. Références1, P. Millet, N. Mbemba, S. Grigoriev, V. Fateev et al., A techno-economic appraisal of hydrogen generation and the case for solid oxide electrolyser cells High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy -summary of system simulation and economic analyses Can high temperature steam electrolysis function with geothermal heat? Heat transfer problems for the production of hydrogen from geothermal energy6] Fergus JW. Sealants for solid oxide fuel cells Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications Yttria concentration dependence of tensile strength in yttria-stabilized zirconia, Electrochemical performances of PEM water electrolysis cells and perspectives M. Low temperature fabrication of (Y,Gd,Sm)-doped ceria electrolyte. Solid State Ion, pp.4134-425782, 1996.

N. Minh, Ceramic Fuel Cells, Journal of the American Ceramic Society, vol.137, issue.7, pp.563-88, 1993.
DOI : 10.1111/j.1151-2916.1993.tb03645.x

B. Fan, Y. J. Yan, and X. , The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-?? as SOFC cathode material, Solid State Sciences, vol.13, issue.10, pp.1835-1844, 2011.
DOI : 10.1016/j.solidstatesciences.2011.07.007

A. Jun, S. Yoo, O. Gwon, J. Shin, and G. Kim, Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3????? and La0.6Sr0.4Co0.2Fe0.8O3????? for intermediate-temperature solid oxide fuel cells, Electrochimica Acta, vol.89, pp.372-378, 2013.
DOI : 10.1016/j.electacta.2012.11.002

M. Henke, J. Kallo, K. Friedrich, and W. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A??Theoretical Study, Fuel Cells, vol.152, issue.153, pp.581-91, 2011.
DOI : 10.1002/fuce.201000098

S. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics, vol.135, issue.1-4, pp.305-318, 2000.
DOI : 10.1016/S0167-2738(00)00452-5

R. Kikuchi, T. Yano, T. Takeguchi, and K. Eguchi, Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, vol.174, issue.1-4, pp.111-118, 2004.
DOI : 10.1016/j.ssi.2004.05.029

S. Seidler, M. Henke, J. Kallo, W. Bessler, U. Maier et al., Pressurized solid oxide fuel cells: Experimental studies and modeling, Journal of Power Sources, vol.196, issue.17, pp.7195-202, 2011.
DOI : 10.1016/j.jpowsour.2010.09.100

S. Hashimoto, H. Nishino, Y. Liu, K. Asano, M. Mori et al., Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte, Journal of The Electrochemical Society, vol.155, issue.6, 2008.
DOI : 10.1149/1.2903295

S. Gamble and J. Irvine, 8YSZ/(La0.8Sr0.2)0.95MnO3????? cathode performance at 1???3bar oxygen pressures, Solid State Ionics, vol.192, issue.1, pp.394-401, 2011.
DOI : 10.1016/j.ssi.2010.11.024

L. Zhou, M. Cheng, Y. B. Dong, Y. Cong, Y. et al., Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochimica Acta, vol.53, issue.16, 2008.
DOI : 10.1016/j.electacta.2008.02.032

K. Recknagle, E. Ryan, B. Koeppel, L. Mahoney, and M. Khaleel, Modeling of electrochemistry and steam???methane reforming performance for simulating pressurized solid oxide fuel cell stacks, Journal of Power Sources, vol.195, issue.19, pp.6637-6681, 2010.
DOI : 10.1016/j.jpowsour.2010.04.024

G. Agnew, D. Bernardi, R. Collins, and R. Cunningham, An internal reformer for a pressurised SOFC system, Journal of Power Sources, vol.157, issue.2, pp.832-838, 2006.
DOI : 10.1016/j.jpowsour.2005.11.101

S. Vivanpatarakij, N. Laosiripojana, A. Arpornwichanop, and S. Assabumrungrat, Performance improvement of solid oxide fuel cell system using palladium membrane reactor with different operation modes, Chemical Engineering Journal, vol.146, issue.1, 2009.
DOI : 10.1016/j.cej.2008.09.001

S. Park and T. Kim, Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell???gas turbine systems, Journal of Power Sources, vol.163, issue.1, pp.490-499, 2006.
DOI : 10.1016/j.jpowsour.2006.09.036

T. Lim, R. Song, D. Shin, J. Yang, H. Jung et al., Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system, Int J Hydrog Energy, vol.33, pp.1076-83, 2008.

