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Chapter 1

Introduction

Ce travail porte sur des équations aux dérivées partielles issues de la physique mathéma-
tique, plus particulierement sur celles régissant la supraconductivité. Ainsi, la majorité
du travail concerne le modele de Ginzburg-Landau, qui est un modele macroscopique de
supraconducteurs de type-II. Ce travail est divisé en deux parties principales:

e La premiere partie se focalise sur ’analyse des vortex du modele de Ginzburg-
Landau en deux dimensions pour les supraconducteurs de type-II, modele con-
duisant a une estimation de la variation du nombre de vortex et a 1I’optimalité du
réseau d’Abrikosov parmi les réseaux de Bravais. Nous avons également étudié
certains modeles de stuctures des matériaux comme ceux de Lennard-Jones et de
Thomas-Fermi.

e La seconde partie est consacrée a la fonctionnelle de Ginzburg-Landau en dimen-
sion n. Deux résultats principaux sont obtenus. L'un porte sur 1’énergie renormal-
isée pour les minimiseurs de la fonctionnelle de Ginzburg-Landau. L’ autre concerne
les limites des solutions de 1’équation de Ginzburg-Landau. Ces deux résultats sont
fortement reliés aux applications n-harmoniques.

1.1 Analyse des vortex

Pour un supraconducteur de type-II refroidi en deca de la température critique, les vortex
apparaissent quand le champs magnétique extérieur est supérieur a une premiere valeur
dite critique. Le physicien russe Abrikosov a prédit I’apparition de réseaux de vortex
parfaitement triangulaires, désormais appelés réseaux d’ Abrikosov,a partir du modele de
Ginzburg-Landau en 1950. Celui-ci, destiné au départ a décrire les phénomenes de supra-
conductivité, a conduita de nombreux travaux en physique théorique. En revanche, il n’y
avait pas réellement de preuve mathématique rigoureuse pour la transition de phase se
produisant a la premiere valeur critique ni pour I’émergence des réseaux d’Abrikosov.
Depuis 1990, de nombreux mathématiciens se sont intéressés au modele de Ginzburg-
Landau, dont par exemple Berger, Baumann, Chapman, Du, Schatzman, Phillips, etc(
(32][49][11][21]). Parmi eux, Bethuel-Brezis-Helein[13] ont fait un travail remarquable
sur le modele de Ginzburg-Landau sans champ magnétique, sous la contrainte d’un nom-
bre fixé de vortex dans la limite ou les vortex deviennent des points. Ensuite, Bethuel
et Riviere ont étudié le modele avec jauge et une autre condition au bord ([15], [14]).

1



CHAPTER 1. INTRODUCTION

Concernant le modele avec champ magnétique et avec un nombre de vortex devenant in-
fini dans la limite ou les vortex deviennent des points, c’est en particulier grAéce aux
outils dévelopés par Sandier[62] et Jerrard[48], que I’on commencea pouvoir résoudre
ce probleme. Etienne Sandier et Sylvia Serfaty ont beaucoup écrit, individuellement ou
ensemble, sur le modele complet([63]). Notre travail sur les analyses des vortex est forte-
ment liéa leur démarche. Nous obtenons les résultats suivants :

1.1.1 Variation du Nombre de Vortex

Dans [82], nous étudions I’évolution du nombre de vortex dans un modele de Ginzburg-
Landau périodique. Il est conjecturé que le nombre de vortex pour un minimiseur de la
fonctionnelle de Ginzburg-Landau varie par pas d’une unité lorsque le champ magnétique
augmente. Par contre, il y a treés peu de preuves mathématiques rigoureuses de cette con-
jecture. Nous avons étudié ce probleme dans un cas particulier. Nous montrons que pour
le modele de Ginzburg-Landau doublement périodique, quand la cellule de périodicité
dégénere en un segment, le nombre de vortex pour un minimiseur de la fonctionnelle de
Ginzburg-Landau augmente un par un en fonction du champ magnétique appliqué. Ce
travail s’appuie sur [9]. Nous réduisons le probleme a celui de 1’étude des minimiseurs de
I’énergie de Ginzburg-Landau renormalisée. Utilisant la ['-convergence, nous parvenons
a connecter le modele en deux dimensions avec un modele en une dimension. Nous
montrons que pour I’énergie renormalisée en une dimension, le nombre de vortex du min-
imiseur augmente un par un en fonction du champ magnétique appliqué. Autrement dit,
I’énergie renormalisée en deux dimensions et le modele de Ginzburg-Landau périodique
ont pour limite une énergie renormalisée en une dimension quand la hauteur de la cellule
tend vers 0.

1.1.2 Optimalité des Réseaux d’Abrikosov

Nous avons plusieurs résultats pour ce probleme. Dans [81], nous montrons que le réseau
d’ Abrikosov, modulo les rotations, est un minimiseur unique pour 1’énergie renormalisée
de Ginzburg-Landau parmi tous les réseaux de Bravais a densité fixée. Ceci décrit un
supraconducteur dans un champ extérieur égal a H,, + C, pour lequel le réseau de vor-
tex est dilué: dans ce cas les vortex interagissent par un potentiel de Bessel au lieu du
potentiel log. Adaptant les méthodes de [64], nous pouvons réécrire 1’énergie renormal-
isée grice a une formule explicite utilisant les fonctions 8 de Jacobi. Ensuite, le résultat
de Montgomery [54] sur les fonctions # de Jacobi peut alors étre appliqué pour obtenir
notre résultat. En collaboration avec Laurent Bétermin, nous étudions 1’optimalité des
réseaux d’Abrikosov dans les modeles de Lennard-Jones et de Thomas-Fermi. Nous
montrons dans [12] que le minimiseur de I’énergie par particule pour I’interaction de
Lennard-Jones parmi les réseaux de Bravais est le réseau hexagonal pour de forte densité
de particules, mais que cela est faux pour une densité suffisamment faible. Nous montrons
également des résultats sur le minimiseur sans contrainte sur la densité. Dans cet article,
nous prouvons également que le minimiseur de 1’énergie par particule dans le modele de
Thomas-Fermi dans le plan parmi les réseaux de Bravais avec densité fixée est aussi le
réseau hexagonal, et ceci fournit une autre preuve de I’optimalité des réseaux d’ Abrikosov
parmi les réseaux de Bravais dans le modele de Ginzburg-Landau.

2 1.1. ANALYSE DES VORTEX



CHAPTER 1. INTRODUCTION

1.2 Fonctionnelle de type Ginzburg-Landau en dimen-
sions supérieures

Il y a beaucoup de travaux de recherche concernant le systeme de Ginzburg-Landau en
deux dimensions. Dans cette partie, nous étudions une fonctionnelle de type Ginzburg-
Landau en n dimensions.

Dans [13], Bethuel-Brézis-Hélein, en dimension deux, définissent une énergie renor-
malisée W pour des applications harmoniques a valeurs dans S' ayant un nombre fini de
singularités, et

1. Donnent une formule explicite de W;

2. Montrent que I’énergie de minimiseurs de I’énergie de Ginzburg-Landau a un développe-
ment asymptotique

E.(u;) = mdllngl + W(ay, - -+ ,aq) + O(1) (%)
ou W est I’énergie renormalisée citée précédemment.

Pour la dimension n, I’asymptotique des minimiseurs de 1’énergie de Ginzburg-Landau
est étudiée par Han and Li [42] qui démontrent que, comme en 2D les minimiseurs conver-
gent en dehors d’un nombre fini de points ay, - - - , a4 vers une application n— harmonique
ayant une singularité de degré 1 en chaque point.

Par ailleurs, Hardt-Lin-Wang[45] définissent une énergie renormalisée pour les appli-
cations n— harmoniques avec un nombre fini de singularités de degré 1, de Q c R" a
valeurs dans $"!. IIs démontrent également que les applications p— harmoniques min-
imisantes convergent quand p " n vers une telle application n— harmonique qui minimise

I’énergie renormalisée.

En collaboration avec Y.X. Ge et E. Sandier [40], nous montrons des résultats suivants:

1. L’application n— harmonique limite des minimiseurs de Ginzburg-Landau de Han-
Li [42] minimise I’énergie renormalisée.

2. Nous avons I’équivalent du développement asymptotique (*) pour les minimiseurs
de Ginzburg-Landau en dimension .

3. Nous étudions la limite de points critiques non nécessairement minimisants pour
I’énergie de Ginzburg-Landau en dimension 7n, et montrons un équivalent de la
“vanishing gradient property" de Bethuel-Brézis-Hélein [13] dans ce cadre. Con-
trairement au cas bidimensionnel, ou au cas des minimiseurs en dimension 7, des
singularités d’énergie finie ne peuvent pas étre exclues a priori dans notre étude.

4. Nous montrons également I’existence de telles suites de points critiques non min-
imisants pour I’énergie de Ginzburg-Landau en dimension trois.

1.2. FONCTIONNELLE DE TYPE GINZBURG-LANDAU EN DIMENSIONS 3
SUPERIEURES
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Chapter 2

Variations of the Vortex Number

In this chapter, we study the variations of the number of vortices contained in the mini-
mizer of a two-dimensional Ginzburg-Landau functional describing a Type-II supercon-
ductor in the London limit, with periodic conditions on the boundary of the sample. We
prove that, under the assumption that the sample is rectangular of area 1 with height far
smaller than its length, the number of vortices contained in the minimizer of the periodic
Ginzburg-Landau functional jumps by unit step as the applied magnetic field increases.
We convert the problem into the study of corresponding renormalized energy. By using
the I'-convergence we reduce the two dimensional renormalized energy to one dimen-
sional one. Then the result is obtained by analyzing the one dimensional model.

2.1 Introduction

In this chapter, we focus on the two-dimensional periodic Ginzburg-Landau model for
type-1I superconductivity. We study the variations of the vortex number contained in the
minimizer of a Ginzburg-Landau energy with periodic boundary conditions in the London
limit. We firstly study the related renormalized energy W, and get that if the height of the
lattice is small enough, then we get the variations of the number of points contained in
the minimizer of W. By using Theorem of [9], we have the same result about the
Ginzburg-Landau energy.

2.1.1 Background

Since the discovery of superconductivity in 1911 by Dutch physicist Kamerlingh Onnes,
many scientists from various subjects such as physics, material, mathematics and so on
have being abstracted by this magical phenomenon. There are a lot of excellent sources
for introduction to superconductivity. For example [73], [29], [61], [11] and [49]. For the
Type-II superconductor, when the applied magnetic field is above a certain value which
is called the first critical applied magnetic field, vortices would appear. The number of
vortices varies with the applied magnetic field.

An interesting question arising here is “How does the number of the vortices vary? ”
It grows one by one, or, for example, from 3 to 5 directly. The problem is complicated
due to the fact that the sample has boundaries if we consider common sample. Thus we
assume that the superconductor is large, and we are far from the boundary. In this case, the
physically relevant variables are in some sense periodic. We will study the question in the
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CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

periodic case. Periodic solutions of the Ginzburg-Landau energy were firstly studied by
A. Abrikosov in [2]. And since then, it has been being studied by many mathematicians
and physicists. For example the existence ([7],[57]), regularity of solutions ([32]), and
numeric analysis ([31]).

In the framework of periodic case, we solve this problem in a special case: when the
height of the lattice is small, the number of vortices jumps one by one as the applied
magnetic field grows. Our work will based on the work of [9] which gave a fairly unified
description of the vortices of minimizers of the periodic Ginzburg-Landau energy in the
London limit.

2.1.2 The main result

The Model.
Denote L be a parallelogram generated by two vectors (i, V), and L be the group of trans-
lations generated by (i, V). We say a function f(x) is periodic with respect to (i, V), if

FX + kit + mV) = f(x), Vk,m € Z,¥x € R%,

Here the function f(x) can be real, complex or vector valued.
We need the following function spaces

Hﬂ’l

loc

R?) = {u 'R> > C | R(u), I(u) € H"(D) for all bounded D C Rz} ,

Hﬂ’l

loc

(R?) = {A = (A}, A) : R* > R? | A;, A, € H"(D) for all bounded D c R?}.

Definition 2.1.1 (Gauge Equivalent). We say that two configurations (u, A) and (v, B)
are gauge equivalent if there exists a (smooth) function f : R?> — R, such that

v=ue’/, B=A+Vf
The transformation from (u, A) to (v, B) is called a gauge transformation.

Definition 2.1.2 (Periodic Space). We define the space H,,, to be the set of all (u,A) €
H, (R*)xH, (R?) such that for any k,m € Z, the configuration (u(- + kit + mv), A(- + kii +

mv)) is gauge equivalent to (u, A).

For (u,A) € ‘H,,.,, an &€ > 0 and an applied magnetic field /.,(¢), we define the periodic
Ginzburg-Landau energy as follows

GL.(u,A) = ! f IVaul® + |curlA — k> + i(l — ul*)*.
2J, 22
Here Vau := Vu—iAu, u is called “order parameter ” in physics, which indicates the local
state of the material(superconducting phase or normal phase), A is the vector potential of
the magnetic field, curlA is the induced magnetic field, 4., is the applied magnetic field,
and ¢ is the inverse of the Ginzburg-Landau parameter x. In H,,,, Vau and curlA are
periodic with respect to (iZ, V). The energy is invariant under the Gauge transformation.
For this periodic model, when the area of L equals to 1, we have the following two propo-
sitions and one theorem in [9]( See Proposition 2.1, Proposition 2.2 and Theorem 1 of

[9D.
6 2.1. INTRODUCTION



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

Proposition 2.1.1. The minimum of GL.(u, A) over H,,, is achieved.

Proposition 2.1.2. Given any (u,A) € H,,,, then

1
— f curlA € Z
27T L

Moreover, if (u;, A1) minimizes the Ginzburg-Landau energy with parameters € and h,, =
hy, and if (uy, Ay) minimizes the Ginzburg-Landau energy with parameters € and h,, =
hy, > hy, then ny > ny, where fori = 1,2,

1
n=— fcurlA,-.
2 J;

Remark 1. Foreach € > 0, the number of vortices contained in the minimizer of GL.(u, A)
in one lattice cell does not decrease as the applied magnetic field increases. Then there
exist a well defined value H¢,(g) such that the minimizer of GL.(u, A) with parameters
g and h,, satisfies n = 0 if h,, < Hc,(€), and n > 0 if h,, > Hc,(g). We call this value
“the first critical applied magnetic field ”. The author in [§] proved that the regime of the
He,(¢) is 3|log &l. We define A,y := h,, — 3|logél.

Remark 2. Note that when n = 0, the minimizers are gauge equivalent to Meissner
solution (1,0). In physics, it means that the material is in the superconducting state.

Theorem ([9]). Let (u., A;) be any minimizer of GL, h, = curlA,, and

1
n, = — f curlA,.
2r J;

Then the following behaviors of h., n. holds, according to the applied field h,,.

o If1 <A, <1/ thenase — 0,

Aex
— 1inW"P(L) (¥p < 2),andn, ~ ==.
2nn, 2r

o [f|A..| is bounded independently of €, then so are ||h.||lw1.»,Vp < 2 and n,. If {&} is
a subsequence such that {h.}, converges to h, and {A,.}. converges to a value A},,
then n, — n, € N, and in particular n, = n, for small enough &, then there are n,
distinct points {a;};", in L such that

i=

—Ah, +h, = 27ri5a,..

i=1

Moreover, forp = (p1,--- , pn) € P, where P is the family of sets of finite points.

Let
1
W(p, A;,) = lim (nn logp + 5 f Vi, + hlf) T n(y - 27A%),
p—
L\U;B(pi.p)
where hy, is the unique L-periodic solution of —Ahy+h, = 21 3’ 6,,. Then (a;,--- ,a,,)
i=1

minimizes W over P.

2.1. INTRODUCTION 7



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

The number vy is defined in [|13,63] as

L 1 2 (= ugl)?
R
B(0,R)

where uy is the unique solution of —Auy = uy(1 — |ug|?) in R? of the form uy(r,0) =
f()e®, with f : R, — R,.

o There exists a possibly negative A; € R s.t. if A, < Ay and € is small enough, then
n, = 0. In this case (u,, A,) is gauge equivalent to the Meissner solution(1,0).

Remark 3. From Proposition[2.1.21and the Theorem above, we could get that the number
of the points contained in the minimizer of the renormalized energy W would not decrease
as A, increases. We give a short proof as follows.

Proposition 2.1.3. The number of the points contained in the minimizer of the renormal-
ized energy W defined over P would not decrease as A, increases.

Proof. The proof is easy. Let (p,, A) (respectively (p,, A)) minimizes the renormalized
energy W with parameter A; (respectively A, and A; < A, ). Then we have

W(pl’AI) < W(pZ’Al)’ (21)
W(p,, A2) = W(p,, Ar). (2.2)

then apply 2.I) — @2.2), we have

27rn1(A2 — Al) < 27TI’l2(A2 - Al)

Then we have

O

In the left of the paper, we only consider a special case of the periodic model. We
1

consider the small rectangles, i.e. #LV. Let L = —3s %] %X [0, []. Note that now the area
of the lattice cell is /, rather than 1. However the existence of the renormalized energy W
is still true (see the proof in section 6 of [9]). It would be interesting to verify the regime
of the Hc,(e) if the area of the lattice cell is [. One can refer [50] for the regime of the
H¢, (e) for a domain with size tending to O or infinity as & tends to 0. Here we redefine
Aex = hex - HC1 (‘9)

We are interested in the variation of vortex number contained in the minimizer of
periodic Ginzburg-Landau energy. We have a result in a special case.

Theorem 2.1.1. Let L be the lattice cell defined above. For every N € N, there exists ly
and if e < | < Iy < 1, then there exists an exactly increasing sequence of N values

A +0(1) <Ay +0(1) <+ < Ay + o(1),

where A; does not depend on € and [, such that at h,, = H, = H¢,(€)+ A—l" +0(%), 1<n<N,
the number of vortices of the minimizer of GL, jumps from n to n + 1.

8 2.1. INTRODUCTION



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

The remainder of this chapter is organized as follows. Before studying the periodic
Ginzburg-Landau energy, we first study the corresponding renormalized energy W. In
Section 2.2.1] we prove that in dimension one, the number of the points contained in the
minimizer of W1, jumps one by one. In Section 2.2.2] we prove I'-convergence of I*E to
F, where E is the main part of W and F is the main part of W/, and both of them will be
defined later. Then in Section[2.3] we give the proof of Theorem 2.1.11

2.2 The Renormalized Energy

In this section, we study the renormalized energy W. First, we study the properties of a
energy Wp in one dimension. The motivation is in the case of two-dimension, when the
height [ of the lattice cell converges to 0, intuitively, the vortices would form lines, thus
the two dimensional model would degenerate to a one dimensional model. Second, we
prove the I'-convergence of I - E in two-dimension to F in one-dimension, where E is the
main part of W and F is the main part of W, and they will be defined later. In the proof,
we use ball growth method which was introduced independently in [48] and [62] to get
the lower bound. And then by using a similar method in [65] we get the upper bound.
Combine the upper bound and lower one together, we finish the proof of I'-convergence.

