N

N

Exploiting Semantic for the Automatic Reverse
Engineering of Communication Protocols.

Georges Bossert

» To cite this version:

Georges Bossert. Exploiting Semantic for the Automatic Reverse Engineering of Communication
Protocols.. Other. Supélec, 2014. English. NNT: 2014SUPL0027 . tel-01146797

HAL Id: tel-01146797
https://theses.hal.science/tel-01146797
Submitted on 29 Apr 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01146797
https://hal.archives-ouvertes.fr

\
—
Supélec AMOSSY's

N° d’ordre : 2014-27-TH

SUPELEC
Ecole Doctorale MATISSE

”Mathématiques, Télécommunications, Informatique, Signal, Systéemes Electroniques”

THESE DE DOCTORAT

DOMAINE : STIC
Spécialité : Informatique
Soutenue le 17 décembre 2014

par :

Georges BOSSERT

Exploiting Semantic for the Automatic
Reverse Engineering of Communication

Protocols
Directeur de thése : Ludovic ME Professeur a Supélec
Composition du jury :
Président du jury : Francois BODIN Professeur a 1’Université de Rennes 1
Rapporteurs : Colin DE LA HIGUERA Professeur a I’Université de Nantes
Christopher KRUEGEL Professeur a 1I’Université de Californie SB
Examinateurs : Hervé DEBAR Professeur a Télécom SudParis
Benjamin MORIN Chef de Laboratoire, ANSSI
Membre invité : Dominique CHAUVEAU Chef du département IMPS, DGA MI
Encadrants : Frédéric GUIHERY Responsable R&D, AMOSSYS

Guillaume HIET Professeur assistant a Supélec

Remerciements

A Iissue de ces quatre années, je suis persuadé que la these n’est pas un travail solitaire. Elle
est le résultat d’un effort conjoint entre le doctorant et son encadrement. L’environnement humain
au sein duquel évoluent ces acteurs participe également pleinement aux résultats de ces travaux. Il
m’apparait donc primordial de remercier ces personnes dont la générosité, la bienveillance et la
bonne humeur m’ont apporté la force de progresser et de terminer cette these.

En premier lieu, je souhaite remercier mon encadrant Guillaume HIET, sans qui ces travaux
n’auraient jamais abouti. L’énergie, la rigueur et la patience qu’il a su déployer pour m’encadrer se
retrouvent distillées tout au long de ce manuscrit. Son expertise et son expérience furent également
exploitées a maintes reprises pendant 1’élaboration des contributions exposées. De la méme maniere,
I’encadrement assuré par Fredéric GUIHERY fut précieux. L intérét qu’il a su porter 2 ce travail a
largement dépassé le cadre d’un encadrement et ses contributions actives au projet NETZOB se
retrouvent donc tout au long de ce manuscrit.

Je souhaite également exprimer toute ma gratitude a la société AMOSSYS et ses directeurs
Frédéric REMI et Christophe DUPAS pour leur confiance. La bienveillance et I’intérét que les
équipes d’AMOSSYS ont porté a mes travaux ont tres largement participé aux résultats de cette
theése. Nos interminables débats techniques (ou non) et les discussions avec les membres du conseil
stratégique du jeudi soir furent de véritables bouffées d’air frais, je les remercie tous trés sincérement
pour ca.

Ces remerciements seraient incomplets si je n’en adressais pas a Olivier TETARD qui s’est
beaucoup investi pour créer un environnement humain et technique pérein autour du projet NETZOB.
Ses conseils m’ont accompagné tout au long de cette these, je le remercie trés sincérement pour ca.
Je souhaite également associer a cette theése 1’ensemble des contributeurs au projet NETZOB qui
ont su donner vie a un projet unique et plein de promesses.

Mes remerciements vont également aux membres de 1’équipe CIDre de SUPELEC pour m’avoir
accueilli et pour I’ambiance de travail trés agréable qu’ils ont su créer. Ludovic ME en tant que
directeur de I’équipe et de ma these a joué un rdle tres important pendant ces quatre années, je le
remercie trés chaleureusement.

De trés nombreuses personnes m’ont accompagné pendant ces années, je ne peux malheureuse-
ment pas les citer pour cette raison. La famille et les amis furent des points de repere vitaux. Leurs
encouragements et la chaleur qu’ils m’ont prodigué ont tres largement produit le soutien affectif
nécessaire a ce travail doctoral. Merci a eux.

Enfin, j’exprime ma gratitude aux membres du jury qui se sont rendus disponibles pour la

soutenance et pour les conseils prodigués sans lesquels ces travaux seraient certainement moins
riches. Je suis particulierement reconnaissant a Colin DE LA HIGUERA et Christopher KRUEGEL

de I'intérét qu’ils ont manifesté a 1’égard de cette recherche en s’engageant en tant que rapporteurs.

Résumé en francais

Introduction

Les protocoles de communication sont fondamentaux pour la communication des différents
composants d’un systeéme d’information. Ils spécifient les régles a suivre pour assurer la transmission
de données inhérentes a toute communication. Avec 1’accroissement des besoins en interconnexion
des systemes informatiques, I’emploi de protocoles de communication tend a se généraliser au sein
des systemes d’informations personnels, industriels et militaires. Malheureusement, il est également
bien connu que les protocoles de communication peuvent étre vulnérables a des attaques [48},[126),
118, [128]]. Ces vulnérabilités peuvent étre exploitées pour mettre a mal I’intégrité, la disponibilité
et/ou la confidentialité des données et des applications. Certains protocoles, comme ceux utilisés par
les réseaux de zombies [129, 136, 6], ont méme été créés dans le seul but de réaliser des attaques
informatiques.

Pour remédier aux vulnérabilités d’un protocole, plusieurs solutions existent telles que I’ évaluation
de sécurité des implémentations ou I’emploi de produits de sécurité dédiés tels que des systemes de
détection d’intrusion réseau (NIDS) ou des parefeu applicatifs. Cependant, la qualité des résultats ap-
portés par ces solutions dépend principalement de la connaissance des spécifications des protocoles.
Il est aisé d’obtenir cette connaissance si les spécifications du protocole sont disponibles. Cependant,
si le protocole est non-documenté et/ou propriétaire, un expert doit d’abord rétro-concevoir les
spécifications du protocole. Etant donné la complexité de certains protocoles, cette opération peut

étre trés cofiteuse lorsqu’elle est exécutée manuellement.

Objectifs de nos travaux

Cette theése expose des contributions pour automatiser et améliorer les opérations de rétro-
conception d’un protocole de communication. Plus précisément, ces contributions visent a obtenir
un modele précis des spécifications d’un protocole inconnu tout en réduisant le temps de calcul
nécessaire et en augmentant la furtivité de I’apprentissage par rapport aux solutions précédentes.
Ce travail embrasse la nécessité d’une méthode efficace et rapide pour la rétro-conception d’un
protocole afin d’aider les auditeurs de sécurité, les évaluateurs de sécurité et les développeurs de
produits de sécurité dans leur travail contre les cyber-attaques.

Un protocole de communication peut se définir comme un ensemble de régles qui régissent

la nature de la communication, des données échangées et des comportements dépendant de 1’état

des systemes qui participent a la communication [65]]. Ces regles définissent le vocabulaire et la
grammaire du protocole et dans une certaine mesure peuvent €tre considérées comme similaires
aux regles qui régissent les langages de programmation. Le vocabulaire d’un protocole établit
I’ensemble des messages valides et leurs formats, tandis que la grammaire du protocole spécifie
I’ensemble des échanges valides de messages. Ces regles peuvent étre rendues complexes par le
besoin d’assurer des communications entre des systemes évoluant dans des milieux tres diversifiés.

La rétro-conception de protocoles de communication désigne les procédés utilisés pour obtenir
les spécifications d’un protocole non-documenté. Cette connaissance des spécifications du protocole
est trés précieuse pour mener a bien de nombreuses opérations ayant trait a la sécurité. Par exemple,
les audits de sécurité des systemes de contrdle industriels impliquent souvent 1’analyse de matériels
et de logiciels propriétaires. En outre, I’audit d’un tel systéme propriétaire exige d’acquérir des
connaissances suffisantes sur les fonctionnalités offertes par son protocole. Si aucune documentation
n’est disponible, comme lors d’un audit en boite noire, I’expert est obligé de rétro-concevoir le
protocole. L’importance de 1’automatisation de ce processus est bien établie compte tenu de la
difficulté et le temps qu’il nécessite lorsqu’il est exécuté manuellement.

En plus des évaluations et des audits de sécurité, la rétro-conception d’un protocole est
également utile pour les développeurs et les évaluateurs de produits de sécurité tels que les systemes
de détection d’intrusion, les parefeu applicatifs, les outils de supervision de réseau et pots de
miel. Au final, trois principales motivations nous ont conduit a mener ces travaux : 1) le besoin
en rétro-conception de protocoles pour les évaluations de sécurité, 2) la création de regles de
détection d’intrusion réseau a partir des résultats de la rétro-conception d’un protocole inconnu et
3) I’exploitation de la rétro-conception des protocoles pour générer un trafic réaliste et contrdlable
de réseaux de zombies.

En outre, les travaux existants dans le domaine de 1’automatisation de la rétro-conception d’un
protocole tendent soit a inférer des spécifications incomplétes soit a nécessiter trop de stimulation de
I’'implémentation du protocole, avec le risque d’€tre vaincu par des techniques de contre-inférence.
En outre, aucun de ces travaux ne permettent d’obtenir des spécifications suffisamment détaillées
pour permettre a terme la simulation du protocole inféré. Enfin, le temps de calcul requis par les
précédents travaux peut étre important, ce qui empéche leurs utilisations lorsque que le domaine

d’emploi nécessite une grande réactivité. Les objectifs de cette theése sont donc les suivants :

Objectif 1 La solution proposée doit permettre d’obtenir un modele juste, correct et précis des
spécifications d’un protocole non-documenté. Ce modele doit couvrir le vocabulaire et la

grammaire du protocole.

Objectif 2 La solution de rétro-conception doit étre plus rapide que les travaux existants pour

inférer le modele d’un protocole.

Objectif 3 Nos travaux doivent permettre d’augmenter la furtivité de I’inférence d’un protocole

par rapport aux autres travaux.

Ces travaux portent sur les deux principaux aspects de la rétro-conception d’un protocole, a
savoir : I'inférence de sa définition syntaxique (le vocabulaire du protocole) et de sa définition

grammaticale (la grammaire du protocole). Nos travaux se distinguent de 1’état de I’art de pars

les algorithmes que nous proposons. Ces algorithmes exploitent notamment des informations
sémantiques pour inférer le vocabulaire et la grammaire d’un protocole. Les contributions présentées
dans cette these sont organisées en deux grandes parties. La premiere partie du manuscrit détaille
I’approche retenue pour inférer le vocabulaire d’un protocole, la seconde partie traite de I’inférence

de la grammaire.

Contributions pour la rétro-conception du vocabulaire

La méthodologie proposée dans la premiere partie de cette these s’articule autour de 1’emploi
de la sémantique pour 1I’amélioration de I’inférence du format des messages.

Plus précisément, ces travaux exploitent la présence d’information contextuelle dans les mes-
sages pour identifier les messages équivalents d’un point de vue protocolaire et pour inférer
leurs structures en champs. A cette fin, nous proposons une extension de 1’algorithme de Needle-
man&Wunsch [97]] permettant d’introduire des contraintes sémantiques lors de 1’alignement de
messages.

Nous proposons également de prendre en compte les actions réalisées par I’implémentation
du protocole pendant la capture des messages pour améliorer leur classification. Ces opérations
sont réalisées au travers de plusieurs étapes de classification et de pré-classification. De cette
maniere, nous favorisons ’identification de messages équivalents avant d’inférer leur structure en
champs. Cette approche permet également d’optimiser le temps de calcul. En outre, nous proposons
également une solution efficace et rapide pour la découverte de relations entre les champs d’un
ou de plusieurs messages (champs taille, CRC, ...). Cette solution repose sur un algorithme de
corrélation, ce qui permet de réduire le temps de calcul tout en supportant d’éventuelles erreurs de
classification.

Au terme de cette partie, une comparaison expérimentale des différentes approches existantes est
présentée. Cette étude permet de mettre en évidence les avantages et inconvénients des différentes
solutions pour la rétro-conception du vocabulaire d’un protocole. A notre connaissance, aucun
des travaux précédents ne s’était attaché a réaliser une telle étude. Les résultats obtenus justifient
également de I’intérét de notre approche : les spécifications obtenues avec notre approche sont plus

correctes, plus concises et plus précises.

Contributions pour la rétro-conception de la grammaire

La seconde partie de ce manuscrit détaille nos contributions pour I’inférence automatisée de
la grammaire d’un protocole. Comme indiqué par G. Holzman, la grammaire d’un protocole de
communication représente les séquences valides de messages recus et émis. La théorie des machines
a états étant étroitement liée a la théorie des langages formels, I’emploi d’automates est adapté a la
modélisation des regles qui établissent ces séquences. Parmi tous les modeles d’automates existants,
nous avons retenu une Machine a états finis (FSM) disposant de sorties, aussi appelée machine de
Mealy.

L’algorithme de référence pour I'inférence active et automatisée d’une machine a états est
I’algorithme LSTAR, proposée par D. Angluin. Cet algorithme permet d’inférer une machine de
Mealy décrivant I’ensemble des séquences de messages acceptées par le protocole cible. Cependant,
comme détaillé dans cette these, le nombre requis de requétes, le temps de I’inférence et la non-
furtivité de cet algorithme peuvent empécher son exploitation sur des protocoles de communication
complexes, i.e. disposant d’un automate a nombreux états. Pour répondre a cette problématique,
nous proposons un algorithme d’inférence de type < diviser pour régner >. L’ objectif de cette
approche est de limiter la complexité intrinseque de 1’algorithme LSTAR afin de réduire le nombre
de requétes nécessaires, réduire le temps d’inférence et augmenter la furtivité du procédé.

Notre approche repose sur 1’hypotheése que la grammaire d’un protocole peut étre décomposée
en plusieurs éléments plus simples, que nous appelons sous-grammaires. Comme indiqué par
H. Zafar [61]], la décomposition d’automates complexes en éléments plus simples a fait 1’objet
de nombreux ouvrages [[L1} 45, 160, [10]. Dans notre travail, nous cherchons a tirer parti de ce
concept de décomposition de machines a états pour optimiser la rétro-conception de la grammaire
d’un protocole de communication. Plus précisément, notre solution repose sur 1’observation que
I’implémentation d’un protocole expose différentes actions a son utilisateur. Toutes ces actions
participent a I’objectif général du protocole tels que 1’authentification du client ou la création
d’un répertoire dans le protocole Une action peut étre considérée comme une composante
fonctionnelle du protocole et désigne un sous-ensemble du vocabulaire de protocole et de sa
grammaire.

L’algorithme proposé réalise donc I’inférence de chaque sous-grammaire du protocole de
manicre indépendante. Pour cela, une premiere étape d’inférence est menée afin d’obtenir le
vocabulaire associé a chaque action. Une fois ce vocabulaire obtenu, une instance de I’algorithme
LSTAR est exécutée pour chaque action a inférer. Les grammaires obtenues sont ensuite fusionnées
pour obtenir la grammaire du protocole.

Pour évaluer I’intérét de notre approche, une étude comparative expérimentale est proposée.
Celle-ci a consisté a comparer les résultats obtenus avec 1’algorithme LSTAR et avec notre approche.
Comme expliqué, les résultats démontrent que la décomposition de la grammaire cible permet
effectivement de réduire considérablement le temps d’exécution ainsi que le nombre de requétes

envoyées a I’implémentation et augmente la furtivité de I’inférence.

Conclusion

Les résultats obtenus par notre solution d’inférence de vocabulaire renvoient de meilleurs
résultats que les travaux existants quant a la précision du modele, son exhaustivité et son exactitude
(objectif 1). En outre, nous pensons que I’utilisation d’un algorithme de classification multi-étapes
et d’une solution d’identification de la relation basée sur une mesure de corrélation permet de
réduire la complexité globale de I’inférence et ainsi de limiter le temps de calcul (objectif 2). Pour
finir, notre solution d’inférence du vocabulaire d’un protocole repose sur une approche passive
assurant sa furtivité (objectif 3).

En ce qui concerne notre solution d’inférence grammaticale, nous affirmons que les objectifs de

cette these sont partiellement remplis. En effet, la technique que nous proposons s’appuie sur des
heuristiques qui peuvent conduire a des résultats incorrects et/ou incomplets sur certains protocoles.
Néanmoins, nous expliquons également dans cette theése que cette problématique peut étre résolue
en introduisant une politique par défaut pour modéliser les transitions non apprises. En outre, I’étude
comparative confirme également que notre approche peut étre utilisée pour déduire une grammaire
précise, correcte et presque complete d’un protocole inconnu (objectif 1). En outre, les résultats
exposés montrent que notre solution nécessite moins de temps de calcul (objectif 2) tout en étant
plus furtive (objectif 3) que I’état de ’art.

Pour conclure, cette thése a également donné lieu a la réalisation d’un outil open-source, appelé
Netzobﬂ qui met en ceuvre nos solutions pour aider les experts en sécurité dans leurs tiches de rétro-
conception d’un protocole. Il s’agit actuellement, a notre connaissance, de I’outil publiquement

disponible le plus avancé pour la rétro-conception semi-automatique de protocoles.

1. Netzob: http://www.netzob.org

http://www.netzob.org

10

Abstract

Network security products, such as NIDS or application firewalls, tend to focus on application
level communication flows to perform their analysis. However, adding support for new proprietary
and often undocumented protocols, implies the reverse engineering of these protocols. Currently,
this task is performed manually. Considering the difficulty and time needed for manual reverse
engineering of protocols, one can easily understand the importance of automating this task. This is
even given more significance in today’s cybersecurity context where reaction time and automated
adaptation become a priority.

Current work in the field of automated protocol reverse engineering either infer incomplete
protocol specifications or require too many stimulation of the targeted implementation with the
risk of being defeated by counter-inference techniques. Besides, none of these work infer detailed
enough specification that could support the simulation of the reversed protocol. In addition, the
computation time required by previous reverse engineering work can be enormous which can
prevent their uses where high responsiveness is mandatory. Finally, too few previous works have
resulted in the publication of tools that would allow the scientific community to experimentally
validate and compare the different approaches.

This thesis exposes a practical approach for the automatic reverse engineering of undocumented
communication protocols. This work leverages the semantic of the protocol to improve the quality,
the speed and the stealthiness of the inference process when applied on complex protocols. Our
work covers the two main aspects of the protocol RE, the inference of its syntactical definition (the
protocol vocabulary) and of its grammatical definition (the protocol grammar). The algorithms
we propose uses the semantic definition in both domains. We conducted multiple experiments to
validate our approach by comparing previous state-of-the-art work against our algorithms. We also
propose an open-source tool, called Netzob, that implements our work to help security experts in
their protocol reverse engineering tasks. We claim Netzob is the most advanced published tool that

tackles issues related to the reverse engineering and the simulation of undocumented protocols.

11

12

Contents

[Résumé en francais|

[Abstract

1 Intr ion

|1.1 Insights on Communication Protocols|

[1.2.1 Protocol RE for Security Evaluations|
.22 Pr I RE to Build Preci IDSRules]

2.1 _Recurrent Forms of Communication Pr Isl.
[2.1.1 ~ HTTP Case Study: A Common Text Application Protocol|
[2.1.2 ZeroAccess Case study: A P2P Botnet Protocol|

[2.2.1 Definition of the Protocol Vocabulary|

[2.3 Existing Specification Languages|.

[2.3.1 Specification Languages for Protocol Vocabulary|

[2.3.2 Specification Languages for Protocol Grammar|

B rcation P I Taf |

[3.1 Automated Inference of the Vocabulary|

[3.1.1 Extracting Messages from Traces|

[3.1.2 Identification of Equivalent Messages and Inference of their Format|
[3.1.3 Detecting Field Relationships|

11

17
18
18
19
21
21
22
23
25
26

29
29
30
32
34
35
39
42
42
53

14 CONTENTS

3.2 Automated Inference of the Grammar 67
3.2.1 Passive Grammatical Inferencel. 68

2.2 Acti rammatical Inferencel 69

I Automated Inference of the Protocol Vocabulary| 73
4 Introduction 75
IS Our Vocabulary Model| 77
[5.1 Symbols, Fields and Token-Tree| 77
[5.1.1 DefinitionofaSymbol| 0oL 78

5.1.2 Defimtionofakbield 78

[5.1.3 Definition of a Token-Treel 79

[5.2 Abstraction and Specialization| Lo 82
[5.3 State Variable Assignment Strategy (SVAS)| L. 84

|6 Leveraging Semantic Information to Improve the Vocabulary Inference| 89
6.1 Introduction| L 89
6.2 Collecting Semantic Information| 90
|6.3 Semantic-based Message Clustering| 91
[6.3.1 Session Slicing (Step 1) 91

[6.3.2 Background Noise Filtering (Step2)[. 92

[6.3.3 Contextual Clustering (Step3)| 92

[6.3.4 Format Clustering (Step4)| o 94

[6.3.5 Semantic Preserving Clustering Algorithm (StepS)[. 97

[6.3.6 Merging Step & Inter-Symbol Relationship Identification (Steps 6 & 7)] . 98

[6.4 Field Relationships Identification| 99

{7 Comparative Study of Vocabulary Inference Approaches| 101
/.1 ~Choice of Compared Tools| 101
T2 Dam@sell - . o o o oo 102
D3 MEWICT -« o v v e e e e e e 104
[7.4 Implementations| 107
7.5 Experimental Results|, 108

|8 Conclusion on Vocabulary Inference 113
I _Automated Inference of the Protocol Grammar| 115

Intr 1on 117

CONTENTS

10_Our model of a Protocol Grammar

inl

Learning the Grammar Using an FSM Decomposition|

[11.1 BigPicturel
[11.2° Example Protocol to Illustrate our Approach|{.

[11.3 Computing the Vocabulary of each Action|

[11.4 Inferring the Representatives Sequences of Symbols|.

[11.5 Inferring Action State Machmes|

[11.6 Merging Sub-Grammars| e

|11.6.1 'Transition and State Equivalencies|
[11.6.2 Merging the Target State Machine with an Action State Machine|

12,2 Metricsl e

[12.3 Implementations|

[12.4 Experimental Results|

[12.4.1 State Machines Correctness and Completeness|

[12.4.2 Comparing Inference Times|

[12.4.3 Comparing Inference Stealth|

15

119
119
120
121

123
123
124
126
127
129
131
131
133

137
137
139
141
142
142
143
145

151

153
153
154

159

164

16

CONTENTS

Chapter 1

Introduction

Communication protocols play a major role as a fundamental necessity that enables commu-
nication between the different components of computer systems. As those systems become more
and more connected [75) [120], communication protocols are frequently used at different levels of
computer systems. Sadly, it is also well-known that communication protocols can be vulnerable
to attacks [48, [126] [118 [128]]. Attackers can crash or hijack victims by sending unexpected or
malformed messages that exploit bugs or inadequate defenses in protocol implementations. Some
protocols, such those used by Botnets [[129, (136! 6] were even created for the sole purpose of com-
puter attacks. To address protocol vulnerabilities, many solutions exist. Among them, the security

evaluation of communication protocol implementations is often considered. Another solution is to

rely on various security products such as[Intrusion Detection System| (IDS) that can detect attacks

on protocol implementations. However, the quality of a product that analysis communication for
security flaws mostly depend on its knowledge over the protocol specifications. It is straightforward
to obtain this knowledge if the protocol specifications are available. Conversely, if the protocol is
undocumented and/or proprietary, the expert must reverse the protocol implementation to obtain its
specifications. In regards to the complexity of some existing protocols, this operation can be very
expensive when executed manually. For this reason, this thesis exposes our solutions to reverse
engineer a communication protocol with the key objectives of obtaining a fine-grained model of the
protocol specification while reducing the required computation time and increasing its stealthiness
in comparison to previous works. Indeed, our work embraces the need of an efficient and automated
protocol reverse engineering technique that helps security auditors, security evaluators and security

product developers in their work against cyber attacks.

In the remainder, Section [I.1] gives some insights over the definition of a communication
protocol and illustrates the omnipresence of undocumented ones. We then discuss the reasons
that prompted us to embrace the field of automated protocol reverse engineering in Section [I.2]
Consequently, Section|l.3|summarizes our problem statement, our objectives and the contributions

that are exposed all along this thesis. Finally, we present in Section[I.4] our dissertation outlines.

17

18 CHAPTER 1. INTRODUCTION

1.1 Insights on Communication Protocols

This Section gives some insights on communication protocols. The remainder is organized as
follows: we expose a basic definition of a communication protocol in Section and then show
the omnipresence of protocols in Section [[.1.2] by means of three examples: Internet and

protocols, industrial protocols and malware protocols.

1.1.1 Basic Definition of a Communication Protocol

A communication protocol can be defined as a set of rules that govern the nature of the
communication, the exchanged data and any state-dependent behaviors that participate in the
communication [65]]. These rules define the vocabulary and the grammar of the protocol and to
some extend can be seen as similar to the rules that govern programming languages. The protocol
vocabulary defines the set of valid messages and their format, while the protocol grammar specifies
the set of valid protocol exchanges. These rules can be complex since they can be designed to ensure
the protocol usages in very diverse settings. The unreliability of transmission links is an example

of a recurrent issue these rules must address to fulfill even the most basic requirements. To ease

their design, a layered architecture of protocols is promoted by the [Open Systems Interconnection|

(OSI) model [71] and retained in very most network related communication protocols. This
model decomposes complex protocol into simpler “single task”, cooperating protocols. With
this conceptual model, called protocol layering, a protocol covers its specific layer functions,

relies on sub layers functions and provides its features to upper-layer protocols. For example, the

[Transmission Control Protocol| (TCP) [49] is a transport protocol, i.e. member of the fourth layer

named the transport layer, that ensures data transfer reliability through error control, flow control
and data segmentation features. With this layer approach, the developer of a new protocol can base
its work over the [TCP|reliability functions and so focus on its specific aspects usually implemented
at the application layer. The[OSI|model defines seven layers covering a large spectrum of typical
communication functions from its electrical aspects with the physical layer, up to the end-user
with the application layer. These layers are illustrated in Figure When an application sends a
message to a remote application, this message successively goes through all the layers from the
application one to the physical one.

From a practical point view, protocol layering approach impacts the format and the content of
emitted messages. Indeed, a network communication involves a set of protocols, one protocol for
each layer. Thus, a message is successively handled by protocols that belong to underlying layers.
To ensure their roles, each protocol can optionally prepend and/or append control information

to the message it received from its upper layer protocol. In the nomenclature, the term of

[Protocol Data Unif (PDU) denotes a message extended with control information. Indeed, the term
of (N) denotes a message that belongs to the N-#4 layer. Control information often contains

parameters such as source and destination identifiers, data lengths and timestamps. Besides, the
layered architecture of protocols often implies that two communicating systems often use multiple

protocols to handle their exchanges, usually, one protocol per layer.

1.1. INSIGHTS ON COMMUNICATION PROTOCOLS 19

Layer 7 Application
Layer 6 Presentation
Layer 5 Session
Layer 4 Transport
Layer 3 Network
Layer 2 Data Link
Layer 1 Physical

Figure 1.1 — Layering architecture of the OSI model.

1.1.2 Communication Protocols are Everywhere

A communication protocol is mandatory to ensure a transmission of information. Every time
two or more systems communicate, at least one communication protocol is used. It exists a very
large panel of tools and systems that need to communicate. In the following, we point out the
fact that protocols are used in various heterogeneous application domains. We cannot provide an
exhaustive list of all the existing protocols as, to the best of our knowledge, no such list exists
mostly due to the high rate at which protocols are created. To illustrate that protocols can be
found everywhere, we retained three common application domains (Internet, industrial sector and

malware) and detail their usage of communication protocols.

Typical Internet and LAN Usages of Communication Protocols

Internet is the biggest network of networks that exists. Some of these networks are
[Area Network] (LAN)) as they interconnect computers within a limited area such as a home. Such
network relies on various distributed services and so protocols. Some of them are fundamental
for the stability of this network as with the [Transmission Control Protocol| (TCP) [109] protocol

that ensures the reliability of message exchanges. Naturally, Internet architecture relies on the

[Internet Protocol| [[LO8] protocol that provides the required routing features to support message

exchanges across Internet actors. Besides, such network make an heavy use of protocols that rely
on this layer. Among them, the protocol provides the domain name resolution system
to map an[[Pjaddress to a more human-readable domain name. Obviously, the HTTP| protocol that
enables data exchanges such as during a web navigation, is one of most frequent protocol used on
these networks. Their specifications are freely available to ensure their adoptions.

Multitudes of other protocols are also used on the Internet such as peer-to-peer protocols (e.g.
Napster, Gnutella, FastTrack, Bittorrent) and instant messaging protocols (e.g.
Skype). Internet also hosts various data exchanges such as timing information (e.g.
and file transfers (e.g. [FTP,[RSYNC|, [RCP). Private companies along with public sectors
created numerous communication protocols to address their needs and those of their users. The

20 CHAPTER 1. INTRODUCTION

specification of some of these protocols are not available. The Skype protocolﬂis a famous example
of such proprietary protocol. They are multiple reasons that can explain that an organization
does not release its protocol specification. One reason can be that the time required to write the
specification in a proper way can be seen as a break in an innovation race. Another common reason,
is that communication protocols are often expensive to develop. By publishing their specification, an

organization releases some parts of its intellectual propriety that may latter profit to its competitors.

Industrial Usages of Communication Protocols

Last years have seen an increase of communicating industries. Also known as Smart Industries,
these industries have a high degree of flexibility in production by means of a network-centric
approach. The term of is an illustration of this tendency applied to the industrial domain
of electricity production. Driven by latest[I[CT|technologies, these industries make an heavy use of
standardized or proprietary communication protocols to interconnect all their equipment. However,
industrial specific needs in terms of high reliability spawned the creation of specific protocols.
Besides, the complexity induced by industrial automation systems brought the classification of
industrial networks and of their protocols in several different categories [46l]. Each category denotes
an appropriate communication level, which places different requirements on the communication
network. Sensors, actuators and device buses constitutes the first category of industrial networks
called field-level networks. Control buses are organized in control network while the top level
industrial systems form the information network and gather information produced by lowest level
systems to manage the whole automation system. Multiples of communication protocols were
created to address the needs of each levels. For example ProﬁBusE], DeviceNet [100] or BitbusE] are
protocols that participate in field-level networks with more than 70 other major protocols [121]. The
largest listing of industrial protocols we have found, reveals that more than 180 common automation
protocols existlﬂ Most of these protocols are developed for a local usage that often support no
interconnection. Such protocol are often not conceived for their adoption across heterogeneous
networks. For this reason, protocol creators do not require the adoption of their protocols by multiple
actors which explains that numerous industrial protocols are proprietary and their specifications not

available.

Malware Usages of Communication Protocols

Remotely manageable malware and more specifically botnets rely on various communication
protocols to reach their goals. A botnet is a network of interconnected computers compromised with
a malicious software that is controlled by the owner of the network, the bot master. Once infected,
the computer joins the botnet and is forced to execute orders received from the bot master such as

attacking other computers or sending its personal data. Botnets are known to be responsible for a

1. Skype: http://www.skype.com

2. Profibus; http://www.profibus.com/

3. BitBus: http://www.bitbus.org/

4. Article “List of automation protocols” from Wikipedia: http://en.wikipedia.org/wiki/List_of_|
automation_protocols

http://www.skype.com
http://www.profibus.com/
http://www.bitbus.org/
http://en.wikipedia.org/wiki/List_of_automation_protocols
http://en.wikipedia.org/wiki/List_of_automation_protocols

1.2. MOTIVATIONS 21

large amount of attacks over the Internet. These attacks can take multiple forms, |Distributed Denial]
Of Service| (DDOS)), large spamming campaigns, financial frauds, [Search Engine Optimization|

poisoning, [Pay-Per-Click| (PPC)) frauds, espionage and Bitcoin Mining. Through the years,
multiple botnets were revealed by security researchers. A famous example is the Mariposa botnet,

one of the largest ones which was responsible for an estimated 13 million infections that were
capable of generating at least 250,000€ a month in revenue for the owners [S0].

An infected computer or bot, receives his orders from the bot master by means of a specific
communication channel called the Command & Control (C&C) channel. The bot master connects
to this channel, sends his orders and waits for answers from its bots to gain details over the results
of their execution. To evade firewalls and [[DSes, C&C protocols are often hidden on top of
common network protocols such as[IRC|, [HTTP|or[P2P| protocols. Besides, most botnet protocols

are created for a single version of a unique botnet. Obviously, these protocols are kept secrets as

they publication would reveal the malware existence along with potential flaws of hidden features
in it. This diversity of protocols forces and vendors to update their detection signatures

every time a new version of a botnet is discovered.

1.2 Motivations

The|Reverse Engineering| (RE]) of communication protocols denotes the processes used to re-

trieve the specification out of an undocumented protocol. This knowledge of protocol specifications
is highly valuable and becomes increasingly important in a number of security-related contexts.
For example, security audits of industrial control systems often imply the analysis of proprietary
equipment and software. Indeed, an effective security audit of such proprietary system requires
to gain sufficient knowledge over the features offered by its protocol. If no documentation is
available such as in a black-box audit, the expert is forced to reverse the protocol specification.
The importance of automating this process is well established considering the difficulty and time it
requires when executed manually.

In addition to security audits and vulnerability assessments, the of protocols is also useful

for the developers and the evaluators of security products such as [[ntrusion Detection System|

(IDS), application firewall, network supervision tool and honeypot. In the following, we outline
the three main motivations that led us to focus on the specific field of automated protocol reverse
engineering. The importance of protocol [RE|for security evaluations is detailed in Section[I.2.1]
Section[I.2.2]illustrates how protocol [RE]can be use to create precise [NIDS|rules. Finally, we detail
in Section [I.2.3]why protocol [RE]is sometimes mandatory to obtain realistic and yet controllable
botnet traffic.

1.2.1 Protocol RE for Security Evaluations

[Security of Information Systems| denotes the set of organizational, technical and legal

means required to preserve and guaranty the security of Information systems. Among them, the

security evaluation of products and systems plays a major role. This process, usually conducted by

22 CHAPTER 1. INTRODUCTION

an independent third party, is designed to check if a product or a system complies against various
functional and insurance requirements. In this field, the evaluated product or system is called
the [Target of Evaluation| (ToE)) which can latter be certified if the evaluation succeeds. Multiple

norms exist to specify the expected security requirements and to guide the evaluation process. The
Common Criterias for Information Security Evaluation also known as (Common Criteria| (CC) E])

may be one of the best known international framework for the impartial security evaluation of
Other security evaluation frameworks exist such as the French first level security certification
E] and the CESG Assisted Products Scheme in UK.

In recent years, the field of security evaluation of systems or software was extended with new
approaches and new tools based on fuzzing techniques. Compared to more traditional techniques
(static and dynamic analyzes of the binary, potentially combined with the analysis of the source code)
that require specialized skills, resources and time, fuzzing offer many advantages: relative simplicity
of implementation, semi-automated approach, rapid acquisition of results, efc. However, experience
shows that to be truly effective, security analysis by fuzzing requires a good knowledge of the
ToE and in particular of the protocol communication that interacts with thereof. This fact limits
the effectiveness and completeness of results obtained in the analysis of products implementing
proprietary or undocumented protocols.

To evaluate the security of a communication protocol implemented in a[ToE] we believe that
the protocol can be an effective solution. Indeed, protocol can be used by security
evaluators to gain sufficient knowledge over the product to produce an adapted fuzzer. This fuzzer
can latter be used to evaluate the robustness of the protocol implementation.

Another important aspect of an evaluation resides in the assessment of the protocol compliance
proposed by the ToE. For example, [CC|evaluations cover this aspect under the set of tests participat-
ing in the [Assurance TEsting| (ATE)) class [23] of its methodology. The objective of this testing class
is to provide assurances that the [ToE| behaves as documented in its functional specification. The
of the implementation protocol becomes almost mandatory when these tests must be conducted on
products of the “secure protocol implementations” category (e.g. IPsec, [EAP] ezc.).

Indeed, the of the protocol makes easier the task of validating protocol compliance.

It can be used to produce a protocol model that corresponds exactly to the implementation under

evaluation. This model can latter be compared against the theoretical model of the protocol to attest
the compliance or to identify deviations [23]].

1.2.2 Protocol RE to Build Precise NIDS Rules

A[Network Intrusion Detection System| (NIDS) is a security application or device that analyzes

network communications to detect unauthorized access to a system. [[DSgs in general, are divided
into two families similarly to the classification proposed for|[IDSgs: signature-based and anomaly-
based families. A signature-based searches for specific traces revealing specific threats in the

5. Common Criteria: http://www.bitbus.org/

6. |CSPN|are described at http://www.ssi.gouv.fr/fr/certification-qualification/cspn/

7. |CAPS| are described at http://www.cesg.gov.uk/servicecatalogue/Product—-Assurance/
CAPS/

http://www.bitbus.org/
http://www.ssi.gouv.fr/fr/certification-qualification/cspn/
http://www.cesg.gov.uk/servicecatalogue/Product-Assurance/CAPS/
http://www.cesg.gov.uk/servicecatalogue/Product-Assurance/CAPS/

1.2. MOTIVATIONS 23

traffic it analyzes. Its rules or signatures form a collection of all the previously known intrusions.
If one rule matches, the alert is investigated to confirm or not the intrusion. On the contrary, an
anomaly-based [NIDS] triggers an alert for every invalid observed protocol usage it observes. Thus,
it follows an opposite approach since its rules form a collection of all the accepted patterns of
protocol usages.

In both cases, the development costs engendered by these intrusion detection rules are high.
The creation of a rule implies to master the threat (or the valid protocol usage) and to transcript it
in a language accepted by the product. This mostly manual process is even more complex when
it implies unknown or undocumented network protocols. Facing such protocols, most [NIDSks
rely on a specific bunch of keywords that (may) indicate an intrusion by means of this unknown
protocol. Listing [I.T]is an example of a detection rule for Snort [[DS] that relies on simple
keywords, i.e. “Wonk-" and “0x00#wate0x00” to detect the @Phatbot botnet [32]]. This solution
is often preferred instead of RE]the entire protocol which requires far more work. However, such
rule is often responsible of a high number of false-positive as these keywords may also appear
in legitimate traffic. Besides, attacks and intrusions tend to constantly evolve to avoid detection.
Thus, an attacker may try to evade the NIDS by encoding or modifying its attack thereby effectively

changing its signature.

alert tcp any any -> any any (msg:"ET P2P Phatbot Control Connection";
flow: established; content:"Wonk-"; content:"|00|#waste|00]|";

within: 15; [...] classtype:trojan-activity; sid:2000015; rev:6;)

Listing 1.1- Snort rule distributed by EmergingThreats company to detect Phatbot botnet C&C

We believe that by reducing the time and costs required to obtain the specification of an unknown
protocol, IDS rules developer can develop specific protocol decoders that could be used to develop
more robust rules. Thus, a botnet protocol could lead to the creation of specific rules that could
detect the botnet infection but also the sequence of orders the infected host received from the bot

master.

1.2.3 Protocol RE is Mandatory for Effective Botnet Simulation

Computer security history has highlighted the difficulty to have necessary secure systems that
would prevent botnets from spreading. Therefore, besides preventing new infections, industry and
researchers are also working on the detection of botnets using three families of solutions. The
first one composed of [Antivirus| and [Host-based Intrusion Detection System| (HIDS)) focuses on
the malware impact on an infected host 99]. A second family gathers solutions detecting

botnets based on a characterization of their proliferation and network topology [36]. The last family
considers the presence of a C&C as the main symptom of an infection [57, 27, [143]]. This last
approach which mostly relies on rules we previously described seems promising since it
targets the major weakness of a botnet: its communications channel. Indeed, once the Command &
Control channel is revealed, it becomes possible to prevent the botnet master from controlling its

infected hosts.

24 CHAPTER 1. INTRODUCTION

Even if this approach appears promising, its efficiency has to be validated through the evaluation
of its implementation in security tools. To do so, an evaluation methodology has to be expressed,
which requires, among other things, the complete qualification of the environment and of the
representative dataset used. However, controlling an infected host to obtain a realistic network
dataset is not trivial. The difficulty mainly comes from the need to have control over a realistic
C&C to validate its detection.

The first and natural way to obtain such dataset is to capture the botnet malware and to use it into
an evaluation environment. In this case, the problem comes from the infected host dependencies
to one or multiple unmanageable external botnet masters. Indeed, the reproducibility requirement
cannot be satisfied when the evaluation environment contains an infected host controlled by an
external agent. Moreover, another difficulty brought by the integration of this host into an evaluation
process is its aggressive aspect. Besides the generated threats for the evaluation environment, an
infected host is a threat for other hosts through its participation in distributed malicious operations.
In addition, malware also often include protections against reverse engineering tools and anti-
virtualization procedures. Hence, an evaluation process including connected infected hosts is often
very expensive and non-reproducible. These limitations justify the use of network traffic generators

instead of real botnets.

Network traffic generators can be divided into two main categories. The first one covers all the
replay solutions that re-inject a captured traffic (e.g. files) obtained from an existing C&C
in the evaluation network. This approach can be easily and rapidly implemented in an evaluation
process. However, in addition to the lack of privacy for the actors involved in the dataset, the injected
traffic can also introduce out-boundaries behaviors such as uncharacterized attacks, incompatible
protocols and outdated values. Therefore an expensive preparation step must be accomplished
upstream to analyze the captured traffic [[18]]. The second category of network generators regroups
all the synthetic solutions and produces traffic based on heuristics and published statistics [92].
These statistics model the evolution over time of an actor’s behavior. However, generated traffic is
often too simple and unrealistic. Indeed, synthetic models used to generate network traffic cannot
effectively address all the specifics of the environment in which the botnet evolves. To address these
issues, we proposed an hybrid solution that relies on the of a botnet protocol to generate a
realistic and controllable dataset [25]]. Indeed, the inferred model of a botnet protocol can be shared
among security evaluators. Based on this model, an evaluator can thereafter generate a realistic

dataset that can be used during evaluations.

