S. Altschul and D. Lipman, Protein database searches for multiple alignments., Proceedings of the National Academy of Sciences, vol.87, issue.14, pp.5509-5513, 1990.
DOI : 10.1073/pnas.87.14.5509

I. Roberts, C. Caputo, M. Criado, and C. Funk, Senescence-associated proteases in plants, Physiologia Plantarum, vol.102, issue.1, pp.130-139, 2012.
DOI : 10.1111/j.1399-3054.2012.01574.x

T. Rose, L. Bonneau, C. Der, D. Marty-mazars, and M. F. , Starvation-induced expression of autophagy-related genes in Arabidopsis, Biology of the Cell, vol.16, issue.1, pp.53-67, 2006.
DOI : 10.1042/BC20040516

S. Slavikova, S. Ufaz, T. Avin-wittenberg, H. Levanony, and G. Galili, An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses, Journal of Experimental Botany, vol.59, issue.14, pp.4029-4043, 2008.
DOI : 10.1093/jxb/ern244

A. Thompson, J. Doelling, A. Suttangkakul, and R. Vierstra, Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways, PLANT PHYSIOLOGY, vol.138, issue.4, pp.2097-2110, 2005.
DOI : 10.1104/pp.105.060673

A. Thompson and R. Vierstra, Autophagic recycling: lessons from yeast help define the process in plants, Current Opinion in Plant Biology, vol.8, issue.2, pp.165-173, 2005.
DOI : 10.1016/j.pbi.2005.01.013

J. Thompson, D. Higgins, T. Gibson, . The, . Sensitivity et al., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome biology, vol.3, issue.7, pp.34-0034, 2002.

V. Wittenbach, W. Lin, R. Hebert, . Vacuolar, . Of et al., Vacuolar Localization of Proteases and Degradation of Chloroplasts in Mesophyll Protoplasts from Senescing Primary Wheat Leaves, PLANT PHYSIOLOGY, vol.69, issue.1, pp.98-102, 1982.
DOI : 10.1104/pp.69.1.98

K. Xia, T. Liu, J. Ouyang, R. Wang, T. Fan et al., Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.), DNA Research, vol.18, issue.5, pp.363-377, 2011.
DOI : 10.1093/dnares/dsr024

T. Xia, D. Xiao, D. Liu, W. Chai, Q. Gong et al., Heterologous Expression of ATG8c from Soybean Confers Tolerance to Nitrogen Deficiency and Increases Yield in Arabidopsis, PLoS ONE, vol.21, issue.5, 2012.
DOI : 10.1371/journal.pone.0037217.s010

Y. Xiong, A. Contento, and D. Bassham, AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana, The Plant Journal, vol.13, issue.4, pp.535-546, 2005.
DOI : 10.1111/j.1365-313X.2005.02397.x

Y. Xiong, A. Contento, P. Nguyen, and D. Bassham, Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis, PLANT PHYSIOLOGY, vol.143, issue.1, pp.291-299, 2007.
DOI : 10.1104/pp.106.092106

Y. Yamada, N. Suzuki, T. Hanada, Y. Ichimura, H. Kumeta et al., The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation, Journal of Biological Chemistry, vol.282, issue.11, pp.8036-8043, 2007.
DOI : 10.1074/jbc.M611473200

K. Yoshimoto, Beginning to Understand Autophagy, an Intracellular Self-Degradation System in Plants, Plant and Cell Physiology, vol.53, issue.8, pp.1255-1365, 2012.
DOI : 10.1093/pcp/pcs099

URL : https://hal.archives-ouvertes.fr/hal-01004137

K. Yoshimoto, Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni et al., Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2914-2927, 2009.
DOI : 10.1105/tpc.109.068635

Z. Adam and A. K. Clarke, Cutting edge of chloroplast proteolysis, Trends in Plant Science, vol.7, issue.10, pp.451-457, 2002.
DOI : 10.1016/S1360-1385(02)02326-9

T. Akar, M. Avci, and F. Dusunceli, Barley: Post-harvest Operations Turkey, p.64, 2004.

P. M. Anderson, E. A. Oelke, and S. R. Simmons, Growth and development guide for spring barley. University of Minnesota, 2013.

T. Ashford and K. Porter, CYTOPLASMIC COMPONENTS IN HEPATIC CELL LYSOSOMES, The Journal of Cell Biology, vol.12, issue.1, pp.198-202, 1962.
DOI : 10.1083/jcb.12.1.198

L. Avila-ospina, M. Moison, K. Yoshimoto, and C. Masclaux-daubresse, Autophagy, plant senescence, and nutrient recycling, Journal of Experimental Botany, vol.65, issue.14, pp.3799-3811, 2014.
DOI : 10.1093/jxb/eru039

URL : https://hal.archives-ouvertes.fr/hal-01204073

T. Avin-wittenberg, A. Honig, and G. Galili, Variations on a theme: plant autophagy in comparison to yeast and mammals, Protoplasma, vol.11, issue.4, pp.285-99, 2012.
DOI : 10.1007/s00709-011-0296-z

A. Badr, K. Müller, R. Schäfer-pregl, H. Rabey, S. Effgen et al., On the origin and domestication history of Barley, 2000.

S. Baima, A. Haegi, P. Stroman, G. Casadoro, . Of et al., Characterization of a cDNA clone for barley leaf glutamine synthetase, Carlsberg Research Communications, vol.33, issue.1, pp.1-9, 1989.
DOI : 10.1007/BF02910467

S. Balazadeh, M. Kwasniewski, C. Caldana, M. Mehrnia, M. I. Zanor et al., ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana, Molecular Plant, vol.4, issue.2, pp.346-60, 2011.
DOI : 10.1093/mp/ssq080

B. Lara, E. , G. Garcia, M. Tahira, F. Enheb et al., Extracellular Invertase Is an Essential Component of Cytokinin-Mediated Delay of Senescence, The Plant Cell, vol.16, issue.5, pp.1276-1287, 2004.
DOI : 10.1105/tpc.018929

C. W. Bamforth, Barley and Malt Starch in Brewing : A General Review, pp.89-97, 2003.

C. S. Barry, The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants, Plant Science, vol.176, issue.3, 2009.
DOI : 10.1016/j.plantsci.2008.12.013

D. C. Bassham, Function and regulation of macroautophagy in plants, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.9, pp.1397-403, 2009.
DOI : 10.1016/j.bbamcr.2009.01.001

E. Bellucci, E. Bitocchi, D. Rau, L. Nanni, N. Ferradini et al., Population Structure of Barley Landrace Populations and Gene-Flow with Modern Varieties, PLoS ONE, vol.11, issue.11, 2013.
DOI : 10.1371/journal.pone.0083891.s006

P. N. Benfey and N. H. Chua, The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants, Science, vol.250, issue.4983, pp.250-959, 1990.
DOI : 10.1126/science.250.4983.959

G. Beyene, C. H. Foyer, and K. J. Kunert, Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves, Journal of Experimental Botany, vol.57, issue.6, pp.1431-1474, 2006.
DOI : 10.1093/jxb/erj123

I. J. Bingham, J. Blake, M. J. Foulkes, and J. Spink, Is barley yield in the UK sink limited? Field Crops Research, pp.212-220, 2007.

