A. Armanini and P. Scotton, On the dynamic impact of a debris flow on structures, Proceedings of the XXV congress of the international Association for Hydraulic Research, pp.203-210, 1993.

P. Bartelt and B. Mcardell, Granulometric investigations of snow avalanches, Journal of Glaciology, vol.55, issue.193, pp.829-833, 2009.
DOI : 10.3189/002214309790152384

P. Caccamo, B. Chanut, T. Faug, H. Bellot, and F. Naaim-bouvet, Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle, Granular Matter, vol.189, issue.3, pp.577-587, 2012.
DOI : 10.1007/s10035-012-0358-8

P. Caccamo, T. Faug, H. Bellot, and F. Naaim-bouvet, Experiments on a dry granular avalanche impacting an obstacle: dead zone, granular jump and induced forces, Fluid Structure Interaction VI, pp.53-62, 2011.
DOI : 10.2495/FSI110061

B. Chanut, T. Faug, and M. Naaim, Mean Force On A Wall Overflowed By Dense Granular Avalanches: Discrete Numerical Simulations, AIP Conference Proceedings, pp.609-612, 2009.
DOI : 10.1063/1.3180000

B. Chanut, T. Faug, and M. Naaim, Time-varying force from dense granular avalanches 545 on a wall, Physical Review E, vol.82, issue.4, 2010.

P. Coussot, Steady, laminar, flow of concentrated mud suspensions in open channel, Journal of Hydraulic Research, vol.710, issue.4, pp.535-559, 1994.
DOI : 10.1021/i160012a010

P. Cundall and O. Strack, A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65, 1979.
DOI : 10.1680/geot.1979.29.1.47

F. Da-cruz, S. Emam, M. Prochnow, J. Roux, and F. Chevoir, Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Physical Review E, vol.72, issue.2, p.21309, 2005.
DOI : 10.1103/PhysRevE.72.021309

J. D. Dent, The dynamic friction characteristics of a rapidly sheared granular material applied to the motion of snow avalanches, Annals of Glaciology, vol.18, 1993.
DOI : 10.1016/0165-232X(82)90018-0

D. Erta¸serta¸s, G. S. Grest, T. C. Halsey, D. Levine, and L. E. Silbert, Gravity-driven dense granular flows, Europhysics Letters (EPL), vol.56, issue.2, p.214, 2001.
DOI : 10.1209/epl/i2001-00508-7

T. Faug, R. Beguin, C. , and B. , Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows, Physical Review E, vol.80, issue.2, 2009.
DOI : 10.1103/PhysRevE.80.021305

URL : https://hal.archives-ouvertes.fr/hal-00455548

T. Faug, P. Caccamo, C. , and B. , Equation for the force experienced by a wall overflowed by a granular avalanche: Experimental verification, Physical Review E, vol.84, issue.5, p.51301, 2011.
DOI : 10.1103/PhysRevE.84.051301

URL : https://hal.archives-ouvertes.fr/hal-00637529

T. Faug, P. Caccamo, C. , and B. , A scaling law for impact force of a granular avalanche flowing past a wall, Geophysical Research Letters, vol.54, issue.3, p.39, 2012.
DOI : 10.1029/2006JF000688

T. Faug, P. Lachamp, and M. Naaim, Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures, Natural hazards and earth system sciences, pp.187-191, 1730.
DOI : 10.5194/nhess-2-187-2002

URL : https://hal.archives-ouvertes.fr/hal-00330886

A. Ferrari, M. Dumbser, E. Toro, and A. Armanini, A new 3D parallel SPH scheme for free surface flows non-spherical stars, Computers & Fluids Monthly Notices of the Royal Astronomical Society, vol.38, issue.181, pp.1203-1217375, 2009.
DOI : 10.1016/j.compfluid.2008.11.012

URL : http://hdl.handle.net/11572/27798

J. Gray, Y. Tai, N. , and S. , Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, Journal of Fluid Mechanics, vol.491, pp.161-181, 2003.
DOI : 10.1017/S0022112003005317

X. Huang and M. H. García, A Herschel???Bulkley model for mud flow down a slope, Journal of Fluid Mechanics, vol.374, pp.305-333, 1998.
DOI : 10.1017/S0022112098002845

Y. Huang, W. Zhang, Q. Xu, P. Xie, and L. Hao, Run-out analysis of flow-like landslides triggered by the ms 8, wenchuan earthquake using smoothed particle hydrodynamics. Landslides, pp.1-9, 2008.

