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Abstract

The manufacturing world is being deeply challenged with a set of ever demanding

constraints where from one side, the costumers are requiring products to be more cus-

tomizable, with higher quality at lower prices, and on other side, companies have to deal

on a daily basis with internal disturbances that range from machine breakdown to worker

absence and from demand fluctuation to frequent production changes. This dissertation

proposes a manufacturing control architecture, following the holonic principles devel-

oped in the ADAptive holonic COntrol aRchitecture (ADACOR) and extending it taking

inspiration in evolutionary theories and making use of self- organization mechanisms.

The use of evolutionary theories enrich the proposed control architecture by allowing

evolution in two distinct ways, responding accordingly to the type and degree of the

disturbance that appears. The first component, named behavioural self- organization, al-

lows each system’s entity to dynamically adapt its internal behaviour, addressing small

disturbances. The second component, named structural self-organization, addresses big-

ger disturbances by allowing the system entities to re-arrange their rela- tionships, and

consequently changing the system in a structural manner. The proposed self-organized

holonic manufacturing control architecture was validated at a AIP-PRIMECA flexible

manufacturing cell. The achieved experimental results have also shown an improvement

of the key performance indicators over the hierarchical and heterarchical control archi-

tecture.

Keywords: holonic manufacturing control architecture, self-organization, multi-agent

systems
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Resumé

Le monde des entreprises est profondément soumis à un ensemble de contraintes

toujours plus exigeantes provenant d’une part des clients, exigeant des produits plus per-

sonnalisables, de qualité supérieure et à faible coût, et d’autre part des aléas internes aux

entreprises, comprenant les pannes machines, les défaillances humaines, la fluctuation de

la demande, les fréquentes variations de production. Cette thèse propose une architecture

de contrôle de systèmes de production, basée sur les principes holoniques développées

dans l’architecture ADACOR (ADAptive holonic COntrol aRchitecture), et l’étendant en

s’inspirant des théories de l’évolution et en utilisant des mécanismes d’auto-organisation.

L’utilisation des théories de l’évolution enrichit l’architecture de contrôle en permettant

l’évolution de deux manières distinctes, en réponse au type et au degré de la perturba-

tion apparue. Le premier mode d’adaptation, appelé auto-organisation comportemen-

tale, permet à chaque entité qui compose le système d’adapter dynamiquement leur

comportement interne, gérant de cette façon de petites perturbations. Le second mode,

nommé auto-organisation structurelle, traite de plus grandes perturbations, en permet-

tant aux entités du système de ré-organiser leurs relations, et par conséquent modifier

structurellement le système. L’architecture holonique auto-organisée de contrôle de sys-

tèmes de production proposée dans cette thèse a été validée sur une cellule de production

flexible AIP-PRIMECA. Les résultats ont montré une amélioration des indicateurs clés de

performance par rapport aux architectures de contrôle hiérarchiques et hétérarchiques.

Mots-clés: Architecture holonique, contrôle de systèmes de production, auto-

organisation, systèmes multi-agents
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Resumo

O mundo da manufactura é constantemente desafiado com um conjunto cada vez

mais exigente de perturbações, onde de um lado, os clientes exigem produtos mais per-

sonalizados, com maior qualidade e a preços mais baixos, e no outro lado, as empresas

têm de lidar diariamente com perturbações internas que variam desde a avaria de má-

quinas à ausência da trabalhadores e da flutuação da procura às mudanças frequentes na

produção.

Tradicionalmente, as empresas de manufactura operavam com unidades processa-

mento centralizadas e monolíticas que apresentam altos níveis de optimização sob rígidas

condições de trabalho, mas não são capazes de responder apropriadamente, com rapidez

e agilidade, quando imposta pelas perturbações e exigências acima mencionadas.

Mais recentemente, uma mudança de paradigma nos sistemas de controlo de fabrico

tem sido notada, promovendo o aumento da capacidade de resposta e agilidade, favo-

recendo a descentralização e distribuição da capacidade de processamento por várias

entidades pequenas e autónomas, sendo capazes de tomar decisões localmente, mas com

a necessidade de cooperar para alcançar os objetivos globais do sistema. Apesar dos

benefícios introduzidos por esta descentralização, estes sistemas nunca foram capazes

de alcançar os níveis de desempenho alcançados pelas abordagens clássicas em condi-

ções normais de funcionamento. Além disso, técnicas e mecanismos de auto-organização

nunca foram verdadeiramente embebidos e explorados nestas abordagens.

O presente trabalho propõe uma arquitetura de controlo de fabrico, seguindo os prin-

cípios holónicos apresentadas e desenvolvidas na arquitetura conhecida por ADAptive

holonic COntrol aRchitecture (ADACOR), estendendo-a com a inspiração em teorias evo-

lucionárias e fazendo uso de mecanismos de auto-organização. O uso de teorias evolucio-

nárias visam enriquecer a arquitetura proposta, permitindo a evolução de duas maneiras

distintas, respondendo de acordo com o tipo e grau de perturbação. A primeira com-

ponente, chamada de auto-organização comportamental, permite a que cada entidade
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se adapte dinamicamente o seu comportamento interno, abordando pequenas perturba-

ções. A segunda componente, chamada auto-organização estrutural, trata perturbações

maiores, permitindo que as entidades do sistema reorganizem as suas relações, e, conse-

quentemente, alterar o sistema de uma forma estrutural.

Atuando no comportamento interno do holon, ou seja, no micro nível, cada holon é

capaz de lidar localmente com pequenas perturbações ou para melhorar individualmente

o seu desempenho interno, sendo considerado como uma evolução suave ou adaptação.

Atuando ao nível das relações, ou seja, a um macro nível, o sistema é capaz de responder

drasticamente a perturbações maiores, impondo uma reorganização estrutural, sendo

considerado uma evolução drástica.

O arquitetura holônica de controlo de produção auto-organizada proposta foi vali-

dado na célula de manufatura flexível AIP-PRIMECA localizada na Université de Va-

lenciennes et du Hainaut-Cambrésis. Os resultados experimentais obtidos mostraram

também uma melhoria dos indicadores-chave de desempenho através de diversas arqui-

teturas de controlo, nomeadamente a hierárquica, heterárquica e o ADACOR.

Palavras-chave: arquitetura holônica de controle de fabrico, auto-organização, sistemas

multiagentes



Extended Abstract

The manufacturing world is being deeply challenged with a set of ever demanding

constraints where from one side, the costumers are requiring products to be more cus-

tomizable, with higher quality at lower prices, and on other side, companies have to

deal on a daily basis with internal disturbances that range from machine breakdown to

worker absence and from demand fluctuation to frequent production changes.

Traditionally, manufacturing companies rely on centralized and monolithic process-

ing units which were capable to introduce high levels of optimization under rigid work-

ing conditions, but are not able to respond the responsiveness and agility imposed by the

aforementioned disturbances and demands.

More recently, a shift in the manufacturing control systems paradigm has been no-

ticed, promoting to increase the responsiveness and agility, through the decentralization

and distribution of the processing capacity throughout several small and autonomous

entities, which are able to take decisions locally, but needing to cooperate to achieve the

overall system goals. Despite of the benefits introduced by this decentralization, these

newer systems were never able to reach the performance levels achieved by the classi-

cal approaches during normal functioning conditions, and also never implemented truly

self-organization concepts to support condition changes.

This dissertation proposes a manufacturing control architecture, following the

holonic principles developed in the ADAptive holonic COntrol aRchitecture (ADACOR)

and extending it taking inspiration in evolutionary theories and making use of self-

organization mechanisms. The use of evolutionary theories enrich the proposed archi-

tecture by allowing evolution in two distinct ways, responding accordingly to the type

and degree of the disturbance that appears. The first component, named behavioural self-

organization, allows each system’s entity to dynamically adapt its internal behaviour, ad-

dressing small disturbances. The second component, named structural self-organization,

addresses bigger disturbances by allowing the system entities to re-arrange their rela-

tionships, and consequently changing the system in a structural manner.
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Acting at the holon internal behaviour, i.e. at the micro level, each holon is able to

handle locally small disturbances or to improve individually its internal performance,

being considered as a smooth evolution or adaptation. Acting at the relations level, i.e.

at a macro level, the system is able to drastically respond to more drastic disturbances by

imposing a structural re-organization, being considered a drastic evolution.

The proposed self-organized holonic manufacturing control architecture was vali-

dated at the AIP-PRIMECA flexible manufacturing cell located at the Université de Valen-

ciennes et du Hainaut-Cambrésis. The achieved experimental results have also shown an

improvement of the key performance indicators over the hierarchical, heterarchical and

the ADACOR control architecture.

Keywords: holonic manufacturing control architecture, self-organization, multi-agent

systems



Resumé Étendu

Le monde des entreprises est profondément soumis à un ensemble de contraintes

toujours plus exigeantes provenant d’une part des clients, exigeant des produits plus

personnalisables, de qualité supérieure et à faible coût, et d’autre part des aléas internes

aux entreprises, comprenant les pannes machines, les défaillances humaines, la fluctua-

tion de la demande, les fréquentes variations de production.

Traditionnellement, les industries manufacturières reposent sur des unités de pro-

ductions centralisées et monolithiques qui sont capables d’obtenir des niveaux élevés de

l’optimisation, sous réserve de conditions de travail rigides, mais ne sont pas en mesure

de répondre de la réactivité et l’agilité imposée par les perturbations et les exigences ac-

tuelles.

Plus récemment, afin d’accroître la réactivité et l’agilité, le contrôle des systèmes de

production ont connu un changement de paradigme, permettant la décentralisation et

la distribution de la capacité de traitement au sein de multiples entités autonomes ca-

pable de prendre des décisions au niveau local, mais capable également de coopérer afin

d’atteindre les objectifs globaux du système.

Malgré les avantages introduits par cette décentralisation, ces nouveaux systèmes

n’étaient en fait jamais réellement en mesure d’atteindre les niveaux de performance ob-

tenus par les approches classiques, sous conditions de fonctionnement normales, et de

plus, les concepts d’auto-organisation n’ont jamais vraiment été mis en œuvre pour faire

face aux changements de condition.

Cette thèse propose une architecture de contrôle de systèmes de production, basée

sur les principes holoniques développé és dans l’architecture ADACOR (ADAptive ho-

lonic COntrol aRchitecture), et l’étendant en s’inspirant des théories de l’évolution et en

utilisant des mécanismes d’auto-organisation.
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L’utilisation des théories de l’évolution enrichit l’architecture ADACOR en permet-

tant l’évolution de deux manières distinctes, en réponse au type et au degré de la per-

turbation apparue. Le premier mode d’adaptation, appelé auto-organisation comporte-

mentale, permet à chaque entité qui compose le système d’adapter dynamiquement leur

comportement interne, gérant de cette façon de petites perturbations. Le second mode,

nommé auto-organisation structurelle, traite de plus grandes perturbations, en permet-

tant aux entités du système de ré-organiser leurs relations, et par conséquent modifier

structurellement le système.

Agir sur le comportement interne du holon, c’est-à-dire au niveau micro, permet à

chaque holon de gérer localement de petites perturbations ou d’améliorer individuelle-

ment la performance interne, et est considéré comme une légère évolution ou adaptation.

Agir au niveau des relations, c’est-à-dire au un niveau macro, permet au système de ré-

pondre à des perturbations plus profondes en imposant une réorganisation structurelle,

et est considéré comme une forte évolution.

L’architecture holonique auto-organisée de contrôle de systèmes de production pro-

posée dans cette thèse a été validée sur la cellule de production flexible AIP-PRIMECA

située à l’Université de Valenciennes et du Hainaut-Cambrésis. Les résultats ont mon-

tré une amélioration des indicateurs clés de performance par rapport aux architectures

de contrôle hiérarchiques, hétérarchiques et également par rapport à l’architecture ADA-

COR initiale.

Mots-clés: Architecture holonique, contrôle de systèmes de production, auto-

organisation, systèmes multi-agents
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1
Introduction

Our greatest weakness lies in giving up. The most certain way to succeed is always to try

just one more time.

Thomas A. Edison

One of the main pillars of the world’s economy is the manufacturing sector that, par-

ticularly in the recent years, has suffer a revolution from the client side, being pushed by

an ever increasing demand for higher products customization, quality standards and by

the decrease of the product life-cycle, passing by significant fluctuations in market de-

mands, just to name a few (ElMaraghy et al., 2012). On an internal side, and in order to

face these constraints, manufacturing has seen an unprecedented process of automation

re-configuration, leading to a possible production increase and higher product quality

but also to, in some part, leaving the shop-floor vulnerable to more disturbances, such as

machine failures.

1.1 Research Problem

Traditionally, manufacturing control systems use hierarchical control structures

which concentrate the processing power of the shop-floor control under one central node.

This increases the system performance and optimization but sacrifices other key features,

such as the responsiveness to handle disturbances and scalability possibilities. These
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monolithic, rigid control structures are insufficient to meet the current requirements im-

posed by manufacturing environments which demand flexibility, robustness, reconfig-

urability and responsiveness, which are pointed out as research topics by the National

Research Council for the year of 2020 (Council, 1998). New manufacturing paradigms

have thus emerged with the common denominator of the decentralization and distribu-

tion of processing power over several entities providing a better capability to adapt and

respond to condition changes but with a decrease in the system performance regarding

the optimization process. This decentralization is also aligned with recent trends and ini-

tiatives, such as the Internet of Things, CPS (Cyber-Physical Systems) and Industrie 4.0

program.

Several examples of paradigms promoting this decentralization can be found in the

literature, being the most known the MAS (Multi-Agent System) (Ferber, 1999), BMS

(Bionic Manufacturing Systems), HMS (Holonic Manufacturing System) (Deen, 2003),

and more recently, EPS (Evolvable Production Systems) (Onori et al., 2006).

A MAS (Ferber, 1999; Wooldridge, 2002) is both a paradigm and technology that advo-

cates the design of systems based on societies of decentralized, distributed, autonomous

and intelligent entities, called agents. In such systems, each agent has a partial view of

the surrounding world and must therefore cooperate with others to achieve the global

objectives. The behaviour of the global system emerges from the cooperation between

individual agents.

An HMS (Deen, 2003) is a paradigm that translates the concepts of living organisms

and social organizations developed by A. Koestler (Koestler, 1969) to the manufacturing

world. A holon, as Koestler coined the term, is an identifiable part of a system that has

a unique identity, yet is made up of sub-ordinate parts and is in turn part of a larger

whole. Koestler also defines the term holarchy as a hierarchically organized system pop-

ulated with self-regulating holons, and the system goals are achieved by the cooperation

between holons. An HMS is the encapsulation of the entire manufacturing system in a

holarchy. The holons can represent physical resources and logic entities.

The BMS uses the underlying mechanisms and the structural organization found in

biological systems (Tharumarajah, 1996). These systems exhibit many of the features

needed for the current manufacturing paradigms such as autonomy, spontaneous be-

haviour social harmony with hierarchy structure.

EAS (Evolvable Assembly Systems) proposes a new design approach by advocating

the system to be built by a swarm-like of interconnect modules that possess a more lim-

ited set of skills, i.e. more task specific, enabling the system a continuous evolution (Onori

et al., 2006). Additionally, EAS also proposes a new approach on the design cycle of the

products, which are deeply influenced by the available set of modules present within a

given system.

These paradigms promote the decentralization of the control power among several

entities. Despite the existence of central nodes, in the hierarchical approaches, that con-

trol the low-level entities constitute a drawback, in the sense that if it fails the whole

2
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system may fail, they are able to reach high optimization levels under stable conditions.

On the other hand, decentralized systems, such as those elaborated using MAS and HMS

concepts, respond better to perturbations where the failure of an isolated entity only

affects part of the system, while the other parts can continue operating with no major im-

pact. Despite the benefits shown, decentralized systems do not attain optimization levels

as high as those depicted by hierarchical solutions. As illustrated in Figure 1.1, under nor-

mal conditions, the system performance of hierarchical architectures hi(t) is better than

heterarchical architectures he(t). However, in case of unexpected situations, e.g., due to a

resource malfunction or a rush order, the heterarchical architectures behave better since

they are able to respond promptly to perturbations.

100%
(optimal)

0%
(stoppage)

time

performance

gap
new gap

he(t)

hi(t)

dirturbances

new

dir

ha(t)

hi(t): hierarchical

he(t): heterarchical

ha(t): hybrid (e.g., ADACOR)

Figure 1.1 – Performance Behaviour of Different Classical Control Structures

Essentially, the challenge is to combine the best of both worlds, where a system dis-

plays the optimization levels of hierarchical systems under normal conditions and be-

haves like heterarchical approaches in unexpected situations. An approach like this

brings hierarchical features to distributed entities whilst retaining their autonomy. For

this purpose, some hybrid solutions have been developed exhibiting the ha(t) behaviour

illustrated in Figure 1.1.

Several approaches relying on these emergent paradigms with the objective to ad-

dress this challenge can be found in the literature and particularly, the ADACOR (ADAp-

tive holonic COntrol aRchitecture) (Leitão and Restivo, 2006) holonic control architecture

is a well-known example of such approach since it considers an adaptive production

control mechanism that balances between two states: a hierarchical stationary state and a

heterarchical transient state. In spite of the important progress made in this domain, there

is still the need to further development to achieve a truly dynamic and evolvable system

that is able to cope with system constraints, without significantly affecting its operation,

i.e. minimizing the overall gap to the optimal behaviour in Figure 1.1.

Biology and nature, as well as evolutionary theories, are suitable sources of inspira-

tion to design and develop solutions for solving complex, large-scale problems, and par-

ticularly manufacturing control systems, aiming to increase their potential by embedding
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emergent concepts (Leitão et al., 2012). One example is the use of self-organization princi-

ples, which can be described as the ability of a system to arrange itself autonomously and

spontaneously, mainly due to internal interactions, and without the need to use a central

authority (Camazine et al., 2001). Other well-known biological sources of inspiration are

the food foraging of ants (Deneubourg et al., 1990) or food foraging of bees (Frisch, 1967),

as well as fish schooling or birds flying patterns (Eberhart and Kennedy, 1995).

Some approaches have already tried to use self-organization concepts as a way to

cope with the complexity and unpredictability associated with disturbances that may

appear in the system. Some examples are found in the literature, embedding these con-

cepts, namely the PROSA (Product-Resource-Order-Staff Architecture) architecture that

was extended by using the food foraging behaviour of ants as a forecasting methodology

(Hadeli et al., 2004), the P2000+ (Bussmann and Schild, 2000) that used a virtual buffer

mechanism in machines that acts as the self-organization regulator, and the ADACOR

that use a pheromone spreading technique to propagate the perturbation as a warning

signal among entities, which can assess the impact of the perturbation on themselves

(Leitão and Restivo, 2006).

Despite this, these biologically inspired mechanisms are considered very superficial,

lacking truly evolutionary concepts as a way to handle complex systems properly, mini-

mizing the impact of disturbances and boosting the optimization of the system behaviour.

1.2 Objectives and Contributions

This thesis addresses the challenge of study and present an innovative manufacturing

control architecture, by proposing an evolution to the ADACOR holonic manufacturing

control architecture, by taking knowledge of biology and evolutionary theories into con-

sideration. This knowledge aims primarily to unleash the two predefined working states

of its predecessor by allowing the system to dynamically evolve using self-organization

principles.

The thesis sustained in this research work can be summarized in the following state-

ment:

The development of a manufacturing control architecture, where the ADACOR principles are

reused, mainly the holonic concepts and the adaptive production control, enhanced with a two-

dimensional self-organization model and a nervousness control, allowing that intelligent complex

systems to smoothly or dramatically respond to new system constraints in such a way that the

overall performance is degraded as less as possible.

The aforementioned statement is supported by the development of the following re-

search pillars:

— Holonic principles, as also defined in the ADACOR architecture, making use of co-

operative holons and hierarchical organizations, where the robustness, modularity,

agility, flexibility and scalability are presented by the cooperative holons, while op-

timization is introduced by the high level entities in the hierarchical organization.

4
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— Use of biological principles found in societies of species, namely self-organization,

and of evolutionary theories, enhancing the system capability of adaptation and

evolution.

— Enhancing the holons internal behavioural composition, allowing to act at a micro

level aiming a dynamic adaptation of the holons to disturbances.

— Acting at a macro level, re-arranging dynamically the holons relations, and conse-

quently re-shaping the holarchies constitution aiming a dynamic system evolution.

— Embedding a nervousness controller into the holon’s internal structure, lowering

the holon and consequently the system nervousness level, usually present in self-

organized systems.

1.3 Dissertation Organization

The dissertation organization, see Figure 1.2, is described in this subsection. This

document is divided in seven chapters, starting by the present chapter that contextualizes

the research work and points out the thesis to be developed.

State of the art on 

manufacturing 

control

State of the art on 

biological 

inspiration

opportunitieslacks(+ADACOR)

2 3

Architecture

Self-organization 

mechanisms

ADACOR
2

4

5

6Validation

Figure 1.2 – Organization Structure of the Dissertation

Chapter 2, entitled "Manufacturing control paradigms", describes the current ap-

proaches to tackle the manufacturing control problem. Particularly, a special attention

will be devoted to the distributed paradigms, with the analysis of the weaknesses or

lacks of current approaches in order to detect possible improvements. In this chapter, the

ADACOR manufacturing control architecture is also described since it is the ground base

for the current work.

Chapter 3, entitled "Biological Inspiration to Solve Complex Problems", describes and

praises the importance of using mechanisms and techniques often found in biological
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systems as inspiration for the development of a new generation of manufacturing con-

trol systems. Particularly, the swarm intelligence phenomena found in insects societies,

the evolutionary concepts and self-organization mechanisms receive a particular focus.

Additionally, two surveys of applications that use biological inspiration in several scien-

tific domains, such as finance, image processing, military, robotics and manufacturing,

illustrates the benefits of using such mechanisms in nowadays problem solving. An ex-

trapolation of the manufacturing areas that can benefit from the usage of those biological

concepts is also made. Finally, this chapter ends by pinpointing key features that a truly

evolvable manufacturing control architecture must address.

Chapter 4, entitled "ADACOR2: a Self-organized Holonic Architecture", starts by design-

ing the architectural components that compose the ADACOR2 manufacturing control ar-

chitecture, namely its holons, particularly the description of the holons internal structure.

The chapter continues by describing the purpose behind the use of the two self-organized

vectors, depicting their interdependences using the concept of Coleman’s boat. Both vec-

tors are detailed in this chapter, starting with the behavioural description and followed

by the structural self-organization. Both descriptions have possible application examples

in order to make more clear their usage. Finally, the chapter ends by describing the ner-

vousness controller principles in order to control the holons instability that may arise in

self-organized systems.

Chapter 5, entitled "Self-organization Regulating Mechanisms in ADACOR2", instanti-

ates some mechanisms that were used during the development of the ADACOR2 man-

ufacturing control architecture. This chapter starts by describing three behavioural self-

organization techniques, one following marked-based rules, another using the physical

effect of magnetic bodies and the last one using the food foraging behaviour of ant so-

cieties. Secondly, a bird inspired mechanism is also described as the way for the holons

to self-organize structurally. Last, the chapter ends by proposing a nervousness con-

troller inspired in the feedback mechanism known as Proportional, Integral and Deriva-

tive (PID) found in the classical control systems theory.

The description of the case study and the assessment of the proposed manufacturing

control architecture is presented in chapter 6, named "Pratical Implementation and Valida-

tion". The chapter starts by making a description of the Flexible Manufacturing Cell used

in the case study. Next, the assessment metrics used later in the approach validation are

described, being followed by a mapping of the ADACOR2 holons with the system com-

ponents. The assessment is achieved in two different phases. First, a simulation of the

real use case is used to assess the behavioural self-organization component, while a mod-

ified version of the use case is used to assess the structural self-organization component.

Finally, the thesis is round up by the "Conclusions and Future Work" where macro con-

clusions and major contributions of this research work are presented. This chapter is

ended by outlining future research branches that can be followed to continue the started

work.
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Additionally, four appendixes are also available providing details of developed sup-

port work. The Appendix A describes the simulation technique and procedures. On

the Appendix B, the implementation of a potential fields based mechanism is described,

while on the Appendix C the implementation of a fish schooling self-organization mech-

anism is depicted. Finally, the Appendix D describes the implementation details of the

scheduling algorithm used by the supervisor holon.
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2
Manufacturing Control Paradigms

Simplicity is the ultimate sophistication.

Leonardo da Vinci

The present chapter will draw the current state of the art regarding the production

and manufacturing control paradigms. The most traditional and more recent paradigms

characteristics and approaches will be analysed, as well a deeper explanation of the ADA-

COR manufacturing control architecture, followed by the discussion of the remaining

problems and challenges in this area.

2.1 Production and Manufacturing Control

Each industrial facility is built upon a complex system of systems, where raw ma-

terials, or semi-finished products, are processed and combined using a set of internal

resources, and are delivered as finished goods. To this subject, the ANSI/ISA-95 (as also

the IEC 62264) standard divides this complexity into four layers (see Figure 2.1), defin-

ing where and how manufacturing decisions are made. These four layers comprise the

control (Level 1 and 2), operations (Level 3) and business (Level 4).

The objective of level 1 and 2 is the control of equipment which leads to the execu-

tion of the production process aiming the production of the products, comprising e.g.,

PLC (Programmable Logical Controller)s, resources, CNC (Computer Numerical Con-

trol) and SCADA (Supervisory Control And Data Acquisition). Level 3, also named the

MES (Manufacturing Execution System) layer activities, comprises several preparation
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Level 0

Level 1

Level 2

Level 3

Level 4

Continuous 

Control

Batch 

Control

Discrete 

Control

The production process

Sensing the production process, 

acting on the production process

Manufacturing

Operations Management
Dispatching Production, Detailed Production, 

Scheduling, Reliability Assurance, ...

Business Planning & Logistics
Plant Production Scheduling, Operational 

Management, ...

Monitoring, supervisory control and 

automated control of the production 

process

   Hours, minutes, seconds, subseconds

Work flow / recipe control, stepping the 

process through states to produce the 

desired end products. Maintaining records 

and optimizing the production process.

   Days, shifts, hours, minutes, seconds

Establishing the basic plant schedule – 

production, material use, delivery and 

shipping. Determining inventory levels.

   Months, weeks, days

Figure 2.1 – The ANSI/ISA 95 Standard

activities, such as detailed scheduling, quality management and maintenance that are

undertaken to prepare, monitor and complete the production process that is executed at

the lower levels. Level 4 is the highest level, also named the ERP (Enterprise Resource

Planning) layer, being related to the layer where strategic decisions are taken, such as

financial and logistics. As an example, long term planning, marketing and procurement

activities take place at this layer.

Focusing on the layer distribution made by the ANSI/ISA-95, the subject of this thesis

is to propose a manufacturing control architecture that covers, at least partially, the levels

2 and 3.

According to the Figure 2.2, adapted from (Trentesaux, 2009), a manufacturing control

architecture falls into one of four typological classes, classified from Class 0 to Class III.

Classically, manufacturing control architectures rely on a pure centralized control system,

where one central decisional entity governs the full spectrum of the operation system

(e.g., machines and transportation). The Class I divides the massive processing needs

found in Class 0 by placing one decision entity into each of the (sub)systems to control

and by clustering those into higher level recurring to the sub-division, but following a

fully hierarchical approach.

Class II clusters the control architectures that proposes an hybrid manufacturing con-

trol merging the optimization of hierarchical system with the flexibility of heterarchical

ones. Lastly, Class III control systems propose a fully decentralized control, distributing

the processing capabilities among a set of individual and autonomous entities.
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Figure 2.2 – Distribution of Decisional Capabilities from Centralised Control Systems to Non-
Centralised Control Systems (Trentesaux, 2009)

The manufacturing control systems developed under the aforementioned classifica-

tion have pros and cons which address different real control purposes, such as perfor-

mance optimization, adaptability, agility and responsiveness. In such, the more hierar-

chical approaches, like those classified as Class I, have the potentiality to introduce op-

timization at the control system at the cost of having massive processing entities. Those

entities rely on the collection of the current status of the system and on the processing

of this information. Since the processing time of this task increases greatly as the system

structure and size also grows, it degrades other important performance indicators, such

as the system adaptability, agility and responsiveness.

On the other side, manufacturing control systems classified under Class III potenti-

ates the decentralization and distribution of the control entities, allowing them to have

less performance processing capabilities. This decentralization comes at a cost of global

optimization decrease, since no entity has the complete view and knowledge of the sys-

tem and must cooperate with each other in order to fulfil their goals. Despite this, these

manufacturing control systems allow a great increase of system robustness, adaptability,

agility and responsiveness.

Evolution of the newly requirements used in current manufacturing field has pushed

the design at the shop-floor level and three major topologies (or derivations from those)

can be envisioned, namely the DML (Dedicated Manufacturing Lines), the FMS (Flexible

Manufacturing System) and the RMS (Reconfigurable Manufacturing System).

The DML aims the mass production and is typically designed to produce a single part

at a high production rate, making them very cost effective as long as market demand

matches the supply. However, the new constraints by part of the customers, which are
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demanding a higher variety of customized products with shorter life-cycle, is imposing

a strong pressure into this rigid line design, which is naturally in a decay situation (only

for particular cases).

The FMS can be sub-divided into several categories regarding the introduced flexi-

bility part, namely the machine, the process, the product, the routing, the volume, the

expansion and the production (Jha, 1991). Depicting the ones where a manufacturing

control architecture may influence, the machine flexibility can be seen as the way that

machines can adapt to production changes (making use, e.g., of CNC machines). The sec-

ond flexibility degree is the routing and here the system shop-floor is designed in such a

way that more than one routing alternative is available for the transportation of products

into the processing machines. Despite of these flexibilities degrees, the installation cost

regarding the FMS is a general drawback for its implementation.

The last paradigm tries to bring the best of both worlds, by combining the high

throughput provided by the DML with the flexibility of the FMS (but with a lower price).

This paradigm, named RMS, is a concept that suggests the rapid change in the factory’s

structure using changes in hardware and/or software to adjust the production capacity

and functionality (ElMaraghy, 2006). A RMS system should exhibit the following charac-

teristics (Koren et al., 1999): modularity, integrability, customization, convertibility and

diagonalisability.

Despite this, an appropriate control strategy of the aforementioned paradigms is of

crucial importance, where scheduling, optimization and dispatching rules are applied as

middle layer control which operationalize the higher level orders coming from the ERP

systems.

2.2 Production and Manufacturing Control Approaches

Hierarchical control architectures were among the first to be developed in the manu-

facturing control field. The most successful of those was the CIM (Computer-Integrated

Manufacturing) (Waldner, 1992) based architecture, which promoted the computeriza-

tion of all the production life-cycle from the early stages of the design phase until the

final product production. In the European region, the CIMOSA (Computer Integrated

Manufacturing Open System Architecture) architecture aimed at the development of an

open framework to help companies for enterprise modelling and integration into the CIM

approaches by proposing a reference architecture from which the particular architectures

were developed from (ESPRIT Consortium AMICE., 1993).

Despite the promotion of the integration of several technologies, the CIM approach

wasn’t able to achieve the desired results mainly because of the heterogeneity of the in-

volved tools, the installation and maintenance complexity and its centralized approach

that limited to scale the system.

Recently, manufacturing control architectures are assuming the decentralization of

the processing capabilities and following a distribution of the decisional nodes bringing
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them more closer to where they are needed. This new trend will probably gain an extra

momentum by the promotion of the Industrie 4.0 (Drath and Horch, 2014) and Indus-

trial Internet (Evans and Annunziata, 2012) initiatives, being the first one seen as the 4th

industrial revolution.

For this purpose, some design trends have emerged over the past years, being the

most promising the ones developed under the HMS, MAS and the SoA (Service Oriented

Architecture) paradigms.

MAS (Ferber, 1999; Wooldridge, 2002) is both a paradigm and technology that advo-

cates the design of systems based on societies of decentralized, distributed, autonomous

and intelligent entities, called agents. In such systems, each agent has a partial view of

the surrounding world and must therefore cooperate with others to achieve the global

objectives (see Figure 2.3). The behaviour of the global system emerges from the cooper-

ation between individual agents.

