.. ­?linked-nanostructures, 61 IV.4.1. Brief overview of nanogels, IV.4. Poly, p.62

. Angew, I. E. Chemie, T. Kagiya, S. Narisawa, T. Maeda et al., Polymerization of Oxazolines, 61) Park65) Wiesbrock, F.; Hoogenboom, R.; Abeln, C. H.; Schubert, U. S. Macromol. Rapid Commun, pp.875-888, 1966.

C. H. Abeln, A. M. Berg, . Van-den, U. S. Schubert, H. M. Macromolecules-lambermont-thijs et al., Activated polyoxazolines and compositions comprising the same Part A-1 Polym (88) Odian, G. Principles of polymerization, Fourth edition, Biomacromolecules Macromol. Biosci. Soft Matter Macromol. Rapid Commun. AA J. Comb. Chem. Synthesis Chem. J. Mater. Sci. Mater. Med. Weberskirch, R. Chemistry Nuyken, O. Macromol. Chem. Phys. Macromol. Rapid Commun Science Soft Matter Angew. Chemie, Int. Ed. Angew. Chemie, Int. Ed. Lemechko, P.; Renard, E.; Amiel, C.; Langlois, V.; Volet, G. React. Funct. Polym. E.; Lligadas, G.; Ronda, J. C J. Polym. Sci. Part A Polym. Chem. Macromol. Rapid Commun J Pure Appl. Chem. Macromol. Biosci. Macromol. Rapid Commun, vol.3870, issue.33, pp.7957-7966, 1968.

C. Wang, Y. Hwang, P. Chiang, C. Shen, W. Hong et al., Extended Release of Bevacizumab by Thermosensitive Biodegradable and Biocompatible Hydrogel, Biomacromolecules, vol.13, issue.1, pp.40-48, 2012.
DOI : 10.1021/bm2009558

E. F. Rettler, J. M. Kranenburg, H. M. Lambermont-thijs, R. Hoogenboom, and U. S. Schubert, Thermal, Mechanical, and Surface Properties of Poly(2-N-alkyl-2-oxazoline)s, Macromolecular Chemistry and Physics, vol.46, issue.22, pp.2443-2448, 2010.
DOI : 10.1002/macp.201000338

C. Weber, R. Hoogenboom, and U. S. Schubert, Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s, Progress in Polymer Science, vol.37, issue.5, pp.686-714, 2011.
DOI : 10.1016/j.progpolymsci.2011.10.002

E. F. Rettler, M. V. Unger, R. Hoogenboom, and H. W. Siesler, Water Uptake of Poly(2-<I>N</I>-Alkyl-2-Oxazoline)s: Temperature-Dependent Fourier Transform Infrared (FT-IR) Spectroscopy and Two-Dimensional Correlation Analysis (2DCOS), Applied Spectroscopy, vol.66, issue.10, pp.1145-1155, 2012.
DOI : 10.1366/12-06650

H. M. Lambermont-thijs, R. Hoogenboom, C. A. Fustin, C. Bomal-d-'haese, J. F. Gohy et al., Solubility behavior of amphiphilic block and random copolymers based on 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline in binary water-ethanol mixtures, Journal of Polymer Science Part A: Polymer Chemistry, vol.40, issue.2, pp.515-522, 2009.
DOI : 10.1002/pola.23168

R. Hoogenboom, H. M. Thijs, D. Wouters, S. Hoeppener, and U. S. Schubert, Tuning solution polymer properties by binary water???ethanolsolvent mixtures, Soft Matter, vol.35, issue.1, pp.103-107, 2008.
DOI : 10.1039/B712771E

S. Huber, N. Hutter, and R. Jordan, Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline), Colloid and Polymer Science, vol.13, issue.9, pp.1653-1661, 2008.
DOI : 10.1007/s00396-008-1942-7

S. Huber and R. Jordan, Modulation of the lower critical solution temperature of 2-Alkyl-2-oxazoline copolymers, Colloid and Polymer Science, vol.28, issue.4, pp.395-402, 2007.
DOI : 10.1007/s00396-007-1781-y

C. Weber, A. Krieg, R. M. Paulus, H. M. Lambermont-thijs, C. R. Becer et al., Thermal Properties of Oligo(2-ethyl-2-oxazoline) Containing Comb and Graft Copolymers and their Aqueous Solutions, Macromolecular Symposia, vol.33, issue.1, pp.17-24, 2011.
DOI : 10.1002/masy.201151004

