M. Aubinet, T. Vesala, D. Papale, and . Eddy, Covariance: A Practical Guide to Measurement and Data Analysis, 2012.

D. Barrett and L. Renzullo, On the Efficacy of Combining Thermal and Microwave Satellite Data as Observational Constraints for Root-Zone Soil Moisture Estimation. CSIRO Land and Water, pp.1109-1127, 2009.

S. M. Bateni, D. Entekhabi, and D. S. Jeng, Variational assimilation of land surface temperature and the estimation of surface energy balance components, Journal of Hydrology, vol.481, pp.143-156
DOI : 10.1016/j.jhydrol.2012.12.039

F. Castelli, D. Entekhabi, E. Caporali, T. Polcher, J. et al., Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance, Water Resources Research, vol.122, issue.D17, pp.3115-3125, 1999.
DOI : 10.1029/1999WR900140

N. Ducoudré, K. Laval, and A. Perrier, SECHIBA, a New Set of Parameterizations of the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric General Circulation Model, Journal of Climate, vol.6, issue.2, pp.248-273, 1993.
DOI : 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2

G. Evensen, The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, vol.53, issue.4, pp.343-367, 2003.
DOI : 10.1007/s10236-003-0036-9

P. Friedlingstein, G. Joel, C. B. Field, and I. Fung, Toward an allocation scheme for global terrestrial carbon models, Global Change Biology, vol.83, issue.7, pp.755-770, 1999.
DOI : 10.1146/annurev.ecolsys.19.1.573

D. Ghent, J. Kaduk, J. Remedios, and H. Balzter, Data assimilation into land surface models: the implications for climate feedbacks, International Journal of Remote Sensing, vol.2, issue.3, pp.617-632, 2011.
DOI : 10.1029/2008JD009807

R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical Software, vol.24, issue.4, pp.437-474, 1998.
DOI : 10.1145/293686.293695

J. C. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

D. E. Harrison, A. M. Chiodi, and G. A. Vecchi, Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific, Journal of Marine Research, vol.67, issue.6, pp.701-729, 2009.
DOI : 10.1357/002224009792006179

C. Huang, X. Li, and L. Lu, Retrieving land surface temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Cold and Arid Regions Environmental and Engineering Research Institute, 2003.

K. Ide, P. Courtier, M. Ghil, and A. Lorenc, Unified Notation for Data Assimilation : Operational, Sequential and Variational, Special Issue J. Meteorological Society Japan, vol.75, pp.181-189, 1997.

S. Kuppel, P. Peylin, F. Chevallier, C. Bacour, F. Maignan et al., Constraining a global ecosystem model with multi-site eddy-covariance data, Biogeosciences, vol.9, issue.10, pp.3757-3776, 2012.
DOI : 10.5194/bg-9-3757-2012-supplement

W. Lahoz and B. Khattatov, Data assimilation: making sense of Earth Observation, Frontiers in Environmental Science, vol.64, 2010.
DOI : 10.1002/fld.2153

L. Dimet, F. Talagrand, and O. , Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects. Dynamic Meteorology and Oceanography 38, 1986.

L. Nardi, C. Sorror, F. Badran, S. Thiria, and . Yao, YAO: A Software for Variational Data Assimilation Using Numerical Models, Computational Science and its Applications -ICCSA 2009. International Conference, pp.621-636, 2009.
DOI : 10.1121/1.2197790

URL : https://hal.archives-ouvertes.fr/hal-01125735

R. C. Pipunic, J. P. Walker, and A. Western, Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study, th International Congress on Modelling and Simulation, 2008.
DOI : 10.1016/j.rse.2007.02.038

R. Reichle, J. Walker, R. Koster, and P. Houser, Extended versus Ensemble Kalman Filtering for Land Data Assimilation, Journal of Hydrometeorology, vol.3, issue.6, pp.728-740, 2001.
DOI : 10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2

R. Reichle, S. Kumar, S. Mahanama, R. D. Koster, and Q. Liu, Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models, Journal of Hydrometeorology, vol.11, issue.5, pp.1103-1122, 2010.
DOI : 10.1175/2010JHM1262.1

M. Ridler, I. Sandholt, M. Butts, S. Lerer, E. Mougin et al., Calibrating a soil???vegetation???atmosphere transfer model with remote sensing estimates of surface temperature and soil surface moisture in a semi arid environment, Journal of Hydrology, vol.436, issue.437, pp.436-437, 2012.
DOI : 10.1016/j.jhydrol.2012.01.047

