, of both horizontal components, have 

been presented along with their respective 85% confidence intervals. Red and blue 

curves indicate the two horizontal components while ‘purple’ and ‘cyan’ indicate the 

85% confidence intervals, respectively. It is observed that, whatever the direction pair 

considered, both horizontal components exhibit fairly similar values of ATANH 

coherency values, at all distances and frequencies. We also notice that the 85% 

confidence interval curves almost merge with the global median curves, indicating that 

85% of the values in the distribution lie very close to the global median. 
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(a)

 
(b) 

 
(c) 

 

Figure 4.31: Comparison between horizontal components for (a) EW and NS, (b) valley-

perpendicular (N40) and valley-parallel (N130), and (c) radial (baz-parallel) and 

transverse (baz-perpendicular) components of the ground motion, with their respective 

85% confidence interval bound. On each figure, red and blue curves indicate the 

horizontal components and magenta and cyan curves indicate the respective 85% CI 

intervals. Dij stands for interstation distance. Blue line marks the coherency 

resolvability threshold. 

 

We now consider one horizontal component from each case (EW, valley-perpendicular 

and baz-perpendicular components) and compare their respective ATANH coherency 

estimations in Figure 4.32. No remarkable difference is observed among the global 

median coherencies estimated from three different cases of horizontal-component 

orientation. This indicates that the coherency estimates are independent of the 

orientation of the horizontal component, whether such a component is related to the 

site or to the source.  
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Figure 4.32: Comparison among horizontal components from different orientation 

definitions. On each figure, red, green and blue curves indicate EW, valley-perpendicular 

and baz-perpendicular components, respectively. Dij stands for interstation distance. 

Blue line marks the coherency resolvability threshold. 

4.10.5 Variation from the array geometry  

From the analysis of single events, the observed anisotropy indicates that there might 

be a dependence of coherency along the different station-profile branches of the array. 

Therefore, here we summarize the coherency estimates from all the events by grouping 

the pairs in five array-branch directions, N 39, N 112, N 183, N 328 and N255, as shown 

in Figure 4.33 (a). Once again, we consider the time windows selected manually from 

the rock station records. The horizontal components of the signals have been rotated 

with respect to the valley-parallel (N130) and valley-perpendicular (N40) axes of the 

site (Figure 4.33(b)). Median lagged coherency of all the events for five groups of 

station-pair direction and four interstation distances have been estimated. The global 

medians and residuals are also evaluated. Finally we present the global median 

estimates of five groups of station orientation at four interstation distance ranges and 

for three different components in Figure 4.34. Notably the pairs lying in N39 and N255 

directions, which correspond to the two shortest dimension of the valley, have the 

lowest coherency for both horizontal components and at all distance ranges. Exception 

is seen at 5-10 m distance range, where median coherency in N39 direction has 

somewhat intermediate values.  The highest coherency values are observed at N328 

direction, which lies along the valley-parallel axis. 
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(a) (b) (c) 

   

Figure 4.33: Graphic representation of (a) five array-branch directions (arrows in five 

colors), (b) orientation of horizontal ground-motion components (red small arrows 

indicate valley perpendicular and blue small arrows indicate valley-parallel 

orientations) and, (c) valley axes.  

 

Figure 4.34: Comparison of median coherencies among the five directions of the array-

branches for valley-perpendicular (N40), valley-parallel (N130), and vertical 

components. Dij stands for interstation distance, ‘Comp’ stands for the component of 

ground motion. Blue line marks the coherency resolvability threshold. 
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4.10.6 Variation from the site-axes orientation 

In the previous sub-section, the two extreme ranges of the coherency estimates have 

been observed to be somewhat related to the main orientation of the valley. Therefore, 

now we group the station pairs in two groups corresponding to the valley principal 

axes. Note that, the time window and rotation of horizontal components are considered 

same as in section 4.9.5.  Global medians of ATANH coherency from all available station-

pairs lying in the valley-perpendicular (N40±10 and N220±10), and valley-parallel 

(N130±10 and N310±10) directions, have been estimated for the four distance ranges 

(given in Appendix L.5). The medians (along with 85% CI) for the three different ground 

motion components are shown in Figure 4.35.  

 

Figure 4.35: Comparison of median coherencies between Valley-perpendicular and 

Valley-parallel pairs for valley-perpendicular (N40), valley-parallel (N130) and Z 

components. Magenta and cyan curves indicate the corresponding 85% CI intervals. Dij 

stands for interstation distance comp stands for the component of ground motion. Blue 

line marks the coherency resolvability threshold. 
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Figure 4.35 reveals that coherency estimates are clearly higher for pairs in the valley-

parallel direction, as compared to pairs in the valley-perpendicular direction, at all the 

distance ranges except the 5-10m range. This trend is consistent with observations from 

the Figure 4.34, where relatively lower coherency values have been observed at 

approximately valley-perpendicular array-branches (N39 and N255) and higher values 

at valley-parallel branch (N328).  The difference between the coherency estimations 

along the two valley directions becomes particularly important at separation distances 

15-25m and 35-40 m for the horizontal components. At 15-25 m inter-station distance, 

the coherency values up to 15 Hz frequency varies between a band of 0.66 and 0.92. 

This remarkable difference is consistent with the predominance of scattered waves 

propagating across the valley, i.e., along the valley-perpendicular direction: the 

associated ground motion is almost in phase for valley-parallel station pairs, it will 

exhibit significant phase changes between valley-perpendicular station pairs.  

4.10.7 Variation from source back-azimuth  

Now, we consider rotated horizontal components of the signals with respect to the 

event back-azimuth, which is along baz-parallel and baz-perpendicular directions, and 

then group the station pairs in the direction parallel (Baz±10 and Baz+180±10) and 

perpendicular (Baz+90±10 and Baz+270±10) to the event back-azimuth in order to 

examine the effect of source-direction on the coherency of ground motion. The global 

median of ATANH coherencies are estimated from all the events for the two groups of 

station pairs (given in Appendix L.6). Figure 4.36 shows the comparison of the global 

median estimates at four interstation distance ranges and for horizontal and vertical 

components in Figure 4.36. No systematic difference has been observed between the 

coherency estimates of baz-parallel and baz-perpendicular pairs for all three 

components.  
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Figure 4.36: Global median estimates of ATANH coherency for the event back-azimuth 

oriented station pairs. Blue and red curves indicate the baz-perpendicular and baz-

parallel pairs, respectively. Magenta and cyan curves indicate the respective 85% CI 

intervals Dij stands for interstation distance, comp stands for the component of ground 

motion. Blue line marks the coherency resolvability threshold. 

4.10.8 Variability from coda windows 

So far we have analysed coherency estimates from the most energetic window of the 

signal which contains a mix of S-waves with converted body waves and surface waves. 

In order to compare the coherencies from the pure surface wave windows, we have 

performed the analysis on the coda part of the signal. The lengths of the coda time 

windows are exactly as the ‘most energetic’ time windows (from manual selection) we 

have considered earlier. The onset of the S-wave and the starting point of the coda are 

taken as twice the time window length apart. No alignment has been done for both the 

time series of S- and coda wave windows. Figure 4.37 shows the global medians of 

ATANH unlagged coherency estimates from S- and coda-wave windows (median and 

residual plots given in Appendix L.7 and L.8).  The results are presented for four 

interstation distances and the valley-perpendicular and valley parallel (rotated with 
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respect to N 40 and N 130, respectively), plus the vertical components of the ground 

motion. We observe that the median ATANH coherency values from coda windows are 

slightly lower than those of the ‘most energetic’ windows (Figure 4.37). The scatter of 

the median also seems to be lower for coda windows (Appendix L.7 and L.8). We then 

examine the variation of coherency for the station pairs lying along the two principal 

directions of the valley, as shown in Figure 4.38. Once again, from the analysis of coda 

windows, we observe the coherency to be roughly lower for the valley-perpendicular 

pairs at shorter interstation distances; however, the difference of coherency estimates 

between the two directions is not consistent always.  

 

Figure 4.37: Comparison of unlagged ATANH coherency estimations from S- and coda 

wave windows Dij stands for interstation distance and N40, N130, Z stand for the 

ground-motion components. Blue line marks the coherency resolvability threshold. 
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Figure 4.38: Global median estimates of ATANH coherency from coda wave window for 

the valley-axis oriented station pairs. Blue and red curves indicate the valley-parallel 

and valley-perpendicular pairs, respectively. Magenta and cyan curves indicate the 

respective 85% CI intervals Dij stands for interstation distance, comp stands for the 

component of ground motion. Blue line marks the coherency resolvability threshold. 

4.10.9 Magnitude Dependence  

In order to investigate the magnitude dependence, the events have been divided into 

two hypocentral distance groups, 0-60 km (27 events) and 60-200 km (19 events). 

Figure 4.39 and 4.40 show the residual plots of the ATANH coherency estimations of the 

Valley-perpendicular component against varying magnitudes, for different interstation 

distance groups and frequency ranges. No clear magnitude dependence is visible from 

both the plots. However, the residuals of the distant events (Figure 4.40) seem to have 

smaller scatter compared to those of nearer events (Figure 4.39). They also decrease 

with increasing separation distance (Figure 4.40). A possible explanation is that at 

greater distances the extended source effects diminish and the variability in coherence 

estimates among different events are mainly caused by the local site properties. 
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Figure 4.39: Residuals of ATANH coherency curves for the Valley-perpendicular 

component of the events coming from Rhyp 0-60km. 
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Figure 4.40: Residuals of ATANH coherency curves for the Valley-perpendicular 

component of the events coming from Rhyp 60-200km. 

4. 10.10 Hypocentral Distance Dependence  

Similarly, the events have been grouped into two magnitude ranges, M 2-3 (23 events) 

and M 3-5 (23 events) to examine the distance dependence. Like Figure 4.39 and 4.40, 

the residuals of ATANH coherency values (valley-perpendicular component) of the two 

magnitude groups of events have been plotted (Figure 4.41, 4.42) against the 

corresponding hypocentral distances for increasing interstation distances and 

frequency ranges. A somewhat larger variability is observed for the events located 

within 50 km hypocentral distance. In near source, the spatial incoherence can be 
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caused by a combined effect of nearby extended seismic source, source-site complex 

wave propagation and local soil properties, which in turn may cause larger scatter of 

the coherency estimates. 
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Figure 4.41: Residuals of ATANH coherency curves of the Valley-perpendicular 

component for the M 2-3 events. 
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Figure 4.42: Residuals of ATANH coherency curves of the Valley-perpendicular 

component for the M 3-5 events. 

4.11 Discussion and conclusion 

The phase variability of the ground motion was investigated by estimating lagged 

coherency of the Array A data. It is to be noted that in the following section ‘lagged 

coherency’ has often been mentioned as ‘coherency’. All possible station pairs with 

interstation distances 5-10, 15-25, 35-40 and 65-80 m have been considered and 

coherencies between the ground-motions in the pair have been computed from 1 to 25 

Hz. A coherency value of 1 indicates perfect correlation while 0 theoretically indicates 
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no correlation between the ground motions (values below a value of 0.33 cannot 

however be discussed as they fall below a resolvability threshold).  

 

The most energetic signal windows from the onset of S-wave have been carefully 

selected from visual inspection of the nearby rock station recordings for coherency 

estimation. Although, in the literature, coherency is usually estimated from the S-wave 

window of the signal, for the Argostoli array records it was challenging to clearly 

identify a time window dominated by S-wave. As a matter of fact, the seismic wave field 

analysis of array data indicates that the ground motions triggered at Argostoli basin are 

indeed composed of a complex mixture of different types of waves. A sensitivity test was 

thus performed to examine the influence of time window selection (manual or 

automatic selection) on the coherency estimates. We found that the statistics of 

coherency estimates derived from many events is only weakly sensitive to the selection 

of time windows, provided that the windows include the most energetic pulses.  

 

In order to summarize the observed tendency of coherency estimated from all the pairs 

of an event and then from all the events, the median of the results were obtained and 

compared for different cases. For the statistical analyses a tanh-1 transformation was 

applied to the results to produce approximately normally distributed data about the 

median. As expected, spatial coherency estimates exhibit decay with increasing 

frequency and interstation distance. The frequency dependence seems more important 

and causes higher variability at larger interstation distances. No dependence of lagged 

coherency has been observed on the orientation of the considered horizontal ground-

motion component. Whatever the component selection (source related: radial or 

transverse, and site related: parallel or perpendicular to valley axis), the two horizontal 

components exhibit similar behavior. However, the vertical component has a somewhat 

different trend, often including an increasing coherency at high frequencies. Slight or no 

systematic dependence of coherency was observed on the magnitude, back-azimuth or 

site-to-source distance of the event. 

 

The key result of the sensitivity analysis is the variation of coherency estimates as a 

function of station-pair orientation. Specific coherency estimates along the five different 

directions of the array-branches yielded statistically different results. A careful 
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investigation showed that the largest coherency is observed for station pairs oriented 

parallel to the valley axis while the lowest one corresponds to the perpendicular 

direction (i.e. along the shortest valley cross-section). Difference between the coherency 

estimates along two valley directions is particularly important at separation distances 

15-25m and 35-40 m. At 15-25 m inter-station distances and below 15 Hz frequency, 

the coherency values considerably vary between 0.66 and 0.92.  Bearing in mind our 

results from the wave field analysis by MUSIQUE, we consider this difference as very 

consistent with the predominant propagation direction of locally scattered waves, 

which basically cross the valley along its shorter horizontal dimension: such waves have 

similar phases for valley-parallel pairs, while their phases are rapidly changing in the 

valley-perpendicular (i.e. edge) direction, especially as the wavelengths are comparable 

to the array size. The incoherence effect in this direction could be related to the wave 

scattering at the basin edges. In the light of these observations, we may draw our most 

important conclusion that the spatial lagged coherency estimates seem to be controlled 

by site dependent characteristics: the velocity profile of course, which controls the 

wavelength of surface waves, and also the geometry, which controls the predominant 

propagation direction of scattered waves. 



187 Final Conclusions 
 

 

Final Conclusions 

Distance dependence of ground-motion variability from numerical 

simulation 

In this study we have analyzed the within-event component () of spatial variability 

“sigma” from numerical simulation of ground motions in order to complement real data 

studies and to investigate the influence of different source parameters on the resulting 

ground-motion variability. Ground-motion (up to 3 Hz), represented by the PGV, was 

computed from various kinematic source models and Green’s functions was computed 

for 1D-layered velocity models. Hence, our  estimations are not only ‘single-station’ but 

also ‘single-path’. For simplicity we have limited our study to vertical strike-slip faults in 

a narrow magnitude range (~6 < Mw < ~7). It is to be noted that our study does not 

focus on the absolute value of ground motion, but only on its variability and the overall 

observed trends of the ground motion variability have been related to global source 

features (rupture directivity, depth of the main slip area).  

 

Our results suggest that the within-event variability  significantly depends on the 

rupture type, with unilateral ruptures resulting in larger  values than bilateral 

ruptures, especially in the near source region. At short distances (< ~10 km) most of the 

stations are located in the 0°-30° azimuth region  of the epicentre and thus associated 

with a strong PGV amplification due to forward directivity effects. The large proportion 

of high peaked PGV values results in large variability () at shorter distances. Far away 

from the source (~100 km), this dependency vanishes and  is steady ( ~ 0.3-0.5) for 

both kind of ruptures. Thus the distance-dependency of  represents two main 

behaviors: (1) an increases with distance for bilateral events and (2) a decrease with 

distance for unilateral events. Therefore, we conceive that prior knowledge about the 

rupture direction and type may contribute in refining the estimates of  for a given 

earthquake scenario. Besides the large variability we obtained at short distance for 

unilateral ruptures may, however, be strongly reduced if azimuth is considered as a 

predictor. The radiation pattern effect, that is clearly observed in our synthetics, might 

be limited to lower frequency range (<~1 Hz) in real velocity structures. Thus, the 

strong impact of directivity effects on the  values computed from our synthetics may 
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be weaker in the case of real earthquakes. Interestingly, the range of within-event 

variability values provided by our numerical simulations in far field is consistent with 

the ‘single station’ within-event variability (ss) estimates obtained from real data by 

Rodriguez-Marek et al., 2013 ( ~ 0.4 at 100 km).  

Seismic wave field analysis from dense array data 

The seismic wave field generated in the basin of Argostoli was analyzed from a subset of 

events recorded by two dense arrays. The 21-element dense array, Array A, was located 

between the center and the southwest edge of the basin and the data was analyzed 

based on a carefully selected subset of 46 events (magnitude range M 2-5, distance 

range 5–200 km, equally distributed back-azimuths). Array B, a smaller 10-element 

array, located near the northeast edge, was analyzed for 16 events. A quaternion-MUSIC 

algorithm, MUSIQUE, was used to process the seismic array data. MUSIQUE allows the 

simultaneous use of all three components of the records and extraction of the apparent 

propagation characteristics of the dominant waves, slowness and back-azimuth. 

Furthermore, it enables the characterization of Love and Rayleigh surface waves as well 

as identification of retrograde and prograde particle motion of the latter in the seismic 

wave field. This is of particular importance for a small and shallow basin like Argostoli 

where locally generated surface waves play an important role in modifying earthquake 

ground motion.  