A. K. Borrell, E. J. Van-oosterom, J. E. Mullet, B. George-jaeggli, D. R. Jordan et al., Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns, New Phytologist, vol.128, issue.3, pp.817-847, 2014.
DOI : 10.1111/nph.12869

A. Box, The Biology of Hordeum vulgare L . ( barley ), p.41, 2008.

E. Breeze, E. Harrison, S. Mchattie, L. Hughes, R. Hickman et al., High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, pp.873-94, 2011.

D. E. Briggs, Barley. Chapman & Hall, 1978.

V. Buchanan-wollaston, T. Page, E. Harrison, E. Breeze, P. O. Lim et al., Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis, The Plant Journal, vol.26, issue.4, pp.567-85, 2005.
DOI : 10.1111/j.1365-313X.2005.02399.x

C. Caputo, N. Fatta, and J. Barneix, The export of amino acid in the phloem is altered in wheat plants lacking the short arm of chromosome 7B, Journal of Experimental Botany, vol.52, issue.362, pp.1761-1769, 2001.
DOI : 10.1093/jexbot/52.362.1761

S. Cerasoli, P. Maillard, A. Scartazza, E. Brugnoli, M. M. Chaves et al., L.) saplings, Annals of Forest Science, vol.61, issue.7, pp.721-72910, 1051.
DOI : 10.1051/forest:2004058

URL : https://hal.archives-ouvertes.fr/hal-00883795

L. Chen, . Ortiz-lopez, . Jung, and D. R. Bush, ANT1, an Aromatic and Neutral Amino Acid Transporter in Arabidopsis, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1813-1833, 2001.
DOI : 10.1104/pp.125.4.1813

Y. Chi, Y. Yang, Y. Zhou, J. Zhou, B. Fan et al., Protein???Protein Interactions in the Regulation of WRKY Transcription Factors, Molecular Plant, vol.6, issue.2, pp.287-300, 2013.
DOI : 10.1093/mp/sst026

A. Chiba, H. Ishida, N. K. Nishizawa, A. Makino, and T. Mae, Exclusion of Ribulose-1,5-bisphosphate Carboxylase/oxygenase from Chloroplasts by Specific Bodies in Naturally Senescing Leaves of Wheat, Plant and Cell Physiology, vol.44, issue.9, pp.914-935, 2003.
DOI : 10.1093/pcp/pcg118

J. Chory, P. Nagpal, and C. Peto, Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis, THE PLANT CELL ONLINE, vol.3, issue.5, pp.445-459, 1991.
DOI : 10.1105/tpc.3.5.445

M. W. Christiansen and P. L. Gregersen, Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves, Journal of Experimental Botany, vol.65, issue.14, pp.1-14, 2014.
DOI : 10.1093/jxb/eru046

M. W. Christiansen, P. B. Holm, and P. L. Gregersen, Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots, BMC Research Notes, vol.4, issue.1, pp.302-312, 2011.
DOI : 10.1074/jbc.M708732200

T. Chung, A. R. Phillips, and R. D. Vierstra, ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci, The Plant Journal, vol.136, issue.3, pp.483-93, 2010.
DOI : 10.1111/j.1365-313X.2010.04166.x

T. Chung, A. Suttangkakul, and R. D. Vierstra, The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability, PLANT PHYSIOLOGY, vol.149, issue.1, pp.220-254, 2009.
DOI : 10.1104/pp.108.126714

J. B. Cliquet, E. Deléens, . Bousser, M. Martin, J. C. Lescure et al., Estimation of Carbon and Nitrogen Allocation during Stalk Elongation by 13C and 15N Tracing in Zea mays L., PLANT PHYSIOLOGY, vol.92, issue.1, pp.79-87, 1990.
DOI : 10.1104/pp.92.1.79

M. J. Cornejo, D. Luth, K. M. Blankenship, O. D. Anderson, and E. Blechl, Activity of a maize ubiquitin promoter in transgenic rice, Plant Molecular Biology, vol.3, issue.3, pp.567-81, 1993.
DOI : 10.1007/BF00019304

N. Dai, . Schaffer, M. Petreikov, Y. Shahak, Y. Giller et al., Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces Photosynthesis, and Induces Rapid Senescence, THE PLANT CELL ONLINE, vol.11, issue.7, pp.1253-66, 1999.
DOI : 10.1105/tpc.11.7.1253

P. J. Davies and S. Gan, Towards an integrated view of monocarpic plant senescence, Russian Journal of Plant Physiology, vol.59, issue.4, pp.467-478, 2012.
DOI : 10.1134/S102144371204005X

C. J. Deselm, B. C. Miller, W. Zou, W. L. Beatty, H. Meel et al., Autophagy Proteins Regulate the Secretory Component of Osteoclastic Bone Resorption, Developmental Cell, vol.21, issue.5, pp.966-974, 2011.
DOI : 10.1016/j.devcel.2011.08.016

C. Diaz, S. Purdy, A. Christ, J. F. Morot-gaudry, A. Wingler et al., Characterization of Markers to Determine the Extent and Variability of Leaf Senescence in Arabidopsis. A Metabolic Profiling Approach, PLANT PHYSIOLOGY, vol.138, issue.2, pp.898-908, 2005.
DOI : 10.1104/pp.105.060764

A. Distelfeld, R. Avni, and A. M. Fischer, Senescence, nutrient remobilisation, and yield in wheat and barley, Journal of Experimental Botany, 2014.

A. Distelfeld, R. Avni, and A. M. Fischer, Senescence, nutrient remobilisation, and yield in wheat and barley, Journal of Experimental Botany, 2014.

N. Eckardt, Grass Genome Evolution. The Plant Cell Online, 2008.
DOI : 10.1105/tpc.108.058586

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254914

A. Ensminger, M. Enminsger, J. Konlande, and J. Robson, Food and Nutrition Encyclopedia, p.527, 1994.

S. Fan, C. Lin, P. Hsu, S. Lin, and . Tsay, The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilisation of nitrate. The Plant Cell, pp.2750-61, 2009.

U. Feller, I. Anders, and T. Mae, Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated, Journal of Experimental Botany, vol.59, issue.7, pp.1615-1639, 2008.
DOI : 10.1093/jxb/erm242

U. Feller, I. Anders, and T. Mae, Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated, Journal of Experimental Botany, vol.59, issue.7, pp.1615-1639, 2008.
DOI : 10.1093/jxb/erm242

A. Fischer and U. Feller, Senescence and protein degradation in leaf segments of young winter wheat: influence of leaf age, Journal of Experimental Botany, vol.45, issue.1, pp.45-103, 1994.
DOI : 10.1093/jxb/45.1.103

A. M. Fischer, The Complex Regulation of Senescence, Critical Reviews in Plant Sciences, vol.29, issue.1, pp.124-147, 2011.
DOI : 10.1093/jexbot/50.340.1683

B. E. Floyd, S. C. Morriss, G. C. Macintosh, and D. C. Bassham, What to Eat: Evidence for Selective Autophagy in Plants, Journal of Integrative Plant Biology, vol.54, issue.11, 2012.
DOI : 10.1111/j.1744-7909.2012.01178.x

B. G. Forde and P. J. Lea, Glutamate in plants: metabolism, regulation, and signalling, Journal of Experimental Botany, vol.58, issue.9, pp.2339-58, 2007.
DOI : 10.1093/jxb/erm121

C. H. Foyer and G. Noctor, Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses, THE PLANT CELL ONLINE, vol.17, issue.7, pp.1866-75, 2005.
DOI : 10.1105/tpc.105.033589

H. Fran?áková, M. Lí?ková, T. Boj?anská, and J. Mare?ek, Germination Index as an Indicator of Malting Potential, pp.377-384, 2012.