2.2.1 The Case of One Dimension

In this subsection, we consider the case of one dimension. Denote K be [—a/2,a/2] in
R! for any a > 0. Denote still by # the family of sets of finite points over K and for
p = {pi1,..., pn} € P where n € N, we define an energy

1
Win(p, A = 3 f |Vhy|* + hf) dx — 2mnA,,
K

where £, is the unique K-periodic solution of

~Ahy + hy =21 )" 6),.

i=1

Theorem 2.2.1. There exists an increasing sequence of critical values {A;}ren, such that
at each Ay, the number of points contained in the minimizer of Wp jumps from k to k + 1.
That means the number of points contained in the minimizer of Wp jumps one by one as
the A, grows.

First, let us consider the case of one point in K, i.e.

—h{(x) + ho(x) = 2md in K
ho(0%) = ho(07)
ho(a/2) = ho(-a/2)
hya/2) = hy(-a/2)
The solution has the form of
cie’ + e, x> 0;
ho(x) = . . (2.1)

e’ + cue x<0.

2.2. THE RENORMALIZED ENERGY 9



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

We can determine these constants by using the equation and boundary conditions(periodic
boundary conditions).

(c3—cy) —(c1—c)) = 2rm
C1+ ¢ Cc3 + Cq
+ Cze_a/2 c3e‘“/2

—Cze_a/2 = c3e‘“/2

al2
al?

)

- c4e"/2.

c1€
c1€

Then we have the solution x

Cc =
et — 1

et

a
“ (2.3)
er—1

V4
Cq = ot _ 1
For arbitrary p € K, h,(x) = ho(x — p) due to the periodicity. And what’s more, in the

case of only one point in K, all the solutions have the same energy.

Cy =

C3 =

1
Wip({0},A) = 3 f \Vho|* + hé dx — 27A,,
K

L |
= ST g,
e’ —1

Second, we consider the case of two points in K. From the linearity, we can easily get
that for points p = {pi, p»}, the solution hy = h,, + h,,.

Now we need to adjust the locations of these two points to minimize W p(p, A.,). Due
to the periodicity, we can fix one point at O firstly, then adjust the other one, i.e. consider
p =1{0,s},0 < s <a/2. Then

1

Win(p,A) = 3 f Vhyl* + hpy dx — 2 - 27mA,
K

“+1

- =2 27+ (0, 5)

2

et —

where f5(0,5) = [ Vho - Vhy+ ho - hy.
Divide K into four parts

s—a/2 0 X a2
(0, s) +f +f +f
—a/2 s—aj2 0 K

s—a/2 2 2.a 2.a
e _ 2mre —(2x—
f e2x s+a e 2x—s+a)

a2 (&%= 1) (e*—1)
0 2.2 2
+f 2me™ er—s 27 e—(2x—s)
s—a/2 (ea - 1)2 (ea - 1)2
* 2mPed 2" ey

2x—s§
—

o (e2—1) (e—1)
10 2.2. THE RENORMALIZED ENERGY
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a/2 2 2 .2a
+f 21 er—s + 2n7e e—(2x—s)
K

(e — 1) (e — 1)
2m%ed
= @onp© )
ﬂ-zeza ) s—a 7T2 a—s s
+m(e —¢ ) + m(e —€ )
2ret
(e — 1)2(6 —e’)
e 2
+— ) _ s—a + - a—s _ Ky
(e — 1)z(e e ) (e = 1)2(6 e’)
ﬂ.Zea 2 2a 2
= 4o (e —¢ " 2 (e — 5@ _raams S
(ea—l)z(e e’)+ ((ea—l)z(e € )+(e“—1)2(e e))
2 2
= o 1(es +e“7)
The derivative of f,(0, s) with respect to s is
dfp©,s) 2 o
4 e -1C )

And we can also get that f; is a strictly convex function by taking the second derivative
of £5(0, s). Then s = a/2 minimizes f>(0, s), i.e. minimizes W;p(p, A.,).

We now know that in the case of two points p = {p;, p»}, when |p; — p,| = a/2, the
minimum of W p is achieved,

a4 4 . 2 aal2
minWip(,Ay) =2 - 2 2. oA, + — L&
Ipl=2 e? —1 et —1
While
. e‘+1 ,
min Wp(p, A.x) = e =21,
[pl=1 e’ — 1

if we want minpp-o Wip(p, Acx) < minp-; Wip(p, A.x), we need

e+1 , 4.-g2-e%?
Vs
e’ —1 e’ —1
At last, we consider the general case. In fact, we can get some clue from the case of

three pOintS' Let p3 = {pl’p2’ p3}a and diSt(pl’p2) = 51, diSt(p2a p3) = $7, diSt(plap3) =
§3 = §1 + $2. Then the energy

27, >

e’ +1
ed —
where f3(p3) = f2(s1) + f2(s2) + fa(s1 + 52).

We need to minimize f3, which is in fact a function of sy, s,. Denote it as f3(sy, 57).
The minimizer of f; satisfies the equations as follows:

Win(ps, Ax) =3 -

7T2 -3 ZﬂAex + f3(p3)

0f3(s1) _0
881

Of3(s2) 0 4
8s2 B

2.2. THE RENORMALIZED ENERGY 11
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i.e.

esl _ ea—sl + es1+s2 _ ea—(Sl+S2) — 0
(2.5)

e’ _ @d=%2 4 @SS _ ea—(sl +52) _ 0.

The solution is

a
S1:S2:§,

then
2

min f3(p3) = -3 (e + 2.
Ip3|=3

e’ -1

Lemma 2.2.1. For arbitrary n € N, if there are n points in K, denote them as p, =

{pl’p2’ e apn}’ and diSt(pi’ pi+1) = sifori = 1, Y ( 1) then the minimum Offn(pn) is
a

reached if and only if sy, = s, =--- = §,.1 = —, and
n
212 212 ed — ed/n

min = cn- (@ e gy e Dalmy - ‘n- .

Ipnl:nfn(pn) pra— ( ) w1 T
Proof. In fact, f, is a function of sy,-- -, s,_;. Denote is as f,(s1, -, s,_1). We write f,
as a sum of functions of f>(-), and the variable are sy, s, - , 5,1, i.€.

fo = L)+ falsi+s2)+ -+ folsi+ 852+ -+ 5,01)

+(852) + folso + 83) + -+ folso+ 83+ + 5,-1)

+f2(sn—l)'

It is not difficult to certify that s; = s, = --- = 5,1 = — is a critical point, i.e. at the

n
a

point (4,¢,.-.,4) e R*!, we have

6fn
s
Ofn
882

af,,.

=0
8511—1

Since f, is a strictly convex function (it is the sum of convex functions f,(-), and there are
f»(s;) in the sum ) in R""!, it is the unique minimizer of f,. We substitute the value of s;
into f,, and then get its expression as above. O

Proof of Theorem[2.2. 1l For x > 0, define function

ed — ea/x
gx)=x- a1’
then min £, = ;’i - g(n) and because
g"'(x) >0,

12 2.2. THE RENORMALIZED ENERGY



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

thus it is a strictly convex function.
Now we prove that

g(x) isstrictly convex = A <Ay < A3 <.

i.e. the number of vortex jumps one by one.

We prove the theorem by contradiction. If the number of points contained in the
minimizer does not jump one by one, then there would exist m; < m, < mj3 and A,, such
that

min WlD(p’ Aex) < |£I|l:1n1;11 WlD(p’ Aex) < |i)l|l=1n1112 WlD(p’ Aex)

[pl=m3
Note that here 1
¢+
¢ 1712—m-27rA€x+fm.

WlD(pm, Aex) =m- ed

From the inequality above, we get

lnllin WlD(p’ Aex) - lnllin WlD(p’ Aex) 2 0, (26)
pl=m2 Pl=m
lmin WlD(pa Aex) - lr?in WlD(P, Aex) > 0 (27)
pl=m2 Pl=m3
then apply (m; — my) X @.6) + (my — m;) X 2.7) , we obtain
min f,,(p) 2 o min f,,(p) + ———— min £,,(p).
[pl=m; msz — my Ipl=ms ms — my Ipl=m
This contradicts the fact that g(x) is strictly convex. That finishes the proof. O

2.2.2 T'-Convergence

Recall the definition of L = [-31, 3] x [0,/], and the two dimensional Ginzburg-Landau
renormalized energy

1
W(p.A.,) = lim (ﬂn logp + 3 f I\VH? + H,Z) +n(y — 2nA%),
p—
L\U;B(pi.p)
where p = {pi}i<i<, for n € N are any n points in L, and H, is the unique L-periodic
solution of

—AH,+H,:27TZ§,. inL 08)

periodic boundary conditions on JL.

Denote S be the square [-1, 1] x [-1, 1].

We want to relate this two dimensional renormalized energy W(p, A.,) with the one
dimensional energy W p(p, A..), because we have already had the result on the variation
of vortex number in one dimension. For the solution /, in the case of one dimension, we
can expend it in the direction of Y-axis to get a two dimensional function over the square
S, 1.e. hp(x,y) = hp(x,0), where hp(x,0) is the solution of the one dimensional equation,
thus hp(x, y) satisfies

—Ahy(x,y) + hp(x, ) = 27 )" 61,,in S

i=1

(2.9)
periodic boundary conditions on 9§
2.2. THE RENORMALIZED ENERGY 13
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where Lp; is the line in R? passing p; and parallel with Y-axis, and Orp; € (C%*(S))* for
any « € [0, 1) such that

(Orpis ) = f fds forany f e C™(S). (2.10)
Lp;

i

For the convenience of notation, we write / as h,, if there is no confusion.
By using the periodic boundary condition, we rewrite the function (2.8)) as follows, it
is the same as (2.8]) because of the periodicity and uniqueness of the solution.

1/l n

—AH,+ Hy =21 )" > 6, inS o

=1 =1
periodic boundary conditions on S

where the set of points {p; ;} with1 <i<n,1<j< 7 comes from the periodic extension

1
of {p;} in L to the square S. For any i fixed the set of points {p; ;}._, lie on the same line

J:
. . . 1 -0 .
Ly, (in fact p; = p;1,,). Itis not difficult to prove that [}, 3, 6, —> Xi=; Orp, in

(C%(S))*,Ya € [0, 1). Then by the compact embedding of W'4(S) into C%#(S) for any
q > 2, we extract a convergent subsequence in W~'7(S§) for any p < 2. Then we have

IH, — hin W"P(S),p < 2

We define two related energy E and F as follows

p—0 2

L. 1 2 2
= —lim|nnlogp + = IVH,|” + |H|

[ p—0 2 L\UL Bi(pi.p)

1
F== f VAP + h*dxdy
2 s

) n 1 2 2
E =lim|n-logp + = \VH|" + |H||
[ S\ ;B(pi.j-0) Q. 12)

Theorem 2.2.2 (T convergence of ’E). For the energies E, F defined above, we have

PE - Fasi—o0.

More precisely,

o If 3, 0y = w in (C¥(S)*,Ya € [0, 1), where u = Y\, 6;, and independent of
I, then we have

1
1 n
ZZ; 2116[)” -0 L in (CO’Q(S))*,V(],/ c [0, 1),
=1 i=

and
lirln ionf PE(H)) > F(h).

14 2.2. THE RENORMALIZED ENERGY
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e For every measure jup = yv, 61, in (C*4(S))*, where &;, is defined as @10), L; is a
line which is parallel with Y-axis, then there exists a sequence of distribution

fp=1luy - pupasl— 0,
1
where p; is in the form of y; = 2}:1 =1 Op,, » such that

limsup PE(H)) < F(h).
-0

Lower bound

Ball growth method is a technical method to calculate energy on annuli which was intro-
duced independently in [48] and [62]. In this subsection, we use the frame of [63, Chaper
4]. By using this method, we can merge two tangent or overlapped balls into a single
ball that contains the original balls, and the radius of the new ball is equal to the sum of
the radii of the original balls. We will write r(B) for the radius of a ball B, r(*B) for the
sum of the radii of the balls in the collection of balls B, and B N U for the collection
{BNU|B € B}.

Lemma 2.2.2 (Ball growth). Let B be a finite collection of disjoint closed balls. There
exists a family {B(t)},cr+ of collections of disjoint closed balls such that B(0) = B, and
1. Forevery s >t >0,
| JBc | B
BeB(1) BeB(s)

2. There exists a finite set T C R* such that if [ty, t;] C R* \ T, then B(t;) = " B(t).
3. For every t € R*, r(B(t)) = e'r(B(0)).

Refer to Theorem 4.2 of [63] for the proof.

Lemma 2.2.3 (Merging). . Assume By and B, are two closed balls in R" such that B; N
B, # 0, then there is a ball B such that r(B) = r(B;y) + r(By) and B, U B, C B.

Refer to Lemma 4.1 of [63] for the proof.
Notation: We see function  (x, r) : R> x R* — R be defined also for collections of
balls. We write

F(B) = F(B(x,r)) .= F(x,r)

and

F(B) = Z F(B).

Be®B

Here we say that # is monotonic if 7 is continuous with respect to r and for any families
of disjoint closed balls B, , B, such that ( Jpey, B C (Upey, B

F(B1) < F(By).

This implies that ¥ is non-decreasing with respect to r.

2.2. THE RENORMALIZED ENERGY 15
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Proposition 2.2.1. Let function ¥ (x,r) : R? x R* — R* be monotonic in the above
sense. Let By be a finite collection of disjoint closed balls and by applying the ball growth
method to By we can get B(t). Then for every s > 0,

S

F(B(s)) — F(By) > f r%(x, 1)dz,

=0 p(x,NeB(r)

and for every B € B(s), we have

S

F(B) - F(By N B) > f raa—f(x, hr.

=0 B(x,NeB(H)NB

Refer Proposition 4.1 of [63] for the proof.
If we denote the collection of original balls {B;(p;,p) C L}!_, as B(p), then by using

the ball growth method we can get a new collection of balls B(/?),i.e. 0 <t < T = log %.

Let
E ! 1 12+1f
2:—7Tl’l0g —
BT 2 Jio

1
lim 2E = lim|IEp + lim hmlogﬂ + 1= f \VH,” + |H* |].
-0 1-0 p—0 7 2 Upeszy B\Upeo B

Let B(t) € B(¢), and B(t) N B(0) = B(p) = {By,- -, By}, it means that these m balls
grow to be one ball B(?) at time ¢.
From the function, we findforp <r <P ie. 0<t<T = log% that

OH,
—f —’:—f AH, =2mm—- | H,.
dB(f) dv B() B()

By using the Cauchy-Schwartz inequality, we get

2
OH,
(27rm—f Hl) SZT(’I’f |—l|2 SZm’f IVH,.
B(t) AB() dv 4B()

Since m* > m,m € N, we could get

IVH,* + |Hl|2),

363(12)3

then

4’m—-C | H, <2nr f IVH,*.
B(1) 0B(1)
We already have [H; — hin W', ¥p < 2, where h is bounded, so we have

IH, — h in L.

For [ small enough, we find

(IH)? < (H)*<C f h* < CI,
B(lz) B(lz)

B(1)

where C depends only on / and is independent of p.
Therefore we could get

16 2.2. THE RENORMALIZED ENERGY
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A

1 1
[ oH < (f Dic[ mp
B(1) B(t) B(1)
Clr.

IA

Now for F(t) = f IVH,|> + |H,* using the ball growth method, where r(f) =

UBe®(r(1)) B
2

[
pe',0<t<T =log—, we find
0

T
f o) VH + |H de
0 UB(nen(n0B(t)

T
f 2nn — Crdt
0

2 2
f IVH? + |H,|
Upen(2yB\UBes(p)B

>

> 27nT — C(* - p)
lZ

> 2nnlog— - C.
P

So we get

1
anlog £ + = f VH|? +H[ > C.
! 2 UBe%(ﬂ)B\UBe%(p)B

Combine the results above, we can get a lower bound of °E

1
lim PE(H) = lim|IEp +lim (lﬂn log & + 1= f VH + |Hl|2))
-0 -0 p—0 [ 2 UBE\B([z)B\UBG‘B(p)B

lim (. — IC)

1
= lim lyrnloglz+—f
=0 2 S\UBE%(IZ)

> F(h) by Fatou’s lemma.

\%

IVH) + |IH) -1 - CJ

B

This finishes the proof of the lower bound.

Upper bound

In this subsection, we prove the upper bound in the I convergence by using a similar
method in [65]. For every distribution y;, = >, 6, in (C%*(S))*, where 0z, 1s Radon
measure with support on line which is parallel with Y-axis, in lattice L = [-1, 1] X [0, ],
we choose one point on each line L;. Note that if two lines coincide we could choose
two different points on the same line. Denote these points as {p;}!_,, and by using the
periodic boundary condition, we could get a set of points in square S, written as {p; ;}
withl <i<n1<j< % and for any i the set of points {pi,j}}ill lie on the same line L,
(in fact p; = P} .1)- In fact, we can rewrite the function (2.8) as follows, it is the same as
(2.8) because of the periodicity and uniqueness of the solution.

2.2. THE RENORMALIZED ENERGY 17
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18

1/l n

_AH, + H, =21 Z Z Sy, inS 013

j=1 =1

periodic boundary conditions

Let G(x,y) be the Green function satisfies

{ -AG(x,y) + G(x,y) = 2n6,(x) inS (2.14)

periodic boundary conditions

G(x,y) has some properties as follows

e G(x,y) = G(y, x);
e G(x,y) = G(x—y,0);

e G(x,y) = —log|x — y| + g(x,y), where g(x,y) is C' and bounded in the diagonal of
S xS.

Then we have

Hi(x) = > G(x, p; )
L.j

We rewrite it as follows for convenience

)_[l
Hi(x) = > G(x, py).
i=1
Then

1
E = lim (7‘(; logp + > f . IVH)|* + |Hl|2)-

p=0 S\UL, B(pip)

For the second term on the right hand side, we have

1 2 2
Ef . \VH|” + |H||
S\UiilB(PzP)

1 O0H, 1
2 f ——H + f —AH, - H, + |H/}
2 JUioB(ip) v 2 S\UiB(pi.p)

=0 by the equation

-5 f — Z G(x, p))
Ui0B(pi.p)

1 aG aG
N[ S S, Ly [ S,
2 i JOB(pi.p) 2

J#i 0B(pi.p)
1 8G(x Pi)
=0 f > =" ZG( . Po)
i YOBip) i
= ﬂZG(p,,pj ﬂzlogp+ﬂ2g(p,,p,)+0(l)
i#]

2.2. THE RENORMALIZED ENERGY



CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER

The last equality is because we have

G(x,pj) = —log|x - p;| + g(x, p)).

Thus when we take the limit of p — 0, we can get

E = ﬂ'Z G(pi,pj) + Z g(pi> pi)

i#j i

also we can rewrite it as

E=n f f G(x, y)dw,du; + f g(x, x)dy,
SXS\I s

where I is the diagonal of § X §, y; = 3 6,,.
If denote fi; := lu;, then we have [i; := lu; — py in (C%%)*, Va € [0, 1).
Now multiply /? to E we have

PE = n f f Gx, y)ddin + 1 f o(x, )i
SXS\I' S

the second term at the right hand side is converge to 0 as [ — 0, for g is bounded in a
neighborhood of the diagonal.