 

The results from array analysis clearly indicate significant scattering waves 

corresponding to 2D or 3D effects beyond the fundamental frequency (~1.5 Hz) of the 

valley. The identified back-azimuth distribution from Array A shows that, whatever the 

back-azimuth of the earthquake, local scattering comes primarily from the south-west 

edge (N210 -N240). Love waves are predominant in the scattered wave field at low 

frequencies (< 2.5 Hz) whereas Rayleigh waves can be seen over a broad range of 

frequencies, but dominating only in a relatively narrow band. The summary of energy 

repartition from all 46 events reveal that about 60% of the total energy between 1.5 to 

2.5 Hz frequency is carried by Love waves while Rayleigh waves carry about 70% and 

50% of the total energy at 3-4 Hz and 5-6 Hz frequencies, respectively. Likewise, the 

results from Array B data exhibit a relatively higher proportion of Love wave energy 

(50%) at about 1.5-2.5 Hz frequency and an invariably larger dominance of Rayleigh 
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waves at frequencies above ~2.5 Hz containing about 40-50% of the energy. However, 

this time the identified waves seem to arrive more from the northeast edge (N60 -N 

120) of the valley. The results from both arrays show that at  frequencies lower than the 

fundamental resonance frequency of the site, both Rayleigh and Love waves impinge the 

array from a range of back-azimuths (N30 - N90), which manifests influence of probable 

regional diffractors located outside the Argostoli basin.   

 

Overall, from the analysis of both arrays about 80% of the total energy, within the 

frequency range approximately 1.5 to 6 Hz, could be characterized as Rayleigh or Love 

surface waves. The dispersion estimates obtained from the analyses of two array data 

show that the fundamental mode (at 1-2.5 Hz) is evidently dominated by Love waves, 

while there is also some contribution (at 1.5-3 Hz) from the less energetic prograde 

Rayleigh waves. The probable dispersion curve of the first harmonic mode (at 3-4 Hz) 

could be attributed to the retrograde Rayleigh waves. These observations can be 

explained by the velocity structure beneath the arrays and related frequency of Rayleigh 

and Love Airy phases.  The estimated standard spectral ratios at two stations within the 

two array locations demonstrate that there is an excellent consistency between the 

dominance of the surface wave type identified in the wave field and the site 

amplification. Alongside, the characterization of wave types from MUSIQUE analysis 

shows that throughout the duration of the event, all signal time windows include 

complex mixtures of different types of waves. The scattered waves apparently dominate 

the wave field composition of the most energetic part of the signal, even in the earlier 

time segments where arrival of body waves are accompanied by significant proportion 

of surface waves.   

Spatial coherency analysis from seismic array data 

The phase variability of the ground motion was investigated by estimating lagged 

coherency of the Array-A data. It is to be noted that in the following paragraphs ‘lagged 

coherency’ has often been mentioned as ‘coherency’. All possible station pairs with 

interstation distance up to 80 m have been considered and coherencies between the 

ground-motions in the pair have been computed between 1 to 25 Hz. A coherency value 

of 1 indicates perfect correlation while 0 indicates no correlation between the ground 
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motions.  It is however impossible in practical cases to discuss coherency values below a 

minimum threshold of 0.33 as they fall below a resolvability threshold. 

 

The most energetic signal windows from the onset of S-wave have been carefully 

selected from visual inspection of the nearby rock station recordings for coherency 

estimation. Though in the literature coherency is usually estimated from the S-wave 

window of the signal, for the Argostoli array records it was challenging to clearly 

identify a time window dominated by S-wave only. As a matter of fact, the seismic wave 

field analysis of array data indicates that the ground motions triggered at Argostoli 

basin are indeed composed of a complex mixture of different types of waves. A 

sensitivity test was, however, performed to examine the influence of time window 

selection on the coherency estimates. Thereupon, an automatic procedure based on the 

Arias Intensity estimation of the time window around the most energetic signal was 

adopted and the selected time windows were used for the evaluation of coherency. The 

results of the test show that the statistics of coherency estimates derived from many 

events is less sensitive to the variation of time window selection as long as the windows 

include the most energetic pulses. Therefore, the time windows selected by visual 

inspection was used for the entire coherency analysis. 

 

In order to summarize the observed tendency of coherency estimated from all the pairs 

of an event and then from all the events, the median of the results were obtained and 

compared in different cases. For the statistical analyses a tanh-1 transformation was 

applied to the results to produce approximately normally distributed data around the 

median. In general, spatial coherency estimates from horizontal components exhibit 

decays with frequency and interstation distance. The frequency dependence seems 

more important and causes higher variability at larger interstation distances. However, 

estimations on the vertical component exhibit larger coherency at some higher 

frequencies. No dependence of lagged coherency has been observed on the orientation 

of ground-motion component. Similar trends were systematically observed, on all kinds 

of orthogonal components, even when their orientation is related to source back-

azimuth, site principal directions or random (e.g. NS and EW). Slight or no systematic 

dependence of coherency was observed on the magnitude, back-azimuth or site-to-
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source distance of the event, at least for the range of magnitudes investigated here (M≤ 

5). 

 

Nevertheless, coherency estimates exhibit robust, consistent variations as a function of 

the orientation (azimuth) of station pairs: they vary when station pairs are aligned 

along the five different directions of the array-branches. Larger coherency is 

systematically observed when the orientation of station pairs is parallel to the valley 

length (i.e., NW-SE) as compared to the perpendicular direction (i.e. valley-edge 

direction, NE-SW). Such a difference between the two valley directions is particularly 

important at separation distances 15-25m and 35-40 m. At 15-25 m inter-station 

distances and up to 15 Hz frequency, the coherency values considerably vary between 

0.66 (valley perpendicular direction) and 0.92 (valley parallel direction). This robust 

observation proves very consistent with MUSIQUE results showing the predominance of 

scattered surface waves propagating SW-NE in the wave field: as such waves seem to be 

in phase along valley-parallel pairs, and out of phase along valley-perpendicular (i.e. 

edge) direction. Thus, one can easily expect a larger coherency value for valley-parallel 

pairs. In the light of these observations our most important finding is that the spatial 

lagged coherency is primarily controlled by site dependent geometrical characteristics. 
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Perspectives 

The distance dependency of within-event component of the aleatory variability “sigma”, 

observed from our numerical study brings some light on the nature of the variability 

and its apparent connection with some major source features. However, due to the 

small number of considered source models, the source variability may be 

underestimated, especially in case of the unilateral events. Therefore, inclusion of 

additional source models may contribute to improve the observed overall trends. 

Considering additional unilateral rupture models and fault type would definitely 

strengthen the conclusions on the role of directivity effects.  

 

The characterization of wave types and their relative energy contributions, along with 

the extraction of apparent velocity and azimuth, in the seismic wave field through 

MUSIQUE algorithm seems very promising. In the next step, these results could be 

utilized to explain spatial variation of ground motion related to each wave type 

observed from coherency analysis. The identified wave types and polarization 

parameters could also be linked to the ground velocity model and geological structure 

of the valley in order to better understand the physical causes underlying the ground 

motion variability. Finally, use of recent promising three-component analysis algorithm 

(Marano et al., 2012) that allows wave polarization estimation even in case of 

simultaneous multiple waves may help improving accuracy of wave parameter 

estimates. 

 

Our results from the estimation of spatial coherency indicate its dependence on site 

geometrical characteristics. This observation opens up new insights and possibilities for 

future studies. It would be of great interest to perform similar analysis for the seismic 

array data obtained from a hard-rock site. As such we could examine the spatial 

variation of ground motion in rock site condition and compare it with the tendencies 

observed from valley recordings. The current work on the spatial coherency would 

naturally be followed up by comparing the median coherency curves with the few 

available parametric models which include the short distance ranges considered in this 

study. Another interesting perspective would be to estimate unlagged coherency of the 

ground motions for the time windows and frequency ranges used in the MUSIQUE 
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analysis and then relate the results with the wave type and ground velocity structure. 

Finally, one more scientific question that might be of interest is, to what extent the 

observed ground motion variability would be affected when subjected to near-field 

condition, that is, in case of larger magnitude events that rupture the fault segment. One 

way to deal with this issue would be instrumenting a site near a large active fault with 

permanent dense seismic arrays and then perform similar analyses, which is totally 

dependent on probable earthquake occurrence on the fault in near future. However, 

another possibility is numerical simulation of ground motion for larger magnitude 

events using a representative site and the same dense array network. In fact, some of 

these issues can be tackled with the existing data set and the relevant work is already 

on the way.  
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APPENDIX A  

Computation of directivity ratios  

For each source model, we compute the directivity ratio as proposed by McGuire et al. 

(2002). From the space-time slip distribution, we first compute the second spatial 

moment



ˆ ( 2,0) , the second temporal moment



ˆ ( 0,2) , and the mixed moment 
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

ˆ (2,0)  Ý f  (
r 
r ,t)(

r 
r 

r 
r 

0
)(

r 
r 

r 
r 

0
)T dVdt  (A1) 



ˆ (0,2)  Ý f  (
r 
r ,t)(t  t

0
)2 dVdt  (A2) 



ˆ (1,1)  Ý f  (
r 
r ,t)(

r 
r 

r 
r 

0
)(t  t

0
)dVdt   (A3) 

where 



Ý f (
r 
r ,t) is the space-time moment rate function, and 
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r 
r 

0
 and 
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 refer to the spatial 

and temporal centroids. Next we determine the characteristic duration, expressed as: 
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and the characteristic dimension in a direction 
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n , expressed as: 
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where M0 denotes the seismic moment. The characteristic rupture length Lc is defined as
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x
c
(
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1
), the maximum value of
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n ), 
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1
 being the Eigen vector associated to the largest 

eigen value. The ratio: 
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then represents the characteristic rupture velocity. 

Finally, we compute the average velocity of the instantaneous spatial centroid: 
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The directivity ratio is defined as the ratio
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
0
/

c . 
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APPENDIX B 

Velocity models used for ground motion computation 

All the considered velocity models are the ones that have been used to perform source 

inversions, except for the Imperial Valley earthquake, for which the model has been 

slightly simplified to reduce computation-time. The velocity models considered in the 

ground-motion simulation are given in Table B1 for the bilateral models, and in Table 

B2 and B3 for unilateral models; Vp and Vs indicate the velocity and Qp and Qs the quality 

factor of P and S-wave, respectively and D indicates density of the material in the layer.  

 

Note that for Imperial Valley (1979) event, Archuleta (1984) assumes a model with 

velocity gradient as presented in Table B2. For the Green’s function computation with 

Axitra program, different sub-layers of the given velocity model were considered, which 

involved linear interpolation of the values. For example, the 2nd layer (between 0.4 km 

and 5 km) was divided into N=5 sub-layers of thickness dh=1150 m each and values of 

the other parameters were taken at the middle of each sub-layer. Similarly, the 3rd layer 

(between 5 km and 11 km depth) was divided into N=6 sub-layers of thickness dh=1000 

m. The 4th layer (between 11 km and 11.1 km) marks the discontinuity. Finally, the 5th 

layer (between 11.1 km and 12 km depth) was divided into N=2 sub-layers of thickness 

dh=450 m. The final velocity model adopted is given in Table B3. 
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Table B1: Velocity models of the bilateral events 

Event Name Depth(m) Vp(m/s) Vs(m/s) 
D 

(kg/m3) 
Qp Qs 

Fukuoka (2005) 
0 5500 3200 2600 ∞  ∞  

5000 6000 3460 2700 ∞  ∞  
18000 6700 3870 2800 ∞  ∞ 

Yamaguchi (1997) 
0  5600  3300  2600 400 400 

 3000  6000  3500  2700 450 450 
30000  6600  3800  2900 500 500 

Kagoshimaen-
hoku-seibu (1997) 

0  2800  1620  2100  80  40 
500  4900  2830  2300  300  150 

5000  6000  3460  2700  300  150 
15000  6700  3870  3100  500  250 
35000  7800  4500  3400  1000  500 

Kagoshima (1997) 

0  3100  1800  2300  200  200 
500  4400  2500  2500  350  350 

3000  5900  3400  2700  450  450 
22000  7000  4000  3000  500  500 

Tottori (2000, 
Semmane et al.) 

0  5500  3180  2600  500  200 
 2000  6050  3490  2700  500  200 

16000  6600  3810  2800  200  200 
 38000  8030  4620  3100  500  200 

Tottori (2000, 
Sekiguchi and 

Iwata) 

0  5500  3179  2600  500  200 
2000  6050  3497  2700  500  200 

16000  6600  3815  2800  500  200 
38000  8000  4600  3000  500  200 
20000  8100  4620  3300  500  200 

 

Table B2: Initial Velocity Model of Imperial Valley (1979) from Database 

Event Name Depth(m) Vp(m/s) Vs(m/s) 
D 

(kg/m3) 
Qp Qs 

Imperial Valley 
(1979), Initial 

Model 

0 1700 400 1800 ∞  ∞  
400 1800 700 1800 ∞  ∞  

5000 5650 3200 2500 ∞  ∞  
11000 5850 3300 2800 ∞  ∞  
11100 6600 3700 2800 ∞  ∞  
12000 7200 4150 2800 ∞  ∞  
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Table B3: Velocity models of the unilateral events 

Event Name Depth(m) Vp(m/s) Vs(m/s) D (kg/m3) Qp Qs 

Imperial Valley 
(1979), Interpolated 

Model 

0 1700 400 1800 ∞  ∞  
400 1800 700 1800 ∞  ∞  

1550 2281 1013 1888 ∞  ∞  
2700 3243 1638 2063 ∞  ∞  
3850 4206 2263 2238 ∞  ∞  
5000 5169 2888 2413 ∞  ∞  
6000 5667 3208 2525 ∞  ∞  
7000 5700 3225 2575 ∞  ∞  
8000 5733 3242 2625 ∞  ∞  
9000 5767 3258 2675 ∞  ∞  

10000 5800 3275 2725 ∞  ∞  
11000 5833 3292 2775 ∞  ∞  
11100 6225 3500 2800 ∞  ∞  
11550 6750 3813 2800 ∞  ∞  
12000 7050 4038 2800 ∞  ∞  

Coyote Lake (1979) 

0  3000  1500  2400 ∞  ∞  
500  5000  2800  2700 ∞  ∞  

3000  5700  3300  2780 ∞  ∞  
12000  6900  3300  3000 ∞  ∞  
60000  8100  4670  3200 ∞  ∞  
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APPENDIX C 

Computations of the synthetic ground motions for large 

faults 

The principle of the decomposition of the computations of ground motions for the large 

faults considered in this study is as follows: 

 

Let F stand for one of those faults. F is further decomposed into Ns sub-faults, such that 

the typical length of each sub-fault is a fifth of the minimum wavelength on F. Let Nr 

(here Nr=135) be the number of receivers, then the computation of the ground motions 

is done in three steps: (1) the components of all Green functions relating the Ns sub-

faults to the Nr receivers are computed with the Axitra code (Coutant, 1989) (2) each 

Green function is convolved in space and time to account both for the magnitude and 

focal mechanism of the sub-fault and for the imposed rupture kinematics; (3) the 

contributions of the Ns sub-faults are summed at each of the Nr receivers.  