E. Thomsen, G. Coffey, L. Pederson, and O. Marina, Performance of lanthanum strontium manganite electrodes at high pressure, Journal of Power Sources, vol.191, issue.2, pp.217-241, 2009.
DOI : 10.1016/j.jpowsour.2009.02.057

J. Nieminen, I. Dincer, and G. Naterer, Comparative performance analysis of PEM and solid oxide steam electrolysers, International Journal of Hydrogen Energy, vol.35, issue.20, pp.10842-50, 2010.
DOI : 10.1016/j.ijhydene.2010.06.005

S. Jensen, X. Sun, S. Ebbesen, R. Knibbe, and M. Mogensen, Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.35, issue.18, 2010.
DOI : 10.1016/j.ijhydene.2010.06.065

K. Ledjeff, A. Heinzel, V. Peinecke, and F. Mahlendorf, Development of pressure electrolyser and fuel cell with polymer electrolyte, International Journal of Hydrogen Energy, vol.19, issue.5, pp.453-458, 1994.
DOI : 10.1016/0360-3199(94)90023-X

C. Schug, Operational characteristics of high-pressure, high-efficiency water-hydrogen-electrolysis, International Journal of Hydrogen Energy, vol.23, issue.12, pp.1113-1133, 1998.
DOI : 10.1016/S0360-3199(97)00139-0

P. Medina and M. Santarelli, Analysis of water transport in a high pressure PEM electrolyzer, International Journal of Hydrogen Energy, vol.35, issue.11, pp.5173-86, 2010.
DOI : 10.1016/j.ijhydene.2010.02.130

M. Santarelli, P. Medina, and M. Calì, Fitting regression model and experimental validation for a high-pressure PEM electrolyzer, International Journal of Hydrogen Energy, vol.34, issue.6, pp.2519-2549, 2009.
DOI : 10.1016/j.ijhydene.2008.11.036

S. Grigoriev, A. Kalinnikov, P. Millet, V. Porembsky, and V. Fateev, Mathematical modeling of high-pressure PEM water electrolysis, Journal of Applied Electrochemistry, vol.3, issue.86, pp.921-953, 2009.
DOI : 10.1007/s10800-009-0031-z

F. Marangio, M. Santarelli, and M. Calì, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, International Journal of Hydrogen Energy, vol.34, issue.3, pp.1143-58, 2009.
DOI : 10.1016/j.ijhydene.2008.11.083

F. Marangio, M. Pagani, M. Santarelli, and M. Calì, Concept of a high pressure PEM electrolyser prototype, International Journal of Hydrogen Energy, vol.36, issue.13, pp.7807-7822, 2011.
DOI : 10.1016/j.ijhydene.2011.01.091

S. Grigoriev, V. Porembskiy, S. Korobtsev, V. Fateev, F. Auprêtre et al., Highpressure PEM water electrolysis and corresponding safety issues, Int J Hydrog Energy, vol.36, 2011.

S. Narayanan, A. Kindler, A. Kisor, T. Valdez, R. Roy et al., Dual-Feed Balanced High-Pressure Electrolysis of Water in a Lightweight Polymer Electrolyte Membrane Stack, Journal of The Electrochemical Society, vol.158, issue.11, 2011.
DOI : 10.1149/2.038111jes

A. Roy, S. Watson, and D. Infield, Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers, International Journal of Hydrogen Energy, vol.31, issue.14, pp.1964-79, 2006.
DOI : 10.1016/j.ijhydene.2006.01.018

J. Luciani, Myrte platform : first results of daily peak load shaving, 2014.

T. Kushi, K. Sato, A. Unemoto, S. Hashimoto, K. Amezawa et al., Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres, Journal of Power Sources, vol.196, issue.19, pp.7989-93, 2011.
DOI : 10.1016/j.jpowsour.2011.05.040

J. Schefold, A. Brisse, and F. Tietz, Nine Thousand Hours of Operation of a Solid Oxide Cell in Steam Electrolysis Mode, Journal of The Electrochemical Society, vol.159, issue.2, pp.137-181, 2011.
DOI : 10.1149/2.076202jes

M. Laguna-bercero, R. Campana, A. Larrea, J. Kilner, and V. Orera, Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation, Journal of Power Sources, vol.196, issue.21, pp.8942-8949, 2011.
DOI : 10.1016/j.jpowsour.2011.01.015