E. C. Freundt, M. Czapiga, and M. J. Lenardo, Photoconversion of Lysotracker Red to a green fluorescent molecule, Cell Research, vol.10, issue.11, pp.956-964, 2007.
DOI : 10.1126/science.1096158

Y. Fujiki, K. Yoshimoto, and Y. Ohsumi, An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination, PLANT PHYSIOLOGY, vol.143, issue.3, pp.1132-1141, 2007.
DOI : 10.1104/pp.106.093864

S. Gan and R. Amasino, Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin, Science, vol.270, issue.5244, pp.1-3, 1995.
DOI : 10.1126/science.270.5244.1986

K. T. Gatford, Z. Basri, J. Edlington, J. Lloyd, J. Qureshi et al., Gene flow from transgenic wheat and barley under field conditions, Euphytica, vol.25, issue.3, pp.383-391, 2006.
DOI : 10.1007/s10681-006-9160-1

J. Geng and D. J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ???Protein Modifications: Beyond the Usual Suspects??? Review Series, EMBO reports, vol.276, issue.9, pp.859-64163, 2008.
DOI : 10.1242/jcs.03172

A. J. Goodall, P. Kumar, and A. K. Tobin, Identification and Expression Analyses of Cytosolic Glutamine Synthetase Genes in Barley (Hordeum vulgare L.). Plant and Cell Physiology, pp.492-505, 2013.

V. Grbic, SAG2 and SAG12 protein expression in senescing Arabidopsis plants, Physiologia Plantarum, vol.19, issue.2, pp.263-269, 1999.
DOI : 10.1023/A:1005934428906

P. L. Gregersen, Senescence and Nutrient Remobilisation in Crop Plants. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, pp.83-102, 2011.

P. L. Gregersen, A. Culetic, L. Boschian, and K. Krupinska, Plant senescence and crop productivity, Plant Molecular Biology, vol.218, issue.6, pp.603-625, 2013.
DOI : 10.1007/s11103-013-0013-8

P. L. Gregersen and P. B. Holm, Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.), Plant Biotechnology Journal, vol.123, issue.1, 2007.
DOI : 10.1073/pnas.0503472102

P. L. Gregersen, P. B. Holm, and K. Krupinska, Leaf senescence and nutrient remobilisation in barley and wheat, Plant Biology, vol.72, p.10, 2008.
DOI : 10.1111/j.1438-8677.2008.00114.x

A. Guiboileau, R. Sormani, C. Meyer, and C. Masclaux-daubresse, Senescence and death of plant organs: Nutrient recycling and developmental regulation, Comptes Rendus Biologies, vol.333, issue.4, pp.382-91, 2010.
DOI : 10.1016/j.crvi.2010.01.016

URL : https://hal.archives-ouvertes.fr/hal-01203896

A. Guiboileau, R. Sormani, C. Meyer, and C. Masclaux-daubresse, Senescence and death of plant organs: Nutrient recycling and developmental regulation, Comptes Rendus Biologies, vol.333, issue.4, pp.382-91, 2010.
DOI : 10.1016/j.crvi.2010.01.016

URL : https://hal.archives-ouvertes.fr/hal-01203896

A. Guiboileau, K. Yoshimoto, F. Soulay, M. Bataillé, J. Avice et al., Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis, New Phytologist, vol.584, issue.3, pp.732-772, 2012.
DOI : 10.1111/j.1469-8137.2012.04084.x

URL : https://hal.archives-ouvertes.fr/hal-01004199

A. Guiboileau, L. Avila-ospina, K. Yoshimoto, F. Soulay, M. Azzopardi et al., Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability, New Phytologist, vol.21, issue.Suppl 1, pp.683-694, 2013.
DOI : 10.1111/nph.12307

URL : https://hal.archives-ouvertes.fr/hal-01168786

Y. Guo and S. Gan, AtNAP, a NAC family transcription factor, has an important role in leaf senescence, The Plant Journal, vol.136, issue.4, 2006.
DOI : 10.1111/j.1365-313X.2006.02723.x

Y. Guo and S. Gan, Translational researches on leaf senescence for enhancing plant productivity and quality, Journal of Experimental Botany, vol.65, issue.14, pp.3901-3913, 2014.
DOI : 10.1093/jxb/eru248

D. Z. Habash, S. Bernard, J. Schondelmaier, J. Weyen, and S. Quarrie, The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield, Theoretical and Applied Genetics, vol.14, issue.3, pp.403-422, 2007.
DOI : 10.1007/s00122-006-0429-5

K. Harris, P. K. Subudhi, A. Borrell, D. Jordan, D. Rosenow et al., Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence, Journal of Experimental Botany, vol.58, issue.2, pp.327-365, 2007.
DOI : 10.1093/jxb/erl225

A. P. Hayward and S. P. Dinesh-kumar, What Can Plant Autophagy Do for an Innate Immune Response?, Annual Review of Phytopathology, vol.49, issue.1, pp.557-76, 2011.
DOI : 10.1146/annurev-phyto-072910-095333

C. He and D. J. Klionsky, Regulation Mechanisms and Signaling Pathways of Autophagy, Annual Review of Genetics, vol.43, issue.1, pp.67-93, 2009.
DOI : 10.1146/annurev-genet-102808-114910

Y. He, H. Fukushige, D. F. Hildebrand, and S. Gan, Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence, PLANT PHYSIOLOGY, vol.128, issue.3, pp.876-884, 2002.
DOI : 10.1104/pp.010843

W. K. Heneen, Cytogenetics and Molecular Cytogenetics of Barley: A Model Cereal Crop with a Large Genome, Barley, pp.112-121, 2010.
DOI : 10.1002/9780470958636.ch5

B. Herrmann and U. Feller, CO2, light and temperature influence senescence and protein degradation in wheat leaf segments, Physiologia Plantarum, vol.103, issue.3, pp.320-326, 1998.
DOI : 10.1034/j.1399-3054.1998.1030304.x

R. Hickman, C. Hill, C. Penfold, E. Breeze, L. Bowden et al., A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves, The Plant Journal, vol.108, issue.1, pp.26-39, 2013.
DOI : 10.1111/tpj.12194

A. Hoffmann, A. Maurer, and K. Pillen, Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system, BMC Genetics, vol.13, issue.1, pp.88-98, 2012.
DOI : 10.1007/s00122-002-1104-0

D. Hofius, D. Munch, S. Bressendorff, J. Mundy, and M. Petersen, Role of autophagy in disease resistance and hypersensitive response-associated cell death, Cell Death and Differentiation, vol.4, issue.8, pp.1257-62, 2011.
DOI : 10.1016/j.pbi.2010.04.005

D. Hofius, T. Schultz-larsen, J. Joensen, D. I. Tsitsigiannis, N. H. Petersen et al., Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis, Cell, vol.137, issue.4, pp.773-83, 2009.
DOI : 10.1016/j.cell.2009.02.036

J. Hollmann, P. L. Gregersen, and K. Krupinska, Identification of predominant genes involved in regulation and execution of senescence-associated nitrogen remobilisation in flag leaves of field grown barley, Journal of Experimental Botany, pp.1-11, 2014.