Autonomy

Intelligence

Cooperation

interaction

environment

agent 

view

Figure 2.3 – Multi-Agent System Example

HMS (Deen, 2003) is a paradigm that translates the concepts of living organisms and

social organizations, developed by A. Koestler (Koestler, 1969), to the manufacturing

world. A holon, as Koestler coined the term, is an identifiable part of a system that has

an unique identity, yet is made up of sub-ordinate parts and is in turn part of a larger

whole (Koestler, 1969). The holons can represent physical resources and logic entities,

and comprise the informational part and physical part, if exists (Leitão, 2009a).

Koestler also defines the term holarchy as a hierarchically organized system popu-

lated with self-regulating holons, with the system goals being achieved by the cooper-

ation between the holons. An HMS is the encapsulation of the entire manufacturing

system in a holarchy.

Figure 2.4 tries to depict what was mentioned earlier by using a simple example of

the constitution of a manufacturing cell. It can be observed that the manufacturing cell

is composed by 3 machines, each one having a set of sensors, such as pneumatic and

capacitive sensor, and by a set of actuators, such as motors and valves. Two important
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features found in the holonic systems can be observed, namely the holon sharing, seen in

the pneumatic sensor, that is being shared by machines 2 and 3, and hierarchy, creating

intermediary stable states, in the way that all the machines are controlled by a higher

level controller and the overall cell by one additional controller.

Figure 2.4 – Holonic Manufacturing System Example

Lastly, another very important feature found in HMS is the recursivity, due to the frac-

tal composition of the holons. This feature can be seen in the Figure 2.4 where machine

1 uses other machine to be built with, resembling the Janus effect of having authority by

its own and to depend/belong to others.

MAS technology and/or HMS concepts have been successfully developed and ap-

plied to different domains (see for example the reviews (Leitão et al., 2012; Monostori

et al., 2006)).

2.2.1 Multi-Agent System Applications to Manufacturing

YAMS (Yet Another Manufacturing System) (Parunak, 1985) is one of the first known

implementations (probably the very first) applying agent-based principles to control a

manufacturing system. In this case, an agent is applied to each node of the control hi-

erarchy, being one machine, a workstation, a cell or a factory. A CNP (Contract-Net

Protocol) procedure was applied to this hierarchical model as the mean for negotiation.

In this hierarchical approach, the upper level agent uses the CNP (Smith, 1980) procedure

to identify the lower level agent that’s under its control.

At the same time, Duffie and Piper were among the first ones to discuss an heter-

archical control approach. In their work, agents represent physical resources, parts and

human operators. Additionally, a part focused scheduling mechanism is applied (Duffie

and Piper, 1986).

A contract net based approach was used to simulate 35 workstations of a job shop that

produced parts for steam turbines that belong to the General Electric Power Generation
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(Baker, 1991). In the case study, 491 orders, belonging to 184 unique products, each one

having on average 8.2 operations per product are used. In the proposed approach, each

workstation, either automated or a human, was represented by an agent (Baker, 1991).

Briefly, the customers request a bid for a final product that will then trigger, from the

agents that are able to deliver that product, a chain reaction from the agents that are

needed to deliver parts or assemblies. This process is repeated by all the agents along the

supply chain and the result is sent back to the customer, returning cost per unit, which is

a function based on delivery time and lot size.

MetaMorph (Maturana et al., 1999) and its successor MetaMorph II (Shen et al., 2000)

were projects that firstly aimed to provide an agent-based approach for the creation and

management of agent communities in distributed manufacturing environments, and sec-

ondly to integrate cross-enterprise activities, such as design, planning and scheduling.

AARIA (Autonomous Agents at Rock Island Arsenal) was developed in the early

years of agent-based architectures for military production, with the particularity of using

internet as a means of communication between agents (Parunak et al., 2001).

The Explantech, developed at the Czech Technical University, aims the long-term pro-

duction planning process (Pechoucek et al., 2005). This approach was deployed at an au-

tomotive related company (LIAZ Pattern Shop company) (Pechoucek et al., 2002) and at

the SKODA Auto for the scheduling of the engine assembly workshop.

The CoBASA (Coalition Based Approach for Shopfloor Agility) architecture uses

a multi-agent system to support the re-engineering at the shop floor (Barata and

Camarinha-Matos, 2003). In this way, CoBASA uses contracts to govern the relationships

between coalition members and defines a new methodology on which the re-engineering

process is included within the life-cycle.

The previous approaches stayed more either at an academic level development stage,

tested by building demonstrators, or in the brief deployment in the real industrial facili-

ties. Despite this, some examples can be given that had accomplished a deeper industrial

penetration.

One of the first multi-agent approach deployed into a real production system was

named as P2000+ and was installed at a Daimler Chrysler factory that produced en-

gine cylinder heads (Bussmann and Schild, 2001). This multi-agent system followed a

late commitment strategy applied to the parts routing in a conveyor system. A self-

organization mechanism is also used, adding to the machine a virtual buffer that acts

like the bidding manager allowing the machine to bid to a request from a part need-

ing to be processed (Schild and Bussmann, 2007). Being this an industrial case, a final

assessment of the use of multi-agents comparing with the previous control strategy was

conducted and it was concluded that a 20% gain in productivity was achieved (Bussmann

and Sieverding, 2001).

A multi-agent approach was also developed and applied at the NovaFlex manufac-

turing system at Uninova, Portugal (Cândido and Barata, 2007). The system is composed

of two assembly robots, an automatic warehouse and a transport system that connects
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all the modules and each component that composes the system is agentified (i.e. each

component has one agent associated to it) following some guidelines developed under

the CoBASA architecture.

The iShopFloor (Shen et al., 2005) addresses the newly demands from the manufactur-

ing global competition by promoting the usage of internet, web and agent technologies.

The proposed approach promotes a framework for the components belonging to the sys-

tem to work together aside of being disjoint. Additionally, the information architecture

is specified and the methodologies for the integration are also provided.

Rockwell Automation developed a multi-agent based system to manage the set of

components (plumbing, controls, communication and electric) of a U.S. Navy’s Reduced

Scale Advance Demonstrator, where the goal was the control of the liquid flow through-

out the ship in a different set of regimes, such as cruise and battle (Maturana et al., 2005).

A multi-agent system enhanced with the ants food foraging behaviour is used in

(Sallez et al., 2009) as the way for the products to dynamically route over the FMS. The

proposed architecture is composed by two levels, named virtual and physical level. The

first one is composed by the virtual active products (VAP) which represents the physical

active products (PAP) that acts on the real level. Since time in the virtual level can be

fast-forward, several VAPs can be used to test different routing alternatives, allowing to

act on real-time on the PAP.

Albadawi et al. (2006) describes the implementation of an agent-based control archi-

tecture applied to two continuous manufacturing process, first to a tuneable model for

the plastic thermoforming process and secondly to a rule-based model for the metal pow-

der grinding process (Albadawi et al., 2006).

Rockwell Automation developed its first industrial agent approach to increase the

machine utilization of the steel rod bar mill of the Australian company BHP Billiton

(Mařík et al., 2005). As it was a real use case, and despite the developed MAS performed

well in all the tests, it was only considered to be on the decision making layer and sup-

port the human operator in charge of the actual control. In this case, each cooling box

was mapped with an agent which based on a bidding process would allow the heated

steel to be cooled there.

Agent-based systems are also useful in manufacturing to provide simulation tools

which allow an assessment and debugging at early design stages. One of such tools, is

the MAST (Manufacturing Agent Simulation Tool) (Vrba, 2003) system and with basic

components, such as conveyor belts, diverters and AGV (Automated Guided Vehicles)s,

are used to design and simulate the desired system. The MAST system has also been used

to simulate real test-beds, such as the DIAL (Distributed Information and Automation

Laboratory) packing cell at the University of Cambridge and at the ACIN (Automation

and Control Institute) located at the Vienna University of Technology (Vrba and Marik,

2010).

A second example of an agent based simulation tool is the ABAS (Actor-Based Assem-

bly Systems), developed by the Tampere university of Technology and Schneider Electric,
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for the simulation and visualization of the robot operation in a 3D manufacturing space

(Lastra and Colombo, 2006).

Scheduling is also one of the main topics of research using agent-based technology,

since it is one key feature in the control layer of a manufacturing process. Kouiss et al.

use dedicated agents to work centres to select dynamically the most suitable dispatching

rule (Kouiss et al., 1997). In this work, agents select the dispatching rule based on their

local and global states, such as the availability of machines and on the their performance

objectives.

Other example is given in (Erol et al., 2012) where feasible scheduling solutions for an

AGVs system is accomplished by agents negotiation/bidding process. A multi objective

optimization on the basis of ratio analysis technique under a fuzzy multi criteria decision

making considering several attributes was used as the scheduling prioritization on the

agent based holonic manufacturing system proposed by (Jana et al., 2013). For this case, a

CNP is used as the negotiation and cooperation procedure for the task allocation process.

Companies are already using multi-agent technology as the mean to develop intelli-

gent scheduling tools. One example of such company is the Russian Smart Solutions that

applies its scheduling solutions to transportation, such as taxi fleets or petrol tanks, or to

manufacturing (Skobelev, 2011).

Additionally, several research funding projects, particularly in Europe have been or

are being undertaken.

The EU FP7 GRACE (inteGration of pRocess and quAlity Control using multi-agEnt

technology) (Leitão and Rodrigues, 2011) aimed the development of a multi-agent based

monitoring system that combines the production and quality data for allowing the prod-

uct customization. The developed GRACE multi-agent system was deployed to a real

washing machine production line, where agents are collecting and analysing individual

washing machine production data and correlating it with overall global key performance

indicators, improving the final washing machine quality, making it individually unique.

The EU FP7 ARUM (Adaptive Production Management) aims at improving the ramp-

up phase of small lot and highly customizable products, such as air planes (e.g., the Air-

bus A350). This is achieved by developing a set of scheduling (Leitão and Barbosa, 2014)

and planning tools (Leitão et al., 2013) using multi-agent systems. The developed sys-

tem is integrated using the SoA principles by recurring to an iESB (inteligent Enterprise

Service Bus) that allows the seamless communication between all the tools present at the

architecture (Marin et al., 2013).

The EU FP7 PRIME (Plug and PRoduce Intelligent Multi Agent Environment) is de-

veloping a plug and produce solution based on an intelligent multi-agent system en-

vironment using standard technology. The objective is to develop a flexible, standard,

reusable, adaptable, reconfigurable, customisable and cost effective solution to deploy

and maintain complex assembly systems. (Rocha et al., 2014).

The EU FP7 IDEAS (Instantly Deployable Evolvable Assembly Systems) applied
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the concepts developed under the EAS paradigm and proposed self-configuring, self-

diagnosis and process-oriented components aiming a complex, flexible and multi-

propose system (Onori et al., 2012).

2.2.2 Holonic Manufacturing System Applications

The beginnings of the development of MAS have risen in the middle of the 80s and

since then have given raise to several applications using its concepts and visions.

One of the most remarkable HMS architectures is the PROSA (Product-Resource-

Order-Staff Architecture) reference architecture that defines the main guidelines for de-

veloping a generic manufacturing control system (Van Brussel et al., 1998). The HCBA

(Holonic Component Based Architecture) architecture defines two major types of holons,

namely the product and resource, which are responsible to e.g., manage the operations

execution, make the product decision making process and possess the product informa-

tion (Chirn and McFarlane, 2000). The holonic system is built through the association of

these holon types using nested structures of those holons.

A manufacturing control system for a packing cell at the assembly cell of University

of Cambridge was developed following an holonic approach, namely using the PROSA

architecture, and implemented using the MAS technology (Fletcher et al., 2003). This

system is responsible to assembly GilleteTMpackages into personalised gift boxes. This

full-scale real cell uses a set of robots and a conveyor system to route the products. The

designed agent-based system integrates RFID (Radio Frequency IDentifier) technology,

enabling a dynamic and unique identification of the products therein. In this approach, a

collaboration was formed between order and resource holons to accommodate the clients’

demands. Order holons use negotiation techniques to ensure the fast and reliable produc-

tion and are also responsible for tracking the production progress. On the other hand, the

main aim of resource holons is to maximize the return on the execution of their services,

and finally, product holons deal with the buying and selling of goods.

The ADACOR (ADAptive holonic COntrol aRchitecture) (Leitão and Restivo, 2006),

which will be deeper detailed in section 2.3, is a holonic architecture that proposes an

adaptive production control approach that balances between a stationary state and a tran-

sient state, in normal and unexpected conditions, respectively, combining the benefits of

hierarchical and heterarchical control structures using an adaptive mechanism.

The PABADIS (Plant Automation Based on DIStributed systems) architecture aims

the construction of a MES using a set of autonomous production agents. Briefly, ev-

ery process starts by the conventional manufacturing order being processed at the ERP,

comprising the set of required production steps, which is then sent to a block named

Agency, which is responsible to create a set of the necessary agents to execute the manu-

facturing order (Lüder et al., 2004). To accomplish this, a set of agents were responsible

to interface and interact with the different set of components, named as Co-operative

Manufacturing Units (CMU). A continuation of this project was developed, named as
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PABADIS-PROMISE (Ferrarini et al., 2006), which has lowering the ANSI/ISA-95 action

to the physical layers.

HMS concepts have also been applied to manufacturing control of continuous pro-

cesses, namely to a steel rod mill spray cooling line. Within the proposed holonic ar-

chitecture (McFarlane, 1995), a set of holons were specified, which are responsible for

managing processing tasks, negotiation procedures, scheduling activities and diagnosis

features (McFarlane et al., 1995).

As already happened in the MAS field, the scheduling is also one of the key applica-

tions being developed following the HMS paradigm.

Sousa and Ramos (1999) propose a dynamic scheduling system supported by a

holonic approach, using forward and backward influence in the negotiation, leading to

the task allocation, to handle the temporal constraints and to solve conflicts. The archi-

tecture is composed by holons to represent resources, tasks, planning systems, etc (Sousa

and Ramos, 1999).

More recently the EU FP7 ARUM is also applying an holonic swarm of scheduling

and planning tools, using an agent-based approach, to combine the strategic planning

tools, that are producing capacity planning schedule, with the dynammic alloaction of

tasks to machines at the shop-floor (Leitão and Barbosa, 2014).

The aforementioned state-of-the-art description allows to verify what is being devel-

oped in this field and further reading regarding the MAS and HMS production and man-

ufacturing control can be made using the following references: (Shen and Norrie, 1999),

(Monostori et al., 2006), (Shen et al., 2006), (Trentesaux, 2009), (Leitão, 2009b), (Vrba et al.,

2011), (Leitao et al., 2012) and (Laszlo, 2014).

2.2.3 Other Distributed Manufacturing Control Approaches

Not only MAS and HMS are used to design and develop distributed manufacturing

control architectures. SoA, for example, has taken the attention in the past years pro-

moting the distributed control and the seamless communication between all the players

within the ANSI/ISA 95.

A SoA based architecture is proposed by (Candido et al., 2010) where transparent

interoperability between devices is the major requirement. The SoA approach is used to

enhance the EAS traditional architectures abstracting the implementation details under a

service interface.

European projects are also using the SoA principles and technologies. Two ex-

amples are the EU FP6 SOCRADES (Service-Oriented Cross-layer Infrastructure for

Distributed smart Embedded devices) and the EU FP7 IMC-AESOP (ArchitecturE for

Service-Oriented Process - Monitoring and Control). SOCRADES proposes a design, exe-

cution and management platform for the next-generation industrial automation systems

at the device and at the application level. In this way, SOCRADES creates new method-

ologies, technologies and tools for modeling, design, implement and for the operation of
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a network of smart embedded devices (Cannata et al., 2008).

The IMC-AESOP consortium developed a SoA and cloud based architecture, integrat-

ing the SCADA and the DCS (Distributed Control System) in a seamless manner, which

is able to monitor and control all the information flow in large and complex industrial

systems. (Karnouskos et al., 2014).

A distributed control example can also be found in the hybrid manufacturing control

architecture named ORCA (dynamic Architecture for an Optimized and Reactive Con-

trol) (Pach et al., 2014). This architecture is divided in three layers, namely the physical

system (PS) layer, the local control (LC) and the global control (GC). The GC has a global

view of the system and guarantees the good performance of the system by having a

global view of it and being composed by a global optimizer. Each PS has associated a LC

that is responsible to react properly, accordingly with the associated PS state. The ORCA

architecture is a dual-mode architecture, where under normal mode the GC transmits the

orders to the LC. If a disturbance is detected by the LC, it will switch to the disturbance

mode, being responsible to optimize the PS under its control.

Zambrano Rey et al. (2014) propose a semi-heterarchical architecture composed by

a supervisor (S) and subordinate decisional entities (E). In this approach, simulation-

optimization mechanisms are used to reduce the subordinates’ myopic behaviour.

2.3 An Adaptive Holonic Control Architecture: ADACOR

The ADACOR adaptive holonic architecture intends to combine the best practices of

hierarchical and heterarchical control approaches, being as centralised as possible and as

decentralized as necessary, i.e. using a centralised approach when the objective is the op-

timisation, and a more heterarchical approach in the presence of unexpected events and

modifications (Leitão and Restivo, 2006). In these circumstances, ADACOR proposes

the decomposition of manufacturing control functions into a community of autonomous

and cooperative holons, taking advantage of modularity, decentralisation, agility, flexi-

bility, robustness and scalability. To achieve this, ADACOR proposes four types of holons

(Leitão, 2004):

— PH (Product Holon), representing the products available in the factory plant cata-

logue and the knowledge to produce them.

— TH (Task Holon), responsible for managing the real-time execution of production

orders on the shop floor.

— OH (Operational Holon), representing the system resources, e.g., robots and oper-

ators, responsible for governing its own agenda as well as managing the physical

connection with the real resource.

— SH (Supervisor Holon), responsible for introducing optimization into the system.

ADACOR clearly defines the behaviour of individual holons using the Petri Nets

formalism and also the interaction patterns between them using AUML (Agent Unified
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Figure 2.5 – ADACOR Holon Classes

Modeling Language) sequence diagrams (Leitão and Restivo, 2006). This is of great im-

portance in the way that ADACOR proposes a binary-state balance for the adaptive pro-

duction control depending on the system perturbation level, combining the benefits of

hierarchical and heterarchical control structures using an adaptive mechanism.

As illustrated in Figure 2.6, in stationary state, the holons are organized in a hierarchi-

cal structure, with supervisor holons playing the role of coordination and optimizing the

schedules of their subordinates organized in clusters. The system runs in this configura-

tion until a perturbation is detected. The operational holon that detects the disturbance

(in this case OH1) tries to recover locally by carrying out a self-diagnosis. If recovery

from the failure is unsuccessful, its autonomy factor is increased and a propagation of

the need for re-organisation to the other holons in the system is sent. The propagation

mechanism involves depositing a pheromone on the neighbouring supervisor holon and

its subsequent spread to other SHs.

The other holons that sense the pheromone from supervisor holons, increase their au-

tonomy factors according to the pheromone’s intensity and their local knowledge, and

propagate the emergent re-organization to the neighbouring supervisor holons. The in-

tensity of the odour associated with the pheromone decreases as the levels of supervisor

holons increases (it is similar to the distance in the original pheromone techniques), ac-

cording to a defined flow field gradient. Each individual holon, taking its autonomy fac-

tor, learning capabilities and pheromone intensity into consideration, decides if it should

re-organize or not. In Figure 2.6, the holons OH1 to OH5 choose to re-organize, while

holons OH6 and OH7 do not re-organize as the pheromone’s intensity is not high enough,

i.e. the epicentre of the disturbance is far away and the impact is too low or zero.

In this transitory state, the task holons interact directly with the operational holons

to achieve an alternative schedule in a short time, gaining in responsiveness. During
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Figure 2.6 – Adaptation Mechanism in ADACOR Supporting a Hybrid Control Architecture

this state, the supervisor holons continue elaborating optimized schedules, but now only

the holons with low autonomy factors will accept the proposals. The holons remain in

transient state during the re-establishment time, τ , which is typically a short period of

time. Once this time has elapsed, they verify if the pheromone odour has dissipated or

is still active. If the pheromone is still active, the holons stay in transient state for an

additional re-establishment time, until the pheromone has dissipated.

Once the pheromone has dissipated, each individual holon reduces its autonomy fac-

tor again and returns to a hierarchical control structure, going back to a stationary state,

since they accept the schedules once more from their SH. At this moment, the supervisor

holons collect the updated individual schedules, achieved during the transient state, and

proceed with the synchronization and posterior optimization of the existing schedule.

The reschedule is sent to the operational holons, which accept the advised schedule since

they have a low autonomy factor again.

This powerful mechanism allows the system to respond quickly to perturbations and

balance back to a stationary state after its dissipation, fulfilling the challenge of devel-

oping a hybrid control system, i.e. the ha(t) curve in Figure 1.1. Despite the potential

and innovation introduced by embedding this self-organization mechanism, the control

system only balances between two predefined states and is not able to evolve to other
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2. MANUFACTURING CONTROL PARADIGMS

pre-defined or new control structures, supporting a truly evolvable and reconfigurable

system. This challenge is aligned with the current demanding of an additional step taking

the knowledge of biology, the chaos theory and the evolutionary theory into considera-

tion to achieve the dynamic evolution and adaptation of manufacturing systems.

2.4 Limitations and Challenges of the Existing Approaches

Centralized and monolithic control architectures have design, maintenance and scala-

bility problems. Despite these important and limiting issues, these approaches, generally,

display optimal results under well defined and known functioning conditions. Addi-

tionally, due to its complexity and information centralization, these approaches behave

poorly when disturbance appear, losing responsiveness.

Decentralized approaches, such as MAS and HMS, address better the disturbances

situations but don’t achieve the optimization performance displayed in the centralized

approaches. Additionally, the design and maintenance of decentralized systems tend to

be simpler due to its Lego-like construction, e.g., promoting the re-utilization of devel-

oped code (although debugging could be more time consuming).

Having this in mind, it can be concluded that combining the strong points of each

architectural approach can bring benefits in the design of a better manufacturing control

architecture. A good example of such combination is found in the ADACOR architecture

that combines the optimization power of centralized systems with the responsiveness of

decentralization.

However, analysing the current state-of-the-art of the decentralized architectures it

can be found that design schemes tend to keep the entities behaviour static, in the sense

that the change of behaviours is not handled.

On the other hand, more recently, research started to consider self-organization mech-

anisms to simplify and optimize some of the processes in the decentralized systems.

Despite this, the use of self-organized approaches have prove to be very punctual and

limited, needing to be further explored and potentiated.

In this sense, a manufacturing control architecture that combines the optimisation

levels found in centralized systems with the responsiveness of the decentralized architec-

tures enhanced with the real use of self-organization principles is missing in the current

panorama.

2.5 Summary

This chapter overviews the current state-of-the-art concerning the manufacturing

control architectures and approaches. The different system configurations were depicted

and analysed, enhancing their benefits and disadvantages. The ANSI/ISA-95 standard

was introduced, contextualizing the position of this thesis contribution.
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The overview of the state-of-the-art included the most renowned manufacturing con-

trol architectures, being given particular emphasis to those that follow the MAS and HMS

paradigms. A brief detail of each of the studied architectures was given, as well further

references, providing a more detailed description of those.

This study provided valuable info about the strengths and weaknesses of these man-

ufacturing control architectures. It was not found an architecture that allows the entities

to dynamically adapt its internal behaviour and the majority of them use a rigid struc-

ture where agents interact with the same peers and where the structure is fixed or slightly

adapts. Additionally, some of them make use of self-organization concepts but only in a

superficial manner.

Lastly, a particular focus was given to the ADACOR manufacturing control architec-

ture, since it will be used as the ground-base for the development of this thesis work. It

was described the system architecture, and particularly the adaptive control mechanism

that allows to balance between a hierarchical and heterarchical structure, combining op-

timization and responsiveness.

The next chapter will describe some concepts and mechanisms that can be found in

biological system, such as swarm intelligence, evolution and self-organization that can be

used as source of inspiration. Two surveys depicting applications that use bio-inspired

mechanisms on their problem solving are also given, being the first one related to generic

engineering problems while the second focus more on the manufacturing world domain.

Then, the benefits that the biological inspiration can bring to the MAS is also pointed

out, being given special focus to the self-configuration, self-optimization and self-healing

aspects of the MAS. Additionally, this biological inspiration contribution to manufactur-

ing is also depicted, stating where, why and how its usage can be beneficial.

Finally, the main guidelines needed to achieve a truly evolvable system are drawn

and analysed.
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3
Biological Inspiration to Solve

Complex Problems

I have called this principle, by which each slight variation, if useful, is preserved, by the term

of Natural Selection.

Charles Darwin

Nature offers plenty of powerful mechanisms, refined by millions of years of evo-

lution, to handle emergent and evolvable environments (Leitão, 2009c), constituting a

promising source of inspiration to enrich distributed systems with the capability to face

emergence and condition changes in a quite naturally manner. This section describes

how complex things behave simply in nature and biology, introducing the concepts of

swarm intelligence, evolution and self-organization.

3.1 Swarm Intelligence

In biology, complex systems are based on entities that exhibit simple behaviours,

made of a small set of simple rules, with reduced cognitive abilities. The global system

behaviour emerges from a multiplicity of non-linear interactions among the individual

entities. In such systems, the emergent behaviour occurs without a pre-defined plan, is

not driven by a central entity, and occurs only when the resultant behaviour of the whole

is greater and much more complex than the sum of the behaviours of its parts (Holland,
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3.1. Swarm Intelligence

1999). Some illustrative examples of this kind of emergent behaviour can be found in the

ant and bee societies. In fact, everybody knows that "a single ant or bee isn’t smart, but their

colonies are" (Miller, 2007), being capable of displaying surprisingly complex behaviours.

Swarm intelligence, found in colonies of insects, can be defined as "the emergent collec-

tive intelligence of groups of simple and single entities" (Bonabeau et al., 1999), thus reflecting

the emergent phenomenon. Swarm intelligence offers an alternative way of designing

intelligent, complex systems, in which the traditional centralized control is replaced by

distributed operations where the interactions between individuals lead to the emergence

of "intelligent" global behaviour, previously unknown (Bonabeau et al., 1999). Examples

of swarm intelligence include ant colonies, bird flocking, fish schooling and bacterial

growth (Miller, 2007).

In such colonies, individuals possess a partial view of the world and require some

way of communicating with others to achieve global objectives. However, the individu-

als in these colonies usually do not have the ability to communicate directly each other

(e.g., like humans) and thus use an indirect form of communication that establishes a

channel of information sharing. For example, ants communicate by using an indirect co-

ordination mechanism known as stigmergy, derived from the Greek words stigma, which

means mark or sign, and ergon, which means work or action (Grassé, 1959). In stigmergy,

the trace left in the environment stimulates the execution of a subsequent action, by the

same or different entity. In this mechanism, ants use a chemical substance known as

pheromone, which acts like a trigger that individuals from the same specie can sense

and/or use in favour of the swarm (e.g., guidance when foraging for food) (Bonabeau

et al., 1999) (see Figure 3.1a).

pheromone

Perception

Action 

(deposit/

reinforcement)

Action 

(deposit/

reinforcement)

Perception

Figure 3.1 – Indirect Communication in Insect Swarms: a) the Deposition and Sensing of
Pheromones by Ants [adapted from (Parunak et al., 2003)]; b) the Waggle Dance Used by Bees

After finding a food site, ants walk back to the nest and lay down a pheromone

trail to share information. Other ants foraging for food can sense the odour diffused by

pheromones, and may lay a trail reinforcing the existing pheromones. The pheromones

deposited in the nature suffer a natural process of evaporation, resulting in a reduction of

the intensity of the odour; the reduction is directly proportional to the time elapsed from
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3. BIOLOGICAL INSPIRATION TO SOLVE COMPLEX PROBLEMS

the nest to the food source (i.e. the more intense, the shorter distance travelled). If sev-

eral ants make different trips to the same source of food, there will be several trips to the

same source. The optimal solution (i.e. the shortest one) will be the trail that has more in-

tense pheromones. After a while, gradually, the trails that have less intense pheromones

are abandoned by the ants because the pheromones are not reinforced. Naturally, these

trails are no longer considered as options. Sometimes, ants can walk randomly instead of

choosing a pheromone trail, which is a good way to find new paths that have appeared

in the mean time (Bonabeau et al., 1999).

The double-bridge experiment conducted by (Deneubourg et al., 1990) reinforces the

idea that ants can indeed find the shortest paths to goals. In their experiments, if two

equal paths from the nest to a food source, each path is chosen 50% of the time; in each

experiment, the ants tend to choose only one path. On the other hand, if one path is

significantly longer than the other, the ants chose the shortest one (Goss et al., 1989).

Another illustrative example of indirect communication supporting swarm intelli-

gence is related to the waggle dance used by honey bees to share information about the

direction and distance to patches of flowers yielding nectar and pollen. After scouting

an area for a food source, honey bees return to the hive and inform other bees about

the food source, performing a dance known as the "waggle dance", as shown in Figure

3.1b. This dance provides the following information to the other bees: 1) the rotation

angle of the dance, in relation to the sun, states the direction in which the food source

can be found and 2) the duration of the dance represents the travel distance to the food

source (Bonabeau et al., 1999; Frisch, 1967). Other researchers suggest that this dance

also provides a third kind of information related to the quality and quantity of the food

source. This last information is shared by releasing a pheromone-type odour (Dornhaus

and Chittka, 2004).

Swarm intelligence can be achieved more from coordinating activities of individuals

and less from using decision-making mechanisms. A well-known example is the move-

ment of flock of birds (e.g., the typical V formation), where individuals coordinate their

movements in relation to the movement of the others (Reynolds, 1987). For this purpose,

simple feedback mechanisms are used to regulate the individual behaviour (Camazine

et al., 2001):

— in case of positive feedback, the system responds to the perturbation in the same

direction as the change (i.e. towards the amplification of the perturbation), and

— in case of negative feedback, the system responds to the perturbation in the oppo-

site direction (i.e. towards the stabilization of the perturbation).

By combining both positive and negative feedbacks, the system can be maintained

under control but pushed to its limits (Camazine et al., 2001). For example, the simple

rule "I nest where other similar individuals nest unless there are too many fishes" (Camazine et

al., 2001), used to describe fish nesting, combines positive and negative feedback: the first
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part uses positive feedback, allowing the aggregation of fishes in the same place to be in-

creased, and the second part uses negative feedback, thus avoiding a high concentration

of fishes in the same place.

Other similar coordination mechanisms are found in other areas of science and nature,

namely market laws (Márkus et al., 1996) and potential fields (Vaario and Ueda, 1996),

based on regulating the expectations of individuals with conflicts of interest.

3.2 Evolution and Self-Organization

The Darwinian theory of evolution (Darwin, 2007) is a form of adaptation to the dy-

namic environmental evolution. Darwin stated that nature is in a permanent transfor-

mation state in which the species would change from generation to generation, evolving

to better suit their environment. Basically, Darwin saw the evolution as a result of en-

vironmental selection acting on a population of organisms competing for resources. In

this evolutionary process, the selection is natural in the sense that it is purely sponta-

neous without a pre-defined plan. In other words, species tend to evolve to overcome

their limitations and to adapt to external natural conditions. For example, a specie can

perform small spontaneous changes within their chromosomes, which provokes some

physiological changes after a few generations.

Self-organization is another form of adaptation to the dynamic environmental evo-

lution. Several distinct, not necessarily contradictory, definitions can be found in the

literature, namely (Massotte, 1995; Thamarajah, 1998; Bousbia and Trentesaux, 2002; Pi-

card et al., 2009). However, the base definition (it will be further detailed in sub-section

4.2.1) used in this work is:

"The ability of an entity/system to adapt dynamically its behaviour to external changing con-

ditions without external intervention" (Leitão, 2008).

Self-organizing systems don’t follow a rigid structure but instead evolve through a

dynamic, non-linear process with a constant optimization of the individuals’ behaviour.

Examples of self-organization principals can be found in several domains, namely:

— Physics: In thermodynamics, the 2nd law states that everything in the universe

tends to move from a state of order towards a state of chaos (introducing the con-

cept of entropy), which explains that hot bodies tend to get colder with an external

cold source (e.g., a refrigerator). Another example is found on the Bernard rolls phe-

nomenon (Getling, 1998) in which the hot and cold molecules self-organize them-

selves in order to create a flow.