I. Gibson, G. Dransfield, and J. Irvine, Influence of yttria concentration upon electrical properties and susceptibility to ageing of yttria-stabilised zirconias, Journal of the European Ceramic Society, vol.18, issue.6, pp.661-668, 1998.
DOI : 10.1016/S0955-2219(97)00173-8

B. Butz, P. Kruse, H. Störmer, D. Gerthsen, A. Müller et al., Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2, Solid State Ionics, vol.177, issue.37-38, pp.3275-84, 2006.
DOI : 10.1016/j.ssi.2006.09.003

B. Butz, R. Schneider, D. Gerthsen, M. Schowalter, and A. Rosenauer, Decomposition of 8.5 mol.% Y 2 O 3 -doped zirconia and its contribution to the degradation of ionic conductivity, Acta Mater, vol.57, 2009.

S. Chen, Y. Chen, H. Finklea, X. Song, G. Hackett et al., Crystal defects of yttria stabilized zirconia in Solid Oxide Fuel Cells and their evolution upon cell operation, Solid State Ionics, vol.206, 2012.
DOI : 10.1016/j.ssi.2011.11.008

C. Haering, A. Roosen, and H. Schichl, Degradation of the electrical conductivity in stabilised zirconia systems: Part I: yttria-stabilised zirconia, Solid State Ion, vol.176, 2005.

O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi et al., Phase relations and equations of state of ZrO 2 under high temperature and high pressure, Phys Rev B, vol.63, 2001.

J. Leger, P. Tomaszewski, A. Atouf, and A. Pereira, Pressure-induced structural phase transitions in zirconia under high pressure, Physical Review B, vol.47, issue.21, pp.14075-83, 1993.
DOI : 10.1103/PhysRevB.47.14075

W. Araki, T. Shimada, Y. Arai, T. Somekawa, K. Nakamura et al., Degradation of 8mol%-yttria stabilised zirconia subjected to compressive stress during annealing, Solid State Ionics, vol.221, pp.35-44, 2012.
DOI : 10.1016/j.ssi.2012.06.017

A. Faes, A. Nakajo, A. Hessler-wyser, D. Dubois, A. Brisse et al., RedOx study of anode-supported solid oxide fuel cell, Journal of Power Sources, vol.193, issue.1, pp.55-64, 2009.
DOI : 10.1016/j.jpowsour.2008.12.118

M. Cassidy, G. Lindsay, and K. Kendall, The reduction of nickel???zirconia cermet anodes and the effects on supported thin electrolytes, Journal of Power Sources, vol.61, issue.1-2, pp.189-92, 1996.
DOI : 10.1016/S0378-7753(96)02359-2

J. Sehested, J. Gelten, and S. Helveg, Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants, Applied Catalysis A: General, vol.309, issue.2, pp.237-283, 2006.
DOI : 10.1016/j.apcata.2006.05.017

A. Hauch, M. Mogensen, and A. Hagen, Ni/YSZ electrode degradation studied by impedance spectroscopy ? Effect of p(H 2 O) Solid State Ion, pp.547-51, 2011.

Y. Liu, S. Primdahl, and M. Mogensen, Effects of impurities on microstructure in Ni/YSZ???YSZ half-cells for SOFC, Solid State Ionics, vol.161, issue.1-2, pp.1-1010, 2003.
DOI : 10.1016/S0167-2738(03)00271-6

A. Hauch, S. Jensen, J. Bilde-sørensen, and M. Mogensen, Silica Segregation in the Ni???YSZ Electrode, Journal of The Electrochemical Society, vol.154, issue.7, pp.619-645, 2007.
DOI : 10.1149/1.2733861

S. Ebbesen, C. Graves, A. Hauch, S. Jensen, and M. Mogensen, Poisoning of Solid Oxide Electrolysis Cells by Impurities, Journal of The Electrochemical Society, vol.157, issue.10, pp.1419-1448, 2010.
DOI : 10.1149/1.3464804

R. Williford, L. Chick, G. Maupin, S. Simner, and J. Stevenson, Diffusion Limitations in the Porous Anodes of SOFCs, Journal of The Electrochemical Society, vol.150, issue.8, pp.1067-72, 2003.
DOI : 10.1149/1.1586300

