A. Berkessel, H. Gröger, and D. Macmillan, Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, 2006.
DOI : 10.1002/3527604677

J. F. Kennedy, H. Kumar, P. S. Panesar, S. S. Marwaha, R. Goyal et al., Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds, J. Chem. Technol. Biot, issue.6, pp.81-866, 2006.

I. K. Varma, A. Albertsson, R. Rajkhowa, and R. K. Srivastava, Enzyme catalyzed synthesis of polyesters, Progress in Polymer Science, vol.30, issue.10, pp.30-949, 2005.
DOI : 10.1016/j.progpolymsci.2005.06.010

C. Sanchez, H. Arribart, G. Guille, and M. M. , Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Materials, vol.31, issue.4, pp.277-288, 2005.
DOI : 10.1038/nmat1339

URL : https://hal.archives-ouvertes.fr/hal-00077362

M. Baggiolini, Les stades repères dans le développement annuel de la vigne et leur utilisation pratique, Rev.Romande Agric.Vitic.Arboric, issue.8, pp.4-6, 1952.

J. Kennedy, Understanding grape berry development. Practical Winery and Vineyard journal, pp.14-23, 2002.

B. G. Coombe, Distribution of Solutes within the Developing Grape Berry in Relation to Its Morphology, Am. J. Enol. Viticult, vol.38, issue.2, pp.120-127, 1987.

S. Lacampagne, Localisation et caractérisation des tannins dans la pellicule du raisin : Etude de l'impact de l'organisation physico-chimique des parois cellulaires sur la composante tannique, 2010.

B. Winkel-shirley, Biosynthesis of flavonoids and effects of stress, Current Opinion in Plant Biology, vol.5, issue.3, pp.218-223, 2002.
DOI : 10.1016/S1369-5266(02)00256-X

G. Forkmann and W. Heller, 26 -Biosynthesis of Flavonoids, in Comprehensive Natural Products Chemistry, pp.713-748, 1999.

R. A. Dixon and C. L. Steele, Flavonoids and isoflavonoids ??? a gold mine for metabolic engineering, Trends in Plant Science, vol.4, issue.10, pp.394-400, 1999.
DOI : 10.1016/S1360-1385(99)01471-5

U. Lewandowska, K. Szewczyk, E. Hrabec, A. Janecka, and S. Gorlach, Overview of Metabolism and Bioavailability Enhancement of Polyphenols, Journal of Agricultural and Food Chemistry, vol.61, issue.50, pp.61-12183, 2013.
DOI : 10.1021/jf404439b

D. 'archivio, M. Filesi, C. Varì, R. Scazzocchio, B. Masella et al., Bioavailability of the Polyphenols: Status and Controversies, International Journal of Molecular Sciences, vol.11, issue.4, pp.1321-1342, 2010.

D. Chen, K. G. Daniel, D. J. Kuhn, A. Kazi, M. Bhuiyan et al., Green tea and tea polyphenols in cancer prevention, Frontiers in bioscience : a journal and virtual library, pp.2618-2631, 2004.
DOI : 10.2741/1421

E. N. Frankel, J. B. German, J. E. Kinsella, E. Parks, and J. Kanner, Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, pp.341-454, 1993.

V. De-freitas and N. Mateus, Protein/Polyphenol Interactions: Past and Present Contributions. Mechanisms of Astringency Perception, Current Organic Chemistry, vol.16, issue.6, pp.16-724, 2012.
DOI : 10.2174/138527212799958002

J. Golebiowski, S. Fiorucci, M. Adrian-scotto, J. Fernandez-carmona, and S. Antonczak, Molecular Features Underlying the Perception of Astringency as Probed by Molecular Modeling, Molecular Informatics, vol.395, issue.5, pp.410-414, 2011.
DOI : 10.1002/minf.201000165

T. P. Cushnie and A. J. Lamb, Antimicrobial activity of flavonoids, International Journal of Antimicrobial Agents, vol.26, issue.5, pp.343-356, 2005.
DOI : 10.1016/j.ijantimicag.2005.09.002

M. Friedman, Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research, pp.116-134, 2007.

F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar et al., Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health, Biotechnology Journal, vol.512, issue.10, pp.1214-1234, 2007.
DOI : 10.1002/biot.200700084

P. Sarni-manchado and V. M. Cheynier, Les polyphénols en agroalimentaire. Tec & Doc ed. Collection sciences & techniques alimentaires Importance of flavonoids in insect?plant interactions: feeding and oviposition, Phytochemistry, issue.3, pp.56-245, 2001.

L. Porter, Flavans and proanthocyanidins, in The Flavonoids, pp.21-62, 1988.

R. Montealegre, R. Romero-peces, R. , C. Vozmediano, J. L. et al., Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate, Journal of Food Composition and Analysis, vol.19, pp.6-7, 2006.