— Chemistry: As example, molecules exhibit self-assembly properties, which drives

the molecular structure to self-organization (Whitesides et al., 1991). Another ex-

ample is the Belousov-Zhabotinsky chemical oscillator, which is composed of a re-

action sequence that forms a loop (Shanks, 2001).

— Nature: The stigmergy phenomenon is used to achieve self-organization in ant
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colonies.

The coordination mechanisms found in colonies of ants and bees, besides allowing

members of these species to communicate, allow the whole community to achieve and

display self-organization behaviour. Bonabeau et al. suggest that the basic ingredients to

achieve a self-organized system are the positive feedback, negative feedback and fluctu-

ations (e.g., random walks and errors). They also suggest that self-organization relies on

the multiple interactions between the individuals.

3.3 Survey of Bio-Inspired Applications for Solving Complex

Problems

Several researchers are using biological inspiration (e.g., those found in colonies of

insects) to solve complex engineering problems. In this section, bio-inspired techniques

and methods in engineering are briefly reviewed, with special attention to their applica-

bility in manufacturing.

3.3.1 Applied to Engineering Problems

The insights inherited from the swarm intelligence principles led researchers to de-

sign optimization evolutionary algorithms, namely the ACO (Ant Colony Optimization),

the ABC (Artificial Bee Colony) algorithm, and the PSO (Particle Swarm Optimization).

Dorigo introduced the ACO technique (Dorigo, 1992), inspired by the food foraging

behaviour of ants, to solve problems that need to find optimal paths to some goal. In

ACO, agents acting as ants, travel randomly over a weighted graph leaving marks (i.e.

pheromones) wherever they go. After an initial phase, the "ants" make their decisions

according to the pheromone level, instead of making decisions randomly. Over the time,

the pheromone trail becomes weaker in the less used paths, making the most used path

(i.e. the most optimized path) prevail.

The ACO algorithm has been used to solve diverse engineering problems from dif-

ferent application domains. In fact, in the financial domain, the ACO algorithm has been

used to classify firms as to the different levels of credit risk (Marinakis et al., 2008a) and, in

the medical field, to distinguish cancer from non-cancerous diseases, by helping with the

evaluation of proteomic patterns (Meng, 2006). In the engineering world, the ACO algo-

rithm has been used to determine the optimal values for the components in an electronics

power circuit (J. Zhang et al., 2008), to achieve an optimal image threshold by separating

the object from its background (Malisia and Tizhoosh, 2006), and to update the telecom-

munications routing tables dynamically and adaptively (Di Caro and Dorigo, 1998). In

the army, this algorithm has been applied for the dynamic re-planning of UAV (Uninhab-

ited Aerial Vehicles) (Duan et al., 2009) and for the cooperation among swarm robots to

accomplish a complex task (Nouyan et al., 2009). In the industrial domain, Air Liquide

has used an ant-based strategy to manage the truck routes for delivering industrial and
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medical gases (Miller, 2007), and Bell and McMullen has used a similar algorithm to op-

timize vehicle routing logistics (Bell and McMullen, 2004). Southwest Airlines has used

an ant-based behavioural model to improve its aircraft scheduling at the gates of the Sky

Harbor International Airport in Phoenix, Arizona, USA (Miller, 2007).

The behaviour of bees is the source of inspiration for the development of the ABC

algorithm. This algorithm uses employed bees, onlookers bees and scout bees (Karaboga

and Basturk, 2007). Employed bees are those that have found a food source and are

responsible for recruiting onlooker bees, which are waiting in the dance area. After being

recruited by employed bees, onlooker bees, become employed bees and are responsible

for recruiting. Scout bees are responsible to perform random searches in order to discover

new food sources. Briefly, after recruiting onlooker bees, employed bees move to the

food source (i.e. possible solution) and search for a new nearby solution, which is then

transmitted to onlooker bees. When an employed bee food source becomes exhausted,

this bee becomes a scout, and this process is repeated until a good solution is found.

Applications using the ABC algorithm can be found on the parameter optimization of

a hybrid power system model (Chatterjee et al., 2010) or the dynamic path planning of

mobile robots in uncertain environments (Q. Ma and X. Lei, 2010).

PSO is a population-based stochastic optimization technique, introduced by Eber-

hart and Kennedy (1995), taking inspiration from the social behaviour of birds and fish

schools. Briefly, the system is initialized with a population of random solutions, and

the algorithm searches for optimal solutions by updating generations. The potential so-

lutions, called particles, fly through the problem space, following the current optimum

particles. As the swarm iterates, the fitness of the overall best solution improves (i.e. de-

creases for minimization problem). The PSO algorithm has been applied to solve prob-

lems ranging from the social to the engineering fields. For example, it has been used to

optimize the parameters for PID (Proportional, Integral and Derivative) controller design

(Gaing, 2004), to assess credit risks (C.-A. Li and Pi, 2009), to design evolvable hardware

(Peña et al., 2006), to route vehicles with simultaneous pick-up and delivery (Ai and Ka-

chitvichyanukul, 2009), and to optimize the parameters for spatio-temporal retina models

(Niu et al., 2007).

The swarm intelligence principles have been used to forecast Turkish energy demands

(Miller, 2007) and to solve traffic and transportation problems (Teodorovic, 2008). A more

widespread example of the application of the swarm intelligence principles is Wikipedia

(Leitão, 2009a), in which a huge number of people contribute to the constant evolution of

the encyclopaedia with their individual knowledge. No single person knows everything;

however, collectively, it is possible to know far more than was expected.

GA (Genetic Algorithm), derived from natural evolution, is based on a population of

abstract representations of candidate solutions to an optimization problem that evolves

toward better solutions. GA uses evolutionary operators (i.e. inheritance, mutation, se-

lection and crossover), and they have been successfully applied in various application
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domains: power distribution (Ramirez-Rosado and Bernal-Agustin, 1998), image seg-

mentation (Peng et al., 2000) and scheduling and route selection for military land moves

(Montana et al., 1999).

Table 3.1 provides a summary of some applications that use insights from biology

and nature to solve complex engineering problems. In this table, the problem domain

can range from finance to energy. This table does not intend to be exhaustive but instead

to demonstrate the many domains that are already using bio-inspired solutions.

Table 3.1 – Bio-Inspired Applications to Solve Engineering Problems

Problem
Domain

Existing ACO-inspired
solutions

Existing PSO-inspired
solutions

Existing GA-inspired
solutions

Communication
networks

(Di Caro and Dorigo,
1998),(D. Zhao et al.,

2009),(Sim and
W. H. Sun, 2002)

(Dongming et al., 2008),
(T. Li et al., 2008)

(Lima et al., 2007),
(J.-H. Lee et al., 1997)

Control

(Van Ast et al., 2009),
(Boubertakh et al., 2009),

(Q. Zhang and
X.-h. Wang, 2008)

(Gaing, 2004), (Jalilvand
et al., 2008), (Hu et al.,

2005)

(Wai and Su, 2006),
(Toderici et al., 2010),

(Bae et al., 2001)

Finance

(Fang and Bai, 2009),
(Yuan and Zou, 2009),

(Hong et al., 2007),
(Marinakis et al., 2008c),

(Kumar et al., 2009)

(C.-A. Li and Pi, 2009),
(Majhi et al., 2008),

(A.-P. Chen et al., 2009)
(Badawy et al., 2005)

Hardware
design

(J. Zhang et al., 2008),
(Abd-El-Barr et al.,

2003), (Sethuram and
Parashar, 2006)

(Peña et al., 2006),
(Goudos et al., 2008),

(Ren and L. Cheng, 2009)

(Tsai and Chou, 2006),
(Regue et al., 2001)

Image
Processing

(Malisia and Tizhoosh,
2006), (Tian et al., 2008),
(X.-N. Wang et al., 2005)

(Y.-W. Chen et al., 2009),
(Chandramouli and

Izquierdo, 2006), (M. Ma
et al., 2008)

(Peng et al., 2000),
(Katayama et al., 2006)

Medicine
(Meng, 2006), (Y. Lee

et al., 2009), (Logeswari
and Karnan, 2010), ()

(Niu et al., 2007), (Meng,
2006), (Marinakis et al.,

2008b)

(Maulik, 2009), (Das and
Bhattacharya, 2009),
(Tohka et al., 2007)

Military
(Duan et al., 2009),

(C.-T. Cheng et al., 2009),
(Munirajan et al., 2004)

(Matlock et al., 2009),
(Cui and Potok, 2007),
(Thangaraj et al., 2009)

(Moore and Sinclair,
1999), (Montana et al.,

1999), (H. Liu et al., 2005)

Power energy

(K. Lee and
Vlachogiannis, 2005),
(Z. Liu et al., 2009),
(Colson et al., 2009)

(H. Liu and Ge, 2008),
(B. Zhang et al., 2008),

(Leeton et al., 2010)

(Ramirez-Rosado and
Bernal-Agustin, 1998)

Robotics (Nouyan et al., 2009)
(Zhengxiong and
Xinsheng, 2010)

(Tohka et al., 2007),
(Karlra and Prakash,
2003), (Pessin et al.,

2009), (Albert et al., 2009)

Sensor
networks

(Camilo et al., 2006),
(Muraleedharan and

Osadciw, 2009)

(Aziz et al., 2007) ,
(Tewolde et al., 2008),
(Z. Li and L. Lei, 2009)

(Jiang et al., 2009),
(Brown and McShane,
2004), (Khanna et al.,

2006)

Vehicle
routing/traffic

control

(Miller, 2007), (Bell and
McMullen, 2004)

(Ai and
Kachitvichyanukul,

2009), (J. Wu and Tan,
2009)

(Tong et al., 2004), (Jun,
2009), (Tunjongsirigul

and Pongchairerks, 2010)
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3.3.2 Applied to Manufacturing Problems

A similar analysis of the applicability of bio-inspired techniques can be performed for

manufacturing. In the manufacturing domain, algorithms based on the ant behaviour

have been used to optimize machine layouts (Corry and Kozan, 2004), schedule contin-

uous casting aluminium in a Quebec factory (Gravel et al., 2002), and coordinate adap-

tive manufacturing control systems (Hadeli et al., 2004). The food-foraging behaviour of

honey bees is the source of inspiration for solving job scheduling problems (Pham et al.,

2007b) and optimizing the manufacturing layout formation (Pham et al., 2007a). The be-

haviour of wasps has been used for task allocation (Cicirello and S. F. Smith, 2004) and

factory routing and scheduling (Cicirello and S. F. Smith, 2001).

In addition, the PSO technique has been applied to machinery fault detection

(Samanta and Nataraj, 2009), job shop scheduling (Xia and Z. Wu, 2005), machine load

balance as part of a job shop manufacturing system (F. Zhao et al., 2006), and manufac-

turing cells layout and robot transport allocation optimisation (Yamada et al., 2003). GAs

have been used to generate and evaluate assembly plans (Lazzerini et al., 1999), to design

optimized layouts (G. Wang et al., 2008), and to generate schedules for flexible job-shop

production systems (Qiu et al., 2009).

Self-organization principles have been used to solve complex adaptive problems: in

holonic manufacturing control (Leitão and Restivo, 2006), in dynamic resource allocation

of a Daimler Chrysler plant (Bussmann et al., 2004), in the development of self-organized

and self-assembled bio-inspired robots (Moudada et al., 2004), and in manufacturing

scheduling (Thamarajah, 1998). A stigmergic approach has also been used as the routing

mechanism in a flexible manufacturing system (Sallez et al., 2009).

The potential fields have been used to solve some manufacturing problems. In spite

of being a concept usually found in physics, in this work, it is included in the bio-inspired

world. This concept has been used to allocate products within a group of resources

(Vaario and Ueda, 1996) and to guide AGVs in a manufacturing site (Weyns et al., 2008).

In addition, potential fields were used for dynamic task allocation and product routing

(Zbib et al., 2010). Table 3.2 summarises some of the existing bio-inspired applications

found in the manufacturing field.

3.4 Enriching MAS Based Application with Bio-inspiration

The analysis in the previous section shows the tremendous potential of using of bio-

inspired systems to solve complex engineering problems. This section discusses the ap-

plicability and benefits of combining bio-inspired techniques with MAS in the manufac-

turing domain in order to address the current challenges. The MAS paradigm has already

inherited some biological insights (Barbosa and Leitão, 2010):

— Distributed nature: MAS are based on a set of distributed, autonomous and co-

operative agents, and the functioning of the whole system is determined by the
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Table 3.2 – Bio-Inspired Applications to Solve Manufacturing Problems

Problem
Domain

Existing solutions
inspired by ant and bee

behaviour

Existing solutions
inspired by

self-organization or GA

Other existing
bio-inspired solutions

Assembly/
disassembly

(Shan et al., 2007),
(S. Sharma et al., 2009),

(Lu et al., 2008)

(Lazzerini et al., 1999),
(Gao and W. D. Chen,

2008)

(Lv and Lu, 2009),
(Dong et al., 2007)

Layout
optimization

(Jain and P. Sharma,
2005), (Z.-G. Sun and
Teng, 2002), (G. Chen

and Rogers, 2009),
(Corry and Kozan, 2004)

(G. Wang et al., 2008),
(Kulkarni and Shanker,

2007)

(Ning et al., 2004),
(Ohmori et al., 2010),

(J. Lei et al., 2003),
(Pham et al., 2007a),
(Yamada et al., 2003)

Manufacturing
scheduling

(Arnaout et al., 2008),
(R.-M. Chen et al., 2008),
(Xu et al., 2009), (Blum

and Sampels, 2004),
(Gravel et al., 2002)
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interaction among these individuals.

— Division of labour: MAS define different types of agents with distinct roles, objec-

tives, behaviours and skills; when a social group reaches a sufficient size, "the divi-

sion of labour" appears naturally, like in insect colonies where an individual usually

does not perform all tasks but rather specializes in one set of tasks (Bonabeau et al.,

1999).

— Emergence from collective simple behaviour: The obtained behaviour of the

whole system cannot be summarized to the simple sum of the behaviours of its

parts (Holland, 1999).

Recalling the vision described in the previous chapter, the MAS applications that ful-

fils the aforementioned insights offers an alternative way of designing intelligent, robust

and adaptive systems that replace traditional centralized control. As previously seen,

these approaches provide robustness, since the system is not dependent on a centralized

entity and has the ability to continue working even if some entities fail when performing

their tasks, and flexibility, since the members of the society can dynamically be plugged

in, plugged out or modified to face changing environments on the fly.
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Generally, the application of MAS principles usually allows the appearance of a emer-

gent global behaviour, guaranteeing the fulfilment of flexible and robustness require-

ments. These systems must have the capacity to evolve, that is related to the way the

system can adapt quickly and efficiently to the environmental volatility, thus addressing

the responsiveness property.

To face this challenge, biology and nature can provide useful insights, especially the

self-organization phenomenon. Self-organization applied to MAS allows the implemen-

tation of several self-* properties (Leitão, 2008):

— Self-configuration, i.e. the capacity to dynamically adapt to changing conditions by

modifying the system’s own organization structure, thus permitting the addition/

removal/modification of entities on the fly, without disrupting the service.

— Self-optimization, i.e. the system’s capacity to adjust itself pro-actively to respond

to environmental stimuli anticipating future state of the environment.

— Self-healing, i.e. the capacity to diagnose deviations due to unexpected conditions

and act pro-actively to normalize these deviations, thus avoiding service disrup-

tions.

The self-* properties are crucial for developing highly adaptive, evolvable systems,

addressing the current requirements, and supporting reconfigurability in a quite natural

manner.

Bio-inspired techniques to enhance MAS can be analysed from another perspective.

Manufacturing and automation cover a wide range of application domains, presenting

different requirements and constraints, which can benefit more or less from using such

bio-inspired techniques. Based on the accumulated experience, the use of bio-inspired

techniques combined with MAS can help to design more intelligent, modular, flexible

and adaptive systems, especially in the following manufacturing domains (Leitão et al.,

2012):

— Supply chains and virtual organizations, which require the frequent re-organization

of partners to achieve optimization and responsiveness;

— Shop floor layout, which requires optimizing the shop floor layout in order to min-

imize transport time and to minimize transport distances, in situations where shop

floor resources move physically.

— Product demand, in which the manufacturing system re-organizes itself to adapt to

the changes in the product demand (i.e. faced with the mass customization trend),

increasing/reducing the number of resources or modifying their capabilities, based

on the forecast production demands.

— Planning and scheduling, in which the goal is to find the most current optimized

plans and schedules, while taking the product demands and the capabilities of the

shop floor resources into consideration.
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— Adaptive control, in which the goal is to identify an adaptive, dynamic production

control strategy based on the dynamic on-line schedule, which is adapted in cases

of unexpected disturbances.

— Predictive maintenance, in which predicting machinery failures is essential for tol-

erating disturbances and malfunctions, which helps to develop an adaptive pro-

duction system.

— Diagnosis, in which distributed entities are able to cooperate to achieve a dynamic,

reliable and clear diagnosis of the detected symptoms.

— Adaptive processes and equipment, in which developing new sensors, actuators

and controllers will help to design and implement more adaptive manufacturing

equipment.

Despite the enormous potential of the bio-inspired insights, special care must be taken

when translating them into the real-world problem-solving. If the biological behaviours

are simply copied, the system may not work as expected. Mimicking behaviours can

drive the system into danger states (e.g., the circular mill in army ants (Anderson and

Bartholdi, 2000)). Based on this observation, the idea is not to copy the entire behavioural

aspect of the biological mechanism, but instead translate and adapt the insights in order

to match the system’s objectives. This translation/adaptation requires collaboration be-

tween experts in biology and experts in engineering, which may lead to new insights

from a different point of view.

This observation may provoke a question related to the fact that, in manufacturing,

there is little space for testing, e.g., to send physical entities (e.g., products or trucks) on

a random walk to explore alternative routes. It is important to remember that a multi-

agent manufacturing system is composed of two components: the virtual agents and the

physical resources (i.e. products and machines). Naturally, the product cannot be sent on

a test trip, but agents, running bio-inspired algorithms, can use virtual ants (i.e. agents)

to explore the best solutions in order to route products.

These bio-inspired solutions can be more useful when the environment in which they

operate is unpredictable. The other issue that must be taken into account is applying

these mechanisms may not be advantageous in cases where strong real-time constraints

are needed. Special care must be taken, and the right mechanisms applied, in order to

not affect the system performance.

In spite of the promising prospects that bio-inspired principles can bring to engineer-

ing systems, especially in the manufacturing domain, these principles have been adopted

less than expected in industrial situations. The major problem is that industry demands

proven technology, without wanting to be the first ones to try it in their production pro-

cesses. The maturity of the technology and the proofs of its real applicability and merits

will solve this problem. Furthermore, industry is usually afraid of using emergent ter-

minology associated to these new technologies, such as self-organization, emergence,

distributed thinking and learning.
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The challenge for engineers developing bio-inspired solutions for manufacturing is to

convince people from industry of the real advantages of using distributed systems based

on the behaviour of simple, effective and adaptive entities regulated by simple coordi-

nation mechanisms, such as those occurring in nature. For this purpose, it is important

to develop demonstrators and real case studies to be used as a proof of concept. Simula-

tion platforms simplify the design, testing and debugging of these bio-inspired applica-

tions, ensuring a framework to simulate/validate strategies to support decision-making.

Several computational platforms are currently available for the simulation/validation of

bio-inspired models (e.g., SWARM, RePast, NetLogo, Gama and MadKit), in which the

behaviours of biological entities (e.g., ants and bees) are usually implemented using soft-

ware agents (more information related to ABM (Agent-Based Modelling) tools can be

found in (Railsback et al., 2006) and (Arunachalam et al., 2008)).

An interesting example is using the NetLogo platform to simulate the dynamic de-

termination of the best path to route the products in situations with disturbances (Sallez

et al., 2009). The idea here is to simulate the manufacturing system taking into account

the real conditions (e.g., the equipment status). In this way, the model gets real infor-

mation, performs the simulation, and sends the commands to the real environment. The

system operates in a bidirectional manner: the real environment provides fault inputs

to the modelling system, and the modelling system gives scheduling orders to the real

environment.

3.5 How to Achieve an Evolvable System

The achievement of truly evolvable systems requires the fulfilment of a certain

plethora of requirements. The system, particularly a manufacturing control system in

this work, should withstand the loss or addition of entities and continue to work in a

seamless way. Disturbances must be accommodated in a transparent way and handled

as smoothly as possible to mitigate their impacts. During the disturbance phase and after

it, the system must constantly try to be as optimized as possible. This optimization phase

might pass by acting on the internal functioning of the entities or by re-arranging the

system structure, i.e. the relation among the entities. Additionally, this optimization, can

also be achieved through the introduction of a high level entity (with a broader view), by

applying self-organization principles or by the combination of both.

Figure 3.2 depicts the identified requirements that the proposed system must exhibit

to be truly evolvable. Among them, it is possible to identify features such as control of

randomness, being prepared for the unexpected, the appearance of an emergent feature,

the usage of chaos control, self-organization mechanisms and the introduction of hierar-

chy. These features will be detailed in the following sub-sections.
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Figure 3.2 – Requirements for a Truly Evolvable System

3.5.1 Being Prepared for the Unexpected

Very large-scale and complex systems, like those found in manufacturing, have dif-

ferent types of disturbances that can affect the system with assorted degrees of impact.

As example, in manufacturing, a disturbance, who classically is a perturbation that dis-

rupts/affects the normal functioning of the system, can be a rush order, a delay, a worker

absenteeism or a resource breakdown, which may have a negative impact on the system.

Notably, a disturbance can even have a positive impact on the system, such as the in-

troduction of a new resource or an upgrade on a existing one, in the sense that broader

possibilities are presented. In the same line, the restructuring of the conveyor system or

the re-arrangement of the shop-floor can deeply determine the performance of the sys-

tem. All the aforementioned situations should be considered has a disturbance, their

impacts measured and the system acting accordingly to cope with them. Regarding the

impact level of the disturbance, a two level classification can be envisioned, namely:

Low level: the system can overcome it with less effort. Disturbances are classified as low

when their impact in the system is restrained within some tight boundaries and

when the system is able to resolve it locally, i.e. using minor mitigation strategies.

High level: the system, to overcome the perturbation, must undergo with major

changes. Perturbations are classified as high when their impact in the system over-

passes the focal point of perturbation. In this situation, the system must make

changes that not only involve the affected area.
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To this subject, a truly evolvable system must consider this wider set of different dis-

turbances, learn on-the-fly as they appear, and manage them in a proper way. It is also

desirable to embed in the system entities, or in the design process, methods, forecasting

techniques and simulations to predict the unexpected (Valckenaers et al., 2011).

Having this in mind, it can be understood that the system must be able to accomplish

two different things. Firstly, the disturbance must be eliminated and accommodated into

the normal functioning of the system. This is, from a certain point, the disturbance must

be considered has a natural part of the system as it is absorbed by the system. The sec-

ond requirement, is that the degradation of the system performance during and after the

occurrence of the disturbance must be as less as possible, and for this purpose, different

disturbances can be mitigated using distinct strategies. So, a truly evolvable system must

have different ways to overcome the unexpected.

3.5.2 Hierarchy: a way to Achieve Stabilization and Optimization

Optimization can be defined as the way that a given entity has to be in a state where,

under the same conditions, it can extract the most out of it. Hierarchy is one of the

most used ways to achieve system optimization (Dilts et al., 1991). In such approach,

the entity uses the global information to have a wider knowledge of the system, making

the decision process more efficient, i.e. more optimized. These high level entities uses

their wider knowledge to consider a wider set of solutions for the same conditions and

consequently provide low level orders to their subordinates.

A. Koestler, based on the Herbert Simon’s observations, stated that a complex system

will evolve more rapidly in the presence of stable intermediary states than if they were

not present (Koestler, 1969). During his observations, Simon describes the parable of the

two Swiss watchmakers 1 to conclude that "Complex systems will evolve from simple systems

much more rapidly if there are stable intermediate forms that if there are not." (Koestler, 1969).

As conclusion, hierarchy is a way to achieve optimization and stabilization in complex

systems since higher level entities that govern the hierarchy have a wider knowledge of

the current system status.

3.5.3 Self-Organization and Emergence as the Main Driver

Self-organization can be found in many complex and well structured systems (Kauff-

man, 1993). Many times, regulated by several local interactions, systems display desired

1. Two watchmakers produced high quality watches and were very requested. Both watches were sim-
ilar in number of parts needed to build them, but each one used a different building approach. The first
watchmaker, named Mekhos, would build watches piece by piece without clustering in groups. This pro-
cess implies that every time Mekhos was interrupted, all the watch needed to be re-built from the beginning,
since all the parts would disaggregate from each other. The other watchmaker, known as Bios, followed
a different strategy, making groups of parts, which are then assembled in a hierarchical manner. In other
words, Bios assembled groups of parts that are sub-assemblies of higher levels groups. In this approach,
every time Bios was interrupted, the maximum he had to re-build was the sub-group he was working on at
the moment of interruption.
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features, such as adaptability to face the perturbations and system equilibrium. This is,

often, driven by the use of indirect communication between the entities that compose the

system.

Self-organization can be used to enhance the autonomy of the entities in distributed

systems, managing and organizing their internal tasks and work.

As also seen in species societies, self-organization also enables the system to improve

responsiveness and to overcome any disturbance that may appear along the way, mainly

in large and dynamic systems. Optimization is another expected feature that can be

extracted from self-organized systems. Recall the ant double bridge experience where,

without any previously knowledge or any central authority, the shortest path was pre-

ferred over the longest one.

One underlying key feature of self-organization is found on the simplicity of the use

of coordination and communication mechanisms. A notable usage of this is the odour

pheromone deposition made by the ants during food foraging that indicates the quality

and distance to the food source or the waggle dance performed by scouting bees, indi-

cating to others the quality, distance and orientation to food sources.

Lastly, and since the goal is to have an evolvable system, self-organization can also

respond properly to this since environmental influences and disturbances, generally, do

not affect the self-organization mechanism, making the system to dynamically evolve, by

either maintaining a stable form or displaying a transient phenomena (Bonabeau et al.,

1999).

On the other hand, emergence appears due to the multitude of non-linear and dy-

namic interactions between all the system’s entities. This emergent behaviour appears

without the need to have a central authority in charge where the outcome is greater than

the simple sum of the contributions of all the entities.

In fact, among the different types of emergence (Deguet et al., 2006), one definition

that can be used is the one related to the simulation, where: "A true emergent phenomenon

is one for which the optimal means of prediction is simulation." (Darley, 1994).

Accordingly, self-organization principles must be at the core centre of every truly

evolvable system.

3.5.4 Controlled Randomness

Randomness is a feature that appear in biology to allow the identification/discovery

of probabilities to evolve. As an example, ants during the food foraging process usually

decide to make random walks exploring the neighbour space, allowing them to discover

new routing possibilities, which until that point were unknown to them. The finding of

new places in the state space is afterwords evaluated to see their viability, being discarded

in case of worst results or non-benefits.

Random movements have also proved to be extremely effective and desirable in na-

ture, in situations where the predators are, somehow, expecting for preys and naturally,
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desires to catch them. The serengeti wildebeest, as example, during the annual migration

movement, moves in herds and purposely makes random movements between years in

order for predators to not be able to find them as easily as they would otherwise (Kava-

liers and Choleris, 2001).

In an truly evolvable system, randomness is a "must have" feature in the sense that it

allows the addition or removal of entities and also the change of the state space where the

system operates, detecting new system configurations and new entities relations. This is

a very important feature in dynamic systems where, e.g., layouts change and entities

providing new services are appearing and disappearing.

The pertinent question is how to embed this randomness into the control system with-

out affecting the normal functioning of it or without degrading its performance. It must

be always kept in mind that the mechanisms to be used in control systems cannot nega-

tively affect the same system operation, e.g., one entity responsible for processing a task

cannot just be sent intentionally in a random walk to search for new places in the state

space. This search for changes in the state space must be made by using non-invasive

techniques, i.e. those that not affect or have less impact on the normal functioning of the

system.

An example of the use of exploratory entities can be seen in the PROSA+ANTS ar-

chitecture (Karuna et al., 2005), where the authors have specified an entity named ex-

ploratory ants that is responsible for searching routing possibilities (representing the best

manufacturing processing sequence possible). A second example of such technique can

be seen in (Zbib et al., 2010) where similar concepts are also used.

Having a system without a certain degree of randomness can reduce its capability

to detect changes in an appropriate way and constraint the system to evolve. Note for

instance the work in (Barbosa et al., 2012a), where it is shown that having no random

capabilities, the entities will not be able to overcome disturbances in a changing system.

In the same work it is also shown that the opposite is also undesirable, i.e. having a large

randomness feature, where the system would not display the most desired behaviour.

As conclusion, the ultimate solution is to have a controlled randomness, allowing the

entities within the system to have random features but not too much that will make them

to fall into chaotic behaviour.

3.5.5 Be Aware with Chaos

Chaos can be directly related with the degree of randomness once if the level of the

entity randomness is too high, the system will fall into a chaotic behaviour. Although

some degree of chaos is desirable, which can drive the system to discover new func-

tioning points, it becomes undesired when it grows beyond a certain point. The chaotic

behaviour is one of the last effects that a system can or desire to have since chaos can

rapidly drive the system into a non-return situation where it becomes uncontrollable or

falls into a pitfall.
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The trigger for the last example is pertinent to be discovered and eliminated in order

to avoid this undesired behaviour. To this concern, a special attention to the impact of

decisions must be made. Recall for example the butterfly effect, where a small change

at a given point in time can produce, in a non-linear system, a huge impact later on.

Additionally, the conditions on which the change is made can also influence the way the

system evolve.

Despite the drawbacks of chaos, one can also benefit from a certain degree of it. Lets

recall that some studies state that the human brain is a in a constant state near of chaotic

behaviour, i.e. it is critically self-organized (Kitzbichler et al., 2009), and in this situation

the human beings tend to extract more from their brain activity. Additionally, accord-

ing to (Kauffman, 1993), complex adaptive systems reside on the edge of chaos between

equilibrium and chaotic activity.

Having this in mind, a truly self-organized system should be at the edge of chaos,

pushed into its limits but maintaining its stability.

3.6 Summary

This chapter has given a picture of some insights, mechanisms and techniques, that bi-

ology has to offer. Swarm intelligence concept was introduced and explained and within

this, the behaviour of insects societies is briefly explained. Despite not displaying indi-

vidually intelligent behaviour, ants and bees as a group are capable of performing amaz-

ingly complex behaviours.

The evolution and self-organization concepts were briefly described, presenting an

interesting way to design systems that in a non-controlled way are able to evolve in dy-

namic environments.

Two surveys are also presented as the way to, in an exemplified manner, depict some

applications that already inhered biologically inspired techniques into their approaches,

such as in finance, image processing or even in manufacturing production control. Some

guidelines to derive the aforementioned insights into the manufacturing world are also

depicted.

Finally, key features that a manufacturing control system must possess in order to be

truly evolvable are described, namely being prepared to the unexpected, the introduction

of optimization through hierarchy or the use of self-organization principles figure among

them.

The next chapter will describe the basic principles of the proposed self-organized

holonic architecture, acting at the micro- and macro-level, i.e. at holon internal level

and at the structural level. The proposed architecture extends the ADACOR approach

with self-organization concepts to address a truly self-organized holonic manufacturing

control.
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4
ADACOR2: a Self-Organized

Holonic Architecture

Look deep into nature, and then you will understand everything better.

Albert Einstein

As seen in the previous chapters, the existing manufacturing control approaches lack

to achieve a truly evolvable system in the aspect that they are not able to dynamically

evolve to find better functioning points, or if they have this capability, only a few degrees

of freedom are considered. This requires a manufacturing control system architecture

that is able to evolve in a natural manner, properly coping with different types and levels

of disturbances, minimizing their impact into the system performance.

This chapter describes the architectural principles of the proposed self-organized

holonic approach, named ADACOR2, since it is based on the established ADACOR

holonic architecture (Leitão and Restivo, 2006). ADACOR2 holonic architecture aims

to enhance the existing ADACOR holonic architecture through self-organization capa-

bilities to achieve truly evolvable and reconfigurable manufacturing systems, which are

able to cope with unexpected condition changes, pushing the system into its limits but

remaining under stable states. For this purpose, it is proposed a self-organization holonic

architecture that evolves through multiple configurations on which the system can oper-

ate, unleashing the two pre-defined states defined in ADACOR, as illustrated in Figure

4.1 (Barbosa et al., 2012b).
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...

