S. Brevet, S. Tomas, J. Et, L. , and G. , Organe à neurone artificiel et memristor. Brevet Français n o FR 3003062, 2013.

L. Conférences, G. Tomas, J. Boyn, S. Girod, S. Mangalore et al., Silicon Neuron dedicated to Memristive Spiking Neural Networks, 2014 IEEE International Symposium on Circuits and Systems (ISCAS2014), pp.1568-1571, 2014.

L. , G. Tomas, J. Boyn, S. Girod, S. Mangalore et al., Silicon Neuron dedicated to Memristive Spiking Neural Networks, Journée Neurostic 2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093162

L. , G. Tomas, J. Et, S. , and S. , Excitatory and Inhibitory Memristive Synapses for Spiking Neural Networks, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp.1616-1619, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00975440

L. , G. Tomas, J. Et, S. , and S. , Réseau de Neurones Impulsionnels avec Synapses Memristives, Colloque national 2013 du GdR SoC-SiP, 2013.

A. , L. F. Et, N. , and S. B. , Synaptic plasticity: taming the beast, Nature Neuroscience, vol.3, pp.1178-83, 2000.

A. , F. Pleutin, S. Bichler, O. Gamrat, C. Serrano-gotarredona et al., A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing, Advanced Functional Materials, vol.22, issue.3, pp.609-616, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787366

A. , J. V. Boahen, and K. , Learning in silicon: Timing is everything, 2006.

B. , M. Zou, Q. Davison, A. P. Rudolph, M. Bal et al., Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity, International Journal of Neural Systems, vol.16, issue.2, pp.79-97, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00120626

E. J. Basham, P. Et, and D. W. , An analog circuit implementation of a quadratic integrate and fire neuron, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.741-744, 2009.
DOI : 10.1109/IEMBS.2009.5332655

. Neurogrid, A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations, Proceedings of the IEEE, pp.699-716

B. , G. Q. Et, P. , and M. M. , Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type, The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, issue.24, pp.1810464-72, 1998.

B. , M. Barthélémy, A. Grollier, J. Et, M. et al., Dispositif ferroélectrique à résistance ajustable, 2010.

B. , O. Querlioz, D. Thorpe, S. J. Bourgoin, J. Et et al., Extraction of temporally correlated features from dynamic vision sensors with spike-timingdependent plasticity, Neural Networks : the Official Journal of the International Neural Network Society, pp.339-387, 2012.

B. , O. Roclin, D. Gamrat, C. Et, Q. et al., Design exploration methodology for memristor-based spiking neuromorphic architectures with the Xnet event-driven simulator, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.7-12, 2013.

B. , R. Et, G. , and W. , Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, Journal of Neurophysiology, vol.94, issue.5, pp.3637-3679, 2005.

C. , A. Garcia, V. Cherifi, R. O. Bouzehouane, K. Fusil et al., A ferroelectric memristor, Nature Materials, issue.10, pp.11860-11864, 2012.

C. , L. O. Et, K. , and S. M. , Memristive devices and systems, Proceedings of the IEEE, vol.64, issue.2, pp.209-223, 1976.

C. Cire¸san, D. Meier, U. Et, S. , and J. , Multi-column Deep Neural Networks for Image Classification, pp.3642-3649, 2012.

C. , M. Pradhan, L. Et, T. , and S. , Modelling Neural Plasticity with Memristors, IEEE Canadian Review, pp.10-14, 2012.

D. , C. Hasler, P. Minch, A. Et, M. et al., A single-transistor silicon synapse, IEEE Transactions on Electron Devices, issue.11, pp.431972-1980, 1996.

D. , C. Hasler, P. Minch, B. Et, M. et al., A floating-gate MOS learning array with locally computed weight updates, IEEE Transactions on Electron Devices, issue.12, pp.442281-2289, 1997.

F. , S. Annunziato, M. Badoni, D. Salamon, A. Et et al., Spikedriven synaptic plasticity: theory, simulation, VLSI implementation, Neural computation, issue.10, pp.122227-58, 2000.

G. , W. Et, K. , and W. M. , Spiking Neuron Models: Single Neurons, Populations, Plasticity, 2002.

G. , D. Cauwenberghs, G. Et, A. , and A. , Analog VLSI spiking neural network with address domain probabilistic synapses, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems, pp.241-244, 2001.

G. , F. Buhry, L. Lévi, T. Tomas, J. Destexhe et al., Tunable neuromimetic integrated system for emulating cortical neuron models, Frontiers in Neuroscience, vol.5, issue.134, pp.1-12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00684091

H. , T. J. Van, S. , and A. , Silicon implementation of the generalized integrateand-fire neuron model, Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp.108-112, 2011.

H. , J. L. Et, R. , and R. M. , A model of neuronal bursting using three coupled first order differential equations, Proceedings of the Royal Society of London. Series B, pp.22187-102, 1222.

A. L. Hodgkin, H. Et, and A. F. , A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

H. , R. Tero, J. Eschauzier, R. Et, H. et al., A compact powerefficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries, Proceedings of IEEE International Solid-State Circuits Conference -ISSCC '94, pp.244-245, 1994.