 

The Ns*Nr calculations needed by step (1) were done in parallel on the number of sub-

faults, i.e. for each sub-fault the calculations at all receivers were gathered in a single 

job. For this purpose, we exploited the available resources of a local grid of HPC clusters 

(totalizing more than 3000 computing cores) in a best-effort mode thank to the grid 

middleware “cigri”. The results, consisting of one binary file per sub-fault, were stored 

on a distributed data grid operated by the Integrated Rule-Oriented Data System 

(IRODS). The convolutions needed by step (2) were also distributed on the computing 

grid and stored again on the data grid. Finally the reduce operation needed in step (3) 

was done for all receivers by successive grouping of the sources by packets, the size of 

which was controlled by the maximum number of binary files that would fit in the 

random access memory (RAM) of each computing node. For the example of the Imperial 

Valley calculations, each binary file containing the contribution of a single sub-fault at 

all receivers was about 16 Mbytes, and the size of the source packets was 200 so that 

the summation could be done in a RAM of size 4 Gbytes. For this event, which was the 

most demanding of all cases, the total time needed to compute the Green's functions 

was about 4000 hours of a single CPU core on an Intel E5-2670 with frequency 2.6 Ghz. 
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Appendix D 

Coordinates of the Array Stations 

D.1.1 Coordinates of Array A stations 
 

(1) (2) (3) (4) (5) (6) 

Index Station Name Latitude (deg) Longitude (deg) Northing (m) Easting (m) 

1 A00 38.163317 20.505549 4224051.089 456684.827 

2 A01 38.163351 20.505583 4224054.838 456687.879 

3 A02 38.163355 20.505519 4224055.406 456682.206 

4 A03 38.163303 20.505492 4224049.607 456679.870 

5 A04 38.163271 20.505545 4224046.007 456684.495 

6 A05 38.163301 20.505603 4224049.273 456689.525 

7 A06 38.163422 20.505654 4224062.676 456694.092 

8 A07 38.163432 20.505457 4224063.905 456676.873 

9 A08 38.163281 20.505382 4224047.260 456670.165 

10 A09 38.163182 20.505541 4224036.115 456684.087 

11 A10 38.163266 20.505708 4224045.379 456698.782 

12 A11 38.163596 20.505833 4224081.955 456709.890 

13 A12 38.163621 20.505299 4224084.970 456663.120 

14 A13 38.163222 20.505109 4224040.833 456646.264 

15 A14 38.162955 20.505529 4224010.974 456682.860 

16 A15 38.163185 20.505973 4224036.244 456721.953 

17 A16 38.163884 20.506111 4224113.734 456734.438 
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(1) (2) (3) (4) (5) (6) 

Index Station Name Latitude (deg) Longitude (deg) Northing (m) Easting (m) 

18 A17 38.163925 20.505060 4224118.762 456642.385 

19 A18 38.163129 20.504656 4224030.694 456606.484 

20 A19 38.162596 20.505509 4223971.109 456680.906 

21 A20 38.163052 20.506396 4224021.327 456758.891 

 

D.1.2 Relative Coordinates of Array A stations from A00 
 

(1) (2) (2) (3) (4) 

Index Reference Station  Station Name Distance (m) Azimuth (deg) 

1 A00 A01 4.83363 39.1478 

2 A00 A02 5.04982 328.734 

3 A00 A03 5.17382 253.354 

4 A00 A04 5.09322 183.737 

5 A00 A05 5.03663 111.142 

6 A00 A06 14.8352 38.6472 

7 A00 A07 15.084 328.173 

8 A00 A08 15.1538 255.362 

9 A00 A09 14.9924 182.829 

10 A00 A10 15.0779 112.253 

11 A00 A11 39.7593 39.0764 

12 A00 A12 40.2386 327.353 

13 A00 A13 39.9034 255.107 

14 A00 A14 40.1636 182.807 
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(1) (2) (2) (3) (4) 

Index Reference Station  Station Name Distance (m) Azimuth (deg) 

15 A00 A15 39.984 111.795 

16 A00 A16 79.9093 38.377 

17 A00 A17 79.8807 327.906 

18 A00 A18 80.9542 255.408 

19 A00 A19 80.076 182.807 

20 A00 A20 79.8199 111.892 

 

D.2.1 Coordinates of Array B stations 
 

(1) (2) (3) (4) (5) (6) 

Index Station Name Latitude (deg) Longitude (deg) Northing (m) Easting (m) 

1 B01 38.165482 20.508014 4224290.1479 456902.0415 

2 B02 38.165655 20.507837 4224309.4176 456886.6889 

3 B03 38.165540 20.508018 4224296.5815 456902.4226 

4 B04 38.165620 20.508249 4224305.4147 456922.7688 

5 B05 38.165616 20.508467 4224304.8410 456941.8176 

6 B06 38.165225 20.508291 4224261.5276 456926.2031 

7 B07 38.165067 20.507568 4224244.3538 456862.7704 

8 B08 38.165446 20.508047 4224286.1312 456904.9716 

9 B09 38.165337 20.507795 4224274.1943 456882.7797 

10 B10 38.165481 20.507933 4224290.0668 456894.9532 
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D.2.2 Relative Coordinates of Array B stations from B01 
 

(1) (2) (2) (3) (4) 

Index Reference Station  Station Name Distance (m) Azimuth (deg) 

1 B01 B02 24.6378 321.455 

2 B01 B03 6.44489 3.38951 

3 B01 B04 25.7428 53.6262 

4 B01 B05 42.4031 69.726 

5 B01 B06 37.4553 139.829 

6 B01 B07 60.3269 220.615 

7 B01 B08 4.97185 143.891 

8 B01 B09 25.0107 230.367 

9 B01 B10 7.08885 269.344 
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Appendix E 

Full Catalogue of Argostoli Events 

E.1 Catalogue of Re-localized Events (Repi <80 km) 
 

Index YYYYMMDD HH MM SS 
LAT 
(N) 

LON 
(E) 

DEPTH 
(km) 

ML LOCATION 

1 20110921 01:25:31.5 37.82 20.38 1.0 1.9 Central IONIAN sea - W. GREECE 

2 20110921 13:29:16.2 38.25 20.37 15.9 2.4 CEPHALONIA Isl. - W. GREECE 

3 20110921 14:24:18.1 37.72 20.64 14.3 2.4 ZAKYNTHOS Isl. - W. GREECE 

4 20110921 15:59:23.1 38.00 20.43 0.7 2.3 CEPHALONIA Isl. - W. GREECE 

5 20110922 10:43:35.6 38.33 20.53 9.0 1.7 CEPHALONIA Isl. - W. GREECE 

6 20110922 15:15:09.0 38.15 20.39 17.6 3.3 CEPHALONIA Isl. - W. GREECE 

7 20110923 22:10:47.5 38.06 20.35 8.7 1.2 CEPHALONIA Isl. - W. GREECE 

8 20110924 03:08:34.4 38.34 19.68 7.0 0.0 Central IONIAN sea - W. GREECE 

9 20110924 12:59:16.7 38.10 19.69 0.0 2.6 Central IONIAN sea - W. GREECE 

10 20110924 15:49:12.7 37.48 19.74 14.4 3.1 
    

11 20110928 07:40:45.1 38.07 20.40 16.9 3.5 CEPHALONIA Isl. - W. GREECE 

12 20110930 00:30:52.4 38.28 20.36 4.6 2.0 CEPHALONIA Isl. - W. GREECE 

13 20110930 06:54:30.6 38.15 20.46 10.4 2.6 CEPHALONIA Isl. - W. GREECE 

14 20111003 15:26:11.3 37.85 21.14 17.8 3.1 West PELOPONNESE - SW GREECE 

15 20111008 03:24:45.4 38.62 20.58 6.1 2.8 LEFKADA Isl. - W. GREECE 

16 20111008 20:59:00.5 38.34 19.75 14.8 2.8 Central IONIAN sea - W. GREECE 

17 20111010 02:57:43.9 38.32 20.41 13.7 2.8 CEPHALONIA Isl. - W. GREECE 

18 20111011 12:50:50.3 38.20 20.34 14.1 2.5 CEPHALONIA Isl. - W. GREECE 

19 20111011 13:04:54.6 38.16 20.37 11.5 2.4 CEPHALONIA Isl. - W. GREECE 

20 20111011 13:20:13.5 38.21 20.35 18.9 4.4 CEPHALONIA Isl. - W. GREECE 

21 20111011 18:45:21.0 38.17 20.36 16.8 2.5 CEPHALONIA Isl. - W. GREECE 

22 20111011 18:52:12.8 37.68 21.07 16.8 2.5 W of PELOPONNESE - SW GREECE 

23 20111012 04:54:43.5 38.09 20.36 2.2 2.3 CEPHALONIA Isl. - W. GREECE 

24 20111012 18:09:07.6 38.23 20.36 16.3 2.6 CEPHALONIA Isl. - W. GREECE 

25 20111014 01:11:32.3 37.97 20.84 11.9 3.5 ZAKYNTHOS Isl. - W. GREECE 

26 20111015 16:24:22.4 37.98 20.28 13.6 2.8 Central IONIAN sea - W. GREECE 

27 20111016 03:14:03.6 37.84 20.43 1.9 2.1 CEPHALONIA Isl. - W. GREECE 

28 20111016 10:01:37.9 38.19 20.36 17.6 2.7 CEPHALONIA Isl. - W. GREECE 

29 20111019 23:25:43.7 38.18 20.59 4.3 1.5 CEPHALONIA Isl. - W. GREECE 

30 20111020 06:18:20.4 38.11 20.58 16.5 3.4 CEPHALONIA Isl. - W. GREECE 

31 20111020 07:35:37.5 38.04 20.43 9.2 2.8 CEPHALONIA Isl. - W. GREECE 

32 20111020 17:46:00.7 38.00 20.34 0.0 2.3 CEPHALONIA Isl. - W. GREECE 

33 20111020 20:40:20.3 38.09 20.57 16.5 2.2 CEPHALONIA Isl. - W. GREECE 

34 20111020 22:01:43.0 38.16 20.36 14.5 2.0 CEPHALONIA Isl. - W. GREECE 

35 20111020 22:24:18.6 38.20 20.47 9.6 2.1 CEPHALONIA Isl. - W. GREECE 
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Index YYYYMMDD HH MM SS 
LAT 
(N) 

LON 
(E) 

DEPTH 
(km) 

ML LOCATION 

36 20111021 20:25:30.1 38.56 20.38 9.4 2.6 Central IONIAN sea - W. GREECE 

37 20111022 21:01:58.2 37.94 20.76 12.0 2.1 ZAKYNTHOS Isl. - W. GREECE 

38 20111023 02:12:09.8 37.67 20.83 6.1 3.0 ZAKYNTHOS Isl. - W. GREECE 

39 20111023 10:37:52.8 38.43 20.44 17.2 2.4 CEPHALONIA Isl. - W. GREECE 

40 20111023 21:39:58.4 38.13 20.57 21.0 1.9 CEPHALONIA Isl. - W. GREECE 

41 20111024 16:36:50.5 38.79 20.58 13.4 2.9 LEFKADA Isl. - W. GREECE 

42 20111024 18:04:13.1 38.08 20.38 0.3 2.2 CEPHALONIA Isl. - W. GREECE 

43 20111025 00:10:19.3 38.08 20.39 13.2 2.2 CEPHALONIA Isl. - W. GREECE 

44 20111025 08:36:29.7 38.68 20.55 9.6 2.9 LEFKADA Isl. - W. GREECE 

45 20111025 22:33:04.7 38.01 20.85 13.9 4.1 CEPHALONIA Isl. - W. GREECE 

46 20111028 01:15:23.5 37.59 20.48 7.0 1.9 South IONIAN sea - W. GREECE 

47 20111028 13:01:43.6 38.17 20.68 7.8 2.0 CEPHALONIA Isl. - W. GREECE 

48 20111031 07:22:50.3 38.22 20.51 0.1 2.6 CEPHALONIA Isl. - W. GREECE 

49 20111031 20:40:35.6 38.06 20.40 13.1 2.8 CEPHALONIA Isl. - W. GREECE 

50 20111101 07:04:39.7 38.09 20.57 17.0 2.3 CEPHALONIA Isl. - W. GREECE 

51 20111101 12:52:48.6 38.18 20.39 14.4 2.9 CEPHALONIA Isl. - W. GREECE 

52 20111101 13:14:02.4 38.17 20.38 15.8 3.1 CEPHALONIA Isl. - W. GREECE 

53 20111101 13:25:34.1 38.14 20.35 16.7 2.6 CEPHALONIA Isl. - W. GREECE 

54 20111101 15:29:46.4 38.17 20.37 15.6 3.3 CEPHALONIA Isl. - W. GREECE 

55 20111101 15:47:28.6 38.11 20.37 8.4 2.8 CEPHALONIA Isl. - W. GREECE 

56 20111101 15:55:36.1 38.09 20.39 0.0 2.3 CEPHALONIA Isl. - W. GREECE 

57 20111101 16:06:52.8 38.20 20.39 13.4 3.1 CEPHALONIA Isl. - W. GREECE 

58 20111101 16:49:46.2 38.21 20.40 12.4 2.8 CEPHALONIA Isl. - W. GREECE 

59 20111101 17:01:07.5 38.15 20.38 14.9 2.3 CEPHALONIA Isl. - W. GREECE 

60 20111101 17:13:50.4 38.08 20.36 10.6 2.3 CEPHALONIA Isl. - W. GREECE 

61 20111105 21:55:23.1 38.09 20.55 14.3 2.4 CEPHALONIA Isl. - W. GREECE 

62 20111105 22:37:57.8 38.44 20.39 9.6 2.2 CEPHALONIA Isl. - W. GREECE 

63 20111107 06:07:59.6 38.07 20.44 15.2 2.4 CEPHALONIA Isl. - W. GREECE 

64 20111109 01:50:38.8 38.13 20.46 15.1 1.3 CEPHALONIA Isl. - W. GREECE 

65 20111110 23:10:28.4 38.75 20.50 2.9 2.7 LEFKADA Isl. - W. GREECE 

66 20111112 04:51:48.0 37.47 20.49 0.5 2.5 South IONIAN sea - W. GREECE 

67 20111113 00:36:13.9 38.27 20.63 0.0 1.8 CEPHALONIA Isl. - W. GREECE 

68 20111113 23:44:21.6 38.22 20.61 19.5 2.3 CEPHALONIA Isl. - W. GREECE 

69 20111114 03:33:29.3 37.78 20.30 4.2 2.0 Central IONIAN sea - W. GREECE 

70 20111114 16:47:37.7 38.08 20.31 11.1 2.2 CEPHALONIA Isl. - W. GREECE 

71 20111114 19:36:20.6 38.09 20.30 13.8 1.9 CEPHALONIA Isl. - W. GREECE 

72 20111115 14:10:04.9 37.69 20.86 16.8 3.7 ZAKYNTHOS Isl. - W. GREECE 

73 20111116 02:16:18.2 38.17 20.32 14.8 2.3 CEPHALONIA Isl. - W. GREECE 

74 20111117 00:02:19.4 38.26 20.37 12.6 3.3 CEPHALONIA Isl. - W. GREECE 

75 20111117 01:33:04.6 38.25 20.35 12.1 2.4 CEPHALONIA Isl. - W. GREECE 

76 20111117 02:06:32.9 38.20 20.33 15.4 1.4 CEPHALONIA Isl. - W. GREECE 

77 20111117 04:14:02.7 38.20 20.44 10.3 1.5 CEPHALONIA Isl. - W. GREECE 

78 20111117 18:32:53.2 37.63 20.00 0.0 2.8 Central IONIAN sea - W. GREECE 
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Index YYYYMMDD HH MM SS 
LAT 
(N) 

LON 
(E) 

DEPTH 
(km) 

ML LOCATION 

79 20111118 23:14:15.2 38.10 20.78 19.8 2.5 CEPHALONIA Isl. - W. GREECE 

80 20111120 01:48:39.9 38.09 20.40 13.0 2.0 CEPHALONIA Isl. - W. GREECE 

81 20111121 06:11:15.1 37.96 20.85 12.2 2.4 ZAKYNTHOS Isl. - W. GREECE 

82 20111122 19:41:31.8 38.27 20.69 9.2 2.3 CEPHALONIA Isl. - W. GREECE 

83 20111123 12:32:34.1 38.58 20.30 23.3 2.9 Central IONIAN sea - W. GREECE 

84 20111125 13:19:01.1 38.18 20.38 17.7 1.9 CEPHALONIA Isl. - W. GREECE 

85 20111125 20:51:01.8 37.67 20.95 10.2 2.6 ZAKYNTHOS Isl. - W. GREECE 

86 20111127 00:28:06.8 38.09 20.30 9.4 2.1 CEPHALONIA Isl. - W. GREECE 

87 20111127 16:27:05.0 38.23 20.36 12.8 1.7 CEPHALONIA Isl. - W. GREECE 

88 20111127 23:33:47.0 38.08 20.51 14.0 2.9 CEPHALONIA Isl. - W. GREECE 

89 20111127 23:34:40.6 38.11 20.52 20.0 2.2 CEPHALONIA Isl. - W. GREECE 

90 20111127 23:40:21.0 38.10 20.52 16.9 2.8 CEPHALONIA Isl. - W. GREECE 

91 20111127 23:42:55.0 38.27 20.36 7.8 2.7 CEPHALONIA Isl. - W. GREECE 

92 20111128 03:18:49.2 38.07 20.51 12.8 2.4 CEPHALONIA Isl. - W. GREECE 

93 20111128 03:21:41.4 38.09 20.52 13.5 2.0 CEPHALONIA Isl. - W. GREECE 

94 20111128 03:23:08.6 38.09 20.52 16.5 3.2 CEPHALONIA Isl. - W. GREECE 

95 20111129 05:40:23.5 37.77 21.26 16.9 3.0 West PELOPONNESE - SW GREECE 

96 20111129 15:12:41.7 38.09 20.39 1.3 2.0 CEPHALONIA Isl. - W. GREECE 

97 20111129 15:58:27.8 37.74 21.05 21.6 2.7 ZAKYNTHOS Isl. - W. GREECE 

98 20111129 20:36:38.4 38.23 20.58 16.2 2.0 CEPHALONIA Isl. - W. GREECE 

99 20111130 10:27:08.5 38.08 20.79 3.4 2.8 CEPHALONIA Isl. - W. GREECE 

100 20111130 11:51:06.8 37.65 20.61 11.9 2.4 ZAKYNTHOS Isl. - W. GREECE 

101 20111130 17:21:23.2 38.03 20.33 0.0 2.3 CEPHALONIA Isl. - W. GREECE 

102 20111130 21:27:02.6 38.03 20.33 4.7 1.9 CEPHALONIA Isl. - W. GREECE 

103 20111201 03:51:34.0 38.47 20.59 12.4 1.7 CEPHALONIA Isl. - W. GREECE 

104 20111201 04:58:20.6 38.16 20.55 7.5 1.6 CEPHALONIA Isl. - W. GREECE 

105 20111202 01:45:31.6 38.21 20.31 10.5 1.7 CEPHALONIA Isl. - W. GREECE 

106 20111202 13:06:41.8 38.20 20.51 14.9 1.7 CEPHALONIA Isl. - W. GREECE 

107 20111202 14:37:57.8 38.12 20.54 21.1 1.7 CEPHALONIA Isl. - W. GREECE 

108 20111203 07:02:35.5 38.28 20.36 12.2 1.6 CEPHALONIA Isl. - W. GREECE 

109 20111203 12:53:57.4 38.19 20.32 8.7 1.6 CEPHALONIA Isl. - W. GREECE 

110 20111203 18:49:00.8 38.22 20.60 11.2 1.5 CEPHALONIA Isl. - W. GREECE 

111 20111203 21:49:10.1 38.07 20.41 11.5 1.3 CEPHALONIA Isl. - W. GREECE 

112 20111204 02:08:28.8 38.09 20.60 0.0 1.1 CEPHALONIA Isl. - W. GREECE 

113 20111205 08:16:03.1 38.11 20.49 14.5 3.9 CEPHALONIA Isl. - W. GREECE 

114 20111205 08:20:40.9 38.11 20.49 16.5 1.9 CEPHALONIA Isl. - W. GREECE 

115 20111205 08:22:53.9 38.11 20.49 17.4 1.8 CEPHALONIA Isl. - W. GREECE 

116 20111205 08:22:54.3 38.19 20.51 17.0 1.7 CEPHALONIA Isl. - W. GREECE 

117 20111205 08:33:43.8 38.07 20.49 14.3 1.8 CEPHALONIA Isl. - W. GREECE 

118 20111205 08:46:56.9 38.10 20.48 14.5 1.9 CEPHALONIA Isl. - W. GREECE 

119 20111205 12:30:28.2 38.11 20.50 16.0 4.6 CEPHALONIA Isl. - W. GREECE 

120 20111205 13:00:27.2 38.09 20.49 14.2 1.5 CEPHALONIA Isl. - W. GREECE 

121 20111205 14:27:49.5 38.12 20.49 17.6 1.7 CEPHALONIA Isl. - W. GREECE 
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Index YYYYMMDD HH MM SS 
LAT 
(N) 