K. Kempe, T. Neuwirth, J. Czaplewska, M. Gottschaldt, R. Hoogenboom et al., Poly(2-oxazoline) glycopolymers with tunable LCST behavior, Polymer Chemistry, vol.8, issue.8, pp.1737-1743, 2011.
DOI : 10.1002/ marc.201100271

E. F. Rettler, H. M. Lambermont-thijs, J. M. Kranenburg, R. Hoogenboom, M. V. Unger et al., Water uptake of poly(2-N-alkyl-2-oxazoline)s: influence of crystallinity and hydrogen-bonding on the mechanical properties, Journal of Materials Chemistry, vol.127, issue.43, pp.17331-17337, 2011.
DOI : 10.1039/c1jm12541a

C. Diehl, I. Dambowsky, R. Hoogenboom, and H. Schlaad, Self-Assembly of Poly(2-alkyl-2-oxazoline)s by Crystallization in Ethanol-Water Mixtures Below the Upper Critical Solution Temperature, Macromolecular Rapid Communications, vol.8, issue.21, pp.1753-1758, 2011.
DOI : 10.1002/marc.201100421

M. Meyer, M. Antonietti, and H. Schlaad, Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline), Soft Matter, vol.126, issue.4, pp.430-431, 2007.
DOI : 10.1039/b616678d

A. L. Demirel, M. Meyer, and H. Schlaad, Formation of Polyamide Nanofibers by Directional Crystallization in Aqueous Solution, Angewandte Chemie International Edition, vol.23, issue.45, pp.8622-8624, 2007.
DOI : 10.1002/anie.200703486

C. Diehl and H. Schlaad, Polyoxazoline-based Crystalline Microspheres for Carbohydrate-Protein Recognition, Chemistry - A European Journal, vol.45, issue.43, pp.11469-11472, 2009.
DOI : 10.1002/chem.200901420

N. Morimoto, R. Obeid, S. Yamane, F. M. Winnik, and K. Akiyoshi, Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharides, Soft Matter, vol.64, issue.8, pp.1597-1600, 2009.
DOI : 10.1039/b817603e

T. Lammers, F. Kiessling, W. E. Hennink, and G. Storm, Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress, Journal of Controlled Release, vol.161, issue.2, pp.175-187, 2012.
DOI : 10.1016/j.jconrel.2011.09.063

S. S. Kelkar and T. M. Reineke, Theranostics: Combining Imaging and Therapy, Bioconjugate Chemistry, vol.22, issue.10, pp.1879-1903, 2011.
DOI : 10.1021/bc200151q

X. Ma, Y. Zhao, X. J. Liang, A. M. Nystrom, and K. L. Wooley, Theranostic Nanoparticles Engineered for Clinic and Pharmaceutics, Accounts of Chemical Research, vol.44, issue.10, pp.1114-1122, 2011.
DOI : 10.1021/ar2000056

N. Kamaly, Z. Xiao, P. M. Valencia, A. F. Radovic-moreno, and O. C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation, Chemical Society Reviews, vol.23, issue.Suppl 2, pp.2971-3010, 2012.
DOI : 10.1039/c2cs15344k

O. C. Farokhzad and R. Langer, Impact of Nanotechnology on Drug Delivery, ACS Nano, vol.3, issue.1, pp.16-20, 2009.
DOI : 10.1021/nn900002m

M. Hamidi, M. Shahbazi, and K. Rostamizadeh, Copolymers: Efficient Carriers for Intelligent Nanoparticulate Drug Targeting and Gene Therapy, Macromolecular Bioscience, vol.28, issue.6 Suppl 3, pp.144-164, 2012.
DOI : 10.1002/mabi.201100193

K. K. Upadhyay, H. G. Agrawal, C. Upadhyay, C. Schatz, J. F. Le-meins et al., Role of Block Copolymer Nanoconstructs in Cancer Therapy, Critical Reviews?? in Therapeutic Drug Carrier Systems, vol.26, issue.2, pp.157-205, 2009.
DOI : 10.1615/CritRevTherDrugCarrierSyst.v26.i2.20