In this Section, we exposed three security-related contexts that could be improved by means
of an automated reverse engineering technique. We claim that security evaluations can take
advantage of a[RE]technique that produces high quality specifications of the protocol used by an
implementation. We claim that a fast[RE]technique would help developers of rules to be more
responsive in their work against computer threats. Finally, we claim that a stealthy solution
can be used to infer botnet protocols for the creation of realistic and yet controllable botnet traffic
generators. For all these reasons, this thesis addresses the need in an effective, stealthy and yet fast

automated reverse engineering approach that applies on communication protocols.

1.3. THESIS STATEMENT AND CONTRIBUTIONS 25

1.3 Thesis Statement and Contributions

In regards to the number of protocols available and, among them, the number of undocumented
ones, we decided to investigate the field of protocol Reverse Engineering. Our motivations comes
from the need of protocol specification in numerous fields and from our observations of the lack of
practical and effective approaches to obtain these specifications by

Problem Statement:
Current work in the field of automated protocol reverse engineering either infer incomplete

protocol specifications or require too many stimulation of the targeted implementation
with the risk of being defeated by counter-inference techniques. Besides, none of these
work infer detailed enough specification that could support the simulation of the reversed

protocol. Finally, the computation time required by previous work can be enormous

which can prevent their uses where high responsiveness is mandatory.

We extract from our problem statement, the three following objectives of our work:

Objective 1 Our protocol solution must produces precise, correct and complete protocol
specifications that models both the vocabulary and the grammar of an undocumented

protocol.
Objective 2 Our protocol [RE|solution must be faster than existing work.
Objective 3 Our protocol RE|solution must increase the stealthiness of the inference process

in comparison to previous work.

To attain these objectives, we expose the following thesis statement.

Thesis Statement:
The semantic definition of a protocol can be used to improve the syntactical and grammatical

inference of a communication protocol. Leveraging the protocol semantic in an automated
reverse engineering approach improves the overall quality of the inferred protocol spec-

ifications, reduces the computation time and increases the stealthiness of the inference

process.

Thesis Contributions:

This thesis proposes a practical approach for the automatic reverse engineering of undocumented
communication protocols. This work leverages the semantic of the protocol to improve the quality,
the speed and the stealthiness of the inference process when applied on complex protocols. Our
work covers the two main aspects of the protocol RE, the inference of its syntactical definition (the
protocol vocabulary) and of its grammatical definition (the protocol grammar). The algorithms
we propose uses the semantic definition in both domains. We conducted multiple experiments to
validate our approach by comparing previous state-of-the-art work against our algorithms. We also
propose an open-source tool, called N etzobﬂ that implements our work to help security experts in
their protocol reverse engineering tasks. We claim Netzob is the most advanced published tool that

tackles issues related to the reverse engineering and the simulation of undocumented protocols.

8. Netzob: http://www.netzob.org

http://www.netzob.org

26 CHAPTER 1. INTRODUCTION

The contributions on this dissertation are summarized in the following:

— We introduce a new trace-based approach to infer the vocabulary of a protocol. It lever-
age various semantic information in different pre-computing steps to enhance protocol
vocabulary inference.

— We propose a correlation-based approach to automatically infer relationships between
message fields.

— We detail a parallel approach to reverse the grammar of an unknown protocol that drastically
reduces the inference time.

— We propose a grammatical inference process that leverages semantic information for a
stealthier reverse engineering.

— We expose a solution that infers the reaction time of protocol implementation to increase
the realism of the inferred model.

— We present the results of an experimental comparative study that compares our work against
other state-of-the-art solutions in the field of protocol vocabulary and grammar reverse
engineering.

— We publish an open-source and freely available tool that implements our algorithms to

reverse both the vocabulary and the grammar of protocols.

1.4 Dissertation Outlines

This dissertation is organized as follows. First, some insights on common communication
protocols are provided in Chapter 2] These examples are followed by a more formal definition of a
communication protocol. Chapter [3|details state-of-the-art works in the field of protocol reverse
engineering. This study highlights the main issues identified by these pieces of work and the
solution proposed relatively to these. We conclude this chapter with a discussion on the recurrent
issues in the field of RE and with a summary of the available tools. Our dissertation is then divided
into two parts. Part[l| presents our contributions in the field of vocabulary inference and Part[ITj our

contributions in the field of grammatical inference. These parts are organized as follows:

Part I - [Automated Inference of the Protocol Vocabulary|presents our solution to infer the

vocabulary of undocumented protocols by means of an automated approach and novel techniques
that leverage protocol semantic. Based on communication traces, we reverse the vocabulary of
a protocol by considering embedded contextual information. We also use this information to
improve message clustering and to enhance the identification of fields boundaries. We then show
the viability of our approach through a comparative study including our re-implementation of three

other state-of-the-art approaches. Part[| comprises three chapters:

— Chapter 5 -|Our Vocabulary Model| covers our definition of a symbol, of its fields and of

their definition domains including optional relationships among them. Then, we describe
the abstraction and specialization processes we use to transform symbols into contextualized
and syntactically valid messages. Finally, this chapter presents the memory mechanism we

use to support relationships between fields such as size fields or sequence numbers.

— Chapter 6 - [Leveraging Semantic Information to Improve the Vocabulary Inference|

1.4. DISSERTATION OUTLINES 27

describes the solution we retained to infer the vocabulary of a protocol out of sample traces.
Specifically, after a high-level overview of our methodology, it details the two main parts of
our automated reverse engineering process: a semantic-based message clustering and the

Field Relationships Identification.

— Chapter 7 -|Comparative Study of Vocabulary Inference Approaches|exposes the eval-

uation of our approach to infer the vocabulary of various protocols and compares our
contributions against state-of-the-art approaches. Two different kinds of experiments are
conducted: 1) on known protocols to compare inferred message formats with their published
specifications and 2) on unknown protocols to evaluate the effectiveness of the different
approaches on more operational use cases. This chapter gives some key insights over the
compared tools and then present the datasets, the metrics and the implementations we used
in this study. It concludes with a discussion on obtained results.

Part II - [Automated Inference of the Protocol Grammar] details our work in the field of

grammatical inference. It describes our solution that leverage contextual information and semantic

definition associated with protocol usages as key parameters in the grammatical inference of a
protocol. It shows how we rely on this semantic information to split the large inference task into
separate parallel sub-tasks which drastically reduces the computation time of the whole inference.
It also explains that our solution reduces the stimulation of the inferred implementation thus being

stealthier. Part|ll|comprises four chapters:

— Chapter 10 -|Our model of a Protocol Grammar|describes the|[Symbolic Mealy Machine]

we use to model the grammar of a protocol. It consists in an extension of a Mealy
Machine that supports a symbolic vocabulary along with the definition of a reaction time
for each transition it denotes. This timing data models the average elapsed time between
the emission of a message and its associated response. We also describe in this Chapter
the advantages that arise with our idea of decomposing a protocol grammar to improve its

inference.

— Chapter 11 - [Learning the Grammar Using an FSM Decomposition|details our gram-

matical inference process. Specifically, after a high-level overview of our methodology, this
chapter describes how we identify and leverage protocol features to parallelize the inference
process. It also explains the algorithm we use to retrieve the protocol grammar out of partial
sub grammars inferred in parallel.

— Chapter 12 - is a comparison of our results against those computed by the
classical version of the state-of-the-art L* algorithm exposed by the LearnLib [111]] frame-
work. This evaluation consists in three different experiments, each applied on a different
protocols. Among the retained protocols, two are famous known protocols while a last one
is an undocumented protocol used by a botnet. This comparison shows that our approach is
effective to compute a good approximation of the targeted protocol grammar while being
faster and stealthier than previous work. We conclude this chapter with a discussion on

obtained results.

28

CHAPTER 1. INTRODUCTION

Chapter 2

Communication Protocols

In this chapter, we describe the foundations of the communication protocol research fields.
In section [2.T we overview recurrent forms and usages of communication protocols through two
protocols: 1) a common text protocol and 2) a recent [P2P]botnet protocol. In section we rely
on Gerard Holzmann’s work [65]] to give a more formal definition of a communication protocol
and of its two main components: the vocabulary and the grammar. We then present existing formal

languages and techniques used for protocol specifications in section[2.3]

2.1 Recurrent Forms of Communication Protocols

A communication protocol is a standard set of digital rules governing information exchanges
between actors. These rules can be as simple as the introduction of keywords to support conversation
in morse-based languages [5]], to highly complex as in protocols over which the Internet
works. Besides the large variety of protocol usages, rules that govern protocols express three
recurrent key features: 1) a communication establishment scenario, 2) the information exchanges
and 3) how to deal with errors. In addition to these key features, protocols often include additional
rules to support properties such as confidentiality as provided by the suite of protocols [77]]
and extended fault-tolerances processes as in Train Communication Networks [81]].

Obviously, to ensure that both the sender and the receiver of a communication follow the
same rules, protocols specifications must be shared. As noted by G. Holzmann [65], the
[Bi-SynC protocol| (BSC)) [68] and its chaotic “enhancements”, i.e. more than fifty incompatible

variants, has revealed the necessity for international standards in the field of protocol specification.
Such standard aims at ensuring a uniform adoption of protocols among all the constructors and

software developers. To achieve this, many international standardization bodies exist to harmonize

the technical specifications of protocols. Among them, the [[nstitute of Electrical and Electronics]

[Engineers| (IEEE) and the [International Standards Organization| (]ISO])EI are the most important. In

the field of protocol standards, the [Internet Engineering Task Force] (]IETFD develops and promotes

Internet standards through the publications of memorandum called [Request for Comments| (REC)).

1. ISO’s website: http://www.iso.org
2. IETF’s website: http://www.ietf.org

29

http://www.iso.org
http://www.ietf.org

30 CHAPTER 2. COMMUNICATION PROTOCOLS

Another important actor in this field is the [International Telecommunication Union| (]ITU[)EL a

specialized agency of the United Nations that is responsible for issues that concern information and
communication technologies including the coordination of worlwide technical standards.

In the remainder, we give some insights over the definition of protocols used in two different
kind of communications: Internet related protocols and botnet protocols. The first case study covers
the Hypertext Transfer Protocol 1.1 [49] as the most used protocol over Internet [21} 184, [141]]. The
second case study analyzes the peer-to-peer communication protocol used by a recent malware: the
ZeroAccess botnet [22]]. With these case studies, we explore common protocol features regarding

their respective environment and usages to search for common underlying principles.

2.1.1 HTTP Case Study: A Common Text Application Protocol

The [Hypertext Transfer Protocol| (HTTP) and its most notable version HTTP/1.1 published
in 1999 [49]], is the result of a coordinated work between the [ETH and the [World Wide Web|
Consortium| (W3C). Its standard describes a text based request-response protocol, in use between

a client and a server to exchange application data on top of [109]. Internet navigators, such
as Firefox or Internet Explorer, use this protocol to download website content during an Internet
navigation. The navigator plays the role of an client and sends[HTTP|requests to a website
hosted by an server that answers with [HT TP|responses. is a stateless protocol that
only accepts sequences of messages that follow a request/response pattern initiated by the client.

An request denotes a specific method (e.g. GET, HEAD, POST, PUT) indicating the
desired action to be performed on a given resource. Some of these methods are only intended for
information retrieval, such as the HEAD, GET, OPTIONS and TRACE methods while others may
change the server internal state such as POST, PUT or DELETE methods. A request message has a
specific format that consists of a “Request-Line” followed by a “Request Header” and a message
body.

The Request-Line is made of three successive fields separated by a space character. The first
field contains the method name also called the request command. Its value must be one of the
following: GET, HEAD, POST, OPTIONS, CONNECT, TRACE, PUT, PATCH or DELETE. The
next field denotes the resource on which the command applies and must be an[URL] Finally, the
third field of the Request-Line contains the protocol version number.

The Request Header consists in a set of name-value pairs, each pair denoting a property.
Properties are separated with a sequence of characters. [HI'TP| specifications describe a
property under an language as illustrated on Listing[2.1] It specifies it as the concatenation
of a token, the “:” character and a value. Previously in specification, a token is defined as a string
that contains neither American control characters or delimiters. The value property is made
of any sequence of printable characters, token, separators, space character or quoted string.
The only mandatory property that must be present in a Request Header is the Host property that
denotes an hostname optionally followed by a port number (e.g. “www.w3c.org:80").

The message body is separated from the previous field with a blank line. It is used to carry the

3. ITU’s website http://www.itu.int

www.w3c.org:80
http://www.itu.int

2.1. RECURRENT FORMS OF COMMUNICATION PROTOCOLS 31

entity-body associated with the request or the response message. If a message-body is specified,
the Request Header must include a Content-Length or a Transfer-Encoding property. Figure [2.1]
illustrates an example of an[HTTP|request.

message—header = field-name ":" [field-value]
field-name = token
field-value = % (field-content | LWS)
field-content = <the OCTETs making up the field-value

and consisting of either *TEXT or combinations

of token, separators, and quoted-string>

Listing 2.1- ABNF definition of the HTTP header properties as described in RFC 2616 [49])

response messages accept a very similar message format. It denotes a “Status-Line”
field made of the server version number and a status identifier that contains a numeric status code,
such as “200” and a textual reason phrase, such as “OK”. This line is then followed with properties

stored in a “Response Header”. An optional message body can also follow.

Resource Version Number

Method ——— GET / HTTP/1.1

Host: www.amossys.fr

User-Agent: Mozilla/5.0 (X11; Linux x86_ 64; rv:
24.0) Gecko/20131101 Firefox/24.0 Iceweasel/24.1.0
Accept: text/html,application/xhtml+xml
Accept-Language: fr,fr-fr;g=0.8,en-us;
Accept-Encoding: gzip, deflate

Connection: keep-alive

————————————————————— Blank ling=====s=ss=s========
(Empty body)

Request
Headers

Figure 2.1 — Sample HTTP GET request with highlighted fields.

To summarize, is a stateless text-based protocol that enables data exchanges on top of
It follows a request-response communication pattern always triggered by the client. An[HTTP|
message consist in a header made of multiple fields followed by an optional payload that can host
data brought by protocols on top of Messages can be classified in different types following
the semantic they denote. However, all the request messages share the same protocol format
and the type information is represented by one of its field value. Similarly, all response
messages follow the same field definition. Regarding its format, [HTTP| makes an heavy use of
delimiters (e.g. “.”, “”, {CRILE’) and very few size fields such as the “Content-Length”
field. Besides, some of its fields are optional and no specific rule establishes their declaration order.
Finally, it exists very few relationships between its fields value. Many communication protocols
that belongs to the highest layers of the [SO|model share similarities. Indeed, traditional protocols
belonging to these layers such as the application layer were often created with an objective of
being usable and readable by humans. It explains the use of ASCII to encode exchanged data. For

example, the [T10.,79], [62] and [102, [74]] protocols share similar message formats
with their[ASCII| fields delimited with specific[ASCII| characters.

32 CHAPTER 2. COMMUNICATION PROTOCOLS

2.1.2 ZeroAccess Case study: A P2P Botnet Protocol

ZeroAccess is a recent botnet discovered around July 2011 by Symantec that infects Windows
operating systems [123]]. Its primary motivations is to make money through Bitcoin mining and
pay-per-click advertising. Its size has been estimated at around one million active on at least nine
million systems in the third quarter of 2012.

The malware spreads itself through various attack vectors. Among them, ZeroAccess was found
in apparently legitimated files that users download from infected websites. It also relies on classical
sets of “drive-by-download” attacks distributed by the Blackhole Exploit Toolkit and the Bleeding

Like Toolkit [66]]. Once executed on a computer, this malware behaves as a typical rootkit to hide

and persist on the compromised system. Typically, it infects the [Master Boot Record (MBR)) of its

host and disables the Windows Security Center service and with it, the user firewall and anti-virus
provided by Windows 7. It also downloads other malware and lure the user to download fake
anti-viruses applications.

Moreover, it opens a backdoor to connect to its network. Its command and control channel is
used to distribute updates and malicious files among all the botnet members. ZeroAccess has seen
multiples updates. In the following, we focus on the C&C protocol it operates after its update on
the second quarter of 2012. From our knowledge, latest observed protocol updates occurred the 29

of June 2013 which included small improvements.

ination

2 1.000867000 152.188.42.41 IRl UDP 58 Source port: 52482 Destination port: 16464
32 2.002419000 192.168.42.41 66.231. LUDRP S8 Source port: 52483 Destination port: 16464
4 3.003707000 192.168.42.41 190.94. LDP 58 Source port: 52483 Destination port: 16464
5 4.004729000 152.188.42.41 98.252. UDP 58 Source port: 52483 Destination port: 16464
6 4.511146000 190.94. 192.168 LUDRP 610 Source port: 16464 Destination port: 52483
7 5.006712000 192.168.42.41 24.63.1 LDP 58 Source port: 51576 Destination port: 16464
8 6.007416000 192.168.42.41 71.197. LDP S8 Source port: 51576 Destination port: 16464
9 7.008538000 152.188.42.41 178.254 UDP 58 Source port: 38588 Destination port: 16464
10 8.010832000 192.168.42.41 71.66.1 LUDRP S8 Source port: 385899 Destination port: 16464
11 9.011801000 192.168.42.41 24.98.6 LDP 58 Source port: 38599 Destination port: 16464
12 10.013510000 152.168.42.41 76.118. UDP 58 Source port: 35406 Destination port: 16464
12 11.015225000 192.168.42.41 188.26. LUDRP S8 Source port: 35406 Destination port: 16464
14 12.016440000 192.168.42.41 98.218. LDP 58 Source port: 35406 Destination port: 16464
15 13.018200000 152.168.42.41 105.91. UDP 58 Source port: 35406 Destination port: 16464
16 14.019628000 192.168.42.41 98.225. LUDRP S8 Source port: 35406 Destination port: 16464
17 15.020335000 192.168.42.41 72.231. LDP 58 Source port: 35406 Destination port: 16464
18 16.022058000 192.168.42.41 188.159 LDP 58 Source port: 35406 Destination port: 16464
19 17.023575000 152.168.42.41 98.234. UDP 58 Source port: 35464 Destination port: 16464

Figure 2.2 — UDP traffic generated by a host infected by ZeroAccess

The C&C protocol of the ZeroAccess botnet is a protocol. It enables the creation of a
distributed directory of all the infected hosts by means of connections. This directory is used
by each bot to identify from which other peers it can download malicious files or updates. This
protocol does not cover files transfer. As illustrated on Figure 2.2] an infected host constantly
contacts other peers to update its peer list and to discover new files to download. As a matter of
facts, each bot is also constantly contacted by other peers. Thus, a ZeroAccess bot plays both the
role of a server and a client.

To avoid easy detection, each message is encrypted by means of a rotated It encrypts
(or decrypts) four-byte at a time the message using a four-bytes key. The initial key value is
“ftp2”. The routine given in Listing [2.2]can be use to decrypt ZeroAccess communications. Its

protocol vocabulary is made of three different types of binary message (getL, retL and newlL). In

2.1. RECURRENT FORMS OF COMMUNICATION PROTOCOLS 33

the following, we detail their formats.

import struct

def decryptZeroAccessMessage (encryptedMessage) :

key=0x66747032

result = []

for i in range(0,len(encryptedMessage), 4):
subData = struct.unpack ("<I", encryptedMessage[i:i+4]) [0]
xoredSubData = subData ~ key
result.append(struct.pack ("<I", xoredSubData))
key = ((key << 1) & OxfffffffflL | key >> 31)

decryptedMessage = '’ .join(result)

return decryptedMessage

Listing 2.2— Python decryption routine of ZeroAccess messages

The getL message is the first message an infected host emits to a predefined list of peers. With

this message, the infected host requests a new list of peer IP addresses. As illustrated on Figure 2.3]
a gerL message is made of four fields of four bytes long. The first field contains the message[CRCB2
value and the second field, the message command name (i.e. “getL”). The third field is filled with

zeros while the last field contains a randomly generated number, the bot unique identifier.

4 bytes . 4 bytes . 4 bytes . 4 bytes

CRC32 Command Zero Bot UID

DA61 DDES5 4C74 6567 0000 0000 A846 E280

*

“getL”

Figure 2.3 — ZeroAccess getL message format

The retL message is another type of message that is sent in response to a getL message.
Figure [2.4]illustrates its format. It contains a list of IP addresses of other botnet members and a
list of files that can be downloaded. Similarly to the getL format, the first and the second field
host the [CRCPB2 value and the command name of the message. Obviously, in this case the second
field is always filled with the “retL” value. The four-byte value stored in the third field is often
referred to as the “broadcast flag” that might indicate if the receiver must propagate the list of IP
addresses contained in this message to its own peers. The fourth field contains the number of IP
and timestamp pairs that are stored in the fifth field (denoted “IP Entries” on Figure [2.4). Each pair
consists in two values of four-bytes: the IP address of a peer and its timestamp. Right after this
sequence of IP/timestamp pairs, the sixth field denotes the number of file entries contained in the
last field (denoted “File Entries” on Figure 2.4). A file entry is made of four values. The first value
denotes a file name of four bytes long followed with the file creation date also a four-byte long
value. The third value in a file entry denotes the file size while last value is a 32 bytes long that

might represent the file signature.

34 CHAPTER 2. COMMUNICATION PROTOCOLS

4 bytes 4 bytes 4 bytes 4 bytes ${Number of IPs} x 8 4 bytes ${Number of files} x 44
_______________________________ A
CRC32 | command | Broadcast | Number of IP Entries Number of File Entries :
M9 | ™ @ | Ts@ .. ™° [Name(O)] Date(0)| Size(0) | Signature(®) |
1
1£d085eF | 4c746572 | 00000000 | 10000000 | s | s 03000000 |
t - . . .
“retL” 4 bytes 4 bytes 4bytes 4bytes 4 bytes 32 bytes

Figure 2.4 — ZeroAccess retL message format

When a bot receives a retL message it checks the file names and creation dates declared in it
against the files it has. If it discovers that the remote peer possesses a file it does not have, it tries to
obtain a copy of it. To achieve this, it initiates a session to the peer on the same port number
as the UDP exchange and downloads the file by means of another protocol.

The newL message propagates a new peer address across the botnet. When an infected host
receives a retl message with the broadcast flag set, it broadcasts the received peer list to its own
peer list through a set of newL message. This message follows a similar format than the getL
message. As illustrated on Figure a newL message is made of four fields. The first and second
field respectively contains the [CRCB2 value and the command name (“newL”) of the message. The
meaning of the third field is obscure and usually contains “8”. The fourth field contains the peer IP

address the sender wants to propagate.

4 bytes . 4 bytes . 4 bytes . 4 bytes

CRC32 Command Unknown Peer IP

£321 C30E 4C77 656e 0000 0008 XXXX XXXX

*

“newL”

Figure 2.5 — ZeroAccess newL message format

Zero Access [P2P|protocol relies on binary messages. These messages can be regrouped in three
types following the value of their second field. Based on this value, the parser expects a specific
format to parse the remaining data. This format is made of a mix of static sized fields and fields with
a size computed following previously parsed field values. Another interesting thing is its encryption.
Its objective is not to ensure the confidentiality of its exchanges but rather to prevent its detection
through signature based mechanisms. As detailed in [22f], reverse engineer this protocol can be
easily achieved if a preliminary crypto analysis is performed to break the encryption mechanism. It

requires to identify field boundaries and to cluster messages having a similar format.

2.2 Formal Definition of a Communication Protocol

A communication protocol can be defined as the set of rules allowing one or more entities (or

actors) to communicate. Applied to the field of computer networking, protocols have been the

2.2. FORMAL DEFINITION OF A COMMUNICATION PROTOCOL 35

subject of many standardization activities, particularly from the model, which establishes,
among other things, the principle of protocol layers. However, few studies have attempted to give
a formal and generic definition of a communication protocols. We refer here to the definition
provided by G. Holzmann in his reference book Design and Validation of Computer Protocols [[63]].

According to the author, a protocol specification consists of five distinct parts:
1. The service provided by the protocol.
2. The assumptions about the environment in which the protocol is executed.
3. The vocabulary of messages used to implement the protocol.
4. The encoding (format) of each message in the vocabulary.
5. The procedure rules guarding the consistency of messages exchanges.

In our work, this specification is unknown and we try to infer it from observed messages using
an implementation of the protocol. As pointed by G. Holzmann, the fifth part is the hardest to
develop and to verify. In our case, it is also the most difficult to infer. Furthermore, this definition is
generic, somehow “fractal”, since each part can define its own hierarchy of elements. For example,
message format can define additional embedded messages. This corresponds to the notion of
protocol layers defined in the standards listed above.

In this thesis, we seek to infer the three last elements of the specification. Subsequently, we
consider protocol inference requires to learn both, 1) the set of messages and their format, also
called the vocabulary and the syntax of the protocol and 2) all the rules of procedure that we name

grammar of a protocol. We give a more formal definition of these notions in the rest of this section.

2.2.1 Definition of the Protocol Vocabulary

As presented below, the definition of a protocol is similar to the one of a language, and as
s0, includes a vocabulary and a syntax [65]. The vocabulary lists all the valid messages of the
protocol while the syntax, also called the message format, denotes the rules and principles by which
messages are constructed [37]]. For example, the protocol denotes a vocabulary composed
of messages such as echo requests or echo responses and a protocol syntax that defines the fields

structure of these messages.

Protocol Vocabulary

The message vocabulary of a protocol, also called protocol vocabulary, lists the messages
that can be exchanged by the actors of a communication. Besides its format covered by the
protocol syntax, a message denotes one or more meanings, i.e. its semantic, and therefore implies
a specific impact in a sequence of exchanged messages, i.e. one message cannot be replaced by
the other without changing the objectives of the exchange. For example in the protocol,
SYN messages cannot be replaced by ACK messages without breaking the three-way handshake.
That is because both messages have a different meaning in the [TCP|protocol, i.e. SYN messages
indicate a connection establishment request while ACK messages indicate an acknowledgment. In

the remainder, we refer to the type of a message to denote both the semantic and the syntax of a

36 CHAPTER 2. COMMUNICATION PROTOCOLS

message. For example, the XMPP|instant-messaging protocol, as described in RFC 6121 [119]],
also exposes various message types such as presence messages, chat messages or roster request
messages.

Nevertheless, two messages of the same type can be different. In effect, messages often
include parameters such as|IP|addresses, nicknames, serial numbers or message identifiers. Certain
parameters can take their values in a theoretically infinite definition domain or can depend on the
value of others. Consequently, there can be an infinite number of messages of a single type. For
example, the RETR message sent by an client to retrieve a remote file includes as parameter, a
filename. Thus, an capture can contain a large amount of different RETR messages denoting
variations introduced by the filename parameter. However, despite their orthographic differences all
the RETR messages share the same meaning and message format.

Figure [2.6]illustrates another example of two messages of the same type that are different. In
this example, the two messages were collected in the C&C of the TDL botnet [56]. Even if they
differ, both can be associated to the same symbol as they are periodically sent to the botnet master
to retrieve the available commands [|116]. Their differences come from the value of their nested

parameters such as a random number and a bot identifier number that are specific to the context.

Message 1 | command | 6¢23-1261-A2987381|40379|0/3.23[0.15|5.1 2600 SP3.0|en-us|iexplore ... |

Message 2 | command | 1b4304£0-66a4-153d|10616(0/3.23|0.15|5.1 2600 SP3.0|en-us|iexplore ... |

Figure 2.6 — Anonymized example of two TDL bot requests.

To represent the vocabulary of a protocol in a more compact and organized model, most
works [20} [17, 2] in the field of protocol reverse engineering, use a symbolic vocabulary. In
such approach, same-type messages are replaced by a single abstraction called a symbol in which
parameters are identified and replaced by their definition domain. This definition domain defines
all the valid values that could be taken by the parameters. Indeed, a symbol can be defined as the
common abstraction of multiple messages, sharing a common syntax and having the same role from
a protocol perspective. For example, the 2 official speciﬁcationl‘_TI defines symbols such as
SESSION SETUP or LOGOFF REQUEST that drive user authentication exchanges.

Protocol Syntax

As presented below, a symbol represents a set of messages that share the same syntax and the
same semantic. The syntax of a message, also called the message format, defines the rules under
which messages are built [37]. These rules establish the valid sequences of words that compose
each message. Its definition is somehow “fractal” because its basic unit, the word, also refers to a
sequence of letters (or bits). For sake of clarity, we focus on syntactic rules that govern a sequence
of words and let the reader apply this definition on the inner-composition of these words. In the

following, we define the notion of word when applied on computer-related communication protocols.

4. SMBV2 specifications: http://msdn.microsoft.com/en-us/library/cc246497.aspxl

http://msdn.microsoft.com/en-us/library/cc246497.aspx

2.2. FORMAL DEFINITION OF A COMMUNICATION PROTOCOL 37

Finally, we describe recurrent syntactic rules used by protocols to describe words composition in a
message.

A word consists in a sequence of bits that are significant as a group. For example, the sequence
of bits under the “127.0.0.1” denotes an [P address. “192.168.0.1” is another word that
also represents an [[P|address. As illustrated on Figure we can split a message such as “GET
index.html” into four words: “GET”, “_”, “index” and “.html” where first word denotes an action,

the second a delimiter, the third a file name and the fourth a file extension.

Word Layer “GET” . “‘index” “ htm!”

Message Layer [47 45 54 20 69 6e 64 65 78 2e 68 74 6d 6¢

Figure 2.7 — A message can be split into words.

A word is related to a lexical item called a token, i.e. an abstract unit, that denotes a basic
unit meaning. A token abstracts all the possible words that share its meaning. That is to say that
a word reflects a specific orthographic definition while its associated token denotes its meaning.
For instance, “10.20.30.40” and “10.11.12.13” are two different words as their sequence of bits
differ. However, they refer to the same semantic definition, i.e. an[[P|address. They can therefore
be abstracted by the same token. Thus, a token is what a symbol is for a message but applied to
words: it denotes the meaning and the format shared by various orthographic variation of the same
type of word. Figure illustrates the token definitions related to each word participating in our

previous example.

Token Layer Action SP File name File extension

abstract definition

concrete definition

Word Layer “‘GET” . “‘index” “ htm!”

Message Layer | 47 45 54 20 69 6e 64 65 78 2e 68 74 6d 6¢c

Figure 2.8 — A message can be split into words that are related to tokens.

Tokens can take various forms following their content but two main categories of token arise:
text tokens and binary tokens. Text tokens are made of or any Unicode related characters
as in messages while binary tokens denotes a sequence of bits as in[DHCP| messages. In
presence of text tokens, specific characters (e.g. ““:”, “.”, “;”) or sequence of characters (e.g.
“CRLF”) can be used as delimiters. On the other hand, delimiters are rarely used to separate binary
tokens. Instead tokens have either a static known size (e.g. 2 bytes, 4 bytes) or a dynamic size
computed following other token values. In some protocols, messages use a unique type of token,
either text or binary ones. This consistency mostly comes from the complexity of having either a

complex generic parser that supports both text and binary tokens or to change the parser at runtime.

38 CHAPTER 2. COMMUNICATION PROTOCOLS

A protocol that only denotes text tokens is called a text protocol while only binary tokens produce
binary protocols. It also exists various protocols such as the DNS]| protocol that embeds both text
and binary tokens.

In addition, a token can either denotes a static word, i.e. its value never change across all the
possible messages, or dynamic, i.e. the same token in two messages of the same symbol generates
different words. For example, the specifications defines the HTTP REQUEST symbol with
both static and dynamic tokens (listed in table[2.T)) This definition accepts various messages such as
“GET /etude.php HTTP/1.1” or “PUT /form.php HTTP/1.1”.

Token Name Token Variation | Token Values

Method Dynamic “OPTIONS” or “GET” or “POST” or ... or “CONNECT”
SP Static “r

Request-URI Dynamic “*” or an absolute URI

Version-Header Static “HTTP/”

Version-Major Dynamic Positive Integer

Dot Static

Version-Minor Dynamic Positive Integer

Table 2.1 — Tokens participating in the specification of the “Request-line” in HTTP REQUEST
symbol.

As in our previous example, multiple tokens can participate in the definition of a symbol.
To define the valid sequence of tokens, a symbol uses syntactic rules that establish the underlying
symbol format. These rules are very similar to the one that produce valid sequences of symbols and
as so can be regrouped under a grammatical form. However, in very most protocols the definition of
valid token sequences, that represent a symbol, relies on a normal disjunctive formE] defined with
two basic sequence operations: aggregate (i.e. a concatenation of zero of more tokens) and alternate
(i.e. a possible set of expected tokens). For example, the request-line of the HTTP REQUEST
symbol is defined as an aggregation of the following tokens: Method, SP, Request-URI, SP,
Version-Header, Version-Major, DOT, Version-Minor and CRLF. Another common operation is
the optional repetition of these operations. Each protocol specification language proposes a specific
set of basic sequence operations which can be used to express more complex symbol format. We
detail existing specification languages, that can be use to define token sequences for a protocol, in
section2.3.11

As explained below, the format of a symbol is defined in terms of tokens. However, most
protocol specifications relies on an intermediate abstraction unit, called field, to represent one or
more consecutive tokens participating in the same semantic. For instance, among all the fields that
participate in the specification of a standard DNS| query illustrated on figure [2.9] the “Name” field

is made of three tokens: a domain name, a delimiter and a domain suffix. Figure summarizes

5. Disjunctive normal form. Encyclopedia of Mathematics: http://www.encyclopediaofmath.org/
index.php?title=Disjunctive_normal_form&oldid=14566

http://www.encyclopediaofmath.org/index.php?title=Disjunctive_normal_form&oldid=14566
http://www.encyclopediaofmath.org/index.php?title=Disjunctive_normal_form&oldid=14566

2.2. FORMAL DEFINITION OF A COMMUNICATION PROTOCOL 39

the definition of a symbol. It illustrates that a symbol is made of a sequence of fields each being

composed of one or more lexical tokens. Finally, these orthographic words compose a final

message.
Symbolic Layer | Standard DNS Query |
Field Laver) Answer | Authority | Additional | | |
y | Flags | Questions RRs RRs RRs Name Type | Class
Token Layerl Flags | Questions (B | (ST | acditchal | domain | “” | suffix | Type | Class |
RRs RRs RRs . ..
abstract definition
concrete definition
Word Layer | 0100 | 0001 | 00 00 | 00 00 | 00 00 “amossys” | “.” | “fr” | 0001 | 0001 |

MessageLayerl 01 00 00 01 00 00 00 00 00 00 07 61 6D 6F 73 73 79 73 02 66 72 00 00 01 00 01 |

Figure 2.9 — Illustration of the abstraction layers participating in the specification of a standard
DNS query.

2.2.2 Definition of the Protocol Grammar

We detailed the notion of vocabulary and of its basic units (words, tokens, fields, symbols) in
section [2.2.1] we now focus on the definition of valid protocol exchanges. By exchange, we refer
to the ordered sequence of sent and received symbols between actors of a communication. For
example, the following sequence of symbols [SYN, SYN/ACK, PUSH, ACK, FIN/ACK,
ACK] isa Validexchange whereas [ACK, SYN, FIN/ACK, PUSH] isnot.

To define these exchanges, a first naive approach consist in the use of a list of all the valid
sequences of symbols. However this solution does not apply with infinite languages which obviously
would require an infinite memory. Typically, instant-messaging protocols rarely limit the number
of possible exchanges between users. Therefore, protocols express this list in a more compact
way using dedicated rules such as “symbol 3 always follows symbol 2” or “symbol 1 can not be
consecutively repeated”. The advantage raises mainly from the usage of a small number of rules to
represent a large number of valid exchanges. This set of rules denoting all the valid sequences of
symbols is called the protocol grammar.

Formerly, a grammar is defined by a 4-tuple G = (V, X, P, S), with V the set of symbols
representing a subset of the language also called the nonterminal symbols, > a finite set of

symbols that can occur in the final sequence of symbol also called the terminal symbols, P the

finite set of [Production Rules| (PR)) that transform nonterminal symbols into terminal symbols and

S € V the start symbol used to represent the whole sentence. These production rules are the key
aspect of each grammar definition as they transform nonterminal symbols into a sequence of either
terminal, nonterminal or empty symbols. They are of the form V' — (V U X)*.

A typical example of a grammar is G = (V = {S},¥ = {LOGIN, LOGOUT}, P, S) with P
defined with [PR listed in[2.3] This grammar generates a language that describes all nonempty
exchanges of LOGIN and LOGOUT symbol that ends with LOGOUT. For instance, one of a typical
derivation of this grammar produces the sequence [LOGIN, LOGOUT, LOGIN, LOGOUT] by succes-

40 CHAPTER 2. COMMUNICATION PROTOCOLS

sively applying production rules PR2, PR3, PR3, PR1 on the start symbol S (S — [LOGIN, S| —
[LOGIN, LOGOUT, S| — [LOGIN, LOGOUT,LOGIN, S] — [LOGIN, LOGOUT, LOGIN, LOGOUT]).

PR1: S — LOGOUT
PR2: S — LOGIN, S
PR3: S — LOGOUT, S

Listing 2.3— PR for nonempty sequences of LOGIN and LOGOUT symbols ending with LOGOUT.

The Chomsky Hierarchy of Grammars

Recursively Enumerable (type-0)

Context-sensitive (type-1)

Context-free (type-2)

Regular (type-3)

Figure 2.10 — Chomsky Hierarchy

Numerous types of grammar exist, from the simplest ones that are defined by regular expressions
(e.g. the above grammar is a typical regular one), to the more complex grammars that can produce
any Turing-complete languages. As proposed by N. Chomsky [38], these grammars can be parti-
tioned in classes or groups, following their capacity of capturing key properties of computer-related
languages. He identified four main classes of grammar and proposed a well-known framework, the
Chomsky Hierarchy illustrated on figure[2.10] to classify them following their expressive power.
Each grammatical class (type-0, type-1, efc.) denotes both a typical kind of language (regular,
context-free, efc.) but also a specific tool, or set of tools, that can be used to represent it (finite
state automaton, Turing machines, efc.). In the remainder of this section, we briefly survey these
types of grammars since communication protocols make an heavy use of them to specify their valid
exchange of symbols.

The most restrictive type of grammar in this hierarchy is the type-3 grammar, also called
regular grammar. Such grammar describes a regular language and as established by the Kleen
theorem [78]], can easily be transformed into a finite state automaton. Its production rules must

respect the three following constraints:

2.2. FORMAL DEFINITION OF A COMMUNICATION PROTOCOL 41

— the left part of the [PR|must be a single nonterminal symbol,

— the right part of the [PR] must be a single terminal symbol possibly followed by a single
nonterminal (left-regular) or a single terminal symbol preceded by a single nonterminal
(right-regular).

— the language is no more regular if its combines both right-regular and left-regular rules.

The grammar detailed in[2.3]is a typical example of a regular one.

A type-2 grammar, also called a [Context-Free Grammai] (CFG)) or an algebraic grammar,

defines context-free languages. Such language can be represented by a non-deterministic pushdown
automaton and follows production rules of the form V' — ~ with v a sequence of terminals and
nonterminals symbols. In addition, the rule S — ¢ is valid if .S does not appear on the right
side of any rule (e denotes an empty symbol). A well-known subset of these languages, the set
of deterministic context-free languages, is used by most programming languages supporting the
notion of declaration scope as demonstrated by Ogden’s lemma [101]]. Production rules listed
in [2.4] produce a typical example of a context-free grammar accepting the following derivation:
S — AS - 0415 — 00115 — 0011AS — 001101.

— AS

— €

— OAl
— Al
— 01

Listing 2.4— Example of production rules that describe a context-free grammar

The upper level of expressive grammar regroups type-1 grammars, also called

[Sensitive'Grammar (CSG)). Such grammar are defined with production rules in which the left

part and the right part may be surrounded by terminal and nonterminal symbols. More formelly,
[CSG] production rules are of the form aV' 3 — a3 where « and /3 denotes a potentially empty
sequence of terminals or nonterminals symbols and ~ a nonempty sequence of terminals and
nonterminals symbols. As in a|[CFG| the rule S — € is valid if S does not appear on the right side
of any rule. In the field of communication protocols, the recurrent usage of specific type of fields
such as format distinguisher fields that identify the format of the subsequent part of the message
reflects the context-sensitivity of their grammars and so of many communication protocols [43].
A typical example of such grammar generates a contextual language L = {a"b"c"|n > 1}

with productions rules listed in[2.5]

S — aSBC
S — aBC
CB — BC
aB — ab
bB — bb
bC — bc
cC — cc

Listing 2.5— Production rules of a context sensitive grammar that accepts L = {a"b"c"|n > 1}.

42 CHAPTER 2. COMMUNICATION PROTOCOLS

Finally, type-0 grammars, also called unrestricted grammars, denotes all the languages accepted
by a Turing machine, which means no restriction is expressed over its production rules.

Naturally, an implementation of a protocol based on a type-0 grammar is much more difficult
to develop and maintain than an implementation of a type-3. By extension, automated inference
of type-3 grammars is also easier to achieve than for a type-0 grammar. This observation is based
on the complexity of mathematical tools (finite state machine, non-deterministic automate, Turing
machines) and existing algorithms to perform their inference. Thereafter, we present different

specification languages used to model protocols and give examples of their application.