S. Hörtensteiner, Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence, Trends in Plant Science, vol.14, issue.3, 2009.

P. Hsu and Y. Tsay, Two Phloem Nitrate Transporters, NRT1.11 and NRT1.12, Are Important for Redistributing Xylem-Borne Nitrate to Enhance Plant Growth, PLANT PHYSIOLOGY, vol.163, issue.2, pp.844-56, 2013.
DOI : 10.1104/pp.113.226563

E. Hunt, S. Gattolin, H. J. Newbury, J. S. Bale, H. Tseng et al., A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected, Journal of Experimental Botany, vol.61, issue.1, pp.61-55, 2010.
DOI : 10.1093/jxb/erp274

A. Hussien, E. Tavakol, D. S. Horner, M. Muñoz-amatriaín, G. J. Muehlbauer et al., Genetics of Tillering in Rice and Barley, The Plant Genome, vol.7, issue.1, 2014.
DOI : 10.3835/plantgenome2013.10.0032

Y. Inoue, T. Suzuki, M. Hattori, K. Yoshimoto, Y. Ohsumi et al., AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells, Plant and Cell Physiology, vol.47, issue.12, pp.47-1641, 2006.
DOI : 10.1093/pcp/pcl031

M. Izumi, S. Wada, A. Makino, and H. Ishida, The Autophagic Degradation of Chloroplasts via Rubisco-Containing Bodies Is Specifically Linked to Leaf Carbon Status But Not Nitrogen Status in Arabidopsis, PLANT PHYSIOLOGY, vol.154, issue.3, pp.1196-209, 2010.
DOI : 10.1104/pp.110.158519

S. S. Jakob, D. Rödder, J. O. Engler, S. Shaaf, H. Ozkan et al., Evolutionary History of Wild Barley (Hordeum vulgare subsp. spontaneum) Analyzed Using Multilocus Sequence Data and Paleodistribution Modeling, Genome Biology and Evolution, vol.6, issue.3, 2014.
DOI : 10.1093/gbe/evu047

I. Jang, W. Choi, K. Lee, S. I. Song, B. H. Nahm et al., High-Level and Ubiquitous Expression of the Rice Cytochrome c Gene OsCc1 and Its Promoter Activity in Transgenic Plants Provides a Useful Promoter for Transgenesis of Monocots, PLANT PHYSIOLOGY, vol.129, issue.4, pp.129-1473, 2002.
DOI : 10.1104/pp.002261

H. Jing, J. H. Schippers, J. Hille, and P. P. Dijkwel, Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis, Journal of Experimental Botany, vol.56, issue.421, pp.56-2915, 2005.
DOI : 10.1093/jxb/eri287

T. Johansen and T. Lamark, Selective autophagy mediated by autophagic adapter proteins, Autophagy, vol.70, issue.3, pp.279-296, 2011.
DOI : 10.1016/j.cell.2009.03.048

N. Jounai, F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki et al., The Atg5 Atg12 conjugate associates with innate antiviral immune responses, Proceedings of the National Academy of Sciences, vol.104, issue.35, pp.14050-14055, 2007.
DOI : 10.1073/pnas.0704014104

A. K. Jukanti and A. M. Fischer, A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization, Physiologia Plantarum, vol.87, issue.4, pp.426-465, 2008.
DOI : 10.1093/jxb/erh267

A. K. Jukanti, N. M. Heidlebaugh, D. L. Parrott, I. Fischer, K. Mcinnerney et al., Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. The New Phytologist, pp.333-382, 2008.

B. Kassahun, F. R. Bidinger, C. T. Hash, and M. S. Kuruvinashetti, Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines, Euphytica, vol.43, issue.3, pp.351-362, 2009.
DOI : 10.1007/s10681-009-0108-0

T. Kichey, B. Hirel, E. Heumez, F. Dubois, and J. Le-gouis, In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers, Field Crops Research, vol.102, issue.1, pp.22-32, 2007.
DOI : 10.1016/j.fcr.2007.01.002

S. Kim, C. Kwon, J. Lee, and T. Chung, Genes for plant Autophagy: Functions and interactions, Molecules and Cells, vol.12, issue.5, pp.413-436, 2012.
DOI : 10.1007/s10059-012-0098-y

S. Kim, C. Kwon, J. Lee, and T. Chung, Genes for plant Autophagy: Functions and interactions, Molecules and Cells, vol.12, issue.5, pp.413-436, 2012.
DOI : 10.1007/s10059-012-0098-y

K. E. Koch, CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.47, issue.1, 1996.
DOI : 10.1146/annurev.arplant.47.1.509

T. Komatsuda, M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori et al., Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene, Proceedings of the National Academy of Sciences, vol.104, issue.4, pp.1424-1433, 2007.
DOI : 10.1073/pnas.0608580104

R. Koppolu, N. Anwar, S. Sakuma, A. Tagiri, U. Lundqvist et al., Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley, Proceedings of the National Academy of Sciences, vol.110, issue.32, pp.13198-203, 2013.
DOI : 10.1073/pnas.1221950110

C. Kraft, A. Deplazes, M. Sohrmann, and M. Peter, Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease, Nature Cell Biology, vol.313, issue.5, pp.602-1010, 1038.
DOI : 10.1016/0092-8674(86)90384-3

D. Kuzuoglu-ozturk, O. Cebeci-yalcinkaya, B. A. Akpinar, G. Mitou, G. Korkmaz et al., Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response, Planta, vol.16, issue.4, pp.1081-92, 2012.
DOI : 10.1007/s00425-012-1657-3

S. Kwon, . Il, H. J. Cho, J. H. Jung, K. Yoshimoto et al., The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis, The Plant Journal, vol.136, issue.1, pp.151-64, 2010.
DOI : 10.1111/j.1365-313X.2010.04315.x

F. Ladwig, M. Stahl, U. Ludewig, A. Hirner, U. Z. Hammes et al., Siliques Are Red1 from Arabidopsis Acts as a Bidirectional Amino Acid Transporter That Is Crucial for the Amino Acid Homeostasis of Siliques, PLANT PHYSIOLOGY, vol.158, issue.4, pp.1643-55, 2012.
DOI : 10.1104/pp.111.192583

H. Lam, M. Hsieh, and . Coruzzi, Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites inArabidopsis thaliana, The Plant Journal, vol.30, issue.3, pp.345-353, 1998.
DOI : 10.1046/j.1365-313X.1993.t01-16-00999.x