ADACOR

ADACOR + Self-organization

Figure 4.1 – ADACOR2: an Extension of ADACOR

In the next sections, the system architecture and the self-organization principles will

be described in detail (Barbosa et al., 2015).

4.1 System Architecture

The proposed architecture follows the ADACOR holonic architecture, being consti-

tuted by an ecosystem populated by several holons that interact with each other to

achieve the system’s goals.

4.1.1 Architectural Components

The control level proposed by the ADACOR2 holonic system is composed by a finite

set of entities, known as holons (Hh), each one representing physical or logical compo-

nents, processes and information belonging to the system.

Following its predecessor ADACOR, the ADACOR2 architecture considers four types

of holons, that are able to represent all the entities within a manufacturing system,

namely PH, TH, OH and SH. There is a direct mapping of the set of holons and the

set of logical and physical manufacturing components, as illustrated in Figure 4.2, where

the ADACOR2 system is represented as a pool of holons with their mappings to a real

world representation. Note that a SH doesn’t have a direct representation with the real

world since it is an entity that aims to introduce optimization into the system.

In this way, the ADACOR2 pool of entities can be represented by:

ADACOR2 = {PHph, THth, OHoh, SHsh} (4.1)

The set of products that can be produced in the shop-floor, i.e. the product catalogue

for a given manufacturing company, is represented by PH. Product holons comprise the

knowledge about the product and the process model, which are transmitted to the THs.

Additionally, the PH also takes pro-active actions in situations where deviations from

initial plans are detected that could affect the created THs.
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Figure 4.2 – Mapping ADACOR2 Holons Into Real System

When manufacturing orders are launched into the shop-floor to produce the desired

products, they are converted into individual THs being responsible to manage the pro-

duction of the products’ instances according to the process plan. The process plan com-

prises a set of operations that should be executed in the resources disposed in the factory

plant according to their precedences and constraints.

The set of resources that are able to execute the necessary operations to fulfil the

production orders are mapped in OHs. Each OH, representing physical manipulation,

transport or processing resources present at the shop-floor, e.g., AGV, processing units,

quality control or even human operators, is responsible for the internal management of

its representative. Among others, OHs manage the resource scheduling, participate in

the negotiation processes that might be necessary for the orders allocation and trigger

the warning signals as disturbances appears.

Finally, the set of SHs introduce optimization into the system providing coordination

among clusters of holons that are dynamically created and evolved.

4.1.2 Holon Internal Structure

The design of the ADACOR2 holon internal architecture assumes a crucial impor-

tance in the way that will enable the inter-holon communication, the interaction with

legacy systems and the internal processing of the holon itself. In order to achieve the

self-organization features, the holons have to be (re)designed and be composed with the

necessary set of modules. Additionally, and since the binary state of functioning defined

in ADACOR is removed, the self-organization mechanisms deployed are now responsi-

ble for the transition between working configurations.
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As illustrated in Figure 4.3, the holon can be divided into two major parts (Leitão

and Restivo, 2006): information and physical part. The information part relates to the

processing capacity of the holon itself and regulates the internal and external communi-

cation. The physical part represents the "real world", mapping different physical system

components, such as resources and products.

Figure 4.3 – Holon Internal Structure

The information part of the holon comprises several modules organized in three ma-

jor blocks, namely communication, interface and decision.

The communication module provides the communication capabilities to the holon,

comprising two sub-modules that allow a direct communication with other holons and

with the environment.

The interface module provides, when needed, a connection to the physical devices,

legacy systems and/or displays information to the users using a friendly GUI (Graph-

ical User Interface), which allows a real time monitoring of the holon state and at the

same time the interaction with the user. With this interface, each holon is able to repre-

sent physical systems, like robots or machines, and interface with legacy systems of the

company, such as MES or ERP.

The main core part of the holon internal structure is the decision module, which is

further decomposed in sub-modules responsible to monitor and discover events, to take

control actions, to manage self-organization, and control nervousness.

The holon internal processing engine is responsible for managing the information

flow within the holon and for trigger the holons’ internal actions, such as read the envi-

ronment, send messages and supervise the holon’s behaviour. Basically, the processing

engine is responsible for managing the holon’ internal agenda.

The monitoring module is responsible for gathering information about the state of
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the system, e.g., monitoring the external data flow and holons’ physical signals, check-

ing for pre-defined alarms that could start more serious adaptations, feeding them into

the self-organization modules. Additionally, the monitoring module also supervises the

normal behaviour of all the internal features, guaranteeing the holons integrity. Comple-

mentary, the discovery module is responsible for querying the holonic platform, e.g., by

using the yellow and white pages feature, to find upcoming events, such as the presence

of new holons or functionalities, which lead to the establishment of new holarchies.

One of the major contributions in the holon internal structure is in the self-

organization module that is responsible for the dynamic adaptation of the holon internal

behaviour, leading to the change of the holon internal behaviour and to the system global

evolution. This module is composed by a set of rules (e.g., what-if rules and a set of mech-

anisms) that an expert system engine uses to match with a set of facts producing a set of

actions.

The nervousness stabilizer performs stabilization actions (e.g., due to an adaptation

process) and is responsible for guaranteeing the stability and high performance of the

holon, preventing falling into chaotic and unstable behaviour (as consequence of the self-

organization in the system).

Finally, under the decision part, the control module is responsible to materialize the

actions coming from the self-organization and passing from the nervousness controller.

All the necessary data and the internal knowledge for the holon normal functioning

is stored in its internal DB (Data Base).

The learning module is responsible for the continuous self-tuning of the holon’s in-

ternal behaviour aiming to have a constant improvement of the holon’s performance. A

major output of this module is to assist the discovering of new opportunities to evolve, as

well as deciding the best way to evolve. This feature will imply special precautions since

"bad learning" may appear and drive the holon to decrease its behavioural performance.

This module, in conjunction with the processing engine and using the information stored

in the internal DB, must certify that the holon, due to new features, don’t fall into a chaotic

behaviour. Additionally, different concerns must be taken during the two normal oper-

ational phases of the learning. Firstly, known as exploration, the holon is continuously

refining the parameters of the learning algorithm. Due to this, the holon must, always as

possible, to rely on other learning strategies, or try to follow as much as higher level sug-

gestions (due to the wider scope of the higher entities, by principle, the suggestions are

more reliable). On the second phase, as the parameters are refined, the learning module

goes into the exploration phase, where minor refinements, generally, are expected and in

this situation the holon can rely more on its internal learning module.

4.2 Self-Organization Principles

A key concept in ADACOR2 is evolution and several definitions can be found in the

literature. For the Oxford dictionary, evolution is "The process by which different kinds of
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living organism are believed to have developed from earlier forms during the history of the earth"

or simply, "The gradual development of something" 1. Additionally, according to The Free

Dictionary, evolution is: "A gradual process in which something changes into a different and

usually more complex or better form." 2.

4.2.1 Evolution and Self-Organization

Evolution in ADACOR2, as shown in Definition 1, is defined by relating the capabil-

ity to dynamically find new configurations points, under given conditions, allowing the

system to work in a stable state with the best performance possible.

Definition 1 (Evolution) The process by which, overtime, the system or entity, in an organized

way, adapts into new internal or external situations, handling this way disturbances by finding

better working configurations. In can be seen as the sum of self-organization and adaptation over

time. It is also characterized by allowing a continuous or punctuated evolution between stable

states towards a goal or objective.

To this respect, evolutionary theories provide several answers, where a multitude of

theories are presented with some with significant opposite visions. Probably the most

renowned evolutionary theory was developed by Charles Darwin and were published

in the book entitled "On the origin of species" (Darwin, 2007). In this book, Darwin

states that overtime species tend to make small internal changes in order to adapt to

their environment, phenomenon also known as the survival of the fittest. Having this in

mind, one can anticipate that depending on its position on the system, each entity must

adapt itself to its local surroundings and overtime can have different "feel and look". This

behaviour is shown in Figure 4.4b), where a smooth evolution of the system over time

can be observed. In ADACOR2, this is translated into the entities internal evolution by

allowing them to add, remove or refine their behaviours.

In an opposite direction, the punctuated equilibrium theory (Eldredge and Gould,

1972) states that species tend to be in a stable state for long periods of time and suddenly

make a drastic change, as it is illustrated in Figure 4.4a). In this theory, systems would

make a more drastic change into itself.

Similar concepts can be found in the manufacturing world where the kaizen philos-

ophy states that the system can be improved through small continuous changes while

the kaikaku philosophy considers that drastic changes improve the system performance

(Kettunen, 2010).

These two opposite theories has then been merged, as shown in Figure 4.4c), and are

the working base behind the insights to develop the ADACOR2 manufacturing control

architecture.

These two dramatically different approaches, found either in evolutionary theories

or manufacturing strategies, offer insights to respond to unexpected events in an agile

1. www.oxforddictionaries.com/definition/english/evolution
2. www.thefreedictionary.com/evolution
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Figure 4.4 – Darwin’s and Punctuated Evolution Theories

manner. Having this in mind, ADACOR2 proposes a two-dimensional self-organization

model that considers mechanisms at micro and macro level, unleashing the two pre-

defined states as defined in ADACOR. In this way, the combination of smooth and drastic

system evolution will enable the discovery of a multitude of configurations on which the

system can operate, as illustrated in Figure 4.1. The opportunity to work on a multitude

of configurations is probably the major difference between the two versions of ADACOR

architecture. On one side, the system can be on a stationary or in a transient way, on the

other, the system can dynamically adapt itself either by introducing a smooth or a drastic

evolution.

The self-organization can be achieved through the interactions between all the differ-

ent entities present in the system. This type of self-organization is observed throughout

the nature and has proved to be very effective in swarms for problem solving. To support

the dynamic evolution of the proposed architecture a two way self-organization will be

deployed in the system.

At this point, it is crucial to define the meaning given to self-organization in this

document.

Definition 2 (Self-Organization) A set of processes by which an entity or system has the abil-

ity, in an autonomous and spontaneous way to re-arrange itself by means of multiple interactions

and feedback mechanisms. This arrangement always aims at performance increment and system

stability.

These interactions, by following nature-inspired mechanisms, aim to be as simple as

possible and with the least necessary communication overload. For each type of neces-

sity (e.g., disturbance or need for reconfiguration), each designated entity will embed a

set of mechanisms that will allow the system to overcome and evolve into a more opti-

mized and stable functioning. To support these ideas, all the entities will be supported

by learning mechanisms.
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4.2.2 Two Dimensional Self-Organization Mechanisms

In ADACOR2, the evolution towards the system re-configuration is supported in two

distinct manners:

— A self-organization that occurs in the micro-level, which is related to the self-

organization of the behaviour of individual holons, provoking the emergence of

a new global behaviour, and in this way a system adaptation. For this purpose,

individual holons use the embedded learning and discover mechanisms to detect

new opportunities to evolve and the proper way to re-configure their behaviours.

— The macro-level self-organization, which is related to the re-organization of the in-

teractions among the holons, provoking a new global behaviour based on a new

society of holons.

The need to act at these two different levels is justified by having two major types

of disturbances groups which can be envisioned regarding their impacts on the sys-

tem, low and high, and that may require different mitigation strategies. Having this

in mind, ADACOR2 is enriched with different mechanisms as ways to overcome these

constraints levels. The low impact perturbations, being more limited in time and space,

can be addressed locally using low impact measures as opposite to high impact pertur-

bation where a deep and long term change in the system can be necessary. Behavioural

self-organization is then applied into the micro-level of the system while the structural

self-organization is acting on the macro-level allowing the system to evolve into a new

configuration (see Figure 4.5).

Considering that the system is working with a given configuration, Ci, it can either

evolve by applying one and/or two of the considered self-organization mechanisms.

When a self-organization procedure is applied to either overcome a disturbance or to

improve the current holon/system performance, it is said that system evolves into a new

configuration, Ci+1, since the current system state has changed.

ADACOR
2

Figure 4.5 – Evolution by Means of the Self-Organization Mechanism

The aforementioned definition can be seen in Figure 4.6 on which the system will

evolve, displaying the emergent phenomenon, by mean of making internal changes of the
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behaviour, while the macro-level acts structurally on the system by means of a structural

self-organization.

Figure 4.6 – Emergence in Action

The behavioural self-organization is observed at micro level, where each individual

holon can change its behaviour according to the external conditions, resulting in a smooth

evolution. The second component, named structural self-organization, is observed at a

higher level and drives the drastic system evolution by changing the relationships be-

tween the holons (and even the cluster formation). So, facing the external or internal

disturbances, the system can either evolve using behavioural self-organization and/or

structural self-organization.

Additionally, and in order to enable the acting on those two levels, one change must

be done regarding the autonomy factor as defined in ADACOR, which is dynamically

changed in the presence of disturbances. Briefly, if everything goes as planned, holons

have a low level autonomy factor, following blindly the orders suggested by the SH. In

an opposite way, in the presence of disturbances, and depending of their impact, the

holon will increase its autonomy factor, aiming to act in a more autonomous way. This

mechanism is very important in the ADACOR manufacturing control architecture but it

has to be redesigned to allow the new features, namely the self-organization mechanism.

In such way, every holon in ADACOR2 has always full autonomy, being able to take its

own decisions and decide whether to follow the more global suggestions or to rely more

on its local knowledge.

4.2.3 Downward and Upward Causation

The role of the two components in the self-organization mechanism, and the interac-

tions within the holons, require to consider the correlation of the effects between these

two levels: changes in the behaviour of one holon will drive the system to evolve by

the emergence of a new emergent global behaviour; in a similar way, an evolution in
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the holons behaviour will occur after a structural self-organization. A graphical explana-

tion is presented in Figure 4.7 using the Coleman’s boat analogy (Coleman, 1994), which

explains these interrelations in detail.

Figure 4.7 – Coleman’s Boat View in ADACOR2

A change in the structural relations between holons implies a downward causation

that will change the behaviour of individual holons making them to adapt themselves

to optimize their individual behaviour to face the new organization. On the other side,

a change in the behaviour of holons at the micro-level may imply an upward causation

that affects the structure of the relations between holons.

The following chapters will describe the two self-organization components, namely

behavioural and structural.

4.3 Behavioural Perspective

The behavioural self-organization contributes at micro level to the global self-

organization found in the ADACOR2 architecture (Barbosa et al., 2013a). This self-

organization component, seen as the way to achieve the smooth evolution of the sys-

tem facing unexpected changes in normal conditions, is achieved by the selection of the

proper behaviour, from a catalogue of behaviours, using a behaviour selection engine.

Every holon is aware of its surrounding environment, and when a disturbance is de-

tected, it starts the behavioural self-organization process that will culminate with the

selection of the most appropriate behaviour for the new working conditions, as shown in

Figure 4.8.

For this purpose, each holon is continuously monitoring its state and its environment,

seeking an opportunity to evolve, as well as being aware of any external evolution trigger.

Depending on the trigger type, the holon self-organizes by selecting the right behaviour

from the set of known behaviours Bh =
{

Bh
1 , B

h
2 , ..., B

h
b

}

.
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Figure 4.8 – Behavioural Self-Organization

This selection is accomplished when the adequate behaviour is used at the exact mo-

ment with the lowest impact on the overall system. This type of self-organization will

push the system to a new operating point, i.e. a new configuration, produced by internal

changes to cope with new constraints. In this sense, the behavioural self-organization of

ADACOR2 is defined as:

Definition 3 The change in the internal state of the holon using a set of internal rules and mech-

anisms, triggered in response to a plan deviation or a new evolution opportunity, with the aim of

re-establishing normal functioning or improving performance.

From a behavioural self-organization perspective, a plan deviation is detected or an

evolution opportunity is discovered by the processing engine embedded in the holon,

e.g., matching a set of rules with the available data or facts.

4.3.1 Principles and Composition

Generically, a behaviour is constituted by a set of input data, a set of rules and the

output data (as shown in Figure 4.9).

The input data defines the necessary data for the proper function of the behaviour,

without which it cannot be executed. The core of the behaviour composition is its set

of rules that processes the input data to produce an output. On its turn, the output

is decomposed into three groups of data: KPI (Key Performance Indicator), measures

and post-processing actions. The KPI is the expected performance indicator, while the

measures are the set of procedures necessary to implement the behaviour. Finally, the

post-processing actions relates to possible procedures taken after the application of the

behaviour.

These actions include propagation policies used to warn other holons about the

change of the behaviour, data policies used to update possible environment parameters
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Input data
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Figure 4.9 – Composition of a Generic Behaviour

used in the behaviour and feedback policies used as input to the learning module to give

a real KPI to the behaviour. The later is used to refine the parameters of the rules/process.

The behavioural module proposes a change every time a given behaviour produces

an improvement of the actual holon KPI. Additionally, the input or the output data may

have auxiliary functions to support gathering or generating the needed data.

Figure 4.10 extends the holon internal structure (see Figure 4.3) and depicts the self-

organization module regarding the behaviour perspective. There, it can be observed

that low level events, those that came from the physical system, and high level events,

those coming from the holonic infra-structure, are being constantly monitored and stored

into its internal DB. These events or facts act like trigger signals to the behavioural self-

organization, which are then feed into the decision making engine that matches them

with the known behaviour rules.

The decision making process is accomplished using global data from ADACOR2 high

level holons, namely SHs, and local data from the holons’ local knowledge. In this way,

the detection of plan deviations, using the monitoring module, is sustained by means of

access to global and local information. The access to the global information, related to

the most optimized functioning, guarantees that behavioural decisions take into account

broader, long-term solutions, thus decreasing the need for a new behavioural adaptation

in the short term. On the other hand, local information supports the system reactivity by

allowing the entity to access local data that at the moment of decision is more accurate,

i.e. more up-to-date. Despite the faster refresh rate of this data, it suffers from myopia in

the sense that it represents a local, partial view of a smaller area of action (Barbosa et al.,

2011), and so global data must be used whenever possible.

All this process is supported by the learning module, which is responsible to gather

and accumulate knowledge from the holon internal DB or from the feedback information

about behaviours and create new knowledge by adding, removing or changing rules
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Figure 4.10 – Behavioural Perspective Block Diagram

and/or parameters.

4.3.2 Behaviour Selection

As shown beforehand, the behaviour selection is one important step during the pro-

cess of the behavioural self-organization process, taking place at the decision making

engine depicted in Figure 4.10.

As shown in Figure 4.9, each behaviour is composed by a set of rules and parameters

that after matching them with a set of input data, i.e. the facts, produces an output with

an expected KPI. The behaviour selection is obtained when, for any given behaviour, the

expected KPI, Bh
kpi, improves the current one over the threshold value of ζ. At the limit,

any slight KPI improvement can trigger a behaviour change, which may introduce some

instability into the holons performance if the frequent behaviour change is significant.

Despite the previous observation, more conservative decision making policies can also

be applied, forcing the holon to retain the same behaviour longer, only changing it when

a higher threshold value is expected. Despite of the aforementioned, the behaviour selec-

tion threshold value is dynamically adjusted by the nervousness stabilization mechanism

(more details are given section 4.5).
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When more that one behaviour is eligible to be use, i.e. when an improvement over

the current holon KPI is expected, the behaviour that produces the higher improvement

is considered. Alternatively, a multi-criteria function can be considered by combining

multiple parameters in the behaviour selection. A good example in the manufacturing

domain can be the selection of the behaviour that combined produces the higher im-

provement with the less impact in the system. Note that, for the example, some mech-

anisms to infer the impact of the behaviour change in the system must be embedded in

the holon internal structure.

At the end of this process, the selected behaviour is sent to the nervousness controller

that will enable its application.

4.3.3 Evaluating and Refining

The evaluation post-processing action is triggered each time the holon ends a self-

organization procedure that produced a change in the holon behaviour.

Each time the holon interacts with other holons, as illustrated in Figure 4.11, it will

gather the performance indicator which is then evaluated. In the case of the existence of

a deviation from the initial plan, an internal trigger will be issued to the behavioural self-

organization module, which will check the performance indicators for plan deviations in

order to have a behavioural change or keep the current behaviour. In the case this plan

deviation exceeds a pre-determined trigger the holon will propagate this event into the

affected holons allowing them to deeply analyse and take pro-active measures.

Figure 4.11 – Evaluating and Refining the Holon Behaviour

At the end of the holon life-cycle, i.e. when the holon has fulfilled all of its purposes,

all the gathered knowledge will be sent, if possible, to the correspondent high level holon
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(in the example of figure 4.11, the TH sends to the PH). This enables a behavioural refine-

ment in future holons, e.g., the PH learning module will refine the behaviour parameters

for future holons.

4.3.4 Behaviour Propagation

A basic rule to obtain a self-organized system relies in the interactions between en-

tities and the information exchanged among them. In the same way, ADACOR2 holons

follow a sociable or genetic paradigm of knowledge sharing. This sharing allows the en-

tities to exchange information about behavioural techniques and to, in a distributed or

centralized way, to classify them by its usefulness. This information propagation can be

done in a direct way, i.e. when it is transmitted from holon to holon, or using indirect

transmission, using the environment as the mean to share the behaviour.

These behaviour propagation methods will also serve as a way for the holons to assess

the data relevance. Some parameters are used to measure the behaviour usefulness, such

as the number of holons that have used it, its success rate or improvement rate. The set

of parameters used to assess the behaviours are described as follows:

— Count: number of times that holons have used this behaviour.

— Success rate: number of times an holon has used this behaviour and it has been

beneficial for the holon.

— Success trend: depicts the trend of success of the last n times the behaviour was

used.

— Information freshness: how far away in time was made the last information update.

— Location: place where the behaviour code is stored.

— Improvement rate: states the improvement on the holons performance by selecting

this behaviour.

— Improvement trend: indicates the trend of the improvement on the last n times the

behaviour was used.

— Variance: indicates how spread are the improvement rates.

The use of the aforementioned parameters allows the holons to assess the usefulness

of each behaviour. In this way, the number of holons that have used the behaviour is the

first one, once as greater this number, the higher is the relevance of the data, since more

holons have contribute to its creation. Secondly, the success rate of the behaviour usage

informs about the beneficial of usage of it.

4.3.4.1 Direct Propagation

This behavioural propagation sets foundation in two distinct phenomena that can

be observed in nature. The first is the phenomena where animals are changing their
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behaviour by mimicking others from the same species. Recalling the parable of the blue-

tit birds and the milk bottles described in (Koestler, 1969), where, by the promotion of

randomness, some blue-tit birds discover that the milkman put bottles of milk at the

clients doorstep and discover how to open those. After some time, the knowledge of the

milkman habit and the process of how to open the bottles is propagated to other blue-

tit birds. The second phenomena is that, on a second generation of blue-tit birds, this

behaviour is already engraved into the genetic property of them and is naturally part of

their behaviour.

In such way, the direct propagation of behaviour can be seen in two different ways.

A vertical way, where the behaviour is transmitted downward from a high level entity to

a lower one, similarly to the genetic engraving of the behaviour. And, the second way,

or horizontally, the behaviour is transmitted between peers at the same decisional level

inside the same holarchy.

The vertical behaviour propagation is relatively easy to achieve, since the high level

holon is aware of its subordinates and can send them the new behaviours or simply

inform them of parameters updates on those that they already possess. Additionally, this

process can be done in the time of the creation of new generation entities by embedding

the new behaviours.

The horizontal propagation is achieved by being aware of the existence of other

holons at the same level and send them the information update of the behaviour pa-

rameters or the information of how to access a new behaviour. In this way, each holon

will send behaviour information to other peers when it allows to achieve good results.

The receiving holons evaluate the information received and can request the behaviour

details in order to acquire it.

4.3.4.2 Indirect Propagation

The indirect behaviour propagation is considered to be holon driven in the sense that

it is the own holon that is in search for behaviour alternatives that explores it. In this

way, the holons may have the possibility to store and to manage behaviour related in-

formation. Figure 4.12 depicts an example involving the TH and the OH. So, every time

THs interact with one OH, they will inquiry it for the known behaviour list and their

parameters. The TH uses this enquiry to assess the most reliable behaviours feeding this

information into the learning module for internal parameters refining. Additionally, if

the TH receives an unknown behaviour, it will evaluate it based on the provided infor-

mation, i.e. if the new behaviour has similar or better KPIs of the known behaviours, and

will acquire it for future consideration.

On the opposite side, if the TH possess an unknown behaviour for the OH, it will

transmit this information in conjunction with the KPIs.

Higher level entities, such as SHs, are cyclically searching for the behaviours evolu-

tion at the low level entities. By querying the low level entities, they are aware of the
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Figure 4.12 – Indirect Behaviour Propagation

most used behaviours and their performance index. Based on the gathered information,

these holons may absorb the behaviour and propagate it to their subordinates, e.g., the

SH to the OHs or the PH to their THs, using a pheromone-like spreading mechanism.

However, the inverse process can also occur. A behaviour displaying bad perfor-

mance indexes is generating some holon/system instability and consequently the higher

level entities may remove it from the system, avoiding further the instability propagation.

4.3.5 Behavioural Self-Organization in Practice

The following sub-sections try to depict, with three examples, the practical cases

where the behavioural self-organization can be found. The detection of a new holon will

be shown in the first example, while the second example demonstrates the adaptation

process during a machine failure. The last example shows a TH using the idle time dur-

ing the execution of a processing operation performed by a OH to update the behavioural

information. Note that for simplicity reasons, all examples are made using the TH as the

holon that initiates the process.

Despite those examples, others can be found, e.g., a SH having more than one

scheduling algorithm and facing a disturbance situation it must select the most appro-

priate one in order to increase its responsiveness, or simply, during its normal execution,

to find a better scheduling, using a different algorithm, and decides to apply it into the

shop-floor. A real situation of the aforementioned example appears when the distur-

bance happens in a critical work order (one whose impact is such that will delay others

in a chain), the SH can switch to an heuristic optimization technique, such as GA. Other

situations can also be encountered in the OHs side, where, e.g., due to wear the holon

decides to reduce de spindle speed of a drill bit or due to a low allocation rate the holons
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decides to have a more competitive behaviour, e.g., by changing the bidding functions.

4.3.5.1 The Arrival of a New Holon

A first practical example of behavioural self-organization is related to the appearance

of a new holon in the system, as illustrated in Figure 4.13 (note that this also implies a

change in the holarchy structure which is not focused on this description). Lets suppose

that a given TH has all the work orders in its schedule assigned and that this TH has

subscribed to be alerted to possible additions or removals of services that can be useful

for it. In other words, the TH has subscribed to all the services that are still needed to

fulfil the remaining work orders until the completeness of the process.

At a given point in time, a OH registers three services, namely #2, 3#, #4 (marked with

yellow in Figure 4.13).

Figure 4.13 – Behavioural Self-Organization in Practice: Detection of a New Holon

The arrival of the new holon is detected by the discovery module, present in the

holon, feeding the behavioural module with this information. Thereafter, the TH starts

the self-organization procedure, running all the known behaviours, collecting the most

advantage situation, deciding either to keep the current stable behaviour or changing

into a more reactive behaviour and re-schedule considering the new OH. The output of

this procedure is then evaluated by the nervousness stabilizer (see section 4.5) to guar-

antee that the achieved KPIs, e.g., the reduction on production time or maximization of

resource utilization, are worthy of the change.

Finally, and if the change is approved by the nervousness mechanism, the holon ap-

plies all the necessary measures for its implementation, as shown in Figure 4.14. In the

present case, two OHs are informed of cancelled operations and the new arrived holon of

an allocation. Note that, for simplicity reasons, possible negotiation process are omitted
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Figure 4.14 – Evolution by Means the Behavioural Self-Organization: Detection of a New Holon

in this example.

4.3.5.2 An Holon Malfunction

Considering a resource that breakdown and consequently is not able to execute some

already assigned orders. In this case, the THs responsible for managing the cancelled

orders will try to re-schedule them by changing their behaviours in a proper manner, as

illustrated in Figure 4.15.

In this example, the OH associated with the malfunction resource informs the corre-

spondent SH and all the THs that is affected with this disturbance (i.e. those that are on

its agenda) (see (1) in Figure 4.15).

Figure 4.15 – Behavioural Self-Organization in Practice: Holon Malfunction

After this, the SH propagates this disturbance to other neighbourhood SHs (2), that

will take the appropriate measures after measuring the impact of the disturbance to its
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internal normal functioning, and to all the OHs that belong to its hierarchy. Similarly to

already happen with ADACOR, the low level holons are now more reactive, increasing

their responsiveness and now can react by selecting the most appropriate behaviour.

Meanwhile, the affected THs realize (3) that this disturbance may imply a decrease of

the holon KPIs, e.g., a delay in the delivery due date. In response to this, the TH changes

its behaviour by changing from a more steady one (i.e. one taking into consideration the

accumulated knowledge from the SH or global data) into a more reactive one, e.g., to one

relying more on local information.

In the present example, some work orders are re-assigned to the available OHs, being

some assigned to OHs under the SH1 hierarchy while others are kept assigned to the OH

(4).

After the direct negotiation process, the OHs send their schedules to their SHs (5),

which will be responsible to synchronize the achieved schedules and check whether there

is any further possibility of optimization.

4.3.5.3 Using the Idle Time Properly

The TH can assume one of two approaches: passive or active. In the first one, the TH

representing an instance of a product to be produced receives the processing information

and follows it in a "blind" manner, i.e. it is not able to change it during its life-cycle. As

opposite, in the second situation, the TH assumes an active participation in the manufac-

turing process, by influencing the decision taken during the life-cycle. The last paradigm

is becoming immensely popular and is known as Intelligent Product (McFarlane et al.,

2003; Meyer et al., 2009; Sallez et al., 2009) and is being used in the TH to increase its

potentialities.

Particularly to the described previously, every time that the TH has to take a decision

and regardless of any trigger event, it initiates, in an active manner, the behavioural self-

organization module. This process is executed during the idle time, i.e. when the TH

is waiting for a processing finish, and involves an update of the behaviour information

related with the holons’ behaviour. This information is stored in the OHs which the TH

is interacting with.

In this case, and based on the new informations the TH might decide to keep the

current behaviour or change it, which could culminate in a more reactive behaviour.

4.4 Structural Perspective

The structural self-organization presents a means of drastic evolution, re-arranging

the relationships between the holons and/or their organization (Barbosa et al., 2013b).

This change of relations can be limited within a group or take broader impact, imposing

a relationship change in a wider system range. In this way, each holon has embedded a

set of mechanisms, Rh =
{

Rh
1 , R

h
2 , ..., R

h
r

}

that allows the re-arrangement of its relations
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group. Formally, in this work, structural self-organization can be defined as:

Definition 4 The change in the relationships between holons, and consequently the change in the

holarchy structure, which is triggered in response to a deep impact plan deviation, thus promoting

a drastic response that aims to re-establish normal system functioning or improve its performance.

Going back to the interdependencies between the behavioural and structural self-

organization, one can foresee that the change in the behaviour of one holon can drive the

change in its relations and consequently in its nearby structure. Additionally, the change

of the structure of the system can also be triggered as consequence of any disturbance that

appear in the system, such as a plan deviation and an add/removal of a resource. The

need for the structural self-organization must be evaluated by the holon internal mech-

anisms and decided based on the current facts, on the structural output KPI mechanism

and on the impact of the necessary implementation measures.

Finally, this self-organization vector can also have impacts on a real change at physical

level, i.e. the reorganization at the holarchical level must be translated in the physical

layer, e.g., by imposing a resource layout change. This means that a logical change in

the holarchy would imply a real change in the physical or logical entities that the holons

represent.

In such set of possibilities, this type of reorganization is divided into three dif-

ferent levels, relating with the behavioural self-organization or pure structural self-

organization.

— Level 0 (emergence): relations between holons are changed as a consequence of

the behavioural self-organization. This happen when the result of the behavioural

self-organization implies a change in its relations, such as the selection of a new

resource for processing a previously allocated operation. This level of structural

change is classified as weak since it is not directly driven by the need.