2.3 Existing Specification Languages

With the beginning of the standardization process initiated by the [0S and [CCITT] in late

70’s, researchers recognized that formal specifications of communications could be useful to their

work. Their interest came from the observation that very most specifications written in natural
languages are not effective to define clear, concise and precise models for their protocols [19]].
In addition to ambiguities in protocol specifications, models defined in natural language are not
very helpful for the automation of certain aspects of protocol development cycle whereas formal
protocol specifications can support automatic validation of specifications [[133]], the creation of

implementations [3]] but also conformance testing and automated protocol security evaluations [91]].

At this time, special groups were created to propose the concept of [Formal Description Tech{
and to apply it on protocol definitions. Originally, these groups proposed three
different protocol specification languages respectively called Estelle (Extended Finite State Ma-
chine Language) [[103]], SDL (Specification And Description Language) [122] and LOTOS [69]
still used to specify recent protocols [125} 31]]. It exists also some semi-formal specifications
languages such as[Abstract Syntax Notation One| (ASN.T) [1] and [Augmented Backus-Naur Form|
(ABNE) [42]] that only covers the data structure definition and not their processing.

It is now widely accepted that the success of a system development depends on the quality of
its design and so of its specifications. For this task, protocol creators can rely on these specification
languages and on various specification tools to design their system. In the sequel, we describe some
of the most popular specification languages that can be used to define the vocabulary (Section[2.3.1)

and the grammar (Section [2.3.2)) of a communication protocol.

2.3.1 Specification Languages for Protocol Vocabulary

Among existing protocol specification languages, some focus on the definition of protocols
vocabulary. They can be used to specify words, tokens and fields that compose each symbol. In
addition to their definition characteristics, most languages were proposed with a dedicated compilers
that can automatically produce messages out of the protocol specification. These compilers often
denote a recurrent usage of specific data structures, encoding rules and compression algorithms that
highly impact the final message format. Therefore, an effective message format inference strategy

should consider these typical message formats. In the following, we therefore give some insights on

2.3. EXISTING SPECIFICATION LANGUAGES 43

the most recurrent languages used in public specifications of protocols vocabulary: the basic textual
specification, the[ASN.T|format with its encoding variants, the[ABNF| language and on Google’s

IProtocol Buffer| (ProtoBuf) specification languageﬁ Based on these descriptions, we formulate few

hints that could leverage inference strategy when applied on them.

Textual Specification

A common and simple approach, originally retained to specify the format of a symbol, is the
textual specification of a protocol. It usually consists in a graphical representation of messages
as arrays of fields, indexed on their size, coupled with a textual description of their values. For
example, the specification of the protocol illustrated on listing [2.6] describes five fields,
four of two bytes each, called “Source Port”, “Destination Port”, “Length” and “Checksum” and a
last field, called “data” that denotes the payload of the protocol.

Such graphical representation of the protocol format is combined with a textual description in
natural language that details the definition domain of each field. For example, the [UDP|specifica-
tions includes the following description of the “Checksum” field: “Checksum is the 16-bit one’s
complement of the one’s complement sum of a pseudo header of information from the IP header,
the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple
of two octets.”

0 7 8 15 16 23 24 31
fom—————— o o o +
| Src. Port | Dest. Port |
fom—————— o Fom— Fo—— +
| Length | Checksum |
fom—————— e e et R +
| data octets
o

Listing 2.6— Example of a textual specification that defines UDP message format.

Such textual specification of a protocol format is very common in oldest documentations of
protocols such as IP [108], UDP [106], TCP and ICMP [107]. The field array is effective
to describe the format of binary protocols with invariant size fields but is not adequate for text
protocols relying on delimiters. Furthermore, the textual description of fields definition domain in
natural languages lack of conciseness, of precision and are often ambiguous [19].

From an inference perspective, most messages defined with such textual representation are
made of fixed-size fields which are byte-aligned. These fields are often sized according to variable
types offered by programming languages (e.g. integer, float, double, long). Inferring their syntax
therefore requires to split messages according to these common variable type sizes (e.g. one byte,
two bytes, four bytes). However, a textual specification can also describe variable-sized fields where

their size depend on the value of other field. Inferring such format requires to search for length

6. Protocol Buffer: http://code.google.com/p/protobuf/

http://code.google.com/p/protobuf/

44 CHAPTER 2. COMMUNICATION PROTOCOLS

fields. These fields can then be used to split the messages and expose the presence of variable-sized
fields.

Abstract Syntax Notation One

[Abstract Syntax Notation One| [1]] better known as is a standard for data structure
originally defined in 1984 by the[OS]] the International Electrotechnical Commission and the [[TU}
This standard defines a formal notation for the description of data structures independently from
machine-specific encoding issues. Originally part of the [CCITT|X.409 specifications, [ASN.T| has
moved to its own standard, X.208, in 1988 due to its wide applicability.

It provides various pre-defined abstract basic types such as booleans, integers and strings along

with structures to support the definition of customs types (e.g. sequences, list and choices). For

example, the listing[2.7|comes from the specifications of the [Simple Network Management Protocol]

[30] that exposes its messages format with [ASN.T| formalism.

Message ::=
SEQUENCE {
version —-— version-1 for this RFC
INTEGER ({
version-1(0)
bo

community —-— community name
OCTET STRING,
data -— e.g., PDUs if trivial
ANY —-— authentication is being used

Listing 2.7— Definition of an SNMP Message (RFC 1157) using ASN.1 notation.

As shown on listing[2.7] an[SNMP|message is defined as a sequence of three fields: a version
number, a string (i.e. a binary data whose length is a multiple of eight) that indicates the message
community and a payload. This definition is detailed on listing 2.8] with the specification of an
GetRequest message that includes integers to represent the request indentifier (request-
id), the error-status and the error-index. It also specifies a list of pairs of name (ObjectName) and
values (ObjectSyntax) with some custom types declared in the RFC1155-SMI and imported in the

[ASN 1] specification of the protocol.

IMPORTS
ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks FROM
RFC1155-SMT

PDUs ::=
CHOICE {
get—-request
GetRequest-PDU,

get—next—-request

2.3. EXISTING SPECIFICATION LANGUAGES 45

GetNextRequest—-PDU,

GetRequest-PDU ::=
[2]
IMPLICIT PDU

PDU ::=
SEQUENCE {
request-id
INTEGER,
error—-status —-— sometimes ignored
INTEGER ({
noError (0),
tooBig(l),
noSuchName (2) ,

by
error—-index —-— sometimes ignored
INTEGER,
variable-bindings —-- values are sometimes ignored

VarBindList

VarBind ::=
SEQUENCE {
name
ObjectName,
value

ObjectSyntax

VarBindList ::=
SEQUENCE OF
VarBind

Listing 2.8— Specification of the Get Request SNMP message using ASN.1 notation.

In addition to data structures, also provides various encoding rules, referred to transfer
syntax, to specify the exact sequence of bytes used to encode each data item described with its
notation. Among existing encoding rules, six different encoding rules are very common, the [Basid]
[Encoding Rules| (BER)), the Canonical and Distinguished Encoding Rules (CER] [DER]), the [Packed|
[Encoding Rules| (PER) and the XML Encoding Rules| (XER)). In the following, we give a short
description of them, the interested reader can refer to their official specifications published on[[TUJs

46 CHAPTER 2. COMMUNICATION PROTOCOLS

website for more details[]

[Basic Encoding Rules| (BER) is the default transfer syntax used to encode an message
defined under [[TUJs X.690 standard [72]]. With this encoding rule, messages follow a
format where each data is represented by its type, its length and its values. A unique

identifier specifies the type. The standard establishes the value of this identifier for every basic

types such as 0x2C for an integer or 0x30 for a sequence while custom ones can be declared in the
specifications of the protocol. For example, the header of an message is a sequence made of
its version field, an integer set to zero and a community string. Using encoding rules, this
header is encoded in bytes as illustrated on figure [2.11]

Type Length Value
=“Sequence”
Type | Length Value Type Length Value="private” f.....
30 2C 2C 01 00 04 07 70 72 69 76 61 74 65
0x2c="Integer” 0x04="Octet String”

Figure 2.11 — BER Encoding of the SNMP header.

and more generally a message format is made of two fixed-size fields (type and
length) and one variable-size field (value). This value field can also contain other fields
as illustrated on Figure Besides, may also introduce an optional fourth field called
“end-of-contents” right after the value field. This fourth field plays the role of a delimiter for the
value field when the indefinite-length encoding method is used. This encoding method is
preferred when large contents are stored in the value field. In such case, a specific value is stored in
the length field (80) which indicates to the parser that all the remaining bytes belong to the value
field until it identifies the value stored in the fourth field.

The reverse engineering of such data structure implies the identification of field boundaries.
Given that the size of the value field is variable, an efficient approach could rely on the identification
of the length field. As we detail in Section such algorithm is more effective if its applies on
multiple messages that share the same data structure. This operation could be achieved if we first
regroup messages based on the value contained in their type fields.

Canonical and Distinguished Encoding Rules (CER & DER) are restricted variants of
also described in[ITUJ's X.690 standard. They are both used to produce an unequivocal encoding of a
data structure. They differ from [BER| which gives various choices as how the value field is encoded.
For example, accepts multiple values to encode the value of the Boolean TRUE whereas a
single one is allowed in and more commonly [DER]encoding rules were mostly created
to encode cryptographic materials such as certificates X.509 certificates, etc.). They ensure
that a certificate is always encoded with the same byte flow whereas different[BER]implementations
can produce different byte flows for the same certificate. For example, Listing illustrates the
specification of a X.509 certificate.

7. http://www.itu.int/en/ITU-T/asnl/Pages/asnl_project.aspx

http://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx

2.3. EXISTING SPECIFICATION LANGUAGES 47

Certificate ::= SIGNED SEQUENCE {
version [0] Version DEFAULT v1988,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Namnme,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo}
Version ::= INTEGER {v1988(0) }
CertificateSerialNumber ::= INTEGER
Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime}
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL}

Listing 2.9— ASN.1 specifications of X.509 certificates as defined in RFC 1422 [76].

and [DER] differ in the set of constraints they ensure. The basic difference that exists
between them is that the former supports the indefinite-length encoding method (where a delimiter
is used instead of a length field) whereas [DER| not.

Hopefully, these additional constrains can be helpful to reverse engineer messages that are
or[DER]encoded. They ensure that messages of the same type are encoded similarly regarding
fields order and value.

Packed Encoding Rules (PER) is a non{TLV| compressed transfer syntax, standardized in
ITUFT X.691 specifications, that uses a minimum number of bits to encode data. Each data can
be specified with its length and its range to optimize the encoding. This way [PER]is much more
compact than [BER]but requires a decoder that knows the complete abstract syntax. Following the
processing capacities of the decoder, [PER|can also be configured to align encoded values to improve
the compression rate. A variant, the CANONICAL-PER, introduces [CERYDER}ike constraints to
support its usage in cryptographic protocols.

The [PER] encoding format and more generally, any packed format, is much more complex to

infer as only variable-sized data often compose them. The message size could be an interesting

48 CHAPTER 2. COMMUNICATION PROTOCOLS

measure to identify same type messages. Besides, searching for potential embedded environmental

information such [P addresses, hostnames and dates could be helpful to identify field boundaries.

XML Encoding Rules (XER) are a set of encoding rules that uses an XML-based representation
to encode ASN.1 messages. XML encoded messages are often used in web services and network
protocols close to the end-user as being both human and machine-readable. For example, the
[Common Alerting Protocol| (CAP) that allows the exchange of “all-hazard” emergency alerts
and public warnings over all kinds of networks, uses a[XER]transfer syntax. Listings and 2.11]
illustrates the XER}based specification of an alert and a speculative instance of such alert, both

provided in the protocol standard document. Various extensions exist of the[XER] transfer syntax,
including a canonical form, denoted cXER, similar to

DEFINITIONS XER INSTRUCTIONS AUTOMATIC TAGS ::=
—-— CAP Alert Message (version 1.2)
BEGIN

Alert ::= SEQUENCE {
identifier IdentifierString,
—-— Unambiguous identification of the message
sender String,

—-— The globally unambiguous identification of the sender.

sent DateTime (CONSTRAINED BY {/x XML representation of the
XSD pattern "\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d[—, +1\d\d:\d\d"
*/ 1),

status AlertStatus,

msgType AlertMessageType,

source String OPTIONAL,

scope AlertScope,

restriction String OPTIONAL,

addresses String OPTIONAL,

code-list SEQUENCE SIZE ((0..MAX)) OF code String,

note String OPTIONAL,

references String OPTIONAL,

incidents String OPTIONAL,

info-1list SEQUENCE SIZE ((0..MAX)) OF info AlertInformation }

Listing 2.10— Specification of a CAP alert message as edited in the ITU-T 1303 recommendation

<?xml version = "1.0" encoding = "UTF-8"?>

<alert xmlns = "urn:oasis:names:tc:emergency:cap:1.2">
<identifier>43b080713727</identifier>
<sender>hsas@dhs.gov</sender>
<sent>2003-04-02T14:39:01-05:00</sent>
<status>Actual</status>
<msgType>Alert</msgType>

<scope>Public</scope>

2.3. EXISTING SPECIFICATION LANGUAGES 49

<info>
<category>Security</category>
<event>Homeland Security Advisory System Update</event>
<urgency>Immediate</urgency>
<severity>Severe</severity>
<certainty>Likely</certainty>
<senderName>U.S. Government, Department of Homeland Security</
senderName>
<headline>Homeland Security Sets Code ORANGE</headline>
<description>The Department of Homeland Security has elevated the
Homeland Security Advisory System threat level to ORANGE / High
in response to intelligence which may indicate a heightened
threat of terrorism.</description>
<instruction> A High Condition is declared when there is a high
risk of terrorist attacks. In addition to the Protective
Measures taken in the previous Threat Conditions, Federal
departments and agencies should consider agency-specific
Protective Measures in accordance with their existing plans.</
instruction>
<web>http://www.dhs.gov/dhspublic/display?theme=29</web>
<parameter>
<valueName>HSAS</valueName>
<value>ORANGE</value>
</parameter>
<resource>
<resourceDesc>Image file (GIF)</resourceDesc>
<mimeType>image/gif</mimeType>
<uri>http://www.dhs.gov/dhspublic/getAdvisoryImage</uri>
</resource>
<area>
<areaDesc>U.S. nationwide and interests worldwide</areaDesc>
</area>
</info>
</alert>

Listing 2.11- A XER encoded message about a speculative US. Homeland Security Advisory Alert.

Messages [XERlencoded are often self descriptive, i.e. field names and values can easily be
spotted as they are enclosed in XML tags. Indeed, XML encoded messages require no specific
inference technique as this format is human-readable.

Several other transfer syntax rules exist but are rarely used, such as the detailed in
RFC 3641 [87]. This encoding rule produces a human-readable straightforward textual representa-
tion to encode messages with the purpose to display them to the end-user.

To conclude, the ASN.1 is a very common notations in the field of message format specifications.
Many protocols use this formalism to specify their message format such as [146], X.509,

50 CHAPTER 2. COMMUNICATION PROTOCOLS

Kerberos, [SNMP| or and a quick search for “ASN.1” term returns more than 506 RFCSH
This language is also used in more closed-source protocols such as in air-ground and ground-

ground protocols employed by the Federal Aviation Administration and International Civil Aviation

Organization encoded in [PER]’

Augmented Backus-Naur Form

[Augmented Backus-Naur Form| is a formal data structure specification language for the

definition of bi-directional communication protocols. Defined under Internet Standard 68 (STD6S),
the ABNH notation relies on a context-free grammar to specify most[[ETH standardized protocols.

An[ABNF definition is made of rules that uses operators to support, for example, concatenation,
alternative and repetition of rules or terminal range of characters. An[ABNHrule follows a basic
structure: name = expression, with name the name of the current rule, expression the
definition of the rule and = the separator between the rule’s name and its definition. For example,
on listing [2.12] extracted from the of Internet Message Format protocol [114]], the rule named
“to” denotes the concatenation of string “To:”
“address-list” that defines a list of email addresses and “CRLF” representing a[CR|character (ASCII

value 13) followed immediately by the [LF character (ASCII value 10).

with the result of a previous defined rule named

to = "To:" address-1list CRLF
cc = "Cc:" address-list CRLF
bcc = "Bcc:" (address—-list / [CFWS]) CRLF

Listing 2.12— ABNF definition of destination address fields in IMF protocol [113]

Many standards uses this notation to specify their protocol syntax. However, the extensive

usage of functional comments in specifications denotes the difficulty to have precise and
complete definitions. For example, in the [SIP[ABNF specifications (RFC 2543 [58]) the following
comment “should be unique for this originating username/host” complete the formal definition of
the “sess-id” field. In most cases, such functional comments aims at introducing context-sensitivity
in the specifications. Finally, the lack of specific rules that could precisely define the encoding of
each data makes it difficult to specify binary protocols using [ABNF notations.

From a practical point of view, reverse engineering a protocol specified under an[ABNF notation
relies on the identification of field delimiters. Indeed, [ASCII| protocols such as the ones specified
under an |[ABNEF| notations relies on these delimiters to expose field boundaries. For example,
the [SIP| specification makes an heavy use of spaces and carriage returns to delimit its fields. A
naive approach to reverse engineer some specified messages could therefore rely on the
identification of common [ASCII| delimiters such as “:”, “;” or in them. However, no
convention exist to establish the list of characters or sequence of characters that can delimit fields.
For this reason, such approach requires to consider numerous potential delimiters that can lead

to false positives. To address this issue, more effective techniques were proposed. Among them,

8. To search for ASN.1 RFCs we used the RFCSearch service: http://www.rfcsearch.org
9. ITU-T website: http://www.itu.int/ITU-T/asnl/uses/

http://www.rfcsearch.org
http://www.itu.int/ITU-T/asn1/uses/

2.3. EXISTING SPECIFICATION LANGUAGES 51

sequence alignment algorithms are used by most state-of-the-art automatic reverse engineering
work [14]43] 88]]. We detail these complex algorithms in Section[3.1.2]

ProtoBuf

Designed in 2001 by Google, [Protocol Buffer (ProtoBuf) is a serialization framework that

exposes an |[nterface Description Language| (IDL) to specify data structures of protocol messages.

This recent specification language was created with the objectives of improving the readability and
the easiness of specifying data exchanges. It also reduces the size of each exchanged messages by
means of strong compression algorithms [[8]. Other recent exist such as Thrift[]E] and Avro[]j
They are fairly similar as they were created with the same objectives. In this discussion, we focus
on as we believe it is the more mature. Released under an open-source license and freely
available, this language and its associated tools tend to be used in recent web related applications
that handle large amount of data. For example, the Apache Hadoop framework supports
message specifications to handle data exchanges between its cluster nodes.

A [ProtoBuf] definition is made of data structures (called messages) and services described in
a proto definition file (.proto). This file can be compiled with a specific tool (called protoc) to
generate the code that can be invoked by a sender or recipient of these data structures. Each message
is specified with a set of ordered name-value pairs. Each name-value pair denotes a field with its
value its type, its name. It accepts basic value types such as integers, floating-points, booleans,
strings and raw bytes. Listing [2.13]is an example of a[ProtoBuf] specification. It specifies the data
structure of a minimalist address book and Table [2.2]lists all the native scalar types this[[DL]accepts.
However, messages specifications can also be defined under a hierarchical definition where the type
of a message field can be another message. Besides, each field can be set as optional, required or

repeated to produce more complex message definitions.

package tutorial;

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

message PhoneNumber {

required string number = 1;

10. Thrift: http://thrift.apache.org/
11. Avro: |http://avro.apache.org/
12. Apache Hadoop: http://hadoop.apache.org

http://thrift.apache.org/
http://avro.apache.org/
http://hadoop.apache.org

52 CHAPTER 2. COMMUNICATION PROTOCOLS

optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phone = 4;

message AddressBook {

repeated Person person = 1;

Listing 2.13— Example of a message specification in ProtoBuf

double double
float float
int32 Uses variable-length encoding. int32
int64 Uses variable-length encoding. int64
uint32 Uses variable-length encoding. uint32
uint64 Uses variable-length encoding. uint64
sint32 Uses variable-length encoding. Signed int value. int32s
sint64 Uses variable-length encoding. Signed int value. int64
fixed32 Always four bytes. uint32
fixed64 Always eight bytes. uint64
sfixed32 Always four bytes. int32
sfixed64 Always eight bytes. int64
bool boolean
string A string must always contain UTF-8 encoded or 7-bit ASCII text. | string
bytes May contain any arbitrary sequence of bytes. string

Table 2.2 — Scalar types supported by ProtoBuf as described in the official developer guide

A ProtoBuf| message can be serialized in an optimized binary format. This format is similar to
the [PER] transfer syntax rule of the [ASN.T|language. It relies on the Variable-Length Quantity [12]
encoding method (also known as varint) that serializes integers by means of one or more bytes.
Originally created for the MIDI file format, this byte-aligned encoding method uses seven bits
per bytes with an additional bit to indicate that more bytes must be considered (or not). With this
method, the total number of bits in the encoding result depends on the size of the original integer.

To encode a message, concatenates all the field keys and values into a byte stream.
For example, the Figure [2.12]illustrates the byte flow that represents a message made of three fields.
The first field contains the string “Netzob”, the second one a decimal (1337) and the third one

2.3. EXISTING SPECIFICATION LANGUAGES 53

a repetition of strings “ProtoBuf” and “Thrift”. As illustrated, each field is made of at least two
sub-fields that contain 1) the field identifier number and its type and 2) the value of the field. The
decimal field in our example message illustrates this. Following the type of the field, an additional
sub-field is also used. it contains the length of the value field. In our example, the first field and the
third field contain such additional length sub-field.

Field 1 = “Netzob” Field 2 = 1337 Field 3 = [“ProtoBuf”, “Thrift”]
ID Length Value ID Value ID Length Value ID Length Value
Type Type Type Type

0a 06 4e 65 74 7a 6£ 62 | 10 b9 0a la 08 50 72 6£ 74 6£ 62 75 66 la 05 54 68 72 69 66 74
A 4 < 4
1 S~]
1 U S 1
: ,' 29 bytes s~ - ,’
1 1 S~< - 1
| 1 S~o

ID Type ID Type ID Type

Oa=| 00001 010 10=| 00010 000 la=| 00011 010
/ 010 = String 7 000 = Varint / 010 = String
Field n°1 Field n°2 Field n°3

Figure 2.12 — ProtoBuf encoding example of a message.

Automatically reversing a stream byte encoded with [ProtoBuf]is a complex work. Mostly due
to the varint encoding method that produces fields of dynamic-sized without any delimiters or
explicit length fields. However, not all scalar types are encoded with this method. For example,
string values are encoded with traditional UTF-8 alphabet. Besides, as illustrated in our example
some length information are sometimes embedded. Reverse engineering an message
could therefore leverage UTF-8 discovering algorithms to first identify potential fields.

We described in this Section some common specification language that are used by protocol
creators to specify the syntax of their messages. We analyzed their specificity and gave some
hints on the possible approaches that could be use to reverse them. Most of them rely on the
identification of field boundaries through several solutions, e.g. the identification of length fields, of
sequences and of environmental information. We also explained the difficulty of reversing
compressed messages such as the one generated by a[PER]encoding function. In the following, we
apply the same reasoning and analyze common specification languages that can be used to describe

the grammar of a protocol.

2.3.2 Specification Languages for Protocol Grammar

Message Sequence Chart

The [Message Sequence Chart] (MSC) is an interaction diagram standardized by the ITU [73]

related to the languages and general software aspects for telecommunication systems (Z series). This

diagram depicts the order in which communications and other events take places between protocol
logical processes, their system and their environment. As illustrated on figure[2.13] processes, also

called entities or instances, are represented by vertical lines while message exchanges between

54 CHAPTER 2. COMMUNICATION PROTOCOLS

them are depicted by arrows. Thus, an[MSC| models communications through message-passing
via reliable [FIFOf. Its a high-level description of the possible usage scenario but only specifies
message orders. The internal behavior of the each process is not considered. Besides, an
exhibit a weak partial order semantic that cannot express constraints between message exchanges.
For instance, such diagram cannot be used to model that “if P sends M to O, Q must pass on this
message to R” [59]]. For this reason, such description of a protocol grammar is often limited to
capture system requirements in the form of “good” scenarios that the implemented system should
exhibit.

User FTP Client FTP Server

connect ($user, $pwd)

‘,__gmd—/

Figure 2.13 — Message Sequence Chart describing a sample FTP authentication process.

Language of Temporal Ordering Specification

[Language of Temporal Ordering Specification| (LOTOS)) is another formal specification lan-
guage [69]] developed within the between 1981 and 1984. The key idea behind the
specification of a protocol is to describe the temporal relations that exist between observed externals

events (from a system point of view). Some key principles have inspired its design, such as:
— A syntactic and semantic separation is ensured between the definition of processes and the
definition of types.
— The operational semantic are defined using an algebra approach, mostly inspired by
CCS/CSP-based language [93, 164] in such a way that it is possible to prove a rich set

of algebraic equivalence properties.

A[LOTOS]specification is an[ASCII| text that describes a set of processes and type definitions.
A process is a black box abstraction of an activity in an implementation, for which only its external

behavior is considered. Processes are synchronized using a relative temporal ordering of events and
share communication mechanisms called interaction points. It supports the description of data and
operations based on abstract data types, a mathematical model for similar data structures.

The interested reader can refer to the LOTOS introduction [90] by L. Logrippo et al. which
gives a complete definition of all the concepts behind this protocol specification language. This
[FDT|has been widely used for defining common OSI protocols in academic works [93]]. In practical,
protocol development LOTOS has attained little relevance [80].

2.3. EXISTING SPECIFICATION LANGUAGES 55

Estelle

Published in 1989 [103], Estelle is an[[SO|standard specification language, capable of defining
concurrent and distributed communication protocols. Based on a formal definition, it aims at
identifying and mitigating any possible ambiguities in protocol implementations.

To achieve this, an Estelle specification relies on two parts, 1) the architecture and 2) the
behavior. The architecture defines a hierarchy of various modules, or actors of a communication
while the behavior denotes how actors handle messages based on a finite state machine with memory,
i.e. an[Extended Finite State Machine| (EFSM)). It models a system as a hierarchy of structures that

can run in parallel, exchange messages and share some variables. As illustrated on figure [2.14] two

modules interacts through a channel interconnected on their interaction points.

4)

Channel é

Module 1 ~ Qe———p® Module 2

1 Interéction 1
\ ! Points ! j

Figure 2.14 — Sample Estelle architecture.

To model interactions between modules, exchanged messages are stored in [FIFO|queues that
enable the use of conditional transitions in the i.e. a transition is fired when all enabled
conditions are fulfilled. Additional rules can also be used to specify synchronous and asynchronous

transition properties.

Specification and Description Language (SDL)

Defined by the[[nternational Telecommunication Union| (ITU)) in 1992, the SDL formal language

is intended for the specification of reactive, real-time, and distributed applications involving many

concurrent activities. Very most of communication protocols can therefore be described with such
language. For example, it exists some SDL specifications for the LTE and DSR protocols [[125}
31]. It allows to specify the functional properties of the system and their relationships with the
environment.

A graphical representation (SDL/GR) and a textual representation (SDL/PR) are proposed to
describe the structure, the behavior and the data of a protocol. The graphic form is preferred for
most people as shown by its usage in most academic papers. The interested reader can refer to the
reference book on SDL [47].

All these models that can be use to specify the grammar of a communication protocol are complex.
Their rely on mathematical tools such as EFSM that are extended with different controls to
ensure their large coverage of protocol requirements. These specification languages can be use to

model probabilistic and distributed protocols. We believe such models are far too complex to be

56 CHAPTER 2. COMMUNICATION PROTOCOLS

inferred with existing grammar inference algorithms. We therefore focused our work on learning

deterministic mealy machines.

Chapter 3

Communication Protocol Inference

This chapter exposes previous works in the field of the automated inference of a communication
protocol. Section [3.T|reviews the different approaches in the field of vocabulary inference while
Section [3.2|covers previous work in the field of grammatical inference applied to the|RE| of protocol

grammar.

3.1 Automated Inference of the Vocabulary

As described in section[2.2] a protocol is made of a vocabulary that defines the set of accepted
messages with their definition and a grammar denoting the set of accepted sequences of messages.
Thus, an inference process must address both to properly reverse an unknown protocol. However,
the grammatical inference of a protocol requires some previous knowledge over the vocabulary. For
this reason, the reverse engineering of a protocol traditionally starts with the vocabulary inference.

Previous work in the field of automated inference of the vocabulary falls into two families
depending on whether they analyze an implementation of the protocol [27, 29, 41] or rather some
communication samples |88} 14,143} [83] 139, 138, |82].

Works that participate in the first family analyzes the executable binary that implements
the targeted protocol. They observe the parsing process for received messages and the buffer
construction method for sent messages. Results brought by these works seemed to be efficient to
retrieve the compositional nature of messages in fields. However, they suppose the use of static
analysis and intrusive dynamic techniques on binaries. We believe this approach cannot be easily
automated, mostly due to its complexity but also because of existing counter-measures such as static
and dynamic obfuscation, code compression, anti-debugging and anti-instrumentation solutions.

Therefore, we focused our work on the second family of vocabulary reverse engineering
approaches. Contrary to the first ones, this family of trace-based vocabulary inference approaches
only rely on collected messages to infer the vocabulary of an unknown protocol. Messages can
be extracted out of a captured communication trace, for instance from a file for network
protocols. We believe this approach brings fewer assumptions over the targeted protocol and its
implementation and for this reason is more practical. Nonetheless, trace-based approaches are more

sensible to encryption than binary-based approaches as they rely on pattern matching algorithms

57

58 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

that are not effective on encrypted messages. However, solutions exist that could be use to tackle
this encryption issue [28 (140, 4} 26]. Some of them imply a partial reverse engineering of the
implementation to collect exchanged messages before their encryption [28| [140]. For example,
specific probes can be use to extract unencrypted sent and received messages that are hosted in
some buffers of the program. Such operation is easier than the complete reverse engineering of the
protocol implementation. Besides, we do not consider these two families as completely orthogonal
and future works could combine our methodology with results brought by a binary analysis.
Among all the existing issues encountered when inferring the vocabulary of a protocol using
such trace-based approach, we retained generic ones either clearly identified and addressed by
state of the art work or that we faced while building our own trace-based inference solution.
Thus we highlight three recurrent issues: 1) message extraction, 2) identification of equivalent
messages and of their format and 3) relationship inference. The first common issue is related to
the identification, in provided traces, of message boundaries. We detail existing work to address
this issue in section The second issue, detailed in section comes from the difficulty
of identifying equivalent messages and their format in a set of collected traces. Finally, works

that identify and infer field relationships, such as size fields and sequence numbers are detailed in

section [3.1.3]

3.1.1 Extracting Messages from Traces

As stated below, a trace-based vocabulary inference relies on collected communication traces to
infer the vocabulary of an unknown protocol. By traces, we refer to detailed records of communica-
tions between two actors that includes exchanged byte flows labeled with their direction and their
timestamps, e.g. actor A sent OxA1A2A3 to actor B the 117 of May 2014 at 12:24:26 [UTC| A
ISequence of Events Recorder| (SER) such as Wiresharklﬂ can be used to collect these traces.

The first step in such trace-based approach consists in identifying messages related to the
targeted protocol among collected traces. However, the layered architecture used in computer-
related communications brings at least two issues. The first one is brought by the presence, in
traces, of bytes related to sub and upper layered protocols that can prevent the inference process to
effectively apply on the targeted protocol. The second one regards the fact that each layer may have
a specific fragmentation and concatenation strategy that can prevent the correct identification of
message boundaries in provided bytes flows. In this section, we detail these issues and present how

state of the art solutions propose to address them.

Filtering Unrelated Protocols from Traces

As explained in Section[I.1] protocols are often designed using a layered-based approach. For
this reason, a communication trace often includes multiple protocols, one for each layer. Typically,

each layer prepend and/or append additional information to messages passed down from upper

layers. At each layer, a message extended with additional information forms the [Protocol Data Unif|

1. Wireshark is a famous free network capture tool: http://www.wireshark.com

http://www.wireshark.com

3.1. AUTOMATED INFERENCE OF THE VOCABULARY 59

(PDU) of the protocol. As illustrated in Figure[3.1] are recursively encapsulated one into the
other.

Layer7 _|_
Application

Layer6 _|_
Presentation

Layer5 _|_
Session

Layer4 _|_
Transport

Layer3 _L_ | kKnown | h I I T |
Network protocols ~

D";gf;]lz(—— I header | I footer |- f(:aar?_\t:red
prosi = Lot o[]o[s]ofr afofr a]ofr]

Figure 3.1 — Protocol layering

The recursive encapsulation of protocols makes difficult the identification of related to the
targeted protocol. It implies to filter out headers and footers generated by underneath protocols. To
filter these, most work in the field of vocabulary inference [[14, [88]] rely on sufficient knowledge
over beneath protocols to isolate and remove them. This approach supposes that protocols are
reversed under a specific order: from the lowest layers to the upper layers. For example, the PI
tool proposed by M. Bedoe only applies on traces that contains messages removed from
any content introduced by underneath protocols such as [[Pjand ethernet. ScriptGen [88] and
Veritas [139] are other protocol reverse engineering tools that follow this approach.

Identification of Message Boundaries in the Traces

As described previously, messages are organized in a layered hierarchy. Each layer provides
a set of rules that govern communications between systems. Despite the ones that establish
the vocabulary and the grammar, a protocol also implements a flow management strategy. This
strategy describes how a connection is initiated, maintained and closed but also how messages are
exchanged. Among other things, this strategy aims at reducing the processing effort and adapt
message exchanges to the communication channel. To achieve this, such protocol can fragment
or aggregate messages that are generated by their above layers. These modifications must be
considered when collecting traces. In the remainder, we focus on the modifications introduced by
both the stream oriented protocols such as and protocols that fragment messages such as
protocol to illustrate two common modifications of messages.

Stream oriented protocols such as [TCPJtend to hide all the specifics of the underlying protocols
to its above layers and among them the notion of packets. Instead, such protocol introduces the
notion of stream that represents a continuous flow of sent received bytes. It exposes this stream to
its upper layer protocols. Applications successively read and write a specific amount of data on this

stream. However, a[TCP|stream provides no information that could be use to delimit successive sent

60 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

or received messages. Thus, if an application successively sends two messages, these messages can
appear as a single one to an observer that does not know the protocol specification. For example,
in the Figure[3.2] an application sends four successive messages. As they reach the fourth layer,
these messages are aggregated into a stream without any information that could be use to identify
their boundaries. For this reason, reverse engineering a[TCP|based protocols by means of collected
streams is not straightforward. It requires to identify message boundaries in the stream. A solution
retained by most works [88, 43 relies on the assumption that a message can be defined as the
longest consecutive set of bytes going in the same direction. This heuristic cannot be use to identify
the boundaries of successive messages going in the same directions. Some other solutions [43]]
leverages Wireshark to parse captured messages and identify boundaries prior to their inference.

However, it requires prior-knowledge over the targeted protocol to be effective.

The targeted protocol sends four successive messages
. (1 Y l\~l 1

01011 || 01010 |{ 01010 || 101010 | 4 messages

Layer7 _]_
Application

taver® L ["01011][01010 |[01010 |[101010 |

Presentation

tayer5 L 01011 |[01010 |[01010 |[101010 |

Session
Layer4 _]
Trameport T | 010110101001010101010 | 1 stream
raver3 L ™ o10110101001 | [10101010 |
L 2 2 packets
ayer2 _|
Datalink | 010110101001 | 10101010 .|
' T
Y ~_

We capture two messages that have nothing to do with the
initial four messages

Figure 3.2 — Protocol layering

The fragmentation is another common modification of messages that impacts trace-based
reverse engineering works. Indeed, as specified in the model, each layer uses the service
exposed by its underneath layer. However, a layer is not always aware of the largest size of message
the underneath protocol supports. The [[P|protocol refers to the[Maximum Transmission Unit| (MTU])
to designate the largest size of a message it can transfer. Depending on the network architecture this
may change (e.g. and networks tend to accept largerMTU] than [WAN]networks).
Indeed, messages generated by above layers sometimes exceed the that rely on [[Pj[MTU]of the
layer. In such case, the [[P| protocol fragments the message into smaller message chunks (less
than the in order to allow it to be received by the final destination system. For example,
Figure illustrates how a [I'CP| stream can be fragmented into two |[P| packets. It impacts the
reverse engineering of [Pfbased protocols as messages may be captured in multiple chunks. These

chunks must be reassembled to obtain the original message. This operation is complex as chunks

may be received out of orders and since nothing prevent the creation of overlapping chunks. For

3.1. AUTOMATED INFERENCE OF THE VOCABULARY 61

this reason, previous knowledge over the[[P|protocol is required to reassemble received messages.

Furthermore, [IP|is not the only protocol that implements such restriction over its message size. For

example, [TCP| protocol also includes a restriction on its segment size called the[Maximum Segment]

(MSS)). A similar restriction is employed by the[HTTP|protocol that supports the fragmentation
of its content in chunks. To our knowledge, the only retained approach to address this issue is to

reverse engineer protocols that rely on known ones.

3.1.2 Identification of Equivalent Messages and Inference of their Format

As explained in Section the vocabulary of a protocol can be modeled under a symbolic
form. As a remainder, a symbol abstracts equivalent messages from a protocol perspective. By
equivalent message, we refer to messages that have the same semantic definition from a protocol
perspective and share the same message format. Therefore, an important step in the inference
process of the vocabulary is to identify equivalent messages.

The different approaches that exist to identify equivalent messages are strongly tied to the
algorithm they use to partition each message in fields. This observation mostly comes from the
assumption made by researchers that two messages that share the same format can be seen as
equivalent from a protocol perspective. Therefore, we regrouped both these two issues in our
comparison of vocabulary inference approaches. We identified three different strategies: 1) a token-
value clustering that filters out low and high frequency values when comparing messages [83},[139],
2) the use of a token-type clustering algorithm to regroup similar messages following the type of
their nested values [43] and 3) an alignment-based clustering that groups messages that share a

common alignment [14, [88]]. We detail these approaches in the following.

Token-value Clustering

This approach relies on the assumption that equivalent messages share a set of common
representative keywords. For example, [HT TP|request messages can be clustered following the value
of their method field that either contain the keyword OPTIONS, GET, HEAD, POST, PUT, DELETE,
TRACE or CONNECT. To identify these keywords, a tokenization algorithm often based on n-grams
to split messages in tokens is used. As a remainder, we explained in Section [2.2.1] that a token
is sequence of bytes that share a same meaning. Then, these approaches applies statistical tools
such as [Kolmogorov-Smirnov| (K-S} Test Filers [33] or Non-Negative Matrix Factorization [86]] to

identify the most representative tokens or keywords. In the sequel, we present two state-of-the-art
works that reverse a protocol vocabulary by means of a Token-Value Clustering.
Veritas published by W. Yipeng [[139]] relies on this approach to cluster equivalent messages.

At first, to identify tokens it splits the first twelve bytes of a each message in 3-grams. Then authors

identify the most frequent tokens by means of a[Kolmogorov-Smirnov| Test filter. Retained tokens

are called candidate message units and can be seen as keywords. In a second step, the tool analyzes
the frequency of each keyword in the collected messages. If the frequency exceeds a threshold, the
candidate message unit represents a cluster. Thus every messages that embed this keyword are said

equivalent and clustered together.

62 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

Another work that leverages a token-value clustering approach is ASAP, published by T.
Krueger et al. [83]]. Similarly to Veritas, ASAP splits messages in n-grams and searches for the
most representative ones. To achieve this, they filter out n-grams that have extreme (high and low)
frequency of appearance. Indeed, they assume that both constant and highly volatile n-grams do not
augment semantics. A Non-Negative Matrix Factorization [86] is then performed to cluster similar
messages based on their n-grams. Finally, a template is built for each cluster with the succession of
n-grams it contains to represent its associated message format.

As shown in our comparative study detailed in Chapter [/ this approach produces invalid
clusters as different types of messages tends to be regrouped together. This mostly comes from the
wrong assumption that one of more keywords are enough to split messages in clusters. In practical,
protocols may include values that could appear as keywords without denoting a specific type of
message. Finally, message formats produced by both this tools are coarse-grained and not precise
enough as they solely rely on n-grams. Our study shows that produced message format are not

effective to parse protocol messages neither to generate new valid messages.

Token-type Clustering

The token-type clustering approach differs from the previous one by considering the type of
embedded tokens instead of their values when clustering messages. Discoverer by W. Cui et al. [43]]
is a typical example of a tool that uses this approach. Its tokenization process splits messages in text
and binary tokens. A text token is made of any successive sequence of two or more value
bytes that contains no text delimiters (i.e. space or tab). A binary token represents a single byte
that is not part of an text token. Messages that share the same sequence of tokens and that were
sent in the same direction, i.e. received or sent, are clustered together. This token-type clustering is
illustrated in Figure [3.3]

O

Message1 \x02Lorem ipsum\x03dolor sit amet\x00\x00 »l B | T | T | B | T | T | T | B | B |

!!- L LG BEIE custr

Message 2 \x02Praesent -Fr‘1ng111a\x03v1tae eros at\x00\x00 »I B | T | T | B | T | T | T | B | B |

N

Message 3 \x03Duis sed elit\x0linterdum\x00\x00 »l B | T | T | T | B | T | B | B | Cluster 2

Binary Token Text Token

Figure 3.3 — Clustering message based on binary and text tokens

Discoverer also implements a token-value clustering algorithm to subdivide the obtained
clusters by identifying “format distinguisher” tokens among them. A format distinguisher token is
either a text or a binary token that satisfies two main criteria. First, the number of unique values
taken by this token across the set of messages is less than a predefined threshold (for example,

ten unique values). In our example illustrated in Figure [3.3] the second token of the first cluster

3.1. AUTOMATED INFERENCE OF THE VOCABULARY 63

accepts two values: Lorem and Praesent. If the first criteria is satisfied, a second criteria
ensures that it exist at least one value accepted by this token that is present in a minimum number
of messages. This additional threshold is referred to as the minimum cluster size and is arbitrary set
to 20 messages. If both criteria are satisfied, messages are sub-clustered according to the value of
this token and this algorithm is repeated on each sub-cluster.