H. Lam, P. Wong, . Chan, . Hk, . Yam et al., Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis, PLANT PHYSIOLOGY, vol.132, issue.2, pp.926-935, 2003.
DOI : 10.1104/pp.103.020123

Y. Lee, E. Kim, Y. Choi, I. Hwang, C. J. Staiger et al., The Arabidopsis Phosphatidylinositol 3-Kinase Is Important for Pollen Development, PLANT PHYSIOLOGY, vol.147, issue.4, pp.1886-97, 2008.
DOI : 10.1104/pp.108.121590

H. D. Lenz, E. Haller, E. Melzer, K. Kober, K. Wurster et al., Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens, The Plant Journal, vol.125, issue.5, pp.818-848, 2011.
DOI : 10.1111/j.1365-313X.2011.04546.x

F. Li and R. D. Vierstra, Autophagy: a multifaceted intracellular system for bulk and selective recycling, Trends in Plant Science, vol.17, issue.9, 2012.
DOI : 10.1016/j.tplants.2012.05.006

P. O. Lim, H. J. Kim, and H. G. Nam, Leaf Senescence, Annual Review of Plant Biology, vol.58, issue.1, pp.115-151, 2007.
DOI : 10.1146/annurev.arplant.57.032905.105316

P. O. Lim, I. C. Lee, J. Kim, H. J. Kim, J. S. Ryu et al., Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf 185 longevity, Journal of Experimental Botany, issue.5, pp.61-1419, 2010.

L. Liu, Y. Zhou, M. W. Szczerba, X. Li, and Y. Lin, Identification and Application of a Rice Senescence-Associated Promoter, PLANT PHYSIOLOGY, vol.153, issue.3, pp.1239-1288, 2010.
DOI : 10.1104/pp.110.157123

Y. Liu and D. C. Bassham, Autophagy: Pathways for Self-Eating in Plant Cells, Annual Review of Plant Biology, vol.63, issue.1, pp.215-252, 2012.
DOI : 10.1146/annurev-arplant-042811-105441

Y. Liu and D. C. Bassham, Autophagy: Pathways for Self-Eating in Plant Cells, Annual Review of Plant Biology, vol.63, issue.1, pp.215-252, 2012.
DOI : 10.1146/annurev-arplant-042811-105441

T. Lundgren-rose, L. Bonneau, C. Der, D. Marty-mazars, and F. Marty, Starvation-induced expression of autophagy-related genes in Arabidopsis, Biology of the Cell, vol.16, issue.1, pp.53-6710, 1042.
DOI : 10.1042/BC20040516

M. C. Maiuri, E. Zalckvar, A. Kimchi, and G. Kroemer, Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nature Reviews Molecular Cell Biology, vol.6, issue.9, pp.741-5210, 1038.
DOI : 10.1038/nrm2239

A. Martin, J. Lee, T. Kichey, D. Gerentes, M. Zivy et al., Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production, THE PLANT CELL ONLINE, vol.18, issue.11, pp.3252-74, 2006.
DOI : 10.1105/tpc.106.042689

D. E. Martínez, C. G. Bartoli, V. Grbic, and J. J. Guiamet, Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors, Journal of Experimental Botany, vol.58, issue.5, pp.1099-107, 2007.
DOI : 10.1093/jxb/erl270

D. E. Martínez, M. L. Costa, and J. J. Guiamet, Senescence-associated degradation of chloroplast proteins inside and outside the organelle, Plant Biology, vol.224, issue.1, 2008.
DOI : 10.1111/j.1438-8677.2008.00089.x

C. Masclaux, M. H. Valadier, N. Brugière, J. F. Morot-gaudry, and B. Hirel, Characterization of the sink/source transition in tobacco ( Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence, Planta, vol.211, issue.4, pp.510-518, 2000.
DOI : 10.1007/s004250000310

C. Masclaux-daubresse, E. Carrayol, and M. Valadier, The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites, Planta, vol.46, issue.4, pp.580-588, 2005.
DOI : 10.1007/s00425-004-1468-2

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Annals of Botany, vol.105, issue.7, pp.1141-57, 2010.
DOI : 10.1093/aob/mcq028

URL : https://hal.archives-ouvertes.fr/hal-01203920

C. Masclaux-daubresse, M. Reisdorf-cren, and M. Orsel, Leaf nitrogen remobilisation for plant development and grain filling, Plant Biology, vol.10, issue.1, 2007.
DOI : 10.1111/j.1438-8677.2008.00097.x

L. P. Matallana-ramirez, M. Rauf, S. Farage-barhom, H. Dortay, G. Xue et al., NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis, Molecular Plant, vol.6, issue.5, pp.1432-5210, 1093.
DOI : 10.1093/mp/sst012

P. Matile, S. Ginsburg, M. Schellenberg, and H. Thomas, Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells, Proceedings of the National Academy of Sciences, vol.85, issue.24, pp.9529-9561, 1988.
DOI : 10.1073/pnas.85.24.9529

P. Matile, H. Stefan, and H. Thomas, Chloroplast to Gerontoplast Transition, pp.67-95, 1999.

S. Mcgregor, Insect Pollination Of Cultivated Crop Plants (p. 849), 1976.

Y. Miao, J. Jiang, Y. Ren, and Z. Zhao, The Single-Stranded DNA-Binding Protein WHIRLY1 Represses WRKY53 Expression and Delays Leaf Senescence in a Developmental Stage-Dependent Manner in Arabidopsis, PLANT PHYSIOLOGY, vol.163, issue.2, pp.746-56, 2013.
DOI : 10.1104/pp.113.223412

Y. Miao, T. Laun, P. Zimmermann, and U. Zentgraf, Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis, Plant Molecular Biology, vol.6, issue.6, pp.853-67, 2004.
DOI : 10.1007/s11103-005-2142-1

S. Mickelson, Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves, Journal of Experimental Botany, vol.54, issue.383, pp.801-812, 2003.
DOI : 10.1093/jxb/erg084

G. Mitou, H. Budak, and D. Gozuacik, Techniques to Study Autophagy in Plants, International Journal of Plant Genomics, vol.4, issue.3, pp.451357-451367, 2009.
DOI : 10.1111/j.1365-313X.2005.02397.x

W. Mitsuhashi and U. Feller, Effects of Light and External Solutes on the Catabolism of Nuclear-Encoded Stromal Proteins in Intact Chloroplasts Isolated from Pea Leaves, PLANT PHYSIOLOGY, vol.100, issue.4, pp.2100-2105, 1992.
DOI : 10.1104/pp.100.4.2100

M. G. Møller, C. Taylor, S. K. Rasmussen, and P. B. Holm, Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.), Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1628, issue.2, pp.123-132, 2003.
DOI : 10.1016/S0167-4781(03)00137-4

B. Moore, L. Zhou, F. Rolland, Q. Hall, W. Cheng et al., Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling, Science, vol.300, issue.5617, pp.300-332, 2003.
DOI : 10.1126/science.1080585

K. Morris, S. Mackerness, T. Page, C. F. John, M. Murphy et al., Salicylic acid has a role in regulating gene expression during leaf senescence, The Plant Journal, vol.13, issue.5, pp.677-85, 2000.
DOI : 10.1105/tpc.10.6.1021

D. B. Munafó and M. I. Colombo, A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation, Journal of Cell Science, vol.114, pp.3619-3648, 2001.