LON 
(E) 

DEPTH 
(km) 

ML LOCATION 

122 20111205 16:17:54.2 38.12 20.51 16.9 1.9 CEPHALONIA Isl. - W. GREECE 

123 20111205 16:20:46.7 38.08 20.50 12.4 1.9 CEPHALONIA Isl. - W. GREECE 

124 20111205 23:29:54.1 38.11 20.50 17.8 1.9 CEPHALONIA Isl. - W. GREECE 

125 20111206 02:20:47.2 38.10 20.48 16.2 2.1 CEPHALONIA Isl. - W. GREECE 

126 20111206 10:18:38.5 38.11 20.60 16.5 2.8 CEPHALONIA Isl. - W. GREECE 

127 20111206 10:42:03.3 38.07 20.62 14.1 1.8 CEPHALONIA Isl. - W. GREECE 

128 20111207 00:50:06.0 38.11 20.50 17.1 1.8 CEPHALONIA Isl. - W. GREECE 

129 20111207 18:23:17.3 37.97 20.55 23.5 2.0 CEPHALONIA Isl. - W. GREECE 

130 20111208 09:09:35.0 37.83 20.39 9.7 2.9 CEPHALONIA Isl. - W. GREECE 

131 20111208 18:51:55.2 37.90 20.91 17.8 2.7 ZAKYNTHOS Isl. - W. GREECE 

132 20111209 00:28:51.7 38.26 20.35 13.2 1.7 CEPHALONIA Isl. - W. GREECE 

133 20111209 19:19:22.9 38.10 20.50 18.0 1.3 CEPHALONIA Isl. - W. GREECE 

134 20111209 20:18:16.5 38.26 20.33 12.4 1.9 CEPHALONIA Isl. - W. GREECE 

135 20111209 22:12:19.8 37.66 19.71 6.0 2.8 Central IONIAN sea - W. GREECE 

136 20111210 00:28:36.1 38.30 20.35 9.7 1.4 CEPHALONIA Isl. - W. GREECE 

137 20111210 02:00:41.8 38.28 20.70 7.2 1.8 CEPHALONIA Isl. - W. GREECE 

138 20111210 16:18:26.8 38.11 20.52 16.9 1.4 CEPHALONIA Isl. - W. GREECE 

139 20111210 18:41:03.7 38.02 20.28 20.5 1.8 Central IONIAN sea - W. GREECE 

140 20111211 15:42:04.9 38.26 20.35 13.7 2.0 CEPHALONIA Isl. - W. GREECE 

141 20111211 21:19:12.3 38.10 20.51 15.8 1.7 CEPHALONIA Isl. - W. GREECE 

142 20111211 21:25:39.8 36.50 21.53 11.3 3.6 SW of PELOPONNESE - SW GREECE 

143 20111211 22:10:52.8 38.11 20.50 15.9 1.7 CEPHALONIA Isl. - W. GREECE 

144 20111211 22:15:41.2 38.10 20.50 15.6 2.3 CEPHALONIA Isl. - W. GREECE 

145 20111211 22:15:41.2 38.10 20.50 15.6 2.3 CEPHALONIA Isl. - W. GREECE 

146 20111212 02:23:24.4 38.32 20.45 12.5 2.2 CEPHALONIA Isl. - W. GREECE 

147 20111212 05:35:42.6 38.27 20.69 11.1 2.5 CEPHALONIA Isl. - W. GREECE 

148 20111212 08:04:52.1 38.29 20.71 7.0 2.3 CEPHALONIA Isl. - W. GREECE 

149 20111212 08:13:39.1 38.27 20.70 11.0 4.1 CEPHALONIA Isl. - W. GREECE 

150 20111212 08:31:34.2 38.27 20.71 2.5 2.3 CEPHALONIA Isl. - W. GREECE 

151 20111212 09:52:29.9 38.24 20.73 10.4 2.1 CEPHALONIA Isl. - W. GREECE 

152 20111212 10:36:31.2 38.28 20.69 4.6 2.2 CEPHALONIA Isl. - W. GREECE 

153 20111212 11:16:08.1 38.26 20.70 7.7 2.1 CEPHALONIA Isl. - W. GREECE 

154 20111212 11:33:24.6 38.27 20.74 4.5 1.9 CEPHALONIA Isl. - W. GREECE 

155 20111212 13:36:31.4 38.28 20.70 3.1 2.2 CEPHALONIA Isl. - W. GREECE 

156 20111212 17:00:03.8 38.28 20.70 8.7 1.6 CEPHALONIA Isl. - W. GREECE 

157 20111212 17:04:49.3 42.91 19.45 7.0 4.9 
    

158 20111212 17:12:06.5 38.25 20.71 18.6 1.9 CEPHALONIA Isl. - W. GREECE 

159 20111212 17:42:16.4 38.29 20.68 10.9 1.6 CEPHALONIA Isl. - W. GREECE 

160 20111212 22:21:48.2 38.01 21.21 16.9 2.6 West PELOPONNESE - SW GREECE 

161 20111213 04:01:06.8 37.98 20.84 8.3 0.0 ZAKYNTHOS Isl. - W. GREECE 

162 20111213 04:59:51.5 38.28 20.69 8.2 1.6 CEPHALONIA Isl. - W. GREECE 

163 20111213 07:29:16.6 38.60 20.61 9.6 2.0 LEFKADA Isl. - W. GREECE 

164 20111213 17:45:40.8 38.34 20.51 21.9 1.5 CEPHALONIA Isl. - W. GREECE 
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165 20111213 19:55:33.8 38.29 20.69 4.6 1.9 CEPHALONIA Isl. - W. GREECE 

166 20111213 19:57:33.3 38.29 20.67 8.2 1.6 CEPHALONIA Isl. - W. GREECE 

167 20111213 20:51:23.8 38.29 20.69 3.8 1.6 CEPHALONIA Isl. - W. GREECE 

168 20111213 22:55:46.5 38.12 20.69 10.4 1.4 CEPHALONIA Isl. - W. GREECE 

169 20111213 23:39:58.3 38.29 20.69 8.3 1.4 CEPHALONIA Isl. - W. GREECE 

170 20111214 00:51:30.3 38.27 20.71 9.4 1.3 CEPHALONIA Isl. - W. GREECE 

171 20111214 11:17:02.7 38.26 20.72 8.0 2.5 CEPHALONIA Isl. - W. GREECE 

172 20111214 11:24:29.9 38.25 20.72 10.5 2.1 CEPHALONIA Isl. - W. GREECE 

173 20111214 20:02:51.4 37.98 20.91 17.7 2.5 ZAKYNTHOS Isl. - W. GREECE 

174 20111215 02:22:49.0 38.11 20.48 15.6 1.7 CEPHALONIA Isl. - W. GREECE 

175 20111215 15:36:37.9 37.52 20.51 5.8 2.8 South IONIAN sea - W. GREECE 

176 20111215 16:08:13.6 38.19 20.46 13.3 1.6 CEPHALONIA Isl. - W. GREECE 

177 20111215 16:18:32.4 38.20 20.45 14.1 2.6 CEPHALONIA Isl. - W. GREECE 

178 20111215 23:24:11.0 38.12 20.52 17.5 2.5 CEPHALONIA Isl. - W. GREECE 

179 20111215 23:25:40.4 38.12 20.50 14.3 1.8 CEPHALONIA Isl. - W. GREECE 

180 20111216 07:05:53.9 37.95 21.13 9.7 2.3 West PELOPONNESE - SW GREECE 

181 20111216 08:11:34.8 38.19 20.66 18.9 1.8 CEPHALONIA Isl. - W. GREECE 

182 20111218 00:58:39.1 38.65 20.56 11.0 3.1 LEFKADA Isl. - W. GREECE 

183 20111218 11:10:14.2 37.42 20.51 14.5 2.1 South IONIAN sea - W. GREECE 

184 20111218 11:42:03.2 38.09 20.50 15.1 1.7 CEPHALONIA Isl. - W. GREECE 

185 20111218 12:18:49.0 38.53 20.50 14.7 2.3 LEFKADA Isl. - W. GREECE 

186 20111219 01:59:23.1 38.28 20.71 3.9 1.5 CEPHALONIA Isl. - W. GREECE 

187 20111219 20:40:16.3 38.17 20.56 16.9 1.4 CEPHALONIA Isl. - W. GREECE 

188 20111219 20:41:59.2 38.13 20.54 15.8 1.7 CEPHALONIA Isl. - W. GREECE 

189 20111220 04:48:58.1 38.31 21.99 22.8 2.7 CORINTHIAKOS Gulf - C. GREECE 

190 20111220 07:13:52.0 38.25 20.28 12.2 1.8 CEPHALONIA Isl. - W. GREECE 

191 20111220 09:18:03.9 38.21 20.40 14.1 1.7 CEPHALONIA Isl. - W. GREECE 

192 20111220 20:15:10.8 38.09 20.42 17.2 2.1 CEPHALONIA Isl. - W. GREECE 

193 20111220 22:05:28.7 38.39 20.46 12.5 2.5 CEPHALONIA Isl. - W. GREECE 

194 20111221 04:04:14.9 38.31 20.44 7.0 1.1 CEPHALONIA Isl. - W. GREECE 

195 20111221 06:01:05.8 38.26 20.43 14.8 1.8 CEPHALONIA Isl. - W. GREECE 

196 20111221 08:22:54.5 37.93 20.94 14.0 3.1 ZAKYNTHOS Isl. - W. GREECE 

197 20111221 12:43:26.6 38.16 20.69 13.9 2.5 CEPHALONIA Isl. - W. GREECE 

198 20111221 17:11:48.0 38.31 20.31 5.2 2.1 CEPHALONIA Isl. - W. GREECE 

199 20111222 15:46:46.5 38.09 20.48 15.8 1.5 CEPHALONIA Isl. - W. GREECE 

200 20111222 22:46:40.3 38.09 20.38 15.6 1.8 CEPHALONIA Isl. - W. GREECE 

201 20111223 16:47:32.5 38.26 20.32 4.7 1.9 CEPHALONIA Isl. - W. GREECE 

202 20111223 17:20:34.4 37.87 21.03 17.3 3.0 Central IONIAN sea - W. GREECE 

203 20111224 13:40:02.4 38.79 20.58 13.6 3.1 LEFKADA Isl. - W. GREECE 

204 20111225 00:23:13.7 38.27 20.67 14.7 2.3 CEPHALONIA Isl. - W. GREECE 

205 20111225 00:27:08.2 38.27 20.68 12.4 1.5 CEPHALONIA Isl. - W. GREECE 

206 20111225 02:22:24.7 38.22 20.43 15.5 2.2 CEPHALONIA Isl. - W. GREECE 

207 20111225 03:57:52.2 38.23 20.43 14.5 2.9 CEPHALONIA Isl. - W. GREECE 
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208 20111225 05:13:03.3 38.19 20.28 10.6 2.2 CEPHALONIA Isl. - W. GREECE 

209 20111225 07:27:02.2 38.26 20.30 4.7 1.8 CEPHALONIA Isl. - W. GREECE 

210 20111225 07:30:20.9 38.27 20.44 12.4 1.4 CEPHALONIA Isl. - W. GREECE 

211 20111225 08:40:33.3 38.26 20.32 3.2 1.8 CEPHALONIA Isl. - W. GREECE 

212 20111225 11:44:44.3 37.99 20.25 10.7 2.2 Central IONIAN sea - W. GREECE 

213 20111226 02:34:44.9 37.92 21.18 19.5 2.1 West PELOPONNESE - SW GREECE 

214 20111226 11:41:33.7 38.12 20.41 14.4 2.1 CEPHALONIA Isl. - W. GREECE 

215 20111226 21:16:39.2 38.53 20.52 14.6 1.8 LEFKADA Isl. - W. GREECE 

216 20111227 10:26:32.2 38.26 20.30 2.9 2.3 CEPHALONIA Isl. - W. GREECE 

217 20111227 21:17:02.1 37.81 20.41 5.4 1.6 ZAKYNTHOS Isl. - W. GREECE 

218 20111228 00:34:34.8 38.11 20.37 7.9 1.7 CEPHALONIA Isl. - W. GREECE 

219 20111228 00:49:46.1 38.27 20.32 8.2 1.0 CEPHALONIA Isl. - W. GREECE 

220 20111228 02:52:57.8 38.22 20.34 14.2 2.0 CEPHALONIA Isl. - W. GREECE 

221 20111228 19:18:09.3 38.02 20.41 11.7 1.5 CEPHALONIA Isl. - W. GREECE 

222 20111229 14:05:02.4 38.14 20.51 10.3 2.0 CEPHALONIA Isl. - W. GREECE 

223 20111229 14:06:23.8 38.23 20.49 1.3 1.6 CEPHALONIA Isl. - W. GREECE 

224 20111229 14:35:18.8 38.11 20.50 6.4 1.5 CEPHALONIA Isl. - W. GREECE 

225 20111229 19:21:54.8 38.20 20.41 7.4 1.3 CEPHALONIA Isl. - W. GREECE 

226 20111230 00:45:39.3 38.23 20.55 1.3 2.1 CEPHALONIA Isl. - W. GREECE 

227 20111230 17:43:59.3 38.17 20.27 10.2 2.1 CEPHALONIA Isl. - W. GREECE 

228 20111230 22:04:29.1 38.28 20.34 4.8 1.5 CEPHALONIA Isl. - W. GREECE 

229 20111231 08:55:25.1 38.39 20.43 13.4 2.3 CEPHALONIA Isl. - W. GREECE 

230 20111231 16:25:33.0 38.28 20.33 8.4 1.8 CEPHALONIA Isl. - W. GREECE 

231 20111231 16:48:28.4 38.25 20.33 9.5 1.6 CEPHALONIA Isl. - W. GREECE 

232 20111231 17:09:51.4 37.99 20.45 6.9 1.5 CEPHALONIA Isl. - W. GREECE 

233 20111231 23:24:12.6 38.05 20.40 18.1 1.6 CEPHALONIA Isl. - W. GREECE 

234 20120101 11:45:58.3 37.55 20.87 3.5 2.6 ZAKYNTHOS Isl. - W. GREECE 

235 20120101 14:35:12.0 38.05 20.77 13.1 1.9 CEPHALONIA Isl. - W. GREECE 

236 20120102 19:29:36.4 38.05 20.52 13.0 1.4 CEPHALONIA Isl. - W. GREECE 

237 20120103 18:19:11.6 38.26 20.73 12.5 1.8 CEPHALONIA Isl. - W. GREECE 

238 20120103 19:43:09.3 38.10 20.49 15.1 1.6 CEPHALONIA Isl. - W. GREECE 

239 20120103 23:11:54.7 38.14 20.55 17.6 1.5 CEPHALONIA Isl. - W. GREECE 

240 20120107 11:04:44.4 38.14 20.35 12.8 1.9 CEPHALONIA Isl. - W. GREECE 

241 20120108 01:29:51.9 38.16 20.51 10.8 1.3 CEPHALONIA Isl. - W. GREECE 

242 20120110 00:42:52.5 38.31 20.55 7.0 1.3 CEPHALONIA Isl. - W. GREECE 

243 20120110 06:46:24.4 38.18 20.38 11.5 1.8 CEPHALONIA Isl. - W. GREECE 

244 20120112 05:16:52.1 38.36 20.46 13.5 1.7 CEPHALONIA Isl. - W. GREECE 

245 20120112 14:47:13.2 38.16 20.59 18.3 2.6 CEPHALONIA Isl. - W. GREECE 

246 20120114 10:00:38.0 38.23 20.42 8.8 1.6 CEPHALONIA Isl. - W. GREECE 

247 20120115 13:10:12.6 38.07 20.39 22.6 2.8 CEPHALONIA Isl. - W. GREECE 

248 20120115 16:03:40.9 38.07 20.64 9.3 2.0 CEPHALONIA Isl. - W. GREECE 

249 20120116 05:34:14.6 38.21 20.36 14.8 2.0 CEPHALONIA Isl. - W. GREECE 

250 20120116 05:59:00.7 38.23 20.32 5.1 2.0 CEPHALONIA Isl. - W. GREECE 
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251 20120116 12:22:44.8 38.22 20.33 6.1 1.8 CEPHALONIA Isl. - W. GREECE 