J. Hardy, J. Templeton, D. Edwards, Z. Lu, and J. Stevenson, Lattice expansion of LSCF-6428 cathodes measured by in situ XRD during SOFC operation, Journal of Power Sources, vol.198, pp.76-82, 2012.
DOI : 10.1016/j.jpowsour.2011.09.099

N. Sakai, H. Kishimoto, K. Yamaji, T. Horita, M. Brito et al., Degradation Behavior at Interface of LSCF Cathodes and Rare Earth Doped Ceria, ECS Transactions, pp.389-98, 2007.
DOI : 10.1149/1.2729115

A. Mai, V. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stöver, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells, Solid State Ionics, vol.176, issue.15-16, 2005.
DOI : 10.1016/j.ssi.2005.03.009

H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai, Fundamental mechanisms limiting solid oxide fuel cell durability, Journal of Power Sources, vol.182, issue.2, pp.400-412, 2008.
DOI : 10.1016/j.jpowsour.2008.02.016

Y. Liu, C. B. Pu, J. Li, and J. , Performance degradation of impregnated La0.6Sr0.4Co0.2Fe0.8O3+Y2O3 stabilized ZrO2 composite cathodes of intermediate temperature solid oxide fuel cells, International Journal of Hydrogen Energy, vol.37, issue.5, pp.4388-93, 2012.
DOI : 10.1016/j.ijhydene.2011.11.151

E. Bucher and W. Sitte, Long-term stability of the oxygen exchange properties of (La,Sr)1???z(Co,Fe)O3????? in dry and wet atmospheres, Solid State Ionics, vol.192, issue.1, 2011.
DOI : 10.1016/j.ssi.2010.01.006

R. Liu, S. Kim, S. Taniguchi, T. Oshima, Y. Shiratori et al., Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes, Journal of Power Sources, vol.196, issue.17, pp.7090-7096, 2011.
DOI : 10.1016/j.jpowsour.2010.08.014

S. Jiang, S. Zhang, and Y. Zhen, Deposition of Cr Species at (La,Sr)(Co,Fe)O[sub 3] Cathodes of Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.1, pp.127-161, 2006.
DOI : 10.1149/1.2136077

M. Sohal, O. Brien, J. Stoots, C. Sharma, V. Yildiz et al., Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis, Journal of Fuel Cell Science and Technology, vol.9, issue.1, pp.11017-011017, 2011.
DOI : 10.1115/1.4003787

W. Bessler, S. Gewies, and M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta, vol.53, issue.4, pp.1782-800, 2007.
DOI : 10.1016/j.electacta.2007.08.030

W. Bessler, S. Gewies, C. Willich, G. Schiller, and K. Friedrich, Spatial Distribution of Electrochemical Performance in a Segmented SOFC: A??Combined Modeling and Experimental Study, Fuel Cells, vol.177, issue.3, pp.411-419, 2010.
DOI : 10.1002/fuce.200900083

URL : https://hal.archives-ouvertes.fr/hal-00552354

M. Vogler, A. Bieberle-hütter, L. Gauckler, J. Warnatz, and W. Bessler, Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode, Journal of The Electrochemical Society, vol.156, issue.5, 2009.
DOI : 10.1149/1.3095477

E. Hecht, G. Gupta, H. Zhu, A. Dean, R. Kee et al., Methane reforming kinetics within a Ni???YSZ SOFC anode support, Applied Catalysis A: General, vol.295, issue.1, pp.40-51, 2005.
DOI : 10.1016/j.apcata.2005.08.003

V. Janardhanan and O. Deutschmann, CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes, Journal of Power Sources, vol.162, issue.2, pp.1192-202, 2006.
DOI : 10.1016/j.jpowsour.2006.08.017

E. Lay-grindler, J. Laurencin, G. Delette, J. Aicart, M. Petitjean et al., Micro modelling of solid oxide electrolysis cell: From performance to durability, International Journal of Hydrogen Energy, vol.38, issue.17, pp.6917-6946, 2013.
DOI : 10.1016/j.ijhydene.2013.03.162

D. Grondin, J. Deseure, P. Ozil, J. Chabriat, B. Grondin-perez et al., Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design, vol.91, issue.1, pp.134-174, 2013.
DOI : 10.1016/j.cherd.2012.06.003