S. K. Nair, N. Wang, Y. Turuspekov, M. Pourkheirandish, S. Sinsuwongwat et al., Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.490-495, 2010.
DOI : 10.1073/pnas.0909097107

H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion, Cell, vol.130, issue.1, 2007.
DOI : 10.1016/j.cell.2007.05.021

N. N. Noda, Y. Ohsumi, and F. Inagaki, Atg8-family interacting motif crucial for selective autophagy, FEBS Letters, vol.14, issue.7, pp.1379-85, 2010.
DOI : 10.1016/j.febslet.2010.01.018

Y. Ohsumi, Molecular dissection of autophagy: two ubiquitin-like systems, Nature Reviews Molecular Cell Biology, vol.2, issue.3, pp.211-217, 2001.
DOI : 10.1038/35056522

M. Orsel, M. Moison, V. Clouet, J. Thomas, F. Leprince et al., Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence, Journal of Experimental Botany, vol.65, issue.14, 2014.
DOI : 10.1093/jxb/eru041

URL : https://hal.archives-ouvertes.fr/hal-01204074

O. Ostersetzer, Y. Kato, Z. Adam, and W. Sakamoto, Multiple Intracellular Locations of Lon Protease in Arabidopsis: Evidence for the Localization of AtLon4 to Chloroplasts, Plant and Cell Physiology, vol.48, issue.6, pp.881-886, 2007.
DOI : 10.1093/pcp/pcm052

S. Park, N. Yi, Y. S. Kim, M. Jeong, S. Bang et al., Analysis of five novel putative constitutive gene promoters in transgenic rice plants, Journal of Experimental Botany, vol.61, issue.9, pp.61-2459, 2010.
DOI : 10.1093/jxb/erq076

D. L. Parrott, J. M. Martin, and A. M. Fischer, Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels, New Phytologist, vol.6, issue.Suppl. 1, pp.313-344, 2010.
DOI : 10.1111/j.1469-8137.2010.03278.x

D. L. Parrott, K. Mcinnerney, U. Feller, and A. M. Fischer, Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. The New Phytologist, pp.56-69, 2007.

D. Parrott, L. Yang, L. Shama, and A. Fischer, Senescence is accelerated, and several proteases are induced by carbon " feast " conditions in barley (Hordeum vulgare L.) leaves. Planta, pp.989-1000, 2005.

H. K. Parzies, F. Schnaithmann, and H. H. Geiger, Pollen viability of Hordeum spp genotypes with different flowering characteristics, Euphytica, vol.11, issue.6, pp.229-235, 2005.
DOI : 10.1007/s10681-005-1167-5

S. Pate and S. Dinesh-kumar, Arabidopsis ATG6 is required to limit the pathogen-associated cell death response, Autophagy, vol.4, issue.1, pp.20-27, 2008.
DOI : 10.4161/auto.5056

S. Paul, A. Kashyap, W. Jia, W. He, and B. Schaefer, Selective Autophagy of the Adaptor Protein Bcl10 Modulates T Cell Receptor Activation of NF-??B, Immunity, vol.36, issue.6, pp.947-958, 2012.
DOI : 10.1016/j.immuni.2012.04.008

A. R. Phillips, A. Suttangkakul, and R. D. Vierstra, The ATG12-Conjugating Enzyme ATG10 Is Essential for Autophagic Vesicle Formation in Arabidopsis thaliana, Genetics, vol.178, issue.3, pp.1339-53086199, 2008.
DOI : 10.1534/genetics.107.086199

M. Pourkheirandish and T. Komatsuda, The Importance of Barley Genetics and Domestication in a Global Perspective, Annals of Botany, vol.100, issue.5, pp.999-1008, 2007.
DOI : 10.1093/aob/mcm139

N. Pourtau, R. Jennings, E. Pelzer, J. Pallas, and A. Wingler, Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis, Planta, vol.99, issue.3, pp.556-68, 2006.
DOI : 10.1007/s00425-006-0243-y

URL : https://hal.archives-ouvertes.fr/hal-00096471

A. Prins, P. D. Van-heerden, E. Olmos, K. J. Kunert, and C. H. Foyer, Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies, Journal of Experimental Botany, vol.59, issue.7, pp.1935-50, 2008.
DOI : 10.1093/jxb/ern086

J. Pyo, S. Yoo, H. Ahn, J. Nah, S. Hong et al., Overexpression of Atg5 in mice activates autophagy and extends lifespan, Nature Communications, vol.32, 2013.
DOI : 10.1038/ncomms3300

G. Qin, Z. Ma, L. Zhang, S. Xing, X. Hou et al., Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development, Cell Research, vol.134, issue.37, pp.249-63, 2007.
DOI : 10.1038/cr.2007.7

V. V. Radchuk, L. Borisjuk, N. Sreenivasulu, K. Merx, H. Mock et al., Spatiotemporal Profiling of Starch Biosynthesis and Degradation in the Developing Barley Grain, PLANT PHYSIOLOGY, vol.150, issue.1, pp.190-204, 2009.
DOI : 10.1104/pp.108.133520

F. Reggiori, M. Komatsu, K. Finley, and A. Simonsen, Selective Types of Autophagy, International Journal of Cell Biology, vol.2012, p.156272, 2012.
DOI : 10.1155/2012/156272

F. Reggiori, K. Tucker, P. E. Stromhaug, and D. J. Klionsky, The Atg1-Atg13 Complex Regulates Atg9 and Atg23 Retrieval Transport from the Pre-Autophagosomal Structure, Developmental Cell, vol.6, issue.1, pp.79-90, 2004.
DOI : 10.1016/S1534-5807(03)00402-7

D. Reid, Morphology and anatomy of the barley plant, Barley, pp.76-101, 1985.

E. J. Reidel, E. Rennie, V. Amiard, L. Cheng, and R. Turgeon, Phloem Loading Strategies in Three Plant Species That Transport Sugar Alcohols, PLANT PHYSIOLOGY, vol.149, issue.3, pp.1601-1609, 2009.
DOI : 10.1104/pp.108.134791

O. Riddle and C. Suneson, Crossing Studies with Male-Sterile Barley1, Agronomy Journal, vol.36, issue.1, pp.62-65, 1944.
DOI : 10.2134/agronj1944.00021962003600010008x

. Ritala, . M. Nuutila, R. Aikasalo, V. Kauppinen, and J. Tammisola, Measuring Gene Flow in the Cultivation of Transgenic Barley, Crop Science, vol.42, issue.1, pp.278-285, 2002.
DOI : 10.2135/cropsci2002.0278

L. Robertson and J. Stark, Idaho spring barley production guide. ? -Idaho Agricultural Experiment Station. Retrieved from http, p.9505735, 1993.