— Level 1 (logical structural self-organization): each holon is constantly trying to opti-

mize its place within the holarchy structure. This constant optimization may drive

the holon to change the holarchy, to participate in several holarchies at the same

time or to act as a freelancer to work completely autonomously. This change only

has implications at the logical control layer.

— Level 2 (physical structural re-organization): similar to the level 1, but additionally

the holons, e.g., OHs, can physically change their place, changing not only their

relations and positions in the holarchy but also their physical position.

Particularly, the last two levels, i.e. levels 1 and 2, are related to the concepts envi-

sioned by the RMS paradigm of rapid change at the shop-floor level. In fact, at level 1,

one can assist to the logical re-organization on the control layer, which is mapped into

the software change of the RMS paradigm, and at level 2, a hardware change is achieved

by the physical re-arrangement of the resources present at the shop-floor.
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4.4.1 Principles and Composition

The stimulus that can trigger a structural self-organization depends on the impact

on the system and can be of any type, i.e. a disturbance that disrupts or deviates the

predicted execution of the system or that allows the improvement its the current per-

formance. Examples of triggers that can start a structural self-organization can be the

appearance of an important manufacturing order, which would change the order priori-

tization, a rush order, an order cancellation, a production quality issue that could imply

a drastic change on the resource allocation process, a supply shortage, or a resource mal-

function.

Figure 4.16 depicts the evolutionary process idea behind the structural self-

organization. At a given configuration functioning point, the system is constituted by

a set of OHs within a single SH. In reaction to a disturbance, for this case the production

of two distinct products, the system re-arranges itself by cloning the SH and splitting of

the OH between these two SHs.

Figure 4.16 – Structural Self-Organization by Group Decomposition

The structural self-organization component, part of the self-organization module

found in Figure 4.3, is similar to the behavioural module. In such way, when the moni-

toring and discovery modules detect a plan deviation or opportunity to evolve, the struc-

tural self-organization process starts by launching all the known re-arrangement proce-

dures (note that those can, in the limit, be named as behaviours). Similarly, these pro-

cedures match a set of known facts with a set of necessary rules of each procedure. The

output result of this process is then evaluated by the nervousness controller (see section

4.5) that will allow (or not) the application of the structural self-organization.

Generically, each structural self-organization procedure is similar to what is found in

the behaviour composition and is constituted by a set of input data, the structural rules

64



4. ADACOR2 : A SELF-ORGANIZED HOLONIC ARCHITECTURE

and the output data, as illustrated in Figure 4.17. However, two major differences can be

highlighted relating to the acquisition of the current structure of the holarchy(ies), classi-

fied as input data, and to the mandatory need of having a negotiation and an agreement

procedure between all the involved holons.

Input data

Ouput data

Rules
Auxiliary 

functions
Parameters

KPI

Post-processing actions

Measures

Negotiation procedures

Holarchy(ies) structure

Negotiation protocol

Agreement protocol

Figure 4.17 – Composition of a Structure Procedure

The description given for the behavioural composition (see Figure 4.9), applies also

for the structural composition. The collection of information regarding the composition

of the existent holarchy(ies) passes by querying the holons for information related to

their holarchy position and current KPIs, or any other source of information used by a

particular structural procedure. This constitutes valuable information in the sense that

any structural re-arrangement needs to know the current structure status. On the other

hand, the structural self-organization itself may be an iterative process, involving at the

end negotiation procedures with the affected holons. In this way, each structural pro-

cedure is supplied with acceptable negotiation protocols and the agreement thresholds,

after which the procedure is finished.

Naturally, the application of any structural measure only makes sense if all the par-

ticipants agree to apply the changes. Due to their autonomy, holons are free to decline

the change, either by considering that it is not good for themselves or it is not allowed

by the nervousness controller. However, affected holons may always cross-check the re-

arrangement request by starting itself the structural self-organization procedure, culmi-

nating either on accepting/declining the request or by proposing a new holarchy struc-

ture.

ADACOR2 holons follow the same basic principles as swarms, constantly trying to

build cohesive groups, maintaining distances and imposing crowd management. First,

and similarly to what happen in nature where a cohesive group increases its survival

rate, a group has more possibilities to handle more properly disturbances. Secondly,

keeping distances, particularly in physical resources, allow an ease of material flow at

the shop floor. Lastly, imposing group size limits will enable to reach faster and increase

the optimization levels, since, e.g., lower number of OHs in the group will allow a faster
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schedule by SH, or when in heterarchical mode, to speed up the allocation process.

However, and contrary to what happen in nature, a central authority was intention-

ally introduced in ADACOR2 as it can increase the optimization levels. In fact, this was

already suggested in the work of Koestler (Koestler, 1969), when he stated that the cre-

ation of stable intermediary states in the holarchy introduces high levels of optimization.

These higher level holons supervise a set of OHs that try to optimize their schedules by

coordination and synchronization of the groups’ holons or repositioning them inside the

holarchy or even shifting them between holarchies. It is possible to endow each group

with a set of services as diverse as possible, creating the possibility to attend to a wider

set of requests or to aggregate holons with similar services, creating specialized groups.

In this way, the structural self-organization in ADACOR2 can take a top-down or

bottom-up approach, as it can be seen in Figure 4.18. On the first case, the structural

self-organization has emergent properties propagated from the low level holons upward.

In this situation, the trigger is detected by at least one low level holon that starts the

structural self-organization procedure, propagating the results to other holons. If the

proposed structure, i.e. the new holarchy, involves a high level holon, e.g., a SH, the

low level holons will afterwords issue an optimization request, which may result in a

fine-tune of the holarchy itself or on the scheduling update of the holons.

Figure 4.18 – Bottom-Up and Top-Down Approaches for the Structural Self-Organization

On the second approach, the SH are responsible to impose the structure re-

arrangement. A negotiation procedure may occur when more than one SH is present

in the system, e.g., if a SH is needed for acquiring a skill available in an outside holarchy.

The mechanisms used in the structural self-organization are not strictly imposed and,
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in principle, can be any that allows the system to perform such task. Despite this, cur-

rently the ADACOR2 holons draw inspiration from the social behaviour of schools of

fishes and flocks of birds since it is concluded that they work very well as a group, main-

taining the system equilibrium and e.g., avoiding predators (Leitão et al., 2012), which in

this case are external system disturbances.

Another concern to be tackled is related to the fact that this self-organization process

can be very time-consuming, which can be of major importance in large-scale systems in

which the amount of available information increases exponentially. This important con-

straint is solved by taking a system snapshot, i.e. the current system state, whenever there

is a disruptive event. This context-aware feature is complemented, at the end of the self-

organization process, with the actions taken and the achieved results (i.e. performance

indicators), allowing the decision assessment afterwards. Additionally, this process can

be enriched with data processing, e.g., data mining, to facilitate future processing by al-

lowing the system to find the best measures taken for similar events and start a warm

self-organization process, i.e. it is not necessary to discover a new configuration, only to

adapt a known one.

4.4.2 Structural Self-Organization in Practice

In order to illustrate the structural self-organization in practice, three examples are

provided in which a structural self-organization could be useful. The first is the intro-

duction of a big batch order, the second is a resource sharing due to a malfunction on a

similar one, while in the third case the creation of a new holarchy would introduce an

optimization on a given KPI .

4.4.2.1 Product Model Change

Lets assume that the system is functioning in a stable state with a given configuration,

and that a very large order arrives at a given point in time. After realizing this, the

system either through the SH holons due to a high demand in variation requests or by the

individual OHs due to a high number of variation proposals, will launch all the known

structural self-organization procedures (marked with number 1 in Figure 4.19).

In this example, all the holons, namely the OHs and SHs, start their structural self-

organization and in this case the SH2 detects a re-arrangement possibility (see the number

2 in Figure 4.19). After this, the SH2 holon informs its counterpart SH1, proposing the

new configuration. Once this process is finished, the SHs will inform their subordinates

of the necessary measures that need to be taken. In this example, the necessary measures

pass by applying a level 1 structural self-organization, since only a re-organization at the

logical level is imposed, as seen in Figure 4.20.

Two different re-organization situations can also be envisioned. First, in cases where

a pool of workers is available for disturbance situations, the new system configuration
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Figure 4.19 – Huge Batch Order Arrival and New Structure Propagation

could imply the integration of one resource from the pool into one of the existing hol-

archy. Secondly, worker training and machine upgrade can also be possibilities by giving

those assets new skills.
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Figure 4.20 – Structural Self-Organization by OH Change

The process culminates with the exchange of holons between both groups, each su-

pervised by a SH and managing a batch of orders, i.e. the current and the new one.

4.4.2.2 Breakdown of a Crucial Resource

In this example, a crucial resource becomes unavailable, as illustrated in Figure 4.21.

The holon representing the physical resource informs its SH that will start a search,

through structural self-organization, for possibilities to mitigate this disturbance.

After the detection of the existence of other holon with the necessary skills, the SH1

negotiates a resource sharing with SH2 that checks with the affected holon for its avail-

ability to be shared. Once all counterparts agree, the re-organization is finished by allow-

ing both SHs to manage the OH agenda.

The shared holon is now under the supervision of the two SHs that must always

negotiate the processing time slots. In this way, every time a SH wants to perform an
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Figure 4.21 – Structural Self-Organization by Resource Sharing

optimization in its holarchy, involving the shared OH, it must first gather the consent of

the other SH. In the same direction, every time some event happens with the OH, e.g., a

processing delay or breakdown, the OH informs both SHs, which will together find the

best compromising solution.

4.4.2.3 Holarchy Division Based on Specialization

This last example depicts a situation where the specialized work occurs often at shop-

floor, e.g., preparatory work common to all manufacturing orders.

In this way, in Figure 4.22, the skills #1 and #5 are the ones needed in all the man-

ufacturing orders. Those are considered to be crucial and the introduction of schedule

optimization into those resources could bring an increase of production performance.

Realizing this, SH1 informs SH2 about those facts.
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Figure 4.22 – Detection of a Crucial Operation as Trigger to Structural Self-Organization

After this, SH1 (the initiator) creates a new SH, transferring into it the new OHs (see

Figure 4.23). To finalize, the accumulated knowledge related to the transferred OHs of
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both SHs is sent into the new one.
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Figure 4.23 – Structural Self-Organization by Clustering

At this point, this specialized set of operations can then be prepared in a more opti-

mized way since a dedicated SH introduces improvements in the OHs scheduling.

4.5 Controlling Nervousness

One of the main problems that could appear in self-organized distributed au-

tonomous systems is instability due to the holons continuous behaviour change or con-

tinuous cycle of constant evolution/adaptation.

Besides how to know if a new solution brings better results than the previous one, it

is important to know if it will negatively affect the system performance. In such way, it

becomes important to bring this phenomenon into the system design allowing to push it

to its limits keeping it under control.

Parunak et al. (2003) use two mechanisms to calm hyperactive agents (Parunak et

al., 2003). The first one is related to what is classified as “on-going operations", iden-

tifying two agent’s characteristics: agents should be able to detect when their activities

are outside the scope and acknowledge when they can re-enter the system due to new

requirements. The described solution uses the stigmergy found in societies of insects,

allowing to merge multiple local data in order to take decisions in a more supported ba-

sis. The second mechanism delineates a way to divide exploration and exploitation times

relating them to the imposed deadline.

On the other hand, K. Hadeli et al. (2005) state that in case an agent wants to change

the initial ideas it is necessary to make a quality measurement of the new solution and

only if it is significantly better than the previous one the agent can change its intentions
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(K. Hadeli et al., 2005). Additionally, the authors limit the frequency of changing the ini-

tial intentions, restringing the agent continuous willing to change. Another example can

be found in (Zbib et al., 2010) where the inspiration from magnetic fields helps products

to choose the most adequate route. In this mechanism, as resources are being occupied,

the attraction power emitted (designated by potential field) is reduced allowing products

to be routed in a decisive manner.

A reward based mechanism was proposed by (Hogg and Huberman, 1991) as the way

to freeze out the chaotic behaviour in distributed systems. Despite of not directly related

to the nervousness feature of individual entities, using the same principles might turn

out to be advantageous in the way that an excess of the individual nervousness levels of

entities can drive the system to display chaotic behaviour.

To cope with the nervousness issue, each individual ADACOR2 holon has a built-in

stabilization mechanism, comparable to car shock absorbers, to avoid instability first at

the holons level and secondly at the system level (Barbosa et al., 2012a). By introducing

these stabilizers, the system operates in such manner that it is pushed to its limits by

enhancing the self-organization principles, remaining always under control.

A two-layer approach is used, as illustrated in Figure 4.24, where the first one regu-

lates the changing will imposed by each self-organization module while the second level

assess the previous two nervousness controllers (one for each self-organization module),

deciding which emergent self-organization procedure will produce the most valuable ac-

tion.

Figure 4.24 – Stabilization Mechanism Embedded in ADACOR2 Holons

At each nervousness control process, the output of the decision is stored into a KB

(Knowledge Base), which later is used by the learning module to refine the parameters

of the nervousness stabilizer.
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In order to or not allow the holon to change its actions, the nervousness stabilizer

must be aware of the current internal and external context on which the changes are to

be made. First, the holon must be aware of its internal nervousness level, Hσ
h , given by

the quotient between the number of changes (either behavioural or structural), ǫ, within

a time window, δ.

Hσ
h =

ǫ

δ
(4.2)

Additionally, the number of changes, ǫ, is evaluated by the success of the past changes.

This is, the holon is allowed to change more often its behaviour or structure, if in the past

changes led to an increase of the performance. In this way, ǫ is calculated by:

ǫ =
∑

n

akpi

pkpi
(4.3)

where,

— n represents the number of last changes.

— akpi is the achieved KPI for the change n.

— pkpi is the previous KPI for the change n.

The assigned performance ranges from 0 to 1, being 0 for non-success and 1 to a

complete goal fulfil.

The external context, named SD (System Dynamics), allows to gather information

about how the system behaves, regarding, e.g., the work order arrival rate, disturbances

rate or even allocation rate to OHs. Each holon estimates the SD either by querying a

more global entity, namely the SH, or locally through querying cyclically the neighbours

holons.

Having this, the two level nervousness control model described previously are used

within the context of the Figure 4.25. In the figure, two control loops can be seen, be-

ing the internal one based on the holons’ nervousness level, with the one found on its

neighbours, while the outer correlates the nervousness level with the SD.

Figure 4.25 – Nervousness Controller System Dynamics

In the inner loop, the holon is able to compare its internal nervousness level with

the holons located at its neighbourhood. Using this comparison, each holon can see if it

is below or above the neighbourhood average nervousness level, deciding if its internal

level can be further increased or needs to be lowered, respectively. On the other hand,
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the outer loop has broader information of the system nervousness levels and is an picture

of the dynamics present at the system, driving also the holons’ nervousness level limits.

Note that in order to react properly in higher system dynamics the holon could be more

nervous than what would be if the system dynamics are lower.

Despite all the aforementioned nervousness control loops, holons have a safeguard

mechanism, that ensures that if the majority of the holons participating on the change

decide that it is beneficial for the system, the holon(s) that are not allowed to change,

will change altogether. A tentative threshold value for this could be to use qualified

majority rules, such as the two-quarters or three-quarters (used for instance in many

countries to approve constitutions changes). In this case, if 2/3 or 3/4 of the holons

decide a change favourably, the rest will not block the system evolution and will also

implement the necessary changes.

4.6 Summary

This chapter describes the ideas and the main guidelines behind the ADACOR2 man-

ufacturing control architecture.

ADACOR2 takes inspiration in Darwin and punctuated equilibrium evolutionary the-

ories to propose a bi-dimensional self-organized holonic control architecture that better

addresses the reaction and responsiveness to condition changes without degrading the

system optimization. In this way, a smooth evolution, by means of constant adapta-

tion, is embedded into internal behaviour of the holons and is named behavioural self-

organization. Secondly, a more disruptive evolution is possible due to the re-arrangement

of the holons relations, named structural self-organization.

Both self-organization vectors were described as also some common underlying

mechanisms, such as the downward and upward causation effects.

Also, the nervousness phenomena inherent to the self-organized systems was dis-

cussed, being detailed a proper mechanism that takes into consideration the system dy-

namics.

The next chapter instantiates the self-organization mechanisms, proposing some prac-

tical implementations for behavioural and structural levels. These illustrative examples

were used during the assessment tests and intend to demonstrate the applicability of the

proposed approach.
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5
Self-Organization Regulating

Mechanisms in ADACOR2

Somewhere, something incredible is waiting to be known.

Carl Sagan

The previous chapter introduced the main architectural principles of the proposed

self-organized holonic manufacturing control system, taking inspiration from biology to

design a bi-dimensional self-organization approach that addresses the achievement of a

truly evolvable system.

This chapter depicts the instantiation of the behavioural and the structural self-

organization mechanisms, as well the reasoning and learning capabilities to properly

support the execution of such models. A nervousness control mechanism, inspired in

the PID technique used in the traditional control theory, is also proposed to regulated the

system dynamics under this evolvable system.

These instantiated mechanisms will be lately implemented and tested, and serve as

example for the implementation of the proposed approach.

5.1 Mechanisms for the Behavioural Self-Organization

Generically, the procedure of the block identified as behavioural module can be de-

composed into the Algorithm 1. As input, the module requires the facts that lead to the
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event and also the current behaviour KPIs. The holon will collect the known behaviours

and launch all of them, collecting at the end the expected KPIs. After this collection, the

behaviour that offers the best KPI is selected. At this stage, if the obtained KPI improves

the current one, the module will send this information (i.e. these facts) to the nervous-

ness stabilizer, which will enable/disable the application of the changes, guaranteeing

the stability of the holon.

Algorithm 1 Behavioural Self-Organization

Require: facts, currentBehaviourKPI
Ensure: Selection of the Holons’ proper behaviour

1: procedure BEHAVIOURALSELFORGANIZATION(facts)
2: Behaviours← List of Behaviours

3: nBehaviours← count(Behaviours)
4: for i = 0 to nBehaviours do
5: launch Behaviour(i) ⊲ Launch all the known behaviours procedures
6: end for
7: i = 0
8: while (all behaviour output not received) || (timeelapsed ≤ maxTime) do
9: if behaviourReceived then

10: output(i)← OutputBehaviour(i)
11: i = i+ 1
12: end if
13: end while
14: bestBehaviourKPI ← currentBehaviourKPI

15: newBehaviourFound = false

16: for i = 0 to count(output) do
17: if output(i).getKPI > bestBehaviourKPI then
18: bestBehaviourKPI ← output(i).getKPI
19: newBestBehaviour ← output(i).getBehaviour
20: newBehaviourFound = true

21: end if
22: end for
23: if newBehaviourFound then
24: Send result to nervousness stabilizer
25: end if
26: end procedure

Additionally, the learning module, not shown in the pseudo-code, is used as the mean

to adjust the operating parameters in the behaviours or in the selection mechanism of

those. This module will be detailed later in section 5.3.

In the present work, some behavioural mechanisms were used in order to implement

this level of self-organization supporting the resource allocation procedure. The first

behavioural mechanism is related to market-based approaches, using the well known

CNP (Smith, 1980), that allows a set of, or even only one, entity to negotiate the allocation

of a process. The second one, known as PF (Potential Fields), is based on the magnetic

fields concept (Morrish, 2001), and on its attractive and repulsive fields. The last one,
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relates to the ants food foraging behaviour, known as stigmergy. The next subsections

details the theory behind these mechanisms and their instantiation in ADACOR2.

5.1.1 Market-Based Approach

It is a common practice in the world daily life that people and machines have to

negotiate in order to achieve the exchange of products and information or any other

material or immaterial good. Generically, this is a negotiation process that follows some

kind of market-based approach.

The process, usually started by the need of acquiring something, on which the buyer

searches for someone, seller, that offers the request need can assume a multitude of ap-

proaches.

Auctions, are one good example of such approach, where the buyer goes to common

places to bid to the seller offers. Two major auctions types, primary and secondary, are

found in the literature, being the most classical ones the Dutch and English auctions.

Dutch auction starts by a high asking price from the seller, which lowers it down until a

buyer is willing to accept it. On the other side, the English auction starts by a lower bound

price and higher prices are announced by the seller or offered by the buyer. The auction

finishes when no buyer is willing to increase the offered price. Lastly, in the sealed bid

auction, which is commonly used in public contracts, all bids are placed in a sealed way

(i.e. secret bids) that are opened when the defined auction duration ends. After this, all

bids are opened, wining the auction the one with highest value.

Other example, similar to an auction, but more closely related to the one followed in

this section, starts by the buyer to announce what is desired, followed by a set of selling

proposals from the sellers, which after this are evaluated by the buyer deciding who to

buy from. Naturally, this process can be further detailed, where more negotiation phases

are introduced into this loop, but very basically this was the main driver to design a well

known negotiation technique used in distributed systems, known as CNP (Smith, 1980).

The use of CNP is simple and effective but can impose an overwhelming communication

process between entities due to its intrinsic negotiation process.

This process is used in the ADACOR2 as one procedure to allocate the production

tasks needed by the TH to the available OHs. The process starts with the needed TH

searching for the set of OHs that possess the required skills to execute the task. After

this initial search, the negotiation process, described in Figure 5.1, starts with the TH

preparing the CFP (Call For Proposals) that comprises the description of the needed task,

associated skills and required processing time, and the list of recipients, i.e. the OHs. Af-

ter receiving the CFP each OH analyses it and prepares, based on its internal constraints

(e.g., its availability), a reply comprising the conditions on which they will execute the

task, i.e. the start and end processing times and the cost. A refuse can also be replied for

the cases where the OH is not available to execute the requested task, e.g., due to non-

availability. The negotiation phase finishes when the TH receives all the replies, analyses
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them and issues the acceptance and rejection messages to the OHs.

The CNP ends when the winning OH informs the TH of the (un)success of the devel-

oped task.

ADACOR
2
 Contract Net Protocol

TH OH's

cfp
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propose
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accept-proposal

failure

inform-result: inform

inform-done: inform
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Figure 5.1 – Contract-Net Protocol Approach in ADACOR2

The bid price calculation and the selection threshold used in this work is the same as

defined in the ADACOR implementation example (Leitão, 2004). The bid price calcula-

tion takes into consideration parameters, such as the setup time and cost, acquisition of

new tools cost, execution costs, resource investment cost and level of assigned work. As

for the selection threshold, parameters such as the given bidding price, the distance for

the resource and proposed due date are taken into consideration.

5.1.2 Potential Fields

Magnetism or the concept of PF is a technique that gets inspiration from the physics

(Morrish, 2001), and particularly in attractive and repulsive forces on certain types of

bodies found in nature. In magnetism, bodies can have positive or negative charge and

two bodies with the same charge tend to repulse each other while bodies with different

charges, sense attractive forces. The exerted force is stronger near the body where it is

emitted and gets weaker while moving away from it.
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This technique has been used in different areas such as in game development (Hagel-

bäck and Johansson, 2009), robots motion planning (Dolgov et al., 2010) and even in

manufacturing control (Zbib et al., 2010).

Since this approach is more reactive (i.e. focusing a short time range), it is a good

candidate to be used as an alternative behaviour for very reactive environments in spite

of losing some optimization. In such way, an algorithm based on this concept was devel-

oped and deployed in ADACOR2 holons.

Operational holons, representing the set of available resources at the shop-floor, emit

a set of potential fields based on the set of services, pf , that they are able to perform, as

shown in Figure 5.2 and notated in 5.1.

OHPF
oh =

{

OHPF1

oh , OHPF2

oh , ..., OH
PFpf

oh

}

(5.1)

For simplicity purposes, Figure 5.2 is built of 3 OHs, mapping resources, each one emit-

ting the PF for the offered skills, namely OH1 and OH2 offer the service yellow while OH3

offers red and purple. Now, lets assume that it is possible to route from one resource to the

other accordingly to the thick straight arrow, e.g., it is possible to route from OH1 to OH2.

In such way, OH2 back-propagates the yellow PF value to OH1, which then calculates its

value reflected on it. Notice also that in this case, a propagation of the OH2 PF value is

also relayed back since it is possible to convey from OH3 to OH1.

Figure 5.2 – Potential Fields Concept

The PF values are stored using a blackboard system (Engelmore and Morgan, 1988)

that every OH is responsible to manage. The repository of PF values is accessible to the
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holons that need to use this behaviour, e.g., THs searching for a processing resource.

In this way, in short, the overall behaviour procedure can be summarized as follows.

Each holon that is able to provide the execution of a given service, e.g., a processing or

a transportation task, emits an attractive field calculated using the equation 5.2. This

attractive field is then propagated to its adjacent nodes (i.e. other OHs) that, based on

an attenuation profile, calculate the field value there. After this, these OHs check if the

calculated value is in condition to be further propagated, i.e. if it is above the designated

threshold ψ.

On the other side, the holons that require the execution of a given service, e.g., a TH

that needs a processing task, will check in the current OH for the attractive fields of the

desired service.

5.1.2.1 Attractive Potential Field Calculation

Since each resource has a map of their neighbour connections, it is easy to implement

the back-propagation mechanism, unburdening this way the OH of the creation of the

connections map in order to propagate its PF value.

Several resource parameters can be used to calculate the intensity of each PF for a

given service, namely the resource workload (based on its own agenda and/or with the

orders waiting it its buffer), the service processing times, the quality and the scheduled

maintenance. In this way, every time a given parameter considered for the calculation

changes, the correspondent OH is responsible to re-calculate the intensity of the PF,

OH
PFpf

oh , according to the equation (5.2), and to send it to its adjacent nodes (i.e. to its

adjacent OHs).

OH
PFpf

i =
∑

WP × PP (5.2)

where,

— WP is the weight given to parameter p.

— PP is the value of the parameter.

Particularly, for the algorithm developed in the current work, the equation 5.2 is in-

stantiated by using as parameters the resource queue and its state, meaning that longer

queues decrease the emitted PF. The resource state is considered in the equation, where

situations representing its availability will increase the PF value while the failure or out-

of-service situations will decrease it. As an example, if the resource is on an execution

state, a neutral value to the PF will be awarded, counting only its queue for calculating

the PF to emit.

The OHs relay back this information to its precedent nodes and so-backward, guaran-

teeing that the service power of the PF will reach all the relevant nodes. This propagation,

as it happens in the physical process, is affected by an attenuation factor, decreasing its

intensity as it gets farther from its epicentre.

80



5. SELF-ORGANIZATION REGULATING MECHANISMS IN ADACOR2

5.1.2.2 Attenuation of the Attractive Potential Field

As for the attenuation factor, some profiles can be used, which range from a simple at-

tenuation based on the distance to more complex ones, based on a mixture of parameters

of influence, such as the distance with traffic and route quality. Based on the distance,

one of three atomic attenuation profiles can be envisioned (as shown in Figure 5.3): con-

stant (a), crescent (b) and exponential (c). In the first one, the attenuation is fixed and

independent of the distance, i.e. the power of the PF is equal in all the nodes and are

divided by a constant. In the crescent pattern, as longer the node is from the source, as

more attenuated it is by a constant factor. The last one is similar to the previous one,

but in this case, the attenuation factor is exponential, introducing faster attenuation for

further nodes.

Figure 5.3 – Attenuation Curves Profiles

The value of the PF for the service pf on the destination OH, depending on the curve

profile, can then be calculated using,

OH
PFpf

i |OHj
=
OH

PFpf

oh

profile
(5.3)

where,

— OH
PFpf

oh is the emitted PF value by resource oh.

— profile is the used attenuation curve.

In the particular case of the current specification, the crescent profile was selected,

being directly proportional with the distance, i.e. as farther it is the node, the more the

PF is attenuated.

The criteria for stop relaying back information is meet when the calculated power at

the present node is lower than the parameter ψ, which is a constant value that defines the

lower bound of considerable power.







OH
PFpf

i |OHj
≥ ψ, propagates

OH
PFpf

i |OHj
< ψ, don’t propagate

(5.4)
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Note that adjusting ψ will define the distance sensitivity where services can be sensed

from others.

5.1.2.3 Decision and Selection

Finally, when a decision/selection needs to be made e.g., by a TH that needs a pro-

cessing operation, it follows the maximum potential field available at the node where it

is at for the desired service, expressed in equation 5.5.

OHPFs

oh+1 = max
{

OHPFs

1 , OHPFs

2 , ..., OHPFs

oh

}

(5.5)

This is a very reactive behaviour in the way that the TH only selects the next service

to be executed, suffering this way from myopia. Even if the TH scans for the next services

to come, the conditions taken for the decision could not be the same in the time where

the operation will be executed due to the behaviour dynamics. By abstracting itself from

the generation of the attractive field and on the propagation process, and avoiding a

negotiation procedure, like the one found in the CNP, the TH can rapidly select the next

OH.

Additionally, a self-organized feature is introduced in the system where, in a non-

controlled manner, the system is able to organize itself.

5.1.3 Stigmergy

The ants food foraging behaviour mechanism, described in section 3.1, was the source

of inspiration for the development of several bio-inspired mechanisms, such as the ACO

(as shown in Chapter 3), which is often used as optimization technique or in robotics path

planning. This type of source of inspiration can be deployed into the internal behaviour

of holons and used as a way to make decisions based on long-term distributed local

learning.

Similarly to the PF behaviour, each OH (representing the resources) stores on a black-

board the stigmergy values of the known services for its adjacent nodes. The main dif-

ference between the two approaches is that the stigmergy values are now updated not by

the OHs themselves but by the THs, according to the acquired knowledge during their

life-cycle. Another particular difference from the PF behaviour is that the update rate is

longer in the way that it is only updated at the end of the TH life-cycle.

The overall process can then be summarized into three procedures: reinforcement of

the values by the THs, pheromone evaporation by the OHs and node decision by the THs.

A graphical description is also made in Figure 5.4. The reinforcement part is achieved

through the deposition of pheromone values in the system, namely in the OHs. THs are

responsible for this process, in the way they are responsible to manage the execution of

the tasks. Through their life-cycle, THs gather information about the execution of the

process and evaluates the decisions taken with their goals. Based on this evaluation,

the THs reinforce the path taken (mapped in the OHs). The second part guarantees the
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elimination of the worst paths. This is achieved through an evaporation process (decrease

of the stigmergic values), where each OH cyclically reduces the pheromone values stored

locally. Lastly, having this distributed information, the THs can use it in order to take

future decisions.

Figure 5.4 – Stigmergic Behaviour Concept

These three steps will be further detailed in the following points.

5.1.3.1 Deposition and Reinforcement

The deposition/reinforcement mechanism can be seen as a kind of reward to the best

paths and resources or to the best combination of resources to produce a given product.

In the proposed model, two different types of pheromone values are stored in each node

(i.e. in each OH). Both are related to the pheromone regarding the services available on

the posterior nodes, residing the difference between them in the deposition permissions.

While on the first one, all THs may update the pheromone of the service used, on the

second one, each type of TH (i.e. from different products) may only update the corre-

spondent pheromone value for the used service.

Two different types of information can then be extracted from this deposition con-

cept. On the first and since all the THs update on the same service pheromone value,

the information is more refined, i.e. it is built from a wider set of entities. On the other

hand, the product dedicated pheromone has a more focused information related to the
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best decision taken for that particular product. In such way, the OHs have several black-

boards, one related to the global pheromone information for the next service while the

others relates to the particular product decision.

An example of the blackboard, extracted from OH1 of Figure 5.4, representing the

pheromone information related to the adjacent services is presented in Table 5.1.

Table 5.1 – Blackboard Table Example

OH1 OH2 OH3 OH4

Yellow 0 -1 0 -1
Red 0 8 12 -1

Purple 0 -1 -1 4

The pheromone values of the same resource are marked with the value 0 since other

OHs have the values to link to this OH. Connections that are not possible to be made

are marked with the value -1, while the other values represent the intensity to reach a

particular service, e.g., from this point the red service has a higher value for the OH3, i.e.

(12).

The described deposition mechanism is still decomposed in two stages. The first stage

depends only on the time taken to reach the desired goal and it is updated immediately

after reach it. The amount of pheromone to deposit, r1, for service i, is shown in Equation

5.6 and is simply the sum of the previous values with the division of r1 with the time

taken, tt, to reach the goal.

P t
i = P t−1

i +
r1

tt
(5.6)

The second deposit stage (see Equation 5.7) is related to the fulfilment of the objectives

by the resource. This can contribute to increase the amount of pheromones if the goals

are accomplished successfully, or to reduce it in case of failure or delay in accomplishing

the task execution. In the latest, the amount of pheromone deposited in stage one is also

withdraw.