Next we will study the first term. Let M > 0, I'y; is a neighborhood of the diagonal
where G(x, y) is greater than M, and I}, is another neighborhood of the diagonal such that
G(x,y)is less than 2M outside of it. What’s more, we can construct the two neighborhoods
such that I}, C T’y . I'yy and I}, satisfy

e G(x,y)>M when (x,y) ey ;
e G(x,y) <2M when (x,y) ¢I7,, ;

’
® FZM C FM

Let Gy(x,y) = min(2M, G(x, y)) in 'y, then we have

x f f Gx, y)didfy =n f f Gar(, ) dfudf
SxS\I' SxS

+ f f G(x,y) = Gu(x, y)didiy, — nl - 2M
Ty \l

where the term nin/ - 2M comes from the diagonal.

If we first take the limit of / — 0, and then M — oo we can use the weak convergence
of the measure, and connect the two dimensional energy E with the one dimensional
energy F.

Now we prove that

n ff G(x,y) — Gy(x,y)dgdiy, - 0 as firstly [ — 0, secondly M — co.
Ty \T

Note that G(x,y) = —log|x — y| + g(x,y) where g is bounded near the diagonal and
Gy(x,y) is bounded by 2M, so we only need to prove

2.2. THE RENORMALIZED ENERGY 19
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nff —log|x —y|diidiy;, = 0 as  firstly [ — 0, secondly M — oo.
Ty \l

Denote [;; be the line segment of length / with p; its midpoint, and parallel with the
Y — axis.
For i # j, precisely only one of the following statement about /;; and /;; holds

« :either
I;; and I;; touch each other;

B :orelse
I;; and I;; are separated.

. . . n
The number of the pairs of segments in the first case is at most 7 2n, and

2
> f f ~log|x — yldis,,dis, < -2 - P log(8l)
I,"1><Ij’1 ! l

i,Jea

where = min{0; ; : |p; — p;l = 6,1, Vi,j and i # j}.
In the second case, if / is small enough, we could get for V(x,y) € I;; X I,

1
Ip p}| 2|X yl
SO
—log|p; — pjl < —log|x —y| +1log2

and then

ff —log|x —yldls,dis,, = - log|p; — pjl < ff —log|x —y| + log2 du,du,
LiyxIjy 1 %1

Sum all pairs (i, j) € B8, we could get

Z ff —log|x —yldls,dis,, < ff —log|x —y| + log2 du,duy,
I X1 I'y\l*

i,jeB

Sum up the two case, and we could get what we want

n f f G(x,y) — Gy(x,y)diadig — 0 as firstly [ — 0, secondly M — co.
Ty\T

. f f Gor(x, V)il < 7 f f Gx, y)duurdus
SxS SxS

The right hand side is exactly the energy F. In fact the measure y; € H™! , because
by using the Trace operator, we can define (u,, f) for any f € H}. Then let

While the term

u(x) = f G(x, y)dur(y)
20 2.2. THE RENORMALIZED ENERGY
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by using Theorem 1 of [[19] we get

@Ol = 27 f f G(x, y)durduy.

That finishes the proof of the upper bound.

2.3 Proof of Theorem 2.1.1

We have proven that I*’E L, FasI— 0. From Theorem 2.2.11 we know that the number
of points contained in the minimizer of W,p(p, A.,) jumps one by one as the A,, grows.
So for every N € N, there exists /y, such that for any / < Iy, the number of vortices
contained in the minimizer of W(p, A.,) jumps one by one from 1 to N as the A, grows.
For fixed [, we have the lattice L = [—1,1] X [0,/]. If the Theorem 2.T.T] is not true.
Then we could find a sequence {€}, such that there exists a value A,,(¢) which is bounded
independent of € and at h,, = H¢, () + Au(e) + o(1), the number of vortices contained
in the minimizer of the Ginzburg-Landau energy GL, jumps from m to m + k, for some
m,k € N and k > 2. When we take the limit € — 0, from Theorem 2.1.2] we have that
the minimizers (u..A,) of GL, satisfies h, = curlA, converge to h, and n, = i fL curlA
converge to n,. And there are n, distinct points {a,-}?;1 in L which minimizes W(p, A..)
over P. So at A,, = lim,_,y A,,(¢), the number of points of the minimizer W(p, A.,) would
jumps from m to m + k. This contradicts our conclusion about the renormalized energy.
This finishes the proof.

2.3. PROOF OF THEOREM 2.1.1 21
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Chapter 3

Optimality of Abrikosov Lattice in a
Periodic Ginzburg-Landau Model

In this chapter, we study the configuration of vortices which minimizes a renormalized
energy related to Ginzburg-Landau model. Among all the Bravais lattices, we prove that
the triangular lattice minimizes this renormalized energy.

3.1 Introduction

For type-II superconductors, A. Abrikosov [2] predicted that the triangular lattice, now
called “Abrikosov lattice”, would appear. There are some rigorous mathematical results
related to this phenomenon, for example [4],[5],[13],[64]. In [64], E. Sandier and S. Ser-
faty have proven that the vortices of minimizers of the Ginzburg-Landau energy, blown-
up at a suitable scale, converges to minimizers of a “Coulombian Renormalized Energy
”, and in the periodic case, the triangular lattice minimizes this renormalized energy. In
this paper, we consider another renormalized energy for a periodic Ginzburg-Landau en-
ergy introduced in [9] and prove that the triangular lattice is the unique minimizer of this
renormalized energy among all the Bravais lattices. One can refer to [22] for a related
work in one dimension.

Let £ = {Zil ® ZV'| det(il, V) = 1}. For A € £, we define L = R?>/A, hence |L| = 1. We
introduce the renormalized energy W which is defined in [9] over £ as follows

1
W(n, A) = lim (nn loge + = f \Vh|* + hQ),
&0 2 oo B

where {p;}_, are n points in L, and h satisfies
~Ah+h=21) 5, in L

i=1
periodic boundary conditions.

3.1)

In fact, this energy is a renormalized energy for the Ginzburg-Landau energy in the peri-
odic setting. In the case of n = 1, i. e. among the Bravais lattices, we prove

Theorem 3.1.1. The triangular lattice, modulo rotations, is the unique minimizer of W
among all Bravais lattices.

23
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In the proof of this theorem, we use a technique which has already been used in [64] to
rewrite the renormalized energy W in an explicit formula related to Jacobi Theta Function,
then by applying a result of H.L.Montgomery[54], we complete the proof.

3.2 Proof of Theorem 3.1.1

We follow the idea of [64] to rewrite the renormalized energy W in an explicit formula.
Whenn =1,

1
W(A) = lim (7r loge + = f IVh|? + hz),
&0 L\B(0,5)

where £ satisfies
—Ah+h=2n6y in L G.1)
periodic boundary conditions. '

Lemma 3.2.1. Forany A € L, we have
W(A) = ﬂlir%(h(x) + log |x]).

Proof. We have

1 1 oh
7r10ge+—f |Vh|2+h2:7rloge——f —-h
2 JnBo.e) 2 Jopo.s) OV

where v is the outer-pointing unit normal vector with respect to the corresponding bound-
ary. In fact, h(x) = —log x| + g(x), where g(x) is C' near origin. So
oh 1 0
1, %

61/‘@3(0,5) T & OvlaBoe”

Therefore,

W(A) = lir% (wlog|x| + wh(x) + O(|x| - log |x])) = nlin&(h(x) + log |x]).

Next we prove an important lemma by following the same method in [64].

Lemma 3.2.2. There exists a constant Cy € R, such that for any A € L, we have

. 2
W(A) = Cy + 7r11rr6 ({A*(x) - f —dy) ,
X— R

2 1+ 42|y

where N* is the dual lattice of A, i.e. the set of vectors q such that q - p € Z for every

2
p €N and {x(X) = 2pens Trgmpee

Proof. We already have
W(A) = ﬂlin(l)(h(x) + log |x]).

We introduce the Green function G(x) € L*>(R?) which is the solution of —AG + G = 2716,
in R?, and by the periodic boundary conditions, we can consider the function A(x) as a
function in R?, i.e. the solution of

~Ahy +hy =21 )6,

PEA
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Then we can write
ha(x) +1og |x| = G(x) + log |x| + up(x),

where ux(x) = ha(x)—G(x) and it depends on lattice A. It is well known that /5 (x)+1og | x|,
G(x) + log|x| , un(x) are C! near 0. Note that G(x) + log |x| is independent of lattice A, so

W(A) = nlin&(h/\(x) + log|x]) = Co + 7 - upa(0),

where Cy = lim,_,o G(x) + log |x].

Denote by ¢(x) = (27)"'e™™/2 the Gaussian distribution in R? and ¢,(x) = np(nx)
for any n € N, s0 {¢,(x)}, is an approximation of the Dirac mass. Since u,(x) is C' near
0, we have

up(0) = lim w(n, A),

where

w(n, A) = fR | Pu(Dup(x)dx = fR | Pu(®)itn(£)de.

We know that ¢,(¢) = /7" and i, (¢) = il(f) — G(&), where h(¢) = ZZpx @

4n2EP+1

(27 comes form the fact that |L| = 1) and (A?(f) W Hence
—2712|p|2/n2 e—27r2|y|2/n2
A)=2 _— ———dy|.
win, A) = 2n £ 4mpf + 1 fR AR+ 1

We claim that
lim w(n, A) = 11m v(x, A),
where v(x, A) = 27 (¥ e 7oty — dy).x > 0.
’ PEN" 4r2|pP+ay] R2 4n2|)|2+x+1 ] o

In fact, for any p € A*, denote by K, the Voronoi cell centered at p, i.e. the region in
R? consisting of all the points closer to p than to any other points in A*. Note that K, is
periodic due to the periodicity of lattice A* and |K,| = 1. Denote by 1, the characteristic
function with respect to K,,, then we have

—27r2|p|2/n2 e—Zﬂzlylz/n2
w(n,\) =2n Z 1
(n. A) f S \apr+ 1 ey 1)”
Ll

By applying the mean value theorem to <
grand function

prepr il rr B get a bound for the inte-

—27r2|p|2/n2 e—2ﬂ2|ylz/n2 1
> (5 JI<c
Ky 2112 2102 = 3.1°
= 4r?|pl* + 1 i [yl + 1 yp° +1
where the constant C is independent of n. The function at the right hand side is an inte-

grable function over the whole plane. The LebesguedAZs dominated convergence theo-
rem implies that

1 1
lim w(n, A) = 2 Ik, - - o
lim w(n, A) ”f Z Ky (47‘(2|p|2+1 47T2|y|2+1) Y

R? jons
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Similarly, we have

1 1
lim v(r, A) =27 | D 1, - - dy.
Ty vOx, A) ﬂfRz K (47T2|p|2+1 aepyr 1)

PEN*

By combining the results above, we prove the lemma.

Now we consider the term
(x
In(x) = Z 4ﬂ2|p|2+x —

Let £0.(X) = 3 eano) #;lz“’ we can split £x-(x) as follows,

1
() = -2 Y
iy PEIPETE - (42 pPrr + 1)
1
= 2+ 0.0 - 2n Z +o(1).

212 . 21 |2
& AIpP - (GrlpP + 1)
Note here o(1) means o(1) — 0 as x — 0 for any fixed A € L, but the convergence is not
uniform w.r.t. A.

. . 1
We will consider £8.(x) = 270 3 jep-yj0) ey together.
If 47%|p|*> > 1, we can have a series expansion of the second term. We can do this
at least in a neighborhood of the triangular lattice, because the length of the edge is

2/ V3> 1.

1 I B -1y
2, 3 Al (xR + 1) pEZ @) - (1 + @xpP) ) ~ Z Z<4n2|p|2>"

peA*\{0 A*\{0} peA*\{0

Since the summation 3 e+ 05 2
of the summation.

D
) W converges absolutely, we can change the order

(o9 (o0

" _ (-1
pGAZ*\{O} ZQ @y’ ZQ pe;{o} @rlpPy

1"

- 00 00 . 1
We write 3025 3 e\ (o) Gy = 2= (=1)"g, 5+ for convenience, where g, a+ = 3. ,ens\(0) e
Let s = 1+ 3, x > 0, then by using a result in [54], we have

21_7r A 0. (x) 25 T(s)- 2r) " = —— — — + f (Or+(@) = D@’ +a'~ S)_a/

where Or+(@) = X e el
Similarly, we have

47°)" - guas(x) - 2" -T(n) - 2m) ™" = S— + f oo(HA»«(cv) - D"+ al_”)d—a
n—-1 n | a
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Therefore, we have

1
4m?|pl? - (4n*|pl* + 1)

I (x)

2w+ {,O\*(x) - 2n Z

pEA\{0}

+o(1)

(o)

) o1 i1
= e Go1 §)+;2ﬂ(4n)nr(n)(n—1 0

+00 s—1 d
+27rf Op(@)— 1) - ﬂr() (@ +a' S);a

G 1-ny d
+Zznf (Ox-(@) = D@ + o' )=+ o)

2+ f(x) +co + 27rf Op (@)= 1) - I(x, a/)%l + o(1)
1

_mle 11 _ yo ! 1 _ 1-s
where f(x) = 2r(s)(s—_1 =), C0 = 2ulo ZFW — — —) and I(x, @) = 4nr(s) (@*+a )+
o (=Dt n 1-n
anz W(Q + o )
For any « fixed, we have

I(x, @)

ﬂ.sl o4 ( 1)n1 o, ﬂ.sl " ( 1)n1 -
() ¢ T LGyt | et T LT
@ ((na)*! 2 1 (7 L
ﬂ( IGs) +e _1)+E(F(s)a +e —1)

I'(s) is convex in [1,2],and I'(1) = I'(2) = 1, so for s € [1,2], I'(s) < 1, while (ra)*~' > 1,
fora > 1, s € [1,2]. Hence

(rar)*!

T(s) -1>0.

Similarly, we have T)al ¢ > @', and the fact that 1 — e~ #a < 7 implies that Z— r( ) S+

ema—1>0fora>1,se[l,2]
By combining the results above, we have I(x,@) > Ofora > 1, s € [1,2].
Next we will prove that

I (x) =2+ f(x)+co + 27rf 00(6'/\*(0/) — DI(x, oz)%y + o(1)
1

is true not just for lattices in a neighborhood of triangular lattice but for all Bravais lattices
with area 1. We claim that both

1
AN =8 -2r )

21n|2 . 2| |2
pexiiy YIPE - (pP + 1)

and

e d
f(N) = f(x) +co+ 27Tf (Oa+(@) = DI(x, a);a
1

are analytic w.r.t. lattice. It means that if we denote by ii = (a,0),a > 0, V = (b,c) =
(b, 1/a) the vectors which generate the lattice A*, the two functions are analytic w.r.t.
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iL,v,i.e. a,b. If p = mii + nvV = (ma + nb,nc), then |p|> = (ma + nb)*> + n*c*. For

1
ZpeA*\{O} PGP’ at ((l(), bo, C()), ap > 0, we have

1
2. Al (xR + 1)

peA*\{0

— Z 1

B 2 2 4+ 12027 - [4r2 2, 02
o) 0 Lma + nb)? + n*c] - [4n*((ma + nb)* + n*c*) + 1)]

1 1
- Z 4r? [(mag-+nbo)* +n* ¢ +R(a—ag,b—bo,c— ol 4r2[(may + nby)? + n?c: + R(a — ag, b — by, c — co)] + 1
(m,n)€Z2\{0} 0

1
B Z [4m2(m?a} + 2apbomn + n* (b} + c)] - [4n*(m*a} + 2aobomn + n* (b} + ¢3)) + 1]

(m,n)eZ2\{0}
1 1
R(a—ag,b—bg,c—cqp) ) 1 472R(a—ag,b—by,c—cp)
m2a3+2apbomn+n*(b3+c3) 4m2(m2a}+2agbomn+n? (b3+c3))+1

We obtain a series expansion of the formula above by expanding the function ﬁ at 0
and rearranging the terms since that the coefficients converge absolutely. Take a function
composition with ¢ = 1/a, we obtain that

peAZ‘ 4m?|pl - (47T2|P|2 +1)
is analytic w.r.t. lattice.

Similarly, the function £%,(x) is analytic w.r.t. lattice.

For the function f,(A), f(x) + ¢¢ is independent of lattice, so we only need to prove
that 2 ff""(@m (@) = DI(x, oz)%“ is analytic w.r.t. lattice. The series is a positive series,
it converges absolutely. The function 65-(a) — 1 is a positive series and converges ab-
solutely for any «, and each term in the series is analytic, so we rewrite the function
2r f +°°(9A* (@) — DI(x, a/)d“ in the form of series w.r.t. lattice. Therefore, the function

f(X)+co+2m f (Op-(@) — DI(x, @)= is analytic w.r.t. lattice.

Now we know that the functions fl (A) and f>(A) are analytic, and f; = f; in a neigh-
borhood of triangular lattice, so f; = f, for all lattices with fixed area 1.

We use a result due to Montgomery,

Theorem 3.2.1 ([54]). For any a > 0,
0r(@) = Oh(a),

where f(u) = f(ui,up) = aut + buyu, + cu; be a positive definite binary quadratic form
with real coefficient and discriminant b*—4ac = —1, and h(u) = %(u%+u1 u2+u§). If there
is an a > 0 such that 0;(a) = (@), then f and h are equivalent forms and 0(a) = 6;().

From the theorem above, we know that the minimum of the Jacobi Theta function @
over L (recall that L is the set of all Bravais lattices with area 1) is uniquely achieved

by Aj, Ag = / %(Z(l, 0) @ Z(1/2, V3/2)). Denote by A a Bravais lattice, then apply
Lebesgue’s dominated convergence theorem, we have
. . oo da
WA) = W(Ag) = mlim(Zy(x) = {p;(x) = mlim 27 f (O = Onp M (x, ) —
X— X— 1
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+00 d
= 2 f (On = On)I(0, @) —
1 (0

By using Theorem 1 of [54] and the fact that /1(0, @) > 0, we have W(A) > W(A,) for
all lattice A € £, and the equality holds if and only if A = A,. Therefore the triangular
lattice is the unique minimizer of energy W(A).
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Chapter 4

The Lennard-Jones Model and
Thomas-Fermi Model

This is joint work with Laurent Bétermin. It was accepted by the journal Communica-
tions in Contemporary Mathematics and published online

Communications in Contemporary Mathematics, 2014, doi: 10.1142/S0219199714500497.
Original title:

Minimization of energy per particle among Bravais lattices in R?: Lennard-Jones and
Thomas-Fermi cases.

In this chaper, we prove that the minimizer of Lennard-Jones energy per particle
among Bravais lattices is a triangular lattice, i.e. composed of equilateral triangles, in
R? for large density of points, while it is false for sufficiently small density. We show
some characterization results for the global minimizer of this energy and finally we also
prove that the minimizer of the Thomas-Fermi energy per particle in R? among Bravais
lattices with fixed density is triangular.