V. Rodriguez, M. Marginedo, J. , G. Isausti, P. Benech-arnold et al., Predicting Preharvest Sprouting Susceptibility in Barley, Agronomy Journal, vol.93, issue.5, pp.1071-1079, 2001.
DOI : 10.2134/agronj2001.9351071x

P. Sabelli and . Larkins, The Development of Endosperm in Grasses, PLANT PHYSIOLOGY, vol.149, issue.1, pp.14-26, 2009.
DOI : 10.1104/pp.108.129437

D. Saisho and K. Takeda, Barley: Emergence as a New Research Material of Crop Science, Plant and Cell Physiology, vol.52, issue.5, pp.724-731, 2011.
DOI : 10.1093/pcp/pcr049

J. H. Schippers, H. Jing, J. Hille, and P. P. Dijkwel, Developmental and Hormonal Control of Leaf Senescence, pp.9-44, 2007.
DOI : 10.1002/9780470988855.ch7

I. Schmalenbach and K. Pillen, Detection and verification of malting quality QTLs using wild barley introgression lines, Theoretical and Applied Genetics, vol.24, issue.8, 2009.
DOI : 10.1007/s00122-009-0991-8

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nature Genetics, vol.52, issue.5, pp.501-610, 1038.
DOI : 10.1104/pp.104.051300

H. Schuhmann and I. Adamska, Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell, Physiologia Plantarum, vol.42, issue.1, 2012.
DOI : 10.1111/j.1399-3054.2011.01533.x

S. Shaid, C. H. Brandts, H. Serve, and I. Dikic, Ubiquitination and selective autophagy, Cell Death and Differentiation, vol.20, issue.1, pp.21-30, 2013.
DOI : 10.1016/j.tcb.2010.12.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524631

M. Shibata, K. Oikawa, K. Yoshimoto, M. Kondo, S. Mano et al., Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in Arabidopsis, The Plant Cell, vol.25, issue.12, pp.4967-83, 2013.
DOI : 10.1105/tpc.113.116947

URL : https://hal.archives-ouvertes.fr/hal-01204154

M. Simons, R. Saha, L. Guillard, G. Clément, P. Armengaud et al., Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling, Journal of Experimental Botany, vol.65, issue.19, pp.1-15, 2014.
DOI : 10.1093/jxb/eru227

URL : https://hal.archives-ouvertes.fr/hal-01204114

R. J. Simpson and M. J. Dalling, Planta Nitrogen Redistribution During Grain Growth in Wheat, pp.447-456, 1981.

G. Sinvany-villalobo, O. Davydov, G. Ben-ari, A. Zaltsman, A. Raskind et al., Expression in Multigene Families, Analysis of Chloroplast and Mitochondrial Proteases, vol.1, pp.135-1336, 2004.

S. Shy, G. Yao, Y. Glozman, R. Levanony, H. Pietrokovski et al., The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants, Journal of Experimental Botany, issue.421, pp.56-2839, 2005.

S. Slavikova, S. Ufaz, T. Avin-wittenberg, H. Levanony, and G. Galili, An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses, Journal of Experimental Botany, vol.59, issue.14, pp.59-4029, 2008.
DOI : 10.1093/jxb/ern244

N. Sreenivasulu and T. Schnurbusch, A genetic playground for enhancing grain number in cereals, Trends in Plant Science, vol.17, issue.2, pp.91-101, 2012.
DOI : 10.1016/j.tplants.2011.11.003

S. Srivalli and R. Khanna-chopra, Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins, Plant Physiology and Biochemistry, vol.47, issue.8, pp.47-663, 2009.
DOI : 10.1016/j.plaphy.2009.03.015

A. Suttangkakul, F. Li, T. Chung, and R. D. Vierstra, The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in Arabidopsis, The Plant Cell, vol.23, issue.10, pp.3761-79, 2011.
DOI : 10.1105/tpc.111.090993

S. Svenning, T. Lamark, K. Krause, and T. Johansen, Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1, Autophagy, vol.1668, issue.9, pp.993-1010, 2011.
DOI : 10.1016/S1360-1385(02)02251-3

B. Sykorová, G. Kuresová, S. Daskalova, M. Trcková, K. Hoyerová et al., Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield, Journal of Experimental Botany, vol.59, issue.2, pp.377-87, 2008.
DOI : 10.1093/jxb/erm319

M. Tegeder, Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement, Journal of Experimental Botany, vol.65, issue.7, pp.1865-78, 2014.
DOI : 10.1093/jxb/eru012

M. Tegeder and D. Rentsch, Uptake and Partitioning of Amino Acids and Peptides, Molecular Plant, vol.3, issue.6, pp.997-1011, 2010.
DOI : 10.1093/mp/ssq047

M. Thoenen, B. Herrmann, and U. Feller, Senescence in wheat leaves: is a cysteine endopeptidase involved in the degradation of the large subunit of Rubisco?, Acta Physiologiae Plantarum, vol.47, issue.4, pp.339-350, 2007.
DOI : 10.1007/s11738-007-0043-4

H. Thomas, Tansley review Senescence, ageing and death of the whole plant, 2011.

H. Thomas, W. G. Morgan, . M. Thomas, and H. J. Ougham, Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis, TAG Theoretical and Applied Genetics, vol.99, issue.1-2, pp.92-9910, 1007.
DOI : 10.1007/s001220051212

H. Thomas and H. Ougham, The stay-green trait, Journal of Experimental Botany, vol.65, issue.14, 2014.
DOI : 10.1093/jxb/eru037

H. Thomas, H. Ougham, P. Canter, and I. Donnison, What stay-green mutants tell us about nitrogen remobilization in leaf senescence, Journal of Experimental Botany, vol.53, issue.370, pp.801-809, 2002.
DOI : 10.1093/jexbot/53.370.801

A. R. Thompson, J. H. Doelling, A. Suttangkakul, and R. D. Vierstra, Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways, PLANT PHYSIOLOGY, vol.138, issue.4, pp.2097-2110, 2005.
DOI : 10.1104/pp.105.060673

A. R. Thompson and R. D. Vierstra, Autophagic recycling: lessons from yeast help define the process in plants, Current Opinion in Plant Biology, vol.8, issue.2, pp.165-73, 2005.
DOI : 10.1016/j.pbi.2005.01.013

F. X. Tian, J. F. Gong, G. P. Wang, G. K. Wang, Z. Y. Fan et al., Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions, Biologia Plantarum, vol.10, issue.3, pp.56-509, 2012.
DOI : 10.1007/s10535-012-0049-7

R. Turgeon and S. Wolf, Phloem Transport: Cellular Pathways and Molecular Trafficking, Annual Review of Plant Biology, vol.60, issue.1, pp.207-228, 2009.
DOI : 10.1146/annurev.arplant.043008.092045

C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat, Science, vol.314, issue.5803, pp.314-1298, 2006.
DOI : 10.1126/science.1133649

B. Ulker, M. Shahid-mukhtar, and I. E. Somssich, The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways, Planta, vol.7, issue.1, pp.125-162, 2007.
DOI : 10.1007/s00425-006-0474-y

S. Ullrich, Barley Production, Improvement and Uses (p. 603) West Sussex, pp.10-1007, 2011.

W. G. Van-doorn, Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels?, Journal of Experimental Botany, vol.59, issue.8, pp.1963-72, 2008.
DOI : 10.1093/jxb/ern076