J. Young and B. Todd, Modelling of multi-component gas flows in capillaries and porous solids, International Journal of Heat and Mass Transfer, vol.48, issue.25-26, pp.5338-53, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.07.034

B. Todd and J. Young, Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling, Journal of Power Sources, vol.110, issue.1, pp.186-20010, 2002.
DOI : 10.1016/S0378-7753(02)00277-X

L. Luo, Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures, Physical Review E, vol.67, issue.3, 2003.
DOI : 10.1103/PhysRevE.67.036302

M. Mccracken, Lattice Boltzmann methods for binary mixtures with different molecular weights, Physical Review E, vol.71, issue.4, 2005.
DOI : 10.1103/PhysRevE.71.046704

A. Joshi, A. Peracchio, K. Grew, and W. Chiu, Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries, Journal of Physics D: Applied Physics, vol.40, issue.9, pp.2961-71, 2007.
DOI : 10.1088/0022-3727/40/9/044

A. Joshi, K. Grew, A. Peracchio, and W. Chiu, Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode, Journal of Power Sources, vol.164, issue.2, 2007.
DOI : 10.1016/j.jpowsour.2006.10.101

K. Grew, A. Joshi, and W. Chiu, Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-scale Lattice Boltzmann Study with Detailed Reaction Kinetics, Fuel Cells, vol.150, issue.6, pp.1143-56, 2010.
DOI : 10.1002/fuce.201000078

A. Joshi, A. Peracchio, K. Grew, and W. Chiu, Lattice Boltzmann method for multicomponent , non-continuum mass diffusion, J Phys Appl Phys, vol.404023, pp.7593-60010, 2007.

R. Suwanwarangkul, E. Croiset, M. Fowler, P. Douglas, E. Entchev et al., Performance comparison of Fick???s, dusty-gas and Stefan???Maxwell models to predict the concentration overpotential of a SOFC anode, Journal of Power Sources, vol.122, issue.1, pp.9-18, 2003.
DOI : 10.1016/S0378-7753(02)00724-3

Y. Vural, L. Ma, D. Ingham, and M. Pourkashanian, Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes, Journal of Power Sources, vol.195, issue.15, pp.4893-904, 2010.
DOI : 10.1016/j.jpowsour.2010.01.033

J. Laurencin, D. Kane, G. Delette, J. Deseure, and F. Lefebvre-joud, Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production, Journal of Power Sources, vol.196, issue.4, pp.2080-93, 2011.
DOI : 10.1016/j.jpowsour.2010.09.054

URL : https://hal.archives-ouvertes.fr/cea-00804211

P. Aguiar, C. Adjiman, and N. Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance, Journal of Power Sources, vol.138, issue.1-2, pp.120-156, 2004.
DOI : 10.1016/j.jpowsour.2004.06.040

P. Aguiar, C. Adjiman, and N. Brandon, Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell, Journal of Power Sources, vol.147, issue.1-2, pp.136-183, 2005.
DOI : 10.1016/j.jpowsour.2005.01.017

P. Iora, P. Aguiar, C. Adjiman, and N. Brandon, Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis, Chemical Engineering Science, vol.60, issue.11, pp.2963-75, 2005.
DOI : 10.1016/j.ces.2005.01.007

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.166, issue.1, pp.127-163, 2007.
DOI : 10.1016/j.jpowsour.2006.12.081

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.354-64, 2008.
DOI : 10.1016/j.jpowsour.2008.01.069

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.46-55, 2008.
DOI : 10.1016/j.jpowsour.2008.02.026

Q. Cai, E. Luna-ortiz, C. Adjiman, and N. Brandon, The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model-Based Study, Fuel Cells, vol.34, issue.6, pp.1114-1142, 2010.
DOI : 10.1002/fuce.200900211

URL : https://hal.archives-ouvertes.fr/hal-00591285

P. Iora, M. Taher, P. Chiesa, and N. Brandon, A one dimensional solid oxide electrolyzer-fuel cell stack model and its application to the analysis of a high efficiency system for oxygen production, Chemical Engineering Science, vol.80, pp.293-305, 2012.
DOI : 10.1016/j.ces.2012.06.032

M. Ni, M. Leung, and D. Leung, An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production, Chemical Engineering & Technology, vol.233, issue.5, pp.636-678, 2006.
DOI : 10.1002/ceat.200500378