To mitigate over-classification problems, a last step performed by Discoverer approach merges
similar message formats by means of a type-based sequence alignment. We describe this clustering

approach in the next Section.

Alignment-based Clustering

The alignment-based clustering approach relies on an alignment algorithm such as
(NW) [97] to compute the optimal alignment between two messages. The quality of this
alignment is then estimated though different measures such as the number of bytes that perfectly
match and the number of mismatches. A similarity score is then produced out of these measures
and is latter used by a clustering algorithm to regroup message that best align together. The
[Unweighted Pair Group Method with Arithmetic mean| (UPGMA) algorithm [[127]] is an example of
such clustering algorithm.

The work of A. Beddoe [[14]] that led to the creation of [Protocol Informatic project| E] is
among the first to propose this alignment-based clustering approach. To achieve this, [PI|leverages
the clustering algorithm to organize messages in a phenetic tree. Based on a pairwise

similarity matrix filled with the results of messages alignment, this algorithm computes a score
between group of messages that reflects their similarity. It then recursively merges the nearest
ones until the score drops to a predefined threshold. In the initial state, a cluster is created for
each message. Instead of recomputing the similarity matrix when two clusters are merged, an
approximation is used. The distance between two clusters A and B denoted d(A, B) is taken to be
the average of all the similarity score (D ,) between pairs of 2 in A and y in B as illustrated by
equation 3.1

1
d(A,B) = A 13| > Y Day (3.1)

r€AyYEB

In this approach, the initial similarity matrix is filled with a score (D, ;) that denotes the quality of
the alignment of message « with message v is computed with[NW]algorithm. This algorithm, also
known as the optimal matching algorithm, uses dynamic programming to align two messages.
In[NW] the alignment of two messages m; and ms is performed in two steps. First, a matrix
F'including a column for each byte of m; and a row for each byte of ma, is created. We denote
m[z] the byte of index in message m. This matrix is then filled accordingly to the principle of

optimality described by formula[6.1] It uses a gap penalty d and a similarity function S.

F;j = max(Fi_1 ;-1 + S(mali], ma[j]), Fij—1 + d, F;_1; + d) (3.2)

2. Pl http://www.4tphi.net/~awalters/PI/PI.html

http://www.4tphi.net/~awalters/PI/PI.html

64 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

In previous works [[14} 143} [88], the similarity function S is reduced to a simple function v(a, b)
returning a match or mismatch coefficient, respectively e and f:

e, ifa=b

S(a,b) =v(a,b) = { (3.3)

f, otherwise

For example, Table [3.1]illustrates the [NW]matrix built to align two binary messages:
mq1 =70832F65BD867AD200 and my =70C400D200 with a match coefficient (¢ = 1), a
mismatch coefficient (f = 0) and a gap penalty (d = 0). We retained the coefficient values
proposed by M. Bedoe. Once completed, the similarity score of the two messages can be found at

the bottom right of the matrix (Dy,, m, = 4).

70 | 83 [2F [65 | BD | 86 | 7TA | D2 | 00
0 0 0] 0| O 0 0 0 0] 0
70 F O 1| 1 1 1 1 1 1 1 1
83| 0 1 21 2] 2 2 2| 2 2 |2
00 O 1 | 2| 2|2 2 2 212]3
D2 0| 1|2 |22 2 2|2 313
00 O 1 |2 |22 2 2|2 2 4

Table 3.1 — Similarity function S(a, b).

Based on this matrix, the best alignment of two messages can be computed by means of a
back-trace step. This step searches for a path that starts at the cell with the highest score, i.e. at the
bottom right of the matrix, and that maximizes the alignment score back to the origin. As explained
by M. Bedoe, this path is constructed after accessing the left, diagonal and upper cell and moves
to the one with the maximum score. If all cells are equals, we move to the diagonal. In Table
yellow cells highlight the computed path. This path can then be used to build a consensus message
format that accepts the two messages. This consensus message format is made of static and dynamic
fields. To obtain it, PI compares the pair of message bytes that are identified by the back-trace
step. If their values equals, it adds a static token with this value in the consensus message, if not, it
inserts a dynamic token in the consensus. Finally, successive static or dynamic tokens are merged
under the same static or dynamic field. Applied to our example, it computes the consensus message

format illustrated on Figure[3.4]that is made of three fields.

2 bytes : 6 bytes : 2 bytes
Static Field Dynamic Field Static Field
70 83 ——mm mm —m - - D2 00

Figure 3.4 — Example of a consensus message format

3.1. AUTOMATED INFERENCE OF THE VOCABULARY 65

As shown by M. Bedoe [[14]], the alignment-based clustering algorithm can be used to identify
different messages that share an equivalent format. However, applied to complex protocols, this
approach suffers from limitations. The main limitation comes from the assumption that messages
are equivalent if their format are equivalent. However, in some cases the type of a message depends
of its usages from a protocol perspective. For example, two messages that share the same format
may denote a different semantic if one is triggered by the client and the other by the server.

To address these issues, some works [88 143]] propose to pre-cluster messages before executing
the alignment-based clustering. This way, only messages that share certain properties are aligned
together thus reducing the risk of aligning unrelated messages. For example, we have shown in
the previous Section that Discoverer relies on a Type-based pre-clustering step to cluster messages
that share the same structure of token types (text or binary). In addition to this solution, authors of
Discoverer proposes a modification of the algorithm to align messages based on the type of
their tokens instead of their values. We detail both works in the following.

ScriptGen developed by C. Leita et al. [88] was initially designed to generate honeypot scripts
for unknown protocols. Before executing this alignment-based clustering, it relies on a passively
built [Finite State Machine| (FSM)) to execute a pre-clustering step. This denotes the sequence
of sent and received message in all the captured sessions of the unknown protocol. Messages that

appear in the same state of the are clustered together. Clusters are then subdivided following
two heuristics: 1) the number of bytes sent in response to a message and 2) the result of Region
Analysis algorithm execution. This last algorithm is applied in two steps, first it clusters messages
following an alignment-based clustering algorithm, then it subdivides obtained clusters following
messages values.

We already described the approach followed by Discoverer to reverses unknown protocols by
means of tokenization and recursive clustering. However, to mitigate over-classification problems
brought by its recursive clustering algorithm, it introduces a merging step. This last step is similar
to the one proposed in PI and ScriptGen excepts that it relies on the alignment of token types
(ASCII| or binary) instead of token values. To achieve this, the authors modified the algorithm
to ensure that two bytes of the same types are aligned while bytes of different types are not.

In this Section, we described different approaches and tools that exist to identify equivalent
messages and infer their formats. To the best of our knowledge, no previous work has proposed a
comparative study that could permit to identify the solution that best applies on network protocols.
In this thesis, we tackled this and compared the results brought by these approaches on various text
and binary protocols. Indeed, our comparative study detailed in Chapter 7] shows that the approach
followed by Discoverer is the best solution of our comparative study. It results outdo other works
in the field of automated vocabulary inference when applied on both text and binary protocols. Its
combination of multiple steps of clustering with token-type partitioning techniques allows to get
the most of each algorithm. However its approach only relies on syntactic comparisons, i.e. value
and type (text or binary), to delimit the static and dynamic parts of the common format of two
messages. It prevents from dissociating two consecutive static (or dynamic) fields, which have
different semantics but share the same type. For instance, in messages, the Server [[P| Address
(SIAddr) and the Gateway [I[P| Address (GIAddr) are stored in consecutive fields that have the

66 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

same type (binary) but different meanings. Consequently, these two fields must be separated, which
is not possible using syntactic approaches.

To address these issues, inherent to syntactic approaches, we propose an inference algorithm
that takes into account the semantic associated with message parts. In particular, our approach does
not limit the semantic definition of a message part neither to its data type (text or binary) [43[] nor
to its appearance probability [[138]] but instead leverages contextual and environmental information

to improve both message clustering and message format inference.

3.1.3 Detecting Field Relationships

To be complete, a format extraction also requires to infer relationships between fields, as they
are common in protocols and participate in fields definition. Among all the protocols we observed,
the following types of relationships are recurrent: size fields, offset fields and relationships between
field values.

A size field specifies the size in bytes of one or more other fields. For example, the [[P] protocol
includes a “total length” field that contains the total length of the packet in bytes. Offset fields
are similar as their denotes the position of another field in the message. For example, the [IP|
protocol includes an “Fragment Offset” that specified the offset a particular fragment relative to
the beginning of the original unfragmented |[P|packet. Finally, another common relationship that
exists between fields are error-detecting codes such as|[CRCk or checksums. Such field contains
a value that depends on the value of one or more other fields. This value is often the result of a
mathematical operation.

The identification of field relationships has been the subject of very few works [43] [88]].
Indeed, the computational complexity of identifying relationships between fields often limit existing
approaches to the detection of simplest size and offset fields [43]]. For example, ScriptGen only
searches for fields that share the same value. As another example, Discoverer relies on an intuition
to identify size and offset fields. It assumes that for a specific pair of messages, the difference
in the values of potential size fields reflects the difference of the sizes of the messages or some
subsequent tokens. It therefore simply check for a match between the value difference and the
size difference. If a match holds for all pairs of messages in a cluster, the potential size field is
confirmed. For offset fields, they compare the value difference with the difference of the offsets of
some subsequent tokens. Both work cannot identify more complex relationships such as message
digests or error-detection codes.

From the best of our knowledge, no work has addressed the computational complexity behind
the inference of non-linear relationships between fields. Finally, as relationships between fields are
also elements of semantic we believe they should be considered during further sequence alignment
and message clustering in order to improve their efficiency.

In this analysis of the state-of-the-art, we described recurrent issues previous work have to
address in order to reverse the vocabulary of a protocol. We underlined the need in traces that are
obtained in a controlled environment that permits to filter out unrelated messages and to reassemble

the captured ones. We also detailed the three main approaches that are used by previous works to

3.2. AUTOMATED INFERENCE OF THE GRAMMAR 67

identify equivalent messages and retrieve their format: token-value clustering, token-type clustering
and alignment-based clustering. We described the benefits and the limitations of each one. Based
on this analysis and on our comparative study we latter describe in Chapter [7, we can conclude
that best results are obtained when a combination of these approaches is used. We rely on this
observation for our solution. Besides, we propose a novel approach that takes into account the
semantic associated with message parts to improve the identification of equivalent messages and
their composition in fields. Finally, we observed the lack of effective solution to infer relationships
between fields. In this thesis, we tackle this issue and propose a solution that can identify common
linear and non-linear field relationships. We also leverage this information in our clustering and

message format inference.

3.2 Automated Inference of the Grammar

We discussed in Section [3.T| the state-of-art in the field of protocol vocabulary inference. We
now focus on the second problem, i.e. improving the grammatical inference of undocumented
protocols. In this Section, we therefore consider solutions published in previous works to infer the
grammar of a protocol. In fact, protocol vocabulary inference has been adressed by a larger set of
works [88} (14} 43| 183 {139, 138 82, 27, [29} |41]] than for the grammar inference of communication
protocols [41,188, 167,20} 2, 17]. Indeed, despites the fruitful research field of grammatical inference,
few studies have applied existing approaches on communication protocols. The reader interested in
the field of grammatical inference can consult the reference book of Colin de la Higuera [63]].

The term grammatical inference describes all the techniques used to infer a grammatical
formalism out of partial information on a targeted language. In general, the inference process
uses a “student” that is given access to some data. The student extracts informed samples from
them. These samples are made of two sets of labeled strings: positive examples (S5.) and negative
examples (S_). Such strings can take multiple forms, such as lists of system calls [41]], data taken
from the Control Flow Graph of an application [[124] or network packets [[139]. In the following,
we focus on the grammatical inference of network communication protocols which therefore relies

on samples made of network packets. Nevertheless, our approach also applies in different contexts

such as[Inter-Process Communication| (IPC) or USB protocols. Indeed, the tool we developed as

part of this thesis accepts various sample forms besides network packets such as files, [PCes or raw
data. Our inferring process only relies on non-conflicting samples such that S; N .S_ = &. These
samples give insights about the elements of the language used in the protocol and on the rules that
explain their sequences. Students aim at inferring a grammar that best justifies the analyzed data.
There are two types of students. The first one analyses communications without partici-
pating [9, [139] [124] 41}, |67]] while the second one takes part and even sometimes initiates the
communication [20} 35]. Depending on the type of student used, the inference is named passive or
offline for the former and active or online for the latter. The remainder is organized as follows, we
describe existing work that rely on a passive grammatical inference in Section [3.2.1|and then focus

on state of the art work relying on an active inference process in Section[3.2.2]

68 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

3.2.1 Passive Grammatical Inference

In passive inference, the student is fully dependent on observed actors since by definition it
does not participate in the communications. Instead, it solely infers the grammar out of provided
samples. Some previous work in the specific field of protocol reverse engineering use passive
approaches [9, 139,124} 411 167]. From a practical point of view, this solution suffers from fewer

constraints than the active approach, as no participation in a communication is required. However,

given only positive samples S (or | S| >> |S_|), inferring the protocol grammar is a hard
problem because it implies learning without counter-examples that could help to refrain from
generalizing [63]. Indeed, Gold [55] has shown that inferring simple protocols (i.e. that can be
described by regular languages) requires both positive and negative samples to build an exhaustive
model of the targeted grammar. The main problem is that finding negative samples in real life
networks is difficult. Such negative samples are often more the result of fuzzing techniques applied
on the implementation of the protocol. Thus, unless the provided captures include identifiable
bad usages of the protocol, two solutions are available for passive inference approaches: 1) to
restrict the language to specific classes of formal languages that has been proven to be learnable
from positive samples only [[135] or 2) to rely on various heuristics to limit the over-generalization
problem [41 88} 167]. To our knowledge, previous work in the field of protocol inference have only

chosen the second solution, the first one being too restrictive.

More specifically, most of previous work rely on the construction of a[Prefix Tree Acceptor]
(PTA) [41, 188 67]] which is a tree-like Deterministic Finite Automaton (DFA). The root of the tree
is the initial state of the and each branch represents an application session, i.e. a sequence

of protocol messages exchanged between a connection and a disconnection. As an example,
figure [3.5]illustrates a PTA built with three different application sessions made of positive samples,
Sy = {(Login, Exit), (Login, Download, Upload, Exit), (Login,

Download, Exit)}.

Figure 3.5 — PTA([(Login, Exit), (Login, Download, Upload, Exit), (Login, Download,
Exit)])

A minimization algorithm is then used to transform the into an equivalent but smaller
i.e. which recognizes the same regular languages with fewer states. This step is the key to
most algorithms that deal with inferring an automata out of samples. Various solutions have been
proposed but they have in common to generate incomplete models. Indeed, their minimization
process relies on an approximation algorithm to support incompletely specified [FSM][[105]. For

instance, T. Xie [[144] uses a k-tail algorithm that merges states from which possible transitions

3.2. AUTOMATED INFERENCE OF THE GRAMMAR 69

generate the same future messages (up to an established horizon), Prospex uses an extension of
the Exbar algorithm [85] and Hsu et al. [67]] propose their own offline state merging algorithm to
find consistent[DFAk out of a built[PTA] All these approaches suffer from a scalability issue when
applied on large automaton due to the NP-completeness of such algorithms. Our approach only
uses passive inference as an initiating step to the active inference process. This way, we address

both the completeness and complexity issues by using an active inference.

3.2.2 Active Grammatical Inference

In active inference, the student has access to an “oracle” to which he submits queries. A query
is made of messages, each belonging to the protocol vocabulary and denoted m € X, with X, the set
of all the messages of the protocol. An oracle is an abstract machine that answers queries about the
target. A key algorithm in active inference is the L* algorithm proposed by D. Angluin [[7] which
infers DFAs using [Membership Queries| (MQ) and [Equivalency Queries| (EQ). L* originally applies

on Moore machines, however in the following we use its adaptation by Niese [98] that can be use

to infer Mealy machines. In the following, L* refers to the Niese adaptation of L* and applies on
Mealy machines.

The approach taken by L* consists first in building an hypothesis automata (HYP) out of
numerous membership queries. Formulating a membership query consists in submitting a specific
string u € (X))* to the oracle and observing the response Asyr,(u). Results brought by these
membership queries are stored in an observation table. When this table is closed and consistent [7],
two properties we detail latter, we build from it an hypothesis automata. Then, an equivalence query
is used to verify that this hypothesis matches the targeted automata. Submitting an equivalence
query consists in asking the Oracle if the inferred grammar G is equivalent to the one of the targeted
protocol. If not, it provides a counter-example that is used to correct the hypothesis. A counter-
example takes the form of an input string v € (27)* where Asyr,(v) # Aaye (v), with Agve (v) the
result returned by our hypothesis state machine when it receives v. This process is iterated until no

counter-example can be found.

Membership Queries

Membership queries are used to update the observation table while the table is not closed or not
consistent.

L* observation table is made of three parts (S, F, T) with S C (3;)* a nonempty finite set of
prefix closed strings, E C (E})* is a nonempty finite set of suffix closed strings and a finite function
T mapping strings of ((SU S - X)) - E) to strings from the output alphabet Z'O. As reminded by M.
N. Irfan in its thesis [70], a set is said prefix closed iff all the prefixes of every element of the set are
also elements of the set. Conversely, a set is suffix closed iff all the the suffixed of every element of
the set are also elements of the set. Furthermore if s is an element of (SU S - E'I), then row (s)
denotes the finite function f from E to (Z/O)* defined by f(e) =T'(s - e).

The observation table is consistent and closed if the two following properties are verified:

70 CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

— The observation table is closed if all states reachable in one step from the inferred steps so
far behaves like known states (V¢ € (S - X%),3s € S, row(t) = row(s)).

— The observation table is consistent if all strings which lead to states thought to be equivalent
so far have the same one-step behavior (Vs1,s2 € S,row(s;) = row(sz) = Va €

Y row(st - a) = row(ss - a))

Searching for Counterexamples

In practical terms, the targeted implementation of a protocol is some kind of black box and
equivalence queries must be approximated [[130]. To achieve this, a solution consists in comparing
results brought by representative membership queries submitted to both the implementation and
the inferred model. Among existing testing methods used to pick these membership queries, the
W-method [39]] and its extension, the Wp-method [33] are often used. However, both of them have
an exponential complexity in the size of the inferred automata. This complexity denotes the number
of membership queries needed to estimate the equivalence of two automaton.

Results by Chian Y. Cho et al. [35]] demonstrate the possibility to actively infer the commu-
nication protocol of a botnet modeled as a Mealy machine. To achieve this, the authors use the
extension of the L* algorithm, proposed by Niese [98]], to infer Mealy machines. T. Bohlin et
al. [20], T. Berg et al. [1'7] and F. Aarts et al. [2] reduced the inference complexity by representing
an inferred grammar using a Symbolic Finite Automaton. In their model, messages having the
same format and a similar impact over the grammar of the protocol are identified and abstracted
with a single symbol. Thus, it requires less symbols than messages to represent the vocabulary of a
protocol. This way, both the size of the vocabulary and of the inferred automaton can be reduced
while preserving the grammar completeness.

Encouraged by these results, our work also relies on an active inference approach to learn
the grammar of a protocol. This way, we can infer transitions that did not occurred in provided
collected traces. However, previous works in this field have highlighted important issues that need
to be addressed before inferring grammar of large protocols (i.e. protocols with numerous states
and transitions). As we detail in the following, most of these issues are related to the submission of
queries to an implementation.

As stated below, the key algorithm in the field of active inference is the L* algorithm. When
applied on large communication protocol inference, the execution of such algorithm can take an
excessive amount of time. Indeed, D. Angluin [7]] has shown that L* can be used to infer a minimal
DFA with a polynomial complexity in terms of membership queries O(|X|mn?), m being the length
of the longest counterexamples and n the number of states in minimal conjecture. For instance, T.
Berg et al., in their evaluation of the L* algorithm [[16]], failed to learn some large protocols, such
as[ATM] protocol, due to the excessive number of queries required to find counterexamples.

Reducing the number of queries and their length is the best strategy to limit the inference time.
Indeed, each query takes the form of an exchange of several messages between the implementation
and the inference algorithm. Moreover, it is mandatory to reset the implementation between each

query. This operation can take a long time, especially if it implies the reboot of a computer system

3.2. AUTOMATED INFERENCE OF THE GRAMMAR 71

or resetting virtual machines. Both the number of queries and their length depend on the size of the
targeted automata. Thus, inferring a large automata implies an important inference time.

Besides, we must also try to limit the number of messages sent to the implementation that does
not imply any response. Indeed, we must use a timeout to detect such situation. If no message
is received after a certain amount of time, i.e. the timeout period, we consider that no answer is
triggered by our query. The repetition of this situation highly impact the overall inference time.
Such situations are mostly due to the submission of invalid sequences of messages. It is thus
important to limit the amount of queries that imply invalid sequences of messages.

Reversing proprietary protocols as those used by malware can be even more complex if the
implementation detects the inference process and try to defend itself against it. To do that, it can
rely on the frequency of received messages or more especially on the frequency of invalid messages.
For example, the Ventriloproprietary protocol protects itself against reverse engineering attempts
by counting invalid queries and banning clients that reaches a given threshold. An implementation
can also introduce an additional delay before responding once a client has been detected as a
threat. Another effective approach to fight against inference attempts consists in responding false
information or to attack the client. A well known example of such protection is implemented in the
Storm botnet [[131]] known to retaliate, through attacks, against any un-stealthy researcher.

By design, the L* algorithm generates a large amount of invalid queries. This is a major
limitation when applied on implementation that use such protection. This emphasizes the need to

limit the amount of invalid sequences during active inference.

3. Ventrilo official web page: http://www.ventrilo.com.

http://www.ventrilo.com

72

CHAPTER 3. COMMUNICATION PROTOCOL INFERENCE

Part 1

Automated Inference of the Protocol
Vocabulary

73

Chapter 4

Introduction

In this Part, we describe our work in the field of trace-based inference of protocol vocabulary.
As described in Section [3.1} several studies were carried out to infer protocol’s specifications from
traces. Some of them rely on statistical measures to identify keywords that can be use to regroup
messages [139,183]]. Others leverage sequence alignment algorithms to retrieve the field composition
of messages and identify equivalent messages through the similarity of their syntax [[14,43]]. Finally,
some work also tend to consider message orders to improve the identification of equivalent ones [88]].
As shown in our comparative study, these approaches do not provide accurate results on complex
protocols and are often not applicable in an operational context to provide parsers or traffic
generators, some key indicators of the quality of obtained specifications. In addition, too few
previous works have resulted in the publication of tools that would allow the scientific community
to experimentally validate and compare the different approaches.

In this thesis, we propose an approach to infer the specifications out of complex protocols
by means of a semi-automated methodology. We believe that protocol reverse engineering is
complex and in practical, its automated application on heterogeneous protocols may sometimes
require the intervention of an expert. Thus, our objective is to automatize the bigger part of the
inference process without refraining expert adaptations. To achieve this, we conceived a fine-grained
vocabulary model and a methodology that automatically infers most parts of it by means of original
techniques. Obtained results can latter be tuned by the expert.

The intuition behind our automated approach is that message classification and format inference
are more effective if they also rely on the semantic definition of messages rather than only on their
syntax, i.e. the sequence of static and dynamic fields. Unlike previous work, we use contextual
information and its semantic definition as a key parameter in both the processes of message
clustering and field partitioning. We also detect complex linear and nonlinear relationships between
fields value, size and offset using correlation-based filtering. Besides, we propose multiple steps
of clustering, each step leveraging a specific algorithm thus reducing the required computation
time. We also show the viability of our approach through a comparative study including our
reimplementation of three other state-of-the-art approaches (ASAP, Discoverer and ScriptGen).

Finally, we have implemented our approach in Netzobm an open-source protocol [RE|framework we

1. Netzob: http://www.netzob.org

75

http://www.netzob.org

76 CHAPTER 4. INTRODUCTION

made available.
In the following, Chapter [5|describes our model of a protocol vocabulary. We then detail our
automated inference methodology in Chapter[6] We conclude this part with our comparative study

in Chapter [7] that evaluates our work and compares it to state-of-the-art approaches.

Chapter 5

Our Vocabulary Model

We describe in this Chapter the model we propose to represent the vocabulary of a protocol. As
explained in Chapter 4] we created this model so its can be use to describe most communication
protocols while being adapted to its automated inference. It covers multiple aspects of the vocab-
ulary protocols such as the definition of its messages including their inner composition and the
relationships that participate in their definitions. Our objective is to infer it in an automatic way.
However, we also built our model so the expert can easily intervene and optimize the results of its
inference. To achieve this, our fine-grained models exposes multiple features that can be leveraged
by the expert to improve the results of the inference process. In the following, Section [5.1]exposes
our definition of a symbol, its fields and of the values it accepts. We then explain in Section [5.2]
the solution we propose to parse and generate valid messages according to this model. Finally, we

detail in Section 5.3 our approach to represent the memorization strategy that is used by each field.

5.1 Symbols, Fields and Token-Tree

Similarly to the model proposed by F. Aarts [2], our model of a protocol vocabulary relies on
symbols to represent messages that share the same format and have the same role from a protocol
perspective. Nevertheless, we deviate from its work and propose to consider tokens as part of the
definition of a symbol. As a reminder, we described in Section [2.2.1] that a token represents a
succession of bytes that participate in the same meaning. Our objective is to ease our inference
algorithm and to follow the definition of a protocol we exposed in Section[2.2]

In our work, a symbol is composed of a succession of fields. However, we believe that fields are
difficult to infer as they can be made of different tokens that only share a semantic equivalency. For
example, [HTTP|requests and responses include a version field that describes the major and the minor
version number of the protocol used to create the message. In its specifications [49] 96],
values accepted by this field are described under an[ABNH notation. Listing[5.1| reminds it.

‘HTTPfVersion = "HTTP" "/" 1%DIGIT "." 1«DIGIT I
Listing 5.1- ABNF definition of the HTTP version number field as described in RFC 2616 [49])

77

78 CHAPTER 5. OUR VOCABULARY MODEL

This field accepts values such as “HTTP/2.4” or “HTTP/12.3”. Indeed, as shown by its
specifications, this field is made of five different tokens: “HTTP”, *“/”, one or more digits, “.” and
one or more digits. We therefore propose to refine the definition of a field by introducing the notion
of token-tree that represents the set of tokens it accepts. Thus, we model a symbol as a succession
of fields and a field as a composition of tokens described by a token-tree.

In the remainder, Section describes our definition of a symbol and Section m our one
of a field. We finally detail our definition of a token-tree in Section [5.1.3] We illustrate these
definitions through practical examples of protocol vocabularies we describe with the language

offered by Netzob.

5.1.1 Definition of a Symbol

As stated in section [2.2] the vocabulary of a protocol defines the set of messages its accepts.
In the remainder, 3 denotes the vocabulary of a protocol accepted by one of its implementation.
This vocabulary is divided into two subsets, > = 7 U X where 3.5 denotes all the messages
the implementation can receive and Yo all the messages it can send. Input messages refer to the
former and output messages for the latter. As shown in previous work dealing with vocabulary
inference [20, 17, 2], exchanged messages in a protocol often include parameters. Given that certain
parameters can take their values in a theoretically infinite definition domain or can depend on the
value of others, there can be an infinite number of messages. To represent messages in a more
compact model, we use symbols to abstract similar messages from a protocol perspective that only
differ from the values of their parameters. We denote Y the symbolic vocabulary of a protocol and

¥ = E/I U Z/O with E'I and E’O the set of input and output symbols of the protocol.

Definition A Symbol is the common abstraction of multiple messages, sharing the same format
and having the same role from a protocol perspective. By format, we hereby refer to a sequence
of fields. We denote Y’ the set of all possible symbols accepted by a protocol, a.k.a its symbolic
vocabulary and s* € Y/, the symbol with role x. For example, the set of DHCP DISCOVER
messages can all be abstracted by the same symbol s°I5¢, An ICMP ECHO REQUEST and SMTP

EHLO commands are other kinds of symbols respectively denoted s=“#0~REQ and sPHLO,

5.1.2 Definition of a Field

To describe the composition of a symbol in fields, we use the notation introduced by F. Aarts [2]].
A symbol s” follows a format that specifies a tuple of fields denoted s* = (f§, f, ..., f&) with f7
defined in F the set of all possible fields. We represent the values that are accepted by a field under

a grammatical form we call a foken-tree. We provide a definition of a token-tree in Section[5.1.3]

Definition A field is the common abstraction of a set of tokens that share a common meaning
from a protocol perspective. This meaning is established by the protocol creator. A symbol is
made of a succession of fields and each field can either accept a unique or multiple values. For
example, Figure illustrates the set of fields that could be use to model the composition of an

symbol.

5.1. SYMBOLS, FIELDS AND TOKEN-TREE 79

Message 1 IGET / HTTP/1.1\r\n I

Message 2 IGET /index.php HTTP/1.1\r\n I

Version
Symbol Method SP Request-URI SP number CRLN

Figure 5.1 — Example of fields that can be use to model an HTTP symbol

A field can either accept a unique constant value or a set of different values. In our example,

the field flqiese urr accepts at least two different values /7 or “/index.php” while f&5** only

9

accepts “_”. Thus, our vocabulary model accepts three types of fields, 1) static fixed-size fields, 2)

dynamic fixed-sized fields and 3) dynamic variable-sized fields.

A static fixed-size field or static field accepts a single constant value which by definition is
fixed-size. For example, all the requests and replies in the protocol starts with the same
sequence of bytes, i.e. 0xFF534D42.

A dynamic fixed-size field denotes a field that accepts different values that have the same size.
Many binary protocols include such fields. For example, the “version” field present in every

message is a fixed-size field that accepts different values (e.g. 4 to represent an[[Pjmessage or 8 to
represent a [51]] message.)

A dynamic variable-size field is the most complex type of field to parse and to infer. It accepts
multiple values that can be of different sizes. We can find a lot of these fields in [ASCII| protocols.
For example, the “version number” field accepts different values of different sizes such as
HTTP/1.1 or HTTP/1.11.

5.1.3 Definition of a Token-Tree

We previously explained that a field can accept multiple values and that a value can be made
of different tokens. To model these tokens, we attach to each field a token-tree. This token-tree
models the definition domain of its field, i.e. the set of values it accepts. A token-tree is an ordered,
rooted tree that represents the syntactic structure of tokens that are accepted by its field. It follows a
n-ary right-branching structure [15]] that grows downward and proceeds left to right. Similarly to
a Constituency-based parse tree [], a token-tree distinguishes between non-terminal and terminal
nodes. A non-terminal node is a node that has one or more children nodes, either non-terminal
or terminal ones. A terminal node is a node that has no children and can be seen as a leaf of the
tree. Besides, nodes in a token-tree are labeled. Terminal nodes are either labeled with static or
dynamic tokens while non-terminal nodes are either labeled as aggregates, alternates or repeats
nodes. We detail these labels in the following and illustrate them by means of examples including

sample usages of Netzob.

80 CHAPTER 5. OUR VOCABULARY MODEL

Definitions of Terminal Nodes accepted by a Token-Tree

A static token (e.g. a magic number in a protocol header) labels non-terminal nodes. It
represents a single constant value. To model a field which accepts a single constant value, we attach
to it a token-tree that contains a single terminal node labeled with a static token. For example,
listing [5.2) illustrates the token-tree of a field f0 that is made of a unique terminal node labeled with

a static token which value is “helloworld”.

>>> # defines f0, a field which only accepts "helloworld"
>>> f0 = Field("helloword")

Listing 5.2— Example of a static token

A dynamic token (e.g. the username field in the IRC protocol) represents a set of values that
share the same type and the same size range. Thus, a dynamic token is described with a type and a
size. We support various token types such as[ASCII} decimal, [[Py4, raw byte or bit array. We use a
range to describe the minimum and the maximum size in bits of the values a dynamic token accepts.
For example, Listing [5.3|represents two field f0 and f1. The former accepts any sequence of four
bytes while f1 accepts any string of ten to twenty [ASCI]| chars.

>>> # f0 is a field that accepts any sequence of 4 bytes
>>> f0 = Field (Raw (nbBytes=4))

>>> # f1 is a field that accepts any ASCII string of 10 to 20 chars
>>> fl = Field (ASCII (nbChars=(10,20)))

Listing 5.3— Example of a dynamic token

Besides its size and its type, an additional constraint can be added to the definition of a dynamic

token. This constraint can be use to model a relationship between its value and the value or the
size of one or more other fields. Our model accepts three types of relationships: 1) intra-symbol
relationship, 2) inter-symbol relationship and 3) environmental relationship.

An intra-symbol relationship describes a relationship between a token and one or more fields
that participate in the same symbol. For example, such relationship can be use to model a CRC32
field. To represent this constraint, we use a function taking as parameter some fields of the same
symbol. Based on our observation of common protocols, we identified two recurrent functions:
1) size : F* — N a function that returns the size in bits of one or more consecutive fields and 2)
value : F* — B a function that returns the value of one or more fields. B represents all the possible
sequence of bits b € ¥ ; and ¥ = {0, 1}. These functions can be combined with common
mathematical operations to define, for example, that a field contains the CRC32 of another field.

Listing[5.4] shows the specification of an intra-symbol relationship in Netzob.

>>> # f1 is a dynamic variable-size field of 0 to 30 chars.

>>> fl = Field (ASCII (nbChars=(0,30)))

>>> # f0 is a dynamic fixed-size field which value is the size of fl
>>> f0 = Field(Size([fl], nbBytes=2))

>>> # create a symbol composed of fields f0 and f1

5.1. SYMBOLS, FIELDS AND TOKEN-TREE 81

|>>> s = Symbol (fields=[£f0, f1])

Listing 5.4— Example of an intra-symbol relationship

An inter-symbol relationship describes a relationship between a token and one or more fields that
belong to a previous symbol transmitted during the same session. For example, such relationship
exists in the [TCP| protocol to define the value of an acknowledgment number. We use the same
functions than for intra-symbol relationship but specify as parameters fields of other symbols.
Listing [5.5]illustrates the specification of an inter-symbol dependency in Netzob.

>>> # f1 is a dynamic variable-size field of 0 to 30 chars.
>>> fl = Field(ASCII (nbChars=(0,30)))
>>> sl = Symbol (fields=[fl])

>>> # f0 is a dynamic fixed-size field which value is the size of fl
>>> f0 = Field(Size(fl, dataType=Raw (nbBytes=2)))
>>> s0 = Symbol (fields=[£f0])

Listing 5.5—- Example of an inter-symbol relationship

Finally, the values of a dynamic token can also be constrained by an environmental relationship.

Such relationship specifies that the value of a token depends on an environmental property such as
the current[[P|source, the date or the hostname. Similarly to inter and intra symbol relationships, an
environmental relationship is represented by a function Env : E — B that takes as parameter the
name of an environment property, e € E. For example, Listing [5.6|illustrates a field that takes as
value the current hostname of the system.

>>> # f0 is a dynamic variable-size field that contains the message

author hostname
>>> f0 = Field (Env ("hostname"))

Listing 5.6— Example of an environmental relationship

Definitions of Non-Terminal Nodes accepted by a Token-Tree

Multiple static and dynamic tokens can be combined to form a complex and precise specification
of the values that are accepted by a field. A combination is modeled by non-terminal nodes in the
token-tree of a field. We propose the use of three different combinations: 1) aggregate, 2) alternate
and 3) repeat. We detail them in the following.

An aggregate node concatenates the values that are accepted by its children nodes. It can be
use to specify a succession of tokens. For example, Listing [5.7]represents a field which accepts

values that are made of an ASCII of 3 to 20 random characters followed by a “.txt” extension.

>>> # Specifies a field made of two aggregated tokens
>>> t1 = ASCII (nbChars=(3,20))

>>> t2 = ASCII(".txt")

>>> f = Field(Agg([tl, t2]))

82 CHAPTER 5. OUR VOCABULARY MODEL

Listing 5.7— Example of a field which definition domain is an aggregation of two tokens

Tokens can also be combined under an alternative form. This combination is represented by
an alternate node. It can be seen as an OR operator between two or more children nodes. For

example, listing[5.8denotes a field accepts either “filenamel.txt” or “filename2.txt”.

>>> # Specifies a field made of two alternate tokens
>>> t1 = ASCII ("filenamel.txt")

>>> t2 = ASCII("filename2.txt")

>>> f = Field(Alt ([tl, t2]))

Listing 5.8— Example of a field which definition domain is an alternate of two tokens

Lastly, a field can also be defined under a repetition form of one or multiple tokens with a

repeat non-terminal node. It denotes an n-time repetition of a terminal or a non-terminal node. For
instance, we can use this operation to specify a field which token-tree accepts a repetition of n IPv4
addresses where n is the value of another field. Listing [5.10]shows such symbol made of two fields,
the former contains the number of IPv4 addresses that are declared in the second field. The repeat

operator is used to represent a dynamic number of IPv4 tokens in a single field.

>>> fl = Field (Decimal (interval=(1,5)))
>>> f2 = Field (Repeat (IPv4 (), nbRepeat=value(fl)))

>>> # Creation of a symbol composed of these two fields
>>> s = Symbol (fields=[fl, £f2])

Listing 5.9— Example of a field which definition domain is a repetition of IPv4 addresses

In this Section, we presented how we specify a symbol, its fields and the grammatical repre-
sentation of the values they accept. In the following, we detail the process we use to verify that a
message is valid according to the definition of a symbol. We refer to this process as the abstraction.

We also explain how we specialize a symbol to generate valid messages according to its definition.

5.2 Abstraction and Specialization

As presented above, the use of a symbolic model is required to represent the vocabulary of a
protocol in a compact way. However, the objective of this thesis is also to infer the grammar of the
communication protocols which implies, in our case, to exchange messages with an implementation
of a protocol. We therefore need to abstract received messages into symbols that can be used by our
model. Conversely, we also need to specialize symbols produced by our model into valid messages.
To achieve this, we use an abstraction block and a specialization block. As illustrated on Figure[5.2]
these blocks play the role of an interface between our symbolic model and a communication
channel.

To compute or verify the relationships that participate in the definition of fields, we include in

our model a memory. This memory stores the value of previously captured or emitted fields. It takes

5.2. ABSTRACTION AND SPECIALIZATION 83

the form of state variables, one for each field of the protocol. Each state variable, v € V stores the
current value of its field. For example, if the definition domain of a field f§ denotes an equality
relationship with another field f{, any modification to the value of fj state variable, denoted
v(f§), is automatically passed on the value of f{ state variable. This relationship between state
variables is asymmetric thus, in our example, a modification of f{ does not trigger the modification
of fy. Initially, a memory is created with an undefined state variable for each dynamic field.
However, if a field only contains static tokens optionally combined under various aggregated node,
its constant value is initially stored in the state variable. In the following, we give our definition of

the abstraction and specialization blocks and describe their usages of the memory.

Output Symbol Emitted Messages
3 (Communication Channel 0
< ABS !
Input Symbol Received Messages
'

*«-——

Grammar of the
protocol

State Variables

Memory

Figure 5.2 — Abstraction (ABS) and Specialization (SPE) blocks.

We use the term of abstraction to denote the transformation of a message into a symbol. Given
a message, this operation checks if the value of its fields complies with the definition domain of the
symbol fields. If requested, it also memorizes the received field values to ensure the computation
or the verification of relationships. More formerly, this operation is represented by the function
ABS : X xV — E'I x V), that given a received message m € X; and current state variables values
v, returns the associated symbol s* € EII and a new state vector.

Conversely, we use the term of specialization denoted by the function SPE : Y XY xY
to define the transformation of a symbol into a message. This function returns a message m € X
given the current state vector ¥ and a symbol s € > In practical, this operation builds a message
by successively specializing each field of the symbol. By definition, the specialization of a field
consists in returning the value stored in its state variable. If the state variable is undefined, we first
generate a new value based on its definition domain and saves the value in its state variable. We then
use this new value in the message. Thus, similarly to the abstraction function, the specialization of
a symbol also returns a new vector of state variable values. The vector represents the memory after
processing the message.

The use of a memory requires to specify how and when this memory is accessed. Up to here,
previous work that support field relationships [43, 88] always assumed that the abstraction and the

specialization of a field follows a default memorization strategy, i.e. each abstracted field value is

84 CHAPTER 5. OUR VOCABULARY MODEL

memorized while each specialized field value is generated using the value of its corresponding state
variable. This default strategy does not apply on all the fields. For example, in the [RC| protocol the
MSG symbol that can be used to send a private message to a user or a to channel, requires different
memory usage. This symbol is made of, at least, two fields. The first field contains the destination
of the message while the second field contains the content of the message. When specializing the
MSG symbol, the destination field may be filled with a previously observed user or channel name to
be valid, while the content field may be filled with [ASCII| values that must be generated every-time
the MSG symbol is sent. To achieve this, the specialization of the first field requires to use the
memorized value stored in its state variable while the specialization of the second field requires to
generate new content according to its definition domain. Such different strategies can also be found
in the abstraction process. Thus, to model how and when each field is memorized, we propose the
use of a[State Variable Assignment Strategy| (SVAS).