URL : https://hal.archives-ouvertes.fr/hal-00400394

V. R. Devadasu, V. Bhardwaj, and M. N. Kumar, Can Controversial Nanotechnology Promise Drug Delivery?, Chemical Reviews, vol.113, issue.3, pp.1686-1735, 2013.
DOI : 10.1021/cr300047q

S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, and K. L. Wooley, A review of stimuli-responsive nanocarriers for drug and gene delivery, Journal of Controlled Release, vol.126, issue.3, pp.187-204, 2008.
DOI : 10.1016/j.jconrel.2007.12.017

C. De-las-heras-alarcon, S. Pennadam, and C. Alexander, Stimuli responsive polymers for biomedical applications, Chem. Soc. Rev., vol.91, issue.3, pp.276-285, 2005.
DOI : 10.1039/B406727D

S. R. Abulateefeh, S. G. Spain, J. W. Aylott, W. C. Chan, M. C. Garnett et al., Thermoresponsive Polymer Colloids for Drug Delivery and Cancer Therapy, Macromolecular Bioscience, vol.11, issue.12, pp.1722-1734, 2011.
DOI : 10.1002/mabi.201100252

S. Binauld and M. H. Stenzel, Acid-degradable polymers for drug delivery: a decade of innovation, Chemical Communications, vol.9, issue.21, pp.2082-2102, 2013.
DOI : 10.1039/c2cc36589h

M. Huo, J. Yuan, L. Tao, and Y. Wei, Redox-responsive polymers for drug delivery: from molecular design to applications, Polym. Chem., vol.25, issue.5, pp.1519-1528, 2014.
DOI : 10.1039/c3py01204b

F. Meng, W. E. Hennink, and . Zhong, Reduction-sensitive polymers and bioconjugates for biomedical applications, Biomaterials, vol.30, issue.12, pp.2180-2198, 2009.
DOI : 10.1016/j.biomaterials.2009.01.026

R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, and S. Ramakrishna, Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications, Macromolecular Bioscience, vol.54, issue.3, pp.286-311, 2012.
DOI : 10.1002/mabi.201100325

R. Tong, L. Tang, L. Ma, C. Tu, R. Baumgartner et al., DOI: 10.1039/c4cs00133h, J. Chem. Soc. Rev. Polym. Chem. Brambilla, D.; Mackiewicz, N. Chem. Soc. Rev, vol.4, issue.42, pp.31-45, 2013.

C. M. Dawidczyk, C. Kim, J. H. Park, L. M. Russell, K. H. Lee et al., State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines, Journal of Controlled Release, vol.187, pp.133-144, 2014.
DOI : 10.1016/j.jconrel.2014.05.036

W. H. Velander, R. D. Madurawe, A. Subramanian, G. Kumar, and G. Sinai-zingde, Polyoxazoline-Peptide adducts that retain antibody avidity, Biotechnology and Bioengineering, vol.35, issue.10, pp.1024-1030, 1992.
DOI : 10.1002/bit.260391006

J. Tong, X. Yi, R. Luxenhofer, W. Banks, R. Jordan et al., Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo, Molecular Pharmaceutics, vol.10, issue.1, pp.360-377, 2013.
DOI : 10.1021/mp300496x

J. Tong, R. Luxenhofer, X. Yi, and R. Jordan, Protein Modification with Amphiphilic Block Copoly(2-oxazoline)s as a New Platform for Enhanced Cellular Delivery, Molecular Pharmaceutics, vol.7, issue.4, pp.984-992, 2010.
DOI : 10.1021/mp100102p

Y. Milonaki, E. Kaditi, S. Pispas, and C. Demetzos, Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation, Journal of Polymer Science Part A: Polymer Chemistry, vol.50, issue.90, pp.1226-1237, 2011.
DOI : 10.1002/pola.25888

M. Hruby, S. K. Filippov, J. Panek, M. Novakova, H. Mackova et al., Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems, Macromolecular Bioscience, vol.9, issue.8, pp.916-924, 2010.
DOI : 10.1002/mabi.201000034

R. Luxenhofer, A. Schulz, C. Roques, S. Li, T. K. Bronich et al., Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs, Biomaterials, vol.31, issue.18, pp.4972-4979, 2010.
DOI : 10.1016/j.biomaterials.2010.02.057