C. Vanhee, S. Guillon, D. Masquelier, H. Degand, M. Deleu et al., A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast, Journal of Experimental Botany, vol.62, issue.2, pp.497-508, 2011.
DOI : 10.1093/jxb/erq283

V. Bothmer, R. Seberg, O. Jacobsen, and N. , Genetic resources in the Triticeae, Hereditas, vol.106, issue.12, pp.141-150, 1992.
DOI : 10.1111/j.1601-5223.1992.tb00814.x

W. Wang, L. Zhang, S. Xing, Z. Ma, J. Liu et al., Arabidopsis AtVPS15 Plays Essential Roles in Pollen Germination Possibly by Interacting with AtVPS34, Journal of Genetics and Genomics, vol.39, issue.2, pp.81-92, 2012.
DOI : 10.1016/j.jgg.2012.01.002

M. Watanabe, S. Balazadeh, T. Tohge, A. Erban, P. Giavalisco et al., Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis, PLANT PHYSIOLOGY, vol.162, issue.3, pp.1290-310, 2013.
DOI : 10.1104/pp.113.217380

L. M. Weaver and R. M. Amasino, Senescence Is Induced in Individually Darkened Arabidopsis Leaves, but Inhibited in Whole Darkened Plants, PLANT PHYSIOLOGY, vol.127, issue.3, pp.876-886, 2001.
DOI : 10.1104/pp.010312

L. M. Weaver, S. Gan, B. Quirino, and R. M. Amasino, A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment, Plant Molecular Biology, vol.37, issue.3, pp.455-69, 1998.
DOI : 10.1023/A:1005934428906

G. Wiebe and D. Reid, Classification of barley varieties grown in the United States and Canada in 1958, 1961.

A. Wingler, M. Marès, and N. Pourtau, Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence, New Phytologist, vol.116, issue.3, pp.781-789, 2004.
DOI : 10.1111/j.1469-8137.2004.00996.x

A. Wingler, C. Masclaux-daubresse, and A. M. Fischer, Sugars, senescence, and ageing in plants and heterotrophic organisms, Journal of Experimental Botany, vol.60, issue.4, pp.1063-1069, 2009.
DOI : 10.1093/jxb/erp067

H. Winter, G. Lohaus, and H. W. Heldt, Phloem Transport of Amino Acids in Relation to their Cytosolic Levels in Barley Leaves, PLANT PHYSIOLOGY, vol.99, issue.3, pp.996-1004, 1992.
DOI : 10.1104/pp.99.3.996

A. Wu, A. D. Allu, P. Garapati, H. Siddiqui, H. Dortay et al., JUNGBRUNNEN1, a Reactive Oxygen Species-Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis, THE PLANT CELL ONLINE, vol.24, issue.2, pp.482-506, 2012.
DOI : 10.1105/tpc.111.090894

T. Xia, D. Xiao, D. Liu, W. Chai, Q. Gong et al., Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases 193 yield in Arabidopsis, PloS One, vol.7, issue.5, 2012.

Z. Xie and D. J. Klionsky, Autophagosome formation: core machinery and adaptations, Nature Cell Biology, vol.2, issue.10, pp.1102-1111, 2007.
DOI : 10.1016/j.bbrc.2005.10.163

Y. Xiong, A. L. Contento, and D. C. Bassham, AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana, The Plant Journal, vol.13, issue.4, pp.535-581, 2005.
DOI : 10.1111/j.1365-313X.2005.02397.x

N. Xu, X. Gao, X. Y. Zhao, D. Z. Zhu, L. Z. Zhou et al., Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation, Plant Molecular Biology, vol.59, issue.Suppl, pp.251-60, 2011.
DOI : 10.1007/s11103-011-9806-9

J. C. Yang, J. H. Zhang, Z. Q. Wang, Q. S. Zhu, and L. J. Liu, Involvement of abscisic acid and cytokinins in the senescence and remobilisation of carbon reserves in wheat, pp.1621-1631, 2003.

S. Yang, P. J. Seo, H. Yoon, and C. Park, Genes, The Plant Cell, vol.23, issue.6, pp.2155-68, 2011.
DOI : 10.1105/tpc.111.084913

URL : https://hal.archives-ouvertes.fr/hal-00753396

Z. Yang and D. Klionsky, An Overview of the Molecular Mechanism of Autophagy, Curr Top Microbiol Immunol, vol.335, pp.1-32, 2009.
DOI : 10.1007/978-3-642-00302-8_1

Z. Yang and D. Klionsky, Eaten alive: a history of macroautophagy, Nature Cell Biology, vol.7, issue.9, pp.814-822, 2010.
DOI : 10.1038/ncb0910-814

W. Yen, J. E. Legakis, U. Nair, and D. J. Klionsky, Atg27 Is Required for Autophagydependent Cycling of Atg9, pp.581-593, 2007.

K. Yoshimoto, H. Hanaoka, S. Sato, T. Kato, S. Tabata et al., Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy, THE PLANT CELL ONLINE, vol.16, issue.11, pp.2967-2983, 2004.
DOI : 10.1105/tpc.104.025395

K. Yoshimoto, Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni et al., Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2914-2941, 2009.
DOI : 10.1105/tpc.109.068635

A. R. Young, E. Y. Chan, X. W. Hu, R. Köchl, S. G. Crawshaw et al., Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes, Journal of Cell Science, vol.119, issue.18, pp.3888-900, 2006.
DOI : 10.1242/jcs.03172

T. E. Young, J. Giesler-lee, and D. R. Gallie, Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development, The Plant Journal, vol.44, issue.6, pp.910-932, 2004.
DOI : 10.1111/j.1365-313X.2004.02093.x

H. Zavaleta-mancera, B. J. Thomas, H. Thomas, and I. M. Scott, Regreening of senescent Nicotiana leaves: II. Redifferentiation of plastids, Journal of Experimental Botany, vol.50, issue.340, pp.1683-1689, 1999.

A. Zelisko, M. García-lorenzo, G. Jackowski, S. Jansson, and C. Funk, AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence, Proceedings of the National Academy of Sciences of the United States of America, pp.13699-704, 2005.
DOI : 10.1073/pnas.0503472102

U. Zentgraf, T. Laun, and Y. Miao, The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana, European Journal of Cell Biology, vol.89, issue.2-3, 2010.
DOI : 10.1016/j.ejcb.2009.10.014

L. Zhang, Q. Tan, R. Lee, A. Trethewy, Y. Lee et al., Altered Xylem-Phloem Transfer of Amino Acids Affects Metabolism and Leads to Increased Seed Yield and Oil Content in Arabidopsis, THE PLANT CELL ONLINE, vol.22, issue.11, pp.3603-3623, 2010.
DOI : 10.1105/tpc.110.073833

K. Zientara-rytter, J. Lukomska, G. Moniuszko, R. Gwozdecki, P. Surowiecki et al., Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors, Autophagy, vol.5, issue.10, 2011.
DOI : 10.1016/S1360138502022513

D. Zohary, Pulse domestication and cereal domestication: How different are they? Economic Botany, pp.31-34, 1989.
DOI : 10.1007/bf02859322