C. Robert, E. Blayo, and J. Verron, Comparison of reduced-order, sequential and variational data assimilation methods in the tropical Pacific Ocean, Ocean Dynamics, vol.131, issue.1???2, pp.5-6, 2006.
DOI : 10.1007/s10236-006-0079-9

URL : https://hal.archives-ouvertes.fr/hal-00172918

A. Saltelli, Sensitivity Analysis, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00386559

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.1046/j.1466-822x.2001.00175.x

M. Aubinet, T. Vesala, and D. Papale, Eddy Covariance: A Practical Guide to Measurement and Data Analysis, 2012.
DOI : 10.1007/978-94-007-2351-1

D. Baldocchi, E. Falge, L. Gu, R. Olson, D. Hollinger et al., FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem???Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bulletin of the American Meteorological Society, vol.82, issue.11, pp.2415-2434, 2001.
DOI : 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

D. Barrett and L. Renzullo, On the Efficacy of Combining Thermal and Microwave Satellite Data as Observational Constraints for Root-Zone Soil Moisture Estimation. CSIRO Land and Water, pp.1109-1127, 2009.

S. M. Bateni, D. Entekhabi, and D. S. Jeng, Variational assimilation of land surface temperature and the estimation of surface energy balance components, Journal of Hydrology, vol.481, pp.143-156, 2013.
DOI : 10.1016/j.jhydrol.2012.12.039

J. Brajard, Methodologie neuronale pour l'inversion des signaux satellitaires de couleur de l'ocean. Traitements des aerosols absorbants et restitution de la concentration en chlorophylle-a. These de doctorat de l'Université Paris 6, 2006.

L. Breierova and M. Choudhari, An Introduction to Sensitivity Analysis. Prepared for the MIT System Dynamics in Education Project, 1996.

P. Brender, Modélisation des flux de carbone, d'énergie et d'eau entre l'atmosphère et les écosystèmes de steppe sahélienne, avec un modèle de végétation global

G. Burba, Eddy Covariance Method, for Scientific, Industrial, Agricultural, and Regulatory Applications. LI-COR® Biosciences Editions, 2013.

W. Castaing, Analyse de sensibilité et estimation de paramètres pour la modélisation hydrologique : potentiel et limitations des méthodes variationnelles. These de doctorat de l'Université Joseph Fourier -Grenoble I, 2007.

F. Castelli, D. Entekhabi, and E. Caporali, Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance, Water Resources Research, vol.122, issue.D17, pp.3115-3125, 1999.
DOI : 10.1029/1999WR900140

D. Courault, R. Hadria, F. Ruget, A. Olioso, B. Duchemin et al., Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region, Hydrol. Earth Syst. Sci, vol.145194, pp.1731-174410, 1731.
URL : https://hal.archives-ouvertes.fr/ird-00553940

D. Rosnay, P. Calvet, J. Kerr, Y. Wigneron, J. Lematre et al., SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing, Remote Sensing of Environment, vol.102, issue.3-4, pp.377-389, 2006.
DOI : 10.1016/j.rse.2006.02.021

URL : https://hal.archives-ouvertes.fr/hal-00088010

D. Orgeval and T. , Impact du changement climatique sur le cycle de l'eau en Afrique de l'Ouest : Modelisation et incertitudes, 2006.

N. Ducoudré, K. Laval, and A. Perrier, SECHIBA, a New Set of Parameterizations of the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric General Circulation Model, Journal of Climate, vol.6, issue.2, pp.248-273, 1993.
DOI : 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2

C. François, C. Ottlé, and L. Prévot, Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements, International Journal of Remote Sensing, vol.18, issue.12, pp.2587-2621, 1997.
DOI : 10.1080/014311697217495

M. Fréchet, Sur la loi de répartition de certaines grandeurs géographiques, Journal de la Société de Statistiques de Paris, vol.82, pp.114-122, 1941.