M. Ni, M. Leung, and D. Leung, A modeling study on concentration overpotentials of a reversible solid oxide fuel cell, Journal of Power Sources, vol.163, issue.1, pp.460-466, 2006.
DOI : 10.1016/j.jpowsour.2006.09.024

M. Ni, M. Leung, and D. Leung, Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production, Electrochimica Acta, vol.52, issue.24, pp.6707-6725, 2007.
DOI : 10.1016/j.electacta.2007.04.084

M. Ni, M. Leung, and D. Leung, Parametric study of solid oxide steam electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol.32, issue.13, pp.2305-2318, 2007.
DOI : 10.1016/j.ijhydene.2007.03.001

M. Ni, M. Leung, and D. Leung, Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer, International Journal of Hydrogen Energy, vol.33, issue.15, pp.4040-4047, 2008.
DOI : 10.1016/j.ijhydene.2008.05.065

M. Ni, Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production, International Journal of Hydrogen Energy, vol.34, issue.18, pp.7795-806, 2009.
DOI : 10.1016/j.ijhydene.2009.07.080

M. Ni, Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis, Chemical Engineering Journal, vol.164, issue.1, pp.246-54, 2010.
DOI : 10.1016/j.cej.2010.08.032

M. Ni, An electrochemical model for syngas production by co-electrolysis of H2O and CO2, Journal of Power Sources, vol.202, pp.209-225, 2012.
DOI : 10.1016/j.jpowsour.2011.11.080

X. Jin and X. Xue, Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions, Journal of Power Sources, vol.195, issue.19, pp.6652-6660, 2010.
DOI : 10.1016/j.jpowsour.2010.04.018

X. Jin and X. Xue, Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations, International Journal of Hydrogen Energy, vol.35, issue.14, pp.7321-7329, 2010.
DOI : 10.1016/j.ijhydene.2010.04.158

Y. Xie and X. Xue, Modeling of solid oxide electrolysis cell for syngas generation with detailed surface chemistry, Solid State Ionics, vol.224, pp.64-73, 2012.
DOI : 10.1016/j.ssi.2012.07.015

F. Usseglio-viretta, J. Laurencin, G. Delette, J. Villanova, P. Cloetens et al., Quantitative microstructure characterization of a Ni???YSZ bi-layer coupled with simulated electrode polarisation, Journal of Power Sources, vol.256, pp.394-403, 2014.
DOI : 10.1016/j.jpowsour.2014.01.094

J. Deseure, Y. Bultel, L. Dessemond, and E. Siebert, Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta, vol.50, issue.10, pp.2037-2083, 2005.
DOI : 10.1016/j.electacta.2004.09.012

URL : https://hal.archives-ouvertes.fr/hal-00417212

M. Ni, M. Leung, and D. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), International Journal of Hydrogen Energy, vol.33, issue.9, pp.2337-54, 2008.
DOI : 10.1016/j.ijhydene.2008.02.048

S. Chan, K. Khor, and Z. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources, vol.93, issue.1-2, pp.130-170, 2001.
DOI : 10.1016/S0378-7753(00)00556-5

S. Chan and Z. Xia, Polarization effects in electrolyte/electrode-supported solid oxide fuel cells, Journal of Applied Electrochemistry, vol.32, issue.3, pp.339-386, 2002.
DOI : 10.1023/A:1015593326549

P. Li and M. Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources, vol.124, issue.2, pp.487-98, 2003.
DOI : 10.1016/j.jpowsour.2003.06.001

J. Deseure, Y. Bultel, L. Dessemond, E. Siebert, and P. Ozil, Modelling the porous cathode of a SOFC: oxygen reduction mechanism effect, Journal of Applied Electrochemistry, vol.113, issue.115, pp.129-165, 2007.
DOI : 10.1007/s10800-006-9208-x

URL : https://hal.archives-ouvertes.fr/hal-00333781

D. Grondin, J. Deseure, A. Brisse, M. Zahid, and P. Ozil, Simulation of a high temperature electrolyzer, Journal of Applied Electrochemistry, vol.49, issue.88, pp.933-974, 2009.
DOI : 10.1007/s10800-009-0030-0