I. , G. Linares-barranco, B. Hamilton, T. J. Van, S. et al., Neuromorphic silicon neuron circuits, Frontiers in Neuroscience, vol.5, issue.73, pp.1-23, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00597675

K. , E. R. Schwartz, J. H. Et, J. , and T. , Principles of Neural Science, 2000.

K. , D. Jeyasingh, R. G. Lee, B. Et, W. et al., Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing, Nano Letters, vol.12, issue.5, pp.2179-86, 2012.

K. , D. Jeyasingh, R. G. , Y. , S. Et et al., Low-Energy Robust Neuromorphic Computation Using Synaptic Devices, IEEE Transactions on Electron Devices, issue.12, pp.593489-3494, 2012.

L. , J. Ryckebusch, S. Mahowald, M. A. Et, M. et al., Winner-take-all networks of O(n) complexity, Advances in Neural Information Processing Systems 1, pp.703-711, 1989.

L. Cun and Y. , A learning scheme for asymmetric threshold networks, Proceedings of Cognitiva 85, pp.599-604, 1985.

L. Cun, Y. Bottou, L. Bengio, Y. Et, H. et al., Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.

L. , Y. Zhong, Y. Zhang, J. Xu, L. Wang et al., Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems, Scientific Reports, vol.4, issue.4906, pp.1-7, 2014.

L. , B. Serrano-gotarredona, and T. , Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems, 9th IEEE Conference on Nanotechnology, pp.601-604, 2009.

L. , B. Serrano-gotarredona, and T. , Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses, Nature Precedings, issue.3010, pp.1-4, 2009.

M. , M. Et, D. , and R. , A silicon neuron, Nature, vol.354, issue.6354, pp.515-523, 1991.

M. , S. El-amin, A. Alexander, K. Rajendran, B. Et et al., Novel synaptic memory device for neuromorphic computing, Scientific Reports, pp.4-5333, 2014.

M. , E. Et, G. , and J. , Variability, compensation and homeostasis in neuron and network function, Nature Reviews. Neuroscience, vol.7, issue.7, pp.563-74, 2006.

M. , T. Guyonneau, R. Et, T. , and S. J. , Competitive STDP-based spike pattern learning, Neural Computation, vol.21, issue.5, pp.1259-76, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383703

M. , W. S. Et, P. , and W. , A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.

M. Mihala¸s, S. Et, N. , and E. , A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors, Neural Computation, vol.83, issue.1, pp.704-722, 2009.
DOI : 10.1152/jn.00446.2006

M. , S. Grübl, A. Meier, K. Schemmel, J. Schwartz et al., A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model, Advances in Neural Information Processing Systems, pp.1642-1650, 2010.

N. , J. Arimoto, S. Et, Y. , and S. , An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.

N. , K. Asai, T. Et, H. , and H. , Silicon resonate-and-fire neuron based on the volterra system, Int. Symp. on Nonlinear Theory and its Applications, pp.82-85, 2005.

P. , F. Chen, C. Wang, Z. , Y. et al., Nonvolatile resistive switching memories-characteristics, mechanisms and challenges, Progress in Natural Science: Materials International, pp.1-15, 2010.

P. , S. Kim, H. Choo, M. Noh, J. Sheri et al., RRAM-based synapse for neuromorphic system with pattern recognition function, 2012 International Electron Devices Meeting, pp.10-12, 2012.

P. , J. A. Acha, B. N. Serrano, C. Camunas-mesa, L. Serrano-gotarredona et al., Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition, IEEE Neural Networks Council, pp.609-629, 2010.

P. , J. A. Zhao, B. Serrano, C. Acha, B. N. Serrano-gotarredona et al., Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing?application to feedforward ConvNets, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.11, pp.352706-352725, 2013.

Q. , D. Bichler, O. Dollfus, P. Et, G. et al., Immunity to Device Variations in a Spiking Neural Network With Memristive Nanodevices, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.288-295, 2013.

Q. , D. Dollfus, P. Bichler, O. Et, G. et al., Learning with memristive devices: How should we model their behavior?, IEEE/ACM International Symposium on Nanoscale Architectures, pp.150-156, 2011.

R. , S. Hasler, P. E. Et, G. , and C. , Floating gate synapses with spike-time-dependent plasticity, IEEE Transactions on Biomedical Circuits and Systems, vol.5, issue.3, pp.244-52, 2011.

R. , S. Tomas, J. Bornat, Y. Daouzli, A. Et et al., Neuromimetic ICs with analog cores: an alternative for simulating spiking neural networks, IEEE International Symposium on Circuits and Systems, pp.3355-3358, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161313

R. , D. E. Et, Z. , and D. , Feature discovery by competitive learning, Cognitive Science, vol.9, issue.1, pp.75-112, 1986.

S. , S. Bornat, Y. Tomas, J. , L. Masson et al., A library of analog operators based on the Hodgkin-Huxley formalism for the design of tunable, real-time, silicon neurons, IEEE Transactions on Biomedical Circuits and Systems, vol.5, issue.1, pp.3-19, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00562021

S. , S. Giacco, F. Lombardi, F. Et-de, C. et al., Effects of Poisson noise in a IF model with STDP and spontaneous replay of periodic spatiotemporal patterns, in absence of cue stimulation, Bio Systems, vol.112, issue.3, pp.258-64, 2013.