A. Johnson and J. Rodine, Debris flow. Slope instability, pp.257-361, 1984.

P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature, vol.94, issue.7094, pp.580-441727, 2006.
DOI : 10.1038/nature04801

URL : https://hal.archives-ouvertes.fr/hal-01432178

M. Labbé, Modélisation numérique de l'interaction d'unécoulementunécoulement de fluide viscoplastique avec un obstacle rigide par la méthode SPH, 2015.

D. Laigle, P. Lachamp, and M. Naaim, SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures, Computational Geosciences, vol.44, issue.4, pp.297-306, 2007.
DOI : 10.1007/s10596-007-9053-y

L. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.
DOI : 10.1086/112164

G. Midi, On dense granular flows, The European Physical Journal E, vol.4, issue.4, pp.341-365, 2004.
DOI : 10.1140/epje/i2003-10153-0

URL : https://hal.archives-ouvertes.fr/hal-00000959

L. Minatti and A. Pasculli, Sph numerical approach in modelling 2d muddy debris flow, International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and 590, 2011.

J. J. Monaghan, Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, pp.543-574, 1992.

J. Morris, P. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, vol.136, issue.1, pp.214-226, 1997.
DOI : 10.1006/jcph.1997.5776

M. Naaim, T. Faug, and F. Naaim-bouvet, Dry Granular Flow Modelling Including Erosion and Deposition, Surveys in Geophysics, vol.24, issue.5/6, pp.569-585, 2003.
DOI : 10.1023/B:GEOP.0000006083.47240.4c

O. Pouliquen, On the shape of granular fronts down rough inclined planes, Physics of Fluids, vol.11, issue.7, pp.1956-1958, 1999.
DOI : 10.1063/1.870057

F. Radjai, D. E. Wolf, M. Jean, and J. Moreau, Bimodal Character of Stress Transmission in Granular Packings, Physical Review Letters, vol.80, issue.1, p.61, 1998.
DOI : 10.1103/PhysRevLett.80.61

URL : https://hal.archives-ouvertes.fr/hal-01407369

M. Rodriguez-paz and J. Bonet, A corrected smooth particle hydrodynamics method for the simulation of debris flows, Numerical Methods for Partial Differential Equations, vol.36, issue.1, pp.140-163, 2004.
DOI : 10.1002/num.10083

P. Rognon, F. Chevoir, H. Bellot, F. Ousset, M. Naaim et al., Rheology of dense snow flows: Inferences from steady state chute-flow experiments, Journal of Rheology, vol.52, issue.3, pp.729-748, 2008.
DOI : 10.1122/1.2897609

B. Salm, Flow, flow transition and runout distances of flowing avalanches, Annals of Glaciology, vol.26, 1993.
DOI : 10.1098/rspa.1966.0236

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, vol.196, issue.-1, pp.177-215, 1989.
DOI : 10.1007/BF01180101

L. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine et al., Granular flow down an inclined plane: Bagnold scaling and rheology, Physical Review E, vol.64, issue.5, p.51302, 2001.
DOI : 10.1103/PhysRevE.64.051302

URL : http://arxiv.org/abs/cond-mat/0105071

T. Takahashi, Debris flow: mechanics, prediction and countermeasures, 2007.
DOI : 10.1201/9780203946282

H. Teufelsbauer, Y. Wang, M. Chiou, and W. Wu, Flow???obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment, Granular Matter, vol.125, issue.5, pp.209-615, 2009.
DOI : 10.1007/s10035-009-0142-6

H. Teufelsbauer, Y. Wang, S. P. Pudasaini, R. Borja, and W. Wu, DEM simulation of impact force exerted by granular flow on rigid structures, Acta Geotechnica, vol.269, issue.1, pp.119-133, 2011.
DOI : 10.1007/s11440-011-0140-9

D. Tiberghien, D. Laigle, M. Naaim, E. Thibert, and F. Ousset, Experimental investigations of interaction between mudflow and an obstacle, 620 International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment , Proceedings, pp.281-292, 2007.