URL : https://hal.archives-ouvertes.fr/hal-01202289

D. Grondin, J. Deseure, P. Ozil, J. Chabriat, B. Grondin-perez et al., Computing approach of cathodic process within solid oxide electrolysis cell: Experiments and continuum model validation, Journal of Power Sources, vol.196, issue.22, pp.9561-9568, 2011.
DOI : 10.1016/j.jpowsour.2011.07.033

J. Arriagada, P. Olausson, and A. Selimovic, Artificial neural network simulator for SOFC performance prediction, Journal of Power Sources, vol.112, issue.1, pp.54-60, 2002.
DOI : 10.1016/S0378-7753(02)00314-2

J. Milewski and K. ?wirski, Modelling the SOFC behaviours by artificial neural network, International Journal of Hydrogen Energy, vol.34, issue.13, pp.5546-53, 2009.
DOI : 10.1016/j.ijhydene.2009.04.068

D. Grondin, J. Deseure, P. Ozil, J. Chabriat, B. Grondin-perez et al., Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design, vol.91, issue.1
DOI : 10.1016/j.cherd.2012.06.003

S. Adler, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes, Journal of The Electrochemical Society, vol.143, issue.11, 1996.
DOI : 10.1149/1.1837252

S. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, vol.135, issue.1-4, pp.603-615, 2000.
DOI : 10.1016/S0167-2738(00)00423-9

D. Marinha, L. Dessemond, and E. Djurado, Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3????? cathodes deposited by Electrostatic Spray Deposition, Journal of Power Sources, vol.197, pp.80-87, 2012.
DOI : 10.1016/j.jpowsour.2011.09.049

Y. Kim, S. Pyun, J. Kim, and G. Lee, Mixed Diffusion and Charge-Transfer-Controlled Oxygen Reduction on Dense La[sub 1???x]Sr[sub x]Co[sub 0.2]Fe[sub 0.8]O[sub 3?????] Electrodes with Various Sr Contents, Journal of The Electrochemical Society, vol.154, issue.8, 2007.
DOI : 10.1149/1.2744135

N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, and A. Caneiro, Electrode reaction of Sr1???xLaxCo0.8Fe0.2O3????? with x=0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600???T???800????C, Solid State Ionics, vol.177, issue.9-10, pp.907-920, 2006.
DOI : 10.1016/j.ssi.2006.02.009

URL : https://hal.archives-ouvertes.fr/hal-00333651

J. Nielsen, T. Jacobsen, and M. Wandel, Impedance of porous IT-SOFC LSCF:CGO composite cathodes, Electrochimica Acta, vol.56, issue.23, pp.7963-74, 2011.
DOI : 10.1016/j.electacta.2011.05.042

J. Jamnik, J. Maier, and S. Pejovnik, A powerful electrical network model for the impedance of mixed conductors, Electrochimica Acta, vol.44, issue.24, pp.4139-4184, 1999.
DOI : 10.1016/S0013-4686(99)00128-0

J. Jamnik and J. Maier, Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications, Physical Chemistry Chemical Physics, vol.3, issue.9, pp.1668-78, 2001.
DOI : 10.1039/b100180i

F. Baumann, J. Fleig, H. Habermeier, and J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3????? model electrodes, Solid State Ionics, vol.177, issue.11-12, pp.1071-81, 2006.
DOI : 10.1016/j.ssi.2006.02.045

F. Baumann, J. Maier, and J. Fleig, The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes, Solid State Ionics, vol.179, issue.21-26, pp.1198-204, 2008.
DOI : 10.1016/j.ssi.2008.02.059

M. Prestat, J. Koenig, and L. Gauckler, Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3????? electrodes, Journal of Electroceramics, vol.80, issue.153, pp.87-101, 2007.
DOI : 10.1007/s10832-007-9012-y

N. Simrick, A. Bieberle-hütter, T. Ryll, J. Kilner, A. Atkinson et al., An investigation of the oxygen reduction reaction mechanism of La0.6Sr0.4Co0.2Fe0.8O3 using patterned thin films, Solid State Ionics, vol.206, pp.7-16, 2012.
DOI : 10.1016/j.ssi.2011.10.029

A. Esquirol, N. Brandon, J. Kilner, and M. Mogensen, Electrochemical Characterization of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 Cathodes for Intermediate-Temperature SOFCs, J Electrochem Soc, vol.151, 2004.