4.1 Introduction

Understanding the structure of matter at low temperature has been a challenge for many
years. In this case, one of the simplest models is to consider identical points as particles
interacting in a Lennard-Jones potential. This model is deterministic, therefore we do not
consider either entropy nor other quantum effects. The problem is to find the configura-
tion of the points which minimize the total interaction energy, called the Lennard-Jones
energy. Radin, in [39], studied this problem in one dimension and showed that, in the
case of infinite points, the minimizer is periodic. His method is not adaptable in higher
dimensions and he studied, in [46, 58] the case of short range interactions and proved the
first result of crystallization in two dimensions for a hard-sphere model. In the meantime,
Ventevogel and Nijboer gave in [73, 76, [77] more general results in one dimension for
Lennard-Jones energy per particle. Indeed, they showed that a unique lattice of the form
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aoN minimizes the Lennard-Jones energy and that all lattices alN with a < ay minimize
this energy when the density of points p = a~' is fixed. Our paper gives some results in
the spirit of the latter paper.

After a numerical investigation of Yedder, Blanc, Le Bris, in [18], about the minimization
of the Lennard-Jones and the Thomas-Fermi energy in R?, it seemed that the triangular
lattice, also called “hexagonal lattice" — which is composed of equilateral triangles — is
the minimum configuration for Lennard-Jones energy among any lattices and for Thomas-
Fermi energy with nuclei density fixed. Some time after, Theil, in [72], gave the first proof
of crystallization in two dimensions for a “Lennard-Jones like" potential, with a minimum
less than one but very close to one and long range interaction. He showed that the global
minimizer of the total energy is triangular. His method was adapted by E and Li, in [34],
for a three-body potential with long range interactions in order to obtain a honeycomb
lattice as global minimizer — see also the works of Mainini, Piovano and Stefanelli in
[51),152] about the crystallization in square and honeycomb lattices for three-body poten-
tials with short range interactions — and by Theil and Flatley in three dimensions in [38].

Furthermore Montgomery, in [54], proved that the triangular lattice is the unique min-
imizer of theta functions among Bravais lattices with fixed density and hence the unique
minimizer of the Epstein zeta function, thanks to the link between these two functions.
As the Lennard-Jones potential is a linear sum of Epstein zeta functions, it is natural to
study the problem of minimization of the Lennard-Jones energy among Bravais lattices
with and without fixed density. However, there are few results about minimization in
the general case of periodic systems. For example, Cohn and Kumar described in [24] a
method and a conjecture for completely monotonic functions. It is interesting to observe
that this kind of problem is connected with the theory of spherical design due to Delsarte,
Goethals and Seidel in [30] and linked to the layers of a lattice, among others, by Venkov
and Bachoc in [74,10] and by Coulangeon et al. in [26, 28, 27].

In this paper, our main results are :
Theorem:

o Let Vi (r) = r'2 = 2r 7% be the Lennard-Jones potential, then the minimizer of the

energy E;;(L) = Z V.,(1xl|) among all Bravais lattices of R* with fixed density

xeL\{0)
sufficiently large is triangular and unique, up to rotation.

o A minimizer of E;; among all Bravais lattices with fixed density sufficiently small
cannot be triangular.

o Let Wrp : R} — R be the solution of —Ah + mh = 6y which goes to 0 at infinity,

then the minimizer of the Thomas-Fermi energy Erp(L) = Z Wre(l|x|l) among
xeL\{0}
all Bravais lattices of R* with density fixed is triangular and unique, up to rotation.
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This paper is structured as follows : in Section 2, we introduce the notations; in Section
3, we show that the minimizer of the Lennard-Jones energy per particle among Bravais
lattices with fixed density, if the density is sufficiently large, it is triangular and unique.
Moreover we give numerical results and a conjecture for the minimization with density
fixed and we have arguments in order to explain why the global minimizer, among Bravais
lattices without fixed density, is triangular; in Section 4, we use proof of Blanc in [16] to
find a lower bound for the interparticle distance of the global minimizer, and finally in
Section 5 we study the same kind of problem for the Thomas-Fermi model only when
the density is fixed and we prove that the triangular lattice is the unique minimizer of the
Thomas-Fermi energy per particle in R>.

4.2 Preliminaries

A Bravais lattice (also called a “simple lattice") of R? is given by L = Zu & Zv where
(u,v) is a basis of R2. By Engel’s theorem (see [35]), we can choose u and v so that

— T, . . . . .
|le|l < [Iv]| and (u,Vv) € [5, 5] in order to obtain the unicity of the lattice, up to a rotation.

We note |L| = |lu A vll = |lulllV]| [sin(iz; v)| the area of L which is in fact the area of the
lattice primitive cell and L* := L\{0}. The positive definite quadratic form associated with
the Bravais lattice L is, for (m, n) € Z2,

Qr(m,n) = llmu + nv|* = ||ulPm® + IMPn® + 2lulllIv]l cos(@, v)mn.

For a positive definite quadratic form g(m, n) = am?+bmn+cn?, we define its discriminant
D = 4ac — b*> > 0. Hence for Q,, we obtain :

D = HulPIMI> = HlulPIIVIP cos* (i, v) = HlulPlIvII* sin®(iz, v) = 4L,

In this paper, the term “lattice” will mean a “Bravais lattice", and we define, for s > 2, the
Epstein zeta function of the lattice L by

1 1
Li(s) = - = — .
Z e (m,,;m 01.(m, n)'P?

/ZA
Let Ay, = % [Z(l, 0O Z(1/2, V3 / 2)] be the triangular lattice of area A, also called
the hexagonal lattice. Its length is the norm of its vector u, i.e. the minimum distance
strictly positive of A4, ||u|| = \/ZA/ /3. We notice, for any s > 2, that

{AA(S) = {/;LE;)

and this relation of scaling is true for any lattice L of area A.
We recall the result of Montgomery about theta functions :

4.1)

Theorem 4.2.1. (Montgomery, [54]) For any real number @ > 0 and a Bravais lattice L,
let

0.(a) := Or(ia) = Z ¢~ 2m@QL0nn)

m,nez

where @ is the Jacobi theta function of the lattice L defined for Im(z) > 0. Then, for any
a > 0, Ay is the unique minimizer of L — 6;(«a) among lattices of area A, up to rotation.
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Remark 4. The same kind of results were obtained by Nonnenmacher and Voros in [56].
The previous theorem implies that the triangular lattice is the unique minimizer, up to
rotation, of L +— (;(s) among lattices with density fixed for any s > 2 which is also
proved by Rankin (in [59]).

We consider the classical Lennard-Jones potential

2
Viy(r) = 2

whose minimum is obtained at » = 1, and for L = Zu & Zv a Bravais lattice of R?, we let

E (L) := Z Vi (lIxl) = 4L(12) — 2£,.(6)

xeL*

be the Lennard-Jones energy of lattice L. By this energy among lattices of area A
can be viewed as energy L — E;;( VAL) over lattices of area 1 and we parametrize L with
its length ||u|| and ||v|| by

2.2 2.2
Qr(m,n) = |lull’m” + [VII"n” + 2Zmn \|lulP|Iv|* - 1.

It follows that we can write Lennard-Jones energy among lattices of area A as

(leell, V1) Z Vi ( ‘/Z\/Ilullzmz + VIPn? + 2mn VlulPIvIP> - 1)- (4.2)

(m,n)#(0,0)

5

2.5 3

14

Fig. 1: Graph of the Lennard-Jones potential V,

The aim of this paper is to study the following two minimization problems, up to rotation

(P4) : Find the minimizer of E;; among lattices L with fixed |L| = A;
(P) : Find the minimizer of E;; among lattices.

Proposition 4.2.1. The minimum of E;; among lattices is achieved.
Proof. We parametrize a lattice L by x = |lul|, y = ||v|| and 8 = (i, v), therefore

f(x’ Y, 9) = ELJ(L)
34 4.2. PRELIMINARIES
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1 2
B (m”;o’ 0 ((xzm2 + y2n? + 2xymncos 0)°  (x>m? + y?n? + 2xymn cos 9)3) '

First case : minimization without fixed area. If L is the solution of (P) then x and y
cannot be too small, otherwise the energy is too large and a proof of a lower bound for x
is given in Section 4. Moreover y < 1 because if y > 1 then a contraction of the line Rv
gives smaller energy. Therefore we have x,y € [m, M] and 6 € [n/3,7/2]. The function
(x,y,0) — f(x,y,0)is continuous on [m, M] X [m, M] X [r/3, /2] hence its minimum is
achieved.

Second case : minimization with fixed area. We can parametrize L with only two variables
x and y — as in (4.2) — such that when x — 0 then y — +oo0. As L should be a Bravais
lattice, it is clear that the minimum of f is achieved. m]

4.3 Minimization among lattices with fixed area

4.3.1 A sufficient condition

Our idea is to write E; in terms of 8, and to use Theorem[4.2.1]in order to find a sufficient
condition for the minimality of the triangular lattice among Bravais lattices with a fixed
area.

3
Theorem 4.3.1. IfA® < lﬂTO then A, is the unique solution of (Py).

Proof. As it is explained in [54] or [71]], we can write the Epstein zeta function in terms
of a theta function. Indeed, we have the following identity, where the discriminant of Q;
isD=1:

for Re(s) > 1, (2s)(s)2n)~* = SL - % + foo(HL(a/) - D’ + a/l_s)%l. 4.1)
1

2A
up to a constant independent of L and we find A so that g4(@) > 0 for any @ > 1. As Ay,

is the unique minimizer of 6, () for any @ > 0, we have for any L such that |L| = A :

Ep /(L) — Epj(Ay) = f:m (9L (1) — O, (i)) gA(CV)%y >0

—+00 d
Thus, for |L] = A, we write E;(L) = £,(12)=2£,(6) as an integral f 24(@) (eL (1) - 1) do
1 a

2A 2A

and A, is the unique solution of (P,).
In fact (4.1)) it is the classic “Riemann’s trick" and here we will briefly recall its proof : as

['()2n) " Qrim,n)™ = f £7le' 2m) " Qrim, n)dt
0
for Re(s) > 1, and by putting t = 27Q, (m, n)y, we obtain

F(S)(Zﬂ)_SQL(m, n)—s — f e—ZNyQL(fn,n)ys—ldy.
0

4.3. MINIMIZATION AMONG LATTICES WITH FIXED AREA 35



CHAPTER 4. THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL

Summing over (m,n) # (0,0) and using the identity 6,(1/@) = af.(@) for any @ > 0,
proved by Montgomery in [54], we obtain

00 1 00
[($)2x) " Cu(28) = fo 6.0 - Dy™dy = fo 0.0 - Dy dy + f 0.0) - Dy dy
1
= f O(1/a) — Do da + f O(@) - D' da
1 1

= fw(ozeL(oz) — Do ""Sda + foo(GL(oz) - Do 'da
1 1

:f 9L(01)01_sd01—f a_l_sda+f (Or(@) — Do’ 'da
:f (QL(Q')_l)CU_Sda/+f (QL(CV)—l)Q’S_lda/+f a/_sda/—f o de
1 . 1 1

= f m(eL(a) - DaSda + f oo(eL(a) - Da* 'da + !
1 1

s—1 B ;
oo 11
= f O.(@) - (@’ +a1-S)d—“ +
1 o

s—1 s

Now if |L| = A, by the equality D = (2A)? there are two identities :

_6 6 _l_l e ay 6 1—6d_0‘
D RAITO)L(12) = 3 6+f1 (eL(ZA) 1)(a +al )%

oo a da
9 el _1 3 1-3\ "
o] o(5g) e e
and we find

= 2 [0 ) e

2m) > (QAY’T(3){1(6) =

W —

1
2

30(24)55! A 2A)%5!
. (@n)’ e « Qr?® 5 ,da
60 = gy +f1 (HL(E) - 1) Ay @ T

Therefore, for any L of area A,

ot a da
Eu=Cit 55 | (0(55) - 1)ea@%
(L) ATS 1 L\724 ga(a@) o
o
A35!
independent of L. Now we want to prove that if 7* > 12043 then g4(a) > 0 for any a > 1.
First, we remark that

where ga(a) = @® +a) = (@ +a?), and C, is a constant depending on A but

3

“ 3 3
ga(l) 20 = A3—5!—1 >0 & 1 > 120A°.
3
Secondly, we compute g/ (@) = A73T 5] (60° - 5a7%) — (3a? —2a7%), and if 7° > 12043 then

3

Py =
gi(1) = 5 =120,
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3 7.(3

(30 +30a77) — (6a + 6a7). As G50 >landa > 1,

. ’” _ T
Finally, we compute g/ (@) = 351
3
A35!
Thus, we have shown that, for any A so that 7° > 12043, gi(@) =2 0 for any @ > 1,
g,(1) > 0 and g4(1) > 0. Hence ga(@) > 0 for any @ > 1 if 7* > 120A°. o

(30a* +30a77) = (6 + 62~ > 300" + 300~ — 60— 6a~* > 240+ 300 —6a~* > 0.

3 \1/3
Remark 5. We have (;TTO) ~ 0.63693, hence for A < 0.63692, A, is the unique

solution of (Py).

Remark 6. We prove below (see Propositiond.3.1) that when A is sufficiently large then
Ay is no longer a solution of (P4). However, our bound n® > 120A° is likely not to be
optimal. If it were, by the Propositiond.4.21 and its remark, then the triangular lattice is
not the solution to (P).

This result explains that the behavior of the potential is important for the interaction be-
tween the first neighbors because in this case the reverse power part r~'? is the strongest

K, K
interaction. This method can be adapted to any potential of the form V(r) = —— —p2 with
mor

n > p > 2 to obtain similar results in two dimensions.

Remark 7. The three-dimensional case is an open problem. Indeed, there is no result
related to the minimization of theta and Epstein functions among Bravais lattices of R
with fixed volume. Sarnak and Strombergsson recalled in [66] that Ennola had shown in
[36] the local minimality of the face centered cubic lattice for {;(s) and for any s > 0.
They also prove that the face centered cubic lattice cannot be the minimizer of {.(s) for
all s > 0. Hence the problem of minimization of Lennard-Jones energy among lattices of
R3, and of course in higher dimensions, seems to be very difficult.

4.3.2 A necessary condition

£(12) - §A1<12>)”3

Proposition 4.3.1. A, is a solution of (P,) if and only if A < inf (
P ’ /(P fand only if 21(6) — {r,(6)

ILI=1
L#A

Hence if A is sufficiently large, A, is not a solution of (Px).

Proof. We have the following equivalences

ELJ(AA) < ELJ(L) for any L such that |L| =A
& (7, (12) = 244,(6) < £1(12) — 2Z,(6) for any L such that |L| = A
& 2({u(6) — La,(6)) < £1(12) — {5, (12) for any L such that |[L| = A
— 2(§L(6)A_3 {a,(0)) < £1(12) ;6§A1(12)

by the scaling property (@.1). We recall that £;(6) > {4,(6) for any L of area A so that
L # A4, as a consequence of Theorem [4.2.1] and the Riemann’s trick (4.I). Then we
obtain

for any L such that || = 1

ELJ(AA) < ELJ(L) for any L such that |L| =A
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= A< inf

ILI=1
L#A|

(41(12) — 2, (12) )”3
2(£1(6) — 46, (6)))

O

£1(12) = 43, (12)
2(£1.(6) — £, (6))
L # A, such that |L| = 1. However, we can numerically look for a lower bound. This
function can be parametrized with two variables — here the lengths ||u|| and ||v|| of the lat-
tice L as in (4.2) — and we can plot the level sets of it. We notice that the large differences
between the values of the function only give a domain where the function is minimum.

1/3
It is difficult to study the minimum of function L — ( ) among lattices

108 - 1017 -
1016 —
1.015
1014
103
1.012

1011

s e e s 101 . i
1 10 102 1.03 1.04 105 1.06 107 108 101 1011 102 1013 1.014 1015 1016

£(12) - gAl(lz))l”
2(£1(6) — £»,(6))

(black = minimum, white = maximum)

Fig. 2 : Level sets of (||ull, |[v]]) — (

Indeed, its minimum seems to be around lattice L of area 1 such that ||u|| = ||v|| = 1.014
$1(12) = {a,(12)
2(£1(6) — ¢a,(6))

imum of this function is between 1.13 and 1.14.

1/3
and for this one, we have ( ) ~ 1.1378475, hence numerically the min-

Actually Fig. 3 gives the Lennard-Jones energy — viewed as a function of two variables
|lu|| and ||v|| over the lattices of area one (see (@.2))) — for (||u]|,||v||) € [1,1.08]%>. The tri-

angular lattice A; corresponds to the point (\/2/ V3, \/ 2/ \/§) ~ (1.075,1.075) and the

square lattice Z? corresponds to the point (1, 1). In fact it is clear that the point associated
with the triangular lattice is a critical point of this energy, because the triangular lattice is
the unique minimizer of Epstein zeta function among lattices of area A. Moreover we can
prove that the square lattice is also a critical point, by using an other parametrization as
(|[zl], 8). We numerically obtain :

e For A =1, A, seems to be its minimizer and Z? is a local maximizer.

e For A = 1.13, A, seems to be its minimizer but Z> seems to be not a local maxi-
mizer.

38 4.3. MINIMIZATION AMONG LATTICES WITH FIXED AREA

r |
1017



CHAPTER 4. THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL

e For A = 1.14, Z? seems to be its minimizer because we estimate £ ( VI.14A)) ~
—4.435 is larger than E;,( V1.14Z%) ~ —4.437

e For A = 1.16, Z? seems to be its minimizer.

e For A = 1.2, 7Z?* seems to be its minimizer and A, is a local maximizer.

e For A = 2 (and more), Z> seems to be its minimizer and A, is a local maximizer.

Hence, we can write the following conjecture based on our numerical study of L +—
E;;(VAL) among all lattices with area 1 :

Conjecture : If A is sufficiently large, the square lattice is the unique solution of (P).

A=1.13

108 -
107 -
1.06 -

1053

(R e o e | WS
1 101 102 103 L4 108 106 107 108 1 101 1 103 104 105 L6 7

A=1.14 A=1.16
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108 ~

107 -

1.06

I IEW' I I.E}S 1 10 1m 103 104 105 106 107
A=1.2 A=2

Fig. 3 : Level sets of (||ull, |[v]]) — Er( \/ZL) for some interesting values of A
(black = minimum , white = maximum)

4.4 Global minimization of £;; among lattices

Now we study the problem (P). We give high properties for the global minimizer among
lattices and some indications of its shape.

4.4.1 Characterization of the global minimizer

Proposition 4.4.1. If Ly = Zu & Zv is a solution of (P) then
i) Erj(Ly) = ={1,(6) = ={1,(12) <0,

i) |lull < 1and ||| < 1,

iii) {1,(6) = max{{.(6); L such that {;(12) < {.(6)}.