B. Zanuttigh and A. Lamberti, Experimental analysis of the impact of dry avalanches on structures and implication for debris flows, Journal of Hydraulic Research, vol.46, issue.4, pp.522-534, 2006.
DOI : 10.1007/BF00595676

B. Zanuttigh and A. Lamberti, Instability and surge development in debris flows, Reviews of Geophysics, vol.7, issue.3, p.45, 2007.
DOI : 10.1029/2005RG000175

Y. Bibliographie, H. Amini, M. Emdad, and . Farid, A new model to solve uid-hypoelastic solid interaction using SPH method, European Journal of Mechanics-B/Fluids, 2011.

C. Ancey, Plasticity and geophysical ows : A review, Journal of Non-Newtonian Fluid Mechanics, vol.142, issue.1-3, p.435, 2007.

C. Ancey, Rhéologie des écoulements granulaires en cisaillement simple : application aux laves torrentielles, 1997.

A. Armanini and P. Scotton, Experimental analysis on the dynamic impact of a debris ow on structures, Proceedings of the international symposium Interpreavent, p.107116, 1992.

A. Armanini and P. Scotton, On the dynamic impact of a debris ow on structures Local Organizing Committee Of The XXV Congress, Proceedings Of The Congress-international Association For Hydraulic Research, p.203203, 1993.

D. Atapattu, R. Chhabra, and P. Uhlherr, Creeping sphere motion in herschelbulkley uids : ow eld and drag. Journal of non-newtonian uid mechanics, p.245265, 1995.

E. Bardou, Methodologie de diagnostic des laves torrentielles sur un bassin versant alpin, 2002.

J. Bonet and S. Kulasegaram, Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods, International Journal for Numerical Methods in Engineering, vol.114, issue.11, pp.12031220-149, 2001.
DOI : 10.1002/nme.242

M. Brun, A. Batti, A. Limam, and A. Combescure, Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading, Soil Dynamics and Earthquake Engineering, vol.33, issue.1, p.1937, 2012.
DOI : 10.1016/j.soildyn.2011.07.005

URL : https://hal.archives-ouvertes.fr/hal-00938628

G. Chambon, R. Bouvarel, D. Laigle, and M. Naaim, Numerical simulations of granular free-surface ows using smoothed particle hydrodynamics, Journal of Non-Newtonian Fluid Mechanics, vol.166, pp.12-13698712, 2011.

C. Chen, Generalized viscoplastic modeling of debris ow, Journal of Hydraulic Engineering, vol.114, issue.3, p.237258, 1988.

W. Chen and T. Qiu, Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method, International Journal of Geomechanics, vol.12, issue.2, p.127135, 2012.
DOI : 10.1061/(ASCE)GM.1943-5622.0000149

T. Chung, Computational uid dynamics, 2010.

P. W. Cleary and R. Das, The Potential for SPH Modelling of Solid Deformation and Fracture, IUTAM symposium on theoretical, computational and modelling aspects of inelastic media, p.287296, 2008.
DOI : 10.1007/978-1-4020-9090-5_26

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.
DOI : 10.1016/S0021-9991(03)00324-3

P. Coussot, Steady, laminar, ow of concentrated mud suspensions in open channel, Journal of Hydraulic Research, vol.32, issue.4, p.535559, 1994.