252 20120116 15:38:58.9 38.22 20.30 5.1 1.9 CEPHALONIA Isl. - W. GREECE 

253 20120117 04:58:47.2 38.20 20.32 2.8 1.5 CEPHALONIA Isl. - W. GREECE 

254 20120117 14:48:50.3 37.48 20.52 18.6 2.7 South IONIAN sea - W. GREECE 

255 20120118 04:48:57.2 38.14 20.34 26.1 1.4 CEPHALONIA Isl. - W. GREECE 

256 20120119 10:39:43.0 38.26 20.70 13.1 1.6 CEPHALONIA Isl. - W. GREECE 

257 20120119 12:50:51.5 38.08 20.77 14.0 2.8 CEPHALONIA Isl. - W. GREECE 

258 20120119 23:46:08.7 38.58 20.46 10.0 2.2 LEFKADA Isl. - W. GREECE 

259 20120120 05:57:35.9 38.23 20.40 20.0 1.5 CEPHALONIA Isl. - W. GREECE 

260 20120120 06:42:16.6 38.16 20.37 12.7 1.6 CEPHALONIA Isl. - W. GREECE 

261 20120120 13:57:17.8 38.25 20.38 14.6 1.6 CEPHALONIA Isl. - W. GREECE 

262 20120120 19:38:17.2 38.38 20.44 7.0 2.2 CEPHALONIA Isl. - W. GREECE 

263 20120121 17:04:01.8 38.14 20.40 19.2 1.4 CEPHALONIA Isl. - W. GREECE 

264 20120121 23:24:23.0 38.14 20.40 18.4 1.3 CEPHALONIA Isl. - W. GREECE 

265 20120122 02:22:48.4 38.11 20.42 12.6 1.5 CEPHALONIA Isl. - W. GREECE 

266 20120122 03:30:13.9 38.35 20.60 4.3 1.8 CEPHALONIA Isl. - W. GREECE 

267 20120123 00:32:18.1 38.70 20.52 4.3 1.9 LEFKADA Isl. - W. GREECE 

268 20120124 11:17:06.3 38.06 20.24 13.4 2.8 Central IONIAN sea - W. GREECE 

269 20120124 20:33:26.9 38.22 20.37 10.9 1.6 CEPHALONIA Isl. - W. GREECE 

270 20120125 16:34:35.9 38.24 20.59 13.6 1.6 CEPHALONIA Isl. - W. GREECE 

271 20120126 15:19:46.2 37.89 21.04 22.3 3.4 Central IONIAN sea - W. GREECE 

272 20120127 13:24:12.8 38.01 20.47 4.5 1.9 CEPHALONIA Isl. - W. GREECE 

273 20120127 22:40:06.6 37.55 20.97 6.9 3.3 W of PELOPONNESE - SW GREECE 

274 20120128 08:16:46.4 38.16 20.40 17.1 2.1 CEPHALONIA Isl. - W. GREECE 

275 20120129 13:45:59.6 37.85 20.96 12.8 2.4 ZAKYNTHOS Isl. - W. GREECE 

276 20120130 07:31:47.4 37.95 21.14 26.6 2.6 West PELOPONNESE - SW GREECE 

277 20120131 07:44:49.2 38.26 20.51 7.8 2.3 CEPHALONIA Isl. - W. GREECE 

278 20120131 16:33:06.4 38.24 20.34 12.6 1.7 CEPHALONIA Isl. - W. GREECE 

279 20120201 20:12:54.8 38.20 20.52 19.8 2.0 CEPHALONIA Isl. - W. GREECE 

280 20120202 01:52:56.0 37.81 21.15 2.0 2.6 West PELOPONNESE - SW GREECE 

281 20120202 21:29:45.9 38.08 20.53 18.5 1.3 CEPHALONIA Isl. - W. GREECE 

282 20120204 01:25:07.2 38.08 20.61 18.6 2.1 CEPHALONIA Isl. - W. GREECE 

283 20120204 06:11:19.5 38.18 20.69 8.3 2.0 CEPHALONIA Isl. - W. GREECE 

284 20120205 05:58:09.6 38.26 20.47 10.1 1.9 CEPHALONIA Isl. - W. GREECE 

285 20120206 03:28:39.0 37.79 20.38 12.7 2.0 Central IONIAN sea - W. GREECE 

286 20120211 15:41:01.8 38.29 20.44 16.3 2.5 CEPHALONIA Isl. - W. GREECE 

287 20120211 23:14:55.8 38.17 20.69 13.3 1.5 CEPHALONIA Isl. - W. GREECE 

288 20120213 23:46:24.5 38.12 20.49 16.4 2.6 CEPHALONIA Isl. - W. GREECE 

289 20120214 09:28:21.1 38.24 20.50 14.4 1.6 CEPHALONIA Isl. - W. GREECE 

290 20120215 08:17:35.4 38.15 20.90 3.7 2.4 Central IONIAN sea - W. GREECE 

291 20120217 03:11:34.0 37.82 20.39 13.3 3.2 Central IONIAN sea - W. GREECE 

292 20120217 03:59:04.6 38.64 21.32 48.1 3.4 Western GREECE 
   

293 20120218 14:02:40.8 38.13 20.82 11.6 3.9 CEPHALONIA Isl. - W. GREECE 
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294 20120218 15:46:13.5 37.75 21.18 14.8 2.7 West PELOPONNESE - SW GREECE 

295 20120218 22:10:17.8 38.35 20.51 15.5 1.4 CEPHALONIA Isl. - W. GREECE 

296 20120219 05:29:00.2 38.12 20.64 16.5 2.1 CEPHALONIA Isl. - W. GREECE 

297 20120219 06:17:03.2 38.41 20.48 11.6 2.0 CEPHALONIA Isl. - W. GREECE 

298 20120219 11:21:37.6 38.26 20.35 14.0 1.8 CEPHALONIA Isl. - W. GREECE 

299 20120220 18:08:35.2 37.71 20.95 14.5 2.6 ZAKYNTHOS Isl. - W. GREECE 

300 20120220 23:15:24.3 38.20 20.56 16.5 1.5 CEPHALONIA Isl. - W. GREECE 

301 20120222 00:01:40.0 38.40 20.50 2.5 1.9 CEPHALONIA Isl. - W. GREECE 

302 20120222 00:25:35.2 38.13 20.83 11.9 2.1 CEPHALONIA Isl. - W. GREECE 

303 20120224 20:13:26.8 38.16 20.62 12.0 2.4 CEPHALONIA Isl. - W. GREECE 

304 20120225 20:46:03.8 38.25 20.40 12.5 2.1 CEPHALONIA Isl. - W. GREECE 

305 20120225 21:19:26.0 38.19 20.48 5.7 1.6 CEPHALONIA Isl. - W. GREECE 

306 20120226 06:17:15.7 38.32 20.40 9.8 0.9 CEPHALONIA Isl. - W. GREECE 

307 20120226 16:53:50.6 38.23 20.56 18.0 1.5 CEPHALONIA Isl. - W. GREECE 

308 20120226 21:18:57.5 38.40 20.45 6.7 1.6 CEPHALONIA Isl. - W. GREECE 

309 20120228 04:39:22.0 37.97 20.88 13.9 2.8 ZAKYNTHOS Isl. - W. GREECE 

310 20120301 18:24:48.8 38.04 20.39 4.8 1.7 CEPHALONIA Isl. - W. GREECE 

311 20120302 02:56:17.2 38.22 20.42 15.3 2.3 CEPHALONIA Isl. - W. GREECE 

312 20120302 19:44:11.6 38.38 20.54 18.0 1.2 CEPHALONIA Isl. - W. GREECE 

313 20120303 07:49:43.3 38.54 21.25 3.2 2.5 Western GREECE 
   

314 20120303 23:04:30.8 38.52 20.48 12.6 1.9 LEFKADA Isl. - W. GREECE 

315 20120304 19:37:17.9 37.60 20.55 13.1 2.6 South IONIAN sea - W. GREECE 

316 20120305 17:46:56.0 38.22 20.66 11.7 2.0 CEPHALONIA Isl. - W. GREECE 

317 20120306 18:52:53.6 38.09 20.47 12.5 2.2 CEPHALONIA Isl. - W. GREECE 

318 20120307 22:50:21.4 37.69 20.89 17.1 2.3 ZAKYNTHOS Isl. - W. GREECE 

319 20120307 22:55:52.0 37.55 20.83 15.9 2.3 ZAKYNTHOS Isl. - W. GREECE 

320 20120307 23:18:02.4 37.67 20.88 23.4 2.1 ZAKYNTHOS Isl. - W. GREECE 

321 20120307 23:30:48.7 37.67 20.89 19.4 2.6 ZAKYNTHOS Isl. - W. GREECE 

322 20120309 17:09:23.0 38.06 20.45 10.5 2.3 CEPHALONIA Isl. - W. GREECE 

323 20120310 03:57:54.6 38.35 20.37 7.3 2.5 CEPHALONIA Isl. - W. GREECE 

324 20120311 07:02:23.0 38.67 20.86 30.9 2.6 LEFKADA Isl. - W. GREECE 

325 20120314 01:13:38.3 38.06 20.43 3.0 1.5 CEPHALONIA Isl. - W. GREECE 

326 20120314 17:34:49.2 38.04 20.55 1.4 1.5 CEPHALONIA Isl. - W. GREECE 

327 20120314 21:44:43.0 37.75 20.13 0.0 2.9 Central IONIAN sea - W. GREECE 

328 20120314 22:17:36.5 38.05 20.70 10.5 1.8 CEPHALONIA Isl. - W. GREECE 

329 20120315 01:07:11.7 38.11 20.48 16.0 1.7 CEPHALONIA Isl. - W. GREECE 

330 20120315 06:26:12.9 38.06 20.37 8.4 1.9 CEPHALONIA Isl. - W. GREECE 

331 20120317 02:36:59.4 37.94 20.93 31.2 2.4 ZAKYNTHOS Isl. - W. GREECE 

332 20120317 22:37:44.6 38.08 20.36 8.5 1.9 CEPHALONIA Isl. - W. GREECE 

333 20120318 13:52:21.8 38.04 20.25 17.5 3.1 Central IONIAN sea - W. GREECE 

334 20120318 14:23:29.5 38.06 20.24 18.5 1.9 Central IONIAN sea - W. GREECE 

335 20120318 17:35:19.6 38.24 20.56 15.9 1.6 CEPHALONIA Isl. - W. GREECE 

336 20120318 18:11:21.9 38.18 20.72 17.2 2.3 CEPHALONIA Isl. - W. GREECE 



226 Appendix E 
 

Index YYYYMMDD HH MM SS 
LAT 
(N) 

LON 
(E) 

DEPTH 
(km) 

ML LOCATION 

337 20120319 15:34:31.2 38.15 20.60 17.2 1.6 CEPHALONIA Isl. - W. GREECE 

338 20120319 19:59:43.6 38.20 20.60 18.6 1.5 CEPHALONIA Isl. - W. GREECE 

339 20120320 02:02:19.0 38.39 20.50 9.1 1.1 CEPHALONIA Isl. - W. GREECE 

340 20120320 16:41:50.3 38.19 20.55 16.8 3.3 CEPHALONIA Isl. - W. GREECE 

341 20120320 16:45:16.9 38.07 20.53 4.3 1.6 CEPHALONIA Isl. - W. GREECE 

342 20120320 16:46:36.9 38.07 20.52 7.0 1.3 CEPHALONIA Isl. - W. GREECE 

343 20120320 16:49:43.7 38.22 20.27 9.1 1.9 CEPHALONIA Isl. - W. GREECE 

344 20120320 16:53:24.1 38.12 20.54 13.7 1.7 CEPHALONIA Isl. - W. GREECE 

345 20120320 18:50:51.6 38.17 20.54 18.5 3.0 CEPHALONIA Isl. - W. GREECE 

346 20120320 19:07:39.0 38.18 20.54 17.1 1.7 CEPHALONIA Isl. - W. GREECE 

347 20120320 19:23:41.1 38.17 20.56 16.8 1.6 CEPHALONIA Isl. - W. GREECE 

348 20120320 19:53:09.7 38.18 20.55 17.6 1.5 CEPHALONIA Isl. - W. GREECE 

349 20120320 20:06:02.8 38.18 20.54 17.1 1.6 CEPHALONIA Isl. - W. GREECE 

350 20120320 21:22:39.6 38.14 20.54 14.7 1.1 CEPHALONIA Isl. - W. GREECE 

351 20120320 22:07:47.6 38.19 20.55 17.3 2.0 CEPHALONIA Isl. - W. GREECE 

352 20120320 22:09:10.7 38.07 20.53 3.9 1.2 CEPHALONIA Isl. - W. GREECE 

353 20120320 22:09:34.0 38.23 20.56 16.4 1.3 CEPHALONIA Isl. - W. GREECE 

354 20120320 23:44:39.9 38.20 20.56 17.4 1.3 CEPHALONIA Isl. - W. GREECE 

355 20120320 23:55:26.6 38.18 20.55 17.2 2.0 CEPHALONIA Isl. - W. GREECE 

356 20120321 00:13:30.4 38.18 20.55 17.3 1.5 CEPHALONIA Isl. - W. GREECE 

357 20120321 00:52:17.3 38.22 20.55 17.4 1.0 CEPHALONIA Isl. - W. GREECE 

358 20120321 00:53:24.1 38.18 20.54 16.0 0.9 CEPHALONIA Isl. - W. GREECE 

359 20120321 02:11:18.0 38.21 20.55 15.7 0.8 CEPHALONIA Isl. - W. GREECE 

360 20120321 22:15:25.8 38.23 20.47 12.3 0.8 CEPHALONIA Isl. - W. GREECE 

361 20120321 22:15:36.0 38.33 20.44 5.0 1.5 CEPHALONIA Isl. - W. GREECE 

362 20120321 22:17:25.8 38.28 20.44 14.9 1.5 CEPHALONIA Isl. - W. GREECE 

363 20120321 22:19:35.4 38.29 20.44 12.5 1.7 CEPHALONIA Isl. - W. GREECE 

364 20120321 22:32:54.1 38.29 20.43 13.2 3.1 CEPHALONIA Isl. - W. GREECE 

365 20120321 22:56:19.6 38.22 20.37 19.2 1.7 CEPHALONIA Isl. - W. GREECE 

366 20120322 02:28:35.2 38.10 20.22 14.8 1.9 Central IONIAN sea - W. GREECE 

367 20120322 02:47:47.4 38.29 20.42 12.3 1.7 CEPHALONIA Isl. - W. GREECE 

368 20120322 03:35:16.3 37.63 20.89 6.6 1.8 ZAKYNTHOS Isl. - W. GREECE 

369 20120323 13:25:06.0 38.42 20.49 14.2 1.5 CEPHALONIA Isl. - W. GREECE 

370 20120323 21:49:14.0 38.06 20.53 4.4 0.9 CEPHALONIA Isl. - W. GREECE 

371 20120323 22:34:37.9 38.18 20.74 18.5 0.4 CEPHALONIA Isl. - W. GREECE 

372 20120324 11:44:09.3 38.13 20.32 9.6 1.5 CEPHALONIA Isl. - W. GREECE 

373 20120324 16:36:14.3 38.12 20.65 18.5 1.6 CEPHALONIA Isl. - W. GREECE 

374 20120324 21:44:50.8 37.71 20.83 14.6 1.9 ZAKYNTHOS Isl. - W. GREECE 

375 20120326 09:01:26.6 38.42 20.50 7.5 1.8 CEPHALONIA Isl. - W. GREECE 

376 20120326 10:04:22.7 38.48 20.57 16.8 2.2 CEPHALONIA Isl. - W. GREECE 

377 20120326 10:07:13.4 38.48 20.60 17.4 1.7 CEPHALONIA Isl. - W. GREECE 

378 20120326 21:47:04.9 38.03 20.68 13.0 1.5 CEPHALONIA Isl. - W. GREECE 

379 20120327 14:33:02.3 38.15 20.65 18.8 2.0 CEPHALONIA Isl. - W. GREECE 
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380 20120328 05:11:34.2 38.24 20.37 5.9 1.5 CEPHALONIA Isl. - W. GREECE 