Proof. i) We consider the function f(r) = E;;(rLy) = r~'2£,,(12) — 2r %2;,(6). As Ly is
a global minimizer of E;;, r = 1 is the critical point of f and f'(r) = —12r73¢;,(12) +
12r77¢1,(6), hence

) =0 & ,(12) = {1, (6)
and Ep;(Lo) = {1,(12) = 2£1,(6) = ={1,(6) = ={1,(12).

i) As £1,(12) = {;,(6), it is clear that |[u]| < 1 because if r > 1 then r ' < . If
V|| > 1, a little contraction of Ry yields a new lattice L; such that E;;(L;) < E;;(Ly)
because some of the distances of the lattice decrease while ||u|| is constant, therefore the
energy decreases.

iii) ={1,(6) = Ej(Lo) < Er (L) & {1(6) — {1,(6) < £1(12) — £,(6) and if L is a lattice
such that ;(12) < £1.(6), we get {.(6) < {1,(6). O

Corollary 1. The triangular lattice of length 1 cannot be the solution of (P) though the
minimum of the potential V;; is achieved for r = 1.
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Proposition 4.4.2. The minimizer of E;; among triangular lattices is A4, such that
_ (g](lz))“
ERYNCY A

Proof. As in the above proof, we define the function f(r) = E;;(rA;) and we compute its
first derivative f'(r) = —12r 3¢, (12) + 12r77£4,(6). It follows that :

gAl(lz))“
=1

=20 r2(5A1(6)

12
hence AAO = r()A], with A() = ré = (%
Ay

triangular lattices. O

1/3
) , 1s the minimizer of E;; among all

Remark 8. We compute Ay =~ 0.84912, therefore the length of this lattice is ||ul]| ~
0.99019. Moreover we notice that E;j(As,) = =< Aay (6) =~ —6.76425 (it will be useful
for the next part).

Because Ay > 0.63692, Theorem is not sufficient to prove that A, is the solution of
(P) but a numerical investigation of L — E;;(\AoL) among all lattices of area 1 seems
to indicate that the solution of (Pa,) is triangular and unique.

1.08

E | v I T e
1 10 102 1.03 1.04 105 1.06 107 108

Fig. 4 : Level sets of (|lull, |[V|]) = E(VAoL)
(black = minimum, white = maximum)

Moreover it is not difficult to prove numerically that Ay, is a local minimizer among all
lattices. Hence we can write the following conjecture for this problem :

Conjecture : The triangular lattice A4, is the unique solution of (P).

4.4.2 Minimum length of the global minimizer

Because our method does not show that the triangular lattice of area A, is the global
minimizer of the Lennard-Jones energy among lattices, we use Blanc’s proof, from [IE],
in order to find a lower bound for the minimal distance in the globally minimizing lattice.
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His result was for the Lennard-Jones interaction of N points in R? and R?. Xue in [80]
and Schachinger, Addis, Bomze and Schoen in [3] improved this. We use Blanc’s method
because it is well suited to our problem.

Proposition 4.4.3. If Ly = Zu ® Zv is a solution of (P), then the minimal distance is
greater than an explicit constant c. Furthermore, we have ¢ > 0.74035.

Proof. In [16], Blanc proved that

16k + 8 1 Z32k+16

1
Ej(Lo) = Viy(llull) — 23 + ™2 Z K2 ||t ko

k>2 k>2

As we have E;;(Ly) < E j(Ay,) = —{ s, (6) we obtain

P+1 Q0+2
2340, (6)> 22
En(0) 2 i~ e

. 16k + 8 32k + 16
with P := ZT and Q := ZT
k=2 )

Now, setting 7 = ||u]|™®, we have (P + 1)* — (Q + 2)t — 23 + {a4,(6) < 0 which implies

Q+2+ \/(Q +22 +4(23 — &y, (O)(P + 1)

t <
2P+ 1)

and we obtain

1/6
2(P+1)
[Ju]| > =:c.

Q+2+ \/(Q +2)2 +4(23 - 4, (6)) (P +1)

Since P ~ 0.00988, Q ~ 1.45918 and {, (6) = 6.76425 we get ¢ > 0.74035. O

Remark 9. As we think that Ay, is the unique solution of (P), this lower bound is the
best that we can find with this method. Moreover, this bound and the second point of

Propositiond 4.1l imply that 0.47468 < |Lo| < 1.

4.5 The Thomas-Fermi model in R?

In Thomas-Fermi’s model for interactions in a solid, we consider N nuclei at positions
Xy = (x1, ..., xy), with forany 1 <i < N, x; € R? , associated with N electrons with total
density p > 0. Then the Thomas-Fermi energy is given by

1
E™ (o, Xy) = f p2<x)dx—§ f f log [lx — yllo(x)p(y)dxdy
R2 R2xR2

N
1
+ Zl fR logllx — xllp(x)dx — 3 > logll; = xl
J=

Jj#k
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To introduce this kind of model property in quantum chemistry, refer to [20]. Because
the system is neutral, the number of electrons is exactly N and we study the minimization
problem I]{,F = i}I(lf{ETF (Xy)} where

N

E™(Xy) := inf {E”oo, Xx),p = 0,p € L'(R*) N L*(R?), f p= N} :
R

By the Euler-Lagrange equations for this minimization problem, we find — as it is ex-
plained in Section 2 of [18] and Section 4 of [17] — that the minimizer p is the solution
of

N
—Ap +7p = nz Oy
=1

It is known that the fundamental solution of the modified Helmholtz equation —Ah + h =
0o — also called “screened Poisson equation" — which goes to O at infinity, is the radial
modified Bessel function of the second kind, also called the Yukawa potential, defined in
[41]] and [78], by

—+00
Ko(llxll) = f o llcoshe g
0

N
1
Therefore we obtain p(x) = nz Wrr(lx = xll) where Wrr(ldl) = 5 Ko Vrllx|l) and
j=1

finally
E™"(Xy) = )" Wre(llxi = x,l) + NC
i#]
where C is a constant independent of N and Xy. Now, if we consider that the nuclei are in
lattice L, we can study, by taking the mean value of the total energy, the following energy
per point

Erp(L) = ) Wrr(llalD.

xeL*

A simple idea enables us to use theta functions and we have the following result :
Theorem 4.5.1. A, is the unique minimizer of Err among all lattices of fixed area A.

Proof. This problem is equivalent to finding the minimizer of Z Ko(||x]]) among lattices
xelL*
with a fixed area. We put y = %||x||et for x # 0 in the integral formula for Ky(||x||) :

1 +00 1 +00 d
Ko(llx])) = Ef o llcoshr g, Ef e—llxllCosh(]n(2y/||x||))_y
—oo 0 y

1 f+c>o . M dy
= — e 4y —
2 Jo y

2 1
Now, for any y > 0 and any lattice L of area A, we obtain Z e_% =0 (8_) —1. Hence,
. ny
xelL

by Montgomery’s theorem, the triangular lattice A4 minimizes 6, (@) for any @ > 0, and
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it is the unique minimizer of L — 6, (@) among all Bravais lattices with a fixed area A.
_l?

Therefore, for any y > 0, A, is the unique minimizer of the energy E,(L) := Z e

xeL*
among lattices with a fixed area A. Now it is clear, because E\(A,) < E\(L) forany y > 0

and for any lattice L with area A, that

1 + 00 dy 1 + 00 dy
— E.(ADe7—= < — E.(Le7—.
2fo yu)ey_zfo (e

Hence, for any L of a fixed area A : Erp(Ay) = Z Wre(|lx]) < Z Wrr(l|xll) = Erp(L).
XEN} xeL*

O

Remark 10. The Yukawa potential appears in many vortex interaction models, as the a-
model in fluid mechanics and in superconductivity (see for example [I] and [68]). Indeed,
the second author recently studied, in [81], Ginzburg-Landau’s model for the interactions
between vortices in superconductors. He proved, by using a more general method — that it
can certainly be used for other potentials — the same result was obtained for minimality of
the triangular lattice among all lattices with fixed density. The use of results from Number
Theory in Ginzburg-Landau’s models for vortices can also be seen in [64)].

Remark 11. The potential Wy decreases. We notice that Wy g( \) IS completely mono-
tonic on R, i.e. (—1)"(Wrp( \/T))(")(r) is positive for any n > 0 and any r > O(see Corol-
lary 1 of [53]). It is explained in [24], by using Bernstein’s Theorem (see Theorem 12b of
[[79]) about the following representation of a completely monotonic function f

) = f " e dat)
0

where « is a non decreasing function, and Montgomery’s Theorem for theta func-
tions, that the triangular lattice is the unique minimizer among lattices of E(L) :=

Z f (||x||2), provided we have the correct assumptions of convergence, for instance f(r) =
xeL*
O(r~'7") at infinity for some n > 0. This is another proof of our theorem.
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Chapter 5

Limits of Solutions to n-dimensional
Ginzburg-Landau Equations

This is joint work with Yuxin Ge and Etienne Sandier.

5.1 Introduction

Suppose that Q c R" is a bounded smooth domain, g : dQ — S"! is a smooth prescribed
map, and d = deg(g, 0Q, S"!) is the degree of g. We consider the functional

(Va1
Eg(u,Q)—L[ — =1 Iul)] dx (5.1)

for u € W™ (Q,R") = {w € W (QR") : wlag = g} It is easy to see that Wy (Q, R") is
not empty.

In the case of n = 2, the functional defined above is the classical Ginzburg-Landau
functional. A minimizer u, € W;’z (Q, Rz) of E.(u, Q) satisfies the so called Ginzburg-
Landau system

~Au, = L(1-luP)u,  inQ
u. = ¢ on 0Q) .
Bethuel, Brézis, Hélein did notable contribution on this model, and eventually their work

leaded to the publication of the book [[13]. In [13], they proved, among the others, the
following theorems.

(5.2)

Theorem (BBH1). Assume that Q is star-shaped, and that d # 0, then there exists a
subsequence of g, — 0, exactly |d| distinct points a,,ay, -+ ,ay, and a harmonic map
u, € C*°(Q\{ay,a, - -, ay}) with boundary value g such that

—u, Iin Cfoc(Q \Ui{a;}) for Yk andin CclvQ\ y; {a;}) for Va < 1.

Us loc

n

In addition, each singularity has degree sign(d).

For non-star shaped domain, see [69] for references.
Also, in their paper, they introduced a renormalized energy which is defined on con-
figurations of points. For any given configuration b = (b, by, - -, by) of distinct points
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in Q, the renormalized energy

|d]

1
W(b,d,g) = —an b - b/ + 3 fg D(g X g;) —nZR(b,-)
i=1

i#] g

where @ is the solution of the linear Neumann problem

|d|
AD =215, inQ
i=1 (5.3)
)
— =gXg; on 9Q)
ov

where v is the unit outward normal to 0€, 7 is a unit tangent vector to J€2 and

|d|

R(x) = ®(x) — Z In|x — by .
i=1

For this renormalized energy, they proved

Theorem (BBH2 ). Let U, {a;} be the limit singular points of Theorem(BBH1), then the
configuration U; {a;} minimizes W(b, d, g).

Near the singularity, they had a vanishing gradient property

Theorem (BBH3 ). Near each singularity aj,

z—a; .
[ = aj

where H; is a real harmonic function such that
Hi(z) = Hi(a;) + Oz - a;[), as z > a;. (5.5)

In other words,
VHj((lj) =0. (56)

As for the case of n > 3, the infimum of the Ginzburg-Landau type functional E.(u, 2)
is attained. We have the higher dimension analogue of (3.2) for any minimizer u, of
E.(u,Q)

(5.7

{—div(qusl"—zVug) = L(1-wP)u, inQ
U = g on 0Q) .

We are interested in the case of d # 0, therefore we assume throughout the rest of the
paper, for notational convenience, that d = deg(g, 09, S" 1) > 0. For convenience, we

define a constant 1

K= ~(n—= 13w,
n
where w, = |S"7!].

In [70], Strzelecki proved minimizers u, € ng’" (©,R") of the n-dimensional func-
tional E.(u, ), which satisfy the Dirichlet boundary condition u, = g with zero topologi-

cal degree, converge in W'*(Q) and C? (Q) for any a < 1 - upon passing to a subsequence

loc
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& — 0 - to some minimizing n-harmonic map. For the case d = degg # 0, Hong [47]
established a weak convergence away from the singularities for a sequence of selected
minimizers. In [42], Han and Li proved, among other things, the corresponding results
on the singular limits of minimizers of n-dimensional Ginzburg-Landau type functional.
This can be regarded as the higher dimensional analogue of Theorem(BBH1).

Theorem (HL ). Assume d # 0, n > 3. For any sequence &, — 0, let {u;} C W;’" (Q,R")
be the corresponding sequence of minimizer for E.,. Then there exists a subsequence
{ur}, a collection of |d| distinct points {ai,ay,- -+ ,a} C Q, and an n-harmonic map
u, : Q\ U;{a;} = S™! such that

uy — u, stronglyin W;O’Z(Q \ Ui {a;}; R"), (5.8)
weo—u, in COQ\ U} RY, (5.9)
ue — u, stronglyin  W'"(Q;R") forall1 < p < n. (5.10)

Furthermore, deg(u,,0B,,S" ") = sign(d) forall 1 < j <|d and o > 0 small
enough.

In our paper, we shall prove an analogue of Theorem(BBH2), i.e. the existence of
renormalized energy for the higher dimensional Ginzburg-Landau functional. We shall
prove that it coincides with the renormalized energy for n-harmonic map introduced by
Hardt, Lin and Wang in the paper [45]. In [45], for an arbitrary subset A of Q consisting of
d distinct points {a, a», - - - , a,} that are separated from each other and from the boundary
0Q by at least 207, they introduced a renormalized energy W, defined on the configuration
of singular points of n-harmonic maps in Q as follows. For 0 < ¢ < o7, let

Qus=Q\ U?:1Bé(ai)-

V n
Ess(w) ::f Vwl dx
Qa6

n

Define

where w is in the family
Was={we W (Qus8"") : wloQ = g, deg(w, 0Bs(a;)) = 1 foralli}.

Suppose that w, s minimizes E4 s.
Then
E4s(Wa ) — dky| Ind|

is increasing with respect to ¢ and bounded from below for any ¢ > 0.
So
We(ai,az, -+, aq) = (lsi_l}(l) (EA,6(WA,5) — dk,|In 5|) (5.11)

makes sense.

For this renormalized energy W, of n-harmonic maps, we will prove that it is the
renormalized energy for n-dimensional Ginzburg-Landau type functional E.(u, 2). When
there is no possibility of confusion, we will write W as W,. We have the following result.

Theorem 5.1.1. Let a = {a,'}f:1 be the limit singular points as in Theorem (HL), then
E (u., Q) = dk,|Ing| + W,(a) +dy + o(1)ase — 0,

where vy is a constant which will be defined in Section [5.2.1] later, and the configuration
{ai}f.’=1 minimizes W,.

5.1. INTRODUCTION 47



CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU
EQUATIONS

The proof of this theorem can be divided into the following two lemmas.

Lemma 5.1.1. Let a = {a,,a,,- - , a4} be any configuration of d points in Q. Then for
every € > 0 small enough, we have

E.(u., Q) < dky|Inel + We(a) + dy + o(1).

Lemma 5.1.2. Let a = {a,,a,,- - ,ay} be the singular points of u. as in theorem(HL),
then there is an integer N = N(g, Q) such that for every k > N,

E. (ug, Q) > dk,|Ingi| + Wo(a) + dy — o(1).

Most of the results above deal only with the sequences of energy-minimizers. In
our paper, we shall study the limits of solutions to Ginzburg-Landau equations in n-
dimensions.

Suppose u, is a critical point of E.(u, Q), which satisfies (5.7])

{—diV(IVugln_ZVug) = 1(1—|u8|2)u8 inQ,
U, = g on 0Q) .

and has an energy upper bound
E.(u., Q) <dk,|Ing|+ M (5.12)
where M is a constant. We have

Theorem 5.1.2. Suppose that {u.}, ex \, 0 is a sequence of critical points of E,, and
satisfies the upper bound condition (5.12). Then there exists a subsequence {u, }, a col-
lection of exactly d distinct points {a,,ay, - ,ay} C Q, a finite subset S of Q, and an
n-harmonic map uy : Qo := Q\ ({ay, a2, -+ ,a;} US) — S*', such that

U, — g in W "(Qp,RY.

loc

Furthermore, deg(uo, 0B,(a;), S"h =1, for1 <j<dando >0 small.

For a sequence of functions which satisfy only the upper bound condition (5.12)),
R. Jerrard proved in [48] that there exists a weakly convergence subsequence. In our
work, we prove the strong convergence, but this depends on the fact that the sequence of
functions solve the Ginzburg-Landau equations.

We also give a higher dimensional “vanishing gradient property" analogous to the one
in [13]. Let u : Qy — S"! be an n-harmonic map. We say u is a stationary n-harmonic
map if its stress tensor is divergence free in €, that is

> oTi;=0

where |
T;; = |Vul" (O, 0ju)y — = |Vul" 6;
n

95 D Tiwi=0 (5.13)
9By

and satisfies

for B, C Qo, v = (vi,-+, V).

48 5.1. INTRODUCTION



CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU
EQUATIONS

Proposition 5.1.1. Assume u : Q) C R* — S"! is a stationary n—harmonic map where
Qy :=Q\ {ay, - ,as} US) in the above sense, and deg(u, a;) = 1. Assume around each
singular point a;, one has the asymptotic expansion

B(x) X —d;

ulx)=-e
lx — ajl

where B(x) € so(n) is antisymmetric matrix satisfying B(0) = 0 such that B is C' in a
neighborhood of x. Then

Z 8:B(0)e; = 0
k=1

where (e, - ,e,) is the canonical basis in R". Moreover, we can write

X — a4 +Q(x_ai)

lx — ail lx — ail

u(x) = + O0(x — a;’)

where Q(x) is some harmonic polynomial of degree 2. In particular, when n = 2, we have
B(x) = O(Ix - a).

At the end of the paper, we give an example of non-minimizing sequence of critical
points.

Theorem 5.1.3. In three dimensions, there exists a domain Q and a boundary value g,
such that a sequence of critical values u. of the 3-dimensional Ginzburg-Landau type
functional E_(u, Q) satisfies the upper bound condition (5.12) and is not the minimizer.

5.2 Renormalized Energy

In this section, we study the renormalized energy for minimizers of n-dimensional Ginzburg-
Landau type functional. We show that it coincides with the renormalized energy for n-
harmonic maps.