P. Coussot, Rhéologie des boues et laves torrentielles : étude de dispersions et suspensions concentrées, 1992.

R. Dalrymple and B. Rogers, Numerical modeling of water waves with the SPH method, Coastal Engineering, vol.53, issue.2-3, p.141147, 2006.
DOI : 10.1016/j.coastaleng.2005.10.004

R. P. Denlinger and R. M. Iverson, Flow of variably uidized granular masses across three-dimensional terrain : 2. numerical predictions and experimental tests, Journal of Geophysical Research : Solid Earth, issue.B1, pp.106-553566, 2001.

R. P. Denlinger and R. M. Iverson, Granular avalanches across irregular threedimensional terrain : 1. theory and computation, Journal of Geophysical Research : Earth Surface, issue.F1, p.109, 2004.

C. Dyka and R. Ingel, An approach for tension instability in smoothed particle hydrodynamics (SPH), Computers & Structures, vol.57, issue.4, p.573580, 1995.
DOI : 10.1016/0045-7949(95)00059-P

J. Fang, A. Parriaux, M. Rentschler, and C. Ancey, Improved SPH methods for simulating free surface ows of viscous uids, Applied Numerical Mathematics, vol.59, issue.2, p.251271, 2009.

T. Faug, Interface "interaction écoulement-obstacle". Présentation interne, 2011.

T. Faug, P. Lachamp, and M. Naaim, Experimental investigation on steady granular ows interacting with an obstacle down an inclined channel : study of the dead zone upstream from the obstacle. application to interaction between dense snow avalanches and defence structures, Natural hazards and earth system sciences, p.187191, 2002.

T. Faug, P. Caccamo, and B. Chanut, A scaling law for impact force of a granular avalanche owing past a wall, Geophysical Research Letters, issue.23, pp.39-2012

T. Faug, R. Beguin, and B. Chanut, Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows, Physical Review E, vol.80, issue.2, p.21305, 2009.
DOI : 10.1103/PhysRevE.80.021305

URL : https://hal.archives-ouvertes.fr/hal-00455548

A. Ferrari, M. Dumbser, E. Toro, and A. Armanini, A new 3D parallel SPH scheme for free surface ows, Computers & Fluids, vol.38, issue.6, p.12031217, 2009.

R. García-martínez and J. L. López, Debris ows of december 1999 in venezuela, Debris-ow Hazards and Related Phenomena, p.519538, 2005.

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, issue.3, p.375389, 1977.
DOI : 10.1093/mnras/181.3.375

M. Gomez-gesteira, B. D. Rogers, A. J. Crespo, R. Dalrymple, M. Narayanaswamy et al., Sphysicsdevelopment of a free-surface uid solver part 1 : Theory and formulations, Computers & Geosciences, vol.48, p.289299, 2012.

J. Gray, Y. Tai, and S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface ows, Journal of Fluid Mechanics, vol.491, p.161181, 2003.

J. Heumader, Technical debris-ow countermeasures in austriaa review, Second International Congress on Debris Flows Hazard Mitigation : mechanics, prediction and assessment, p.553564, 2000.

G. Holzinger, Experiments dealing with the impact forces caused by debris ows, Geophysical Research Abstracts, p.7230, 2005.

Y. Huang, Z. Dai, W. Zhang, and Z. Chen, Visual simulation of landslide uidized movement based on smoothed particle hydrodynamics. Natural Hazards, 2011.

Y. Huang, W. Zhang, Q. Xu, P. Xie, and L. Hao, Run-out analysis of ow-like landslides triggered by the ms 8, wenchuan earthquake using smoothed particle hydrodynamics. Landslides, 2008.

J. Huebl and G. Fiebiger, Debris-ow mitigation measures, Debris-ow Hazards and Related Phenomena, p.445487, 2005.
DOI : 10.1007/3-540-27129-5_18

J. P. Hughes and D. I. Graham, Comparison of incompressible and weaklycompressible sph models for free-surface water ows, Journal of Hydraulic Research, vol.481, issue.1, p.105117, 2010.

R. M. Iverson, The debris-ow rheology myth. Debris-ow hazards mitigation : mechanics, prediction, and assessment, p.303314, 2003.