S. , H. Mayr, C. Stärke, P. Partzsch, J. Cederstroem et al., Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation, Advances in Neural Information Processing Systems 25, pp.1-9, 2012.

S. , K. Kim, I. Jung, S. Jo, M. Park et al., Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device, Nanotechnology, issue.25, p.22254023, 2011.

T. Serrano-gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-barranco, STDP and STDP variations with memristors for spiking neuromorphic learning systems, Frontiers in Neuroscience, vol.7, issue.2, pp.1-15, 2013.
DOI : 10.3389/fnins.2013.00002

S. , S. Sacchetto, D. Leblebici, Y. Et, K. et al., Neuronal spike event generation by memristors, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, pp.1-4, 2012.

S. , P. Steinkraus, D. Et, P. , and J. , Best practices for convolutional neural networks applied to visual document analysis, Seventh International Conference on Document Analysis and Recognition, pp.958-963, 2003.

S. , A. Mcdaid, L. Et, H. , and S. , A compact spike-timing-dependent-plasticity circuit for floating gate weight implementation, Neurocomputing, vol.124, pp.210-217, 2014.

S. , S. Et, A. , and L. F. , Cortical Development and Remapping through Spike Timing-Dependent Plasticity, Neuron, vol.32, issue.2, pp.339-350, 2001.

S. , D. B. Snider, G. S. Stewart, D. R. Et, W. et al., The missing memristor found, Nature, issue.7191, pp.45380-45383, 2008.

S. , A. Cantley, K. D. Bersuker, G. Gilmer, D. C. Vogel et al., Spike-Timing-Dependent Plasticity Using Biologically Realistic Action Potentials and Low-Temperature Materials, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.450-459, 2013.

S. , M. Bichler, O. Hubert, Q. Perniola, L. Sousa et al., Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices. Solid-State Electronics, pp.227-232, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795982

S. , M. Querlioz, D. Bichler, O. Palma, G. Vianello et al., Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses, IEEE Transactions on Electron Devices, issue.7, pp.602402-2409, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871918

T. , C. Lidgey, F. J. Et, H. , and D. , Analogue IC Design: The Current-Mode Approach. IET, The Institution of Engineering and Technology, 1993.

T. , G. G. Et, N. , and S. B. , Hebb and homeostasis in neuronal plasticity, Current Opinion in Neurobiology, vol.10, issue.3, pp.358-364, 2000.

T. , G. G. Et, N. , and S. B. , Homeostatic plasticity in the developing nervous system, Nature Reviews. Neuroscience, vol.5, issue.2, pp.97-107, 2004.

W. , Z. Q. Xu, H. Y. Li, X. H. , Y. et al., Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor, Advanced Functional Materials, issue.13, pp.222759-2765, 2012.

W. , B. Et, H. , and M. E. , Adaptative Switching Circuits, IRE WESCON Convention Record, vol.4, pp.96-104, 1960.

W. , J. H. Et, D. , and P. , Simple Analogue VLSI Circuit of a Cortical Neuron, 13th IEEE International Conference on Electronics, Circuits and Systems, pp.1344-1347, 2006.

W. , J. H. Et, D. , and P. , Compact silicon neuron circuit with spiking and bursting behaviour, Neural Networks : the Official Journal of the International Neural Network Society, vol.21, issue.2-3, pp.524-558, 2008.

W. , J. H. Et, D. , and P. , VLSI circuits implementing computational models of neocortical circuits, Journal of Neuroscience Methods, vol.210, issue.1, pp.93-109, 2012.

W. , Y. , Y. , S. Wong, H. P. Chen et al., AlOx-Based Resistive Switching Device with Gradual Resistance Modulation for Neuromorphic Device Application, pp.4-5, 2012.

W. , W. A. Et, M. , and S. A. , Hitting the memory wall, ACM SIGARCH Computer Architecture News, vol.23, issue.1, pp.20-24, 1995.

W. , M. Et, Y. , and N. , Phase-change materials for rewriteable data storage, Nature Materials, vol.6, issue.11, pp.824-856, 2007.

Y. , H. Garcia, V. Fusil, S. Boyn, S. Marinova et al., Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions, ACS Nano, vol.7, issue.6, pp.5385-90, 2013.

Y. , S. Gao, B. Fang, Z. , Y. et al., A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling, 2012 International Electron Devices Meeting, pp.10-14, 2012.

Y. , S. Wu, Y. Jeyasingh, R. Kuzum, D. Et et al., An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation, IEEE Transactions on Electron Devices, issue.8, pp.582729-2737, 2011.

R. Zamarreño, C. Camuñas, M. , L. A. Pérez-carrasco, J. A. Masquelier et al., On spike-timingdependent-plasticity , memristive devices, and building a self-learning visual cortex, Frontiers in Neuroscience, vol.5, issue.26, 2011.

Z. , A. Et, K. , and H. , High-linearity low-voltage self-cascode class AB CMOS current output stage, IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century, pp.257-260, 2000.