X
|x]

5.2.1 Estimates when Q) = B; and g(x) = go =

In this subsection, we introduce some quantities similar with [[13]. The quantities in this
section will play an important role in the proof of Lemma and Lemma For

convenience, denote
Ea,R = Eg(l/t, BR),
I(e,R) = min Ez.

ueWrg,
where Wr, ={v|ve WI(Bg, R"), ulsp, = go = |x?|}' By scaling it is easy to see that
I(e,R) = I(1,R/e) = I(e/R, 1).
Denote I(¢r) = I(¢, 1) for notational convenience. Let u, be the minimizer of I(1, %).
Lemma 5.2.1. For0O<t; <t, <1, we have
I(#)) + «, In(#)) < I(f2) + K, In(2,)
i.e. the function t — I(t) + «, In(?) is increasing.
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Proof. Set
1

ul |x| < PRE)
v(x) = { L <l (5.1)
X = - n'

Then by the definition of I(¢), we have

(1) =1(1,17) < Eya(v)

n

V X [‘l n
X 1 —1)2
:I(t2)+f () dx:I(t2)+f =D dr 5.2)
le‘]\Brgl n [2_1 n-r .
~ 1) t
ey + P, 2
I
This implies the conclusion. O

By using Theorem 1.1 of [48], we have a lower bound of I(#) + «, In().

Theorem. Ifu € Wg]’" (Q,R"), then
E.(u,Q) > dk, |In(e)| + C(Q, g).
This leads to the definition of constant
v = lll_r)l(‘)l I(?) + k, In(?).

If we apply a rotation 8 on the boundary value g, i.e. if the boundary value is 6 o g,, we
can get the same constant 7, that is because rotation on u# does not change the energy.

5.2.2 Proof of Lemma5.1.1

In this subsection, we prove Lemmal[5.1.11 We will construct a comparison map which is
in ng’" (€, R") to get the upper bound. For the construction, we need an important lemma
(Lemma 9.1 in [45]) on the behavior of w, s near the singularities. In [45], they proved
that near a;, one of the singularities, w4 s will be, at each sufficiently small scale, close
to some rotation. We will state the lemma without proof. Let a = {a;, a,, - -- , a,} be any
configuration of d points of Q that are separated from each other and from the boundary
0Q by at least 20. Then

Lemma 5.2.2 ([45]). For any u > 0, there exists a positive Ty < o so that if 6 > 0,
s €46, 19],andi € {l,...,d}, then

lwas(@ + s(-)) = Oss.illcrss,,,) < u/3d

for some orthogonal rotation 65 ; of R".

Now we prove Lemma[5.1.1l For any u > 0, from (5.11]), we may choose a positive
constant ¢ < 7o such that

Ezs(was) < We(a) + dxk, |Ino| + u/3 (5.3)

whenever 0 < 8p. We now fix such a 6 < dy/4, and fix an s € [40, 79] as in Lemma [5.2.2]
then we have the comparison map uy(x) € W;’” (Q,R") defined by
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Was  if x € Qu5 \ UL By(@)),
up(x) = { vi(x) if x € By(a;) \ By (@), (5.4)
Us/2,g; ifx e Bs/z(c_li).

where g;(x) = 655.( i:z ) is defined on 0B;/»(a;), and uy) 4, is the corresponding minimizer
of E, ;> in Section [ﬁ'_ﬂ The map v;(x) is the interpolation map

*

Vi
vi(x) =
il
where
X—a; _
vi(x) = (2 =2x—al/5)0ss.i (ﬁ) +2lx—al/s = Dwag,
X —d;
and from Lemma[5.2.2((also see section 7 of [43]), it satisfies the energy estimate
Vvl
f Vil 4y < k102 + 1/3d, (5.5)
By@)\Byp(@) M

We need an energy lower bound estimate of S"~! valued function on annulus.

Lemma 5.2.3 (Annulus estimate). If 0 < r < s < oo, u € W"(By(a) \ B.(a),S"™"), and
deg u|0B(p) = 1 for almost all p € (r, s), then

Vul" s
f Vul dx>«,In-.
By@\B.(a) r
Proof.

V n S
f [Vul dxsz Ventdl" /ndH"™" dp
By(a)\B/(a) r JoB,
s 1 =S
> f —[ f |Vtanu|"—‘d7{"-‘] w, " dp
r np Snfl (5.6)

$ 1 n—1
zf — (n—l)Tf Jac u dH"!
r np Sn—l

s
> K, In —.
r

n
n—1

The third inequality comes from the inequality of arithmetic and geometric means.

Lemma[5.2.3] gives the lower bound on annulus,

Vuo!l" s
f Vil 3 > dieyin 2.
UBy(a)\Bs(a)) T 0

Combining this with (3.3) we have the estimate

V n
E,,(ug) = f Vitol” 4
Qa,s n

Vuol" Vuel"
:f [Vitol dx_f Vuol” ;. (5.7)
Qs N U(Bs(ai)\Bs(a)) 1

< Wy(a) + dk, |Ins| + /3.
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In the balls By»(a;), there exists a constant & such that
E:(uspg Bsp2) = I(e, 5/2) = 12¢/5,1) <y + K, [In(2e/ 5)| + p/3d (5.8)

whenever € < g.
Combining (5.3),(3.7) and (5.8) we have the desired upper bound

Es(us’ Q) < Es(uo’ Q)

d d
VV,' "
= Eg(uo) + Z f A dx+ Z Ec(uy24,, By2) (5.9
i=1 VB i=1

$(@)\Bsp@) M1

< We(a) + dxk, |Ing| + dy + p.

That finishes the proof of Lemma[5.1.11

5.2.3 Proof of Lemma5.1.2

In this section, we will give a proof of Lemma Let a = {a;,as,--- ,a,} be the
singularities of u. in Theorem(HL). Suppose these points are separated from each other
and from the boundary by at least 20. On the one hand, from the convergence of the
us — u,, we can have a lower bound E, ,(w,s) —o(1) of the functional E, away from these
singularities. On the other hand, we need to prove that, near a;, one of the singularities,
for € small enough,

E.(u., B,(a;)) > I(g,p) + o(1). (5.10)

In order to prove (5.10), we need to prove an important lemma which is similar with
Lemma[5.2.2] Tt says that, near each singularities, at sufficiently small scale, the mini-
mizer is close to some rotation on sphere. Define u;,(x) := u.(a; + rx) in By. Then we
have

Lemma 5.2.4. For any u > 0, there exists a sequence oy — 0, and an integer N(u), such
that if k > N, then

i, () = Billwrnsn-1 rmy < pt (5.11)

for some orthogonal rotation 6; of R".

Proof. If the lemma were false, then for any sequence oy — 0,
X ln gqn-1 n
l/t,"a-k(X) -+ Qﬂ in W= (S , R )
X

for any orthogonal rotation 6 .

Then there exists 8,5 > 0, such that foro- < g, alli=1,2,---,d, we have
Vu.| 7
f Vil sk, + 5y 2 (5.12)
Bsap\Bo(ai) n o

In the balls B,(a;), by using a conclusion on the lower bound of E.(u,, B,(a;)) (see theo-
rem 1.2 of [48]), we have

E. (s, Bo(a:) > &, In — — C(n) (5.13)
E
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where C(n) is a constant which depends only on 7.
Then for & small enough, say € < &, (3.12)) and (5.13]) imply
E,(1,, UB5(a)) > di,In = + 51n — — C(n). (5.14)
g o

With fixed &, the lower bound contradicts the upper bound (5.9) in Section [5.2.2] as
o — 0. This completes the proof of the lemma. O

For any ¢ > 0, from the definition of W,, there exists 7y < o7, such that for any 6 < 7y,
we have
EosWas, Qas) = We(a) + dk, |Ino| — u/6. (5.15)

From Lemma[3.2.4] choose o < 7¢/2 small enough, such that

tti,r, (1) = Oillwrngsn-1 gy < p/6d. (5.16)

Now fix o7y, and let p = %, in ball By,(a;) define a function

- . Ug
te(x) = min{(1 + f(lx — a;)) |ug|, 1} - ol
where
0 if |x—ail <p,
fy =4 (=4 -1)6 ifp<lx-al<2p, (5.17)
0o if 2p < |x - a,-l < 4p

We will choose ¢ later.
Recall firstly from Theorem (HL) that

us > u, in C) (Q\Ui{a;};R".

Then there exists an g (o7, dp), such that

lug| =

> on B B
1+ 6, 4\ By

whenever € < g;. Itis clear that ii, = = on By, \ B,,.

[ute|

Recall that p is fixed, and we have |it,| > |ug| in By,(a;), thus we can choose 6y small
enough, and & < &,(07, 0y, 1) such that

E.(us, Bap(ai)) = Ep(iiz, Bap(a;)) — p1/6d. (5.18)
To prove Lemma(5.1.2] we construct another function
i, if |x —ay < 2p,
u, =< v; if2p<|x—aj <3p, (5.19)
w; if3p <|x—a;| < 4p.

where both V; and w; are interpolation maps defined by
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where v; = 3 — |x — a;| /p)iis + (|x — ai /p — 2)u,.. And

Wi

w; =
l lwil

where w; = (4 — |x —ajl /p) - w.Gp - ;=25 + (x —ail [p = 3) - 6:(5=55)-

|x—ajil [x—a

The fact of the convergence of u, to u, implies that

E(itz, Byy(ai) \ Bay(ai)) = Ee(its, B3p(a;) \ Byp(a)) — p/6d. (5.20)

From the Lemma[5.2.4] we have

4
E.(it;, Bsp(a;) \ B3p(a;) = k,1n 3
= Es(ei(—), B4,,(a,-) \ B3p(ai)) (521)
lx — ajl

2 Es(ﬁs(ai)’ B4p(ai) \ B3p(ai)) - /l/6d
Combining (5.18)), (3.20) and (3.21)) gives

X —da;
i

Es(us’ B4p(ai)) = Es(ﬁs’ B4p(ai)) - ,u/2d = I({-j, 4P) - ,U/Zd (522)

Now we choose 6 = 4p. From the convergence of u. in the domain €, s, choose &
small enough, such that

Es(us’ Qa,é) > Es(u*’ Qa,é) - /1/6
= Ea(wa,é’ Qa,&) - /1/6 (523)
> We(a) + dk, |Ind| — u/3.

Combining (5.22)) and (5.23)), for £ small enough, we have
E.(u:, Q) > dl(g,4p) + Wy(a) + dk, In 6| — 5u/6 > W,(a) + dk, lIng| +dy —p.  (5.24)

This completes the proof of Lemmal3.1.2

5.3 Limits of Solutions to Ginzburg-Landau equations

In this section, we start to study a sequence of critical points of n—dimensional Ginzburg-
Landau type functional which have proper upper bounds. Suppose u, is a critical point of
E.(u, Q), which satisfies (5.7))

e

{—diV(IVugln_ZVug) = 1(1—|u8|2)u8 inQ,
Us = g on 0Q) .

and has an energy upper bound

E.(u., Q) < dk,|Ingl + M (5.1

where M is a constant.
Note that these points are not necessarily the minimizers of the functional. We study
the compactness and other properties of this sequence of critical points.
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5.3.1 The Divergence Free Stress-Energy Tensor

Pohozaev identity plays a crucial role in [13] and [69] in two dimensions, and in [42] in
n dimensions. There are two methods to derive the Pohozaev identity. The first method
is to multiply both sides of the equations by appropriate multipliers. And the other one is
by using the fact that the stress-energy tensor is divergence free. These two methods use
only the equations. While the proof of [42] in n dimensions depends on the minimality
of the functions. In our paper, we will use the divergence free of stress tensor to get the
Pohozaev type identity. To do this, we need to discuss the regularity.

Maximum Principle

Lemma 5.3.1. Let u, € W;’" (Q,R") be a solution of equations (5.7), then we have |u,| <
1.

Proof. Let M = {x||u.(x)| > 1}, then on M, we have
1 . n—2 2\ _ . n—2 n
Edlv(qusl V| )_ <d1v(|Vu8| Vug),ug> + |Vl

< : (el = 1) . u> + V"

e (5.2)
1
= — (ol = 1) ol + [V ]"
Sl’l
> 0.
Therefore )
lug|™ = 1
f —div (|Vu /"> V |u, ) (—2)
M |u8|
o 21 (5.3)
- f Vel (Vo) —
M |u£|
<0
Thus either
e M =0=lul<1;
or
e [Vu|=00on M= |u;| =1on M.
That finishes the proof.
O

An Auxiliary Problem
In this part, we shall discuss the regularity of the solutions, and prove
Lemma 5.3.2. Let u, € Wé’" (Q,R") be a solution of equations (5.7), then

_, Ol
|V |2 o € H (Q)
1

foralll=1,--- ,n
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Now we prove the Lemma[5.3.2] We follow the same method in the proof of Lemma
2.2 in [6].

For simplicity, in this part we suppose that /[ = 1. We consider the auxiliary problem
below. In ball B(a, r) C €, consider the energy functional

1
Fy(w) = — f (IVw]* + 6%)"* dx — f flugywdx
B(a,r) B(a,r)

for w € W,"(B(a, r), R") = {w € W' (B(a,r),R"),w = u, ondB(a, )}
The corresponding Euler-Lagrange equation of functional Fy is

1
{LM = fe) = = (1= lP) e inBla,r) 5

Ws = U ondB(a,r)

where

Lsws := —div ((le5|2 + 52)%Vw5).

Note that f(u,) € W' N L™ if  is fixed.
Differentiate the equation above(here we assume ws € W?>", if not we can use the
difference quotients to get the same conclusion), then we have

0

0
a—xll«swa = a—xl(f(us))-

The corresponding variational equality is

n=2 a n—4 8
f (Vws? + 62)F <Vﬂ, Vv> +(n-2) f (Vws, V0) (Vs + 625 <Vw5, y 2
B(a,r) 0x, B(a,r)

axl
1
- | i(—(1—|ug|2>u8)-v
B(a,r) 8X1 en

(5.5
for v € W,"(B(a, r)).
Choose ¢ = y*, where
1, inBa, )
Y= 2 (5.6)
0, ondB(a,r).
and |Vy| < g
r
0 0 0
Letv = 02 then Vv = ¢ - VX2 4 2% (9)" . Then we have
axl 8x1 8x1
ne 0
f (Vwsl + 677 <vﬂ,vv>
B(a,r) 0x; 5.7)
= o |Vo—| (UVwsl"+67) 7 +([Vws|" +67) 2 (V—, — - (Vo) ).
B(a,r) Ox 0x; 0x;
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By using Young’s Inequality, we can estimate the second term on the right hand side,

f (Vs + 62 <V% MW <V¢>T>
B(a,r)

(9X1 ’ (9)61
A (5.8)
<0 f " iV—‘S (IVws|* + 62T + C(6, r) f (IVwsl? + 6%)5.
B(a,r) Ox B(a,r)
While
N Ows
(n-2) (Vws, Vo) (Vs> + 63T (Vws, V—2
B(a,r) 5)61
(9W 2 4
=(n-2) " <Vw5, V—5> (IVws* + 657 (5.9)
B(a,r) 5)61

+2(n-2) f <Vw5, Ows | (V¢)T> (Vs + 62 <Vw5, W - V%> .
B(a,r) 0x, 0x

We can estimate the second term on the right hand side by using Young’s Inequality
again.

(n— 2)f <Vw5, ws . (W)T> (Vws* + 677 <Vw5,w : V%>
B(a,r) Ox; 0

X1

o (5.10)
gef o [VEL (VP + ) +C(9,r)f (Vwsl? + 623
B(a,r) X1 B(a,r)
Combine the inequalities above, we have

6 2 n—.
f VI (Vg2 + 82)7

Bar/ | OXi (5.11)

du,| |0 '
<C(r, &) (1+|Vw5|”+ a ﬂ)
B(a,r) Ox110x

n=2 a . . . .

Therefore, (|Vw5|2 +65)7T - 6—W6 is bounded in H ;OC(Q). Recall that F; is coercive, we
X1

have w; is bounded in WLt”(B(a, r), R"). Then

ws —=wy in W
. (5.12)
ws >wy inL*, V1 < s < o0,

From the lower semi-continuity, we have

f [Vwo|" < lim inff [Vws|" .
B(a,r) 6—0 B(a,r)

And from the convergence of ws, we have

fug) - wo = lim Slue) - ws.
B(a,r) 6—0 B(a,r)
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Thus wy is a minimizer of F,. From the uniqueness of minimizer of Fy(in fact, Fy is
convex), we have wy = u,. By the minimality of wy, we have

lim |Vw5|"§f |Vu,|" .
=0 JB(a,n Bla,r)

Hence
ws — ugin W
Then
(Vw5 + 62T - g—f = |Vu,|'" 3—2‘; inL’.
Therefore s ou
V| > an © H,,.(€).

From [133], we know that Vu, € L™, then we have

Q).

ou
n-2 £
|Vus| 8_xl loc

Divergence Free of Stress-Energy Tensor

The stress-energy tensor associated to a critical point u. of the Ginzburg-Landau func-
tional is

1 1
T = [Vu" 2 (0itte, O ittg ) — (= |Vu|" + —(1 = |us|)*)6;. ;.
= 1Vl (e, Ojtte) = (- Vel + 1 (1 = )15,

Then
divT ; = (div(Vu" Vies), Bjus) + (V" e, 0,0 u)
1
- <|Vu£|n_2 61’“8’ 6iajus> + <_n(1 - |us|2)us’ ajus>
& | (5.13)
d1v(|Vus|”_2 V”e)a ajus> + <_(1 - |bt£|2)l/l8, 6jus>
Sn
=0.
Lemma 5.3.3. For any vector X = (xy,- -+ , x,), we have

f Z XjV,'T,',j = IZ(ain)Ti’j.
0Q l,j Q l,j
Proof. By using the Divergence theorem directly, we have
xiviT;; = f div(T _;x;)
ﬁ o Z JVitij o Z i
f Z(dlvT DX+ Z T ;0i(x)) (5.14)
\[Zwmm

O
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5.3.2 Covering of Bad Sets

We call the sets where |u,| is near 0 “Bad Sets". In this part, we cover these “Bad Sets"
by a finite collection of small balls. This covering also provide a finite singular set of the
limit map.

Pohozaev Inequality

Pohozaev Inequality plays a crucial rule to cover the bad sets. We use the divergence free
of the stress-energy tensor to prove this inequality. On the boundary dD of a domain D,
let v be the outward pointing unit normal to 8D, and 7%,k = 1,--- ,n— 1 be the orthogonal
unit tangent vectors to dD, then for every vector field X = (x,--- , x,),

Lemma 5.3.4. We have )"

_ n—1
i,j=1 XjV,'Tl"j = XVTV’V + Zk:l XTk TV’Tk.