R. M. Iverson, Debris-ow mechanics, Debris-ow hazards and related phenomena, p.105134, 2005.

R. M. Iverson and R. P. Denlinger, Flow of variably uidized granular masses across three-dimensional terrain : 1. coulomb mixture theory, Journal of Geophysical Research : Solid Earth, issue.B1, p.106537552, 2001.

R. M. Iverson, M. Logan, and R. P. Denlinger, Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests, Journal of Geophysical Research: Earth Surface, vol.392, issue.F1, p.109, 2004.
DOI : 10.1029/2003JF000085

P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular ows, Nature, issue.7094, p.441727730, 2006.

P. Lachamp, Modélisation numérique de l'eet d'un obstacle sur les écoulements de uides à seuil par la méthode SPH, 2003.

D. Laigle, P. Lachamp, and M. Naaim, SPH-based numerical investigation of mudow and other complex uid ow interactions with structures, Computational Geosciences, vol.11, issue.4, p.297306, 2007.

P. Larroude and T. Oudart, SPH MODEL TO SIMULATE MOVEMENT OF GRASS MEADOW OF POSIDONIA UNDER WAVES, Coastal Engineering Proceedings, vol.1, issue.33, p.56, 2012.
DOI : 10.9753/icce.v33.waves.56

URL : https://hal.archives-ouvertes.fr/hal-00935712

E. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence et al., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, vol.227, issue.18, p.84178436, 2008.
DOI : 10.1016/j.jcp.2008.06.005

M. B. Liu and G. R. Liu, Smoothed Particle Hydrodynamics (SPH): an Overview and??Recent Developments, Archives of Computational Methods in Engineering, vol.43, issue.3, p.2576, 2010.
DOI : 10.1007/s11831-010-9040-7

M. Liu, J. Shao, and J. Chang, On the treatment of solid boundary in smoothed particle hydrodynamics, Science China Technological Sciences, vol.191, issue.2, p.244254, 2012.
DOI : 10.1007/s11431-011-4663-y

L. Lucy, A numerical approach to the testing of the ssion hypothesis, The Astronomical Journal, vol.82, p.10131024, 1977.

J. J. Major and T. C. Pierson, Debris ow rheology : Experimental analysis of ne-grained slurries, Water resources research, vol.28, issue.3, p.841857, 1992.

G. Midi, On dense granular ows, European Physical Journal E, vol.14, p.341365, 2004.

L. Minatti and A. Pasculli, Sph numerical approach in modelling 2d muddy debris ow, International Conference on Debris-Flow Hazards Mitigation : Mechanics , Prediction, and Assessment, Proceedings, p.467475, 2011.

E. Mitsoulis, S. Abdali, and N. Markatos, Flow simulation of herschel-bulkley uids through extrusion dies, The Canadian Journal of Chemical Engineering, vol.71, issue.1, p.147160, 1993.

J. Monaghan, Particle methods for hydrodynamics, Computer Physics Reports, vol.3, issue.2, p.71124, 1985.
DOI : 10.1016/0167-7977(85)90010-3

J. Monaghan, On the problem of penetration in particle methods, Journal of Computational Physics, vol.82, issue.1, p.115, 1989.
DOI : 10.1016/0021-9991(89)90032-6

J. Monaghan, SPH without a Tensile Instability, Journal of Computational Physics, vol.159, issue.2, pp.290-311, 2000.
DOI : 10.1006/jcph.2000.6439

J. Monaghan, Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, p.543574, 1992.

J. Morris, P. Fox, and Y. Zhu, Modeling low Reynolds number incompressible ows using SPH, Journal of Computational Physics, vol.136, issue.1, p.214226, 1997.
DOI : 10.1006/jcph.1997.5776

E. Muravleva and M. Olshanskii, Two nite-dierence schemes for calculation of bingham uid ows in a cavity, Russian Journal of Numerical Analysis and Mathematical Modelling, vol.23, issue.6, p.615634, 2008.