A. Schulz, S. Jaksch, R. Schubel, E. Wegener, Z. Di et al., Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s, ACS Nano, vol.8, issue.3, pp.2686-2696, 2014.
DOI : 10.1021/nn406388t

P. Broz, S. M. Benito, C. L. Saw, P. Burger, H. Heider et al., Cell targeting by a generic receptor-targeted polymer nanocontainer platform, Journal of Controlled Release, vol.102, issue.2, pp.475-488, 2005.
DOI : 10.1016/j.jconrel.2004.10.014

S. Egli, M. G. Nussbaumer, V. Balasubramanian, M. Chami, N. Bruns et al., Biocompatible Functionalization of Polymersome Surfaces: A New Approach to Surface Immobilization and Cell Targeting Using Polymersomes, Journal of the American Chemical Society, vol.133, issue.12, pp.4476-4483, 2011.
DOI : 10.1021/ja110275f

K. Jaskiewicz, A. Larsen, D. Schaeffel, K. Koynov, I. Lieberwirth et al., Incorporation of Nanoparticles into Polymersomes: Size and Concentration Effects, ACS Nano, vol.6, issue.8, pp.7254-7262, 2012.
DOI : 10.1021/nn302367m

K. Peng, S. Wang, and R. Lee, Amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and poly(4-substituted-??-caprolactone): Synthesis, characterization, and cellular uptake, Journal of Polymer Science Part A: Polymer Chemistry, vol.353, issue.13, pp.2769-2781, 2013.
DOI : 10.1002/pola.26690

Z. An, Q. Qiu, and G. Liu, Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications, Chemical Communications, vol.11, issue.46, pp.12424-12440, 2011.
DOI : 10.1039/c1cc13955j

Z. Dai, T. Ngai, G. Liu, and S. Seiffert, Microgel particles: The structure-property relationships and their biomedical applications, Journal of Polymer Science Part A: Polymer Chemistry, vol.126, issue.14, pp.2995-3003, 2013.
DOI : 10.1002/pola.26698

D. Taton, A. V. Kabanov, S. V. Vinogradov, and G. R. Hendrickson, KGaA: Weinheim, Germany, Macromolecular Engineering: precise synthesis, pp.5418-5429, 2007.

J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications, Progress in Polymer Science, vol.33, issue.4, pp.448-477, 2008.
DOI : 10.1016/j.progpolymsci.2008.01.002

H. Huang, R. Hoogenboom, M. A. Leenen, P. Guillet, A. M. Jonas et al., Solvent-Induced Morphological Transition in Core-Cross-Linked Block Copolymer Micelles, Journal of the American Chemical Society, vol.128, issue.11, pp.3784-3788, 2006.
DOI : 10.1021/ja057762k

S. Zschoche, J. Rueda, V. Boyko, F. Krahl, K. Arndt et al., Thermo-Responsive Nanogels Based on Poly[NIPAAm-graft-(2-alkyl-2-oxazoline)]s Crosslinked in the Micellar State, Macromolecular Chemistry and Physics, vol.39, issue.9, pp.1035-1042, 2010.
DOI : 10.1002/macp.200900559

S. Zschoche, J. C. Rueda, M. Binner, H. Komber, A. Janke et al., -poly(2-carboxyethyl-2-oxazoline)s, Macromolecular Chemistry and Physics, vol.209, issue.1, pp.215-226, 2011.
DOI : 10.1002/macp.201100388

G. David, B. C. Simionescu, and A. Albertsson, -isopropylacrylamide)/Poly(2-alkyl-2-oxazoline)/Poly(2-hydroxyethyl methacrylate) Hydrogels, Biomacromolecules, vol.9, issue.6, pp.1678-1683, 2008.
DOI : 10.1021/bm800215d

URL : https://hal.archives-ouvertes.fr/in2p3-00656167

N. Adams, U. S. Schubert, W. E. Adv-hennink, C. F. Van-nostrum, Y. Adv-qiu et al., REFERENCES (1), Drug Deliv. Rev. Drug Deliv. Rev. Drug Deliv. Rev. Drug Deliv. Rev. Chem. Soc. Rev, vol.59, issue.425, pp.1504-1520, 2007.