Proof. For fixed i, j, by expanding the notations, we have

Zxxvxv, Vit Z Zxﬂ \7 ,]T

k=1 s=1
nl (5.15)
= X;V; v,T,} + Z x](T ) viT;; + Z Z(xsvsv]v,T,} + szr TV T ;)
k=1 s#j
= XjV,'Tl"j.
The last equality comes from the fact that (v,, 7}, , 7" ) L(v,, T}, e T?‘l) if s # j.
o

In a bounded strictly star-shaped domain, by taking the particular choice of the vector
field X, we have the following Pohozaev Inequality

Proposition 5.3.1. Let D C R" be a bounded strictly star-shaped domain with respect to
Xo € D, such that (x — xo) - v = adiam(D) for all x € 0Q, and u, is solution of equation
(5.2). Then there exists a constant C depending only on n, a, such that

1
f (1 —|u8|2)2+adiam(D) f Vit "2 10,1,
p 4&" oD

1 2
< C(n, @)diam(D) f Vi |2 |8,u8|2+—(1 —|u8|2) .
oD 48"

(5.16)

Proof. We take a particular choice of X(x) = x—x, then 9;(X;) = 6; ;. From Lemmal[5.3.3]
and Lemma[5.3.4] we have

n—1
»[';D XVTV,V + ;X‘rk vk = f{)D ;vaiTiJ
_ f Z(a,xj)n ;= f Z T. (5.17)
b D5
) L_4Zn (1= )
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Also on the boundary 9Q, we have

n—1
f X,T,, + Z XuT,
oD =1

1 1
- f X- y(wu‘gr’—2 0, u> — = |Vu,|" — — (1 - |u8|2)2) (5.18)
oD n 4en
n-1
+ X Tu |V’/t£|n_2 (0,u, a'rkus>
S, 2 )

Combine (3.17) and (3.18) above, and by using Cauchy-Schwarz inequality and Young
inequality, we have

z 2 ? i 1 n-2 2 1 2 2
\fD 4en (1 - |u8| ) < dlam(D) \[(;D Z |Vu8| |6Tu8| + 4_{-;" (1 - |u8| )

-1
— adiam(D) i IVaus|" 2 10,
N op 1 (5.19)
+—diam(D)f Vg2 10,1,
2 oD

+ C(n, @)diam(D) f Vit 10l .
oD
This implies the conclusion of the proposition. O

Covering of Bad Sets

Next we follow the methods of [[69] and [42] to cover the bad sets. For any x5 € Q, p > 0,
we introduce

Vu[* 1 2
f(xo,p)=pf +— (1= lu)
B,(xp)NQ N de

The following is related to the “Courant-Lebesgue lemma"; see Lemma 2.3 in [69] and
Lemma3.5 in [42].

Lemma 5.3.5. (i). If we have an upper bound for the energy of critical points u,, i.e.

E.(u,, Q) <dk,|Ing|+ M,

then for any point xg € Q, and 0 < & < €', we have
) 4E.(u,., Q)
sl/2lsrpl£51/4 f(xo0,p) < W <C
and -
i s\Us,
581/41;;2581/8 f(xo, P) < W < 2C1

(ii). There are constants y and &) depending on Q, g, such that for 0 < € < &,

inf |ug >1/2.
B,NQ

whenever £'? < p < &'* and f(xo,p) <.
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Proof. (i). For 0 < & <e”!, we have

Ea(uaa Q) 2 Ea(ua’ Qn B£1/4(x0))

cl/4

1
> ,p)—d
f(xo P)p p (5.20)

g2

1
27 ngl inf - f(xo.p).

ell2<p<e

Thus we have the first part of (i) if we have an upper bound of the energy. The second
part of (i) follows the same idea.

(ii). From the regularity result in Proposition 3.3 of [42] for solutions of equations (5.7),
we have the Holder continuity of u,

[us]CO(Q) < ng_a.
Choose 0 < p < po(Q) small, s.t. D = B,(xo) ()€ is strongly star-shaped w.r.t. yo € D
1 1
and (x —yg) - v > Zp for Vx € dD. If there is a y € D such that |u.(y)| < 5 then

lue(x)| <

fD = (1= )

U e 521
zme g (1 Iugl) (5.21)

4en
i ®

ZC3>0.

However, by the Pohozaev inequality,

1 2\2 P n-2 2
fD o (L= eP) + 5 | Va2 18,

oD
V" @gﬁ]

(x0) NI n

for |x —y| <

W

(4Cy)7

and therefore

(5.22)
< Cn) [f(xo,p) tp fB

Recall that g is smooth, thus we have

1 2 n— |avus|n_2
f = (1 -twp) + £ f Vel 18,ucf = C(n. g)p f
D #€ 4 Jop B,(x0) N 6Q n

<Cn) [f(xo,/?) +PfB

|afg|”] (5.23)
(oo T
< C(n) (f(x0,p) + C(g)0") .

While
10,ul"

1 _
— f IVu "> 10,u* — C(n, g) f — = > —Cy(n,g)
4 Jop B, (x0) N 8Q n

uniformly, therefore we can choose p small enough such that p - C4 < 73
Then (5.23) contradicts (5.21)) if we choose y and p small enough.
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For 0 < & < gy and critical point u, of energy E., denote

1
Se = Q:lul<=7.
{xe |u|<2}

Let {B,114(x)},cs, be a covering of §,. Then by lemmal5.3.5, we have for x € §, there
exits a pg € (¢'/2, g'/*), such that

Y < f(X,pO) < Cl-

By Vitali’s covering lemma, we can find a finite collection of disjoint balls B‘9 1 (x), x; €
S. 1<i< 1, suchthat

(Q N Uyes, Boia(x)) C Ujgicy, Bsgra(x;). (5.24)

Thus we have an uniform upper bound for the number of the bad balls B,i/4(x;).

We refine the initial choice. For 1 <i < I, choose p; € [581/4, 581/8], such that

Sfxi, pi) < 2C,
and let D; = Q N B, (x;). From the Pohozaev inequality, we have

Lemma 5.3.6. There exists a constant Cy = C4(Q, g) > 0 such that

f 4; (1-1P) < c.
D;

uniformly forO < e < gy, 1 <i<[,.

Lemma 5.3.7. There exists a number Jy = Jo(Q, g) € N such that for any disjoint collec-
tion of balls B,/s(x;), x; € S, 1 < j < J,, there holds J. < J.

Proof. From the definition of D; and (5.24)),

QOUB£/5(xj)] c | J b
J

1<i<I,

1 1
Tl = Z »L:g/s(xj) @ (1 - |M5|2)2 = Z fD 4en (1 B |u8|2)2 < Gilo.

O

Now consider the covering (Bg/s(x))xesg. By Vitali’s covering lemma again, we can
find a disjoint collection of balls B,/s(x;), x; € S, 1 < j < J,, such that

Ss | ) Butx).
J

And moreover, by Lemmal[5.3.7] J, < J; independent of .
For any o > 0, denote
Q7 = Q\ U;B,(x9).
We have the following estimate
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Proposition 5.3.2. There exist C = C(Q, g) > 0, such that for any o > 0,
E(u.; Q)) < dk,|Ino| + C
uniformly for 0 < € < g.

To prove Proposition [5.3.2] we need an estimate on the annulus, which is stated in
Lemma 3.9 of [42].

Lemma 5.3.8 (Lemma 3.9 of [42] ). Fixan R, > 0, and any xo € Q. Lete < Ry < R < R,
1
and suppose u € W;’”(Q;R") satisfies |u| < 1in Q, and |u| > 3 in Arg, = QN (Br(xp) \

Bg,(x0)) and the estimates

1 2
f —(1-P) <K,
QNB, 14 (x0) &

E.(u) < K|lng|l + K.

as well as

Then there holds

f Vul"dx > |d
AR Ry

where d is the degree of u, restricted to 0(2 N Bg(xp)).

T (}’l _ 1)11/2

R ,
! In = - Cn,d, Q. ), (5.25)
0

Proof. The proof is as the same as in [42]. O

Proof of Proposition[5.3.2] We have already an upper bound for the energy of the
critical points u,, i.e.

E.(u., Q) <dk,|Ing|l+ M

By applying the Lemma[5.3.8] and a ball grow method in the proof of Proposition 3.3
of [69], we have a lower bound of the energy.

E(u,, Q) > di,In < — C(n,d, Q, g).
&

The proposition follows immediately from the upper bound and lower bound above.

O

For any sequence ¢, — 0, consider the corresponding sequence of critical points

u; = ug,. By Lemma[5.3.7] we have a bounded number of sequences of centers {x’;}, 1<

Jj < Jir < Jy, of “bad balls". Passing to a subsequence, we have J independent of &, such
that

x — x; € Qas k — +ooforeach j=1,2,---,J. (5.26)

Note that here x; may be the same, however, we can choose a collection of distinct
points {aj};=1 in {x;}.

Now we give more discussion on the number J, and prove that J/ = d. Let oy =
%miniij |a,~ — aj|, then for p < o, there exists gy and j such that |x’]‘ - aj| <pife < g
We have
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1. If d; = deg(us, B(a;,2p)) = 0, then in B(x%,&/*) C B(a;,2p), by using Lemma
5.3.5] we have

E(us,, Baj, 20)) > E(ug,, B(,, 81/%) > % Ine|. (5.27)

2. If d; = deg(u., B(a;,2p)) # 0, then by using Lemma [5.3.8 and Proposition 3.3 of
[[69], we have

E(u,,. Baj,00) \ Uy B(x;,5¢)) > |d)| Ing| + (|d;| ™ = |d;]) Inp| - C(n. d;, Q. g, ).
(5.28)

While we have }’;d; = d and the upper bound condition of (5.1), therefore
1. There is no point a; such that d; = deg(u,, B(a;,2p)) = 0 if & < &.
2. There are only d points a; such that d; = deg(u,, B(a;,2p)) # 0, and d; = 1.

Now we can say we choose the limit collection of distinct points {a j}?: -

5.3.3 &— Regularity

We rewrite
Us = Pg* 08?

Ug . .
where p, = |u.| and 6, = ﬁ In this part, we prove e—regularity of 6,.
uS

Denote
Qo‘ =0 \ UjB(,(aj),

1
thus we have |u,| > 3 in Q, if € is small enough.

Then
Vus = psves + 9& ! (Vps)T

By substituting u, in the function, we have
1
~div(Vul" (p:V6, + 6.Vp,)) = — (1 = lusue,
8}1
1.e.
: n-2 n-2 T : n-2 ! 2
—le(lVMsl Vps) 0& -2 |VM£| Ves ’ Vpg - le(l V”e | Ves)ps = _(1 _pg)us
811
Then multiply both sides by 6., we have
1
~div(Vu,|"? Vp,) = 0 = div(|Vus[" VO,)p; - 6, = —(1 = p})ps.
8}1

Therefore, —div(|Vu,|" > V6,)0, = |Vu,|"* |V, (that is because of the fact 6, - V6, = 0)
implies that

. 1
~div(IVuel" Vo) + Vi [V - pe = —(1 = p))p..
Sn
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U, Vu,

Recall that §, = l”— thus V6, = —— - V|u,| +
Ug Ug &
— div(|Vu,"? p;V6,)
=div[|Vue" (us - (Vo)™ = pe - V)]

=div(Vu"? Vp,) - s + V"> - Vuug - (Vo)™ — div(|Vu "> Vu)p, — [Vu "> Vu (Vo)

, then

_ 1 1
=1 Vue [ p2 | V0, [P 0, = — (1= p2)pi0s + —(1 = p)p0e
= |Vu|"? p2 V6, 6.

(5.29)
So we have
. n-2 n—2 2 1 2
—le(| Vus | Vp£)+ | V”e | | Ves | Pe = ;(1 _pg)ps’ (530)
~div(| Vu, "2 p>V0)— | Vu, "2 p> | V6, [* 6, = 0. (5.31)
Lemma 5.3.9. Forany K cc Q\ {ay,--- ,ay}, we have

(a). p. — 1 uniformlyin K, ase — 0

1
(b). —f(1—|u£ |2)2+f|Vu£ 2 Vo> — 0,as 6 — 0 ;
N K

(1 B |M£|2)I/t£ 1 . .
(c) ——————— € L'(K) with the norm bounded independent of ¢.
8”1

Proof.
(a).

We claim that p, — 1 uniformly in K, as € — 0.
If it is not true, then there exist 6 > 0, &, — O and {y;} € K, s.t. | u,,(y;) [ 1 =0. In
B_i14(y;), there exists p; € [¢'/?, &'/*], such that

E(ug;, By \ Bur())  C(n,Q, g,0)
13 13 < .

|11’18,’| - |11’18,’|

fOip) <C

By applying Pohozaev’s inequality, we have
1 Cn, €, g,0)
[ Sa-1pp2 < conspy < SED (532)

Boy Ei | Ing; |

while From the regularity result in Proposition 3.3 of [42] for solutions of equations
(5.7) again, we have the Holder continuous of u,

[Ma]cn(ﬁ) <Cme™,

P 1/a ;
then [u(x)| < 1 = = for | x - y;|< By therefore
1-— 2\2
f % > C(n)62,

2C(n)

this contradicts with the upper bound (3.32).
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(b).

Because K is compact, we can find a finite collection of open set K C Ufi \Br(bj) C
Ulli B2, (b;) C Q. For any i fixed, in A,,(b;) := By, (b;)\B,,(b;), we have the estimate

n-1 1
s( f |ws|") ( f <1—p5>") < C(o)e
Ay, (bi) Ay, (bi)

(5.33)

f IVu " Vp.(1 - p,)
A (b)

Then Fubini theorem implies that there exists 7;() > r;, s.t.

e C(o)e
f | Vits "] Vs 1 1 = pe |< :
OBy ()(bi) Ti

Multiply both sides of (5.30) by (1 — p.) and integrate over By,)(€), then we have

_f | Vus |n—2 VPsV(l—Ps)—f | V”e |n—2| Vps |2 +f | Vus |n—2| Ves |2 ps(l_ps)
OBy, (5)(bi) By,

o) By ()
1 2
- (1 _pg)ps(l _ps)’
€ JIB (o)
thus
1 _
n (1 _pi)pa(l _pa) +f | Vua |n 2| Vp8 |2
&€ JBs (o) Biy(e)
= - f | Vus |n—2 VPsV(l _ps) + f | V”e |n—2| Ves |2 ps(l _ps)
0By, (e) B (e) (534)

<C(K)e + f | Vit 121 V0, 12 po(l = po)
B

Fi(e)

SC(K)6+ml?x|1—p£|-f | Vu, '— 0 as € —» 0.
B

7i(e)

therefore
1 2 n-2 2
—(1 = p)pe(1 — pe) + | Vug [ [Vp|" — 0 ase — 0.
B, (b)) € By;(bi)
By the covering of K,

1
[ Za-spai-py+ [ 19028 —0 wse0.
K€ K

Then the conclusion follows immediately.

(©).
In fact, we only need to prove that (H“gw € L'(K) with norm bounded indepen-
dent of &. We use the same method in the proof of (b) above. We take the same cov-
ering balls, and by Fubini theorem and Holder inequality we choose 7;(¢) € [r;, 2r;],
such that

f | Vu "2 Vu, - v - u, < C(0).
0By, (¢)(bi)
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Multiply both sides of Equation (5.7)) with u,, in each ball B,, we have

20 2
(1 — lute]”) luae -
f — < - | Vi "2 Vi, - v - u, + [Vu|". (5.35)
By, (by) € OBr;(5)(bi) Bry(e)(bi)

This implies that 1Dl ¢ 71 ().
O

Now, we prove the weak convergence of a subsequence of {u,,}. Recall that oy =
%min,»;t jlai — aj|, then for fixed o < o, there exists &, such that Q, C Qg/ Zife < &o.
Then Propositoin[5.3.2]implies that

n

|Vu8k
f < Eak (8k’ Qo-)
Q N

< Egk(gk’ Qg/z)
<dk,|Ino|+ C(n,d,Q, g)

(5.36)

Then {u,,} is bounded in W'(Q,,, R"). By a diagonal process, we find a subsequence, still
denoted by u,, , such that

ue, — upweakly in W'(Q\ {ay, - - - ag}, RY).
From the Euler-Lagrange equation[5.7] of u,,, we have

div(| Vi, " Vite,) A ug, = 0 weakly.

By using the conclusion of [44] and (c) of Lemma[5.3.9) we have u,, — u, strongly
in Wllo’f(Q \ {ay,---a4},R") for p < n. Then by passing to the limit, we have

div(|Vuol™? Vo A up) = 0 weakly.

In fact, by applying a similar argument of the Lemma 2.2 in [23], a map u € W'*(Q, $"1)
is a n—harmonic map if and only if it satisfies the equation above. Similar arguments
can also be found in [6Q] and [67]. While Lemma [5.3.9] implies that |ug| = 1, i.e. uy €
W (Q\ {ay, - - a4}, S"1), thus ug is a n—harmonic map. Here, we give a short argument.
The fact
div(|Vuo|™2 Vug A ug) = 0 weakly
implies that
div(|Vuol" > Vug) = A(x)up.

Then multiplies both sides by ¢(x)uy where ¢(x) is a test function, and we get A = [Vuy|",
which means that u, is a n—harmonic map.

Later we need some properties of Hardy space ' and the space BMO(R"). We shall
use the following famous theorem of Fefferman and Stein in [37].

Theorem 5.3.1. H'(R")* = BMO(R"). In, particular; the integral fRn f - g iswell defined
for f € H' RN C™ and g € BMO(R"), and it can be extend to any f € H'(R"), and
there is a constant C = C(n) such that

fRnf-g
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In our paper, functions are defined on Q. When we say a function f € H'(Q), we
mean that in each U cC Q, f agrees with a function in H'(R"). And we define

1A llz0 0y = nf{lIgllyn @y : flo = glul-

From (3.31)), we have

— div(|Vu, "2 p2Vb,)
=|Vu " p? V.| 6,
= |Vu, "2 p*|VO,|* 6,

= lug|"”2 2(259@ 60165) (5.37)

= Ju "2 2[2 8.0/ (0.016° — 8,6467)]

Next, we shall prove that |u,|"~> p2[3; ; 0; 6L(0,616% — 8,646)] is in H'(Q).

Let B; = V6!, and E; = |Vu8|” & pX(V6.-6-—Vet-6)). Then E; € L7, B; € L. We have
curlB; = 0, because of curlV = 0. And divE; = 0, in fact, for any Q" C Q\ {ay,--- , a4},
and ¢ € W(l)’"(Q’, R), we have

IVu|"2 p2(Ve. - 65) - Vo + f IVu|"2 p*(VO~ - 67) - Vo

o / (5.38)
Vg2 p2 VO[> 67 - ¢ - 9k+f V|2 p2 VO[> 65 - - 6
Q/
=0.
The second equality follows from the equation (5.31)).
From a conclusion in [25], we have E; - B; € H', and
1E; - Bl < Con[|ES],
Therefore
IVu|"? p2 |VO,I* 6. € H'
and
SC(n)IIVQIILn : |||Vu£|" =, 2 (VO - 05 = V6 -0,
(5.39)
SC(")f|VMa|"
=C(n) [Vuell;,

Recall that |u,| > 1/2 in Q. In Q,, we have the following lemma
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Lemma 5.3.10. There exist 6,7 € (0, 1) depending only on n, gy € (0, 1) depending only
on n and o, so that if € < &y, and B,(x) CC Q,, then

e(x,r, &) := f Vo, |" < 2"f Vu|" <6
B,(x) B,(x)

1
implies e(x,Tr, &) < Ee(x, T, €).