P t
i = P t−1

i + r2 , if sucess

P t
i = P t−1

i − r1
tt
− r2 ×

T imeTaken
T imeExpected

, otherwise
(5.7)

where,

— r2 is the amount of value to deposit/withdraw.

— T imeTaken is the time taken in the operation.

— T imeExpected is the time expected for the operation.

The second type of pheromone, i.e. the one related with the overall TH process, is

reinforced when an entity fulfils all of its services during the execution of the process.

The amount of pheromones to deposit is weighted by the time taken, Cmax, compared
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with the best time obtained until that moment, Cmaxbest
.

P t
i = P t−1

i + r3 ×
Cmax

Cmaxbest

(5.8)

where,

— r3 is the amount of value to deposit.

— Cmax is the time taken in execute the product.

— Cmaxbest
is the best time taken to execute the product.

The Cmaxbest
is a parameter passed by the PH when the TH is created.

5.1.3.2 Evaporation Process

The evaporation process guarantees that the less used trail, or the worst ones, are

gradually removed from the decision choices that THs can have. This process can be

implemented by decreasing all the pheromone values present in the system with a fixed

value or by allowing it to change according to a given criteria.

Additionally, the evaporation value must be weighted by the number of entities

present in the system for a given service. This guarantees that if a service is not being

needed, the pheromone value is not evaporated making this way that when the service

is needed again the entities doesn’t make a cold start.

In this way, the expression that regulates the evaporation mechanism is given by:

P t
i = P t−1

i − e×N (5.9)

where,

— e is the value to evaporate.

— N is a function that depends of the number of entities.

The value e can be directly influenced in the cases that the system has a high level

entity that possesses a wider view of the system behaviour.

5.1.3.3 Next Destination Selection

The selection of the next node to visit is accomplished by evaluating the two pre-

viously described types of information: the one dedicated to each product and the one

containing all the depositions from the holons that used the service.

The behaviour dynamics (i.e. the pheromone intensity) is calculated by determining

the probability of the holon to take a particular path. In such way, for each possible path,

the following probability is calculated, where ILi is the local pheromone value from the

present node to the node i, and j is the number of all the possible paths.

pILi
=

ILi
∑

n

ILj
(5.10)
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In that way, the highest pheromone values are most likely to be selected to be the next

route to take.

The same exercise is made for the information related to the overall process for a

particular TH, i.e. a product to be processed. Expression 5.11 gives the next route to take,

making the overall route selection less myopic.

pIGi
=

IGi
∑

n

IGj

(5.11)

The decision is achieved by selecting the maximum value obtained of the aforemen-

tioned equations. An additional parameter is introduced into the selection equation that

guarantees a certain degree of randomness.

nextNode = max (αILi, βIGi) (5.12)

where,

— ILi represents the path traced, by the use of pheromone deposition/evaporation, to

the next resource.

— IGi represents the traced optimized plan.

— α ≥ 0 weights the desirability of follow the local pheromone information.

— β ≥ 0 weights the desirability of follow the global information.

The local and global desirability can be complementary by considering β = 1 − α.

Despite that, the independent control of these variables displays advantages in the cases

where no balance between the local and global information is required.

5.2 Mechanisms for Structural Self-Organization

Changing the relation of holons is a crucial part of the ADACOR2 architecture, al-

lowing them to re-organize e.g., to create new groups. The previous section has shown

3 techniques that are able to change the behaviour of an holon and consequently may

change the holons relations (recall the Level 0 emergence definition of the structural self-

organization).

This section will depict two techniques that can be used as a way to achieve a struc-

tural self-organization. In this way and generically, the structural self-organization pro-

cedure can be described using the Algorithm 2.

After the detection of an opportunity to evolve (process not described) the holon

launches all the known procedures to find a new system working configuration. When

all the results of the procedures are collected, or ultimately when a maximum time has

elapsed, the structural self-organization module will evaluate them searching for the one

that improves the current KPIs. In the case of finding a better reorganization, the module

will send this result to the nervousness module that will analyse the possibility to apply

the necessary measures.
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Algorithm 2 Structural Self-Organization

Require: facts, currentStructuralKPI
Ensure: Selection of the holons’ proper structural organization

1: procedure STRUCTURALSELFORGANIZATION(facts)
2: Structures← List of Structures

3: nStructures← count(Structures)
4: for i = 0 to nStructures do
5: launch Structural(i) ⊲ Launch all the known structural procedures
6: end for
7: i = 0
8: while (all structural output not received) || (timeelapsed ≤ maxTime) do
9: output(i)← OutputStructural(i)

10: newStructureFound = false

11: end while
12: bestStructuralKPI ← currentStructuralKPI

13: for i = 0 to count(output) do
14: if output(i).getKPI > bestStructuralKPI then
15: bestStructuralKPI ← output(i).getKPI
16: newBestStructural← output(i).getStructural
17: newStructureFound = true

18: end if
19: end for
20: if newStructureFound then
21: Send result to nervousness stabilizer
22: end if
23: end procedure

One notably difference from this process to the behavioural self-organization is the

fact that in this case other holons are affected by the application of the necessary mea-

sures, e.g., change of the holarchy of an OH or, as seen in the general example of Figure

4.16, the creation of a second SH and the division of the OHs.

In this way, all the holons that have started a structural procedure will send the ex-

pected KPIs for the new structure which will be evaluated by the participants which will

submit them to their internal nervousness controllers who will analyse the proposals.

5.2.1 Structural Re-Arrangement by Means of Birds Behaviour

Getting inspiration from the birds flocks or the fish schooling, one can assist to the

basic behaviour of each individual entity. Among those, three can be highlighted: i)

entities, in the group, tend to follow the leader; ii) entities also tend to maintain distances

to other elements in the groups and finally, iii) the group size regulation is also made.

The first rule is important in the sense that, e.g., if one entity is more agitated and

makes a sudden move, maybe it is because it has cognition of important information to

the group. The second rule tries to avoid collision within the group and makes the vision

field more clear. The last one, regulating the group size, is important because either too

87



5.2. Mechanisms for Structural Self-Organization

small, the group is not strong enough to predators, or too big slows down the group

dynamics.

This phenomenon serves as working base to develop a procedure that allows the

holons, after the detection of a trigger, to start reasoning on the possibility to change the

structure of the holarchy.

In this way, the procedure starts by each holon that constitutes the holarchy, namely

the OHs, to query each other with key information that resumes their status. Parameters

such as the holon current location, its agenda, its skills and processing times are used to

assess the holon criticality in terms of position within the holarchy. It is worthy to note

that, e.g., an holon that has on its agenda more processing tasks tend to be more critical

that other that may have less.

After gathering this information from all the OHs, each individual OH calculates a

KPI, named st, that estimates the current overall situation of the holarchy. A concrete KPI

calculation could be applied instead of this estimation. The problem then would be that

the procedure calculation time could increase deeply, particularly for larger systems with

a great number of OHs with many work orders. This estimation considers the overall

processing time of a resource, calculated by multiplying the number of work orders with

the processing times, and considers that half of those work orders will need to be further

transported for a new resource. Equation 5.13 depicts the calculation formula for this

current KPI estimation.

st = tp × wo+
1

2
× wo× tt|d(l1−l0) +

n
∑

1

tp × wo+
1

2
× wo× tt|d(ln−ln−1) (5.13)

where,

— st is the calculated KPI.

— tp represents the processing time of the resource.

— wo represents the number of allocated work orders.

— tt|d(ln−ln−1) represents the transportation time between resource n and n− 1.

Following this idea, the OH assumes itself as the core holon in the holarchy (or the

leader in the birds case). In turn, each OH position itself considering its importance, i.e.

the number of assigned work orders. This process is repeated a pre-defined number of

times, after which, a new estimation of the st parameter is calculated for each one of the

possible solutions. Figure 5.5 depicts two possible solutions where the OH in the middle

is the one that is generating the solutions. Note that the OHs with larger work order

allocation are the ones closer to it.

If the OH is able to produce an improvement of the estimated st parameter it will

propagate this to all the other OH that constitute the holarchy. If no improvement is

achieved, a non-success message is also issued.
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Solution B

wo: 23 wo: 23wo: 50

wo:12 wo: 5

wo: 5

wo: 23wo: 23 wo: 50

wo:12 wo: 5wo: 5

Solution A

Figure 5.5 – Different Solutions Found During the Structural Self-Organization

After receiving all the results or after a time-out period, each OH will implement the

solution that guarantees the best estimated st parameter.

5.2.2 Structural Re-Arrangement by Means of Ants Food Foraging Behaviour

A second bio-inspired structural self-organization mechanism uses the pheromone

concept to, in a distributed manner, re-organized the OHs inside the holarchy and dis-

place them physically in the shop-floor.

The mechanism is based on a two-step approach where first the holons, that possess

the production knowledge, i.e. the PHs, make a pheromone map based on the needed

skills and secondly, the OHs place themselves based on their interests.

In order to facilitate the description of the mechanism, let’s assume that a given shop-

floor is divided into sections (see round markings in Figure 5.6), named working places,

where any type of processing machine can be placed. Additionally, each of those working

places have stored within a pheromone matrix where tuples of {skill, value} are used to

represent the pheromone intensity to a given skill. Naturally, the matrix size depends on

the number of skills needed to produce the catalogue of products present at the system.

The first stage of the mechanism starts by each of the PHs to send a given number,

ℵ, of scouting ants that are responsible to deposit a pheromone mark at the shop-floor.

In this way, a given PH with the processing plan {skill1, skill2, ..., skilln} will send ℵ

scouting ants for each of the needed skill.

The deposition value depends of several parameters, namely one pre-defined value,

the skill pheromone value on the working position and the pheromone on the neighbour

working positions (e.g., their average). This local and neighbour analysis is made by the

skill in deposition and for the skills needed in the precedent and subsequent operations

(like depicted in notation 5.14).

{local, neighbour} × {current, precedent, subsequent} skill (5.14)

At the end of this process a mesh-like pheromone distribution is achieved for each of

the present skills, having different pheromone intensities in the shop-floor.
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B

{skill1, skill2, …, skilln}

A
C

1
st

 phase 2
nd

 phase

Figure 5.6 – Ants Food Foraging Structural Self-Organization

The second phase is started after the creation of this mesh of pheromone values where

the OHs start actively finding its new place within the holarchy and, if a level 2 structural

self-organization is on place, their physical move in the shop-floor. At this stage, each OH

positions itself on the maximum pheromone value of a working place at the shop-floor. In

the cases where the OH offers more than one skill it will position itself on the geometrical

average between the maximum pheromone values obtained for each of the offered skills.

Some parameter may influence the pheromone mesh creation, such as the neighbour-

hood size, the pheromone value to deposit or the number of scouting ants. Additionally,

the positioning technique that the OHs use in the second phase also influences the re-

organization and aside of each OH position itself on the pheromone maximum, it can

do it on the overall average maximum and prioritization of the OH position can also be

added (e.g., by positioning first the most overloaded holons).

5.3 Learning and Reasoning

The reasoning and learning capabilities modules play a crucial role in the self-

organization model, supporting the generation, removal or adaptation of knowledge.

In particular, learning is important in two distinct phases of self-organization:

1. Identification of opportunities to evolve, refining the thresholds on which the self-

organization mechanisms are triggered.

2. Defining how to evolve, adapting the internal self-organization mechanisms pa-

rameters along the time.

Different constraints impose different types of learning techniques and for this pur-

pose, ADACOR2 uses social learning for the propagation of new behaviours among the

holons and for the propagation of accumulated knowledge from PHs to THs using a

pheromone-like mechanism, as defined in the ADACOR architecture (Leitão and Restivo,

2006). This exchange of knowledge allows the receiving holons to have access to more

aggregated information from the past peers experiences.
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Social learning is also used to provide the direct query between holons, asking for past

decisions and their outcomes. In this case, holons acquire information about the good and

bad decisions of others and the context on which they were taken, allowing in this way

for these holons to incorporate this into their internal decisional engine. Ultimately, this

procedure culminates by creating new rules (or adapting similar ones) used later in the

decision support by the reasoning engine.

A practical example can be given when TH2 queries TH1 and receives the information

that changing from behaviour Bh
a to Bh

b , when the system is above a given overload level

combined with offline status of OH5, produces a decrease on the KPI.

A reward based learning technique, e.g., reinforcement-based mechanism, is used as

a means to evaluate past evolution decisions. In this way, bad decisions performed in the

past will have a negative impact on the future selection for the same decision, contrary to

a good result that will have a positive impact. In this way, this learning technique is used

throughout the holon life-cycle as a parameter fine tuning, such as to increase or decrease

the confidence on using a given behaviour. It is also used by higher level holons, such as

the SHs or the PHs, to collect accumulated knowledge from several holons.

Generalizing the learning mechanism, a given parameter, p, would have a value in-

crease in the case of an improvement of the expected holon performance while it de-

creases in situations of obtaining a performance degradation. In this way, the new value

of the parameter can be written by:

pt+1 = pt + γ ×
KPIfinal −KPIexpected

KPIfinal
(5.15)

where,

— pt represents the previous parameter value.

— γ is a value between [0..1] that defines the update rate.

— KPIfinal is the obtained KPI considered in the parameter calculation.

— KPIexpected is the expected KPI considered in the parameter calculation.

It is important to note that the learning mechanisms to be embedded in individual holons

should be kept as simple as possible, as it is in biology. Nevertheless, more complex learn-

ing mechanisms can be deployed, which can potentiate even more the learning module,

knowing beforehand that more computational power could be a requisite in this situa-

tion.

The reasoning module is complementary to the learning module and is constantly

matching the known facts with, e.g., the thresholds defined by the learning algorithms.

Naturally, all sort of reasoning techniques, such as inductive, deductive, analogical or

case-based reasoning can be embedded into the ADACOR2 holons. Despite this, in the

current work of ADACOR2, a rule based reasoning technique was considered and imple-

mented using an expert system.
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By definition, an expert system is a computer system that mimics the human be-

haviour of knowledge and judgement on a given subject area (Jackson, 1999). Shortly,

an expert system is constituted by three parts, namely the user interface, the knowledge

base and the inference engine. The user interface allows the user to interact with the ex-

pert system, making possible the user to query the expert system. The knowledge base is

a collection of facts and a set of rules, more particularly in the form of IF..THEN.. rules,

that the inference engine uses in order to create an action (i.e. the output).

Based on the learning mechanism, rules can be added, modified or even removed.

One example can be given in the situation where one rule had defined a lower-bound on

which the behaviours runs properly. Based on the learning and reasoning, it was detected

that above a given value, that behaviour would not have the desired outcome which, in

practice implies the generation of a new upper-bound, since it was detected that above

this value, that behaviour presents bad results.

5.4 Nervousness Stabilizer: Controlling Chaos in Dynamic Self-

Organized Systems

As stated before, ADACOR2 uses nervousness controllers as the way to prevent the

appearance of some chaotic behaviour, first at the holon level and secondly at the system

level.

Some of the typical approaches to calm down the holons’ desire to change can be con-

trolled by restricting the number of changes within a specific time frame, only allowing

the entities to change at pre-defined intervals or by setting the exploration/exploitation

thresholds (Barbosa et al., 2012a). In this work, an innovative technique, inspired from

the classical control theory, namely the PID controller, was used as the stabilization mech-

anism.

In the classical feedback control theory, one of the most effective mechanism used to

control discrete or continuous systems is the PID controller (King, 2011), namely its dis-

crete version which allows to be implemented into more sophisticated processing units.

This mechanism, by adjusting some key parameters, allows a quick reaction to the per-

turbation combined with the elimination of the error in the steady state. In practice, when

different functioning conditions are needed, e.g., a temperature in a room, the PID con-

troller adjusts in a quick and effective way, by setting the variables to the new set-point.

Having in mind these principals, the inspiration of the PID control was used to design a

nervousness control mechanism for self-organized systems, as illustrated in Figure 5.7.

The three regulating parameters can then be translated into a mathematical equation

as:

u(t) = Kpe(t) +Ki

t
∫

0

e(τ)dτ + kd
d

dt
e(t) (5.16)
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Figure 5.7 – Nervousness control mechanism based on PID controllers

In such mechanisms, the proportional part Kp adjusts the reaction time to the pertur-

bation trigger, the integrative part Ki regulates the accepted error of the desired goal, and

the derivative part Kd sets the responsiveness to reach the goal. Similarly, in ADACOR2

these three parameters regulate the self-control of holons. The e(t) represents the error

that needs to be eliminated and is calculated by the difference between the system out-

put and the desired goal.

Firstly, the Kp defines the time from which the holons start to react to trigger events,

allowing them to overcome momentary perturbations or to gather more information

about the perturbation, starting the self-organization mechanism only after the whole

set of new allocation requests has been collected. In the PID controller analogy, a high

value of Kp will drive the system to respond faster to perturbations, which could lead the

system to behave in an unstable manner, while a low value will not enable the system to

reach the desired goal. The same cautions must also be taken into account when selecting

the time after which the holons will react to plan deviations. A high value may drive the

holons to be constantly in an adaptation mode while a low value might drive them to

never react.

Secondly, Ki describes the minimum acceptable improvement of the solution found

(by each self-organization mechanism) that can be considered as enough to permit the

use of the changes. In the PID analogy, the Ki, or the integrative part, is responsible for

the elimination of the error in steady state, i.e. going as close as possible to the desired

goal. Since the goal of the ADACOR2 holons is to improve themselves always as possible,

they are considered as moving a goal, which is a maximization function. In such way, the

Ki parameter acts as the minimum acceptable improvement of the actual goal.

Lastly, Kd defines how fast the solution must be found, acting as a limit to find solu-

tions, after which the most acceptable ones are considered. In the PID analogy, the Kd

parameter helps to improve the settling time and increases system stability. Mimicking

this to the nervousness controller, one will find that this parameter acts like the time lim-

iter for a given holon to adapt. After this time, the holons will stop adapting and thus

calm down its behaviour. The cautions to set this parameter regards the fact that a high

value will enable a long adaptation time while a low value might not enable the holon to

reach an acceptable goal value.
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In this way, the SD defined in section 4.5 plays a major role in the dynamic parameter

adaptation since for faster dynamics, the kp must lower down to allow quicker responses

to plan deviations. In an opposite way, the kd must also be increased to guarantee a faster

convergence to the expected performance. Obviously, this adjustment increases the risk

of obtaining holons instability and must be counterbalanced with an appropriate reac-

tion time. The ki for this case must also lower down, compromising bigger performance

improvements by allowing more changes in the holon decision through smaller steps.

Each one of the aforementioned parameters are dynamically adjusted taking into con-

sideration the learning mechanism defined in the previous section. This dynamic ad-

justment aims to contribute to a more robust usage of the controller with respect to its

exterior, namely to the SD.

As depicted in Figure 4.24 a two level stabilization mechanism is used. Recalling, the

first level controls each self-organization mechanism while the second selects the most

appropriate one to use (in the cases where both self-organization procedures produce a

valid output).

Algorithm 3 depicts the behavioural nervousness control using the PID approach.

Algorithm 3 Behavioural Nervousness Control

Require: facts, holonBehaviouralNervousnessLevel
Ensure: Behavioural nervousness stabilization of holon

1: startT ime← disturbanceT ime||improvementT ime
2: procedure BEHAVIOURALNERVOUSNESSSTABILIZATION(facts, behavioursKPI, e(t)B)
3: expectedBehaviourKPI ← currentBehaviourKPI

4: currentBehaviourKPI ← newBehaviourKPI

5: kpiDeviationT ime← startT ime− currentT ime
6: behaviourAllowed← False

7: if kpiDeviationT ime ≤ kd and e(t)B ≥ behaviourThreshold then
8: if (kpiDeviationT ime− currentT ime) ≥ kp then
9: if (expectedBehaviourKPI − currentBehaviourKPI) ≥ ki then

10: Change holon behaviour
11: behaviourAllowed← True

12: else
13: KPI improvement not sufficient.
14: end if
15: else
16: Need to wait a little longer before react.
17: end if
18: else
19: No more adaptation allowed. Adaptation time overpassed.
20: end if
21: end procedure

The behavioural nervousness control starts by checking if the adaptation phase is

still valid, i.e. if the maximum adaptation time has not yet elapsed, and if the current

behaviour error (or deviation) is higher than the minimum behaviour threshold (making
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acceptable the behavioural change). If both rules are valid, the nervousness controller

will proceed to check if the response time has been met or if it still needs to wait more

time, allowing to ignore momentary KPI deviations.

Finally, only an expected behavioural KPI improvement higher than the ki will be

allowed to start a behavioural change.

Algorithm 4 depicts the structural nervousness control using the PID approach.

Algorithm 4 Structural Nervousness Control

Require: facts, holonStructuralNervousnessLevel
Ensure: Structural nervousness stabilization of holon

1: startT ime← disturbanceT ime||improvementT ime
2: procedure STRUCTURALNERVOUSNESSSTABILIZATION(facts, structuralKPI, e(t)S)
3: expectedStructureKPI ← currentStructureKPI

4: currenStructuretKPI ← newStructureKPI

5: kpiDeviationT ime← startT ime− currentT ime
6: structuralAllowed← False

7: if kpiDeviationT ime ≤ kd and e(t)S ≥ structureThreshold then
8: if (kpiDeviationT ime− currentT ime) ≥ kp then
9: if (expectedStructureKPI − currentStructureKPI) ≥ ki then

10: Change holon structure.
11: structuralAllowed← True

12: else
13: KPI improvement not sufficient.
14: end if
15: else
16: Need to wait a little longer before react.
17: end if
18: else
19: No more adaptation allowed. Adaptation time overpassed.
20: end if
21: end procedure

The structural nervousness control is similar to the behaviour procedure with the

difference that the parameters values might be different. As an example, the e(t)S must

be higher in order to only allow the structural self-organization for bigger KPI deviations

as also the ki improvement, guaranteeing that only when a significant improvement is

expected that a structural re-organization is issued.

Algorithm 5 depicts the second level nervousness control mechanism where the be-

havioural and structural nervousness control output is used as input.

In the given algorithm, a simplistic approach was followed by selecting the self-

organization mechanism that produces the highest expected KPI improvement. Addi-

tionally, the bypass mechanism to guarantee that a structural evolution is applied in the

case where the majority of the holons decide favourably was also introduced.
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Algorithm 5 Second Level Nervousness Control

Require: facts, holonNervousnessLevel
Ensure: Nervousness stabilization of holon

1: procedure SECONDLEVELNERVOUSNESSSTABILIZATION(facts)
2: if behaviourAllowed||structuralAllowed then
3: Apply highest expected KPI.
4: end if
5: if majorityRule then
6: Apply requested structural change. ⊲ Structural bypass by the majority rule.
7: end if
8: end procedure

5.5 Summary

This chapter presents some of the self-organization related mechanisms that were

developed and implemented in the ADACOR2 architecture, which will be used in the

following chapter as the assessment ground-base of the architecture.

Shortly, three mechanisms were used in the holons behavioural catalogue to allow

them to respond properly to changes in the system conditions, based on current condi-

tions. The first mechanism relies on negotiation techniques used on market-based ap-

proaches while the second one uses the concepts of magnetism to create a very dynamic

behaviour, aiming to introduce responsiveness. Finally, the last technique is based upon

the ant food foraging behaviour.

Two mechanisms for the structural self-organization were also introduced where the

inspiration from the bird group formation and the pheromone deposition used by ants

during the food foraging are used to allow the holons to re-arrange themselves in order

to optimize the production according to the current product demand.

Social and reinforcement learning examples and techniques were also described, al-

lowing the holons to dynamically perform the parameters adjustment. A rule based rea-

soning engine, using an expert system, was also described.

Finally, an instantiation of the holon’s nervousness controller is depicted, taking in-

spiration in the classical feedback control, to regulate the dynamics of the holons in such

self-organized environment.

In the next chapter, the case study used to validate and assess the proposed architec-

ture is described as well the implementation of the prototype solution. The experiment

trials are also presented and the achieved results are analysed.
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6
Practical Implementation and

Validation

The present is theirs; the future, for which I really worked, is mine.

Nikola Tesla

This chapter intends to validate the proposed manufacturing control architecture. The

used case study, based on a real FMS, is presented and the holons mapping between the

ADACOR2 and the described system is made.

Additionally, two experimental scenarios were developed to assess the two proposed

self-organization vectors. The behavioural self-organization is validated using a simu-

lation of the real AIP (Atelier Inter-établissement de Productique)-PRIMECA (Pôle de

Ressources Informatique pour la Mécanique) FMS located at the Université de Valenci-

ennes et du Hainaut-Cambrésis, and the structural self-organization, due to its partic-

ularities, is validated using a modified version of the AIP-PRIMECA FMS, where the

rigidity of the machines’ position was removed and the conveyor system was replaced

by an AGV.

6.1 Description of the Case Study and System Implementation

The case study used to test the presented work is based on the AIP FMS located at

the Université de Valenciennes et du Hainaut-Cambrésis, which is described in detail in

(Trentesaux et al., 2013). A visual aspect of the FMS is provided in Figure 6.1.
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Figure 6.1 – View of the AIP-PRIMECA Cell

This FMS cell was selected since it introduces a high level of flexibility, mainly on the

production and transport sides, introducing several alternatives for the same goal.

The following sub-sections will give a deeper insight of the AIP-PRIMECA cell.

6.1.1 The Real AIP-PRIMECA FMS

The FMS is composed of 7 machines linked by a conveyor system, as illustrated in

Figure 6.2.

Four robots, being three from KUKA and one from Stäubli, a loading/unloading sta-

tion, an automated inspection unit and a manual recovery unit constitute the set of ma-

chines present in the system. The movement of the product to be processed in the pre-

vious machines is achieved by means of a shuttle, which moves on the rack system. For

visual clarity, an image of the conveyor system and of the shuttle is shown in Figure 6.3a.

The change between tracks is achieved by means of a switching gate system, as shown in

Figure 6.3b.

The routing within the FMS has a great importance since the decisions made in this

respect can have major impact on the production of a given product and on the overall

system performance. To this respect, transportation times between subsequent nodes/

machines are provided in Table 6.1 (note that the composite times are derived combining

two or more paths).

A set of sub-products are able to be produced within this FMS, namely the letters b,

e, l, t, a, i, p and t. Combining the previous sub-products, one is able to produce the final

products BELT, AIP and LATE. A visual perspective of the aforementioned sub-products
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Legend:

Figure 6.2 – Layout of the AIP-PRIMECA Cell

(a) Shuttle (b) Switching gate

Figure 6.3 – AIP-PRIMECA Shuttle and Switching Gate Detail

Table 6.1 – Transportation Times Between Nodes

Destination
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 M1 M2 M3 M4 M5 M6 M7

S
ou

rc
e

N1 4 - - - - - - 5 - - - - - - - - -
N2 - 4 - - - - - - - - 5 - - - - - -
N3 - - 4 - - - 5 - - - - - - - - - -
N4 - - - 4 - - - - - - - 5 - - - - -
N5 - - - - 3 - - - - - - - 11 - - - -
N6 - - - - - 4 - - - - - - - 5 - - -
N7 - - 5 5 - - 4 - - - - - - - - - -
N8 - - - - - - - 4 - - - - - - 5 - -
N9 - 5 - - - - - - 4 - - - - - - - -

N10 - - - - - - - - - 4 - - - - - 7 10
N11 9 - - - - - - - - - - - - - - - -
M1 - - - 6 - - - 7 - - - - - - - - -
M2 - - - - - 5 - - - - - - 13 - - - -
M3 - - - - - - 6 - - - - - - 7 - - -
M4 - - - 7 - - - 6 - - - - - - - - -
M5 - 7 - - - - - - - 6 - - - - - - -
M6 12 - - - - - - - - - - - - - - - 13
M7 - 6 - - - - - - - 7 - - - - - - -

is given in Figure see 6.4.

As it can be seen, each sub-product has its own assembly process that needs to be

followed to complete its production. As an example, to produce the sub-product a, the
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Components
Matrix Pallet

B-Product E-Product L-Product T-Product A-Product I-Product P-Product

Figure 6.4 – Product Catalogue

assembly base plate must be loaded into the shuttle, followed by three axis components,

one r, L and I component and is ended by a screw assembly and the unloading procedure.

The remaining process plans for all sub-products are mapped in Table 6.2.

Table 6.2 – Process Plans for the Catalogue of Products

Sequence B E L T A I P
#1 Loading Loading Loading Loading Loading Loading Loading
#2 Axis Axis Axis Axis Axis Axis Axis
#3 Axis Axis Axis Axis Axis Axis Axis
#4 Axis Axis Axis Rcomp Axis Icomp Rcomp
#5 Rcomp Rcomp Icomp Lcomp Rcomp Screw Lcomp
#6 Rcomp Rcomp Icomp Inspection Lcomp Inspection Inspection
#7 Icomp Lcomp Screw Unloading Icomp Unloading Unloading
#8 Screw Inspection Screw Screw
#9 Inspection Unloading Inspection Inspection
#10 Unloading Unloading Unloading

Naturally, the assembly procedures mentioned before are processed by the available

machines at the shop-floor. The sub-set of machines that are able to perform a required

operation is illustrated in 6.3. The values depicted in the table represent the processing

times that each machine offers to perform that given operation.

Table 6.3 – Machine Skills and Processing Times

Operation M1 M2 M3 M4 M5

Loading 10
Unloading 10

Axis 20 20 20
Rcomp 20 20 20
Icomp 20
Lcomp 20 20
Screw 20 20

Inspection 5

As an example, the “Loading” operation can be executed by machine M1 while the

“Axis” operation can be executed by machines M2 and M3, both with a processing time

of 20s. Particularly here, a slight change was introduced, regarding what is described in

(Trentesaux et al., 2013), to increase the flexibility of the FMS. This change is achieved
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by the increasing the number of skills, namely in machine M4 with "Axis" and "Rcomp".

Note that before this change, a breakdown in any of the machines that offer processing

skills, namely M2, M3 and M4, only one other machine was able to offer the skill, limiting

the decision making process of the manufacturing control architecture.

6.1.2 A More Flexible AIP-PRIMECA FMS

Although the real AIP-PRIMECA FMS cell allows to assess the proposed manufac-

turing control architecture, it still has limitations to assess the structural self-organization

vector in ADACOR2, due to the relatively limited size of machines and the rigid nature of

the FMS (e.g., machines have rigid working places and shuttles have fixed transportation

paths).

In this way, please recall that the structural self-organization will change the relations

between the holons present in the system. Naturally, this could only be tested briefly in

the current real version of the AIP-PRIMECA FMS cell, where, e.g., clustering of orders

from the same client could be done. But for instance, a deeper structural self-organization

is not possible, e.g., machine dynamic grouping.

Increasing the flexibility degrees where the control decisions could be greatly poten-

tiated, aiming to have a more dynamic cell, is then achieved by replacing the transporta-

tion rack system with a more flexible one. This can be achieved by the introduction of

an AGV transportation system. Secondly, the fixed working positions of the machines

can also be eliminated, allowing them to be repositioned, minimizing the need for longer

transportation times. This last feature is in-line with more recent manufacturing trends,

such as the ones found in Festo AG & Co. KG.

Concretizing the previous features, a completely new manufacturing shop-floor is

presented in Figure 6.5. Attention was paid to get a closer behaviour as with the real AIP

cell. In such way, machines are placed in the same positions and transportation times

between them are similar. To achieve this, the AGV takes 3 seconds to move between

positions (represented as dots in the figure).

AGV

Figure 6.5 – A Futuristic AIP-PRIMECA Cell
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Machines can now shift the working position, only possible in the purple places,

which have all vital needs for a machine to work properly, e.g., electrical power and

hydraulics. The AGV, on the other hand, can move on all positions but this can only be

made in an horizontal or/and vertical way, i.e. AGVs cannot travel in a diagonal line.

Using the previous adaptations, it is now possible to assess deeply the structural self-

organization of ADACOR2, since level 2 can be tested. Particularly, it is possible, for

instance, to test the self-organization of the machines in order to minimize the amount of

time needed to produce a given order.

6.2 Manufacturing Control Assessment Metrics

Measuring the efficiency of a manufacturing control architecture is always difficult.