381 20120328 07:15:00.3 38.40 20.50 9.4 1.4 CEPHALONIA Isl. - W. GREECE 

382 20120328 09:32:52.7 38.11 20.49 15.6 1.5 CEPHALONIA Isl. - W. GREECE 

383 20120328 18:21:15.2 38.12 20.43 15.4 2.1 CEPHALONIA Isl. - W. GREECE 

384 20120328 22:51:44.9 38.10 20.50 13.2 1.5 CEPHALONIA Isl. - W. GREECE 

385 20120328 23:42:27.9 38.16 20.43 37.9 1.4 CEPHALONIA Isl. - W. GREECE 

386 20120330 11:32:41.9 38.25 20.74 12.4 1.7 CEPHALONIA Isl. - W. GREECE 

387 20120330 11:58:09.5 38.27 20.73 13.1 2.6 CEPHALONIA Isl. - W. GREECE 

388 20120330 12:20:32.9 38.26 20.73 12.1 2.7 CEPHALONIA Isl. - W. GREECE 

389 20120331 06:11:59.4 37.90 21.00 12.7 2.5 Central IONIAN sea - W. GREECE 

390 20120331 23:17:26.5 38.06 20.23 14.6 1.9 Central IONIAN sea - W. GREECE 

391 20120401 21:53:08.4 38.27 20.41 12.7 1.4 CEPHALONIA Isl. - W. GREECE 

392 20120401 23:48:49.6 38.18 20.65 18.9 1.9 CEPHALONIA Isl. - W. GREECE 

393 20120402 00:48:37.4 38.23 20.40 16.0 1.6 CEPHALONIA Isl. - W. GREECE 

394 20120402 11:48:32.2 38.20 20.55 17.5 1.6 CEPHALONIA Isl. - W. GREECE 

395 20120402 15:59:47.7 38.30 20.62 17.1 1.8 CEPHALONIA Isl. - W. GREECE 

396 20120402 17:38:17.5 38.24 20.37 3.3 1.1 CEPHALONIA Isl. - W. GREECE 

397 20120402 20:22:41.0 38.25 20.37 0.9 0.9 CEPHALONIA Isl. - W. GREECE 

398 20120402 20:22:54.7 38.24 20.37 0.8 1.1 CEPHALONIA Isl. - W. GREECE 

399 20120402 23:31:16.1 38.45 21.03 16.9 1.9 Western GREECE 
   

400 20120402 23:34:59.7 37.58 20.91 0.7 1.6 ZAKYNTHOS Isl. - W. GREECE 

401 20120402 23:41:57.8 37.99 21.38 14.3 2.4 West PELOPONNESE - SW GREECE 

402 20120403 07:19:53.4 38.25 20.26 8.1 2.3 CEPHALONIA Isl. - W. GREECE 

403 20120404 00:49:31.7 38.09 20.26 13.0 2.1 Central IONIAN sea - W. GREECE 

404 20120405 03:52:29.5 38.26 20.42 16.0 2.2 CEPHALONIA Isl. - W. GREECE 

405 20120406 09:35:07.4 38.20 20.39 15.9 2.1 CEPHALONIA Isl. - W. GREECE 

406 20120406 15:07:46.1 38.20 20.40 15.8 1.7 CEPHALONIA Isl. - W. GREECE 

407 20120406 18:42:49.0 38.22 20.39 16.5 1.4 CEPHALONIA Isl. - W. GREECE 

408 20120406 18:50:24.9 38.15 20.39 13.9 1.2 CEPHALONIA Isl. - W. GREECE 

409 20120406 20:48:17.8 38.26 20.38 17.1 1.4 CEPHALONIA Isl. - W. GREECE 

410 20120406 21:07:11.5 38.21 20.40 15.6 1.6 CEPHALONIA Isl. - W. GREECE 

411 20120406 22:12:27.6 38.24 20.32 10.4 2.0 CEPHALONIA Isl. - W. GREECE 

412 20120406 23:12:11.1 38.25 20.35 8.9 1.5 CEPHALONIA Isl. - W. GREECE 

413 20120407 00:20:25.6 38.39 20.48 14.4 2.0 CEPHALONIA Isl. - W. GREECE 

414 20120407 00:35:33.5 38.24 20.38 15.6 1.4 CEPHALONIA Isl. - W. GREECE 

415 20120407 02:31:22.9 38.27 20.35 4.9 0.9 CEPHALONIA Isl. - W. GREECE 

416 20120407 07:26:41.8 38.23 20.40 14.9 1.4 CEPHALONIA Isl. - W. GREECE 

417 20120407 07:33:08.2 38.13 20.32 15.3 1.6 CEPHALONIA Isl. - W. GREECE 

418 20120407 07:43:01.4 38.21 20.39 15.7 1.6 CEPHALONIA Isl. - W. GREECE 

419 20120407 11:24:25.1 38.20 20.28 13.3 1.1 CEPHALONIA Isl. - W. GREECE 

420 20120407 13:09:56.3 38.22 20.42 18.2 1.4 CEPHALONIA Isl. - W. GREECE 

421 20120407 13:54:26.3 38.37 20.69 17.6 1.5 CEPHALONIA Isl. - W. GREECE 

422 20120407 18:52:02.5 38.17 20.76 13.8 1.6 CEPHALONIA Isl. - W. GREECE 
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423 20120407 19:55:40.4 38.13 20.23 19.9 1.7 Central IONIAN sea - W. GREECE 

424 20120408 06:31:54.5 38.11 20.37 18.3 2.0 CEPHALONIA Isl. - W. GREECE 

425 20120409 07:57:53.0 38.08 20.23 16.3 2.1 Central IONIAN sea - W. GREECE 

426 20120409 18:52:45.6 38.06 20.22 12.4 2.2 Central IONIAN sea - W. GREECE 

427 20120410 00:26:07.1 38.33 20.47 15.2 1.5 CEPHALONIA Isl. - W. GREECE 

428 20120410 00:39:57.1 38.25 20.40 13.5 1.5 CEPHALONIA Isl. - W. GREECE 

429 20120410 02:39:07.1 38.27 20.40 13.2 1.6 CEPHALONIA Isl. - W. GREECE 

430 20120410 02:43:42.1 38.22 20.38 15.1 2.0 CEPHALONIA Isl. - W. GREECE 

431 20120410 09:41:07.8 38.22 20.38 15.6 1.9 CEPHALONIA Isl. - W. GREECE 

432 20120410 13:33:38.7 38.07 20.23 11.4 2.6 Central IONIAN sea - W. GREECE 

433 20120410 13:45:45.0 38.09 20.22 12.4 2.5 Central IONIAN sea - W. GREECE 

434 20120410 14:24:35.8 38.09 20.24 11.9 2.0 Central IONIAN sea - W. GREECE 

435 20120410 14:48:45.1 38.22 20.38 16.4 2.3 CEPHALONIA Isl. - W. GREECE 

436 20120410 14:53:55.4 38.22 20.40 15.8 1.9 CEPHALONIA Isl. - W. GREECE 

437 20120410 15:21:50.9 38.21 20.39 16.2 1.6 CEPHALONIA Isl. - W. GREECE 

438 20120410 15:33:16.7 38.23 20.39 15.6 2.7 CEPHALONIA Isl. - W. GREECE 

439 20120410 17:43:23.1 38.08 20.23 13.9 2.6 Central IONIAN sea - W. GREECE 

440 20120410 18:29:54.6 38.27 20.40 12.5 1.4 CEPHALONIA Isl. - W. GREECE 

441 20120410 19:07:47.9 38.28 20.41 9.8 1.3 CEPHALONIA Isl. - W. GREECE 

442 20120410 21:55:35.7 38.52 20.55 11.8 2.2 LEFKADA Isl. - W. GREECE 

443 20120410 23:50:49.4 38.21 20.37 16.4 2.0 CEPHALONIA Isl. - W. GREECE 

444 20120410 23:54:23.0 38.20 20.38 16.8 1.8 CEPHALONIA Isl. - W. GREECE 

445 20120411 00:09:02.8 38.09 20.23 12.3 2.3 Central IONIAN sea - W. GREECE 

446 20120411 07:52:19.4 38.21 20.39 15.7 1.7 CEPHALONIA Isl. - W. GREECE 

447 20120411 15:30:59.9 38.20 20.39 17.2 2.1 CEPHALONIA Isl. - W. GREECE 

448 20120411 17:03:01.9 38.28 20.40 11.6 1.5 CEPHALONIA Isl. - W. GREECE 

449 20120411 22:08:08.7 38.21 20.40 15.8 1.7 CEPHALONIA Isl. - W. GREECE 

450 20120413 00:27:04.6 38.21 20.38 17.3 1.3 CEPHALONIA Isl. - W. GREECE 

451 20120413 02:51:10.9 38.08 20.41 16.5 2.0 CEPHALONIA Isl. - W. GREECE 

452 20120413 03:46:36.0 38.08 20.25 12.8 1.7 Central IONIAN sea - W. GREECE 

453 20120413 04:03:40.1 38.21 20.38 17.3 2.4 CEPHALONIA Isl. - W. GREECE 

454 20120413 06:58:03.8 38.11 20.36 15.2 1.5 CEPHALONIA Isl. - W. GREECE 

455 20120413 16:28:39.5 38.20 20.39 16.0 1.8 CEPHALONIA Isl. - W. GREECE 

456 20120415 13:25:43.3 38.22 20.34 16.0 2.4 CEPHALONIA Isl. - W. GREECE 

457 20120415 22:19:04.9 38.42 20.61 13.1 2.1 CEPHALONIA Isl. - W. GREECE 

458 20120416 00:33:17.0 38.24 20.59 17.4 1.8 CEPHALONIA Isl. - W. GREECE 

459 20120416 15:46:38.5 38.24 20.40 6.6 1.7 CEPHALONIA Isl. - W. GREECE 

460 20120416 20:53:52.3 38.34 20.66 9.1 1.8 CEPHALONIA Isl. - W. GREECE 

461 20120417 06:50:17.0 38.43 20.49 1.5 1.9 CEPHALONIA Isl. - W. GREECE 
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E.2 Catalogue of Events that are Not Re-localized (Repi >80 km) 
 

Index YYYYMMDD HH MM SS LAT(N) LON(E) DEPTH(km) ML 

1 20110922 00:41:48.1 38.23 22.22 54.0 2.5 

2 20110922 03:11:01.3 37.20 22.02 10.0 3.1 

3 20110922 21:31:47.7 37.18 22.01 14.0 3.2 

4 20110923 20:59:43.0 40.55 21.43 24.0 3.8 

5 20110924 13:10:21.1 38.32 21.80 18.0 2.9 

6 20111004 09:26:28.3 39.18 21.60 20.0 4.3 

7 20111009 18:42:20.4 37.78 21.43 17.0 3.3 

8 20111010 13:22:31.7 38.89 20.28 27.0 3.2 

9 20111010 19:07:00.5 37.19 22.04 11.0 4.5 

10 20111011 01:10:08.8 37.19 22.01 15.0 3.7 

11 20111013 12:43:50.2 38.01 21.68 19.0 1.8 

12 20111014 20:12:44.6 37.17 22.04 7.0 3.3 

13 20111015 01:13:19.1 37.19 22.01 8.0 2.4 

14 20111015 22:06:38.3 37.17 22.07 13.0 3.7 

15 20111017 10:00:04.4 38.89 20.62 37.0 3.1 

16 20111019 19:39:10.5 39.26 20.83 9.0 3.7 

17 20111019 20:49:34.1 37.34 20.81 25.0 2.6 

18 20111019 23:19:39.4 37.18 22.06 3.0 3.0 

19 20111020 17:24:08.4 39.79 20.45 20.0 3.1 

20 20111020 17:50:08.2 38.21 21.65 10.0 1.9 

21 20111020 22:35:23.2 38.20 21.65 23.0 2.0 

22 20111023 10:41:23.4 38.78 43.40 10.0 7.2 

23 20111023 17:51:15.9 37.08 21.54 36.0 3.4 

24 20111023 20:45:37.4 38.64 43.22 10.0 6.0 

25 20111024 14:31:15.8 38.76 21.84 5.0 3.4 

26 20111026 19:11:46.2 37.24 22.04 2.0 3.3 

27 20111027 03:23:11.8 39.01 19.73 31.0 2.7 

28 20111028 03:41:13.5 37.14 21.07 9.0 3.3 

29 20111028 08:01:52.6 37.54 20.65 25.0 2.2 

30 20111028 16:22:16.5 37.23 20.41 22.0 2.2 

31 20111029 14:07:18.6 37.08 20.95 15.0 2.6 

32 20111031 17:49:51.9 37.39 20.52 25.0 1.8 

33 20111101 00:21:38.0 38.22 21.96 12.0 2.6 

34 20111101 13:01:44.6 37.85 22.15 63.0 2.6 

35 20111103 19:34:54.5 37.89 22.01 22.0 3.4 

36 20111104 19:58:41.6 37.80 22.06 23.0 2.9 

37 20111105 05:10:41.7 38.01 21.66 27.0 2.5 

38 20111106 03:18:31.4 39.16 20.62 12.0 2.7 

39 20111107 18:51:01.4 37.42 20.87 9.0 2.4 

40 20111108 14:49:36.5 38.96 21.19 13.0 2.5 

41 20111108 20:41:48.0 39.22 19.53 36.0 2.7 
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42 20111110 00:36:12.7 37.66 21.75 15.0 2.7 

43 20111110 17:25:39.6 38.42 21.83 19.0 4.6 

44 20111112 18:28:08.9 37.23 22.00 12.0 3.8 

45 20111113 22:24:34.8 38.12 22.04 53.0 2.9 

46 20111115 00:28:36.0 37.55 21.83 19.0 3.1 

47 20111115 11:39:38.6 37.33 20.84 26.0 2.9 

48 20111116 03:53:02.1 37.33 20.53 9.0 2.0 

49 20111116 04:43:27.0 37.70 21.44 18.0 2.1 

50 20111116 07:08:05.5 38.11 21.54 24.0 3.3 

51 20111116 07:09:47.0 38.11 21.55 21.0 2.7 

52 20111116 08:20:39.2 38.12 21.52 23.0 3.0 

53 20111117 00:04:17.8 37.60 21.51 24.0 2.4 

54 20111117 03:45:52.2 38.02 21.97 22.0 2.6 

55 20111118 17:39:40.7 38.85 43.87 2.0 5.0 

56 20111118 19:23:55.7 38.51 21.53 16.0 3.0 

57 20111118 19:51:12.6 37.03 21.15 29.0 3.0 

58 20111118 20:43:46.9 39.50 20.66 23.0 2.7 

59 20111120 04:05:52.6 37.14 21.04 19.0 2.5 

60 20111120 05:13:30.6 37.28 21.93 7.0 2.2 

61 20111120 06:26:01.4 39.49 20.63 10.0 2.7 

62 20111120 07:08:36.6 37.14 20.95 14.0 2.5 

63 20111120 07:13:52.8 37.18 21.10 13.0 2.2 

64 20111120 07:38:01.0 37.10 21.02 15.0 2.3 

65 20111120 22:14:14.0 38.17 22.56 21.0 3.5 

66 20111123 12:17:50.7 34.20 25.09 10.0 5.5 

67 20111123 20:29:45.9 37.14 22.08 16.0 3.7 

68 20111124 04:09:23.0 39.40 19.81 36.0 3.6 

69 20111126 16:41:22.6 38.34 21.80 18.0 3.4 

70 20111127 11:17:38.3 38.93 19.75 26.0 2.5 

71 20111127 15:09:13.4 38.34 21.79 18.0 3.4 

72 20111127 21:00:23.7 37.82 21.89 25.0 3.2 

73 20111127 21:12:35.0 37.81 21.88 22.0 2.7 

74 20111128 12:13:07.6 38.78 19.69 24.0 2.8 

75 20111128 15:01:45.4 37.97 21.52 27.0 3.1 

76 20111128 15:10:19.8 37.95 21.51 25.0 2.5 

77 20111129 16:55:58.0 37.58 24.00 158.0 4.1 

78 20111129 16:55:57.1 37.56 24.05 161.0 3.9 

79 20111130 18:36:47.5 37.23 21.99 14.0 3.0 

80 20111130 20:07:29.6 37.24 21.99 15.0 2.8 

81 20111130 20:10:19.6 37.32 22.37 17.0 3.2 

82 20111130 21:46:10.1 37.25 21.99 11.0 3.0 

83 20111201 06:44:33.1 37.26 21.97 8.0 2.8 

84 20111202 11:53:28.7 38.35 21.78 20.0 3.0 
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85 20111202 20:25:06.1 37.26 22.02 3.0 2.8 

86 20111202 20:56:25.0 37.21 22.01 14.0 2.5 

87 20111203 04:21:23.6 39.23 21.50 23.0 2.4 

88 20111203 20:18:47.8 38.36 21.80 18.0 3.3 

89 20111203 21:53:25.1 39.32 20.30 14.0 2.0 

90 20111203 22:14:36.8 37.50 19.97 34.0 2.6 

91 20111205 01:18:02.4 38.07 21.57 13.0 2.3 

92 20111205 03:59:38.6 37.91 21.47 29.0 2.3 

93 20111205 04:22:26.8 37.90 21.45 22.0 2.9 

94 20111209 07:18:55.8 38.37 21.85 12.0 3.1 

95 20111209 22:32:53.6 38.02 21.68 28.0 3.1 

96 20111211 15:46:33.6 39.73 20.41 14.0 2.9 

97 20111211 20:25:31.1 38.39 21.86 12.0 2.6 

98 20111212 17:04:43.5 43.29 19.28 3.0 4.5 

99 20111212 18:06:20.5 38.35 21.68 15.0 1.3 

100 20111215 00:07:42.8 37.51 19.85 14.0 3.1 

101 20111215 05:34:52.0 37.98 22.00 16.0 2.5 

102 20111215 06:43:58.0 38.55 21.36 9.0 2.7 

103 20111215 17:05:49.1 36.98 20.43 20.0 2.7 

104 20111217 04:01:12.3 37.32 20.86 27.0 2.3 

105 20111218 15:01:03.0 36.02 12.98 10.0 4.7 

106 20111218 19:54:04.7 38.34 21.83 12.0 2.6 

107 20111219 20:05:47.9 37.67 21.74 16.0 2.8 

108 20111219 20:24:21.4 38.41 21.92 12.0 2.4 

109 20111220 02:47:47.3 38.34 22.05 9.0 2.4 

110 20111220 04:47:54.0 38.35 22.04 14.0 3.3 

111 20111220 13:30:19.2 40.18 20.68 14.0 3.3 

112 20111221 02:39:28.8 40.10 19.65 2.0 3.0 

113 20111221 04:02:31.9 39.44 21.01 8.0 2.6 

114 20111221 07:22:59.7 39.95 20.66 5.0 2.9 

115 20111221 09:01:21.8 37.70 21.41 19.0 2.9 

116 20111221 09:43:47.2 35.86 25.89 117.0 4.2 

117 20111222 04:49:29.9 36.97 21.55 18.0 3.2 

118 20111222 23:26:17.6 41.77 19.17 15.0 3.8 

119 20111223 14:14:48.1 38.09 22.15 56.0 3.4 

120 20111224 14:51:10.1 38.52 21.66 20.0 2.6 

121 20111225 14:02:18.7 37.51 20.20 19.0 2.3 

122 20111226 13:50:44.7 38.38 21.88 10.0 2.5 

123 20111226 14:36:45.0 38.38 21.87 9.0 2.6 

124 20111226 19:06:03.1 39.34 21.90 24.0 2.8 

125 20111226 19:19:57.3 38.26 21.64 26.0 1.9 

126 20111228 01:27:20.3 37.07 20.47 24.0 3.1 

127 20111228 18:53:21.2 37.83 21.39 24.0 1.7 
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Index YYYYMMDD HH MM SS LAT(N) LON(E) DEPTH(km) ML 