Proof. If the conclusion is not true, then for any 7 € (0, é) fixed, there exist B,,(x;) CC Q,

and g; \, 0 s.t.
f v,
Bri(xi)

1
e(x;,tr;, &) > E/l:l

=N,

but

From Lemmal3.3.9] for any K cc Q\ {a,, ...a;}, we have fK |V, "2 |V,og|2 — 0 as
& — 0O and p, — 1 uniformly in K, as € — 0. We can choose a sub-sequence {g,} of
{€}, for the convenience of notations we still denote {gy,} as {g;}, s.t.

f |Vusi
By, (xi)

n

< f (9ol + lps - V0,2 (5.40)
Bri(xi)
<A + o(A7)
Define
Ui(z) = /li_lua,-(xi + 1i2),
and
Vi(Z) = /li_l(es,-(-xi + riZ) - és,-,x,-,r,-),
where

Hsi,xi,ri = JC esi(x) dx
By, (xi)

f VVi@@I" = 1,
B

and Poincare Inequality implies that

f Vil" < C(n).
B

And also from the condition we have

1
f VViI" > ~.
B 2

From the embedding theorem, we have
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V,' - V() in Ln(B1,Rn)
VV, =~ VV, in L%B,,R™

for some V,, € W'(B;, R").
We claim that Vi, — V; in W'(B;, R"). In fact, let £(x) € Cy(B12, [0, 1]), and satisfy

( )_ 1 in B1/4; (5 41)
é‘:Z B 0 on 831/2. .

and |V¢| < 5.
For a,b € R" and any p > 2, we have

la —bP <2°72(|alP2 + bIPH) la = b]* < 2PN (alP 2 a — |bIP72 b) - (a - b). (5.42)
Thus we have

f EIVV, = VV|"

B

<C(n) f [VVi"2 YV, = [VVI"2 WV - V[V, = V)] - & (5.43)
B

=C(n) f (VVII" 2 VYV, = V"2 VV) - [V((Vi = V))E) = (Vi — V))VE]
B

Let g = (Vi — V)&, ¢(y) = w(Z we only
need to prove that w = £V, € BMO, because Pl grr0 = ||¢’||BM0
JC |w - Wy,
B.(2)
<C(n)r'™" f V|
B.(2)
(5.44)

<C(n)( [Vw|")"

B (2)
<C(n)( IVVk|”+f Vi)
B(2) B,(2)

<C(n).
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Thus

f IVVI"™2 VYV - V((Vi = V))E) dz
B

< f VU o2 (3 + 12)V Vi - V((Vi = VDE)| + f (VV"2 = VU H)VVi - V((Vi = V))E)
B B

+ f VU™ (1 = p2, (xic + 1)V Vi - V((Vie = V)E)
B

1
f /ln—l |Vu8k
By (xi) Y

C) 1 fllgn - 18llparo + o(1)

" pik VH‘Sk V¢

IA

+o(1)

S5
.
A

<C(n) ||¢”BMO A — 0.
(5.45)
where f =| Vu,, "2 p2 | VO;, I* 6.
Similarly, we have

f IVVI'™2 YV, - V((Vi = V)E) < C) lBllgpso - 4t — O.
B

Also we have

f (VVI" 2 VVi = [VV["2VV) - (Vi = V)VE < C(n) ||Vi = Vil — 0.
B

These estimates imply that V;, — V,, in W!"(B, /4, R").
This implies that [, [VVo" <1, [, [Vol" < C(m).

For any ¢ € Cj(By/s, R"),

k— o0

f |VV0|n_2'VV0'V¢‘: lim f IVVi"™ - VVi - V| < Cn) 18llppso - Ak — O.
31/4 B]/4

Thus
f IVVo" 2 VV,Ve = 0.
B4

Vo is n-harmonic in B ;. For the n-harmonic map, we have the theorem as follows,
which is Theorem 2.4 in [55],

Theorem 5.3.2. If u € W'"(B,(x),R") is n-harmonic, then u € C"*(B,(x), R") for some
a € (0, 1), and for some constant C(n),

sup |Vul" < C(n)f | Vu |" .
B (x)

B (%)

Then by using the theorem above, we have

4
sup [VVy|* < C(n) IVVo|" < C(n)w—.

Bis Bia n
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1
Therefore, for 0 < 7 < 3’

1
f IVVol' < C-4"7" < =
B, 4

for T chosen small enough. It contradicts with the condition of the lower bound.
O

Lemma 5.3.11. In B(x,2r) cC Q,, if e(x,2r,&) < 6 where ¢ is the constant in Lemma
then 6, is C* for some a € [0, 1], and ||0;||ce < C(n) independent of &.

Proof. We follow the proof of [55].
Take € < g). If Byy(x) cC Q\ {ay,...as}, and e(x,2p) < ¢, then for Yy € B,(x),

r € (0,p), we have
e(y,r) < e(y,p) < e(x,2p) < 6.

From the lemma, we have for some 7 € [0, 1], and all r € (0, p),
1
e(y,tr) < Ee(y, r).
for Vr € (0, p) fixed, there exists k, s.t. r € [T*p, 757! p], then
r B
e(y,r) < e(y, ™ 'p) <27 e(y,p) < 2¢ (—) :
Jol

where 5. = log. 1/2 > 0.
Morrey’s lemma 3.2.5 implies that ||0,||cs» < C(n, 1, p) independent of &.

O
5.3.4 Proof of Theorem
Proof of Theorem|[5.1.2]
Step 1.
Assume K cc Q. Denote
S = ﬂ {x e\ {a,a - ,ag) liminff Vau,|" > 5} (5.46)
r>0 #=0 JB

where ¢ is the constant in Lemma[5.3.10l Then for any x € K, by the definition of Q, and

S, there exists r, s.t.
lim inff Vi |* < 6.
& Bi(x)

Thus there is an & < gy (recall that g is the value in Lemma [5.3.10] ), and a subse-
quence u,,, S.t.

98 K’

ce < C(n) independent of ¢,

for g < &.
Therefore Arzela-Ascoli theorem implies that there is a subsequence {6,,, }, s.t.

6, — 6y uniformly in C’(B,),
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where 6, € C**(B,). In fact 6, is u, in the theorem.
Step 2.
By abuse of notation, we write 6 for 6,,,,. Let
( ) 1 in Br/g; (5 47)
V=10 on 0B,, '

and |Vp| < % Then we have

f [Vl pEVO, — [Vuy|" > o2V, - V(6 — 6) - 7]
B (x)

= (V™™ 0L IVO 6 — IVl o} IVOII> 6,1 - [0 — 6)) - 7]
fgm g ! (5.48)

<max |6 — 6| (Vi + [Vuy|")
B.(x) B, (%)
—0.

By the equation (5.31]) and Holder inequality, we have

f VO — Vo'
Byj2(x)

< C(n) f (V"> V6, — Vo> V6] - [n- V(6 — 6)]
B (x)

< C(n) f [Vl VO — [Vuy "> VO] - [V( - (O — 6))) — Vi - (6, — 6] + o(1)
B,(x)

—0.
(5.49)
Therefore we have the strong convergence

6 — 6, in WY(B,.

Then by the convergence of p;, we get the convergence of u; in W!(B,). By the finite
covering theorem, we get the convergence

u - uy in - WK, S"h.

Step 3.
1
Let pg = min {8 |a = ak|}. By using Proposition [5.3.2 and the strong convergence of

u,, for p; < po, we have
E(uo; Q,,) < dk, [Inpi| + C(n, g). (5.50)
On the other hand, by using (5.23) of Lemma[5.3.8| we have

Tk [Inpy| = C(n,d, Q, g, po), (5.51)

E(MO;QP]) > Z |C’l\j
J

where d ;s the degree of uy, restricted to (2 N B, (a;)).
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Therefore, (5.50) and (5.51) imply that for a € {ay, as, -+ , a4}, if d, = deg|sp,@to # O
where p < py, then d, = 1. This implies that there are exactly d singularities of degree
one.

Step 4.

In this step, we prove the set S is finite. If this is not true, then we have infinitely many
points in §. By Proposition[5.3.2] there are only finitely many points in Q, for p < py.
Therefore, there exists a sequence of points in § which converges to some singularity a;.

Then there exists p, < pg, such that in Q,,, there are M points of S denoted {b j}j"i , and

M-6>2(Cn,g)+Cn,d,Q,g, po) where C(n, g) and C(n,d, Q, g, po)) are the constants
in (3.50) and (3.531)).
For u,, we have a lower bound

E(ug; Qp, \ UL, B,(b))) 2 di;, [In o] = 5/4C(n,d, Q, g, po), (5.52)

if we choose r small enough. Then by the strong convergence of u,, there is an &,,, such
that
E(us; Q, \ UYL, B(b))) = dk, |Inps| — 6/4C(n,d, Q. g. po) (5.53)

ife <eg,,.
By the definition of §, we have

E(us; Q,,) > dk, [Inpa| — 6/4C(n,d, Q, g,p0) + M - &

(5.54)
2 di, [Inps| +2C(n, 8)

for & small enough. This contradicts the upper bound of u, proved in Proposition
Step 5.
a; € Q, Vi.

From all the proof before, we only have the information that a; € Q. In this step, we
shall exclude the possibility that a; € 0Q for some i. For convenience, suppose a; € 0€Q.
Then we enlarge a little the domain €, as done in [[13]. Fix a smooth, bounded and
simply connected domain Q such that @ cc Q. Also fix an arbitrarily smooth map
2:Q\Q — §"! such that § = g on Q. Then we extend the map u, to a larger domain
Q such that uy = § on Q \ Q. We have a higher dimensional analogue of Lemma VL1 in
[13].

Lemma 5.3.12. Let a € Q. For every map u that belongs to W' (Bg(a) \ {a}; S"™!) such
that u = g in (Q\ Q) N Bg(a) and deg(u, dBg(a)) = 1. We have

1

- f [Vul" > 210Dy |Inp| - C,
1 J Bg(a)\By(a)

where C depends only on g and R.

We postpone the proof of Lemmal5.3.12
Proof of Step 5. In Q, = Q\ U, B,(a;), we also have an upper bound of the energy

E(uo; Q,) < dk, [Inp| + C(n, €, 8),

while from the Lemmal[5.3.12]and Lemmal[5.3.8] if @, is on the boundary, we have a lower
bound of the energy

E(ug: Q) = di, lInp| + 2D = D, [Inp| = C(n, Q. 3).
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This contradicts the upper bound above.

Proof of Lemma

By a conformal change of variables, we may assume that locally, Q2 is the half-space
{x € R"|x, > 0}, and that @ = 0. In this transformation, Bg(a) \ B,(a) is transformed into a
domain Bg/(0) \ B,/(0) with R ~ R and p” ~ p. Thus in B,(0) with p < r < R, we have

1
l=— det(Vnu) dH™!

Wy JoB, -

1 n—1 1 n—1
L o 1 Ve a1+ - f (= 175 [Vl dH™!
(0B,)~

Wy, (0B,)* wy,
1

o= 1/n
— ( f (n—=1)"2 |Venul" dﬂ”‘l) ( f 1d74"-1) +0(™ Y
Wn \J(8B,)* (@B,)*

1 . SN
< (— f (n—1)"2|Vul" d?'l"_l) (—) S o™
wy, (8B,)* 2

Then we have

= |

IA

(5.55)

1 1 1
2T, = — O(F") < — f Vul" < — f Vul".
r n Jos,) n Jos,

Integral this inequality over [p, R], we finished the proof of the lemma.

5.3.5 The Divergence Free Condition

Let u : Qy — S"! be an n-harmonic map. We say u is a stationary n-harmonic map if its
stress tensor is divergence free in ), that is

> oTi;=0

where 1
Tij = |Vul" (O, 0juy — — |Vul" 6;
n

95 D Tijwi=0 (5.56)
9B, ™

for 0B, € Qo, v = (vi,- -+, v,). We claim that the n—harmonic map u, in Theorem [5.1.2]
is stationary.

In fact, from (5.13) the divergence free of the energy tensor for 7; ;(u,), we have for
any ball in Q,

and satisfies

divT. ;(u.) = f vi- T;j(u:) = 0.
Jyser o= [, 2

Then on any annulus Bg(y) \ B,(y) C €y, we have

f Z Xi — i . Ti,j(”s) - 0.
Br\B, <5 lx — ¥l
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Then let € — 0, by using Lemma[5.3.91and Theorem [5.1.2] we have

Z Xi — )i
f : Ti,j(uo) =0
Br\B, 5 lx —

Therefore, for almost every p, we get

95 ZT,-,]-V,- =0 (5.57)
0B, i

This gives the sense of divergence free condition around each singularity. We will
understand now such condition.

Proposition 5.3.3. Assume u : Q) C R* — S"! is a stationary n—harmonic map where
Qy :=Q\ {ay, - ,aqst US) in the above sense, and deg(u, a;) = 1. Assume that around
each singular point a;, one has the asymptotic expansion

u(x) = eBte-an X741

|x — ail
where B(x) € so(n) is antisymmetric matrix satisfying B(0) = 0 such that B is C' in a
neighborhood of x. Then

Z 8, B(0)e; = 0 (5.58)
k=1
where (e, - ,e,) is the canonical basis in R". Moreover, we can write
uy = 224 QO Zd)
x—ail  |x—ai

where Q(x) is some harmonic polynomial of degree 2. In particular, when n = 2, we have
B(x) = O(lx - a).

Proof. Without loss of generality, we assume a; = 0. We have

) = M0, B0+ (S — 7

)
|x] |x] |x]

and
A, u(x) = e®Y9,B - v.

Therefore, we can write

|Vu|2: Z« —<” ).0,;B(0) - v) + O(1),

and

IVul" = (|Vul*)"?

) (n|;|21)n/ (
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Recall the divergence free condition around the singularity a; for all index j
1
0= 95 Vul"2 (D, D) — — [Vul" (v, €),
4B(0,r) n

which implies
0= 9§ (0,B(0) - v, (ej — (ej, v)v)) — Z((ek — (ex, v)v), 0kB(0) - vv, €)) + O(r).
B(0,r) =

Now using the fact that the matrices d;B(0) and 9, B, are antisymmetric and the symmetry
of the integrand, we have

9§B(O )<3v3(0) v, (ej —(ej,v)v)) — Z((ek — {ex, v)v), B(0) - v){v, e;)
o k=1
= § <(9vB(0) A €j> — E <€k, akB(O) . V><V, €]>

dB(0,r) =

= 95 (D,B(0) - v, e;) + D (BBO) - e, ), e)) (5.60)
9B(0,r) =

= 96‘ Z —£(0B(0) - e, e;) + —5(0kB(0) - ey, €;)
B, 4= |x] x|
2

= 9§ > ZLaBO) - ew.e)).

B0 = ||

The third equality comes from the fact that

X, - X XX
9§ Z k 2’<ak3(0)-el,ej>+z / 2I<Zak3(0)-ek,ej>:o. (5.61)
0BO.r) 171 | x| 2

Jx 1#]
Therefore, we get
D 9B(0) - e = 0.
k=1
Then we make the expansion

u(x) = ﬁ + 1% 8,B(0) - v + O(|xP).

By using the above condition

Alx>8,B(0) - v = 0.

Remark 12. When n = 2, we write

0 “(x)) (5.62)

Blx) = (—a/(x) 0

The above condition (5.38)) is equivalent to Va(0) = 0.
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5.3.6 Construction of non-minimizing sequence of critical points

In this part, we prove Theorem Letn = 3 and x = (¥, x3) with X € R% We
consider Q = {x € R¥||x¥| < 1,|x3] < L} U{x € R}||x=(0,0,L)] < 1,x3 > L} J{x €

R3||x - (0,0,-L)| < 1,x3 < —L} for some large L > 0 to be fixed later. We define a
boundary map g : 0Q — S? of degree one as follows:
On the set {x € R*||x = (0,0,L)| = 1, x3 > L},

x—(0,0,1)

8= 20,000

On the set {x € R3||x - (0,0,-L)| = 1, x3 < —L},

x—(0,0,-0)

0 =001

Ontheset{x e R} |x|=1,1<x3<L-1)},

L,
8 = AT ),

where i > 0 to be fixed later.

Let S : R* — R?® be a symmetry map by S (x’, x3) = (X', —x3) and R, the rotation of
angle equal to € in x| x, plane. We can extend it to be a C' by piece and equivariant map,
thatis, go S =S og. We define

WA(Q,8%) i={u: Q - S’lu e W, u(x) € Sa.e., ulsn = g}
and a closed subspace W(Q, S?) of W, (Q, §?),
WEQ, S :={ue Wg1’3(Q, SH,uo0S =S ou,uoRy=Ryou,V6).

Similarly, we consider W,”(Q, R?) and W(Q,R?).
Let D be the unit disc, A be the part of the sphere {|x| = 1, x3 > ——1_} and B = S?\A.

. . V1+h2
Let E. be the Ginzburg-Landau functional. We define two constants

1
a:= min{g f IVul> |u:D — A, ulsp = g4}, (5.63)
D

1
b= min{g f \Vul* |u: D — B,ulsp = g5}, (5.64)
D

where g4(x) = gp(x) = (7=, —ﬁ) on the unit circle.
We claim that
3/2

min E, < — -4z flngl + L- (a +b) + O(1)
Wi (QR3) 3

and
32

min E, > — -4n|lngl+2L-a+ O(1).
W(QR?) 3

In fact, for the first inequality above, we put the blow up point at the point (0,0, L) to
get the result. We construct a map in W;’3 (Q,R%). In the ball B.((0,0, L)), we define
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u(x) = %(x — (0,0, L)). On the slice {x3 = Constant, x3 € (1,L — 1)}, u is a map from the
disc to B whose 3-energy is close to b and on the slice {x3 = Constant, x3 € (—L+1,-1)},
u is a map from the disc to A whose 3-energy is close to a. Then

3/2
min E, < — -4n|lngl+L-(a+b)+ O(1)
WP (QR3) 3

The second lower bound of the energy comes from the equivariant setting and the fact that
u, converge strongly to 3-harmonic map far from the singularity. From the equivariant
setting and symmetry of the functions in W(Q, R?), we get that the singularity of the
critical point u is at 0. And also we can construct a function in W(Q, R?), and its energy
satisfies the upper bound condition (3.12)). Thus u, is a sequence of critical points of the
functional E.(u) and satisfy the upper bound condition (3.12)). By using Lemma[5.3.§ we
have a lower bound of the energy near the singularity

23/2
E¢(u., Br(0)) = = 4n|Ingl — C(R),

here note that the constant C(R) depends only on R if Bx N Q2 = (.

Theorem implies that u, — uo in W', On the slice {x3 = Constant,x; €
(1, L — 1)} and the slice {x3 = Constant, x3 € (-L + 1, —1)}, uo is a map from the disc to A
whose 3-energy is greater than a. Then we have the energy

3/2
min E, > = “4r|lngl+ 2L - a + O(1).
)

W(Q,R3
If & is large enough, B is almost flat, then we can choose an almost constant map such

_ h )
that b < a. In fact, let § = arccos N then we define a map u : D — B as follows

u: D — B

sin(@ 4/x2 +y2)

szy’f » (5.65)

cos(0 4/x% +¥?)

(.X',y) —| sin(6 /x% +y?)

The 3-energy of this map is O(6°).
Therefore

min E, < min E,
Wy (QLR3) W(QR3)

if L large enough.
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