I. Mita, G. Moad, S. Penczek, R. F. Stepto, A. V. Kabanov et al., Chemie, Int, Pure Appl. Chem. J.; Zhuang, J.; Thayumanavan, S. Adv. Drug Deliv. Rev. Prog. Polym. Sci, vol.79, issue.45, pp.1801-1829, 2007.

S. Nayak and L. A. Lyon, Soft Nanotechnology with Soft Nanoparticles, Angewandte Chemie International Edition, vol.125, issue.47, pp.7686-7708, 2005.
DOI : 10.1002/anie.200501321

M. A. Gauthier, M. I. Gibson, and H. Klok, Synthesis of Functional Polymers by Post-Polymerization Modification, Angewandte Chemie International Edition, vol.34, issue.250, pp.48-58, 2009.
DOI : 10.1002/anie.200801951

G. Odian, Principles of polymerization, Fourth edition, p.832, 2004.

K. Albrecht, M. Moeller, and J. Groll, Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers, Adv. Polym. Sci, vol.234, pp.65-93, 2011.
DOI : 10.1007/12_2010_69

K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives, Angewandte Chemie International Edition, vol.61, issue.36, pp.6288-6308, 2010.
DOI : 10.1002/anie.200902672

M. Bauer, C. Lautenschlaeger, K. Kempe, L. Tauhardt, U. S. Schubert et al., Poly(2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility, Macromolecular Bioscience, vol.87, issue.01, pp.986-998, 2012.
DOI : 10.1002/mabi.201200017

O. Sedlacek, B. D. Monnery, S. K. Filippov, R. Hoogenboom, and M. Hruby, Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers?, Macromolecular Rapid Communications, vol.5, issue.19, pp.1648-1662, 2012.
DOI : 10.1002/marc.201200453

N. Zhang, T. Pompe, I. Amin, R. Luxenhofer, C. Werner et al., Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion, Macromolecular Bioscience, vol.133, issue.7, pp.926-936, 2012.
DOI : 10.1002/mabi.201200026

C. J. Waschinski, V. Herdes, F. Schueler, and J. C. Tiller, Influence of Satellite Groups on Telechelic Antimicrobial Functions of Polyoxazolines, Macromolecular Bioscience, vol.28, issue.2, pp.149-156, 2005.
DOI : 10.1002/mabi.200400169

Y. Chujo, K. Sada, K. Matsumoto, and T. Saegusa, Synthesis of an amphigel by the terpolymerization of 2-methyl-2-oxazoline, 2-alkyl-2-oxazoline, and bis-oxazoline, Polymer Bulletin, vol.29, issue.4, pp.353-356, 1989.
DOI : 10.1007/BF01045169

V. Schenk, L. Ellmaier, E. Rossegger, M. Edler, T. Griesser et al., Water-Developable Poly(2-oxazoline)-Based Negative Photoresists, Macromolecular Rapid Communications, vol.47, issue.5, pp.396-400, 2012.
DOI : 10.1002/marc.201100717

C. Wang and G. Hsiue, Synthesis and characterization of temperature- and pH-sensitive hydrogels based on poly(2-ethyl-2-oxazoline) and poly(D,L-lactide), Journal of Polymer Science Part A: Polymer Chemistry, vol.194, issue.8, pp.1112-1121, 2002.
DOI : 10.1002/pola.10201

M. Hartlieb, D. Pretzel, K. Kempe, C. Fritzsche, R. M. Paulus et al., Cationic poly(2-oxazoline) hydrogels for reversible DNA binding, Soft Matter, vol.54, issue.18, pp.4693-4704, 2013.
DOI : 10.1039/c3sm00114h

H. Huang, R. Hoogenboom, M. A. Leenen, P. Guillet, A. M. Jonas et al., Solvent-Induced Morphological Transition in Core-Cross-Linked Block Copolymer Micelles, Journal of the American Chemical Society, vol.128, issue.11, pp.3784-3788, 2006.
DOI : 10.1021/ja057762k

N. Brummelhuis, . Ten, and H. Schlaad, Stimuli-responsive star polymers through thiol???yne core functionalization/crosslinking of block copolymer micelles, Polymer Chemistry, vol.10, issue.5, pp.1180-1184, 2011.
DOI : 10.1039/c1py00002k

K. Aoi, M. Okada, and S. Kobayashi, Polymerization of oxazolines, Progress in Polymer Science, vol.21, issue.1, pp.151-208, 1990.
DOI : 10.1016/0079-6700(95)00020-8