S. Hershkovitz, S. Baltianski, and Y. Tsur, Electrochemical Impedance Analysis of SOFC Cathode Reaction Using Evolutionary Programming, Fuel Cells, vol.33, issue.88, pp.77-85, 2012.
DOI : 10.1002/fuce.201100126

A. Leonide, B. Rüger, A. Weber, W. Meulenberg, and E. Ivers-tiffée, Impedance Study of Alternative (La,Sr)FeO[sub 3?????] and (La,Sr)(Co,Fe)O[sub 3?????] MIEC Cathode Compositions, Journal of The Electrochemical Society, vol.157, issue.2, 2010.
DOI : 10.1149/1.3265473

B. Angoua and E. Slamovich, Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3????????Ce0.8Gd0.2O1.9 (LSCF???CGO) thin film cathodes, LSCF?CGO) thin film cathodes, pp.10-17, 2012.
DOI : 10.1016/j.ssi.2012.02.015

P. Murray, E. Sever, M. Barnett, and S. , Electrochemical performance of (La,Sr)(Co,Fe)O3???(Ce,Gd)O3 composite cathodes, Solid State Ionics, vol.148, issue.1-2, pp.27-34, 2002.
DOI : 10.1016/S0167-2738(02)00102-9

R. Brodkey and H. Hershey, Transport phenomena: a unified approach, 1988.

R. Perry and . Green, Perry's chemical engineers' handbook, 2008.

K. Eguchi, T. Hatagishi, and H. Arai, Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceria-based electrolyte. Solid State Ion, Part, vol.2, issue.96, pp.86-881245, 1996.

S. Adler, B. Henderson, M. Wilson, D. Taylor, and R. Richards, Reference electrode placement and seals in electrochemical oxygen generators, Solid State Ionics, vol.134, issue.1-2, pp.35-4210, 2000.
DOI : 10.1016/S0167-2738(00)00711-6

M. Cimenti, A. Co, V. Birss, and J. Hill, Distortions in Electrochemical Impedance Spectroscopy Measurements Using 3-Electrode Methods in SOFC. I ??? Effect of Cell Geometry, Fuel Cells, vol.73, issue.5, pp.364-76, 2007.
DOI : 10.1002/fuce.200700019

J. Rutman and I. Riess, Reference electrodes for thin-film solid-state ionic devices, Solid State Ionics, vol.179, pp.108-120, 2008.
DOI : 10.1016/j.ssi.2007.12.040

J. Rutman and I. Riess, Placement of reference electrode in solid state electrolyte cells, Solid State Ionics, vol.179, issue.21-26, pp.913-921, 2008.
DOI : 10.1016/j.ssi.2008.01.071

J. Rutman and I. Riess, Placement of reference electrode in solid electrolyte cells, Electrochimica Acta, vol.52, issue.20, pp.6073-83, 2007.
DOI : 10.1016/j.electacta.2007.03.033

S. Adler, Reference Electrode Placement in Thin Solid Electrolytes, Journal of The Electrochemical Society, vol.149, issue.5, 2002.
DOI : 10.1149/1.1467368

E. Tsipis and V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, Journal of Solid State Electrochemistry, vol.150, issue.153, pp.1367-91, 2008.
DOI : 10.1007/s10008-007-0468-0

G. Schiller, A. Ansar, M. Lang, and O. Patz, High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC), Journal of Applied Electrochemistry, vol.11, issue.1, pp.293-301, 2008.
DOI : 10.1007/s10800-008-9672-6

J. Laplume, Bases théoriques de la mesure de la résistivité et de la constante de hall par la méthode des pointes, Onde Électr, p.113, 1955.

K. ?wierczek and M. Gozu, Structural and electrical properties of selected La1???xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides, Journal of Power Sources, vol.173, issue.2, pp.695-704, 2007.
DOI : 10.1016/j.jpowsour.2007.05.052

S. Primdahl and M. Mogensen, Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes, Journal of The Electrochemical Society, vol.146, issue.8, pp.2827-2860, 1999.
DOI : 10.1149/1.1392015

P. Hjalmarsson, M. Søgaard, and M. Mogensen, Electrochemical behaviour of (La1???xSrx)sCo1???yNiyO3????? as porous SOFC cathodes, Solid State Ionics, vol.180, issue.26-27, pp.1395-405, 2009.
DOI : 10.1016/j.ssi.2009.08.007