P. Friedlingstein, J. G. Field, C. B. Fung, and I. , Toward an allocation scheme for global terrestrial carbon models, Global Change Biology, vol.83, issue.7, pp.755-770, 1999.
DOI : 10.1146/annurev.ecolsys.19.1.573

G. Evensen, The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, vol.53, issue.4, pp.343-367, 2003.
DOI : 10.1007/s10236-003-0036-9

R. Gâteaux, Fonctions d'une infinit?? de variables ind??pendantes, Bulletin de la Soci&#233;t&#233; math&#233;matique de France, vol.2, pp.70-96, 1919.
DOI : 10.24033/bsmf.995

D. Ghent, J. Kaduk, J. Remedios, and H. Balzter, Data assimilation into land surface models: the implications for climate feedbacks, International Journal of Remote Sensing, vol.2, issue.3, pp.617-632, 2011.
DOI : 10.1029/2008JD009807

R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical Software, vol.24, issue.4, pp.437-474, 1998.
DOI : 10.1145/293686.293695

J. C. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

T. Greenwald, T. Vukicevic, L. Grasso, and T. Voder-haar, Adjoint sensitivity analysis of an observational operator for visible and infrared cloudy-sky radiance assimilation, Quarterly Journal of the Royal Meteorological Society, vol.57, issue.597, pp.685-705, 2004.
DOI : 10.1256/qj.03.44

D. E. Harrison, A. M. Chiodi, and G. A. Vecchi, Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific, Journal of Marine Research, vol.67, issue.6, pp.701-729, 2009.
DOI : 10.1357/002224009792006179

L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, 2012.
DOI : 10.1145/2450153.2450158

C. Huang, X. Li, and L. Lu, Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Cold and Arid Regions Environmental and Engineering Research Institute, 2003.

H. Järvinen, Observations and diagnostic tools for data assimilation Meteorological Training Course Lecture Notes. European Centre for Medium-Range Weather Forecasts (ECMWF), 1998.

A. Kane, Assimilation De Donnees In Situ Et Satellitaires Dans Le Modele De Biogeochimie Marine PISCES. These de doctorat de l'Université-de-Versailles-Saint-Quentin-en- Yvelines, 2010.

M. Kirkby, P. Naden, T. Burt, and D. Butcher, Computer simulation in physical geography, 1992.

G. Krinner, N. Viovy, N. Noblet-ducoudre, . De, J. Ogee et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.113, issue.D19, 2005.
DOI : 10.1029/2002JD002559

URL : https://hal.archives-ouvertes.fr/insu-00374606

S. Kuppel, Assimilation de mesures de flux turbulents d'eau et de carbone dans un modèle de la biosphère continentale. These de doctorat de l'Université-de-Versailles-Saint- Quentin-en-Yvelines, 2012.

S. Kuppel, Assimilation de Mesures de Flux turbulents d'eau et de carbone dans un modèle de la Biosphere Continentale. These de doctorat de l'Université de Versailles Saint- Quentin-en-Yvelines

W. Lahoz and B. Khattatov, Data assimilation: making sense of Earth Observation, Frontiers in Environmental Science, vol.64, 2010.
DOI : 10.1002/fld.2153

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

Y. Liu and H. Gupta, Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resources Research, vol.52, issue.3, pp.10-1029, 2007.
DOI : 10.1029/2006WR005756

S. Louvel, Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM, Journal of Geophysical Research: Oceans, vol.121, issue.1B, pp.9199-9212, 2001.
DOI : 10.1029/1999JC000060

A. Manrique-sunen, A. Nordbo, G. Balsamo, and A. Beljaars, Representing Land Surface Heterogeneity: Offline Analysis of the Tiling Method, Journal of Hydrometeorology, vol.14, issue.3, pp.850-868, 2013.
DOI : 10.1175/JHM-D-12-0108.1

A. Musy and C. Higy, Hydrologie 1: Une science de la nature, Presses Polytechniques et Universitaires Romandes, 2003.

A. Musy, M. Soutter, and . Physique, Collection Gérer L'environnement, Presses Polytechniques et Universitaires Romandes, 1991.

L. Nardi, Formalisation et automatisation de YAO, générateur de code pour l'assimilation variationnelle de données, These de doctorat du Conservatoire National d'Arts et Metiers, 2011.