5.3 State Variable Assignment Strategy (SVAS)

As stated below, our model includes a memory to ensure the computation and the verification of
relationships between fields. This memory relies on state variables to store the value of each field
and is managed by a strategy, we call the [State Variable Assignment Strategy| (SVAS). A [SVAS]is
attached to each field and is used both when abstracting and specializing the field. This strategy

describes the set of memory operations that must be performed every time a field is abstracted or
specialized. These operations can be separated into two groups, those used during the abstraction
and those used during the specialization. From our observation of common protocols, we identified
two abstraction operations and three specialization operations. In the following, we first describe
the two operations that can participate in the [SVAS|of a field when abstracting it: ValueCMP and
Learn. It must be noted, that these operations are only executed if the received values complies
with the field’s definition domain.

The ValueCMP operation compares the value of a received message field against the memorized
value stored in the associated state variable. This operation checks if both are equals and if not,
stops the message abstraction process. For example, this operation can be use to ensure an equality
relationship.

The Learn operation saves the value of a received message field into its corresponding state
variable. This way, the saved value can latter be used to abstract or to specialize other fields.
Learning an already defined state variable override its current value with the new one. Typically,
this operation can be used to abstract the sequence ID field in the [TCP|protocol, which needs to be
reused to generate or abstract another TCP|message.

In addition to these abstraction operations, the of a field also describes the impact of the
specialization over the memory. From our observation of protocols, we identified three different
operations that can participate in the [SVAS|of a field when we specialize it: Use, Regenerate and
Memorize.

The Use operations reads the value stored in the field’s state variable and uses it as the field

value in the message. For example, this operation can be use with an equality relationship that

5.3. STATE VARIABLE ASSIGNMENT STRATEGY (SVAS) 85

synchronizes two state variable’s value.

The Regenerate operation generates a new value that respects the definition domain of the field.
For example, sending a[TCP|message requires to generate a new valid sequence ID field. This
operation has no effect over the state variable of the field but can be coupled with the Memorize

operation.

The Regenerate operation generates a new value that respects the definition domain of the field.
For example, sending a[TCP|message requires to generate a new valid [TCP|sequence ID field. This
operation has no effect over the state variable of the field but can be coupled with the Memorize

operation.

The Memorize operation is similar to the Learn operation but is used during the specialization
process to save in memory the emitted value of a field. This operation can be attached to the
Regenerate operation to store (or override) in memory a newly generated value. In the case of a
'TCP|message, we use this operation to memorize the generated sequence ID in order to ensure the
validity of the next received or sent[TCP| message.

To illustrate the definition of a SVAS, we take as example the ICMP protocol. In its grammar,
this protocol includes a transition triggered by the reception of an echo symbol (ECHO) that responds
with an echo reply symbol (REPLY). Both the two symbols have a data field. As stated by the RFC

792, “The data received in the echo message must be returned in the echo reply message” We

represent this with an inter-symbol relationship that specifies that the value of the fj-I" equals

ECHO j

to the value of the fZ°"° relationship ensures that every-time the state variable of the f is

data data
modified, the same modification is applied on the state variable of f}7°"*. Figure|5.3|illustrates the

ata
different operations we use to model this relationship. In this figure, we use the notation $v_NAME
to represent the state variable assigned to the field NAME and $NAME the current value of the field

NAME in a message.

ACTOR 1 | | ACTOR 2

write

12347 | 1) REGENERATE £crio pata

s 2) MEMORIZE ECHO _DATA SEcy
ABS(ECHO)

9 p
PINng 'Iég‘f‘m
4
$v_ECHO_DATA \ LEARN 5ci0_pata R ——
i synchronization $V_ECHO_DATA

synchronization ;
.

write
“1234”

paTR

SPE(REPLY) o
ABS(REPLY) o T1234 SREPLY_DATA = $v_REPLY DATA
oN $v_REPLY DATA
read VALUECMP REPLY_ DATA 4/ = == !

srERlY

-\

\\1234/! ~“_J/I
read

v v *1234”

Figure 5.3 — Memory operations for both the abstraction (ABS) and the specialization (SPE) of
ICMP echo-request exchanges.

1. RFC 792: Internet Control Message Protocol. p.14

86 CHAPTER 5. OUR VOCABULARY MODEL

First, every time we emit an ECHO symbol, its data payload contained in field f75"° must

be generated (operation Regenerate) and memorized (operation Memorize). This way, Actor 1
is able to verify that the received value of the data payload in the response message is the same.
When abstracting the received ECHO message, the Actor 2 saves (operation Learns) the received
data field contained in f;5°. This value is then reused to specialize the REPLY symbol (Use
operation). Finally, when Actor 1 receives and abstracts the REPLY symbol, he compares (operation
ValueCMP) the value with the memorized one. If they are equals, the received message is a valid
reply message and the ICMP exchange complies with the RFC.

To ease the specification of a field, we simplified our model by identifying common behaviors
in communication protocols and propose four different type of fields, each denoting a typical SVAS:
constant fields, persistent fields, ephemeral fields and volatile fields. Figure[5.4]illustrates those
different SVAS. It sums-up the different memory operations that are used depending on the type
of fields and on the definition status of their corresponding state variable. “—” represents that no
operation related to the memory is performed. However, we remind that in any cases, abstracting a

received value with a field requires first that its value complies with the field definition domain.

4 Constant N Persistent N Ephemeral N Volatile)

Field Field Field Field
ValueCMP ValueCMP Learn - Defined
Abstraction W F{--=-"=-"=-"------ - - -1----—--—--—"-—--{--------------A
W Learn Learn - Undefined
2
Use Use Q{ggenerfzte Regenerate Defined
Specialization ” JMemonze
pecia ’ F4------===----1 e P -
% / fl@generfzte Q{ggenerfzte Regenerate Undefined
A Memorize Memorize

Figure 5.4 — Our SVAS template that models the memory operations performed while abstracting
and specializing a field.

A constant field is a very common type of field as it denotes a static content defined once and
for all in the protocol. By nature, this state variable is always defined. When abstracting such field,
its value is compared against the value of the corresponding variable (ValueCMP). On the other
hand, the specialization of a constant field does not imply any additional operations than using the
memorized value as field value (Use). A typical example of a constant field is a magic field or a
delimiter field.

A persistent field carries a value, such as a session identifier, generated and memorized
during its first specialization and reused as such in the remainder of the session. To model this
behavior, we rely on the definition status of its state variable. During its first specialization, the
corresponding state variable is undefined, and so a new value is generated (Regenerate) and
memorized (Memorize). If the same symbol is specialized latter in the session, the corresponding
state variable is now defined and we use it as a field value (Use). Conversely, the first time such
persistent field is abstracted, its state variable is not defined and the received value is saved (Learn).

Latter in the session, if this field is abstracted again, the corresponding variable is now defined and

5.3. STATE VARIABLE ASSIGNMENT STRATEGY (SVAS) 87

we compare (ValueCMP) the received field value against the memorized one.

The value of an ephemeral field is regenerated (Regenerated) every time it is specialized. The
generated value is memorized in its corresponding state variable to abstract or specialize other
fields. During abstraction, the value of this field is always learned (Learn) for the same reason.
The IRC NICK command includes such ephemeral field that denotes the new nick name of the user.
This nick name can afterward be used in other fields but whenever a NICK command is emitted, its
value is regenerated.

Finally, a volatile field denotes a value which changes (Regenerated) whenever it is specialized
and that is never memorized. It can be seen as an optimization of an ephemeral field to reduce the
memory usages. Thus, the abstraction process of such field only verifies that the received value
complies with the field definition domain without memorizing it. For example, a size field or a
CRC field are volatile fields.

In our previous example of the ICMP protocol, we use en equality relationships between state

variables of both f7°%° and f}EPTY to synchronize their values. To model their memory strategy,

data
we use an ephemeral field for f75/° field and a persistent field for f3:°"".
>>> #
>>> # ICMP ECHO REQUEST SYMBOL
>>> #

>>> pingHeaderField = Field(name="Header")

>>> pingTypeField = Field (name="Type", domain=Raw (’\x08"))

>>> pingCodeField = Field (name="Code", domain=Raw (’\x00’))

>>> pingCksumField = Field (name="Checksum")

>>> pingHeaderField.children = [pingTypeField, pingCodeField,
pingCksumField]

>>> # set the checksum field

>>> pingCksumField.domain = cre32 (pingHeaderField)

>>> # create the ping data field
>>> pingDataField = Field(name="Data", domain=Raw (nbBytes=(8,80), type=
EPHEMERAL)

>>> # create the ping request symbol
>>> pingSymbol = Symbol (fields=[pingHeaderField, pingDataField])

>>> #

>>> # ICMP ECHO REPLY SYMBOL

>>> #

>>> pongHeaderField = Field (name="Header")

>>> pongTypeField = Field (name="Type", domain=Raw (’\x00’))

>>> pongCodeField = Field(name="Code", domain=Raw (’\x00’))

>>> pongCksumField = Field (name="Checksum")

>>> pongHeaderField.children = [pongTypeField, pongCodeField,
pongCksumField]

88 CHAPTER 5. OUR VOCABULARY MODEL

>>> # set the checksum field

>>> pongCksumField.domain = cre32 (pongHeaderField)

>>> # create the pong data field
>>> pongDataField = Field(name="Data", domain=value (pingDataField),
type=PERSISTENT)

>>> # create the pong request symbol
>>> pongSymbol = Symbol (fields=[pongHeaderField, pongDataField])

Listing 5.10— Usage of persistent and ephemeral fields to specify ICMP symbols

Chapter 6

Leveraging Semantic Information to
Improve the Vocabulary Inference

6.1 Introduction

This chapter details our approach to infer the vocabulary of an unknown protocol. The intuition
behind our work is that message classification and format inference are more effective if they also
rely on the semantic definition of messages rather than only on their syntax, i.e. the sequence of
static and dynamic fields. In our approach, we identify the semantic associated to a given part of a

message. We then take this information into account both to identify fields and to cluster messages.

Field Dependencies Finder
81) Contextual 82 Intra-Symbol
Relationship Relationship

Inference Inference

@ Inter-Symbol

Relationship
Inference

Noisy Action Action
Clusters Clusters

Contextual
Clusters

Raw Symbols
Merged
N o Symbols

Application
Sessions

Session
Slicing

Contextual
Clustering

’ Inter-Symbol
Relationship
Identification

Message
Formats

T
Format
Clustering

] o T5 3
] ... Background\ “...- 3% ° 3
o ... Noise Filtering) ... XE @ 3 B
H ¢ d SE i T
2 3 1] s
= 58
< % 5
D Semantic Sequence
Alignment
"No-Activity" Symbols

Figure 6.1 — System overview

As illustrated in figure[6.1] we take as inputs some traces collected upon the execution of a set
of user actions over the protocol implementation and use them to infer the protocol specifications.
We use the term of application session to mean these traces. The idea is to consider the semantic
definition at every steps of message clustering and partitioning. Thus, our approach relies on
several sub-steps participating in pre-clustering steps (cf. blocks 1, 2 and 3 in figure [6.1)), the
main clustering step (cf. blocks 4 and 5), the merging step (cf. block 6) and the inter-symbols
relationships inference step (cf. block 7). The different pre-clustering steps aim at computing
homogeneous clusters, which is mandatory to obtain good results during the sequence alignment.

However, this approach can generate too many similar clusters. Thus, the goal of the merging step

89

90CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

is to combine clusters that share the same format.

The rest of this Chapter is organized as follows. Section [6.2] describes our solution to collect
semantic information while capturing sample traces of the targeted protocol. We then explain in
Section [6.3] our solution to leverage this semantic to improve message clustering and to uncover
fields definitions. Finally, Section[6.4]denotes our work to automatically infer relationships between
fields.

6.2 Collecting Semantic Information

Our approach not only requires messages that belong to different application sessions but
also semantic information associated to these sessions. By semantic information, we refer to 1)
the definition of actions performed by the implementation during the capture, each denoting the
execution of a specific feature of the protocol, e.g. “List Directory”, “Read File”, “Write File” in
an |[FTP|session and 2) the contextual data accessed by the implementation while executing these
actions. We use actions in the Sessions Slicing step detailed in section while we leverage
contextual data in our Contextual Clustering step detailed in section[6.3.3] To collect this semantic
information, we use three different solutions, depending on the control we have on the capture
process.

The first solution applies when we have access to an implementation of the protocol that
exposes either a graphical or a command line interface. In that case, we first identify the different
input parameters offered by the interface. Based on this, we establish various scenarios each
implying different actions to perform with arbitrary predefined parameters. We then capture the
communications resulting from the automatic execution of these scenarios. To do this, we can rely
on scripts or on graphical interface testers such as Sikuli [145]. This solution is the most effective
to collect both the actions performed by the implementation and the contextual data.

We use the second solution when we have no control over the implementation of the protocol
but we can monitor its execution. This situation arises when reversing protocols used by malware.
This solution relies on the instrumentation of the OS on which the implementation is executed. In
practice, we use sandboxes, such as Cuckoo [40], to capture network traffic in parallel with any
useful contextual information related to the application, such as names of accessed files, network
parameters or system calls. To retrieve the actions associated to the generated traffic, we identify the
different actions based on captured system calls. Indeed, we believe that a signature of successive
system and function calls can distinctly represents a specific program action on a system. For
example, we have successfully instrumented the Android Dalvik Virtual Machine with the Substrate
Framework [52] to intercept and collect, at runtime, any contextual information accessed by an
application, such as Android version number, phone contacts, SMS providers. We also monitor
specific API calls denoting the execution of actions, e.g. the creation of activities, the activation of
devices such as GPS or bluetooth, reading and writing personal user information.

If we have no access to the implementation, e.g. when only traces are provided by third parties,
we have to manually specify contextual information. In addition, environmental information is also
automatically extracted from files meta-data, such as[[P]addresses, hostnames and port

6.3. SEMANTIC-BASED MESSAGE CLUSTERING 91

number.

6.3 Semantic-based Message Clustering

In this section, we describe the whole process of message clustering and detail the different
steps of this process. The goal is to compute a common abstraction model, i.e. a symbol, for similar

messages.

6.3.1 Session Slicing (Step 1)

This first step in our clustering process consists in slicing sessions into action frames denoting
different actions. This step is based on the two following heuristics. At first, we believe that
initiators, i.e. actors sending the first message, and non-initiators of a communication can use two
different subsets of the vocabulary. Secondly, we observe that most of the different messages are
linked to specific actions. Hence, identifying these action frames allows us to find and pre-cluster
messages implied in the same action but captured in different application sessions or at different
times in the same session.

To perform this step, message timestamps are compared against the start time of each action.
Messages with a timestamp superior or equal to the start time of action n and inferior to the start
time of action n+ 1 are clustered together. Obtained clusters are then subdivided into to sub-clusters,
one for sent messages and the other for received messages. By sent message, we refer to a message
sent by the initiator of the communication channel while a received message denotes a message
received by it. For example, Figure illustrates tree collected sessions. Each trace is made of
several received and sent messages. We obtained the first two sessions while executing three actions
A1, Az and As. Conversely, no actions were performed while capturing the third session. Based
on action timestamps, we slice the first two sessions and cluster their messages according to their
action frames and if they were sent or received. However, messages of the third sessions are related
to no action. Thus, we divide them into two clusters, one for the sent messages and the other for
received ones. In our example, messages m;, m3, ms and m:r) are grouped into the A7°"* cluster
while messages mo, my4 and m’6 belong to the Aﬁfeceived cluster.

When no information is available regarding the underlying actions performed by the application
while traces were captured, we rely on a statistical analysis to detect action frames. We approximate
action frame boundaries using variations of the inter-arrival time. Originally developed by U.
Gargi [[54] to cluster collections of pictures following their timestamps, this approach defines the
following heuristics: 1) a long interval with no information usually marks the end of an action;
and 2) a sharp upward change in the frequency of information inter-arrival time usually marks the
beginning of a new action.

This step produces different action clusters, one for each type of action and for each type of
actor (initiator or not). Among these action clusters, two can represent messages that are related
to no action. In the next Section, we describe how we leverage these clusters to filter background

noise from the other clusters.

92CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

start action start action start action

A Actitin frame A, AI2 Action flrame A, A|3 Action frame A,

F | || || \

start action . start action start action
A ACt'l°" frame A, A, Action flrame A, A, Action flrame A,

| i [[\

time

n Received Message

time
% H E Sent Message

Figure 6.2 — Examples of session slicing.

6.3.2 Background Noise Filtering (Step 2)

Some messages are not correlated to a particular action and can occur at any time, for example
the P ING and PONG messages used in[[RC| protocol. These messages correspond to background
noise. As they have their own format, which is generally different from the format of messages
generated by user actions, we need to filter them from action clusters. To do so, we rely on sent and
received messages during a period of no activity.

Filtering background noise is achieved in two steps. First we execute the contextual clustering
(step 3) and format clustering (step 4) on messages belonging to the no activity clusters. As detailed
in the following sections, these algorithms create a symbol for each type of messages belonging to
background noise. In a second step, we filter each action cluster using these symbols. If a message
can successfully be parsed with a noise symbol, we remove it from the action cluster.

For example, the execution of this filtering process refines the clusters resulting of the action
frame slicing of sessions presented in Figure . Indeed, messages ms, m13 and mg were wrongly
clustered in sent action clusters. This filtering process identifies received and sent messages to
regroup them in two dedicated no-action clusters labeled B°°"* and B*¢c1ved on Figure

6.3.3 Contextual Clustering (Step 3)

Action clusters can still suffer from imprecision, as a single action frame can contain messages
of different formats. For instance, a single user action such as the connection to an share
directory generates 16 different messages with smbclient

The contextual clustering step refines action clusters. The main idea is to regroup messages that

embed the same type of contextual information, such as host addresses, timestamps or usernames.

1. smbclient is a “client to access SMB/CIFS resources on servers” and is developed by the Samba Team.

6.3. SEMANTIC-BASED MESSAGE CLUSTERING 93

BSent

Sent Sent
A2 A3 ‘

BReceived

Receive Received Received
A, A, Ay

=) (@&
s @3 =8

Figure 6.3 — Action Clusters resulting in the background noise filtering process.

To achieve this, we rely on contextual data collected during the capture or extracted from the capture
files meta-data. We search occurrences of these data in every messages of a given action frame.
We finally subdivide action clusters by grouping messages that share the same sequence of type of
contextual data. For example, Figure[6.4]illustrates the contextual clustering process applied on the
action cluster .A7°"¢. It searches for contextual information in its three messages, and identifies the
presence of the destination IP and of the username in them. The former information was extracted
from the trace file (e.g. a pcap file) while the latter is provided by the expert. Messages that embed
the same type of contextual information are regrouped into the same clusters. In our example, two

clusters are created: 475" and A7S".

—_ IP Destination —_
|

.resolve '192.168.0.100 |

Username
|

L m, |.pseudo Netzoa | —

m

1

IP Destination

1
.attack!lO.lO.lo.l} |

M

Figure 6.4 — Illustration of the contextual clustering process.

This contextual information is searched in messages using different encoding (e.g. little-endian,
big-endian, [UTE}16) and common transformations (e.g. Gzip, Base64). This step
corresponds to the contextual relationship inference (c.f. block 8.1 in figure[6.I)) which produces, for
each message, a contextual signature, i.e. an ordered sequence of types of contextual information.

Sometimes, some part of a given message can correspond to different contextual data. This
situation is more frequent with short contextual data. Figure[6.5]illustrates such case where a single

byte of the message is found as participating in the definition of several contextual information. In

94CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

this example, the [[P|destination and the ID message are two types of contextual information found
in the message. Indeed, the message ID can be found in two different places in the message: at the

beginning of the message but also straddling the |[P|destination address.

IP Destination

= 1 Y B
Message | 11034--.attackl92.168.000.103443target.org!
N P i ‘(\

ID Hostname

e e e

Figure 6.5 — Illustration of contextual conflicts.

To address this situation, we use two heuristics. The first applies when one contextual data is
entirely embedded in the other. In that case, we give priority to the longest one. The second applies
when the occurrences of two contextual data partially overlap. Our example falls in that case. To re-
solve this situation, we use a disjunction in the contextual signature. For example, the contextual sig-
nature of the previous message is [ID; (IP Destination or ID);Hostname] which ac-

cepts two valid realizations: [ID; IP Destination;Hostname] and [ID; ID; Hostname].

We then use a greedy approach to cluster messages together if they share compatible contextual
signatures, i.e. two signatures are said compatible if they are equal or if one is a possible realization

of the other.

Finally, we compute the most precise common signature of each resulting cluster and iterate
over its messages to tag their half-bytes. This last step consists in identifying each half-byte that
correspond to each part of the contextual signature. In our first example message, we tag the eight
first half-bytes with the tag “ID”, half-bytes between the 26th and the 60th half-bytes with both tags
“ID” and “IP” while the last half-bytes are tagged with “HOSTNAME”. These tags are used by the

format clustering to promote a semantic alignment between messages.

6.3.4 Format Clustering (Step 4)

Contextual clusters should be refined for two reasons: 1) to manage messages carrying no
contextual information; and 2) to dissociate messages that include the same contextual information
but have a different format. The format clustering step corresponds to the final stage of classification
and is applied on each contextual cluster. Unlike the two previous steps, this clustering compares

the alignment quality between messages to compute clusters.

We propose to extend both the [Needleman & Wunsch| (NW)) [97] sequence alignment algorithm
and the [Unweighted Pair Group Method with Arithmetic mean| (UPGMA) [[127] hierarchical

clustering algorithm. Our modifications take into account the semantic in both the alignment and

the clustering phase. In the remainder, we give some details about these modifications.

6.3. SEMANTIC-BASED MESSAGE CLUSTERING 95

Semantic Needleman& Wunsch

We first propose an extension of the [NW]algorithm to produce a semantic-aware common
alignment between messages. In fact, can be applied on a symbol, which represents the
common alignment of a set of messages. In the following, we use the term of message to both refer
to messages and symbols. As described in Section[3.1.2] the original version of NW aligns two
messages in two steps: 1) it fills a matrix with the similarity score of each pair of messages bytes
and then 2) execute a back-trace in it. This matrix is filled accordingly to the principle of optimality
described by formula (6.1). It uses a gap penalty d and a similarity function S to align messages

m1 and mo.
F; j = max(F;_1 j_1 + S(mali], malj]), Fij—1 + d, Fi_1,; + d) 6.1)

In previous works [[14} 43} [88]), the similarity function S is reduced to a simple function v(a, b)
that either returns the value e if a == b or f if not.

We propose to extend this syntactic comparison with the comparison of the semantic definition
attached to each half-byte. Hence our function compares the value but also the semantic tags of
each half-byte and preserves common semantic information if available. These semantic tags are
computed and attached to half-bytes during the contextual clustering and every time an intra-symbol
relationship is found.

We denote ¥(a) = (T, ¢,), the multiset [132]] of semantic tags attached to an half-byte a, with
T the set of all semantic types and ¢, : T" — N, a function returning the multiplicity of a semantic
tag in a. For example, ¢(a) = {{IP, I P,Username}} means that I P and U sername semantic
tags are attached to half-byte a. In this example the multiplicity of IP is two, i.e. ¢(IP) = 2. This
situation may arise when the same semantic tag corresponds to different types of relationship. For
example, an half-byte could correspond to both environmental and application information.

Now, suppose (a) and 1(b) respectively the multiset of semantic tags attached to half-byte a
and b, we denote one includes the other with the relation:

P(a) CY(b) & Ve € T, pqu(e) < dp(e) (6.2)

and we define a size function the following way:

P(a) = ¢ale) (6.3)

ecT

We compute the similarity between half-bytes a and b by comparing their values and their
semantic tags. For the value comparison we keep the original v(a,b) definition while for the
semantic comparison we introduce two new semantic match and mismatch parameters: h and g.
Our experimentation has shown best results with the following parameter values: d = 0, e = 5,
f=-5,g=6eand h=6f.

Hence, as described in table our similarity function S returns a high score if the semantic

tags match but the values differ and on the contrary, returns a low score if the values match but not

96CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

the semantic tags.

Y(a)NyYb) = | S(a,b) =v(a,b)+h x (a)+ h x ¥(b)

Y(a) = ¥(b) S(a,b) = v(a,b) + g x ¢(a)

¥(a) C (b) S(a,b) = v(a,b) + g x ¥(a) + h x $(b) \ ¢(a)
Y(a) I ¥(b) S(a,b) = v(a,b) + g x $(b) + h x ¢(a) \ P(b)

Table 6.1 — Similarity function S(a, b).

Once the matrix F' is computed using our new similarity function and following formula[6.1]
a trace-back step is performed. We rely on the original trace-back algorithm we described in
Section @ We search for a path that starts at Fj,;;, |41 m,|+1 and that maximizes the alignment
score back to the origin Fl,l A diagonal path describes a perfect alignment between the two
messages, while a vertical or an horizontal motion implies the addition of gaps in one of the two
messages. Such trace-back produces two messages m/ and m/, containing the necessary gaps to
align messages m; and my under the constraints introduced by their inner syntactic and semantic
similarities.

As illustrated in figure [6.6] our semantic based alignment preserves the semantic definition
when identifying token boundaries. In this example, without our solution, email addresses get split

among multiple tokens and firstnames definition is lost in a bigger dynamic token.

Needleman : 6thomasGA ROOT QllS thomas@g mail. fr

& Wunsch | 37 4cev ROOT s || pluc@hot || mail. || com

Semantic : 6 thomas GA ROOT QS thomas@gmail.fr
N&W _| 3 || luc || cv | ROOT | SD || luc@hotmail.com |

[email I

D Dynamic tokens I:l Static tokens

Figure 6.6 — Alignments computed by Needleman & Wunsch and of our modified version.

We leverage these two aligned messages to produce a symbol that describes both. As illustrated
on Figure our semantic alignment produces two aligned messages that may contain
gaps. We build a symbol out of these messages by means of three steps: 1) we create a single
representation of the aligned messages with a succession of static and dynamic tokens. 2) we
smooth token boundaries and 3) finally compute fields definitions out of the smoothed tokens.

The objective of the first step is to find a succession of tokens that can describe the two aligned
messages. To achieve this, we execute a pairwise comparison of each aligned message bytes. If
both equals, we create a static token with its value, if not, we create a dynamic token to which we

attach the two values. Once we compared all the bytes of the two aligned messages, we obtain a

2. |m| denotes the number of half-bytes in a message m.

6.3. SEMANTIC-BASED MESSAGE CLUSTERING 97

sequence of one-byte static and dynamic tokens as illustrated in Figure

The second step smooths this sequence of one-byte tokens. To achieve this, we merge successive
dynamic or static tokens that either share the same semantic or that have no semantic. This step
produces a set of smoothed tokens as illustrated in Figure

Finally, we create a symbol out of the sequence of smoothed tokens. In details, if multiple
successive tokens participate in the same semantic definition we create a single field to represent
them. A field is also created for each token that has no semantic definition. As described in
Section[5.1.3] the values accepted by a field is represented under a token-tree. We therefore infer
the token-tree of each field. If a field regroups multiple tokens, we represent them with an aggregate
node (denoted AGG in Figure[6.7). We also infer the type of the values that are accepted by each
token. If a token accepts a single value (i.e. a static token), we insert it in the token-tree of the field.
On the other hand, we extract the types of the values that are accepted by each dynamic token. We
rely on a heuristic that successively test if the values are of different types. We first test for strongly
constrained types such as IPv4 addresses and then tests if the bytes are valid ASCII, or decimals. If
all the bytes are valid printable characters we represent them as an ASCII sequence. If not and if
the token is one, two or four bytes long, we represent its values under a decimal type. Other values

are represented as a sequence of raw bytes.

firstname email
6|1 |ofjuli|s|G|A[R|O[O|T[Q|S|I|o|ufi]|s|@|g|m|a]ifl].|f]|Tr
messages ﬁrsimimili i [A[R]o[o] I| [s[To]u] |e|mill—|_| Lilt]-] l|
[3TiTu[c[c]v[rR[o]o]T]s[po[TTulc[@[h o] t[m[a] i [I]-[c[o]m] Gap
firstname email ¥]
aligned |[6[1To[u[is[c[a[r[o]o[r[a[s[tTo[u[i[s[-[@[e[m[-Ta[-Ti[-T+[-T.[-[F[-]r]
mrandmz) | [5] 1 Tu-[-Te[c[v[Ro[o[[s[o[iu[c[@[n[o t]m[-Ta[-Ti[-TrT-T.T-Te[-To[m]

firstname

i]
tokens |3| p[o[p[o|p|p[r[o]o]T|D]D ||D|D|D|D|D|D|D|D|DT%1|I'ID|D|D|D|D|D|D|D|D|D|

firstname email

|
smoothed
okees [p]0 D p [rootr [D [i] D
firstname email]
symbol | f, f, if; | i | i it
i AGG ‘ l i AGG
Decimal ASCII <“ROOT” ASCII Dynamic token
s=(1,1) * ASCHS:(Z,Z) s=(2,2) b4 ASCII IEI y
- Static token
=5 sty [S

Figure 6.7 — The different steps engaged in the construction of a symbol out of two messages.

6.3.5 Semantic Preserving Clustering Algorithm (Step 5)

We use this extension of in our modification of the algorithm. As explained in
Section [3.1.2] is a heuristic clustering algorithm that recursively joins the two nearest
clusters. It relies on a matrix, denoting the pairwise similarity of clusters, i.e. of symbols.

In the n'" iteration of the algorithm, we try to align each pair of symbols resulting from the

(n — 1) iteration using our modified NW algorithm. We also compute a new symbol for each

98CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

pair of symbols and search for intra-symbol relationships. A semantic tag labeled with the type
of the relationship is attached to each corresponding half-byte. More details on the relationship
inference are provided in Section[6.4] After that, we compute the quality score of each possible
merge using a dedicated function H. We finally merge the two symbols that maximize H into
the new corresponding symbol provided by our modified NW algorithm. We stop this iterative

merging process when the highest score falls below a specific threshold. Figure|6.8|illustrates how
we regroup symbols with the algorithm.

B E | E E El B E | E B
[5] % |5 % % [5] 9% [% % —
Eso*%%‘@so***‘xxx
[5] s0 |95 | ¢ | % 800** 45“ ®
Bl 20 |5 |70 % B 20|5 |70]| % Bl 20| 2 | %

Figure 6.8 — Illustration of the UPGMA clustering algorithm.

Originally, after each merge, the [UPGMA| matrix is recomputed using an equation which
estimates the similarity of the new clusters based on previous ones. However, because we wanted
to keep track of the semantic definition when merging clusters, we modified this original behaviour.
In our work, after each round we realign messages participating in the new clusters and recompute
a symbol to represent it. We then compute its quality score. It allows us, for example, to detect that
a semantic field will disappear if we merge two messages.

Hence, our UPGMA algorithm relies on H(s1, s2). This function returns the quality score of
51,52 @ Symbol representing the alignment of symbols s and so. This H function computes the

euclidean norm of a vector composed of two measures, Q)(s1, s2) and P(sq, s2):
H(myi,mg) = ||Q(m1, m2), P(my,ma)|| (6.4)

The first measure)(s1, s2) represents the syntactic and semantic similarity of the two symbols

and its value is extracted from the NW matrix F':

Q(m1,m2) = Flo, |41, Ima|+1 (6.5)

The second measure, denoted P(s1, s2), evaluates the proportion of static half-bytes over the

number of dynamic fields in the symbol resulting from the NW alignment of s; and so.

6.3.6 Merging Step & Inter-Symbol Relationship Identification (Steps 6 & 7)

Format clustering produces Raw Symbols, each denoting a possible message format. However,
this approach tends to produce a lot of redundant Raw Symbols corresponding to the same message
format. To address this issue, we added a simple merging step that compares all the computed Raw

Symbols and merges duplicate ones.

6.4. FIELD RELATIONSHIPS IDENTIFICATION 99

The merging process successively compares the fields definition of each Raw Symbols and
merge the ones that are equivalent. Two Raw Symbols are equivalent if they share the same sequence
of fields with the same definition domains. When two Raw Symbols are found equivalent, we
regroup all their messages under the same one and forget the other one.

Finally, the last step of our approach consists in identifying inter-symbol relationships. As
detailed in section [6.4] it searches for relationships between consecutive messages using a generic
relationship inference. The same approach is also used during previous step to find contextual and
intra-symbol relationship inside each message. Thus we can identify fields such as sequence ID
or cookies. This last step in our approach returns symbols representing different message format,

including the definition of their fields.

6.4 Field Relationships Identification

In this section we present our approach to identify intra-symbol relationships (i.e. between fields
that pertain to the same symbol) and inter-symbol relationships (i.e. between fields that pertain to
two consecutive symbols). We consider three steps. At first, we generate a dataset that contains all
combinations of field attribute couples. Then, we quickly eliminate bad candidates by means of a
correlation approach, and finally we try to qualify the potential relationship that exists between the
remaining field couples.

During the first step we generate a dataset with the following attributes for each field: its value,
its size and its offset in current message. We then compute each possible combination of attributes
couples as, for example, (field1.size, field3.value).

Then, we look in the dataset for correlations by leveraging the Maximal Information Coefficient
(M IC) [112]]. This coefficient retrieves many types of dependencies, including nonlinear ones.
Moreover, it supports noisy datasets. This characteristic is useful as the clustering steps may have
erroneously grouped messages of different formats, thus preventing us to find dependencies when
looking for exact relationships. In order to differentiate linear from nonlinear dependencies (e.g. a
size field from a CRC32 field), we combine the MIC score with r, the Pearson product-moment
correlation coefficient. As demonstrated in [112], a value of M IC — r? close to zero indicates a
linear dependency, whereas a score close to one tends to point out a nonlinear dependency.

The qualification step takes as input the best couple candidates considering their M IC — r?
scores. We experimentally established that we obtain good results if we select couples between
0.8 and 1 for linear relationships and between 0 and 0.2 for non linear relationships. We do not
consider scores between 0.2 and 0.8 as they generally lead to weak results in terms of relationships.
We then evaluate each potential field couple under a set of specific relationships, in order to retrieve
one that exactly applies, i.e. it should be valid for the entire set of messages.

In order to support the wide variety of encoding that exists in real protocols, we take into
account different possible encoding and we try different combinations of endianness, signed number
representation and byte interpretation (ASCII, decimal, hexadecimal and octal). In the current
implementation, we consider the following basic relationships: size field, offset field, cookies and

sequence number. We also consider the following complex relationships: SHA-1, CRC32 and the

100CHAPTER 6. LEVERAGING SEMANTIC INFORMATION TO IMPROVE THE VOCABULARY INFERENCE

size of a repetition of a particular field or group of fields. The later can be found for example in

the P2P ZeroAccess protocol, where a size field specifies the number of peer’s IP address fields

concatenated in a message.

Chapter 7

Comparative Study of Vocabulary
Inference Approaches

We evaluate our approach on various protocols and compare our contributions against state-of-
the-art approaches. We conducted two different types of experiments: 1) on well-known protocols to
compare inferred message formats with their published specifications and 2) on unknown protocols
to evaluate the effectiveness of the different approaches on more operational use cases.

For the first set of experiments, we selected a text protocol and a binary protocol
(SAMBA), both often used in previous experiments [44) 27, 141, /43]]. The second set includes
two typical use cases of protocol reverse engineering to cover more operational contexts: the P2P
protocol used by a recent botnet known as [123] and VentriloEl, a proprietary and
undocumented protocol.

In the remainder, we first give some key insights over the compared tools in Section we
describe the datasets in Section[7.2] the metrics in Section[7.3]and the implementations we used in
the study in Section We then conclude in Section [7.5| with a discussion on obtained results.

7.1 Choice of Compared Tools

As presented in Section [3.1] several previous works tried to tackle the problem of reverse
engineering protocol vocabularies using trace-based approaches [88) 14, 43, |83] 139, [138, [82].
Unfortunately, no previous works have addressed their comparison. As a matter of fact, it is not easy
to accurately determine the advantages and weaknesses of each approach. Two main reasons can
explain this lack of comparative study. 1) Very few implementations of these works are available
even for the scientific community [83]] and 2) to our knowledge no datasets were published along
with each work. Our comparative study tackles this issue.

As implementing these tools is time-consuming, we decided to retain the most representative
ones while still covering the different types of approach. Thus, Discoverer [43]] uses a syntactic

alignment approach, ScriptGen [88]] uses an inferred automaton and ASAP [83] relies on statistics

1. Ventrilo is a VoIP software: http://www.ventrilo.com/

101

http://www.ventrilo.com/

102CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

over message bytes. We consider that other works use the same types of approaches and are less
advanced or outdated by the tools we selected. Moreover, the selected tools are often cited in
scientific articles of the domainﬂ Though ASAP is less popular, the tool is publicly available and
other works [139] 82] that follow the same type of approach are very similar and not more popular.

ASAP, published by T. Krueger et al. in [83], focuses on message clustering. ASAP splits
messages in n — grams and searches among them for the most representative ones. To do so, they
filter out keywords that have extreme (high and low) frequency of appearance. A Non-Negative
Matrix Factorisation [86]] is then performed to cluster similar messages. Finally, a template is
extracted from each cluster to represent the message format associated with each cluster. However,
the template is coarse-grained and not precise enough, especially to parse messages.

ScriptGen, developed by C. Leita et al. [88]], includes features that both address the problem of
vocabulary and the grammatical inference. It was initially designed to generate honeypot scriptsﬂ
ScriptGen differs from others because it uses the protocol automaton to identify similar messages. It
passively builds an by replaying the various sessions provided in traces. Messages that appear
in the same state of the are clustered together. Clusters are then subdivided following two
main heuristics: 1) the number of bytes sent in response to a message; and 2) the result of Region
Analysis algorithm execution. This algorithm is applied in two steps, first it clusters messages
following a[UPGMA| execution coupled with a sequence alignment algorithm, then it subdivides
obtained clusters following messages values.

Discoverer, by W. Cui et al. [43] tries to reverse unknown protocols following three main steps:
tokenization, recursive clustering and merging. The tokenization process splits messages in [ASCII]
and binary tokens to cluster messages that have the same token structure, i.e. the same sequence
of token types. Then, the recursive clustering divides obtained clusters by identifying “format
distinguisher” fields among them. To mitigate over-classification problems, the last step merges

similar message formats by using a type-based sequence alignment.

7.2 Datasets

Our comparative study relies on six datasets: two of them (® and @) correspond to a well-
known text protocol (FTP), two of them (® and ®) to the well-known SAMBAV2 binary protocol
(SMB)), one to a[P2P|botnet protocol (®) and one to a typical commercial proprietary product (®).
Table [Z.1l summarises the different dataset characteristics.

To compare the best results of each tool, we use two kind of datasets for each known protocol
and [SMB)): a calibration dataset to empirically compute the optimal parameters of each tool
and an evaluation dataset to compare them.

To create the calibration datasets @ and @, we used the first solution detailed in section [6.2] to
create scripts that execute various actions with predefined parameters on the protocol implementa-
tion. For instance, the script executes more than 10 different actions, including a connection

attempt with a bad password, listing some directories and downloading multiple files. Each cali-

2. According to Google Scholar, ScriptGen is cited 123 times, Discoverer is cited 150 times, ASAP is cited 10 times.
3. See Honeyd project: http://www.honeyd.org/

http://www.honeyd.org/

7.2. DATASETS 103

Protocol Source # Msg | # True Format
@ Generated | 1717 40
FTP
@ LBNL 2328 46
©) Generated | 2650 32
SMB
@ Company 937 22
® ZAccess Public 883 4
® | Commercial | Laboratory | 482 15

Table 7.1 — Summary of datasets used in our comparative study. The first column denotes the
dataset identifier. Last columns denote the number of true formats and the number of messages in
the dataset.

bration dataset includes twenty application sessions containing the same actions but with different
contextual parameters, ie. usernames, filenames, [[P|addresses and hostnames. Thus, we annotated

the captured traces with the executed actions and contextual data used to generate them.

To create the evaluation datasets, we used traces captured in both academic and professional
environments. The realistic dataset (@) is a subset of traces published by [104],
collected in an university network. We arbitrary considered the first 1000 packets in three different
days of capture (days 10, 11 and 12) to produce a dataset of reasonable size. The second realistic
dataset (®) comes from a full day of SMB traffic captured in a company network. Users agreed to
participate and behaved in a normal way. We retained a portion of the whole traffic that represents
1000 packets. Obtained dataset is composed of 937 distinct SMB]| packets, covering 22 different

true formats. By true format, we hereby refer to the format detailed in protocol specifications.

For anonymity reasons, the dataset only includes traces that hold no precise definition of
the context in which they were captured. In such situation, we would have used the last solution
proposed in Section to obtain necessary semantic information. However, in that case this
datasets would not reflect the same quality as those used for calibration. Returned results would
therefore be difficult to interpret as various factors would have influenced them. Thus, to ensure
consistency between parameters used for calibration and evaluation, we extracted from evaluation
network traces the same types of contextual data than the one we used for calibration. We relied on
the Wireshark tool that can be use to extract the contextual information we were looking for. We
followed the same approach on the datasets.

Finally, we applied the four approaches on more realistic reverse engineering situations: i) the
P2P| communication protocol used by [123] botnet and ii) a subset of the protocol
used by a commercial product. To create the dataset of [ZeroAccess|traces (®), we used the
second version of the malware, provided by K. McNamee [94]. We deployed this malware in
a confined and controlled network infrastructure. We then allowed our sample to connect with
other botnet members through its protocol (used to retrieve the directory). To capture the
traffic, we used a network probe implementing the deobfuscation algorithm previously detailed
by K. McNamee [94]]. The obtained dataset includes 883 messages for four true formats, i.e. we

previously performed a manual reverse engineering of the protocol to identify its true formats.

104CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

Regarding contextual data, we extracted various information from the pcaps meta-data such as IP
addresses and port numbers. Even though it does no bring a lot of contextual data, it still provides
good results as messages generated by this [P2P| protocol often include network related information,
such as the IP addresses of its peers. For the last dataset (®), we considered the protocol of a
typical commercial product. To obtain traces of this protocol, we relied on a freely available
implementation of this protocol and automatised its execution. In accordance with the solution we
detailed in Section[6.2] we selected a subset of the application features and established a scenario
of 10 different actions, such as sending text messages, configuring personal data, disconnecting
from or connecting to the server. We also arbitrary defined the values of each action parameters and
stored them as contextual data. We then played this scenario three times and captured the generated
traffic to create a dataset of 482 messages.

To ensure the reproducibility of these experiments, we stored and archived these datasets, but
only some of them are made public. Generated datasets (© ®), [FTP|realistic dataset (@) and[ZA]
dataset (®) are available for download. However, the realistic dataset of packets captured
from a company network cannot be published due to embedded sensitive information, and the one
extracted from the commercial product cannot be published due to intellectual property restrictions.
We also archived all the identified contextual information for each protocol that we summarised in

table

7.3 Metrics

To measure and compare the effectiveness of message formats inference algorithms, we need
to define metrics. We reviewed all the metrics used in previous works experiments [43] |41}, [139,
9, 129, 189] but no consensus emerged. For instance, some works report similar metrics but with
different names (i.e. [43] and [41]), some compute their own measures [139} 9] and others only use
qualitative metrics in their experiments [29, 89]. We select two metrics and propose a new one to
cover our needs in the evaluation of message clustering and field partitioning: the correctness, the
conciseness and the precision. Correctness and conciseness are both used in [43] and are closed to
the metrics used in [89, 41]]. Figure[/.1|illustrates the three metrics we use.

To define the conciseness and the correctness of a clustering algorithm we consider M a set of
messages, I, the set of inferred formats, i.e of inferred symbols, and Fy;.e the set of true formats,
i.e. symbols defined in the protocol specification. We also denote the function I : M — Fj,,
which defines the inferred format of a message and the function 7" : M — F},ye, which defines
the true format of a message. We finally define two functions, N.oy @ Fipye X M — N and
Neor + Finferrea X M — N

Neon(f, M) = |{I(m), Ym € M such that T'(m) = f}| (7.1)

Neor(f, M) = [{T'(m), Ym € M such that [(m) = f}| (7.2)

4. Client Ventrilo for Windows is available at http://www.ventrilo.com/download.php

http://www.ventrilo.com/download.php

7.3. METRICS

105

Protocols Identified Actions Identified Contextual Information

FTP Connecting with a bad pass- | Client username, client password,
word, connection with a valid | server hostname, current directory,
password, listing current di- | downloaded filename, uploaded file-
rectory, moving in an invalid | name, name of the moving directory,
directory, moving in a valid | invalid directory name, listed directo-
directory, downloading a file, | ries.
uploading a file, closing the
connection

SMB Connecting with a bad pass- | Client username, client password,
word, connecting with a valid | server hostname, downloaded file-
password, listing available | names, uploaded filenames, moving di-
shares, moving in an invalid | rectory names, listed filenames, server
directory, listing a directory, | domain name, server os, server version,
downloading a file, uploading | server shares.

a file, closing the connection.

ZeroAccess Receiving a new peer address, | IP addresses and UDP ports found in
propagating a peer list. the pcap.

Commercial VoIP | Connection client 1, connect- | Server IP, server hostname, client IP,
ing client, client 1 sends a | client phonetic names (a parameter of
message to client 2, client 2 | the client configuration), client descrip-
sends a message to client 1, | tion, client comment message, client
client 1 changes its config- | comment url, client messages.
uration, client 2 changes its
configuration, client 1 discon-
nects, client 2 disconnects.

Table 7.2 — Identified Semantics.

Those two metrics are related to the mapping between true formats and inferred formats.
Intuitively, the clustering is correct if it computes homogeneous clusters. It means that every
cluster, i.e. inferred format, must contain only messages that share the same true format. In this
case Neor(f) = 1. Heterogeneous clusters decrease the correctness and in this case Ny (f) > 1.
Conversely, the clustering is concise if each true format is described by at most one inferred
format. When messages corresponding to the same true format are clustered into different inferred
formats, conciseness decrease and N, (f) > 1. The clustering is correct if Ng,,(f) remains
low (ideally equal to one) for a large number of true formats. It is concise if Neop, (f) remains

low (ideally equal to one) for a large number of inferred formats. We thus define Conciseness

(respectively Correctness) as the [Cumulative Distributed Function| (CDF) of N, (respectively
Neorr): Con(n) = p(Neon, <= n) and Cor(n) = p(Neor <= n) with p(x <= n) the probability
that x <= n.

The overall shape of such curves characterizes the correctness or the conciseness of a
given clustering approach. However, two points of such curves are of particular interests. The first
one corresponds to Cor(1) = p(Neor = 1), i.e. the proportion of homogeneous clusters and the

second one to Con (1) = p(N¢en, = 1), i.e. the proportion of true format that correspond to at most

106CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

e B oen | [+ (x g
N/

Concise but not Correct Correct but not Concise Precise Inferred
Inferred Format Inferred Formats Format

I# Messages of True Format 1 + Messages of True Format 3
8@ Messages of True Format 2 7,’1{ Messages of True Format 4

Figure 7.1 — Illustration of our three metrics: conciseness, correctness and precision.

one inferred format. We thus expect such values to be high.

Correctness and conciseness must be analysed together to understand the quality of the align-

ment. For example, an inference algorithm that classifies every messages into different clusters

will be described as very accurate but unconcise. For this reason, we also use[Receiver Operating|
Characteristic| (ROC) curves to compare the different tools. We compute these curves based on the
values of Coorr(1) and Con(1).

However, we believe these metrics are not sufficient to gain a precise vision of the overall
quality of the inference processes. To improve this, we propose an additional metric that focuses on
the precision of the classification. To measure it, we compute the number of inferred formats that

perfectly match a true format. We call them precise formats or precise clusters.

To use these metrics, we need to known the true format associated with each message. To
identify the true format of well-known protocols, such as and [SMB] we used the results of
Wireshark. More precisely, we extract the needed information out of a file generated by
Wiresharklﬂ This file includes the description of all the fields of the captured messages. We then
use a protocol-specific parser that exposes the values of some key fields embedded in each
message. We assume that all the messages that share the same key values correspond to the same
true format. To select these key fields we refer to the official specifications of the protocols and
only select important fields. For instance, for the protocol we consider the value of the
‘SMB| Command” field, the value of optional “subCommands” fields and the value of the “status”
field. Unlike previous work [43]], we believe optional fields do not participate in the definition of a
true format. For the two other protocols, we manually create specific parsers based on previous

works [[123]] EI published by other researchers that reversed such proprietary protocols.

5. Wireshark is a famous free network capture tool: http://www.wireshark.com
6. Project Mangler as revealed most parts of the Ventrilo protocol: http://www.mangler.org/

http://www.wireshark.com
http://www.mangler.org/

7.4. IMPLEMENTATIONS 107

7.4 Implementations

As explained previously, this comparative study relies on our re-implementation of retained
works. This section details them. We first present our framework and then give relevant imple-
mentation details of our approach as well as on our re-implementation of ASAP, ScriptGen and

Discoverer.

Our open source framework for reverse engineering of communication protocolle] is licensed
under GPLv3. Freely available, its sources can be downloaded from a git repository and some
packages for Linux platforms are provided. At the time of writing (October 2014), the source
code of the framework comprises more than 50,000 lines of code, mostly in Python, some specific
parts being implemented in C for performance purpose. It offers data models and basic algorithms
to build, edit, visualise and simulate a communication protocol. We therefore implemented our

approach and the others as plugins to reduce duplicated code and to simplify their comparisons.

The implementation of our approach of vocabulary reverse engineering corresponds to only
500 lines of python since most of the computation codes are provided by our framework. We refer

to it as Netzob in the following.

ASAP authors provide a publicly available implementation in R Thanks to the help of the
authors, we developed a wrapper to execute ASAP implementation as a clustering plugin in our
framework. This allows us to use the original ASAP code without inserting flaws. As recommended
by authors, we uses Sally [[115]] to tokenize messages. Output clusters returned by ASAP are then

transformed into symbols as presented in their article [83]].

Unfortunately, implementing ScriptGen and Discoverer was much more difficult since neither
source code nor implementation are publicly available, even for the scientific community. Among
the two, Discoverer was the most difficult to re-implement as documentations and articles give too
few details on some specific points such as on their merging strategy used in last step. In addition,
both the authors of Discoverer and ScripGen did not publish the dataset they used to evaluate the
effectiveness of their tools. Without publicly available datasets, it is thus difficult to validate our
implementation of these approaches. However, we try to be as accurate as possible and check
carefully our implementations of these approaches. Moreover, the results we obtained are similar to

those described in the authors articles.

Each approach exposes parameters to the user that can highly impact the overall quality of
their results when applied on a certain type of protocol. Thus, to ensure a fair comparison, we
use the calibration datasets to compute the best parameters value and use them on their respective
evaluation datasets. To identify these parameters, listed in Table we first established a large
variation range for each of them and then compared the ROC|curve of results brought by all possible
combinations. For realistic datasets with no calibration, we only retained the best results given all

the possible combination of parameter values.

7. Netzob- Reverse Engineering Communication Protocols: http://www.netzob.org
8. ASAP sources: https://github.com/tammok/PRISMA/

http://www.netzob.org
https://github.com/tammok/PRISMA/

108CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

Tools Parameters FTP SMB | ZA | Commercial VoIP

Ngram Length 1 2 1 1

ASAP Ngram Type Text Bin | Bin Bin
Ngram Delimiters Extended - - -
Min. Text Segments 2 2 2 2

Discoverer | Min. Cluster Size 20 60 10 12

Max. Distinct Values 10 5 20 350

. Macro-Clustering threshold 0.9 0.7 | 0.6 0.6

ScriptGen

Micro-Clustering threshold 0.5 05 | 04 0.4

Netzob Similarity Score 0.9 0.6 | 05 0.8
UPGMA threshold 10 10 10 -1

Table 7.3 — Parameters used to configure each approach.
7.5 Experimental Results

Message Formats Quality Comparison (value at 1)

100 : : :
ASAP + ? ? ? f
Discoverer © .
X | | Ideal Point

Netzob ;
80 [ScriptGen & | oo NN)

T
5
:

(0]
7 1 %A
£ | | | - VolP
o ! ! !
o 40 R e e 0 rrrrrrrrrrrrrrrrrrrrrrrrr
ZA ‘ ‘ ‘ ZA
| | | | SMBO
wobfe T —— — - FR . ®
O SMiB 1 1 1 1
3 : | ; SMB &
VolIP : i .. VolP i 4
20 40 60 80 100
Correctness

Figure 7.2 — ROC Curve used to compare the quality of the inferred message clusters of ASAP,
ScriptGen, Discoverer and Netzob. Best results are close to the top right corner.

In this section, we present the conclusions of our experimental comparative study of ASAP,
ScriptGen, Discoverer and Netzob.

We expect results to be both concise and correct. This means that the ideal point of our[ROC|
curves is the upper right corner of the graph, as illustrated in figure It is also important that
the tools balance concision with correctness. Conversely, a lost in conciseness entails an important
problem: it generates too many symbols, which make the results difficult to interpret. Moreover,
these symbols can be used to infer the grammar of the protocol and then to develop protocol

generators. The size of the inferred protocol grammar automaton depends on the number of inferred

7.5. EXPERIMENTAL RESULTS 109

symbols. A lost in conciseness will thus result in inefficient protocol generators which may prevent
any inference of the protocol grammar. Concerning the[ROC]| curve, this means that good results
should be as close as possible to the upper right corner, i.e. the “Ideal Point” on figure[7.2] and near
the diagonal that goes from origin to that upper right corner.

First of all, general results depicted in figure show that the compared approaches fall into
two categories. On one hand, ASAP and ScriptGen obtained poor results and always suffer from
the overfitting problem. Moreover, ASAP correctness is quite low meaning that most of its inferred
message formats denotes multiple true formats. On the other hand, Discoverer and Netzob show
better results with an advantage for Netzob which results are always nearer the ideal point.

The precision of the clustering illustrated in Table[/.4|is also another revealing measure of this
distinction. Indeed, only Discoverer and Netzob infer precise clusters, i.e. inferred clusters that
perfectly match true formats. Despite the use of calibration datasets to optimize their parameters
value, ScriptGen and ASAP inferred clusters never matched a true format. Indeed, none of their
inferred message formats is accurate enough to support the automatic generation of a protocol

parser.

Precision FTP (®) | SMB (®) | ZA (®) | VoIP (®)
Discoverer | 4.34% 22.72% 25% 6.66%
Netzob 34.78 % 22.72% 50% 26.6%

Table 7.4 — Number of precise clusters identified by Discoverer and Netzob.

We also observe in figure[7.2]that ASAP, Netzob and ScriptGen tend to be stable as they provide
similar results for the different datasets. However, Discoverer is quite unstable. On and
datasets, it suffers from the overfitting problem whereas on the dataset it obtains a good
conciseness but lower correctness (about 40%).

Our comparative study shows that ASAP does not return good results on the datasets we used.
For instance, applied on the [FTP|realistic dataset (®), only 20% of the true formats match a unique
inferred format (c.f. figure[7.2). We believe ASAP is not appropriate to infer precise specifications
of a protocol. An approach solely based on a statistical analysis of keyword or n-grams in messages,
does not appear sufficient to cluster them precisely.

Another interesting point in our results is that ScriptGen creates far too much clusters. For
instance, on the [SMB|realistic dataset (®) made of 937 messages for 22 true formats, ScriptGen
infers 906 different message formats. Indeed, most of the computed clusters contain a single
message. Figure [7.3]c) depicts this low conciseness problem when applied on dataset: it
needs more than 100 inferred formats to cover 100% of the true formats. The reason why ScriptGen
over-classifies is that it clusters messages according to their position in a session. This is not
efficient, because in realistic datasets users often behave differently in each session which brings
different message formats at similar position in sessions. Besides, when a classification error occurs
at the beginning of the session, it affects the classification quality of the all following messages.

Obtained results confirm that ScriptGen was not designed to achieve a complete reverse

engineering of a protocol. Indeed, it seems more appropriate for the inference of the very first

110CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

exchanges of a communication. As stated by its authors, ScriptGen is more adapted to build an
agnostic honeypot.

As illustrated in figure[7.2] our comparative study shows that among all the tools, Netzob always
infers the best message formats. Indeed, it always computes message formats with a minimum
correctness of 60% and a minimum conciseness of 50% whereas Discoverer lack of conciseness on
binary protocols produces hundred of inferred message formats for a single true format.

In addition to its stability, Netzob also computes the highest rate of precise clusters. Table
shows that Netzob always infers at least (and often more) precise clusters than Discoverer. From
our point of view, inferring precise clusters is important. Not only that precise clusters represents
perfectly inferred format but they can also help the expert to correct the other inferred message
formats. That is because in most of the protocols, the different messages shares common aspects
such as encoding functions or delimiters. The expert can apply this information on other inferred

format to improve them.

111

00}

SSaUI0ALI0)) JIOA [BIIWWO)) (§)

(areos "Boj) syewlo patiaju| Jo JoquinN
ol [
T

synsay [euswedxyg porrelaq — ¢/ 9ndig

SSQUSSIOU0)) J[OA [e1oIowwo)) (9)

000}

(areos "60|) syewio4 paisu| Jo JaqunN

001 ! 'R
’ ,

00k

$somoa110) NS (P)

(areos "60j) syewio4 paiau| Jo Jaquinn
ol
T

—&— uepiduog

—&— uspiduog

—&— uspiduog

0c

(014

08

=@ = 1aienodsiq =02 =@ = Ja19n00s1q 0c =@ = J1a19/00s1q
—} avsv —} avsv —} avsv
1 0¥ (14
o o
o =)
m m
09
08
4 o S oot . oot e Do
SS8U}08.1107) JeW.oq SSBUSSIOUO) JewWIo SSBU}08110D) Jewo]
ssausstouo)) gAS (0) ssamoam0)) 414 (9) ssaussouo)) .14 (&)
(eleos "60]) syew.o- paiaju| Jo JaqunN (o1eas *6o]) sjewso pausju| Jo JoquinN (o1eos "bo]) syewio- paiiaju| Jo JaquinN
0001 001 ol _.o 00} 13 1 o 000} 00} 0l 3
—&— ueniduog —&— uepiduog —&— uapduog
...... qoziaN =<+ qozieN -+ qozIoN
=@= Jalonoosiq =@= 10101008|q 02 =@= Jalenoosiq
—+ avsv —+ avsv —} avsv
o o
o o
m m

7.5. EXPERIMENTAL RESULTS

SSBUSSIOU0D Jewlo

S$S8U}08.100 Jew.lo

SSBUSSIOUOY) JBWIO

4a0

40

112CHAPTER 7. COMPARATIVE STUDY OF VOCABULARY INFERENCE APPROACHES

Chapter 8

Conclusion on Vocabulary Inference

In this Chapter, we proposed a complete and automated approach for trace-based message
formats reverse engineering. Our approach relies on novel techniques that leverage contextual
information and correlation means to enhance message clustering as well as field boundaries and
relationship identification. We implemented our approach in a publicly available framework, and
demonstrated its efficiency against both standard and unknown protocols. Moreover, we compared
our approach against three other state-of-the-art approaches (Discoverer, ASAP and ScriptGen).
The experimentation shows that it provides better overall results, in addition to extracting fields
semantic.

Based on these results, network security products editors can rely on an approach that automates
the creation of protocol parsers, thus providing fast and reactive response adapted to today’s
cybersecurity context. Same goes with the field of malware analysis, in the aim of speeding up, for
example, the take down of botnets. Besides, the inferred protocol vocabulary can be also be use to
tackle the inference of the protocol grammar. We detail our work in the field of protocol reverse

engineering in next Part.

113

114 CHAPTER 8. CONCLUSION ON VOCABULARY INFERENCE

Part 11

Automated Inference of the Protocol

Grammar

115

Chapter 9

Introduction

We described in Part[[|our work in the field of vocabulary protocol inference. This work has
lead to our proposition of an automated approach that leverages semantic information to reverse
engineer the vocabulary of an documented protocol. Once inferred, the vocabulary describes the
set of messages that are accepted by the targeted protocol. However, it does not specify the valid
sequences of messages the protocol accepts, an information that is modeled by the grammar of
the protocol. We explained in Chapter [1.2]that this knowledge is mandatory for the creation of
realistic traffic generators, [DS|detection rules and smart fuzzers. We therefore extended our work
to propose an automatic approach to infer the grammar of a protocol.

We detailed in section [3.2]that previous works [9, [139][124, 41} [67, 20, 35]] have already applied
the field of grammatical inference to the particular aspects of protocol Our analysis of these
studies and of the completeness and correctness of the inferred grammar they provide encouraged
us to adopt an active inference approach. However, we also explained in Section [3.2.2]the main
limitations that need to be faced to ensure the adoption of active grammatical inference approaches
by the particular field of security related researches. Among these limitations, we refer to the
important computation times these works require when applied on complex protocols. We also
highlighted in this Section the need in more a stealthy process to address the inference of protected
implementations. We believe that semantic information can also be a key parameter to address
these issues. Indeed, we show in this Part that semantic information can be leveraged to split the
large inference task into separate parallel sub-tasks. Our solution reduces the computation time of
the whole inference and the stimulation of the inferred implementation thus being more stealthy.

Similarly to previous work [20, [35]], we rely on the state-of-the-art inference algorithm called
L* that applies on protocols modeled with a[DFA] However, some communication protocols are
far more complex and cannot be modeled with[DFAk. For example, the routing protocol is
an example of a Turing-complete protocol [34]]. Indeed, we believe that communication protocols
are closed to programming languages which for some of them are Turing-complete. Inferring such
languages and the models they rely on (e.g. linear-bounded non-deterministic automaton, Turing
machine) is a very complex work that has not yet been fully addressed by the scientific community.
As a matter of facts, grammatical inference algorithms are still limited to the first levels of these

languages which mostly relies on deterministic automaton. Our work do not derogate from this

117

118 CHAPTER 9. INTRODUCTION

rule. Thus, we mostly focus on the inference of regular languages. Nonetheless, our use of a Mealy
machine combined with a symbolic vocabulary that enables some context sensitivity through its
memorization strategy allows us to address more complex protocols such as the ones that
includes inter-message relationships.

In the sequel, Chapter [10]describes our model of a protocol grammar and details how we plan
to decompose it to improve its inference. Chapter [T1]describes our solution to infer this model. We

then conclude with an evaluation of our solution we compare against the classical L* algorithm in

Chapter

Chapter 10
Our model of a Protocol Grammar

As stated by Holzman, the grammar in a communication protocol represents the valid sequences
of received and emitted messages. The automaton theory, as being closely related to formal language
theory, is adapted to model rules that represent these sequences. Among all the existing models of
automaton, Finite-State Machines (FSMs) with outputs and more precisely Mealy machines have
successfully been used in previous works [35} 2, [17]. In the following, we describe our Symbolic
Mealy Machine in section[T0.1} We detail in Section[I0.2lhow our model support the reaction time
to improve the realism of the generated traffic. Finally, Section[I0.3]details our decomposition of
this grammar model into sub-grammars to improve the efficiency of its inference.

10.1 Symbolic Mealy Machine

Definition A Mealy machine M is defined by a tuple (Q, go, X7, X, 0,) where @ is a nonempty
set of states, gy € () the initial state, ¥’ and X, respectively the input and output alphabets,
d: Q x X} — Q the transition function and X : Q x ¥ — X the output function. The transition
function defines the modification of the current state given an input symbol a € X’. The output
function models the transmission of an output symbol b € 3, given the current state and the input

message.

. b PR
We use the notation (q) L @/ , proposed by F. Aarts [2], to represent the transition in M from
state ¢ € Q to ¢’ € @ triggered by the reception of symbol a € X; and the transmission of symbol

b
b € Yo in response. Thus (Q) L (@' denotes 0(q,a) = ¢" and A\(g,a) = b. Figure[10.1|illustrates

a Mealy machine that models a simple communication protocol. This machine is composed of three
states, an initial state (0) and six transitions including transition (1) M Q.

For sake of readability, we do not explicit every transitions and propose instead a default
behavior for the unspecified ones. To formalize this, we introduce 0 : Q — £ (X)), a function
that returns the list of input symbols that trigger the execution of an explicitly defined transition in
a given state. For example, applied on the automaton described in figure[10.1] 6(0) = {Hello}
and 0(1) = {Whoami?,Exit,Pass}. If for a state ¢ € () and a given input symbol a € ¥/ a

transition is not explicitly defined, i.e. a ¢ 6(q), it implicitly means that a self loop transition exists

119

120 CHAPTER 10. OUR MODEL OF A PROTOCOL GRAMMAR

Exit / Bye Whoami? / Root

Hello / Welcome ’ Pass / Ack

Whoami? / Guest

Exit / Bye

Figure 10.1 — Example of a simple protocol modeled as a Mealy machine.

such that §(¢, a) = ¢. The execution of such loop triggers the emission of an empty output symbol
€ € X A(g, a) = e. This empty symbol represents the absence of symbol emission or reception

during a given period of time, w, which is a parameter of our model.

10.2 Reaction Time

As detailed in Section [1.3] one of the objectives of our model is to build a realistic traffic
generator that can be inferred out of unknown protocols. To achieve this, we also model the
reaction time. Indeed, this timing information increases the generated traffic realism by representing
the computation time required for an implementation to parse a message, execute the requested
operations and emit an answer. We therefore attach a reaction time to each transition of the grammar
of a protocol.

This reaction time may vary due to a lot of factors over which we have no control. Among
them, some properties of the environment such as the physical distance between actors of the com-
munication, the available bandwidth or the physical equipment used to support the communications.
Because of all these factors, we model the reaction time following a normal distribution assuming
we have no previous knowledge on its definition. Formally, the reaction time is modeled by function
Q:Q x X1 x3¥o — NxN that represents the mean and the standard deviation of the reaction time.

The transition notation is therefore extended to support it, thus (0) L (1), denotes a transition
Hb500

between states (0) and (1) triggered by the reception of input symbol a and the emission of output
symbol b after a reaction time modeled by N {1, 0 }. To be consistent with our definition of an
empty symbol, we define Vg € Q,Va € 0(q),Q(q,a,e) = N{w,0}.

PASS(v// vi=="goodPass’}) | M530(7)

>

n=500, 6=10 _/ n=500, 6=10

1=1500, 6=10 A\
) USER(7) / M331(%) o 1 PASS(v// vi="goodPass’}) | M230(v)‘@

Figure 10.2 — Model of the FTP authentication schema with time definition.

Applied to the FTP authentication example, we can specify that a failed login takes more time

10.3. DECOMPOSING THE PROTOCOL MODEL TO IMPROVE ITS INFERENCE 121

to compute than a successful authentication as illustrated on figure

10.3 Decomposing the Protocol Model to Improve its Inference

The L* algorithm can be used to infer a complete and concise out of a targeted protocol.
However, as explained in section [3.2.2] the required number of queries, the inference time and the
non-stealthiness of this approach can prevent its usage on protocols modeled by state machine that
have numerous states. To address these issues, we propose to independently infer sub-parts of the
protocol grammar before merging them to obtain the whole grammar of the protocol.

Our approach relies on the assumption that the grammar of a protocol can be decomposed
into several simpler components, we call sub-grammars. As noted by H. Zafar [61], decomposing
complex automata into simpler components has been the subject of numerous works [11},145] 160, [10]].
Indeed, these methods are of particular interest to optimize the synthesis of used in Field
[Programmable Gate Arrays| (FPGAJ) and [Programmable Logic Devices| (PLD)). In our work, we seek

to leverage this concept of decomposition to optimize the reverse engineering of the grammar

of a communication protocol. Applied to our field of interest, inferring parts of the grammar before
merging them has multiple advantages. We detail them in the following.

If sub-grammars have fewer states and smaller alphabets than the whole protocol grammar, their
inference require less queries. Indeed, we stated in Section [3.2.2]that the theoretical upper bound
of the number of queries in L* is: O(|X|mn?) where |%| is the size of the input alphabet, m the
maximum length of the counter-example and n the number of states of the inferred state machine.
In our case, we execute multiple instances of L* each inferring a small part of the grammar. Our
approach has an upper bound complexity of O(pmmaﬁg) with p the number of sub-grammars,
3, the average number of symbols per sub-grammar, 777, the average longest counter-example per
sub-grammar and 7, the average number of states per sub-grammar. Thus, by reducing the number
of states over which the algorithm applies, i.e. 7, < n, we significantly reduce the value of the
preponderant variable in the overall complexity.

In addition, by breaking the protocol grammar in sub-grammars, we can parallelize the execution
of our algorithm. In this case, the total inference time to infer the grammar is similar to the inference
time of the largest sub-grammar. If we can decompose the grammar in small sub-grammars, it
highly reduces the inference time.

Another advantage is that our approach is more stealthy. Indeed, we can observe that the
different symbols often satisfy the principle of locality. This means that a given symbol is often
used only in a subpart of the protocol, i.e. of the automata. For example, in the protocol,
symbols LOGIN and PASS only participate in the authentication phase. Using such symbol during
any other phase will result in invalid sequences. By default, the L* algorithm does not take this
principle of locality into account. Indeed, the use of L* may generate thousands of protocol errors
increasing the risk of being detected during the inference process. With our approach, we only use a
subpart of the vocabulary to infer each sub-grammar. We therefore leverage the principle of locality
thus reducing the probability of emitting a message not related to the current phase.

Finally, two more advantages arise with our approach: 1) it supports the exclusion of a portion

122 CHAPTER 10. OUR MODEL OF A PROTOCOL GRAMMAR

of the protocol grammar from the inference process and 2) enables an incremental inference process.
The benefits of the first advantage especially appears when a part of the protocol is protected by a
security mechanism, for example when the user is automatically banned when he makes a mistake
during its authentication. Our solution can therefore be useful to overcome such issue by excluding
the protected part from the inference while still learning the other parts. Besides, our solution also
supports the incremental inference of the protocol grammar. Indeed, our approach supports the
extension of an inferred protocol grammar with an additional sub-part of it, we did not inferred

previously. Our approach allows this without re-executing the entire inference process.

Chapter 11

Learning the Grammar Using an FSM
Decomposition

Learning the grammar of a communication protocol consists in inferring the rules that define the
valid sequences of sent and received symbols. As detailed in section [3.2] previous work addressing
this issue can be divided in two families: passive and active approaches. Passive algorithms are
faster and much more simple to implement but resulting automata often lack in completeness and
can be erroneous. Active inference algorithms compute more complete and concise results but are
notably slower. We propose an hybrid approach that combines a passive and an active approach.
Our objective is to reduce the inference time of active approaches by taking as input, results from
a passive inference. We also improve the stealthiness of the inference by reducing the number of
invalid queries sent to the targeted implementation by means of a divide-and-conquer solution.

This Chapter is organized as follows: we first give some insights on our approach in Section|11.1
and describe in Section [T1.2]the created state machine we use to illustrate the different steps of our
approach. We then explain in Section[T1.3Jhow we rely on our vocabulary inference work to obtain

the vocabulary of each sub-parts of the protocol. Section [IT.4]describes our solution to execute in

parallel our inference process by means of [Representatives Sequence of Symbols| (RSS)). Finally,

Sections[IT.5]and [IT.6]successively details the inference of each protocol sub-part and our merging

algorithm.

11.1 Big Picture

Our solution relies on the observation that a protocol exposes various protocol actions to its
user. All these protocol actions participate to the general purpose of the protocol such as the
authentication of the client or the creation of a directory in the protocol. An action can be
seen as a functional component of the protocol and denotes a subset of the protocol vocabulary
and grammar. Indeed, our notion of action frames we relied on to infer the protocol vocabulary
in Section [6.3.1| represents a valid path in the grammar of an action. We exploit this functional
composition of protocols to divide the inference process in small blocks, each inferring the state

machine of a protocol action. Obviously, our approach assumes that the targeted protocol grammar

123

124 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

is the result of such composition.

More formally, the action .A* represented by its state machine M’ = (E/H, E/Oi, Qi, \i, 0;) i
an action of the protocol modeled by M = <EII, E/O, @, A, 9) if and only if, its input and output
alphabets are subset of the protocol alphabets (E/IZ- - E’I, E/Oi C E'O), its states also participate in
M (Q2 C Q) and all its transitions exist in M:

/ Xi(Gi, 5i) = N(qi, s
Vs € XV € Qg 4 (i 51) = Al 51 (11.1)

0i(qi, si) = 0(q, si)

Intuitively, if M’ is a subset of M, its language denoted £,;i = {w € {X};, x ¥, }*} isa
subset of the language £ and is called a sub-language. By inferring the action sub-grammar
we therefore infer a portion of the entire protocol grammar. By repeating this operation on all the
protocol actions, we propose to combine them to obtain the protocol grammar.

To infer the grammar of each action, we first rely on our work described in Part [I| to infer
its symbolic vocabulary. As a remainder, our vocabulary inference solution leverages semantic
information to identify action frames. We rely on these action frames to identify input and output
symbols that are related to the targeted protocol action. These symbols become the vocabulary
of the action. Once we have the vocabulary of each action, we infer in parallel the state machine
of each action using an active grammatical inference algorithm. Finally, we merge the inferred
grammars to retrieve the state machine of the entire protocol.

Among required input, the user must provide a resetable implementation of the protocol and
the value of few model parameters such as the w parameter described in section[T0.2] In addition to
these common requirements, our vocabulary inference step also need samples of communication
traces annotated with the performed actions on the implementation that triggered their exchanges.
We use these annotations to identify symbols that are related to the same action. As detailed in
Section [6.2] these annotations can either be manually retrieved by the expert during the capture
process or automatically through the instrumentation of the graphical interfaces or the OS, i.e.
mouse, keyboard, button clicks, efc. For example, we successfully used the android-hooker [26]
tool to automatically stimulate an android application and record all the graphical actions performed

on its interface while we collected some network traces of its protocols.

11.2 Example Protocol to Illustrate our Approach

For sake of comprehension, we illustrate the application of our approach to infer the grammar of
an example protocol given a set of traces that are supposed to be previously captured. We designed
the state machine of this protocol (Figure with four different actions, each illustrating a
different aspect of our inference algorithm.

The first action of our protocol is the login action (A ™). This action, executed by the
user to authenticate, denotes a two step authentication schema, i.e. the user must provide a valid
password after a valid username. If the user fails to provide a valid password after three attempts,

its connection gets reseted to the initial state of the protocol. To illustrate how our solution can infer

11.2. EXAMPLE PROTOCOL TO ILLUSTRATE OUR APPROACH 125

.......................... LY : DOC
. BAD_PASS/ \ ACTION
BYE TOPIC_REQ/
TOPIC_ANS
LOGIN —» jSERIPWD?
ACTION BAD_PASS/ BAD_PASS/ :
. ° e ° = sz>

PASS/WELCOME

: EXIT/BYE N Loy ¥ oo, QUITIOR
3 - { s5): . TOPIC_REQ/
s>l TOPIC_ANS
LOGOUT F el R 3 HELPITOPIC?]
—\ 7, 00000000000 6 0 e .
ACTION ; Bre 17l o DONE/RESULT DOC
o : DATA/- ACTION

ENCRYPT —_— : a " ExTRYE
TON T e “— LOGOUT
""" ACTION

Figure 11.1 — State machine of the fake protocol we use to illustrate the steps of our inference
approach.

transitions that are not present in captured traces, we deliberately do not include examples of this
reset in the traces.

Our example protocol also offers a simple key based encryption action (AN*YPT) The user
can provide a key (k) and a string of its choice (clear) and is returned with k & clear. As illustrated
on figure[TT.1] this action is only available to authenticated users. We use this action to illustrate
how our solution behaves on actions that are only available after the execution of others.

In addition, this protocol includes a documentation action (AP°“) allowing the user to obtain
some help on the other actions of the protocol. This action can be assimilated to the “man page”
of the protocol and is available both to authenticated and unauthenticated users. However, the
traces we use in this example do not include any occurrence of the execution of this action by an
authenticated user. Thus, we illustrate how our solution can infer that an action can be available
from different states of a protocol even if the provided traces do not exhibit such behavior.

Finally, our example protocol includes another interesting feature: the authenticated user
can interrupt the execution of the encrypt action to execute the logout action (A“°“°UT), Such
interruption of an action by another one is complex to infer. It requires to consider that actions may
have multiple output states, i.e. a state that accepts a symbol of a different action. To infer these
output states, we include some parts of other action vocabularies in the inference process of each
action. We give a more precise description of these parts latter in Section[TT.4]

In the remainder of this section, we first detail how we retrieve the vocabulary of each action

and then describe the three main steps of our hybrid inference algorithm: 1) the computation of the

126 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

Representative Sequence of Symbols (RSS) of each action, 2) the inference of each action state

machine and 3) the merging algorithm we use to retrieve the final grammar.

11.3 Computing the Vocabulary of each Action

As explained previously, our approach leverages annotated symbolic traces to identify the
vocabulary of the different actions accepted by the protocol. By symbolic trace, we hereby refer to
a sequence of symbols denoting an observed protocol session. We follow our approach detailed in
Section [6.2]to obtain such symbolic trace. In order to associate each symbol to one or more actions,
the provided traces must be annotated. These annotations take the form of a set of chronological
labels made of an action name and a timestamp denoting when each action was executed. Based
on this timestamp, each label can be used to identify the first sent or received symbol after the
execution of the action. As detailed in this section, we use these labels to cluster symbols according
to their participation to one or more specific protocol action.

In our example, we use three different symbolic traces representing protocol exchanges gener-
ated by three different stimulation of the implementation. As illustrated by figure the first trace
denotes the sequential execution of the documentation action, the login action, the encrypt action
and the logout action. The second trace is shorter and represents a user executing the documentation
action and afterward failing to authenticate. Finally, the last trace denotes the execution of the login
action followed by the logout action. Each trace is labeled with action names indicating an action
starting points. For example, in the second trace illustrated in figure[TT.2] the first four exchanges
of input and output symbols were captured after the execution of the documentation action on the
implementation.

We use these traces to compute the input and output vocabulary of each action. To achieve this,
we analyze each annotated traces and consider that sent symbols (respectively received symbols)
between the starting point of action A* and the starting point of the next action A*** in the trace,
belong to the input (resp. output) vocabulary of action A*. It should be noted that a symbol can
belong to the vocabulary of different actions. We successively apply this method on all the traces to
retrieve the vocabulary of each action. For example, based on traces illustrated in figure we

compute the following input and output vocabularies of the documentation action (A°°°):
"boc = {HELP, TOPIC_REQ,QUIT}

Oooc = {TOPIC?, TOPIC_ANS,OK}

We leverage these action vocabularies in the inference process of the state machine of each
action. Specifically, we run multiple instances in parallel of an active inference algorithm (or
sequentially if a single non-threadable implementation is available), each instance being configured
with the vocabulary of a given action. This way, each instance infers a portion of the protocol
grammar. However, in some protocols, the execution of an action may require the prior execution

of one or more other actions. Typically in our example protocol, the encryption action is only

11.4. INFERRING THE REPRESENTATIVES SEQUENCES OF SYMBOLS 127

START START
DOC ACTION LOGIN ACTION

QuIT/
OK

USER/

PASS/
- EXIT/ ENCRYPT/ WELCOME
{10) KEY?
\ -
: START START
: Trace 1 LOGOUT ACTION ENCRYPT ACTION
START START
DOC ACTION LOGIN ACTION

HELP/

_ - . BAD_PASS/
“Trace 2 | 6 'RROR

START START
LOGIN ACTION LOGOUT ACTION

~\ USER/
)\ _PwD?

PASS/
WELCOME

Figure 11.2 — The three annotated traces we use to infer the example protocol.

available if the client has previously executed a specific traversal path in the authentication action.
We therefore ensure that each instance of the algorithm can traverse the other actions while inferring
its action state machine. This way, besides the inference of its action state machine, each instance

also learns how its action is interconnected with the other actions. We detail in the following section

how we passively extract these traversal paths, we call [Representatives Sequence of Symbols| (RSS).

11.4 Inferring the Representatives Sequences of Symbols

The objective of this step is to infer the [Representatives Sequence of Symbols| (RSS) of each

action. The [RSS|of an action denotes the shortest most observed traversal path in the grammar
of the action. Such sequence starts with the first symbol participating in the action and ends with
the last symbol of the action before another action is executed. We denote A— (B2
a function computing the of an action. RSS; : A — X}" (respectively RSSp : A — I5,")
returns the sequence of inputs symbols (respectively output symbols) participating in the [RSS|of an

action.

An[RSS]denotes the execution of an action. Our merging algorithm uses such [RSSks to identify

128 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

equivalent states across different action state machines. If two states accept the same [RSSps, we
assume they are equivalent and merge them. To infer RSSks accepted by each state, we include
them in the vocabulary of each action.

To compute the of an action A* € A, denoted RSS(A*), we passively infer the extended
Prefix Tree Acceptor (ePTA) of each action. As defined by C. Higuera [63] a PTA is a tree-like
DFA that only accepts the strings in the provided traces and in which common prefixes are merged
together resulting in a tree-shaped automaton. To retrieve the most observed traversal path, we
extend this definition of a PTA to create an ePTA by introducing a local occurrence probability on
each transition. Thus, transitions are marked with p(¢/q), the probability the transition ¢ occurs
when current state is g. This probability occurrence is local which means Vg € @), the set of states
of the ePTA, > P(t/q) = 1 with ¢ : Q@ — T a function returning the available transitions
starting on a state.

To compute the ePTA of an action, we create an initial state and maintain a current state pointer
initialized on it. We then use every provided traces to update it. For each trace, we sequentially
play all its input and output symbols in the ePTA. If the current symbol belongs to the vocabulary
of the action, we create, if it does not exist, a transition starting on the current state pointer. This
transition is labeled with the current symbol and ends on a new state that becomes the new current
state pointer. If a transition labeled with the same symbol and starting on the current state pointer
already exists, we update the current state pointer on its ending state. In both case, we update
the probability occurrence of the transition. This operation is repeated while the current symbol
belongs to the vocabulary action. If not, the current state pointer is reseted to the initial state of the
ePTA and we continue our algorithm on remaining symbols. Listing[T1.T|denotes the algorithm we
use to build the ePTA of an action.

func buildEPTA (Trace|[] traces, Action a):
Node initialN = Node ()
foreach (Trace trace in traces):
Node currentN = initialN
foreach (Symbol symbol in trace.symbols):
if (symbol in a.vocabulary):
currentN = addSymbol (currentN, symbol)
else:
currentN = initialN
return initialN
func addSymbol (Node node, Symbol s):
foreach (Transition trans in node.transitions):
if (trans.symbol == s):
transition.occurrence += 1
return transition.nextNode
Node node = Node ()
Transition newTrans = Transition (node, s, node)

return node

Listing 11.1- Algorithm used to build the ePTA of an action.

11.5. INFERRING ACTION STATE MACHINES 129

For example, this algorithm computes the ePTA of the documentation action (AP°C) as il-
lustrated in figure [I1.3] The first trace is used to initiate the ePTA, only symbols related to the
documentation action are retained. We then update the ePTA by successively applying the second
and the last trace. The second trace starts with the same sequence of input and output symbols.
However, its fifth symbol is not the QUIT symbol as in the current ePTA but a TOPIC REQ
symbol. Thus, a new branch is created and added on the fifth state of the ePTA. The third trace does
not contain symbols related to the documentation action and thus its application does not update
the ePTA of the documentation action. Contrary to IO Automaton and especially our Symbolic
Mealy Machine, each transition of an ePTA denotes either an input or an output symbol. In the
figure, we make a distinction between input and output transitions using dashed and plain arrows.

We also annotate each transition with their occurrence frequency.