128 20111229 15:19:35.3 38.34 22.03 14.0 4.0 

129 20111230 01:02:39.4 37.99 21.51 25.0 2.8 

130 20111230 02:09:46.1 38.87 21.23 23.0 2.5 

131 20111230 20:50:40.3 40.74 27.38 27.0 2.4 

132 20120101 19:19:15.6 39.36 20.87 21.0 2.7 

133 20120102 01:52:59.4 38.81 21.14 20.0 2.4 

134 20120102 02:52:19.9 38.81 21.14 22.0 2.3 

135 20120102 08:59:37.9 37.85 21.40 25.0 2.6 

136 20120102 18:43:15.0 38.31 22.03 11.0 2.7 

137 20120103 01:19:48.4 37.40 21.09 12.0 2.4 

138 20120104 03:08:18.3 37.94 21.69 28.0 3.2 

139 20120105 20:25:49.3 38.99 22.26 22.0 3.7 

140 20120105 22:59:15.0 37.25 20.50 23.0 2.6 

141 20120107 23:00:09.8 38.58 21.71 17.0 3.6 

142 20120108 03:07:24.3 37.37 20.75 29.0 2.2 

143 20120109 00:59:02.8 37.51 21.26 24.0 2.2 

144 20120109 16:44:24.4 37.50 20.86 15.0 2.1 

145 20120109 21:57:21.1 39.16 21.91 23.0 3.0 

146 20120110 13:31:08.5 38.03 21.93 27.0 2.7 

147 20120112 18:38:47.4 39.31 20.29 8.0 2.5 

148 20120112 22:10:59.6 39.30 20.30 8.0 2.3 

149 20120113 10:33:41.5 39.27 20.27 7.0 2.7 

150 20120113 12:31:23.2 39.29 20.30 6.0 2.7 

151 20120114 19:40:19.4 37.59 21.34 18.0 2.5 

152 20120116 04:01:15.8 34.78 25.85 23.0 1.5 

153 20120116 10:05:56.9 37.61 20.93 18.0 2.5 

154 20120116 10:18:23.7 38.15 21.63 23.0 3.0 

155 20120117 08:14:45.3 40.20 19.65 10.0 3.2 

156 20120118 19:49:23.2 38.95 22.46 24.0 3.5 

157 20120120 00:44:22.2 37.36 20.35 9.0 2.3 

158 20120120 14:09:18.2 38.12 21.94 26.0 2.7 

159 20120121 01:55:01.5 38.38 21.86 17.0 3.1 

160 20120121 19:24:52.8 38.36 22.09 11.0 3.1 

161 20120122 04:28:34.9 39.07 21.93 20.0 3.4 

162 20120122 12:58:49.3 35.63 26.88 23.0 3.3 

163 20120122 21:40:41.7 37.78 21.28 18.0 2.1 

164 20120124 21:40:27.9 36.78 21.72 22.0 4.0 

165 20120125 00:44:17.7 37.35 20.89 29.0 2.1 

166 20120125 07:49:41.2 38.18 21.71 23.0 3.1 

167 20120125 13:34:33.2 36.79 21.74 21.0 3.7 

168 20120126 04:24:58.3 36.06 25.07 29.0 5.3 

169 20120127 01:33:23.4 36.06 25.13 31.0 5.2 

170 20120127 01:40:58.3 38.97 21.85 21.0 3.9 
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Index YYYYMMDD HH MM SS LAT(N) LON(E) DEPTH(km) ML 

171 20120128 11:47:20.7 37.39 20.44 15.0 3.1 

172 20120129 21:25:41.8 36.66 21.41 14.0 3.1 

173 20120130 03:46:27.3 36.41 21.09 18.0 3.1 

174 20120201 09:37:42.9 40.16 24.06 20.0 2.1 

175 20120203 13:22:38.5 39.19 20.60 12.0 3.7 

176 20120205 16:08:13.4 38.18 21.71 22.0 3.1 

177 20120205 16:11:25.8 38.18 21.73 22.0 3.1 

178 20120211 04:47:07.0 37.71 21.41 13.0 3.1 

179 20120211 14:03:47.5 37.37 20.73 27.0 2.4 

180 20120213 18:39:22.4 37.19 22.00 8.0 3.2 

181 20120214 01:34:38.7 40.13 24.09 24.0 5.0 

182 20120214 12:08:12.3 40.11 24.06 24.0 3.5 

183 20120217 03:39:35.1 40.12 24.03 17.0 2.1 

184 20120217 06:55:56.6 40.16 24.01 14.0 2.2 

185 20120217 08:05:04.3 37.87 23.02 17.0 4.2 

186 20120218 01:57:40.2 37.54 21.89 21.0 3.5 

187 20120219 15:06:03.2 38.88 21.19 19.0 3.0 

188 20120220 08:46:36.8 37.19 20.29 16.0 3.2 

189 20120225 21:48:32.6 37.42 20.71 13.0 1.9 

190 20120226 00:58:04.0 36.30 21.52 30.0 2.3 

191 20120226 16:17:06.4 38.32 22.08 7.0 1.7 

192 20120302 00:53:14.4 38.27 21.63 23.0 1.9 

193 20120302 15:53:21.0 37.03 21.07 17.0 2.6 

194 20120304 01:15:43.3 38.27 21.62 27.0 2.8 

195 20120304 03:31:07.8 40.13 24.05 24.0 5.0 

196 20120304 05:35:32.9 38.26 21.64 28.0 2.2 

197 20120304 14:43:59.4 40.16 24.00 18.0 2.1 

198 20120305 16:37:36.4 38.26 21.63 27.0 2.2 

199 20120305 21:43:41.1 38.25 21.64 28.0 1.9 

200 20120305 22:01:15.5 38.28 23.44 20.0 1.0 

201 20120306 20:40:06.7 38.27 21.62 25.0 2.6 

202 20120307 06:42:44.8 38.27 21.62 23.0 2.3 

203 20120307 21:51:36.9 38.27 21.63 24.0 2.5 

204 20120308 03:55:50.8 38.12 23.72 18.0 2.5 

205 20120308 18:54:24.2 38.70 21.32 17.0 3.4 

206 20120308 19:30:47.9 38.69 21.30 19.0 3.0 

207 20120308 19:39:27.8 38.69 21.26 21.0 3.2 

208 20120309 07:09:53.6 19.10 169.71 29.0 6.7 

209 20120309 20:29:51.8 38.69 21.29 17.0 3.1 

210 20120309 22:12:25.1 38.27 21.64 24.0 2.4 

211 20120311 16:30:44.2 38.26 21.65 20.0 2.6 

212 20120313 10:59:36.8 38.60 21.72 17.0 3.8 

213 20120313 22:54:18.8 38.15 22.61 13.0 1.7 
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214 20120314 09:08:35.0 40.95 144.91 10.0 6.9 

215 20120314 09:13:08.0 38.62 21.70 18.0 3.3 

216 20120314 16:35:30.3 38.26 21.63 25.0 2.6 

217 20120315 05:40:58.1 38.69 21.30 15.0 4.4 

218 20120318 04:44:37.8 38.25 21.67 26.0 1.8 

219 20120320 01:46:44.2 35.24 23.93 41.0 3.6 

220 20120320 18:02:49.6 16.69 98.24 19.0 7.4 

221 20120320 23:51:09.2 36.05 24.40 67.0 4.6 

222 20120321 05:50:47.7 38.61 21.71 16.0 3.8 

223 20120322 00:38:12.1 35.49 26.10 30.0 4.1 

224 20120324 05:55:09.4 35.92 24.05 44.0 3.9 

225 20120326 01:14:49.7 37.76 23.60 19.0 1.1 

226 20120326 03:00:17.6 41.78 19.31 10.0 4.7 

227 20120328 02:32:33.0 38.38 21.76 16.0 2.0 

228 20120328 06:05:33.0 34.54 25.47 0.0 2.4 

229 20120328 17:21:50.1 36.56 21.43 5.0 3.0 

230 20120328 19:47:22.3 38.42 21.83 18.0 3.6 

231 20120328 23:17:04.8 38.55 15.04 243.0 4.0 

232 20120329 13:14:01.2 39.98 19.61 13.0 2.9 

233 20120329 20:44:30.6 38.27 22.15 11.0 2.6 

234 20120401 22:13:17.6 39.20 20.80 18.0 3.1 

235 20120402 00:04:10.0 38.51 15.79 98.0 3.1 

236 20120402 23:36:52.1 38.02 21.38 15.0 1.9 

237 20120403 19:54:30.1 38.17 21.72 25.0 2.9 

238 20120404 01:45:30.6 38.07 21.58 19.0 3.4 

239 20120404 02:34:51.3 38.24 21.67 19.0 2.2 

240 20120409 23:10:09.5 38.07 21.56 17.0 2.8 

241 20120411 06:18:51.9 39.67 20.40 9.0 3.7 

242 20120411 06:21:33.9 39.67 20.35 12.0 3.2 

243 20120411 08:38:35.9 2.37 93.17 10.0 8.6 

244 20120411 10:43:09.3 0.81 92.45 10.0 8.0 

245 20120411 22:55:11.2 18.29 102.74 20.0 6.7 

246 20120412 20:07:01.6 36.97 22.07 13.0 3.4 

247 20120412 22:55:08.7 37.72 21.26 29.0 2.7 

248 20120412 23:01:42.3 37.79 21.32 27.0 2.5 

249 20120412 23:04:31.4 37.77 21.30 28.0 2.8 

250 20120412 23:19:12.9 37.78 21.30 28.0 2.3 

251 20120413 21:31:06.3 36.90 20.61 17.0 2.9 

252 20120416 03:19:47.8 38.30 22.13 15.0 2.9 

253 20120416 08:40:22.2 38.30 22.14 17.0 3.6 

254 20120416 11:23:42.4 36.66 21.54 33.0 5.2 

255 20120416 12:02:16.1 36.62 21.65 36.0 4.2 

256 20120416 12:47:57.8 38.30 22.13 10.0 3.0 



235 Appendix E 
 

 

Index YYYYMMDD HH MM SS LAT(N) LON(E) DEPTH(km) ML 

257 20120416 15:06:54.4 36.66 21.67 34.0 4.4 

258 20120417 00:41:11.4 37.77 21.32 28.0 2.1 
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Appendix F 

List of Selected Subset of 46 Events 

F.1 List of event parameters calculated with respect to station A00 
 

List of the selected subset of events used for MUSIQUE and Coherency analyses are 

given. The table below presents the information: (1) event index, (2) origin date and 

time, (3) Latitude, (4) Longitude, (5) peak ground velocity, (6) magnitude as MW or ML, 

(7) hypocentral depth, (8) epicentral distance, (9) hypocentral distance, and (10) back-

azimuth. The event parameters given in column no. 5 to 10 are calculated with respect 

to the station A00. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Indx 
YYYYMMDD_ 

HHMMSS 
Lat 

(deg) 
Lon 

(deg) 
PGV 

(m/s) 
MWL 

H 
(km) 

Repi 
(km) 

Rhyp 
(km) 

Baz 
(deg. 

N) 

1 20110922_151509 38.147 20.391 0.00271 3.3 17.6 10.2 20.3 260 

2 20110924_030834 38.339 19.684 0.00005 3.0 7.0 74.5 74.8 285 

3 20110924_154912 37.478 19.736 0.00004 3.1 14.4 101.9 102.9 222 

4 20110928_074045 38.072 20.404 0.00299 3.5 16.9 13.5 21.6 221 

5 20110930_003052 38.276 20.361 0.00033 2.0 4.6 17.8 18.4 315 

6 20111008_032445 38.62 20.582 0.00003 2.8 6.1 51.1 51.5 7 

7 20111008_205900 38.339 19.748 0.00003 2.8 14.8 69.1 70.7 287 

8 20111009_184220 37.78 21.43 0.00006 3.3 
17.0

0 
91.7 93.3 117 

9 20111010_025743 38.316 20.41 0.00086 2.8 13.7 18.9 23.3 334 

10 20111010_190700 37.19 22.04 0.00029 4.5 11.0 173.2 173.5 128 

11 20111012_045443 38.089 20.358 0.00010 2.3 2.2 15.3 15.5 238 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Indx 
YYYYMMDD_ 

HHMMSS 
Lat 

(deg) 
Lon 

(deg) 
PGV 

(m/s) 
MWL 

H 
(km) 

Repi 
(km) 

Rhyp 
(km) 

Baz 
(deg. 

N) 

12 20111014_011132 37.974 20.84 0.00041 3.5 11.9 36.1 38.0 126 

13 20111016_100137 38.191 20.357 0.00017 2.7 17.6 13.4 22.1 283 

14 20111017_100004 38.89 20.62 0.00008 3.1 37.0 81.3 89.3 7 

15 20111020_061820 38.108 20.578 0.00367 3.4 16.5 8.8 18.7 134 

16 20111020_073537 38.04 20.431 0.00013 2.8 9.2 15.2 17.7 206 

17 20111020_204020 38.094 20.573 0.00003 2.2 16.5 9.7 19.1 14 

18 20111025_223304 38.01 20.849 0.00117 4.1 13.9 34.6 37.3 119 

19 20111031_072250 38.219 20.509 0.00014 2.6 0.1 6.2 6.2 3 

20 20111031_204035 38.062 20.397 0.00014 2.8 13.1 14.7 19.7 220 

21 20111110_172539 38.42 21.83 0.00101 4.6 19.0 119.3 120.8 76 

22 20111110_231028 38.749 20.499 0.00001 2.7 2.9 65.0 65.1 360 

23 20111112_045148 37.465 20.488 0.00002 2.5 0.5 77.5 77.5 181 

24 20111115_141004 37.693 20.858 0.00042 3.7 16.8 60.7 63.0 149 

25 20111124_040923 39.4 19.81 0.00007 3.6 36.0 149.1 154.3 336 

26 20111128_032308 38.093 20.517 0.00117 3.2 16.5 7.9 18.3 173 

27 20111208_090935 37.825 20.392 0.00011 2.9 9.7 38.9 40.0 195 

28 20111215_000742 37.51 19.85 0.00006 3.1 14.0 92.7 93.7 219 

29 20111215_170549 36.98 20.43 0.00002 2.7 20.0 131.5 133.0 183 

30 20120119_234608 38.578 20.456 0.00003 2.2 10.0 46.2 47.3 355 

31 20120214_132143 37.7 20.77 0.00227 4.3 13.0 56.4 57.9 156 

32 20120303_230430 38.524 20.477 0.00002 1.9 12.6 40.1 42.0 356 



238 Appendix F 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Indx 
YYYYMMDD_ 

HHMMSS 
Lat 

(deg) 
Lon 

(deg) 
PGV 

(m/s) 
MWL 

H 
(km) 

Repi 
(km) 

Rhyp 
(km) 

Baz 
(deg. 