C. Nutto, C. Bierwisch, H. Lagger, and M. Moseler, Towards simulations of abrasive ow machining, 7th International SPHERIC Workshop, p.5964, 2012.

J. O-'brien, P. Julien, and W. Fullerton, Two-dimensional water ood and mudow simulation, Journal of hydraulic engineering, vol.119, issue.2, p.244261, 1993.

I. Ousset, D. Bertrand, A. Limam, and M. Naaïm, Reliability analysis of an rc defense structure loaded by a dense snow avalanche pressure signal, EGU General Assembly Conference Abstracts, p.11058, 2014.

A. K. Patra, A. Bauer, C. Nichita, E. B. Pitman, M. Sheridan et al., Parallel adaptive numerical simulation of dry avalanches over natural terrain, Journal of Volcanology and Geothermal Research, vol.139, issue.1-2, p.121, 2005.
DOI : 10.1016/j.jvolgeores.2004.06.014

M. Prakash, P. W. Cleary, J. Ha, M. N. Noui-mehidi, H. Blackburn et al., Simulation of suspension of solids in a liquid in a mixing tank using SPH and comparison with physical modelling experiments, Progress in Computational Fluid Dynamics, p.91100, 2007.
DOI : 10.1504/PCFD.2007.013001

J. N. Reddy and D. K. Gartling, The nite element method in heat transfer and uid dynamics, 2010.

D. Richard, Les torrents à laves torrentielles dans les départements alpins. situations génératrices et essai de typologie, 1995.

M. Rodriguez-paz and J. Bonet, A corrected smooth particle hydrodynamics method for the simulation of debris ows. Numerical Methods for Partial Dierential Equations, p.140163, 2004.

N. Roquet and P. Saramito, An adaptive nite element method for bingham uid ows around a cylinder Computer methods in applied mechanics and engineering, p.33173341, 2003.

P. Saramito and N. Roquet, An adaptive nite element method for viscoplastic uid ows in pipes, Computer methods in applied mechanics and engineering, vol.190, issue.40, p.53915412, 2001.

S. Shao and E. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian ows with a free surface, Advances in Water Resources, vol.26, issue.7, p.787800, 2003.

L. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine et al., Granular flow down an inclined plane: Bagnold scaling and rheology, Physical Review E, vol.64, issue.5, p.51302, 2001.
DOI : 10.1103/PhysRevE.64.051302

URL : http://arxiv.org/abs/cond-mat/0105071

J. Sun, S. Liang, Z. Sun, and X. Zhao, Simulation of wave impact on a horizontal deck based on SPH method, Journal of Marine Science and Application, vol.19, issue.5, p.372378, 2010.
DOI : 10.1007/s11804-010-1022-5

A. Syrakos, G. C. Georgiou, and A. N. Alexandrou, Solution of the square liddriven cavity ow of a bingham plastic using the nite volume method, Journal of Non-Newtonian Fluid Mechanics, vol.195, 1931.

T. Takahashi, Debris ow, Balkema, 1991.

T. Takahashi, Debris ow : mechanics, prediction and countermeasures, 2014.

D. Tiberghien, Etude expérimentale de l'interaction d'un écoulement à surface libre de uide à seuil avec un obstacle

D. Tiberghien, D. Laigle, M. Naaim, E. Thibert, and F. Ousset, Experimental investigations of interaction between mudow and an obstacle, International Conference on Debris-Flow Hazards Mitigation : Mechanics, Prediction, and Assessment, Proceedings, p.281292, 2007.

H. K. Versteeg and W. Malalasekera, An introduction to computational uid dynamics : the nite volume method. Pearson Education, 2007.

B. Zanuttigh and A. Lamberti, Experimental analysis of the impact of dry avalanches on structures and implication for debris ows, Journal of Hydraulic Research, vol.44, issue.4, p.522534, 2006.

Z. Zhou, J. D. Kat, and B. Buchner, A nonlinear 3-d approach to simulate green water dynamics on deck, Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, p.51, 1999.