F. Mattivi, R. Guzzon, U. Vrhovsek, M. Stefanini, and R. Velasco, Metabolite Profiling of Grape:?? Flavonols and Anthocyanins, Journal of Agricultural and Food Chemistry, vol.54, issue.20, pp.54-7692, 2006.
DOI : 10.1021/jf061538c

G. Forkmann, Flavonoids as Flower Pigments: The Formation of the Natural Spectrum and its Extension by Genetic Engineering, Plant Breeding, vol.7, issue.1, pp.1-26, 1991.
DOI : 10.1007/BF00333955

A. K. Ganguly, T. R. Seshadri, and P. Subramanian, A study of leucoanthocyanidins of plants???I, Tetrahedron, vol.3, issue.3, pp.225-229, 1958.
DOI : 10.1016/0040-4020(58)80017-4

H. A. Stafford and H. H. Lester, Enzymic and Nonenzymic Reduction of (+)-Dihydroquercetin to Its 3,4,-Diol, PLANT PHYSIOLOGY, vol.70, issue.3, pp.695-698, 1982.
DOI : 10.1104/pp.70.3.695

E. Haslam, In vino veritas: Oligomeric procyanidins and the ageing of red wines, Phytochemistry, vol.19, issue.12, pp.2577-2582, 1980.

E. Haslam, Symmetry and promiscuity in procyanidin biochemistry, Phytochemistry, vol.16, issue.11, pp.1625-1640, 1977.
DOI : 10.1016/0031-9422(71)85060-4

O. M. Andersen and K. R. Markham, Flavonoids: Chemistry, Biochemistry and Applications, vol.34, 2005.
DOI : 10.1201/9781420039443

B. Winkel-shirley and F. Biosynthesis, A Colorful Model for, Genetics Biochemistry, Cell Biology, and Biotechnology. Plant Physiology, vol.126, issue.2, pp.485-493, 2001.

F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar et al., Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes, Biotechnology Journal, vol.4, issue.10, pp.1235-1249, 2007.
DOI : 10.1002/biot.200700184

J. Ferrer, J. M. Jez, M. E. Bowman, R. A. Dixon, N. et al., Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis, Nat Struct Mol Biol, issue.68, pp.775-784, 1999.

T. T. Dao, H. J. Linthorst, and R. Verpoorte, Chalcone synthase and its functions in plant resistance, Phytochemistry Reviews, vol.40, issue.14, pp.397-412, 2011.
DOI : 10.1007/s11101-011-9211-7

R. A. Bednar and J. R. Hadcock, Purification and characterization of chalcone isomerase from soybeans, J. Biol. Chem, issue.20, pp.263-9582, 1988.

C. Cain, D. Saslowsky, R. Walker, *. Shirley, and B. , Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings, Plant Molecular Biology, vol.35, issue.3, pp.377-381, 1997.
DOI : 10.1023/A:1005846620791

D. K. Owens, K. C. Crosby, J. Runac, B. A. Howard, and B. S. Winkel, Biochemical and genetic characterization of Arabidopsis flavanone 3??-hydroxylase, Plant Physiology and Biochemistry, vol.46, issue.10, pp.46-833, 2008.
DOI : 10.1016/j.plaphy.2008.06.004

H. Wang, W. Fan, H. Li, J. Yang, J. Huang et al., Functional Characterization of Dihydroflavonol-4-Reductase in Anthocyanin Biosynthesis of Purple Sweet Potato Underlies the Direct Evidence of Anthocyanins Function against Abiotic Stresses, PLoS ONE, vol.33, issue.11, p.78484, 2013.
DOI : 10.1371/journal.pone.0078484.s002

D. Xie and R. A. Dixon, Proanthocyanidin biosynthesis ? still more questions than answers? Phytochemistry, pp.2127-2144, 2005.

L. Lepiniec, I. Debeaujon, J. Routaboul, A. Baudry, L. Pourcel et al., GENETICS AND BIOCHEMISTRY OF SEED FLAVONOIDS, Annual Review of Plant Biology, vol.57, issue.1, pp.405-430, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105252

J. Zhao, Y. Pang, and R. A. Dixon, The Mysteries of Proanthocyanidin Transport and Polymerization, PLANT PHYSIOLOGY, vol.153, issue.2, pp.437-443, 2010.
DOI : 10.1104/pp.110.155432

J. Verdier, J. Zhao, I. Torres-jerez, S. Ge, C. Liu et al., MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula Changes in phenolic compounds and related enzymes in young plants of sorghum, Proc Natl Acad Sci Phytochemistry, vol.8, issue.4, pp.743-752, 1969.

B. S. Winkel, . Metabolic, . In, and . Plants, METABOLIC CHANNELING IN PLANTS, Annual Review of Plant Biology, vol.55, issue.1, pp.85-107, 2004.
DOI : 10.1146/annurev.arplant.55.031903.141714

K. C. Crosby, A. Pietraszewska-bogiel, T. W. Gadella-jr, and B. S. Winkel, Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes, FEBS Letters, issue.14, pp.585-2193, 2011.