H. M. Lambermont-thijs, J. P. Heuts, S. Hoeppener, R. Hoogenboom, and U. S. Schubert, Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles, Polym. Chem., vol.21, issue.276, pp.313-322, 2011.
DOI : 10.1039/C0PY00052C

S. Singh, J. Blöhbaum, M. Möller, and A. Pich, Biohybrid nanogels by crosslinking of ovalbumin with reactive star-PEGs in W/O emulsions, Journal of Polymer Science Part A: Polymer Chemistry, vol.270, issue.20, pp.4288-4299, 2012.
DOI : 10.1002/pola.26236

G. T. Hermanson, B. D. Steinhilber, A. L. Sisson, D. Mangoldt, P. Welker et al., Bioconjugate techniques, Adv. Funct. Mater, vol.20, issue.53, pp.4133-4138, 2008.

H. P. Kuringen, J. Van-;-lenoir, E. Adriaens, J. Bender, B. G. Geest et al., Partial Hydrolysis of Poly(2-ethyl-2-oxazoline) and Potential Implications for Biomedical Applications?, Macromolecular Bioscience, vol.185, issue.8, pp.1114-1123, 2012.
DOI : 10.1002/mabi.201200080

I. Morphology, . Evolution, and P. Crystallization, IPROX 50 -­?B-­?MEOX 50 ), IV. INFLUENCE OF EXTERNAL PARAMETERS ON, p.125

&. Gmbh, . Co, F. H. Kgaa-schacher, P. Rupar, I. Manners et al., (5) Gohy, Angew. Chem. Int. Ed. Engl. Chem. Soc. Rev. 2012 Macromol. Rapid Commun J. Adv. Polym. Sci. Angew. Chem. Int. Ed. Engl. Science J. Am. Chem. Soc. H.; Thevenot, J.; Lecommandoux, S. WIREs Nanomed. nanobiotechnol. J. Appl. Polym. Sci, vol.51, issue.7512, pp.7898-7921, 1995.

M. A. Winnik, I. M. Macromolecules-manners, N. Mcgrath, F. H. Schacher, H. Qiu et al., A.; Manners, I. Macromolecules, Polym. Chem. Chem. Sci, vol.47, issue.4516 217, pp.2604-2615, 1923.
URL : https://hal.archives-ouvertes.fr/hal-00353171

R. Hoogenboom, R. Hoogenboom, N. Adams, U. S. Schubert, R. Adv-luxenhofer et al., Chemie, Int, Macromol. Chem. Phys. Drug Deliv. Rev, vol.31, issue.5924, pp.511-525, 2007.

V. Siesler, H. W. Schubert, U. S. Mater, K. Chem-aoi, M. Okada et al., Principles of polymerization, Fourth edition Polymerization of Oxazolines The elements of polymer science and engineering, Principles of polymerization) Singha, N.; Schlaad, H. In Functional Polymers by Post-Polymerization Modification, pp.17331-17337, 1983.

H. Klok, KGaA: Weinheim, Germany, Functional Polymers by Post-Polymerization Modification, pp.65-86, 2012.

I. Mita, G. Moad, S. Penczek, R. F. Stepto, . Pure-appl et al., Chemie, Int, Chem. Commun. Prog. Polym. Sci. Prog. Polym. Sci. Polym. Chem. Handb. Exp. Pharmacol. Angew. Chem. Int. Ed. Engl. Chem. Commun. Chem. Rev. Z.; Guan, Z. Biomacromolecules C.; Tauhardt, L.; Hartlieb, M.; Kempe, K.; Gottschaldt, M.; Schubert, U. S. Biomacromolecules J. Med. Biol. Eng, vol.793336, issue.4942, pp.1801-1829, 1990.

S. Hornig, U. S. Schubert, H. Lv, S. Zhang, B. Wang et al., A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity, M. V; Amiji, M. M. Cancer Res, pp.1869-1873, 1999.

A. Gessner, A. Lieske, B. Paulke, R. H. Müller, . Biomed et al., World Health Organ Immunobiology: the immune sytem in health and disease, 69) Szebeni, J. Eur. J. Nanomedicine 2012 Encyclopedia of life science, pp.319-326, 1972.