HELP TOPIC?, \TOPIC_REQ \TOPIC_ANS

(100%) (100%) (100%) (100%)
— Transition triggered by an Output Symbol
- = Transition triggered by an Input Symbol

OK . “ "
== A
(100%) \ _

OPIC_AN QuUIT OK »,’ RN
(100%) (100%) (100%) _,‘

Figure 11.3 — ePTA of the doc action (AP9C).

We then compute the RSS|of an action by identifying the shortest most frequent path in its
ePTA. To achieve this, we compute the frequency of each path and retain the most frequent. If
multiple paths have the same frequency, we keep the shortest one. This operation is repeated for
every actions of the protocol. For example, based on the computed ePTA of the documentation

action illustrated in Figure[TT.3] it is straightforward to compute:
RSS;(A"°°) = [HELP, TOPIC_REQ, QUIT]

RSS(AP°) = [TOPIC?, TOPIC_ANS, OK]

11.5 Inferring Action State Machines

The objective of this step is to infer the state machine of each action of the the protocol. To
achieve this, we execute a dedicated L* inference instance for each action. Thereby, each instance
objective is to infer a portion of the whole protocol state machine. To limit the inference scope to the
action state machine, each instance is configured with a specific input vocabulary mostly composed
of the action input vocabulary. For example, to infer the state machine of the documentation action,
we include the following symbols in the vocabulary of its L* instance: HELP, TOPIC REQ and
QUIT.

In addition to these symbols, we also add the RSS; symbols of each other action. This way,
the inferred action state machine denotes how it is interconnected with other action state machines.

It also permits to infer the interruption of the inferred action state machine by other actions. We

130 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

MDOC MLOGIN

TOPIC_REQ/

| RSSI(ﬂLOGIN)/ RSSI(ﬂLOGOUT)/
TOPIC_ANS

RSSOMLOGIN RSSO(ﬂLOGOUT)

RSS‘(ﬂENCRVPT)/
RSSO(},ENCRVPT)

WELCOME
QUIT/OK HELP/TOPIC? RSS|(ﬂm;::r)
RSS,(,1-060UT)
© RSS,(AP°Cy/

sy o %)
RSS
TOPIC_REQ/ ot)
TOPIC_AN
RSSI(/',LOGOUT)/ Ol C— S OGOUT
RSS ALOGOUT
of) MENCRYPT ML
RSS,(4-0C0UT)T poc
! LOGOUT: RSSIM)/
RSS (4) DOC DoC
o RSS (12 RSS,(1°°%)
RSSO(/IDOC)
EXIT/ RSS,(1-0%Ny
RSSI(ﬂLOGOUT)/ RSSI(ﬂLOG'N)/ BYE RSSO(ﬂLOGIN)
RSSOMLOGOUT) RSSO(_/"ILOGIN)
ENCRYPT RSS ()
RSS (429C)/ RSS (A / RSS(1°°¢
ENCRYPT/ S RSS‘(ﬂsucnvpr) o)
KEY? RSS,(1°°%) ol)

DONE/
RESULT

KEY/DATA?

Figure 11.4 — Inferred action state machines of the documentation action (M%¢), the login action
(Mg the encrypt action (ME™¥Pt) and the logout action (M!090ut),

therefore use the following input vocabulary to infer the state machine of the documentation action:

¥ - X7 = {HELP, TOPIC_REQ,QUIT,RSS;(A°9"),
RSS[(AENCRYPT),RSSI(ALOGOUT}

Applied to our example, the inference of the documentation state machine produces MP°¢
illustrated in Figure[TT.4] The inferred state machine is made of four states, labeled g0, ¢!, g2 and
g3. The first two denotes the execution of the documentation action by an unauthenticated user while
the others, its execution by the authenticated user. The two possible executions of the documentation
action are similar, i.e. the user sends the HELP symbol and then requests for a specific help subject
by emitting TOPIC REQ symbols. Finally, the user can stops the documentation action by emitting
the QUIT symbol. The inference process identified the possibility for an authenticated user to
execute the documentation action, even if the provided traces did not mention it. The inferred state

machine also shows that the documentation action denotes a single output state.

Besides the complete inference of the transitions participating in the encrypt action, also
illustrated in Figure [IT.4] our approach has successfully inferred a transition on state ()2 that
is triggered by the symbol RSS;(A™°UT) and that produces the symbol RSSo (A°%°UT). Our

merging algorithm relies on such transition to merge action state machines. Finally, the inferred

11.6. MERGING SUB-GRAMMARS 131

state machine of the login action (M°IN) successfully denotes the two steps authentication
including the limitation over the number of successive BAD_PASS symbols that can be emitted.

The inference of an action state machine requires no information from any of the other inference
instances. Thus, every L* instances can be executed in parallel to reduce the total computation time.
To do so, the user must either have access to multiple implementations of the protocol or to a single
one that can handle, independently, multiple client connections. Each instance of the L* algorithm
has access to a common query cache. Before the execution of the first instance of L* , this cache
is pre-filled using traces which were previously captured and used during the passive vocabulary
inference step. This cache is then updated by each instance during the active inference phase.

In addition to its primary usage, we also use the cache to compute the reaction time of each
transition. The way L* works ensures that every transitions of the inferred state machine is the
result of at least one query stored in the cache. When the inference of a state machine is completed,
we compute the reaction time of its transitions by analyzing the cache. This cache stores all the
observed times between the emission and the reception of a symbol corresponding to each inferred
transition. Thus, we use it to compute the mean and the standard deviation of the reaction time
attached to each transition.

Inferred action state machines describe the complete internal structure of their actions but also
denote their interconnections with the state machines of other actions. The merging step leverages

these interconnections to identify and merge equivalent states across different action state machines.

11.6 Merging Sub-Grammars

Finally, we obtain the grammar of the protocol by merging the action state machines inferred in
the previous step. To achieve this, we randomly select one of the action state machine, we call the
target state machine and recursively merge it with others action state machines. By merging, we
refer to the creation of new states and transitions so that the resulting automaton accepts all valid
message sequences of the protocol. This operation relies on the identification or the creation of an
equivalent transition in the target state machine for each transition of the action state machine that is
being merged. Section[T1.6.1|details our solution to identify equivalent transitions and states across
two state machines. Section[I1.6.2]describes our algorithm that leverage our definition of transition

equivalency to recursively extend the target state machine with the different action state machines.

11.6.1 Transition and State Equivalencies

A transition in the action state machine and a transition in the target state machine are equivalent
if their starting and ending states are equivalent and if both their input and output symbols are
the same. By definition, two states are equivalent if they produce the same output strings for any
input strings. Another definition of state equivalency comes from the deﬁnition of [DFA] m it states
that given two input symbols a € ¥'r, a’ € X} and two transitions (q0) . . LN
(a = d,q0 = q0') = g1 = q1’. Our merging algorithm relies on this definition to 1dent1fy
most equivalent states in its merging process. However, this definition cannot be use to identify

132 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

a state equivalency between two states g1 and ¢1’ of different state machines if the transition
14 b! . .

L doesn’t exist yet and needs to be created. To address this case, we propose a

heuristic that leverages the semantic definition of each action state machine to identify that two

states are equivalent.

In our additional state equivalency definition, we refer to as a state equivalency by context, we
assume that two states are equivalent if they accept the same sequences of RSSes. In our model, the
transitions triggered by an RSS; denotes the execution of an action. Furthermore, if this transition
generates the associated RSSp, it represents the valid execution of the action. Thus, the context
of a state is the set of valid [RSS|exchanges it accepts. We model the context of a state with an
equivalent regular expression. For example, the state g0 of the documentation action (AP°¢) and the
state ¢0 of the login action (A=°%*Y) illustrated in Figure have the same context. This context
represents the sequences of actions that an unauthenticated user can trigger. Thus, we model it by
means of a regular expression denoting that an unauthenticated user can execute the documentation
action and the login action which gives access to the encrypt action, the documentation action and

the logout action:
((ADOC)*(ALOGIN)((ADOC){,l}(AENCRYPT){,l})*(ALOGOUT))*

On the other hand, these states have a different context than the context of state g/ of the logout

action (A“°¢°UT) which can be modeled with the following regular expression:
(((ADOC){,I}(AENCRYPT){,l})*(ALOGOUT)(ADOC)*(ALOGIN){,l})*

In practical, to check if two states are equivalent by context, we therefore compare the sequences
of symbols they accept under a predefined horizon. The horizon of a context denotes the
maximum length of each sequence of [RSS| symbols included in the context. For example in
Figure the context of state g0 in the documentation state machine accepts five different

sequences of RSS|symbols under an horizon of two:

{
[RSS(AP°C), RSS(A"%)]; [RSS(APC), RSS(A™CM)];

[RSS(ALOGIN),RSS(ADOC)]; [RSS(.ALOGIN),RSS(AENCRYPT>];
[RSS(ALOGIN),RSS(ALOGOUT)]

}

In our experiments presented in Chapter [I2] we use an horizon of five which is enough to compute
detailed enough contexts. However, we detail in the following that this value must be increased if

inconsistent equivalencies are found while merging action state machines.

11.6. MERGING SUB-GRAMMARS 133

11.6.2 Merging the Target State Machine with an Action State Machine

As explained previously, our goal is to extend the target state machine in a way that it accepts all
the sequences of symbols accepted by action state machines. To achieve this, we successively pick
and merge each action state machine with the target state machine.

Figure gives an example of two state machines we want to merge. It shows MTARGET

JMACTION MTARGET ontains two transitions

a target state machine and an action state machine.
triggered by input symbols A and B. These transitions generate two different output symbols named
1 and 2. MACTION contains three transitions triggered by input symbols B, C and D and generates
three different output symbols named 2, 3 and 4. Both state machines denotes an equivalent context
named C/ on states g2’ and g2. In the following, we illustrate our merging algorithm with this

example.

MTARGET MACTION

)

V
C1

B/2

A/1
Figure 11.5 — Simple example that illustrates how we merge an action state machine with a target
state machine.

Our merging algorithm relies on a depth-first search algorithm to traverse all the transitions
of the action state machine that is to be merged. For each transition we traverse, we create an
equivalent one in the target state machine if it does not exist.

By construction, initial states of every action state machines are equivalent. It comes from the
fact that a[DFA|possesses a single initial state and that we used the same reset operation when we
inferred each action state machine. Coupled with the use of a depth-first search, it ensures that
we already identified an equivalent starting state in the target state machine for every transition
we traverse. Thus, we compare all the transitions accepted by the equivalent starting state in the

. : . . . b
target state machine with the transition we are traversing. If we traverse the transition L

in the action state machine that we merge and if it exists a transition ﬂ in the target
state machine with ¢i = ¢i’, we memorize that qj = ¢j’ in regards to the first definition of state
equivalency we detailed in Section[T1.6.1] If no such transition can be found in the target state
machine, we apply our state equivalency by context to identify an equivalent state. Finally, if no

equivalent state can be found in the target state machine, we create it.

134 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

The first case is illustrated in our example when we traverse % and check for an
equivalent transition in the target state machine. To achieve this, we first identify an equivalent state
for g0. By definition, initial states are equivalent so we can easily spot that states g0’ = g0. We
then search for a transition accepted by g0’ that has the same symbols, i.e. B. In our example, such
transition exists: % . We therefore memorize that g1’ = g1 and continue our depth-first

search algorithm.

If no equivalent transition is found, we create it. To prevent from duplicating states, we first
search for an equivalent ending state in the target state machine. We use our definition of state
equivalency by context stated in to identify it. To be equivalent, a state of the target state
machine and the ending state of the transition must share the same non-empty context. We also
check that the target state has not been previously memorized as being equivalent to another state in
the action state machine. If both conditions are fulfilled, the target state becomes the ending state of

a new transition.

This situation is illustrated in our example when we traverse Eﬁ3—> . No equivalent
transition can be found in the target state machine, i.e. no transition triggered by symbol C is
accepted by g0’. We therefore try to apply our definition of state equivalency by context to identify
an equivalent state to ¢2 in the target state machine. Since g2 denotes a non-empty context (C1),
we search for a state that shares the same context in the target state machine. This search returns

. c/3 . .
q2’. We conclude that g2 = g2’ and create the transition L> in the target state machine.

Following our definition of state equivalency by context, multiple states in the target state
machine can be identified as equivalent to a single state in the action state machine. It happens
when multiple states of the target state machine that we did not yet traversed share the same context.
When this case is encountered, we first recompute the context of these states with an extended
horizon. If despite such effort, states are still equivalent we rely on another solution: we do not
create the transition now and continue the merging process. When all the remaining and accessible
transitions of the state machine are traversed, we merge a second time the action state machine.
However this time, we rely on state equivalencies memorized during the first attempt. This way,
when we try to recreate the transition, we can filter out states that we identified as equivalent to
other states in the action state machine. If in the worst case scenario, our solution does not resolve
the issue, we create a new state in the target state machine. This way, we ensure the correctness of

the inferred state machine in the expense of its completeness.

Finally, if our two definition of state equivalency returned no equivalent state, we create a new
state in the target state machine a,d memorize it as equivalent to the transition ending state. We then
create a transition between the equivalent initial state and this newly created state. This transition is

labeled with the same symbols than the transition we are traversing.

This situation is illustrated in our example when we traverse %) . No equivalent
transition can be found in the target state machine and ¢3 has no context which prevent the
identification of an equivalent ending state in the target state machine. We therefore create a new
state (¢3’) and an equivalent transition in the target state machine, Eﬁg . Finally, the result

of the merging process of MTARGET and MACTION jg jllustrated on Figure

11.6. MERGING SUB-GRAMMARS 135

MTARGET

Figure 11.6 — Target state machine obtained after merging the two state machines illustrated on

Figure[T1.5]

We explained in this Chapter the solution we propose to learn the grammar of a protocol
by means of an decomposition. As described, our approach relies on our assumption that
protocols state machines can be described under a compositional structure of smaller sub-grammars,
one for each action of the protocol. This decomposition allows us to execute in parallel the inference
process while combining an active and a passive approach to limit the computation time and to

increase the inference stealthiness. In the following, we describe our evaluation of our solution.

136 CHAPTER 11. LEARNING THE GRAMMAR USING AN FSM DECOMPOSITION

Chapter 12

Evaluation

To conduct this evaluation, we compared our results against those computed by the traditional
version of L* exposed by the LearnLib [[130] framework. We performed three different experiments,
each applied on a different protocol: SAMBA and the C&C protocol of a botnet. Among the
retained protocols, two are famous known protocols while the last one is an undocumented protocol
used by a recent version of the pbot botnet. This comparison shows that our approach is effective to
compute a good approximation of the targeted protocol grammar while being faster and stealthier
than previous work.

In the remainder, Section [I2.1] gives some insights over the selected protocols and the datasets
we used. We then detail in Section[I2.2]the metrics we used and in Section[I2.3]the implementations
we developed to perform the evaluation. We conclude in Section[T2.4] with a discussion on obtained

results.

12.1 Datasets

Our comparative study relies on three protocols. We selected these protocols to evaluate our
approach on protocols of various sizes in terms of symbols and states. The characteristics of
these protocols are provided in Table This table shows the number of states in each protocol
identified by the L* algorithm. Another characteristic is the number of symbols declared in the
specification of each reversed protocol vocabulary. Finally, it also shows the number of actions
we considered when reversing them. We provide more information on these actions latter in this
Section.

The first protocol is the[[RC|protocol which vocabulary is made of almost a hundred of symbols.
The second protocol we used in our comparative study is the SAMBA v2 protocol. This protocols
is used by different work to evaluate the quality of their algorithms [43] 41, [142]]. Indeed, its
complexity makes of it a good candidate to evaluate the efficiency of grammatical inference
algorithms. We also evaluated our approach by reversing the protocol of a famous botnet used in a
recent version of the PBot malware [[137]].

As explained in Section|[11.1} our approach requires various inputs: an implementation of the

protocol, its vocabulary and some annotated traces. To infer the [RC| protocol, we installed and

137

138 CHAPTER 12. EVALUATION

IRC 8 97 4 Miniircd 0.4
Sambav2 | 17 36 3 Linux Samba 4.0
Pbot 8 32 3 Malware found in the wild

Table 12.1 — Details on inferred protocols.

configured the latest version of the Miniircd serverll_-l We used the official Linux implementation
of the SAMBA v2 server to infer its protocol. Finally, we searched for infected web servers on
the Internet and downloaded from one of them, a version of the PBot malware. We performed a
security audit of its code to identify and neutralize potential dangerous features and deployed the
malware in a specifically confined environment.

We also explained in Section[IT.1]the necessity to have access to the protocol vocabulary to infer
its grammar. To reduce the impact of vocabulary errors in our evaluation, we performed a manual
extraction of the IRC|and SAMBA vocabularies out of their client implementations. We relied on
the Java “IRC Martyr”El client library for the protocol and used the PySMBEl client for the
SAMBA protocol. This way, we ensure the quality of the vocabulary which ease the interpretation
of the results returned by our evaluation of our grammatical inference solution. However, we had
no access to a client implementation to obtain the vocabulary of the botnet protocol. We therefore
applied the solution we proposed in Part[[|to reverse its vocabulary. To ensure its correctness, we
verified our results by means of a source code analysis of the malware.

Lastly we need sample annotated traces denoting common usages of these protocols. To retrieve
them, we first identify the different actions of each protocol. We rely on their implementations
to identify them, a technique used in [24]]. We then follow the approach detailed in Section T3]
and manually stimulate the client implementation of each targeted protocol while capturing the
generated network exchanges.

For the [IRC]| protocol, we identified four different kind of actions accepted by the client
implementation: connecting to a server, editing user information, joining an [[RC| channel and
disconnecting from a server. We therefore captured the traffic while executing these actions in
different ways which brought us three traces. The first trace is the result of a bad authentication
process on the server, i.e. we voluntary gave a bad server password. The second trace contains the
symbols exchanged while connecting to the [RC|server, sending a message to a channel and then
exiting the server. The last[IRC]trace we used contains the symbol exchanged while connecting to
the IRC] server, executing various user configuration commands such as changing our user status
and then joining a channel. On this channel, we modified the channel topic and sent some channel
messages. We then exited the channel and the server.

For the SAMBAV?2 protocol, we identified three different kind of actions. The first concerns

the connection to the SAMBA server, the second covers file accesses while the third concerns

1. Miniircd is available at https://github.com/jrosdahl/miniircd
2. IRC Martyr is available at http: //martyr.sourceforge.net/
3. PySMB is available at https://miketeo.net/wp/index.php/projects/pysmb

https://github.com/jrosdahl/miniircd
http://martyr.sourceforge.net/
https://miketeo.net/wp/index.php/projects/pysmb

12.2. METRICS 139

connection management. We used the same approach we followed for the protocol and
succesively executed these actions such as connecting to the SAMBA server, navigating in a
directory, listing its content and querying some file details to obtain the trace.

Regarding the botnet protocol, we first identified the various features offered by the botnet
such as the execution of system commands on an infected host or making it execute an UDP flood.
We based our inference on three actions. The first action denotes all the symbols related to the
connection to a botnet host. The second action, all the symbols related to the disconnection from
the infected host while the third action regroups all the symbols related to the botnet commands. To
obtain the annotated traces, we infected one of our host with this botnet and simulated the botnet
master to send various orders to the infected host. The captured trace shows a connection to the

infected host and the successive emission of all the botnet orders we identified before we logout.

12.2 Metrics

To measure and compare the effectiveness of our inference algorithm against state-of-the-art L*
algorithm, we need to define metrics. Specifically, we want to demonstrate that our approach can
infer a good approximation of the final grammar of the protocol while being stealthier and faster
than state of the art. Thus, we first evaluate the quality of our inferred state machine by means of
two different methods: we check the correcteness of the inferred state machine and measure its
completness. We then propose various metrics covering the inference time, the number of sent
symbols and the number of erroneous queries required to infer a protocol.

We expect our inferred grammar to be correct while having a high completeness in comparison
to the grammar inferred by the traditional L* algorithm. We say our model is correct if its state
machine only produces valid sequences of symbols. On the other hand, our inferred grammar is
said complete if all the sequences of symbols accepted by the protocol grammar are also accepted
by our grammar.

To check if the inferred grammar is correct, we use a random walk algorithm to produce a
thousand of random paths that are accepted by the inferred grammar. We then compare the result
of their submissions to an implementation of the protocol. Our inferred grammar is said correct if
all the generated paths are also accepted by the protocol implementation. Each path is made of at
most 50 input symbols obtained after randomly traversing the inferred state machine with a reset
probability of 1%. This configuration ensures a high coverage of the protocols state machine.

To evaluate the completeness of our grammar, we compare all the transitions inferred by the
traditional L* algorithm against the transitions inferred using our approach. Our objective is to
identify the transitions we missed and discuss the reasons for it. In particular, we determine the
importance of each transition we missed. Indeed, we consider that the transitions that lead to
different states in the protocol are the most important because they give access to a new context
in the protocol. Conversely, self-loop transitions that are caused by invalid sequences of symbols
appear to us as less important. Indeed, the implementation of a default policy for invalid sequence

of symbols can represent them. For example, a default policy can specify that for each a € X/ and

140 CHAPTER 12. EVALUATION

for each ¢ € Q where 6(q, a) = (), we create a self-loop transition (q) a—/€> @-

As described in Section[I.2.2] one of the key aspect in defensive security is fast response time to
new threats. However, our evaluation has revealed that current work relying on L* can take hours to
infer complex protocols such as SAMBA v2 protocol which required ten hours of active stimulation
of its implementation. Therefore, we believe that reducing the grammatical inference time is an
important goal. Since our approach participates in this objective, we compare the inference time
required by the different approaches.

In addition to the inference time, we also want to measure the stealthiness of the compared
approaches. To achieve this, we propose five metrics we detail in the following.

The first metric focuses on the number of symbols sent to the implementation. We believe the
more symbol is sent by an inference algorithm the less stealthy it is. Thus, we measure the number
of symbols received by an implementation 7 (N g). Besides, the number of sent symbols per seconds
is also a factor that is often considered in protocol protections such as anti-flooding. To cover this
aspect, we measure the average density of symbols sent to an implementation i per second (D%).

Another common detection technique used in anti-inference protections relies on the number
of protocol errors made by a client of a protocol implementation. If this number reaches a given
threshold, the implementation can trigger anti-inference techniques. For instance, we observed
such protection in the implementation of the Ventrilo protocol [24] which bans users when they
do too many protocol errors. To measure this, we first identify in each protocol the symbols that
are sent by the implementation when it receives an invalid sequence of symbols. For the and
the SAMBAV2 protocol, we used their specifications to identify them. For the botnet protocol, we
observed that when an infected host receives an invalid sequence of symbols it does no answer
while he always does when the sequence is valid. Thus, if no answer follows the emission of a
symbol, we assume that the symbol was erroneous. Based on this, we measure the number of
erroneous symbol received (N?,) and compute the average density of erroneous symbol per second
sent by the implementation (DZ,).

Some protocol implementations also monitor the number of connections made by a client to its
implementation. If too many connections are opened, the implementation detects its inference and
can trigger protection techniques. For example, servers such as UnrealIRCdE] implements a
“throttling” protection method that limits how fast a user can disconnect and then reconnect to it. In
the case of active grammatical inference, a new connection is opened with the target implementation
for each query. We therefore count the number of queries sent to each implementation (N, 3) to
measure the number of connections. The fewer queries we observe, the stealthier the approach is.

Thus, the metrics we propose cover both the quality of the inferred state machine and the
impact of its inference on the protocol implementation. The quality of the inferred state machine is
evaluated by means of our correctness and completeness measures. To evaluate the impact of the
inference process over the protocol implementation, we measure the number of queries, the number
of symbols and the number of erroneous symbols that are triggered by each inference algorithm.

We also measure the computation time of the different approaches and the density of symbols and

4. UnreallRCd’s homepage: http://www.unrealircd.com

http://www.unrealircd.com

12.3. IMPLEMENTATIONS 141

erroneous symbols per second to estimate the inference stealthiness.

12.3 Implementations

In this Section, we present the two implementations we developed for the experimental phase.

To ensure a fair comparison between our approach and the traditional L* algorithm, we
implemented our Action-Based inference algorithm by extending the LearnLib framework [[130].
LearnLib is an open-source library in Java that implements the L* algorithm. This way, our
approach relies on the same version of the L* algorithm than the one we compared to. Besides, we
executed all the experimentation on the same computer.

To identify the best parameters to configure the traditional L* algorithm and our approach,
we executed a set of inference process on the [[RC| protocol with different parameter values. We
selected the protocol because the inference of the other protocols with different parameters
would have required many days of computations to complete. The objective of the first calibration
step to experimentally identify the parameter values that returns the best results given our metrics.
We considered the algorithm to find counter-examples and its parameters along with the algorithm
used to handle the observation table. We tested all the different algorithms provided by the LearnLib
implementation. We retained the Classic L* implementation to handle the observation table
conjointly with the RandomWalk Equivalence Algorithm. This last algorithm takes two different
values in parameters, a restart probability and the maximum length of a walk in the hypothesis state
machine. We experimentally identified that best results were obtained with a restart probability of
5% and a maximum length walk L = |H,||X}| * 100 with | H| denoting the number of states in
the current hypothesis state machine and \Z/I| the number of symbols in the input vocabulary.

Another important factor in such experimentation is the System Under Learning (SUL) driver
that interconnects the inference algorithm with the targeted implementation. As described in
Section[5.2] this code abstracts the received messages sent by the implementation into symbols that
can be handled by the inference algorithm. On the other way, it specializes the symbols sent by the
inference algorithm to the implementation into valid messages. The SUL driver is also in charge
of opening the communication channel with the implementation, closing it after the execution of
a query and resetting the implementation to its initial state. We expect that a message may be
sent in portions. We therefore implemented a timeout mechanism in the SUL driver to handle
fragmented messages. However, as explained in Section this mandatory timeout highly
impacts the inference computation time. To reduce this impact when the implementation answers
rapidly while not missing late answers, we used two different timeout values, a short timeout (ST)
and a long timeout (LT). Once the SUL driver has sent a message to the implementation, it waits
for fast answers during a short period of time represented by ST. If no messages were received after
ST, the SUL driver waits a longer period of time (LT) for late messages. Received messages are
then abstracted into their respective symbols using our knowledge over the protocol vocabulary. If
the received message cannot be abstracted, a specific UNKNOWN SYMBOL symbol is created. In
both cases, the symbol is returned to the inference algorithm. On the other hand, if no message

has been received, the SUL driver returns to the inference algorithm a specific symbol denoted

142 CHAPTER 12. EVALUATION

EMPTY_SYMBOL. The different timeout values we used in our experimentation are detailed in
table[I2.2] Timeouts for the Botnet protocol are longer as some of its commands imply the execution
of network requests that can take times to complete (i.e. sending emails, scanning a TCP port, efc.).
On the contrary, the SUL drivers for the SAMBAV2 and the protocol use shortest timeout
values since none of the identified actions required a long computation time (i.e. listing directory

contents, traversing folders, efc.).

Short timeout (ms) 100 50 500
Long timeout (ms) 200 100 | 1000

Table 12.2 — Timeout values used for each protocol.

12.4 Experimental Results

In this section, we present the conclusions of our experimental comparative study of our
approach against state-of-the-art inference algorithm. To achieve this, we rely on metrics we
detailed in Section [I2.2] First, we check the correctness and evaluate the completeness of our
inferred state machines. We then compare the inference times and the inference stealth of our

approach against traditional L* inference process.

12.4.1 State Machines Correctness and Completeness

We expect inferred state machines to be both correct and as complete as possible. This means
they accept no invalid transitions and reject a minimum of valid transitions. We designed our
inference algorithm with these objectives. In the following, we verify the correctness and measure
the completeness of inferred protocol grammars.

Applied to the [[RC|protocol, our inference algorithm produces the state machine illustrated on
Figure[T2.1] It contains eight states and accepts no invalid transitions, the inferred machine is correct
according to the algorithm detailed in Section Regarding its completeness, we executed a
manual comparison of its state machine against the one obtained by means of the L* algorithm. Our
state machine accepts all the transitions traversed by normal users, i.e. that generates no protocol
errors. However, some transitions inferred by L* algorithm are missing in our model. They denote
the error management process of the implementation. For example, our algorithm did not infer
the transition triggered by the JOIN symbol when the user is not yet authenticated. Indeed, the [RC|
protocol does not accept that a user joins a channel if he is not authenticated. This transition is a
self-loop transition that returns no symbol. Indeed, all the transitions we missed are transitions
triggered by sequence of symbols that are not accepted by the protocol implementation. All these
transitions act similarly as they are all self-loop transitions that generates no output symbol. Thus
by implementing a default strategy that does not answer when our state machine has no transition

given the current state and the received symbol, we can ensure the completeness of our model.

12.4. EXPERIMENTAL RESULTS 143

Regarding the SAMBAV?2 protocol, our approach inferred the state machine illustrated on
Figure[12.2] Our evaluation of its correctness reveals that the protocol implementation accepts all
the transitions accepted by the inferred state machine. For example, the produced state machine
correctly denotes the SAMBA authentication schema that relies on a succession of ComNegoti-
ateRequest and SessionSetupRequest symbols. It also inferred that initiating an NMBSessionRequest
is not mandatory for the authentication process. Besides, our approach has successfully discovered
that any manipulation of a file required a prior-emission of TreeConnectRequest symbol. However,
the inferred state machine is not complete. Similarly to the protocol, some transitions related
to the emission of invalid sequences of symbols are missing in our result. Implementing a default
strategy for these transitions is sufficient to address this issue. However, one additional transition is
missing in the state machine inferred by our approach. This transition is related to the heartbeat
mechanism proposed by the SAMBAv?2 protocol. It is represented by a self-loop transition triggered
by the EchoRequest symbol that answers with an EchoResponse symbol. This transition is accepted
by every states of the protocol grammar when the user is authenticated. Our approach successfully
inferred this transition except for one state. In this state, the inferred transition triggered by the
EchoRequest symbol is not a self-state transition. Our approach wrongly replaced this transition
with a transition that ends on a final state of the protocol, i.e. a state that accepts no other transition.
This incompleteness is due to the fact that our merging algorithm failed to infer an equivalent
ending state for this transition. Such case happens, when contextual information are not enough.
Thus our merging algorithm created a new state to host this transition instead of identifying that the
initial state was equivalent to the ending state. Despite this error, the inferred state machine infers
all the transitions a normal user (i.e. conversely to a fuzzer for instance) would follows.

Finally, our inference algorithm returned the state machine illustrated on Figure as the
grammar of the botnet protocol. Made of eight states, this state machine describes an authentication
path that goes from state 1 to state 2. Once authenticated, the bot master has access to various
commands such as TCPFlood or PScan. However, the PBot implementation accepts no successive
repetition of a command. This explains the complexity of its state machine and the lack of any
self-loop transition. In addition to these commands, the bot master can also logout from the
botnet by means of the Logout command. Our inference algorithm successfully inferred that this
command can be triggered on every states reachable by the authenticated user. The evaluation
of its correcteness shows that our algorithm inferred a correct state machine. Besides, the only
transitions we missed are related to the emission of invalid sequence of symbols. For instance, our
algorithm did not infer that no symbol was answered by the botnet when the authenticated user
tries to re-authenticate himself after sending an TCPFlood command. Indeed, the implementation
of a default strategy similarly to the one we proposed for the protocol is enough to obtain a
complete and correct state machine of the protocol grammar.

12.4.2 Comparing Inference Times

As described previously, our approach can be executed in parallel to reduce the inference time.

To do so, we create an inference thread for each protocol action we identified. In the following,

144 CHAPTER 12. EVALUATION

we compare the inference time required by our approach to obtain the state machine against the
inference time required by the traditional L* algorithm.

Table details the timing and stealthiness metrics we measures from the traditional L* and
action-based L* inference processes when applied on the [I[RC| protocol. It shows that the traditional
L* algorithm returned the grammar of the protocol after 2.31 hours (8 341 seconds) of computation.
In comparison, our approach only required 18 minutes (1 116 seconds) to complete if executed in
parallel. Besides, the sequential execution of our algorithm would also requires a slightly reduced
inference time than the traditional L* . We assume this improvements comes from our reduction of
the L* complexity we described in Section When executed in parallel, it represents a speedup
of 7.4. In details, our approach relied on four parallel threads, each being assigned to the inference
of an action of the [[RC| protocol. The first thread inferred the connection action state machine
after 1 115 seconds. The second thread returned the state machine of the user management action
after 932 seconds while the third thread took 801 seconds to infer the grammar of the channel
management action. The last thread inferred the state machine of the disconnection action in 185
seconds. Finally, our merging algorithm returned the protocol state machine in less than one second.
Combined to our analysis of the correctness and completeness of the obtained [[RC| grammar, these
results confirm that our approach can significantly reduce the total inference time required to obtain

a valid and almost complete protocol state machine when applied on the [IRC| protocol.

Algorithm Traditional L* Action-based L*

Thread ID 1 1 2 3 4
Duration (sec.) 8341 | 1115 932 801 | 185
Ns 23795 | 3276 | 2808 | 2369 | 851
Ds 2.85| 293 | 3.01| 295 4.59
Nes 1785 392 62 261 17
Des 0.21 0.2] 0.06| 032 0.07
Nq 4 650 700 539 450 | 213

Table 12.3 — Experimental results on the IRC protocol.

Regarding the SAMBAV2 protocol, our approach returned the grammar after 11 760 seconds
representing 3.26 hours of computation. It denotes a speedup of 3.17 in comparison to the traditional
L* inference that took more than 10 hours (37 381 seconds) to compute. These results are detailed
in Table[12.4] Similarly to the [RC|inference process, we also measured the inference time required
by each of our threads. Once more, its the action grammar having the largest number of states that
took the more time to infer.

Finally, the traditional L* algorithm inferred the Botnet protocol after 11 324 seconds of
computation which represents 3.14 hours. As detailed on Table[I2.5] our action-based algorithm
inferred its state machine after 8 466 seconds (2.35 hours). In this case, the speed up factor brought
by our algorithm is limited (1.34). This is due to the unbalanced distribution of states and symbols

between the actions, i.e. the state machine of the commands action has much more states and

12.4. EXPERIMENTAL RESULTS 145

Algorithm Traditional L* Action-based L*

Thread ID 1 1 2 3
Duration (sec.) 37381 | 11053 | 11759 | 3106
Ns 47723 | 16147 | 8613 | 1927
Ds 1.27 1.46 073 | 0.62
Nes 23544 | 6962 | 2922 572
Des 0.62 0.63 025 | 0.18
Nq 5166 | 1715 829 124

Table 12.4 — Experimental results on the SAMBAvV2 protocol.

symbols than the other actions. Indeed, the thread that inferred it took 8 466 seconds to complete
while inferring the login and logout actions respectively required 1 997 and 1 000 seconds to

complete.

Algorithm Traditional L* Action-based L*

Thread ID 1 1 2 3
Duration (sec.) 11324 | 1000 | 1997 | 8466
Ns 8360 | 756 | 1495 | 6258
Ds 073 | 0.75| 0.74 | 0.73
Nes 4628 | 433 838 | 3582
Des 0.06 | 0.05| 0.05| 0.06
Nq 913 56 122 | 653

Table 12.5 — Experimental results on the PBot protocol.

Table [12.6] highlights the relationship that exists between the distribution of states and symbols
across actions and the speed up factor offered by our approach. To measure the distribution of
states and symbols among the actions, we rely on their variances. A lower variance indicates a
better homogeneous distribution. Applied to our experiments, this measure shows that our approach
offers the best speed-up factor in comparison to the L* algorithm when the distribution of symbols
is homogeneous among the actions. Our evaluation on the [I[RC] protocol is an example of such
homogeneous distribution. Conversely, our experiments on the SAMBAv2 and PBot suffer from an

heterogeneous distribution of symbols among their actions.

12.4.3 Comparing Inference Stealth

In the following, we detail our results on the stealthiness comparison of our approach against
the L* algorithm. We rely on the metrics we proposed in Section [7.3]

For the protocol, the traditional L* algorithm triggered the emission of 4 650 queries
representing 23 795 symbols sent to the implementation (i.e. an average of 5.11 symbols per query).

146 CHAPTER 12. EVALUATION

Speed Up Factor 7.4 3.17 1.34
Number actions 4 3 3
Var(Number of Symbols per Action) | 0.25 4.22 4.66

Table 12.6 — Obtained Speed Up factors compared against the distribution of states and symbols
between actions.

Executed queries triggered the reception of 1 785 error symbols with an average density of 0.21
symbol sent per second. In comparison, our approach only required 1 902 queries to infer the
protocol state machine. It denotes a decrease by 59% of the total number of implementation resets.
This reduction also explains why our approach completed faster. Regarding the number of error
symbols, our inference algorithm also generated 59% less of them with a total of 732 erroneous
symbols, all threads combined. Despite the fact that 732 protocol mistakes can still be detected by
anti-inference techniques that monitors all our threads, it shows that our solution is far more stealthy
than the L* algorithm. Besides, if we attach each thread of our inference algorithm to a different
implementation of the protocol, we can consider that our algorithm only triggered a maximum of
392 protocol mistakes. In this situation, it denotes a decrease by 83% of the number of protocol
mistakes sent to each protocol implementation.

These numbers are even more interesting if we optimize the stealthiness of our approach. As
explained previously, our approach is faster than the traditional L* algorithm mostly because we
managed to execute our algorithm in parallel. Thus, we can voluntary reduce the inference speed
by introducing a small break before emitting each symbol to the implementation. This way, we
highly reduce the average density of sent symbols to each implementation. This solution allows our
inference algorithm to be used on protected protocols and to obtain their grammar in a reasonable

amount of time.

As described in Table our approach also requires fewer queries than the traditional L*
algorithm to infer the SAMBA grammar, i.e. 59% less queries. Besides, if we sum the number of
symbols sent by each of our threads, our inference algorithm sent 26 687 symbols to the protocol
implementation. It shows a decrease by 44% in comparison to the 47 723 symbols sent by the L*
algorithm. Indeed, our inference algorithm requires less stimulation of the protocol implementation
thus being stealthier. Similarly to the results obtained on the [IRC] protocol, our approach also
generates fewer protocol mistakes to complete, i.e. 55% less protocol mistakes than L* .

However, the results brought by our inference process when applied on the PBot protocol are
less effective (see Table[I2.3)). For example, our approach required only 9% less queries to infer the
state machine than the L* algorithm. Moreover, the total number of erroneous symbols submitted as
part of our algorithm is slightly higher than the number of erroneous symbols generated by the L*
algorithm. This increase is once more due to the heterogeneous distribution of symbols and states
among the retained actions to infer the protocol. However, it should be noted that we executed
our inference process in parallel on three different instances of PBot. Thus, we can compare the

number of queries, of symbols and of erroneous symbols sent to the implementation by the L*

12.4. EXPERIMENTAL RESULTS 147

algorithm against those generated by the worst thread of our inference. This comparison assumes
that no distributed anti-inference technique is implemented in the botnet. In this case, our approach
is stealthier than the L* inference process. Indeed, each PBot instance receives fewer symbols and

among them fewer erroneous symbols than the instance used with the L* algorithm.

CHAPTER 12. EVALUATION

148

NICK / EMPTY

[QUIT-REASON / EMPTY

NICK / TraceSymbol [001-UNKNOWN-UNKNOWN-UNKNOWN-251-422-] /USER / TraceSymbol [001-UNKNOWN-UNKNOWN-UNKNOWN-251-422-]

—— .
RECA0:RASSTAZIPASS [42DUSER / 42DPRIVMSG-CHAN / ATDPART / 442TOPIC / 442PING / UNKNOWNWHOIS / TraceSymbol [311-312-319-318=

QUIT-REASON / EMPTY

QUIT-REASON / EMPTY QUIT / EMPTY QUIT-REASON / EMPTY

QUIT-REASON / EMPTY

Figure 12.1 — Inferred state machine of the IRC protocol (self-state transitions triggering an empty symbol and reaction time labels are removed for sake of
clarity) .

149

12.4. EXPERIMENTAL RESULTS

* (Krepo Jo
IS J0J POAOUIAL ATk S[2qB[W} UoIoral pue [oquiks Ajdwe ue Jur33Ln suonIsuen AJels-}[os) [000301d equeS Y} JO QUIYOBW)B)S PALIJU] — 77 2In31

CHAPTER 12. EVALUATION

Logout / EMPTY

User_Bad / BadPassword

User_Good / Loggedin |Logout / EMPTY

Logout / EMPTY

Logout / EMPTY TCPFlood / FloodResult

UDPFlood / FloodResult

Logout / EMPTY

‘(/
sult

md / CmdResult

Cmd / CmdResult \ TCPFlood / FloodResult nfo / InfoResult

Info / InfoResult Cmd / CmdResult \ UDPFlood / FloodResult \TCPFlood / FloodResult

Info / InfoResult \ Cmd / CmdResult PScan / PscanResult /UDPFlood / FloodResult

PScan / PscanResult Info / InfoResult

Figure 12.3 — Inferred state machine of the Botnet protocol v1 (self-state transitions triggering an empty symbol and reaction time labels are removed for
sake of clarity) .

150

Chapter 13

Conclusion on Grammar Inference

In this Chapter, we proposed an automated approach to infer the grammar of a protocol. Our
approach combines a passive and an active approach to improve the stealthiness of the inference
process. It also propose a solution to execute in parallel the inference of a protocol. To achieve this,
we leverage semantic information to identify the different actions that are involved in the grammar
of a protocol. We implemented our approach in a publicly available framework, and demonstrated
its efficiency against three different protocols. Moreover, we compared our approach against the
traditional L* algorithm. The experimentation shows that it can infer a good approximation of the
grammar of a protocol using fewer queries and symbols than traditional L* . Our solution is also

effective to reduce the inference time of large grammars.