N) 

33 20120314_214443 37.752 20.13 0.00005 2.9 0.0 56.3 56.3 216 

34 20120315_054058 38.69 21.3 0.00043 4.4 15.0 90.7 92.0 50 

35 20120317_023659 37.942 20.925 0.00003 2.4 31.2 44.3 54.2 124 

36 20120320_185051 38.171 20.54 0.00343 3.0 18.5 3.1 18.8 74 

37 20120321_055047 38.61 21.71 0.00017 3.8 16.0 116.3 117.4 64 

38 20120327_143302 38.154 20.654 0.00003 2.0 18.8 13.1 22.9 95 

39 20120404_014530 38.07 21.58 0.00008 3.4 19.0 94.8 96.7 96 

40 20120410_134545 38.086 20.224 0.00007 2.5 12.4 26.1 28.9 251 

41 20120410_215535 38.521 20.552 0.00002 2.2 11.8 39.9 41.6 6 

42 20120411_061851 39.67 20.4 0.00005 3.7 9.0 167.5 167.8 357 

43 20120415_132543 38.223 20.335 0.00008 2.4 16.0 16.3 22.9 294 

44 20120415_221904 38.416 20.611 0.00002 2.1 13.1 29.5 32.3 18 

45 20120416_084022 38.3 22.14 0.00007 3.6 17.0 143.9 144.9 83 

46 20120416_112342 36.66 21.54 0.00144 5.2 33.0 190.3 193.2 151 
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F.2 List of event parameters used for MUSIQUE and Coherency analyses 
 

List of the parameters of the subset of events used for MUSIQUE and Coherency 

analyses are given. The table below presents the information: (1) event index, (2) origin 

date and time, (3) begin time (4) end time and (5) duration of the window for MUSIQUE 

analysis, (6) missing stations of Array A, (7) if the event was analyzed for Array B: 

Yes/NA , (8) missing stations of Array B, (9) begin time (10) end time and (11) duration 

of the window for Coherency analysis, (12) which rock station was considered for 

window selection, (13) number of pairs available for Array A.  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Indx 
YYYYMMD

D_ 
HHMMSS 

MUSIQUE ANALYSIS COHERENCY ANALYSIS 

TW-
M1 
(s) 

TW
-M2 
(s) 

TM 
(s) 

Missing  
Array A 
Stations 

Array-B 

Analyzed 

Missing 
Array B 
Stations 

TW-C1 
(s) 

TW-C2 
(s) 

TS (s) Rock 

Nb. of 
Pairs 
Array 

A 

1 
20110922_
151509 

63 93 30 - NA NA 65.94 66.83 0.89 R02 210 

2 
20110924_
030834 

72 140 68 - Yes B01, B09 81.70 85.33 3.63 R02 210 

3 
20110924_
154912 

77 150 73 - Yes B01, B09 89.42 98.09 8.67 R02 210 

4 
20110928_
074045 

63 90 27 - Yes - 66.41 67.93 1.52 R02 210 

5 
20110930_
003052 

63 90 27 - Yes - 66.47 67.00 0.54 R02 210 

6 
20111008_
032445 

69 120 51 A02 Yes - 76.30 79.32 3.01 R02 190 

7 
20111008_
205900 

72 130 58 A02 Yes - 80.48 85.00 4.51 R02 190 

8 
20111009_
184220 

76 150 74 - Yes - 89.08 94.95 5.88 R02 210 

9 
20111010_
025743 

64 90 26 - Yes - 66.92 67.79 0.88 R02 210 

10 
20111010_
190700 

89 220 131 - Yes - 112.56 125.72 13.16 R02 210 

11 
20111012_
045443 

62 80 18 A01 Yes B06 64.77 67.48 2.71 R02 190 

12 
20111014_
011132 

66 110 44 A11 Yes - 71.93 73.97 2.04 R02 190 

13 
20111016_
100137 

63 93 30 A11 Yes B04 66.52 67.94 1.43 R02 190 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Indx 
YYYYMMD

D_ 
HHMMSS 

MUSIQUE ANALYSIS COHERENCY ANALYSIS 

TW-
M1 
(s) 

TW
-M2 
(s) 

TM 
(s) 

Missing  
Array A 
Stations 

Array-B 

Analyzed 

Missing 
Array B 
Stations 

TW-C1 
(s) 

TW-C2 
(s) 

TS (s) Rock 

Nb. of 
Pairs 
Array 

A 

14 
20111017_
100004 

75 130 55 A07 NA NA 85.11 92.33 7.22 R02 190 

15 
20111020_
061820 

63 83 20 
A11, A15, 

A18 
NA NA 65.34 66.31 0.97 R02 153 

16 
20111020_
073537 

63 88 25 
A11, A15, 

A18 
NA NA 65.70 67.40 1.70 R02 153 

17 
20111020_
204020 

63 78 15 
A11, A15, 
A18, A20 

NA NA 65.47 66.63 1.16 R02 136 

18 
20111025_
223304 

66 116 50 A08, A20 NA NA 71.63 73.76 2.13 R02 171 

19 
20111031_
072250 

61 81 20 A07, A20 NA NA 61.61 63.16 1.55 R02 171 

20 
20111031_
204035 

63 88 25 A07, A20 NA NA 66.07 67.11 1.04 R02 171 

21 
20111110_
172539 

79 179 100 A07 Yes 
B03, B04, 
B07, B08, 

B10 
96.62 104.68 8.06 R02 190 

22 
20111110_
231028 

73 120 47 A07, A20 NA NA 79.73 86.25 6.52 R02 171 

23 
20111112_
045148 

75 120 45 A07, A18 NA NA 86.25 89.29 3.04 R02 171 

24 
20111115_
141004 

70 130 60 - Yes 
B03, B04, 
B05, B08, 

B10 
80.90 86.42 5.52 R02 210 

25 
20111124_
040923 

83 170 87 A07, A20 NA NA 101.27 112.79 11.52 R02 171 

26 
20111128_
032308 

63 90 27 A07, A20 NA NA 65.34 66.34 0.99 R02 171 

27 
20111208_
090935 

67 120 53 A06 NA NA 72.96 75.37 2.42 R02 190 

28 
20111215_
000742 

75 140 65 A06 Yes 
B03, B04, 
B05, B10 

88.91 97.91 8.99 R02 190 

29 
20111215_
170549 

85 160 75 A06, A13 Yes 
B03, B04, 
B05, B10 

102.09 111.84 9.75 R02 171 

30 
20120119_
234608 

68 120 52 A18, A20 NA NA 74.51 78.27 3.76 R02 171 

31 
20120214_
132143 

71 131 60 
A01, A05, 
A19, A20 

NA NA 79.79 84.21 4.41 R01 136 

32 
20120303_
230430 

67 110 43 A01, A20 NA NA 73.31 74.63 1.32 R01 171 

33 
20120314_
214443 

70 130 60 
A01, A16, 

A20 
NA NA 77.81 80.97 3.16 R02 153 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Indx 
YYYYMMD

D_ 
HHMMSS 

MUSIQUE ANALYSIS COHERENCY ANALYSIS 

TW-
M1 
(s) 

TW
-M2 
(s) 

TM 
(s) 

Missing  
Array A 
Stations 

Array-B 

Analyzed 

Missing 
Array B 
Stations 

TW-C1 
(s) 

TW-C2 
(s) 

TS (s) Rock 

Nb. of 
Pairs 
Array 

A 

34 
20120315_
054058 

74 150 76 
A01, A16, 
A18, A20 

NA NA 87.26 95.47 8.21 R02 136 

35 
20120317_
023659 

68 120 52 
A01, A16, 
A18, A20 

NA NA 75.45 78.47 3.02 R02 136 

36 
20120320_
185051 

63 90 27 A01, A20 NA NA 65.54 66.76 1.21 R01 171 

37 
20120321_
055047 

79 170 91 
A01, A12, 
A18, A20 

NA NA 95.27 105.65 10.38 R01 136 

38 
20120327_
143302 

63 90 27 A01, A20 NA NA 67.12 69.16 2.04 R01 171 

39 
20120404_
014530 

75 150 75 A01, A20 NA NA 89.44 94.34 4.90 R01 171 

40 
20120410_
134545 

64 120 56 
A01, A03, 

A20 
NA NA 68.12 71.09 2.97 R01 153 

41 
20120410_
215535 

67 110 43 
A01, A03, 

A20 
NA NA 73.11 76.17 3.05 R01 153 

42 
20120411_
061851 

89 200 111 
A01, A03, 

A20 
NA NA 110.00 120.65 10.65 R01 153 

43 
20120415_
132543 

63 90 27 A01, A20 NA NA 66.38 69.06 2.68 R01 171 

44 
20120415_
221904 

65 100 35 
A01, A03, 

A20 
NA NA 70.71 74.36 3.65 R01 153 

45 
20120416_
084022 

83 180 97 
A01, A03, 

A20 
NA NA 103.72 111.46 7.75 R01 153 

46 
20120416_
112342 

89 300 211 A01, A20 NA NA 115.64 129.76 14.12 R01 171 
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Appendix G 

Velocity time series from A00 station 

Available velocity time series from the reference array station A00 are shown here for 

the selected subset of events (Appendix E). The time window shown here represents the 

duration used for MUSIQUE analysis in Chapter 3. The window begins from the onset of 

P-wave and ends at the end of signal. The segment of signal shown in ‘red’ color 

represents the selected window, from visual inspection and based on the rock station 

records, used for Coherency analysis in Chapter 4. 
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Appendix H 

Velocity time series from R01 station 

Available velocity time series from rock station R01 are shown here for the selected 

subset of events (Appendix E). The time window represents the duration from the onset 

of P-wave till the end of the signal. The segment of signal shown in ‘red’ color represents 

selected window from visual inspection based on which Coherency analysis of Array A 

stations have been performed in Chapter 4. It is to be noted that R01 is the soft-rock 

station. Records from R01 have been used in case R02 records were unavailable. That’s 

why the selected window for coherency, in red curve, is shown for those events only.  
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Appendix I 

Velocity time series from R02 station 

Available velocity time series from rock station R02 are shown here for the selected 

subset of events (Appendix E). The time window represents the duration from the onset 

of P-wave till the end of the signal. The segment of signal shown in ‘red’ color represents 

selected window from visual inspection based on which Coherency analysis of Array A 

stations have been performed in Chapter 4. It is to be noted that R02 is the hard-rock 

station. All the available records from R02 have been used for the selection of time 

window.  
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Appendix J 

Interstation distance and angles for Array A 

The station separation (interstation) distance and interstation angle for each pair of 

stations (total 210 pairs) at Array A are given. The interstation distance and angles have 

been used to group the coherency estimates in Chapter 4. The station names in the first 

row refer to the first station in a pair and in the first column refer to the second station 

of that pair. 
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J.1 Station separation distances (m) for the pairs of stations at Array A 
 

Stations A00 A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 

A00 - - - - - - - - - - - - - - - - - - - - - 

A01 4.8 - - - - - - - - - - - - - - - - - - - - 

A02 5.1 5.7 - - - - - - - - - - - - - - - - - - - 

A03 5.2 9.6 6.3 - - - - - - - - - - - - - - - - - - 

A04 5.1 9.5 9.7 5.9 - - - - - - - - - - - - - - - - - 

A05 5.0 5.8 9.6 9.7 6.0 - - - - - - - - - - - - - - - - 

A06 14.8 10.0 13.9 19.3 19.2 14.2 - - - - - - - - - - - - - - - 

A07 15.1 14.3 10.0 14.6 19.5 19.3 17.3 - - - - - - - - - - - - - - 

A08 15.2 19.3 14.5 10.0 14.4 19.5 28.5 18.0 - - - - - - - - - - - - - 

A09 15.0 19.1 19.4 14.1 9.9 14.2 28.4 28.7 17.8 - - - - - - - - - - - - 

A10 15.1 14.4 19.4 19.4 14.3 10.0 17.9 28.7 28.7 17.4 - - - - - - - - - - - 

A11 39.8 34.9 38.4 44.1 44.0 38.5 24.9 37.6 52.7 52.6 38.2 - - - - - - - - - - 

A12 40.2 39.0 35.2 39.1 44.4 44.4 38.2 25.2 38.4 53.2 53.3 46.9 - - - - - - - - - 

A13 39.9 43.9 38.8 34.7 38.6 44.1 52.6 38.3 24.8 38.1 52.7 75.8 47.3 - - - - - - - - 

A14 40.2 44.2 44.4 38.8 35.1 38.9 52.9 53.3 38.4 25.2 37.9 76.0 76.6 47.2 - - - - - - - 

A15 40.0 38.8 44.1 44.2 38.7 35.0 38.4 52.9 53.0 37.9 24.9 47.3 76.4 75.8 46.6 - - - - - - 

A16 79.9 75.1 78.3 84.2 84.2 78.6 65.1 76.1 92.5 92.5 77.1 40.2 76.9 114.4 115.0 78.5 - - - - - 

A17 79.9 78.5 74.8 78.7 84.1 84.0 76.3 64.8 76.7 92.6 92.6 76.9 39.7 78.0 115.1 114.6 92.2 - - - - 

A18 81.0 84.9 79.7 75.8 79.5 85.1 93.3 77.8 65.8 77.8 93.5 115.4 78.4 41.1 78.9 115.6 152.5 95.1 - - - 

A19 80.1 84.0 84.3 78.5 75.0 78.6 92.5 92.9 76.9 65.1 76.4 114.6 115.2 77.9 39.9 77.0 152.3 152.6 95.3 - - 

A20 79.8 78.5 83.9 83.9 78.4 74.8 76.9 92.4 92.4 76.3 64.7 78.0 115.0 114.3 76.7 39.8 95.6 151.9 152.7 92.8 - 
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J.2 Interstation angles (deg) for the pairs of stations at Array A 
 
Stations A00 A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 

A00 - - - - - - - - - - - - - - - - - - - - - 

A01 39.2 - - - - - - - - - - - - - - - - - - - - 

A02 328.7 275.7 - - - - - - - - - - - - - - - - - - - 

A03 253.4 236.9 201.9 - - - - - - - - - - - - - - - - - - 

A04 183.7 201.0 166.3 127.9 - - - - - - - - - - - - - - - - - 

A05 111.1 163.5 130.0 92.0 57.0 - - - - - - - - - - - - - - - - 

A06 38.7 38.4 58.6 47.4 29.9 18.8 - - - - - - - - - - - - - - - 

A07 328.2 309.5 327.9 348.2 336.9 319.2 274.1 - - - - - - - - - - - - - - 

A08 255.4 246.8 235.9 256.4 275.0 264.1 237.2 202.0 - - - - - - - - - - - - - 

A09 182.8 191.5 174.4 162.6 182.4 202.5 200.6 165.5 128.7 - - - - - - - - - - - - 

A10 112.3 130.9 121.2 102.6 92.5 112.8 164.8 130.2 93.8 57.8 - - - - - - - - - - - 

A11 39.1 39.1 46.2 42.9 35.2 31.9 39.3 61.3 48.9 29.4 16.9 - - - - - - - - - - 

A12 327.4 320.6 327.2 334.7 331.3 323.5 305.8 326.9 349.4 336.8 318.0 273.7 - - - - - - - - - 

A13 255.1 251.4 247.9 255.4 262.3 259.0 245.5 233.0 255.0 277.1 265.1 237.1 200.9 - - - - - - - - 

A14 182.8 186.5 179.2 175.6 182.7 189.9 192.3 173.6 160.7 182.8 204.8 200.9 165.1 129.2 - - - - - - - 

A15 111.8 118.6 115.7 107.6 104.6 111.9 133.5 121.5 102.0 89.8 111.5 165.2 129.6 93.5 57.1 - - - - - - 

A16 38.4 38.3 41.8 40.4 36.4 34.9 38.3 49.1 44.0 33.0 27.6 37.7 68.0 50.4 26.7 9.2 - - - - - 

A17 327.9 324.6 327.9 331.5 329.9 325.9 317.3 327.8 338.8 333.2 322.5 298.6 328.5 357.2 339.4 316.0 273.1 - - - - 

A18 255.4 253.5 251.9 255.6 258.9 257.4 249.9 244.7 255.4 266.0 261.0 243.6 226.2 255.7 284.5 267.3 237.0 202.2 - - - 

A19 182.8 184.8 180.9 179.2 182.7 186.3 188.2 177.5 172.0 182.8 193.5 194.7 171.1 153.6 182.8 212.2 200.6 165.4 128.7 - - 

A20 111.9 115.3 114.0 109.7 108.4 111.9 122.5 117.4 106.3 101.2 111.8 141.1 123.6 99.8 82.3 112.0 165.2 129.9 93.5 57.2 - 
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Appendix K 

Sensitivity of lagged coherency to duration of time window  

Sensitivity of estimated lagged coherency to duration of selected time window (event 

no. 46 (Appendix F)) for separation distances 40 m and 80 m are given here. The plots 

represent the estimated coherency (EW component) between A00 and the stations on 

the 40m- and 80m-radius circles of the Array A. The array geometry, velocity time 

series of the event and the results for separation distance of 15 m are given in Figure 

4.17.   
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K.1 For the pairs at station separation distance 40 m 

 
K.2 For the pairs at station separation distance 80 m 

 
 
 
 
 

Station A20 
Unavailable 
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Appendix L 

Additional results from coherency analyses 

Some additional results from the coherency analysis in Chapter 4 are given here. 

L.1 Distribution of ATANH coherency:  
Distribution of ATANH coherency estimates of 46 events, from the manually selected 
strong-motion (most energetic, S-wave dominated) time window, for three components, 
EW, NS and Z, are given here.  The distribution is shown at four interstation distances 
and for five groups of frequencies, 1-2, 2-4, 4-8, 8-16 and 16-20 Hz.  
 

(a) Frequency 1-2 Hz 

 
(b) Frequency 2-4 Hz 
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(c) Frequency 4-8 Hz 

 
(d) Frequency 8-16 Hz 

 
(e) Frequency 16-25 Hz 
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L.2 Variation of ATANH coherency from different time-window selection 
approaches 
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L.3 ATANH coherency (AI-based time-windows selection – rock station)  
 

(a) Median Estimates 

 

(b) Residual 
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L.4 ATANH coherency (AI-based time-windows selection – A00 station)  
 

(a) Median Estimates 

 

(b) Residuals 
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L.5 ATANH coherency (most energetic time window from S-wave onset): valley-
axis oriented horizontal components  

(a) Median Estimates

 

(b) Residuals 
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L.6 ATANH coherency (most energetic time window from S-wave onset): back-
azimuth oriented horizontal components 

(a) Median Estimates 

 

(b) Residuals 
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 (c) Pairs grouped at five array-branch directions 

 

(d) Pairs grouped at five valley-parallel and –perpendicular directions 
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L.7 ‘Unlagged coherency’: most energetic time window from S-wave onset 
 

(a) Median Estimates 

 

(b) Residuals 
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L.8 Median and residual ‘unlagged coherency’: coda-wave window  
 

(a) Median Estimates 

 

(a) Residuals 

 