L. Nardi, C. Sorror, F. Badran, S. Thiria, and . Yao, YAO: A Software for Variational Data Assimilation Using Numerical Models, Computational Science and its Applications - ICCSA 2009. International Conference, pp.621-636, 2009.
DOI : 10.1121/1.2197790

URL : https://hal.archives-ouvertes.fr/hal-01125735

A. Olioso, Y. Inoue, S. Ortega-farias, J. Demarty, J. P. Wigneron et al., Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models, Irrigation and Drainage Systems, vol.69, issue.3-4, pp.377-412, 2005.
DOI : 10.1007/s10795-005-8143-z

M. Parrens, Assimilation des données SMOS dans un modèle des surfaces continentales : mise en oeuvre et évaluation sur la France, 2013.

M. Parrens, J. Mahfouf, A. Barbu, and J. Calvet, Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local scale. Manuscript prepared for Hydrol, Earth Syst. Sci. Discuss, 2013.

R. C. Pipunic, J. P. Walker, and A. Western, Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study, 19th International Congress on Modelling and Simulation, 2008.
DOI : 10.1016/j.rse.2007.02.038

C. Pires, R. Vautard, and O. Talagrand, On extending the limits of variational assimilation in nonlinear chaotic systems, Tellus A, vol.48, issue.1, pp.96-121, 1996.
DOI : 10.1034/j.1600-0870.1996.00006.x

J. Polcher, B. Mcavaney, P. Viterbo, M. Gaertner, A. Hahmann et al., A proposal for a general interface between land surface schemes and general circulation models, Global and Planetary Change, vol.19, issue.1-4, pp.263-278, 1998.
DOI : 10.1016/S0921-8181(98)00052-6

R. H. Reichle and R. D. Koster, Bias reduction in short records of satellite soil moisture, Geophysical Research Letters, vol.107, issue.D20, 2004.
DOI : 10.1029/2004GL020938

R. Reichle, S. Kumar, S. Mahanama, R. Koster, and Q. Liu, Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models, Journal of Hydrometeorology, vol.11, issue.5, pp.1103-1122, 2010.
DOI : 10.1175/2010JHM1262.1

M. Ridler, I. Sandholt, M. Butts, S. Lerer, E. Mougin et al., Calibrating a soil???vegetation???atmosphere transfer model with remote sensing estimates of surface temperature and soil surface moisture in a semi arid environment, Journal of Hydrology, vol.436, issue.437, pp.436-437, 2011.
DOI : 10.1016/j.jhydrol.2012.01.047

C. Robert, E. Blayo, and J. Verron, Comparison of reduced-order, sequential and variational data assimilation methods in the tropical Pacific Ocean, Ocean Dynamics, vol.131, issue.1???2, pp.5-6, 2006.
DOI : 10.1007/s10236-006-0079-9

URL : https://hal.archives-ouvertes.fr/hal-00172918

S. Rump, How reliable are results of computers, Jahrbuch Uberblicke Mathematik, pp.163-168, 1983.

A. Saltelli, Sensitivity Analysis, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00386559

K. Scipal, T. Holmes, R. De-jeu, V. Naeimi, and W. Wagner, A possible solution for the problem of estimating the error structure of global soil moisture data sets, Geophysical Research Letters, vol.8, issue.D19, 1029.
DOI : 10.1029/2008GL035599

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.1046/j.1466-822x.2001.00175.x

H. Svendsen, The effect of clear sky radiation on crop surface temperature determined by thermal thermometry, Agricultural and Forest Meteorology, vol.50, issue.3, pp.239-243, 1990.
DOI : 10.1016/0168-1923(90)90057-D

S. Thiria, F. Badran, C. Sorror, and . Yao, Un logiciel pour les modeles numeriques et l'assimilation de donnees, 2006.

J. Wainwright and M. Mulligan, Environmental Modeling: Finding Simplicity in Complexity, 2004.

F. 4. 1yao, . Input, . Output, F. Components, . Nardi et al., USER, p.61, 2011.

B. Outputs, U. Fluxnet, . Park, . Forcing, . Variables et al., EACH CURVE IS A TIME SERIES DURING 4 DAYS OF 8 DIAGNOSTIC, p.71, 2003.

T. Result, . Kruger, . Park, . From, . Without et al., WITH, RESIDUE CURVE (BLUE) MUST VARY AS ? 2, p.75, 2003.

C. Between, . Tb, S. Hum-cste-=0magenta-), . Tb, . Hum-cste-= et al., FROM 02, BLUE) AND SMOSREX ORIGINAL MEASUREMENTS OF TB (GREEN), vol.4, issue.4 09336, p.127, 2006.