151

152 CHAPTER 13. CONCLUSION ON GRAMMAR INFERENCE

Chapter 14

Conclusion

This chapter concludes our thesis. At first, Section|14.1|recalls the objectives set out in Sec-

tion [I.3]and studies their achievements. We then propose improvements to our work in Section|[14.2]

14.1 Results

In this thesis, we proposed an approach for the reverse engineering of a communication protocol
with three main objectives: infer a precise, complete and correct model of an undocumented protocol
(objective 1) while reducing the computation time (objective 2) and improving the stealthiness
(objective 3) of the inference process in comparison to previous work.

To attain these objectives, our approach relies on original techniques that leverage semantic
information to enhance both the inference of the protocol vocabulary and of its grammar. We
implemented our approach in a publicly available framework, and demonstrated its efficiency
against standard and unknown protocols.

In the first part of this thesis, we proposed an approach to infer the vocabulary of a protocol
based on collected samples of communications. To achieve this, we conceived a fine-grained
vocabulary model and a methodology that infers it. Our contributions mostly relies on our intuition
that some semantic information can be collected along with communication traces to drive message
clustering and alignment. We considered two different types of semantic information to achieve
this: 1) the nature of the operations performed on the protocol implementation while messages
are captured and 2) various contextual information such as timestamps or [[P| sources addresses.
We extended both clustering and sequence alignment algorithms to leverage them. Furthermore,
we also explored the delicate complexity-precision trade-off involved with the identification of
complex linear and non-linear relationships that could participate in message definitions. Finally,
we proposed a comparative study that relies on quantitative metrics to compare our solution against
three state-of-the-work solutions we re-implemented.

Obtained results shows that our vocabulary inference solution returns better results than existing
work in terms of model preciseness, completeness and correctness (objective 1). Besides, we
believe that the use of a multi-step clustering algorithm and of a correlation based relationship

identification solution reduces the overall complexity of the inference and therefore limits its

153

154 CHAPTER 14. CONCLUSION

computation time (objective 2). However, this objective is partially achieved as future works could
be done to precisely measure it. Nevertheless, our solution relies on a trace-based approach which
ensures its stealthiness (objective 3).

The second part of this thesis detailed our solution to infer the grammar of a protocol by
means of a passive and active approach. We followed the same intuition than for vocabulary
inference as we also relied on semantic information to reduce the inference time and improve its
stealthiness. We have shown that semantic information can be used to split the large inference task
into separate sub-tasks that can be executed in parallel. This decomposition of the protocol state
machine reduces the theoretical complexity of the L* algorithm while supporting its execution in
parallel. Our combination of a passive and an active technique through the use of a cache and in our
merging algorithm also reduces the stimulation of the targeted protocol implementation. Finally,
our grammar model also covers the reaction time which is automatically inferred by our solution.
This knowledge of the reaction time improves the completeness of our inferred model.

Regarding our objectives, we claim that our contributions in grammatical inference partially
fulfilled the first objective as the technique we propose relies on heuristics that may lead to incorrect
and/or incomplete results on some protocols. However, we detailed in Section that this
incompleteness can be addressed by introducing a default policy to model non-inferred transitions.
Nevertheless, our experimentation confirmed that our approach can be used to infer a precise,
correct and almost complete grammar of an unknown protocol (objective 1). Moreover, the results
exposed in Chapter|12|shows that our solution requires fewer computation time (objective 2) while

being stealthier (objective 3) than previous work.

14.2 Perspectives

The work on protocol reverse engineering is far from over, yet we believe this thesis proposes
many improvements in this domain. Indeed, despite our efforts, the complete automation of protocol
reverse engineering has not yet been reached. Completing the protocol model, implementing and
testing new approaches would need to be tackled to ensure the improvements of protocol reverse
engineering techniques and their wide adoption by security experts. Nevertheless, we believe that
our work is one more step paving the way towards automated protocol We identified some
directions for future work, including the use of an active inference approach to infer unobserved
protocol messages and the combination of trace-based and binary-based inference algorithms.

Similarly to the solution we retained to infer the grammar of a protocol, we could extend our
vocabulary inference algorithm with an active algorithm. For example, an active algorithm could be
used to improve the inference of the definition domains of each field by submitting messages with
different values. Such approach could also be interesting to confirm inferred relationships.

Another interesting research path could be to combine our traced-based approach with binary-
based [RE] techniques. Indeed, analyzing the construction of buffers could bring additional informa-
tion that could improve our clustering and field discovery algorithms.

Exploring the automated protocol vulnerability assessment through the creation of smart-fuzzers

is another future work. Such tool could be automatically generated based on the protocol model

14.2. PERSPECTIVES 155

we inferred. It would introduce deviations in both the message formats and in the grammar of the
protocol.

Nonetheless, we believe the most interesting and multifaceted venue of future work would be to
support expert intervention into the inference process. We could adapt our algorithms to this and let
the expert corrects, modifies or extends the inferred specifications to tune the remaining inference

processes and improve their results.

156 CHAPTER 14. CONCLUSION

List of Figures

(1.1 Layering architecture of the OSImodel.| 19
2.1 ~Sample HT'TP GET request with highlighted fields.| 31
[2.2 UDP traffic generated by a host infected by ZeroAccess| 32
[2.3 ZeroAccess getL message format| oL 33
[2.4 ZeroAccess retL message format| 34
2.5 ZeroAccess newL message format| 34
[2.6 Anonymized example of two TDL botrequests.| 36
2.7 A message canbe splitintowords.| 37
[2.8 A message can be split into words that are related to tokens.| 37
[2.9 Illustration of the abstraction layers participating in the specification of a standard |

DNS query.| 39
[2.10 Chomsky Hierarchy|. 40
[2.11 BER Encoding of the SNMP header| 46
[2.12 ProtoBuf encoding example of amessage.| 53
[2.13 Message Sequence Chart describing a sample FI'P authentication process.| 54
[2.14 Sample Estelle architecture.|. 55
[3.1 Protocol layering] 59
[3.2° Protocol layering| 60
[3.3 Clustering message based on binary and texttokens| 62
[3.4 Example of a consensus message format| 64
3.5 PTA([(Login, Exit), (Login, Download, Upload, Exit), (Login, Download, |

EXit)D . . o o e 68
[5.1 Example of fields that can be use to model an HI'TP symbol| 79
[5.2 Abstraction (ABS) and Specialization (SPE) blocks.|. 83
[5.3 Memory operations for both the abstraction (ABS) and the specialization (SPE) of |

ICMP echo-request exchanges.| 85
[5.4 Our SVAS template that models the memory operations performed while abstracting |

and specializingafield| L L 86
[6.1 Systemoverview| 89

158 LIST OF FIGURES

[6.2 Examples of session slicing.| oo 92
|6.3 Action Clusters resulting 1n the background noise filtering process| 93
[6.4 Illustration of the contextual clustering process.| 93

Ilustration of contextual conflicts., 94
[6.6 Alignments computed by Needleman & Wunsch and of our modified version,| . . 96
|6.7 The different steps engaged 1n the construction of a symbol out of two messages.| . 97
[6.8 [llustration of the UPGMA clustering algorithm.|. 98
{7.1 Illustration of our three metrics: conciseness, correctness and precision.| 106

[7.2 ROC Curve used to compare the quality of the inferred message clusters of ASAP, |

ScriptGen, Discoverer and Netzob. Best results are close to the top right corner.| . 108
(7.3 Detailed Experimental Results| 111
[10.1 Example of a simple protocol modeled as a Mealy machine.| 120
(10.2 Model of the FTP authentication schema with time defimtionl. 120

[11.1 State machine of the fake protocol we use to 1llustrate the steps of our inference |

approach.| 125

|11.2 The three annotated traces we use to infer the example protocol.| 127
[L1.3 ePTA of the doc action (AP o 129
[11.4 Inferred action state machines of the documentation action (M), the login action |
(M9 "the encrypt action (M"“"¥P!) and the logout action (M'9°u))| 130

[11.5 Simple example that 1llustrates how we merge an action state machine with a target |

[state machine oL 133
|11.6 Target state machine obtained after merging the two state machines illustrated on |
Figure[11.5) 135

[12.1 Inferred state machine of the IRC protocol (self-state transitions triggering an empty |

symbol and reaction time labels are removed for sake of clarity) |. 148

[12.2 Inferred state machine of the Samba protocol (self-state transitions triggering an |

empty symbol and reaction time labels are removed for sake of clarity) | 149

[12.3 Inferred state machine of the Botnet protocol v1 (self-state transitions triggering an |

empty symbol and reaction time labels are removed for sake of clarity) .| 150

Glossary of Accronyms

ABNF Augmented Backus-Naur Form. [T6] [29] [36]

ASCII American Standard Code for Information Interchange. 4]
b1l 62 66l B4

ASN.1 Abstract Syntax Notation One.
ATE Assurance TEsting.

ATM Asynchronous Transfer Mode. [56]

AV Antivirus.

BER Basic Encoding Rules. 32H34]
BSC IBM Bi-SynC protocol.

CAP Common Alerting Protocol.

CAPS CSEG Assisted Product Service. [0

CC Common Criteria. 9]

CCITT Comité Consultatif International Téléphonique et Télégraphique. 29] [30]
CDF Cumulative Distributed Function.

CER Canonical Encoding Rules.

CFG Context-Free Grammar. 27] 28]

CR Carriage Return.

CRC Cyclic Redundancy Check.

CSG Context-Sensitive Grammar.

CSPN Certification de Sécurité de Premier Niveau. [9]

DDOS Distributed Denial Of Service. [7] [56]

DER Distinguished Encoding Rules. 32H34]

DFA Deterministic Finite Automaton. 54 [53]

DHCP Dynamic Host Configuration Protocol.
DNS Domain Name Service. [

159

160

EAP Extensible Authentication Protocol.

EFSM Extended Finite State Machine.

EPICS Experimental Physics and Industrial Control System. [I§]
EQ Equivalency Queries. [53]

FDT Formal Description Techniques. 29]

FIFO First-In First-Out. [40]

FPGA Programmable Gate Arrays. [10]]

FSM Finite State Machine. [31] 53] 84}

FTP File Transfer Protocol. [7] [18] 22} [74} [83H86} [88}, [01] [102] [T03]

GSER Generic String Encoding Rules. 36|

HIDS Host-based Intrusion Detection System. [T]]
HTTP Hypertext Transfer Protocol. [8] [16] [I7] 24] [45] 7] [62]

ICMP Internet Control Message Protocol. 22]

ICS Industrial Constrol System. [L6]

ICT Information and Communications Technology. [7]

IDL Interface Description Language. [37] 3§

IDS Intrusion Detection System. [} [8] [T0]

IEEE Institute of Electrical and Electronics Engineers. [I5] [16]
IETF Internet Engineering Task Force. [16] [36]

IOC Input Output Controllers. [T§]

IP Internet Protocol. [0} [13] [T8} 22H24} 34} 43147, 52} [62) [64} [74] [83]

IPsec Internet Protocol Security. [I3]

IRC Internet Relay Chat. [8] [T8] [66] [75} [IT7} [T18] [T20H126]
ISO International Standards Organization. [6} [16] [I8] [40] 4]
ITU International Telecommunication Union. [16} 30} 32H34]

K-S Kolmogorov-Smirnov.

LAN Local Area Network. [6] 46|
LBNL Lawrence Berkeley National Laboratory. [85]
LDAP Lightweight Directory Access Protocol. [36]

LF Line Feed. [T6]
LOTOS Language of Temporal Ordering Specification. 40} 1]

Glossary of Accronyms

Glossary of Accronyms 161

MAN Metropolitan Area Network. [46]
MBR Master Boot Record. [I8]

MQ Membership Queries.

MSC Message Sequence Chart.
MSNP Microsoft Notification Protocol. [7]
MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

NIDS Network Intrusion Detection System. [OHIT]
NTP Network Time Protocol. [7]
NW Needleman & Wunsch. @9H51] [77] [78]

OSI Open Systems Interconnection. [6} [21] 29} [30] 46|

P2P Peer to Peer. [8] [T0} T3] [19] [21] [84-86]
PDML Packet Details Markup Language. [88]

PDU Protocol Data Unit. [6] 43|

PER Packed Encoding Rules. [32] [34] [36] [38] {0
PI Protocol Informatic project. 49

PIP P Internet Protocol.

PKCS Public Key Cryptographic Standards. 33|
PLC Programmable Logic Controllers.
PLD Programmable Logic Devices. [I0]]

PPC Pay-Per-Click.

PR Production Rules. 26| 27]

ProtoBuf Protocol Buffer. 29} 37H39]

PTA Prefix Tree Acceptor. [54] [53]

PTP Precision Time Protocol. [7]

RCP Rate Control Protocol. [7]

RE Reverse Engineering. @-IE, @ @

RFC Request for Comments.
ROC Receiver Operating Characteristic. [88H90]

RSS Representatives Sequence of Symbols. [109] [T12]
RSYNC Remote Synchronization Protocol.

SEO Search Engine Optimization.

162 Glossary of Accronyms

SER Sequence of Events Recorder. [44]

SIP Session Initiation Protocol. 36} 37

SIS Security of Information Systems. [9]

SMB Server Message Block. 23] [62] [76] [84}{36] [88]
SMM Symbolic Mealy Machine. [T4]

SMTP Simple Mail Transport Protocol. [T§]

SNMP Simple Network Management Protocol. [31} [32] [36]
SSL Secure Sockets Layers. [10]

SVAS State Variable Assignment Strategy. [66]

TCP Transmission Control Protocol. [6] [[3HT8} 21} 22} 23] @3H47) [61] [67} [74]
TLS Transport Layer Security.

TLV Type-Length-Value. [32H34]
ToE Target of Evaluation. [9} [I0]
TPSN Time-sync Protocol for Sensor Networks.

UDP User Datagram Protocol. [I9] [30} [74]

UPGMA Unweighted Pair Group Method with Arithmetic mean. 49] B4
URL Uniform Resource Locator.

UTC Universal Time Coordinated. 44]

VoIP Voice over Internet Protocol. 83} [83] [86]

W3C World Wide Web Consortium.
WAN Wide Area Network.

XER XML Encoding Rules. [32] [34] [36]
XMPP Extensible Messaging and Presence Protoco. [7] 22]
XOR eXclusive OR.

ZA ZeroAccess. [83][83] [36] [OT]

Glossary of Accronyms 163

Bibliography

164 Glossary of Accronyms

Bibliography

[1] ITU-T Study Group 17. Abstract syntax notation one (asn.1) - specification of basic notation.
Technical report, International Telecommunication Union, 2002.

[2] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of infinite-state communi-
cation protocols using regular inference with abstraction. In Proceedings of the 22nd IFIP
WG 6.1 international conference on Testing software and systems, ICTSS’ 10, pages 188-204,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] Ibrahim S. Abdullah and Daniel A. Menasce. Protocol specification and automatic imple-
mentation using xml and cbse. In Proc of the International Conference on Communications,

Internet and Infomation technology, 2003.

[4] Kenji Aiko. New reverse engineering technique using api hooking and sysenter hooking,

and capturing of cash card access. In Black Hat Asia, 2008.

[5] Mark Amos. An intuitive explanation of cw bandwidth. http://www.w83i.com/cw_|
bandwidth described.htm.

[6] D. Andriesse and H. Bos. An analysis of the zeus peer-to-peer protocol. Technical report,
VU University Amsterdam, may 2013.

[7] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75:87-106, November 1987.

[8] Igor Anishchenko. Pb vs thrift vs avro. In Lohika, 2012.

[9] J. Antunes, N. Neves, and P. Verissimo. Reverse engineering of protocols from network
traces. In Reverse Engineering (WCRE), 2011 18th Working Conference on, pages 169 —178,
oct. 2011.

[10] P. Ashar, S. Devadas, and A. R. Newton. Optimum and heuristic algorithms for an approach to
finite state machine decomposition. Trans. Comp.-Aided Des. Integ. Cir. Sys., 10(3):296-310,
nov 2006.

[11] Pranav Ashar, Srinivas Devadas, and A. Richard Newton. A unified approach to the de-
composition and re-decomposition of sequential machines. In Proceedings of the 27th
ACM/IEEE Design Automation Conference, DAC ’90, pages 601-606, New York, NY, USA,
1990. ACM.

[12] The International MIDI Association. Standard midi-file format spec. 1.1. Technical report,
The International MIDI Association, 1999.

165

http://www.w8ji.com/cw_bandwidth_described.htm
http://www.w8ji.com/cw_bandwidth_described.htm

166

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

BIBLIOGRAPHY

Paul Barford and Vinod Yegneswaran. An inside look at botnets. In Malware Detection,

volume 27 of Advances in Information Security. Springer US, 2007.

Marshall A. Beddoe. Network protocol analysis using bioinformatics algorithms. In Toorcon,
2004.

PL.T. Berg and T. Berg. Structure in Language: A Dynamic Perspective. Routledge Studies
in Linguistics. Taylor & Francis, 2008.

Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. Insights to angluin’s
learning. Electron. Notes Theor. Comput. Sci., 118:3—18, February 2005.

Therese Berg, Bengt Jonsson, and Siavash Soleimanifard. Inferring compact models of
communication protocol entities. In Leveraging Applications of Formal Methods, Verification,
and Validation: Part I, number 6415 in Lecture Notes in Computer Science, pages 658—672,
2010.

Matt Bishop, Rick Crawford, Bhume Bhumiratana, Lisa Clark, and Karl Levitt. Some
problems in sanitizing network data. In /5th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 307-312, 2006.

Gregor Bochmann. Protocol specification for osi. Comput. Netw. ISDN Syst., 18(3):167-184,
apr 1990.

Therese Bohlin and Bengt Jonsson. Regular inference for communication protocol entities.
Technical Report 2008-024, Uppsala University, Computer Systems, 2008.

P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho. Seven years and one day: Sketching
the evolution of internet traffic. In INFOCOM 2009, IEEE, pages 711-719, 2009.

Georges Bossert and Frédéric Guihéry. The future of protocol reversing and simulation
applied on zeroaccess botnet. In 29C3: 29th Chaos Communication Congress, 2012.

Georges Bossert and Frederic Guihery. Security evaluation of communication protocols in
cc. InICCC 2012, 2012.

Georges Bossert, Frederic Guihery, and Guillaume Hiet. Towards automated protocol reverse

engineering using semantic information. In ASIACCS, 2014.

Georges Bossert, Guillaume Hiet, and Thibaut Henin. Modelling to simulate botnet command
and control protocols for the evaluation of network intrusion detection systems. In Conference
on Network and Information Systems Security (SAR-SSI), pages 1 —8, may 2011.

Georges Bossert and Dimitri Kirchner. How to play hooker. In SSTIC, 2014.

Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. Dispatcher: en-
abling active botnet infiltration using automatic protocol reverse-engineering. In Proceedings
of CCS, 20009.

Juan Caballero and Dawn Song. Automatic protocol reverse-engineering: Message format
extraction and field semantics inference. Comput. Netw., 57(2):451-474, feb 2013.

Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Automatic extraction

of protocol format using dynamic binary analysis. In Proceedings of CCS, 2007.

BIBLIOGRAPHY 167

[30] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple Network Management Protocol
(SNMP). RFC 1157 (Historic), May 1990.

[31] Ana Cavalli, Cyril Grepet, Stéphane Maag, and Vincent Tortajada. A validation model
for the dsr protocol. In Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops - W7: EC (ICDCSW’04) - Volume 7, ICDCSW 04, pages
768773, Washington, DC, USA, 2004. IEEE Computer Society.

[32] CERTA. Certa-2004-ale-003 - propagation du ver phatbot. Technical report, S.G.D.S.N.
Agence nationale de la sécurité des systeémes d’information, 2004.

[33] LM. Chakravarti, R.G. Laha, and J. Roy. Handbook of methods of applied statistics. Number
vol. 1 in Wiley series in probability and mathematical statistics. Wiley, 1967.

[34] Marco Chiesa, Luca Cittadini, Giuseppe Di Battista, Laurent Vanbever, and Stefano Vissic-
chio. Using routers to build logic circuits: How powerful is bgp? In ICNP, 2013.

[35] Chia Yuan Cho, Domagoj Babi¢, Eui Chul Richard Shin, and Dawn Song. Inference and
analysis of formal models of botnet command and control protocols. In Proceedings of the

17th ACM conference on Computer and communications security, CCS ’10, pages 426439,
New York, NY, USA, 2010. ACM.

[36] Hyunsang Choi, Heejo Lee, and Hyogon Kim. Botgad: detecting botnets by capturing group
activities in network traffic. In Proceedings of the Fourth International ICST Conference on
COMmunication System softWAre and middlewaRE, COMSWARE ’09, pages 2:1-2:8, New
York, NY, USA, 2009. ACM.

[37] N. Chomsky. Syntactic Structures. Mouton classic. Bod Third Party Titles, 2002.

[38] Noam Chomsky. Three models for the description of language. Information Theory, IRE
Transactions on, 2(3):113-124, sep 1956.

[39] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng., 4(3):178-187, may 1978.
[40] Jurriaan Bremer Alessandro Tanasi Claudio Guarnieri, Mark Schloesser. Cuckoo sandbox -

open source automated malware analysis. In Black Hat USA, 2013.

[41] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda.
Prospex: Protocol specification extraction. In Proceedings of SSP, 2009.

[42] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. RFC 5234
(INTERNET STANDARD), January 2008.

[43] Weidong Cui. Discoverer: Automatic protocol reverse engineering from network traces. In

Proceedings of USENIX Security Symposium, 2007.

[44] Weidong Cui, Vern Paxson, Nicholas C. Weaver, and Y H. Katz. Protocol-independent
adaptive replay of application dialog. In In The 13th Annual Network and Distributed System
Security Symposium (NDSS, 2006.

[45] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite state
machines. Trans. Comp.-Aided Des. Integ. Cir. Sys., 8(11):1206-1217, nov 2006.

168 BIBLIOGRAPHY

[46] S. Djiev. Industrial networks for communication and control. Technical report, TU-Sofia
Publ. House, 2003.

[47] Laurent Dolhi. Validation of Communications Systems with SDI. TransMeth Sud-Ouest,
2003.

[48] M. Franz E.J. Byres and D. Miller. The use of attack trees in assessing vulnerabilities in
scada systems. In International Infrastructure Survivability Workshop (IISW’04), 2004.

[49] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated
by RFCs 2817, 5785, 6266, 6585.

[50] Fortinet. Anatomy of a botnet. Technical report, Fortinet, 2013.
[51] P. Francis. Pip Near-term Architecture. RFC 1621 (Informational), May 1994.
[52] Jay Freeman. Hacking a closed ecosystem. In O’Reilly Android Open Conference, 2011.

[53] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abder-
razak Ghedamsi. Test selection based on finite state models. IEEE Trans. Softw. Eng.,
17(6):591-603, jun 1991.

[54] Ullas Gargi. Consumer media capture: Time-based analysis and event clustering. Technical
report, HP Laboratories Palo Alto, aug 2003.

[55] E Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302 — 320, 1978.

[56] Sergey Golovanov and Igo Soumenkov. Tdl4-top bot, June 2011.
[57] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee. Bothunter:

detecting malware infection through ids-driven dialog correlation. In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, pages 12:1-12:16, Berkeley,
CA, USA, 2007. USENIX Association.

[58] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session Initiation Protocol.
RFC 2543 (Proposed Standard), March 1999. Obsoleted by RFCs 3261, 3262, 3263, 3264,
3265.

[59] D. Harel and P.S. Thiagarajan. UML for Real: Design of Embedded Real-time Systems,
chapter Message Sequence Charts, page 1. Kluwer Academic Publishers, 2003.

[60] Juris Hartmanis. Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1966.

[61] Zafar Hasan and Maciej J. Ciesielski. Decomposition and functional verification of fsms.
Technical report, Department of Electrical & Computer Engineering, University of Mas-
sachusetts, 1998.

[62] P. Hethmon. Extensions to FTP. RFC 3659 (Proposed Standard), March 2007.

[63] C.D. Higuera. Grammatical inference: learning automata and grammars. Cambridge

University Press, 2010.

BIBLIOGRAPHY 169

[64] Charles A.R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.

[65] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1991.

[66] Fraser Howard. Exploring the blackhole exploit kit. Technical report, SophosLabs, UK,
march 2012.

[67] Yating Hsu, Guogiang Shu, and D. Lee. A model-based approach to security flaw detection
of network protocol implementations. In Network Protocols, 2008. ICNP 2008. IEEE
International Conference on, pages 114—123, 2008.

[68] IBM. General information - binary synchronous communications. Technical report, IBM

Systems Development Division, 1970.

[69] Open Systems Interconnection. Iso 8807:1989: Lotos — a formal description technique
based on the temporal ordering of observational behaviour. Technical report, International

Standards Organization.

[70] Muhammad Naeem IRFAN. Analysis and optimization of software model inference algo-
rithms. PhD thesis, Laboratoire d’Informatique de Grenoble, September 2012.

[71] ISO. Information processing systems — OSI reference model, international standards organi-
zation. Technical Report 7498, ISO, October 1984.

[72] ITU-T. Information technology — asn.1 encoding rules — specification of basic encoding
rules (ber), canonical encoding rules (cer), and distinguished encoding rules (der). Technical

report, International Telecommunication Union, 2002.

[73] ITU-T. Formal description techniques (fdt) message sequence chart (msc). Technical report,
ITU-T Z.120, 2011.

[74] C. Kalt. Internet Relay Chat: Architecture. RFC 2810 (Informational), April 2000.
[75] Michael Kende. Global internet report 2014. Technical report, Internet Society, 2014.

[76] S. Kent. Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management. RFC 1422 (Historic), February 1993.

[77] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard), December 2005. Updated by RFC 6040.

[78] S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Memorandum

(Rand Corporation). Rand Corporation, 1951.
[79] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard), October 2008.
[80] Hartmut Konig. Protocol Engineering. Springer, 2012.

[81] Chakravarty Tridib Koopman Philip. Analysis of the train communication network protocol

error detection capabilities. Working paper, Carnegie Mellon University, 2001.

[82] Tammo Krueger, Hugo Gascon, Nicole Krdmer, and Konrad Rieck. Learning stateful models
for network honeypots. In Proceedings of the 5Sth ACM workshop on Security and artificial
intelligence, 2012.

170 BIBLIOGRAPHY

[83] Tammo Krueger, Nicole Kramer, and Konrad Rieck. Asap: automatic semantics-aware
analysis of network payloads. In Proceedings of ECML/PKDD, 2011.

[84] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and Farnam Ja-
hanian. Internet inter-domain traffic. SIGCOMM Comput. Commun. Rev., 41(4):—, aug
2010.

[85] Kevin J. Lang. Faster algorithms for finding minimal consistent dfas. Technical report, NEC
Research Institute, 4 Independence Way Princeton, NJ 08540, December 1999.

[86] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In
NIPS. MIT Press, 2000.

[87] S. Legg. Generic String Encoding Rules (GSER) for ASN.1 Types. RFC 3641 (Proposed
Standard), October 2003. Updated by RFC 4792.

[88] Corrado Leita, Ken Mermoud, and Marc Dacier. Scriptgen: an automated script generation
tool for honeyd. In Proceedings of ACSAC, 2005.

[89] Zhiqgiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Automatic protocol format
reverse engineering through context-aware monitored execution. In IN 15TH SYMPOSIUM
ON NETWORK AND DISTRIBUTED SYSTEM SECURITY (NDSS, 2008.

[90] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to lotos: learning by examples.
Comput. Netw. ISDN Syst., 23(5):325-342, feb 1992.

[91] G.M. Lundy and C. Basaran. Automated generation of protocol test sequences from formal
specifications. In Network Protocols, 1994. Proceedings., 1994 International Conference on,
pages 72-79, Oct 1994.

[92] Song Luo and Gerald A. Marin. Modeling networking protocols to test intrusion detection
systems. In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, LCN 04, pages 774-775, Washington, DC, USA, 2004. IEEE Computer
Society.

[93] Eric Madelaine and Didier Vergamini. Specification and verification of a sliding window
protocol in lotos. In Formal Description Techniques, 1V, volume C-2 of IFIP Transactions.
Elsevier Science Publishers B.V. (North-Holland, pages 495-510. North-Holland, 1991.

[94] Kevin McNamee. Malware analysis report - new c&c protocol for zeroacess/siref. Technical
report, Kindsight Security Lab, 2012.

[95] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[96] J. C. Mogul, R. Fielding, J. Gettys, and H. Frystyk. Use and Interpretation of HTTP Version
Numbers. RFC 2145 (Informational), May 1997.

[97] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443 — 453, 1970.

BIBLIOGRAPHY 171

[98] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Erlangung
des Grades eines Doktors der Naturwissenschaften der Universitat Dortmund am Fachbereich
Informatik, 2003.

[99] Vaibhav Nivargi, Mayukh Bhaowal, and Teddy Lee. Machine learning based botnet detection.
Technical report, CS229, Standford, 2006.

[100] ODVA. Devicenet: Technical overview. Technical report, Open DeviceNet, Vendor Associa-
tion, Inc., 2004.

[101] William Ogden. A helpful result for proving inherent ambiguity. Mathematical systems
theory, 2(3):191-194, 1968.

[102] J. Oikarinen and D. Reed. Internet Relay Chat Protocol. RFC 1459 (Experimental), May
1993. Updated by RFCs 2810, 2811, 2812, 2813.

[103] OSI. Isofiec 9074: Estelle - a formal description technique based on an extended state

transition model. Technical report, Internationnal Organisation for Standardisation, 1989.

[104] Ruoming Pang and Vern Paxson. A high-level programming environment for packet trace
anonymization and transformation. In SIGCOMM ’03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer communications,
pages 339-351, New York, NY, USA, 2003. ACM.

[105] C.P. Pfleeger. State reduction in incompletely specified finite-state machines. Computers,
IEEE Transactions on, C-22(12):1099-1102, 1973.

[106] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD), August 1980.

[107] J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET STANDARD), Septem-
ber 1981. Updated by RFCs 950, 4884, 6633, 6918.

[108] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), September 1981. Updated
by RFCs 1349, 2474, 6864.

[109] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD), September
1981. Updated by RFCs 1122, 3168, 6093, 6528.

[110] J. Postel. Simple Mail Transfer Protocol. RFC 821 (INTERNET STANDARD), August
1982. Obsoleted by RFC 2821.

[111] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: a library for automata learning
and experimentation. In Proceedings of the 10th international workshop on Formal methods
Sfor industrial critical systems, FMICS ’035, pages 62—71, New York, NY, USA, 2005. ACM.

[112] David N. Reshef, Yakir A. Reshef, Hilary K. Finucane, Sharon R. Grossman, Gilean McVean,
Peter J. Turnbaugh, Eric S. Lander, Michael Mitzenmacher, and Pardis C. Sabeti. Detecting
novel associations in large data sets. Science, 334(6062):1518-1524, 2011.

[113] P. Resnick. Internet Message Format. RFC 2822 (Proposed Standard), April 2001. Obsoleted
by RFC 5322, updated by RFCs 5335, 5336.

[114] P. Resnick. Internet Message Format. RFC 5322 (Draft Standard), October 2008. Updated
by RFC 6854.

172 BIBLIOGRAPHY

[115] Konrad Rieck, Christian Wressnegger, and Alexander Bikadorov. Sally: A tool for embed-
ding strings in vector spaces. Journal of Machine Learning Research, 2012.

[116] Eugene Rodionov and Aleksandr Matrosov. The evolution of tdl: conquering x64. Technical
report, ESET, 2011.

[117] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the
USENIX LISA’99 conference, pages 229-238, Seattle, WA, November 1999.

[118] E.C. Rosen. Vulnerabilities of network control protocols: An example. RFC 789, July 1981.

[119] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging
and Presence. RFC 6121 (Proposed Standard), March 2011.

[120] Brahima Sanou. Ict facts and figures. Technical report, ICT - International Telecommunica-
tion Union, 2013.

[121] Thilo Sauter. The three generations of field-level networks - evolution and compatibility

issues. IEEE Transactions on Industrial Electronics, 57, November 2010.

[122] Telecommunication Standardization sector of ITU. Specification and description language
(sdl). Technical report, ITU, 1988.

[123] Jarrad Shearer. Trojan.zeroaccess threat report. Technical report, Symantec, 2011.

[124] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification mining
using automata-based abstractions. In Proceedings of the 2007 international symposium
on Software testing and analysis, ISSTA *07, pages 174-184, New York, NY, USA, 2007.
ACM.

[125] Anas Showk, David Szczesny, Shadi Traboulsi, Irv Badr, Elizabeth Gonzalez, and Attila
Bilgic. Modeling Ite protocol for mobile terminals using a formal description technique.
In Proceedings of the 14th international SDL conference on Design for motes and mobiles,
SDL’09, pages 222-238, Berlin, Heidelberg, 2009. Springer- Verlag.

[126] Amichai Shulman. The untold tale of database communication protocol vulnerabilities. In
BlackHat, 2007.

[127] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic relationships.
University of Kansas Scientific Bulletin, 28:1409-1438, 1958.

[128] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. Finding security vulnerabilities in a
network protocol using parameterized systems. In Computer Aided Verification, volume

8044 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
[129] Guenther Starnberger, Christopher Kruegel, and Engin Kirda. Overbot: A botnet protocol

based on kademlia. In Proceedings of the 4th International Conference on Security and
Privacy in Communication Netowrks, SecureComm ’08, pages 13:1-13:9, New York, NY,
USA, 2008. ACM.

[130] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata learning
from a practical perspective. In Formal Methods for Eternal Networked Software Systems,
volume 6659 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011.

BIBLIOGRAPHY 173

[131] Joe Stewart. Inside the storm: Protocols and encryption of the storm botnet. In Black Hat
USA, 2008.

[132] Apostolos Syropoulos. Mathematics of multisets. In Proceedings of the Workshop on
Multiset Processing: Multiset Processing, Mathematical, Computer Science, and Molecular
Computing Points of View, WMP *00, pages 347-358, London, UK, UK, 2001. Springer-
Verlag.

[133] Dariusz Tasak. Specification and validation of q.2931 atm signaling protocol using estelle.
Master’s thesis, School of Computer Science McGill University, Montreal, September 1997.

[134] OASIS Emergency Management TC. Common alerting protocol version 1.2. Technical
report, OASIS, 2010.

[135] Isabelle Tellier. Learning recursive automata from positive examples. Revue d’Intelligence
Artificielle, 20(6):775-804, 2006.

[136] Gilou Tenebro. W32.waledac - threat analysis. Technical report, Symantec, 2009.

[137] Jay Turla. Analysis on pbot — a php irc bot that has malicious functions. Technical report,
INFOSEC Institute, 2012.

[138] Yipeng Wang, Xiaochun Yun, M. Zubair Shafiq, Liyan Wang, Alex X. Liu, Zhibin Zhang,
Danfeng(Daphne) Yao, Yongzheng Zhang, and Li Guo. A semantics aware approach to
automated reverse engineering unknown protocols. In Proceedings of ICNP, 2012.

[139] Yipeng Wang, Zhibin Zhang, Danfeng Daphne Yao, Buyun Qu, and Li Guo. Inferring
protocol state machine from network traces: a probabilistic approach. In Proceedings of
ACNS, 2011.

[140] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. Reformat: Au-
tomatic reverse engineering of encrypted messages. In Proceedings of the 14th European
Conference on Research in Computer Security, ESORICS’09, pages 200-215, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[141] Youngjoon Won, R. Fontugne, K. Cho, H. Esaki, and K. Fukuda. Nine years of observing traf-
fic anomalies: Trending analysis in backbone networks. In Integrated Network Management
(IM 2013), 2013 IFIP/IEEE International Symposium on, pages 636—-642, 2013.

[142] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and Engin Kirda. Auto-
matic network protocol analysis. In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS 08, 2008.

[143] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher Kruegel, and Engin
Kirda. Automatically generating models for botnet detection. In Proceedings of the 14th
European conference on Research in computer security, ESORICS’09, pages 232-249,
Berlin, Heidelberg, 2009. Springer-Verlag.

[144] Tao Xie. Software component protocol inference. Technical report, Department of Computer

Science and Engineering, University of Washington, 2003.

174 BIBLIOGRAPHY

[145] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. Sikuli: Using gui screenshots for
search and automation. In Proceedings of the 22Nd Annual ACM Symposium on User
Interface Software and Technology, UIST °09, pages 183—-192, New York, NY, USA, 20009.
ACM.

[146] K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical Specification Road
Map. RFC 4510 (Proposed Standard), June 2006.

BIBLIOGRAPHY 175

Author’s publication

176 BIBLIOGRAPHY

Publications of the Author

14.3 International Peer Reviewed Publications

— Security Evaluation of Communication Protocols in Common Criteria, Georges Bossert
and Frédéric Guihéry, International Common Criteria Conference - September 2012

— Towards Automated Protocol Reverse Engineering Using Semantic Information, Georges
Bossert, Frédéric Guihéry and Guillaume Hiet, 9th ACM Symposium on Information, Com-

puter and Communication Security - June 2014

14.4 National Peer-Reviewed Publications

— Modelling to Simulate Botnet Command and Control Protocols for the Evaluation of
Network Intrusion Detection Systems, Georges Bossert, Guillaume Hiet and Thibaut
Hénin, Conference on Network and Information Systems Security (SAR-SSI) - 2011

— Netzob : un outil pour la rétro-conception de protocoles de communication, Georges
Bossert, Frédéric Guihéry and Guillaume Hiet, Symposium sur la Sécurité des technologies
de I’Information et des Communications (SSTIC) - 2012

14.5 International Security Conferences

— Reverse and Simulate your Enemy Botnet C&C, Georges Bossert and Frédéric Guihéry,
Black Hat - Abu Dhabi - 2012

— The future of protocol reversing and simulation applied on ZeroAccess botnet, Georges
Bossert and Frédéric Guihéry, 29C3: 29th Chaos Communication Congress - 2012

14.6 Article

— Vivisection de protocoles avec Netzob, Georges Bossert and Frédéric Guihéry, MISC HS7

- Les éditions diamands, 2013

177

L’ Ange me coupa la parole : Quand cesseras-tu,
puceron orgueilleux et éphémere, de toujours t’agiter,
de discutailler et d’ergoter ? Quand la Nuit, fraternelle
et slire, impérieuse et souveraine, s’appréte a
descendre, il n’est plus temps de bavarder encore. Au
seuil de I’Eternité, fais enfin silence et, dans
I’obscurité qui d’heure en heure maintenant s’épaissit,
au lieu de parler, écoute... : “Ici, le rameur enleve les
avirons et amarre sans bruit dans les roseaux, avant de
s’éloigner, une barque prétée.”

Puis I’ Ange disparut, sans bruit, dans la nuit, me
laissant seul, au moins en apparence.

Théodore Monod, L’ émeraude des Garamantes

	Remerciements
	Résumé en français
	Abstract
	Introduction
	Insights on Communication Protocols
	Basic Definition of a Communication Protocol
	Communication Protocols are Everywhere

	Motivations
	Protocol RE for Security Evaluations
	Protocol RE to Build Precise NIDS Rules
	Protocol RE is Mandatory for Effective Botnet Simulation

	Thesis Statement and Contributions
	Dissertation Outlines

	Communication Protocols
	Recurrent Forms of Communication Protocols
	HTTP Case Study: A Common Text Application Protocol
	ZeroAccess Case study: A P2P Botnet Protocol

	Formal Definition of a Communication Protocol
	Definition of the Protocol Vocabulary
	Definition of the Protocol Grammar

	Existing Specification Languages
	Specification Languages for Protocol Vocabulary
	Specification Languages for Protocol Grammar

	Communication Protocol Inference
	Automated Inference of the Vocabulary
	Extracting Messages from Traces
	Identification of Equivalent Messages and Inference of their Format
	Detecting Field Relationships

	Automated Inference of the Grammar
	Passive Grammatical Inference
	Active Grammatical Inference

	I Automated Inference of the Protocol Vocabulary
	Introduction
	Our Vocabulary Model
	Symbols, Fields and Token-Tree
	Definition of a Symbol
	Definition of a Field
	Definition of a Token-Tree

	Abstraction and Specialization
	State Variable Assignment Strategy (SVAS)

	Leveraging Semantic Information to Improve the Vocabulary Inference
	Introduction
	Collecting Semantic Information
	Semantic-based Message Clustering
	Session Slicing (Step 1)
	Background Noise Filtering (Step 2)
	Contextual Clustering (Step 3)
	Format Clustering (Step 4)
	Semantic Preserving Clustering Algorithm (Step 5)
	Merging Step & Inter-Symbol Relationship Identification (Steps 6 & 7)

	Field Relationships Identification

	Comparative Study of Vocabulary Inference Approaches
	Choice of Compared Tools
	Datasets
	Metrics
	Implementations
	Experimental Results

	Conclusion on Vocabulary Inference

	II Automated Inference of the Protocol Grammar
	Introduction
	Our model of a Protocol Grammar
	Symbolic Mealy Machine
	Reaction Time
	Decomposing the Protocol Model to Improve its Inference

	Learning the Grammar Using an FSM Decomposition
	Big Picture
	Example Protocol to Illustrate our Approach
	Computing the Vocabulary of each Action
	Inferring the Representatives Sequences of Symbols
	Inferring Action State Machines
	Merging Sub-Grammars
	Transition and State Equivalencies
	Merging the Target State Machine with an Action State Machine

	Evaluation
	Datasets
	Metrics
	Implementations
	Experimental Results
	State Machines Correctness and Completeness
	Comparing Inference Times
	Comparing Inference Stealth

	Conclusion on Grammar Inference
	Conclusion
	Results
	Perspectives

	Glossary of Accronyms
	Bibliography
	Publications of the Author
	International Peer Reviewed Publications
	National Peer-Reviewed Publications
	International Security Conferences
	Article