Despite this, a proper assessment of the proposed control architecture requires the mea-

surement and evaluation of a set of different metrics, or KPIs (Brennan and Norrie, 2003),

as well as proper benchmarks (Trentesaux et al., 2013).

Two different types of KPIs are generally used for this assessment, namely quantita-

tive and qualitative. The first is used when the KPI measurement is possible, giving a nu-

merical value to it. KPIs such as the resource utilization, the WIP (Work In Progress), the

tardiness or the makespan are among the most used to assess quantitatively a manufac-

turing control architecture. On the other hand, qualitative assessment is more deductive

in the sense that assigning a numerical value to a given KPI is harder, e.g., measuring the

agility or reconfigurability of the system. Despite this, some works have been conducted

in the past were metrics and methodologies are described, namely (Brennan and Norrie,

2003; Leitão, 2004; Trentesaux et al., 2013).

In the present work, a quantitative approach was selected in order to assess the man-

ufacturing control architecture. The main influential decision for this choice is the help

on the ease of comparison between the several control structures.

One of the most used quantitative KPIs is known as makespan, or Cmax, which is

denoted by the total amount of time that a given manufacturing order needs to be pro-

cessed. In other words, Cmax is related to the time of the last operation of the whole

manufacturing order. In this way, the objective function of this KPI is the minimization

of it, i.e. as lower is the Cmax the better the manufacturing control architecture is.

The throughput can be defined as the total amount of parts that the system is able to

produce per unit of time. This parameter depicts the production system capacity and, in

this work, is calculated by counting the number of products produced during one hour.

Measuring the impact, i, that disturbances have in manufacturing control architec-

tures is also important, particularly in the current work, since one of the main goals of the

proposed manufacturing control architecture is to have as less impact as possible when

disturbances appear into the system. In this work, the impact KPI is calculated by the

difference of the makespan of a given architecture, Carchi
max , in relation to the best KPI of all

architectures, Coverall
max . This value is still normalized in relation with the best overall KPI.
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Finally, this can be represented as: i = Carchi
max −Coverall

max

Coverall
max

. The previous equation can even

be further developed in the case where a percentage value is required by multiplying it

with the number 100.

Lastly, the control predictability is also important, particularly in non-linear systems

and when several runs are executed in order to obtain the metrics for the architecture

assessment. In the way, as higher this is the more reliable the output result is expected

to be. Indirectly, the predictability can be also considered as the confidence level of the

produced output of a given architecture.

6.3 Mapping ADACOR2 Holons to the Case Study

The proposed self-organized holonic system used the multi-agent technology, and

more particularly, the JADE (Java Agent DEvelopment Framework) (Bellifemine et al.,

2007) to develop the agent-based infra-structure, namely the behaviour of each individ-

ual ADACOR2 holon and the designed cooperation patterns. More recently appeared

the JaCaMo approach, that combines both the dimension organization (important in this

case as an holonic organization is used that have to follow the agents), the dimension

agent and the dimension environment, presenting an interesting and promising solution

(Boissier et al., 2013). The selection of JADE framework over others, such as A-Globe

(Rehák et al., 2005), Jason (Bordini, 2007) or Cougaar (Kleinmann et al., 2003), relies basi-

cally under three facts. First, JADE always had a steady and stable development, which

makes future evolutions more reliable. One example of the importance of this feature

is the present work, which has extended the previous work of ADACOR. Secondly, the

community that uses JADE doesn’t stop to grow and also has a very good documenta-

tion. Finally, and although the current state of FIPA (Foundation for Intelligent Physical

Agents) development, being FIPA compliant, JADE follows the standards in the field and

permits a more concrete interaction with other agents frameworks.

The holon’s intelligence, as already happened in the first version of ADACOR, was

embedded using a rule engine implemented with the JESS (Java Expert System Shell)

platform (Friedman-Hill, 2003).

In the real AIP-PRIMECA scenario, a particular holon type, named CSH (Conveyor

System Holon), instantiated from an OH, was developed to manage the routing and gate

switching inside the conveyor system, providing some specific functions, such as serving

as an intermediary to manage the dispatching of the transportation orders to the available

shuttles. The CSH used the Jung tool (O’Madadhain et al., 2002) to support an ease and

dynamical parameter calculation in the nodes and also to display the provided function-

alities. The CSH GUI, illustrated in Figure 6.6, provides real-time information regarding

the location of the shuttles and the state of the machines, according to a colour-based

diagram.

Additionally, all the defined ADACOR2 holons are used. When a higher holon is

necessary in the system, one SH is used to introduce optimization into the lower level
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Figure 6.6 – Conveyor System Holon GUI

holons, as defined. Each one of the produced products in the system, see Section 6.1.1,

are mapped using the PH. OHs map the machines in the system, which in the real AIP-

PRIMECA FMS is equal to each processing machine ranging from M1 to M7. In the

adapted version of the cell, besides the aforementioned mapping, the OHs also map the

AGV. Finally, every product instance that is dispatched for production is mapped using

a TH.

Some of the mechanisms developed in Chapter 5 were implemented in order to vali-

date the two self-organization components. In this way, the market based approach and

the potential field mechanism are used as behaviours catalogues while the bird flock-

ing mechanism was implemented as the mean to allow the holons to re-arrange their

position inside the holarchy. Finally, the PID based nervousness mechanism was also

implemented in order to regulate the holons self-control, considering kp = 5s and ki = 0.

6.4 Assessment of ADACOR2

The assessment and validation of manufacturing control structures pass generally by

using one or more of the following methods:

— Mathematical formulation: through the use of theorems and axioms, manufactur-

ing systems are able to be validated (Farid and Covanich, 2008).

— Simulation/emulation: a copy of the system is implemented depicting the reality.

Entities are either simulated or emulated and the control system is implemented on

top of this (Leitão and Restivo, 2006).

— Real case experiments: the manufacturing control architecture is used on top of the

real manufacturing cell (Bussmann and Sieverding, 2001)

The methodology chosen to assess and validate the present control architecture is

through simulation which allows a more flexible validation phase since no warm can

be produced to the real system. Additionally, simulations can be set to run indefinitely,
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introducing disturbances scenarios and testing properly the ADACOR2 holonic architec-

ture. To achieve this, a set of procedures were developed, as described in Appendix A.

6.4.1 Behavioural Self-Organization Using the AIP-PRIMECA

The behavioural part of the ADACOR2 holonic architecture was validated using a

simulated version of the AIP-PRIMECA. Several scenarios from the Bench4Star bench-

mark are used, namely those ranging from A0 to E0 (Trentesaux et al., 2013), which al-

lows to test different sets of manufacturing orders sizes and shuttles number. Table 6.4

shows a brief description of the scenarios configurations.

Table 6.4 – Behavioural Scenarios Description

Scenario Number of shuttles Transportation times
Client order

Order Products
BELT AIP LATE

A0 10 Table 6.1
#1 1 - -
#2 - 1 -

B0 10 Table 6.1 #1 - 2 -

C0 4 Table 6.1
#1 1 - -
#2 - 1 -

D0 10 Table 6.1
#1 1 - -
#2 2 1 -

E0 10
Table 6.1

#1 2 1 -
#2 - 2 1
#3 - - 2

The differences between the Bench4Star benchmark and the number of shuttles are

encountered in the situations where infinite number of shuttles were envisioned. The

transportation times were also added in the cases where they were neglected.

Scenarios without and with disturbances, namely the #PS12 (Trentesaux et al., 2013)

that introduces a 60s breakdown in M2 at the end of processing 4 jobs, are used to assess

the manufacturing control architectures impact.

Four manufacturing control architectures are compared in both situations. First, a

completely hierarchical approach is used, where the SH is always optimizing the OHs

scheduling. A completely heterarchical approach is also used, where THs have to directly

negotiate with the OHs in order to be processed. In this approach, the SH is removed.

In order to compare if the ADACOR2 manufacturing control architecture improves the

ADACOR architecture, both are tested. In these simulations, the ADACOR, when no dis-

turbances are present in the system uses a SH to introduce schedule optimization while

in disturbances situations it uses its switching mechanism, balancing between the hier-

archical and heterarchical structure. On the other hand, ADACOR2 assumes the same

hierarchical form in non-disturbance situations, while it uses the proposed behavioural

self-organization mechanisms to handle disturbances. In this case, THs aiming to re-

spond to disturbances, execute the market-based and PF mechanisms and select the one

that reduces more the overall work order execution.
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As shown previously, a system will be as much desirable as faster it is able to produce

the same amount of work. This KPI, named as Cmax, or makespan, allows to assess this

feature. First, every one of the four manufacturing control approaches are tested for

a scenario where all parameters are well known and controlled, i.e. a system without

disturbances. Experimental results for all the non-disturbance situations are shown in

Figure 6.7.

Figure 6.7 – Cmax for the Normal Scenarios

As it can be seen, the hierarchical approach along side with ADACOR and ADACOR2

present the most optimized solution. This is due to the fact that using these approaches,

the SH is introducing optimization into the scheduling of the OHs. As everything is pre-

dictable and under control, this holon schedules when the manufacturing order arrives,

sending afterword the processing plans to OHs and THs.

The heterarchical approach presents the worst results since the THs are interacting

directly with the OHs and in this way, myopic phenomena appears. Note that the CNP

market based approach is used as the negotiation technique.

ADACOR2 insights could also be used to enhance the heterarchical approach by em-

bedding new negotiation, i.e. behaviours, into the THs. Despite this potentiality, that

could enhance the heterarchical mode, this was not extensively tested. Nevertheless,

preliminary tests have shown improvements on the pure heterarchical approach when

converted into an ADACOR2 architecture (without a centralized holon).

As mentioned before, having solely a system without disturbances is not real and so

any manufacturing control architecture must be tested within these hard working condi-

tions in order to asses its viability. In such way, the PS#12 scenario defined in Trentesaux

et al. (2013) is used. The experimental results for the Cmax KPI are shown in Figure 6.8.

Analysing the graph, it is observed that under these conditions ADACOR2 is the one

that achieves better performance, allowing to produce the same amount of work in less

time. Additionally, and as already shown in (Leitão and Restivo, 2006) the ADACOR

control architecture surpasses the hierarchical and heterarchical control solutions.

Quantitatively, the ADACOR2 control architecture is able to reduce, on average, the
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Figure 6.8 – Cmax for the Disturbances Scenario

Cmax by 91s for the test scenario A0, 23s for the C0 and 15s for E0. The apparent mar-

gin decrease as the batch size increases, seems counterproductive and is due to the be-

havioural parameter adjustment. It is expected that making a proper selection and tune

of the selected behaviour for handling disturbances will improve these KPIs. Note also

that the working conditions for the different scenarios also change, e.g., the number of

shuttles being able to transport the products, and despite this, the behaviour parame-

ters were kept the same. Additionally, the AIP-PRIMECA FMS cell configuration may

have harder freedom limits when a high congestion production appears, decreasing the

improvement rate.

This conclusion also enhance the importance for the holons be able to dynamically

change their working conditions according to the system dynamics.

Using the two previous experimental tests, one can measure the impact that the dis-

turbances had when compared with the non-disturbance scenario. The impacts were

calculated for all the scenarios and are displayed in Figure 6.9.

Figure 6.9 – Analysis of Impact with the Occurrence of Disturbances

Generally, and as expected, the heterarchical control approach is the one that suffers

less from the non-disturbance scenarios to the ones with disturbances. This is explained
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by the fact that this control structure is completely dependent of local interactions. De-

spite this result, the impact must always be accompanied with other KPIs for contextual-

ization, such as the Cmax.

Considering all the other approaches, ADACOR2 is the one that less impact suffer

when disturbances appear at the shop-floor, having on average, for all the tested scenar-

ios, the best Cmax results.

Having an idea of how much products can be produced in a given amount of time

(i.e. the throughput), it is also very important to assess a production system, an partic-

ularly the control architecture on top of it. Regarding this, and as expected, in the sce-

narios without disturbances, see Figure 6.10, the heterarchical approach is the one that

presents the worst throughput value. Since all the other approaches follow an hierarchi-

cal structure in non-disturbance scenarios, they all present the same throughput values.

Comparatively, for the scenario A0, the heterarchical approach produces, on average less

6.87 products per hour. If the same analysis is made for the scenario C0, it can be seen

that 7.88 products per hour are less produced and for scenario E0, 17.58 products.

Figure 6.10 – Throughput for Normal Scenarios

Additionally, it is possible to be observed a margin gain after scenario C0, where the

heterarchical approach throughput degrades while the others have an improvement.

Introducing disturbances and making the same exercise, now all the control archi-

tectures have different behaviours (see Figure 6.11). Being this already expected, it is

possible to analyse that, on average the heterarchical approach is the one that presents

the worst results, while the ADACOR2 is the one that displays higher values of through-

put. Comparing the ADACOR2 with the heterarchical approach, it can be seen that, for

the scenario A0, ADACOR2 produces more 9.67 products per hour and for scenario C0,

2.81. Note that for scenario C0 all the approaches have a decrease of throughput, which

is explained by being the scenario with the lower number of shuttles to transport the

products, i.e. only 4 shuttles. Similarly to what happened for the scenarios without dis-

turbances, from scenario C0 on, there is an increase of throughput for ADACOR2, while

there is a decrease of throughput for the heterarchical approach, being the difference for

scenario E0 of 13.76 products per hour.
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Figure 6.11 – Throughput for the Disturbance Scenarios

As already stated, ADACOR2 presents always higher values of throughput when

compared with the ADACOR. Despite this, it is also possible to be observed that as the

manufacturing batch increases, the improvement introduced by ADACOR2 is decreas-

ing. The reason to this is similar to the one given by the Cmax KPI, i.e. limitations on the

AIP-PRIMECA FMS configuration and the same parameters selection for the behaviours

used during all the trials. It is expected that a dynamic parameter tuning would allow

the achievement of better results.

Comparing the standard deviation of the manufacturing control approach is essential

for assessing its predictability, being even more important in the cases where the val-

idation of the control structure is made using simulation/emulation. In this way, the

standard deviation results for the disturbance scenario are shown in Figure 6.12.

Figure 6.12 – Predictability of the Manufacturing Control Approaches

On average, the ADACOR2 control architecture is the one that presents the lowest

values of standard deviation, making it more predictable. In an opposite direction the

heterarchical and hierarchical approaches have the worst results. The first, by its initial

conditions and the second for handling not so properly the disturbances.
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6.4.2 Structural Self-Organization Using the Futuristic AIP-PRIMECA

The structural part of the ADACOR2 holonic architecture is validated, as stated pre-

viously, using the level 2 of the structural self-organization.

The structural self-organization mechanism is triggered when a batch of orders is al-

located to a OH. Briefly, after receiving a batch of orders, the OH will start an information

gathering from other OHs, where the resource queue, allocated work-orders, processing

times and actual location, are exchanged. The implemented procedure follows the mech-

anism described in section 5.2.1. After finishing the allocation of all OHs, each OH sends

the information of either better or worst solution achieved, from actual resources disposi-

tion. In the case of a better solution, the OH sends the KPI and the new allocation places

to all the OHs. The overall best solution, found in each OH, is automatically assumed

and used.

Several test scenarios were designed with different batch sizes, as illustrated in Table

6.5. Each scenario is composed by two orders being the second one launched after a given

time from the first one. As an example, sC0 starts by launching 2 BELT and after 120s is

launched 5 BELT and 10 LATE. In this example, the transport of orders is achieved by the

use of 10 AGVs.

Table 6.5 – Structural Scenarios Description

Number of AGVs Time launching (s)
Client order

Order Products
BELT AIP LATE

sA0 10 120
#1 2 - -
#2 - 3 -

sB0 10 120
#1 2 - -
#2 - 10 -

sC0 10 120
#1 2 - -
#2 5 - 10

sD0 10
120

#1 2 - 2
#2 - - 15

A visual result of the structural self-organization can be seen in Figure 6.13. The

scenario sC0 is used in this example and it can be seen that after the arrival of order #2,

the machines, after applying the structural self-organization, shifted into new working

positions. Machine M6 has been requested to change place, since it had no allocation of

tasks and its position needed to be used in the present re-organization.

Similarly to the behavioural self-organization tests, the structural self-organization

was also tested considering four manufacturing control approaches, namely the heterar-

chical, hierarchical, ADACOR and ADACOR2. In this case, the ADACOR manufactur-

ing control architecture follows the hierarchical approach and so the results are the same.

This is explained by the limited re-organization capabilities of the ADACOR that only

switches between the two pre-defined states. The ADACOR2 uses the SH but the struc-

tural self-organization happens in an emergent way, since the re-organization is deployed
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Figure 6.13 – Structural Self-Organization in Practice

by the OHs.

In reality, the physical re-organization, or the machines shifting place, takes a given

amount of time. In the present simulations, and in order to simulate a more real machine

moving, machines also spend a given amount of time to be shifted. This time is propor-

tional with the travelling distance (d) and with twice the setup time (ts) (unplugging from

original place and plugging in the final working position). Naturally, the used times are

not real, but are realistic and proportional with the designed dataset sizes. In this way,

the necessary amount of time to move, tm, between working positions is given by:

tm = d× k + 2× ts (6.1)

where k is a constant representing the travelling time between consecutive working po-

sitions. In the current simulation k is 2 seconds and ts is 5 seconds.

Additionally, if the holons detect that the structural change is not beneficial for the

system, i.e. it doesn’t bring an KPI improvement, the re-arrangement will not happen.

The experimental results for the Cmax KPI are depicted in Figure 6.14.

Figure 6.14 – Cmax for the Structural Self-Organization

Analysing the results, it can be noticed that for all the scenarios, the heterarchical ap-

proach is the one that produces the worst results, i.e. the highest Cmax. The structural

111



6.4. Assessment of ADACOR2

self-organization in ADACOR2, for scenarios sA0 and SB0, didn’t produce any improve-

ments and so the holons didn’t apply it, reaching the same results as hierarchical and

ADACOR. For the scenarios sC0 and sD0, the ADACOR2 approach was applied the struc-

tural self-organization procedure which has produced improvements and consequently

they were taken into consideration, improving the Cmax, on average, by 23.98s.

Converting the previous results in terms of throughput, as shown in Figure 6.15, it is

possible to observe that for scenarios sC0 and sD0 the ADACOR2 is able to produce more

0.76 and 0.28 parts per hour, respectively.

Figure 6.15 – Throughput for the Structural Self-Organization

Comparing all the control approaches with the hierarchical one, it can be observed,

see Figure 6.16, that the heterarchical control approach has on average 18,53% of KPI

degradation. Despite this overall value, it is also noticeable that for the largest dataset,

i.e. for scenario sD0, this degradation is reduced to 4,28%.

Figure 6.16 – Analysis of the Impact of the Control Approaches

As already seen in the Cmax analysis, in the first two scenarios, the ADACOR2 hasn’t

produced any improvement since due its low batch size won’t justify the structural self-

organization. On the other two, it has improved the best control approach, by 0.88% for

the sC0 and 0.33% for sD0. Despite the apparent low improvement, it must be noticed

that several assumptions were made that could limit it. First, tm and its variables were
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obtained in an empirical manner in order to balance between moving time and batch

sizes, giving a comparatively realistic simulation. Secondly, the batch sizes are, proba-

bly, too small to properly extract the real capabilities of the structural self-organization.

Lastly, the potential field based mechanism might not be the most appropriate for this

case. Despite of all the aforementioned constraints, the purpose of the designed scenar-

ios was achieved by passing the information about the structural self-organization.

Lastly, the predictability is also an important assessment metric and in this KPI, as

expected, the heterarchical control approach produces the most variable results. On

the other hand, and due to the structural self-organization process embedded in the

ADACOR2, it produces, on average, the second most unpredictable. Despite this, it is

worthy to be noticed that this is not a major issue, since the difference is not relevant.

Figure 6.17 – Predictability of the Manufacturing Control Approaches

The achieved experimental results show the merits of the structural self-organization

approach to face severe changing conditions. However, the experiments also showed

new possibilities to improve the proposed algorithm, e.g., by considering the optimiza-

tion in the re-configuration of the resources during the structural self-organization pro-

cess.

6.5 Summary

The present chapter has described the two use cases used to assess the proposed

ADACOR2 manufacturing control architecture. The two use cases are based on the AIP-

PRIMECA FMS, using the first one to validate the behavioural self-organization vector.

A modified version of the AIP-PRIMECA, where the shuttle transportation system is re-

placed by AGVs and machines are also empowered with moving capabilities, was used

to test the structural self-organization.

Several simulation runs were conducted and by analysing them one can conclude that

ADACOR2 brings significant advantages in fulfilling the requirements needed to achieve

a truly evolvable and self-organized system.
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Conclusions and Future Work

Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill

The manufacturing world is constantly pushed into their limits. To face the current

challenges imposed to the manufacturing world, an innovative manufacturing control

architecture was proposed.

7.1 Conclusions

The ever growing demanding requirements by customers are imposing the need to

develop more flexible, agile, robust and responsive manufacturing control architectures.

Requirements such as product customization, shorter life-cycles, higher quality demand

or, at an internal level, resources breakdown, worker absence, rush orders or problems in

the supply management layer, can also impose pressure into the manufacturing compa-

nies.

To cope with the aforementioned requirements, the focus of the research trend has

shifted from more hierarchical manufacturing control architectures into distributed and

decentralized control, assuming a more heterarchical structure. Despite this, the latest

has never been able to reach the optimization performances displayed by the first ones

when the system is operating under stable conditions. In recent years, the combination of
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hierarchical and heterarchical structures have also taken the researchers attention, com-

bining the system optimization given by the hierarchical structure with the responsive-

ness provided by the heterarchical approaches.

One of the most prominent manufacturing control architectures that proposed the

use of this approach is the well known ADACOR holonic architecture which works on a

binary state that switches from a stationary state into a transient state when disturbances

hit the shop-floor and switches back to the stationary state after the disturbance recovery.

Despite the good results displayed by ADACOR, a step further was still needed to reach

a truly evolvable system, possibility by eliminating the fixed binary state on which it

operates.

In order to overcome the ADACOR main limitation, inspiration was drawn from evo-

lutionary theories and self-organization principles found in societies of species, such as

ant food foraging behaviour and fish schooling, or in natural processes such as the mag-

netic field concepts.

Two evolutionary theories are on the basis of the developed work of this thesis. The

first one, and by far the most known, is the Darwin evolutionary theory. On his studies,

Darwin stated that species tend to be in a constant state of evolution by making small

internal adaptations in order to better fit the external environment on which they operate.

On the other hand, the punctuated equilibrium theory, states that species are mostly in

a stable state and suddenly can make drastic changes in order to overcome the imposed

external constraints.

The first evolutionary theory is translated into the ADACOR2 manufacturing con-

trol architecture by allowing the individual holons to change/adapt their internal be-

haviour. This is named behavioural self-organization and allows the overall system to

smoothly evolve into a new working configuration. The second evolutionary theory is

incorporated into the ADACOR2 manufacturing control architecture by allowing a re-

arrangement in the holarchy structure. This more drastic change, named structural self-

organization, will allow the system to overcome disturbances with higher impact levels

and will also allow the system to evolve into a new working configuration.

During the presented work, a new internal model of the holon was also proposed,

with a special emphasis to the two referred self-organization components: the be-

havioural and the structural. A special attention is also given to handle the nervous-

ness aspect that can appear in those distributed and self-organized systems. This can

be also seen in the holon internal structure by detailing and specifying the nervousness

controller.

7.2 Work Validation

In order to validate the proposed manufacturing control architecture, an instantiation

of the ADACOR2 holons was implemented using the MAS technology. The implemented
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system was tested using an emulated version of the real AIP-PRIMECA FMS and the sce-

narios contained in this work were defined taking into consideration the ones specified in

the Bench4star benchmark (Trentesaux et al., 2013). The aforementioned use case allowed

the validation of the behavioural self-organization vector while a modified version of the

refereed benchmark was needed to test and validate the structural self-organization vec-

tor. In this adaptation of the real use case, the resources have moving capabilities and the

transportation of the products at the shop-floor is accomplished by using AGVs, which

may imply a physical structural re-organization at the shop-floor level. This last feature

is also aligned with the recent trends being developed by the system integrators, e.g., as

Festo AG & Co. KG.

At the end of this thesis and based on the achieved experimental results, some out-

comes can be highlighted:

— ADACOR2 can smoothly or drastically evolve into a better working configuration,

responding properly to disturbances.

— A nervousness controller is a must have in distributed self-organized systems in

order to prevent chaotic behaviour and push the system to its limits.

— ADACOR2 outreaches its predecessor ADACOR as also the hierarchical and heter-

archical approaches.

At the beginning of this thesis, it was depicted that one of the main goals of this work

was the specification of a manufacturing control architecture that was able to improve

the current state-of-the-art approaches, reducing the gap between these and an optimal

situation (recall Figure 1.1). This was achieved by introducing dynamics associated to the

two self-organization dimensions and the nervousness controller. This gap is illustrated

in Figure 7.1, considering the real values extracted from the experimental results, and

particularly in this case those from behavioural self-organization and scenario A0.

Figure 7.1 – Performance Behaviour of the Evaluated Control Structures
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The experimental results show that the performance obtained by the ADACOR2 ar-

chitecture outperforms all the other tested approaches. If it is assumed that the super-

visor holon scheduling mechanism is optimal, i.e. it introduces an optimal plan to be

executed (which for the case is not that important, being just a matter of implementation

and boundaries definition), the hierarchical, the ADACOR and the ADACOR2 architec-

ture have optimal performance levels in non-disturbance situations. When disturbances

are introduced into the system, all the approaches must react by handling them in the best

possible way. In this situation, the hierarchical approach suffers the highest impact in the

sense that is the one that performs worst of the four approaches. It is also possible to

observe that the ADACOR2 approach is the one that has less impact when disturbances

are introduced.

This analysis sustains that the "vision" introduced in the Figure 1.1 is achieved during

the development of this work by allowing the holons to dynamically change their internal

behaviour or to dynamically re-arrange the holarchy structure.

7.3 Future Work

At the end of this work, several research developments could be identified as future

work that will enhance the current achievements.

Firstly, the developed agents must be integrated in embedded control devices, allow-

ing the practical development of the intelligent products concept and the CPS paradigm.

Although some experiments were conducted during this work, serving as a proof of con-

cept by deploying some of the ADACOR2 agents into the RaspberryPi 1 platform, the

results are not shown in this thesis.

Secondly, another major development branch can be foreseen in the use of the stan-

dard de-facto OPC-UA (OLE for process control - Unified Architecture) as a major enabler

to integrate the ADACOR2 holons in the existing/future system designs. The integration

with the OPC-UA guarantees several important features, standard access to data sources

across shop-floor and seamless device integration, since all major vendors are adopting

its usage.

Cloud computing is a nowadays reality. To this extend, the development of the SH

using the cloud resources, combined with the processing power of the HPC (High Per-

formance Computing), enables to run massive simulations to identify in an early stage

possible bottlenecks that would not be foreseen in another way. A practical result of this

could be the prediction with more accuracy of possible plan deviations that would later

be feed to the THs. On the opposite side there is the fog computing that promises to

bring into the end nodes the cloud computation power. This is also aligned with the CPS

paradigm and can be used to empower the OHs with more processing capabilities allow-

ing a better decision making on that side, e.g., turning machines more responsiveness

and better decision makers.

1. http://www.raspberrypi.org/
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The introduced nervousness stabilizer is also a major research trend in the way that

the correct development of this mechanism enables the ADACOR2 holons, and even

other distributed entities developed within other architectures, to be pushed to perfor-

mance levels not seen before maintaining the overall system under control.

Additionally, a deeper study on the structural self-organization focusing on when and

how to re-organize the holarchy structurally assumes also a crucial importance. In this

scope, previous work of (Farid and McFarlane, 2008) and (Farid and Covanich, 2008) can

be used as ground-base to further explore this.

Future work will also be devoted to consider SoA principles in the ADACOR2 archi-

tecture, which will enable a seamless integration within the vertical layers of the ISA-95

standard.

A final research trend, just to name a few, is devoted to the ADACOR2 generalization

issues considering that the developed work can/may be applied into other architectures

than ADACOR.

119



7. CONCLUSIONS AND FUTURE WORK

120



Bibliography

Abd-El-Barr, M., S.M. Sait, and B.A.B. Sarif. 2003. « Ant colony algorithm for evolution-

ary design of arithmetic circuits ». Proceedings of the 15th International Conference on

Microelectronics, 2003. ICM 2003. 198–201. doi:10.1109/ICM.2003.1287767.

Aggoune, Riad, A.H. Mahdi, and M.-C. Portmann. 2001. « Genetic algorithms for the flow

shop scheduling problem with availability constraints ». Proceedgins of the IEEE Inter-

national Conference on Systems, Man, and Cybernetics, 2001 4:2546–2551 vol.4. doi:10.

1109/ICSMC.2001.972941.

Ai, The Jin, and Voratas Kachitvichyanukul. 2009. « A Particle Swarm Optimization for

the Vehicle Routing Problem with Simultaneous Pickup and Delivery ». Computers &

Operations Research 36:1693–1702.

Albadawi, Zahir, Benoit Boulet, Robert DiRaddo, Patrick Girard, Alexandre Rail, and Vin-

cent Thomson. 2006. « Agent-based control of manufacturing processes » [inlangen].

International Journal of Manufacturing Research 1 (4): 466. Visited on 11/18/2014.

doi:10.1504/IJMR.2006.012256.

Albert, F.Y.C., S.P. Koh, C.P. Chen, C.K. Loo, and S.K. Tiong. 2009. « Path control of dex-

terous robotic hand using Genetic Algorithm ». Proceedings of the 4th International Con-

ference on Autonomous Robots and Agents, 2009. ICARA 2009. 502–506. doi:10.1109/

ICARA.2000.4804002.

Anderson, Carl, and John Bartholdi. 2000. « Centralized versus decentralized control in

manufacturing: lessons from social insects », 91–105.

Arnaout, J.-P., R. Musa, and G. Rabadi. 2008. « Ant colony optimization algorithm to par-

allel machine scheduling problem with setups ». Proceeding of the IEEE International

Conference on Automation Science and Engineering, 2008. CASE 2008: 578–582. doi:10.

1109/COASE.2008.4626566.

Arunachalam, S., R. Zalila-Wenkstern, and R. Steiner. 2008. « Environment Mediated

Multi Agent Simulation Tools &#150; A Comparison », 43–48. IEEE. Visited on

05/26/2014. doi:10.1109/SASOW.2008.44.

121



BIBLIOGRAPHY

Aziz, N.A.B.A., A.W. Mohemmed, and B.S. Daya Sagar. 2007. « Particle Swarm Optimiza-

tion and Voronoi diagram for Wireless Sensor Networks coverage optimization ». Pro-

ceeding of the International Conference on Intelligent and Advanced Systems, 2007. ICIAS

2007: 961–965. doi:10.1109/ICIAS.2007.4658528.

Badawy, F.A., H.Y. Abdelazim, and M.G. Darwish. 2005. « Genetic Algorithms for Pre-

dicting the Egyptian Stock Market ». Proceeding ot the Enabling Technologies for the New

Knowledge Society: ITI 3rd International Conference on Information and Communications

Technology, 2005: 109–122. doi:10.1109/ITICT.2005.1609619.

Bae, Jong Il, Dong Cheol Lee, Doo Sung Ahn, Jong Moon Lee, Kang Eon Kim, and Moon

Soo Kim. 2001. « Speed control of fork lift vehicle using a genetic algorithm ». Proceed-

ings of the IEEE International Symposium on Industrial Electronics, 2001. Proceedings. ISIE

2001. 3:1839–1844 vol.3. doi:10.1109/ISIE.2001.931990.

Baker, Albert D. 1991. « Manufacturing Control with a Market-Driven Contract Net ».

Ph.D., Rensselaer Polytechnic Institute.

Barata, Jose, and Luis M. Camarinha-Matos. 2003. « Coalitions of manufacturing compo-

nents for shop floor agility - the CoBASA architecture » [inlangen]. International Jour-

nal of Networking and Virtual Organisations 2 (1): 50. Visited on 11/18/2014. doi:10.

1504/IJNVO.2003.003518.

Barbosa, José, and Paulo Leitão. 2010. « Modelling and Simulating Self-Organizing

Agent-based Manufacturing Systems ». to appear in the Proceedings of the 36th An-

nual Conference of the IEEE Industrial Electronics Society (IECON’10) Arizona, US, 8-10

November.

Barbosa, Jose, Paulo Leitao, Emmanuel Adam, and Damien Trentesaux. 2013a. « Self-

Organized Holonic Multi-agent Manufacturing System: The Behavioural Perspec-

tive ». 2013 IEEE International Conference on Systems, Man, and Cybernetics: 3829–3834.

doi:10.1109/SMC.2013.654.

Barbosa, José, Paulo Leitão, Emmanuel Adam, and Damien Trentesaux. 2015. « Dynamic

self-organization in holonic multi-agent manufacturing systems: The ADACOR evo-

lution » [inlangen]. Computers in Industry 66 (): 99–111. Visited on 12/12/2014.

doi:10.1016/j.compind.2014.10.011.

— . 2012a. « Nervousness in Dynamic Self-organized Holonic Multi-agent Systems ». In

Highlights on Pratical Applications of Agents and Multi-agent Systems, 9–17. Advances in

Intelligent and Soft Computing.

— . 2012b. « Self-organized holonic manufacturing systems combining adaptation and

performance optimization ». In Technological Innovation for Value Creation, 163–170.

Springer.

122



BIBLIOGRAPHY

— . 2013b. « Structural Self-organized Holonic Multi-Agent Manufacturing Systems ».

In Industrial Applications of Holonic and Multi-Agent Systems, ed. by David Hutchison,

Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,

Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,

Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Vladimír
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Vladimír Mařík, Valeriy Vyatkin, and Armando W. Colombo, 4659:293–302. Berlin,

Heidelberg: Springer Berlin Heidelberg. Visited on 11/18/2014.

Candido, Goncalo, Jose Barata, Armando W. Colomboy, and Francois Jammesz. 2010.

« Service-oriented Architecture at device level to support Evolvable Production Sys-

tems », 2669–2674. IEEE. Visited on 11/23/2014. doi:10 . 1109 / ISIE . 2010 .

5637527.

124



BIBLIOGRAPHY

Cannata, A, M Gerosa, and M Taisch. 2008. « SOCRADES: A framework for developing

intelligent systems in manufacturing ». In Industrial Engineering and Engineering Man-

agement, 2008. IEEM 2008. IEEE International Conference on, 1904–1908. doi:10.1109/

IEEM.2008.4738203.

Chandramouli, K., and E. Izquierdo. 2006. « Image Classification using Chaotic Particle

Swarm Optimization ». Proceedings of the IEEE International Conference on Image Pro-

cessing, 2006: 3001–3004. doi:10.1109/ICIP.2006.312968.

Chatterjee, A., S.P. Ghoshal, and V. Mukherjee. 2010. « Artificial Bee Colony Algorithm for

Transient Performance Augmentation of Grid Connected Distributed Generation ». In

Swarm, Evolutionary, and Memetic Computing, ed. by BijayaKetan Panigrahi, Swagatam

Das, PonnuthuraiNagaratnam Suganthan, and SubhransuSekhar Dash, 6466:559–566.

Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Chen, G.Y., and K.J. Rogers. 2009. « Proposition of two multiple criteria models applied

to Dynamic Multi-objective Facility Layout Problem based on Ant Colony Optimiza-

tion ». Proceedgins of the IEEE International Conference on Industrial Engineering and En-

gineering Management, 2009. IEEM 2009. 1553–1557. doi:10 . 1109 / IEEM . 2009 .

5373095.

Chen, An-Pin, Chien-Hsun Huang, and Yu-Chia Hsu. 2009. « A novel modified particle

swarm optimization for forecasting financial time series ». Proceedings of the IEEE In-

ternational Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009.

1:683–687. doi:10.1109/ICICISYS.2009.5357771.

Chen, Ruey-Maw, Shih-Tang Lo, Chung-Lun Wu, and Tsung-Hung Lin. 2008. « An effec-

tive ant colony optimization-based algorithm for flow shop scheduling ». Proceedgins

of the IEEE Conference onSoft Computing in Industrial Applications, 2008. SMCia ’08. 101–

106. doi:10.1109/SMCIA.2008.5045943.

Chen, Yen-Wei, A. Mimori, and Chen-Lun Lin. 2009. « Hybrid particle swarm optimiza-

tion for 3-D image registration ». Proceedings of the 16th IEEE International Conference

on Image Processing (ICIP), 2009: 1753–1756. doi:10.1109/ICIP.2009.5414613.

Cheng, Chi-Tsun, K. Fallahi, H. Leung, and C.K. Tse. 2009. « Cooperative path planner

for UAVs using ACO algorithm with Gaussian distribution functions ». Proceedings of

the IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009. 173–176.

doi:10.1109/ISCAS.2009.5117713.

Chirn, Jin-Lung, and Duncan McFarlane. 2000. « A holonic component-based approach

to reconfigurable manufacturing control architecture », 219–223. IEEE Comput. Soc.

Visited on 11/18/2014. doi:10.1109/DEXA.2000.875030.

Cicirello, Vincent A., and Stephen F. Smith. 2001. « Wasp nests for self-configurable facto-

ries », 473–480. ACM Press. Visited on 01/15/2014. doi:10.1145/375735.376420.

125



BIBLIOGRAPHY

— . 2004. « Wasp-like Agents for Distributed Factory Coordination ». Autonomous Agents

and Multi-Agent Systems 8, no. 3 (): 237–266. Visited on 01/15/2014. doi:10.1023/B:

AGNT.0000018807.12771.60.

Coleman, James S. 1994. Foundations of social theory [inlangEnglish]. Cambridge, Mass.

[u.a.: Belknap Press of Harvard Univ. Press.

Colson, C.M., M.H. Nehrir, and C. Wang. 2009. « Ant colony optimization for microgrid

multi-objective power management ». Proceedings of the IEEE/PES Power Systems Con-

ference and Exposition, 2009. PSCE ’09. 1–7. doi:10.1109/PSCE.2009.4840070.

Corry, P., and E. Kozan. 2004. « Ant Colony Optimisation for Machine Layout Problems ».

Computational Optimization and Applications 28:287–310.

Council, National Research. 1998. Visionary manufacturing challenges for 2020. Washington,

D.C: National Academy Press.

Cui, Xiaohui, and T.E. Potok. 2007. « A Particle Swarm Social Model for Multi-Agent

Based Insurgency Warfare Simulation ». Proceedings of the 5th ACIS International Con-

ference on Software Engineering Research, Management Applications, 2007. SERA 2007.

177–183. doi:10.1109/SERA.2007.21.

Darley, Vince. 1994. « Emergent phenomena and complexity ». Artificial Life 4:411–416.

Darwin, Charles. 2007. On the origin of species by means of natural selection, or, The preserva-

tion of favored races in the struggle for life [inlangEnglish]. New York: Cosimo Classics.

Das, A., and M. Bhattacharya. 2009. « A Study on Prognosis of Brain Tumors Using Fuzzy

Logic and Genetic Algorithm Based Techniques ». Proceedgins of the International Joint

Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009. IJCBS ’09.

348–351. doi:10.1109/IJCBS.2009.129.

Deen, S. M. 2003. Agent based manufacturing: advances in holonic approach. Advanced infor-

mation processing. New York: Springer.

Deguet, Joris, Yves Demazeau, and Laurent Magnin. 2006. « Elements about the emer-

gence issue: A survey of emergence definitions ». ComPlexUs 3 (1-3): 24–31.

Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. 1990. « The self-organizing exploratory

pattern of the argentine ant ». Journal of Insect Behavior 3 (2): 159–168. doi:10.1007/

BF01417909.

Di Caro, Gianni, and Marco Dorigo. 1998. « AntNet: Distributed Stigmergetic Control for

Communications Networks ». Journal of Artificial Intelligence Research 9:317–365.

Dijkstra, E. W. 1959. « A note on two problems in connexion with graphs » [inlangen].

Numerische Mathematik 1, no. 1 (): 269–271. Visited on 12/05/2014. doi:10.1007/

BF01386390.

Dilts, D.M., N.P. Boyd, and H.H. Whorms. 1991. « The evolution of control architectures

for automated manufacturing systems ». Journal of Manufacturing Systems 10, no. 1 ():

79–93. Visited on 02/05/2014. doi:10.1016/0278-6125(91)90049-8.

126



BIBLIOGRAPHY

Dolgov, D., S. Thrun, M. Montemerlo, and J. Diebel. 2010. « Path Planning for Au-

tonomous Vehicles in Unknown Semi-structured Environments ». The International

Journal of Robotics Research 29, no. 5 (): 485–501. Visited on 01/17/2014. doi:10.1177/

0278364909359210.

Dong, Qiaoying, Shulin Kan, Ling Qin, and Zhihui Huang. 2007. « Sequencing Mixed

Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-

objective Algorithm ». Proceedings of the IEEE International Conference on Automation

and Logistics, 2007: 2818–2823. doi:10.1109/ICAL.2007.4339061.

Dongming, Zhao, Xia Kewen, Wang Baozhu, and Gao Jinyong. 2008. « An Approach to

Mobile IP Routing Based on QPSO Algorithm ». Proceedings of the Pacific-Asia Workshop

on Computational Intelligence and Industrial Application, 2008. PACIIA ’08. 1:667–671.

doi:10.1109/PACIIA.2008.17.

Dorigo, M. 1992. « Optimization, Learning and Natural Algorithms (in Italian) ». PhD

thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Dornhaus, Anna, and Lars Chittka. 2004. « Information flow and regulation of forag-

ing activity in bumble bees ». Apidologie 35, no. 2 (): 183–192. Visited on 05/23/2014.

doi:10.1051/apido:2004002.

Drath, Rainer, and Alexander Horch. 2014. « Industrie 4.0: Hit or Hype? [Industry Fo-

rum] ». IEEE Industrial Electronics Magazine 8, no. 2 (): 56–58. Visited on 11/22/2014.

doi:10.1109/MIE.2014.2312079.

Duan, H., X. Zhang, J. Wu, and G. Ma. 2009. « Max-Min Adaptive Ant Colony Optimiza-

tion Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and

Uncertain Environments ». Journal of Bionic Engineering 6:161–173.

Duffie, Neil A., and Rex S. Piper. 1986. « Nonhierarchical control of manufacturing

systems » [inlangen]. Journal of Manufacturing Systems 5, no. 2 (): 141. Visited on

11/18/2014. doi:10.1016/0278-6125(86)90036-1.

Eberhart, R. C., and J. Kennedy. 1995. « A new optimizer using particle swarm theory. »

Proceedings of the Sixth International Symposium on Micromachine and Human Science:

39–43.

Eldredge, Niles, and Stephen J. Gould. 1972. « Punctuated Equilibria: An Alternative to

Phyletic Gradualism ». Ed. by Thomas J. M. Schopf. Models in Paleobiology: 82–115.

Elmahi, I., S. Merzouk, O. Grunder, and A. Elmoudni. 2004. « A genetic algorithm ap-

proach for the batches delivery optimization in a supply chain ». Proceedings of the

IEEE International Conference on Networking, Sensing and Control, 2004 1:299–304 Vol.1.

doi:10.1109/ICNSC.2004.1297452.

ElMaraghy, H. 2006. « Flexible and Reconfigurable Manufacturing Systems Paradigms ».

Proceedings of the International Journal of Flexible Manufacturing System 17:261–271.

127



BIBLIOGRAPHY

ElMaraghy, H., T. AlGeddawy, A. Azab, and W. ElMaraghy. 2012. « Change in Manufac-

turing – Research and Industrial Challenges ». In Enabling Manufacturing Competitive-

ness and Economic Sustainability, ed. by Hoda A. ElMaraghy, 2–9. Berlin, Heidelberg:

Springer Berlin Heidelberg. Visited on 05/21/2013.

Engelmore, Robert, and A. J. Morgan, eds. 1988. Blackboard systems. The Insight series in

artificial intelligence. Wokingham, England ; Reading, Mass: Addison-Wesley.

Erol, Rizvan, Cenk Sahin, Adil Baykasoglu, and Vahit Kaplanoglu. 2012. « A multi-agent

based approach to dynamic scheduling of machines and automated guided vehicles

in manufacturing systems » [inlangen]. Applied Soft Computing 12, no. 6 (): 1720–1732.

Visited on 11/20/2014. doi:10.1016/j.asoc.2012.02.001.

ESPRIT Consortium AMICE. 1993. CIMOSA: Open System Architecture for CIM

[inlangEnglish]. Berlin, Heidelberg: Springer Berlin Heidelberg. Visited on

11/26/2014.

Evans, Peter C, and Marco Annunziata. 2012. « Industrial Internet: Pushing the Bound-

aries ».

Fang, X., and T. Bai. 2009. « Share Price Prediction Using Wavelet Transform and Ant

Colony Algorithm for Parameters Optimization ». SVM, WRI Global Congress on Intel-

ligent Systems 3:288–292.

Farid, Amro, and Wuttiphat Covanich. 2008. « Measuring the effort of a reconfigura-

tion process », 1137–1144. IEEE. Visited on 06/20/2014. doi:10.1109/ETFA.2008.

4638540.

Farid, Amro, and Duncan McFarlane. 2008. « Production degrees of freedom as manu-

facturing system reconfiguration potential measures ». Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture 222, no. 10 (): 1301–

1314. Visited on 12/16/2014. doi:10.1243/09544054JEM1056.

Ferber, J. 1999. Multi-Agent System: An Introduction to Distributed Artificial Intelligence.

Addison-Wesley Professional.

Ferrarini, L., C. Veber, A. Luder, J. Peschke, A. Kalogeras, J. Gialelis, J. Rode, D. Wun-

sch, and V. Chapurlat. 2006. « Control Architecture for Reconfigurable Manufacturing

Systems: the PABADIS’PROMISE approach », 545–552. IEEE. Visited on 11/18/2014.

doi:10.1109/ETFA.2006.355427.

Fletcher, Martyn, Duncan McFarlane, Andrew Lucas, James Brusey, and Dennis Jarvis.

2003. « The Cambridge Packing Cell — A Holonic Enterprise Demonstrator ». In

Multi-Agent Systems and Applications III, ed. by Vladimír Mařík, Michal Pěchouček,
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Mařík, Vladimír, Pavel Vrba, Ken H. Hall, and Francisco P. Maturana. 2005. « Rock-

well automation agents for manufacturing » [inlangen], 107. ACM Press. Visited on

11/23/2014. doi:10.1145/1082473.1082812.

Marin, Cesar A., Lars Monch, Paulo Leitao, Pavel Vrba, Daria Kazanskaia, Vadim Chepe-

gin, Liwei Liu, and Nikolay Mehandjiev. 2013. « A Conceptual Architecture Based on

Intelligent Services for Manufacturing Support Systems », 4749–4754. IEEE. Visited

on 11/22/2014. doi:10.1109/SMC.2013.808.

Marinakis, Yannis, Magdalene Marinaki, Michael Doumpos, Nikolaos Matsatsinis, and

Constantin Zopounidis. 2008a. « Optimization of nearest neighbor classifiers via

metaheuristic algorithms for credit risk assessment » [inlangen]. Journal of Global Op-

timization 42, no. 2 (): 279–293. Visited on 05/23/2014. doi:10.1007/s10898-007-

9242-1.

Marinakis, Yannis, Magdalene Marinaki, and Georgios Dounias. 2008b. « Particle swarm

optimization for pap-smear diagnosis » [inlangen]. Expert Systems with Applications

35, no. 4 (): 1645–1656. Visited on 05/26/2014. doi:10.1016/j.eswa.2007.08.

089.

Marinakis, Yannis, Magdalene Marinaki, and Constantin Zopounidis. 2008c. « Applica-

tion Of Ant Colony Optimization To Credit Risk Assessment ». New Mathematics and

Natural Computation (NMNC) 4 (01): 107–122.

Márkus, A., T. Kis Váncza, and L. Monostori. 1996. « A Market Approach to Holonic

Manufacturing ». CIRP Annals - Manufacturing Technology 45 (1): 433–436. doi:DOI:

10.1016/S0007-8506(07)63096-0.

Massotte, P. 1995. « Self-organization: A New Approach to Improve the Reactivity of the

Production Systems ». Proc. of the IEEE International Conference on Emergent Technologies

for Factory Automation: 23–32.

Matlock, A., R. Holsapple, C. Schumacher, J. Hansen, and A. Girard. 2009. « Cooperative

defensive surveillance using Unmanned Aerial Vehicles ». Proceedings of the American

Control Conference, 2009. ACC ’09. 2612–2617. doi:10.1109/ACC.2009.5160051.

Maturana, Francisco, W. Shen, and D.H. Norrie. 1999. « MetaMorph: An adaptive

agent-based architecture for intelligent manufacturing ». International Journal of Pro-

duction Research 37, no. 10 (): 2159–2173. Visited on 06/26/2013. doi:10 . 1080 /

002075499190699.

Maturana, Francisco, Raymond Staron, Kenwood Hall, Pavel Tichý, Petr Šlechta, and
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A
Making Simulations

Making a huge number of simulations is mandatory for the assessment of the pro-

posed control architecture. In this way, the ease of the simulation process assumes a

crucial issue, being only possible in an automated process. The developed simulation

procedure, depicted in Figure A.1, comprises several components and is divided in sev-

eral layers.

The upper layer is denominated by Simulation Control and is composed by a set of

XML (EXtensible Markup Language) files describing the simulations and the simulation

scenarios, and by an agent denominated ADACOR2 System Manager. This agent is re-

sponsible to manage the creation of the system and is only necessary to manage the sim-

ulation. In normal operation mode, i.e. when the agents are processing the orders and

interacting each other, this agent is not necessary.

The simulation process starts by selecting a XML file that describes the simulation

to be processed (marked with the number 1 in Figure A.1). This XML file describes

the number of times and the scenario to be processed as shown in the Listing A.1. In

the given example it can be observed that two scenarios are to be processed. The first,

named scenario-template-heterarchical will be processed 30 times, as well as the second,

named scenario-template-heterarchical-Failure#PS12. As information, and as the scenario

names suggest, the first will run the agents in a heterarchical mode while the second

will introduce the #PS12 failure (as described in the Bench4star) in the same heterarchical

approach.

The scenarios also use a XML file, which define the constitution of the system to be

tested. Listing A.2 shows one example of such file and in it one can see that the agents,

particularly those defined in the ADACOR2 architecture, and their configuration param-

eters.
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<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<simulation>

   </description>

      <scenario>

         <name>scenarioA0-ADACOR2-Failure#PS12</name>

         <runs>30</runs>

      </scenario>

   </sceneList>

</simulation>

Figure A.1 – Product Catalogue

Listing A.1 – Simulation File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<simulation>

<!--The description to appear in the list for the user to know

what the

scenario is about. -->

<description>This simulation will make xxx times the scene yyy.

</description>

<!--Specify the resources available in the shop-floor. -->

<sceneList>

<!--Specify the scene. -->

<scenario>

<!-- The name of the scenario to simulate. Must

match the name of the

.xml file. -->

<name>scenario-template-heterarchical</name>

<!-- The number of times that this scenario will be

simulated -->

<number>30</number>

</scenario>

<scenario>

<!-- The name of the scenario to simulate. Must

match the name of the
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.xml file. -->

<name>scenario-template-heterarchical-Failure#PS12</name>

<!-- The number of times that this scenario will be

simulated -->

<number>30</number>

</scenario>

</sceneList>

</simulation>

The control layer is composed by the ADACOR2 agents itself, namely the SH, PH, TH

and OH. Those agents operate according with what is defined in the simulation file and

with the behaviours described in this thesis.

Listing A.2 – Scene File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<scenario>

<!--The description to appear in the list for the user to know

what the

scenario is about. -->

<description>This scenario is the basic and has the following:

SupA, No

behavioural, No ...

</description>

<!--Specify the list of Supervisor Holons present in the system.

-->

<supervisorList>

<!--Specify the parameters of the Supervisor Holon (as is

in the .xml file). -->

<supervisor>

<!--Specify the name of the Supervisor Holon (as is

in the .xml file). -->

<name>ManControl-A-Ho</name>

<!--Specify the configuration file that contains the

resources that belong

to the Supervisor Holon. To be removed when a

truly self-organization is

implemented. -->

<configurationFile>FactoryPlant</configurationFile>

</supervisor>

</supervisorList>

<!--Specify the resources available in the shop-floor. -->

<resourceList>

<!--Specify the resources. -->

<resource>

<!-- The name of the resource. Must match the name

of the .xml file. -->
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<name>Resource-1</name>

<!-- Emulator: using virtual resources. Real: using

the real resources -->

<type>Emulator</type>

<!-- Specify if the resource has failures and its

type. -->

<failures>

<!--0: No; 1: Yes -->

<YesNo>0</YesNo>

<!-- Specify the type. TODO: create a coding

system for the failures. -->

<type>-</type>

</failures>

<!--0: No; 1: Yes -->

<behavioural>0</behavioural>

<!--0: No; 1: Yes -->

<structural>0</structural>

<!--0: No; 1: Yes -->

<autonomy>1</autonomy>

</resource>

<resource>

<!-- The name of the resource. Must match the name

of the .xml file. -->

<name>112</name>

<!-- Emulator: using virtual resources. Real: using

the real resources -->

<type>Emulator</type>

<!-- Specify if the resource has failures and its

type. -->

<failures>

<!--0: No; 1: Yes -->

<YesNo>0</YesNo>

<!-- Specify the type. TODO: create a coding

system for the failures. -->

<type>-</type>

</failures>

<!--0: No; 1: Yes -->

<behavioural>0</behavioural>

<!--0: No; 1: Yes -->

<structural>0</structural>

<!--0: No; 1: Yes -->

<autonomy>1</autonomy>

</resource>

</resourceList>

<!--Shuttles or AGVs. -->

<transportSystem>
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<type>AIP</type>

<quantity>10</quantity>

<size>normal</size>

</transportSystem>

<!--Specify the list of Supervisor Holons present in the system.

-->

<!--Specify the batch of orders and their launch time. -->

<batch>

<package>

<!--Specify the owner of the batch. Used later for

something. -->

<owner>clientA</owner>

<!--Specify the product to be produced. -->

<product>product_B_letter</product>

<!--Specify the due date of the batch. -->

<dueDate>325</dueDate>

<!--Specify the quantity to produce. -->

<quantity>1</quantity>

<!--0: No; 1: Yes -->

<behavioural>1</behavioural>

<!--0: No; 1: Yes -->

<structural>0</structural>

<!--Specify the start time. -->

<startTime>0</startTime>

</package>

<package>

<!--Specify the owner of the batch. Used later for

something. -->

<owner>clientB</owner>

<!--Specify the product to be produced. -->

<product>product_P_letter</product>

<!--Specify the due date of the batch. -->

<dueDate>209</dueDate>

<!--Specify the quantity to produce. -->

<quantity>1</quantity>

<!--0: No; 1: Yes -->

<behavioural>1</behavioural>

<!--0: No; 1: Yes -->

<structural>0</structural>

<!--Specify the start time. -->

<startTime>0</startTime>

</package>

</batch>

</scenario>
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For each scenario described in the previous XML file, one result file is created, con-

taining the achieved results, which can later be processed and analysed.

Listing A.3 – Results File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<simulationList>

<simulation id="1">

<ManufacturingOrder>

<AgentLocalName>MO552636</AgentLocalName>

<MLTotal>157</MLTotal>

<MLT>156</MLT>

<MOTard>0</MOTard>

<Ptproc>65</Ptproc>

<Pttransp>32</Pttransp>

</ManufacturingOrder>

<ManufacturingOrder>

<AgentLocalName>MO574317</AgentLocalName>

<MLTotal>291</MLTotal>

<MLT>291</MLT>

<MOTard>0</MOTard>

<Ptproc>35</Ptproc>

<Pttransp>15</Pttransp>

</ManufacturingOrder>

</simulation>

<simulation id="2">

<ManufacturingOrder>

<AgentLocalName>MO184125</AgentLocalName>

<MLTotal>217</MLTotal>

<MLT>216</MLT>

<MOTard>0</MOTard>

<Ptproc>74</Ptproc>

<Pttransp>23</Pttransp>

</ManufacturingOrder>

<ManufacturingOrder>

<AgentLocalName>MO358396</AgentLocalName>

<MLTotal>257</MLTotal>

<MLT>256</MLT>

<MOTard>0</MOTard>

<Ptproc>39</Ptproc>

<Pttransp>19</Pttransp>

</ManufacturingOrder>

</simulation>

</simulationList>

VR (Virtual Resource)s are responsible to create a layer that emulates the real physical

machines behaviour. In this way, the VRs receive commands that allows them to execute
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a set of procedures and reply back a set of status signals that allow the OH in charge

to take the appropriate measures, e.g., knowing that a processing task has started or

finished. Disturbances are also generated in this layer, allowing to test the disturbances

scenarios defined in the Bench4star (Trentesaux et al., 2013).
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B
Potential Fields Behaviour

The PF behavioural self-organization mechanism developed in 5.1.2 was imple-

mented and embedded into the MAS. Three different types of agents, each one playing

a different role, are used throughout the process. Two are needed for the information

creation about the PF while the third one changes its behaviour based on the created

information.

First, the OHs are emitting a set of PFs, one for each of the possessed skills, based

on their current status considering a pre-defined maximum value subtracted by the ma-

chine’s schedule size. The value of the emitted PF is updated each time the machines’

condition change, i.e. when a new work order is allocated or finished the processing.

The OH informs the CSH of the PF value by sending an FIPA INFORM message type, as

seen the in AUML of Figure B.1.

FIPA.inform

Calculate 

PF

Update PF 

on graph

Figure B.1 – AUML PF Propagation
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B. POTENTIAL FIELDS BEHAVIOUR

Based on the received PFs status the CSH constructs a graph map of the current sys-

tem PF situation. This information is displayed using a graph based approach that is

also used as the mean to calculate the PF propagation. The toolbox used to developed

this was the JUNG tool and has built in graph related algorithms, such as the Dijkstra’s

shortest path (Dijkstra, 1959).

The shop-floor organization is represented in the graph, see Figure B.2, by using the

nodes to map the OH (represented as rectangles) and the transportation times between

the machines are mapped using the graph arcs.

Figure B.2 – Shop-Floor Representation Graph

The nodes have information about its representative, namely its status (i.e. offline,

online, processing, ...) and is used to store the PF information, as shown in Listing B.1.

Listing B.1 – Node Class Definition

public class MyNode {

private int processing;

private String name;

private String shape;

private Double[][] attractivePF;

private String state;

private int buffer;

private String location;

}

As it can be seen, basic information such as name, state and location is stored but also

a table with the PF information of all the system.

The arcs, representing the links between all the nodes have also associated with it

information (as seen in Listing B.2), namely its id and the transportation time.

Listing B.2 – Link Class Definition

public class MyLink {

private Double time;

int id;

}
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B. POTENTIAL FIELDS BEHAVIOUR

The transportation time is used in the attenuation procedure guaranteeing that as

longer it takes to reach a give machine, the more attenuated the PF value is.

Each time that the TH needs to use this behaviour queries the CSH to obtain informa-

tion of the PF for the desired skill (as shown in Figure B.3). After this, the TH analyses

the information received deciding to follow the highest PF value.

FIPA.query

Calculate 

PF

Process 

query

FIPA.inform

Figure B.3 – AUML Diagram of TH Querying for PF Values

This part of the process starts with the TH send a FIPA QUERY to message type to

the CSH to get information about the PF value on the node that the TH is currently being

processed.
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C
Operation Holons Structural

Self-Organization

The structural self-organization by means of the birds behaviour protocol is described

in Figure C.1 and involves all the OHs that compose a given holarchy. On the left side of

the figure it is represented one OH that behaves like all the others that are represented on

the right side.

After the acknowledge of the appearance of a huge manufacturing order, every OH

will start this protocol in order to assess the current holarchy structure and proceed to

find a new structural organization that, face with this new constraint, is able to better

address it.

The protocol starts by querying all the other OHs with their current informational

status like its name, location, schedule size and processing times. This information allows

to have a global perspective of the holarchy status and based on this, to calculate the

current structure KPI (as defined in Equation 5.13 described in Section 5.2.1).

The re-organization procedure takes as inspiration some of the behaviours found in

the birds flocking. In this way, the OH that is making the re-organization positions itself

as the leader and fixes its current position. After this it places closer to its position the

other OHs by schedule size (considering this to be), creating a group of OHs around it.

This new re-organization is then assessed by applying the Equation 5.13. In the case

where the re-organizations predicts a KPI improvement, the OH will propagate the new

holarchy structure alongside with the predicted KPI. On contrary to that, the OH will

also propagate a message informing of a worst re-organization found, i.e. the OH wasn’t

able to discover a structural improvement.
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C. OPERATION HOLONS STRUCTURAL SELF-ORGANIZATION

FIPA.query

FIPA.inform (better solution)

FIPA.inform (worst solution)

FIPA.inform (better solution)

FIPA.inform (worst solution)

FIPA.inform

Name

Location

WO list

Processing times
Wait for all 

informs’

Re-organization

Re-organization

Take 

actions

Figure C.1 – AUML Diagram Used in the Structural Self-Organization

When all the OHs have executed the re-organization procedure and propagated the

results, each OH will accept and implement the overall best solution, i.e. the one with the

best expected KPI.
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D
Supervisor Holon Scheduling

Algorithm

In the presented architecture, the SH assumes a crucial role in the sense that it can

introduce schedule optimization, increasing the throughput of the system, and so its

profitability. The first version of the scheduling mechanism was based on a simple but

non-optimal algorithm and the develop of a new one which is able to achieve better opti-

mization results, namely the Cmax, without compromising the sum of calculation speed

with the output result.

For this purpose, the SH was enriched with a GA based algorithm. The algorithm

pseudo-code, shown in Algorithm 6, requires as input the set of work orders to be man-

ufactured and the available workstations.

Algorithm 6 Genetic Algorithm Pseudo-Code

Require: workOrders, workStations
Ensure: Scheduling of work orders to the workstations

1: procedure GA(workOrders, workStations, population)
2: InitialPopulationGeneration(); ⊲ Generates random schedule allocation
3: n← population

4: for i = 0 to n do
5: addRealTimeToSchedules(); ⊲ Adds real time to schedule
6: orderSolutionsByFitness();
7: CrossOver();
8: end for
9: addRealTimeToSchedules();

10: orderSolutionsByFitness();
11: end procedure
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D. SUPERVISOR HOLON SCHEDULING ALGORITHM

The process starts by generating a set of random scheduling solutions of size

population each one having already the allocation of the work orders to workstations.

Having this set of initial possible solutions, the algorithm will start a iterative process

that starts discarding the worst half solutions, followed by a set of crossover operations

that will scramble allocated work orders from two random sets of solutions. A random

selection of the allocated work orders within these solutions is also used to crossover.

After repeating this process n times, the best solution will be selected as the one to be

dispatched to the shop-floor.

A set of production scenarios and system configurations were designed to bench-

mark manufacturing control architectures or scheduling algorithms (Trentesaux et al.,

2013) and the designed scenarios involve variations on the batch sizes, shuttles number

or constraints on the workstation buffer capacity.

A proper test for the designed GA algorithm, to assess the calculation speed and the

output results, imposes the comparison with the previous scheduling algorithm (Leitão

and Restivo, 2006) and the use of different batch sizes (in this case the scenarios ranging

from A0 to F0 of (Trentesaux et al., 2013)). Given this, only the population parameter is

still missing in order to fully characterize the input data for the algorithm. In the present

case, a value of 6 was used, meaning that initially 6 scheduling solutions are generated

and that the algorithm runs iteratively 6 times.

The experimental results of running the existing scheduling algorithm (named "old"

in the legend) and the GA approach are shown in Figure D.1.

Figure D.1 – Calculation Time Plus the Output Results

It is possible to analyse that for all the testing scenarios, the GA approach obtains

better results. As example, for the scenario C0, despite the existing scheduling algorithm

needs 17ms to compute and the GA 11195ms, the GA overall time, considering calcula-

tion time with the output result, improves the previous scheduling by 24,81%. Addition-

ally, it is still possible to observe that as the batch order increases, the GA improvement

also rises, being of 34,77% for scenario F0.
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