H. O. Spivey, J. Ovádi, and S. Channeling, Substrate Channeling, Methods, vol.19, issue.2, pp.306-321, 1999.
DOI : 10.1006/meth.1999.0858

H. Sharma, M. J. Landau, M. A. Vargo, K. A. Spasov, A. et al., First Three- Dimensional Structure of Toxoplasma gondii Thymidylate Synthase?Dihydrofolate Reductase: Insights for Catalysis, Interdomain Interactions, and Substrate Channeling, Biochemistry, issue.41, pp.52-7305, 2013.

R. J. Ellis, Macromolecular crowding: obvious but underappreciated, Trends in Biochemical Sciences, vol.26, issue.10, pp.597-604, 2001.
DOI : 10.1016/S0968-0004(01)01938-7

K. A. Nielsen, D. B. Tattersall, P. R. Jones, and B. L. Møller, Metabolon formation in dhurrin biosynthesis, Phytochemistry, vol.69, issue.1, pp.88-98, 2008.
DOI : 10.1016/j.phytochem.2007.06.033

T. Maier, M. Leibundgut, and N. Ban, The Crystal Structure of a Mammalian Fatty Acid Synthase, Science, vol.321, issue.5894, pp.321-1315, 2008.
DOI : 10.1126/science.1161269

I. B. Lomakin, Y. Xiong, and T. A. Steitz, The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together, Cell, vol.129, issue.2, pp.319-351, 2007.
DOI : 10.1016/j.cell.2007.03.013

C. Anselmi, M. Grininger, P. Gipson, and J. D. Faraldo-gómez, Mechanism of Substrate Shuttling by the Acyl-Carrier Protein within the Fatty Acid Mega-Synthase, Journal of the American Chemical Society, vol.132, issue.35, pp.132-12357, 2010.
DOI : 10.1021/ja103354w

K. Jørgensen, A. V. Rasmussen, M. Morant, A. H. Nielsen, N. Bjarnholt et al., Metabolon formation and metabolic channeling in the biosynthesis of plant natural products, Current Opinion in Plant Biology, vol.8, issue.3, pp.280-291, 2005.
DOI : 10.1016/j.pbi.2005.03.014

L. Ralston and O. Yu, Metabolons involving plant cytochrome P450s, Phytochemistry Reviews, vol.8, issue.2-3, pp.459-472, 2006.
DOI : 10.1007/s11101-006-9014-4

I. G. Denisov, T. M. Makris, S. G. Sligar, and I. Schlichting, Structure and Chemistry of Cytochrome P450, Chemical Reviews, vol.105, issue.6, pp.2253-77, 2005.
DOI : 10.1021/cr0307143

E. E. Scott, Y. A. He, M. R. Wester, M. A. White, C. C. Chin et al., An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.100-13196, 2003.
DOI : 10.1073/pnas.2133986100

B. L. Møller and D. Metabolons, Dynamic Metabolons, Science, vol.330, issue.6009, pp.1328-1329, 2010.
DOI : 10.1126/science.1194971

H. Joernvall, B. Persson, M. Krook, S. Atrian, R. Gonzalez-duarte et al., Short-chain dehydrogenases/reductases (SDR), Biochemistry, vol.34, issue.18, pp.34-6003, 1995.
DOI : 10.1021/bi00018a001

U. Oppermann, C. Filling, M. Hult, N. Shafqat, X. Wu et al., Short-chain dehydrogenases/reductases (SDR): the 2002 update, Chemico-Biological Interactions, vol.143, issue.144, pp.143-144, 2003.
DOI : 10.1016/S0009-2797(02)00164-3

U. T. Oppermann, B. Persson, C. Filling, H. H. Jörnvall, and . Weiner, Structure-Function Relationships of SDR Hydroxysteroid Dehydrogenases, Enzymology and Molecular Biology of Carbonyl Metabolism, vol.6, pp.403-415, 1997.
DOI : 10.1007/978-1-4615-5871-2_46

S. T. Rao and M. G. Rossmann, Comparison of super-secondary structures in proteins, Journal of Molecular Biology, vol.76, issue.2, pp.241-256, 1973.
DOI : 10.1016/0022-2836(73)90388-4

J. D. King, N. J. Harmer, A. Preston, C. M. Palmer, M. Rejzek et al., Predicting Protein Function from Structure???The Roles of Short-chain Dehydrogenase/Reductase Enzymes in Bordetella O-antigen Biosynthesis, Journal of Molecular Biology, vol.374, issue.3, pp.374-749, 2007.
DOI : 10.1016/j.jmb.2007.09.055

O. A. Gani, O. A. Adekoya, L. Giurato, F. Spyrakis, P. Cozzini et al., Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases, Biophysical Journal, vol.94, issue.4, pp.94-1412, 2008.
DOI : 10.1529/biophysj.107.111096

P. Petit, T. Granier, B. L. Estaintot, C. Manigand, K. Bathany et al., Crystal Structure of Grape Dihydroflavonol 4-Reductase, a Key Enzyme in Flavonoid Biosynthesis, Journal of Molecular Biology, vol.368, issue.5, pp.368-1345, 2007.
DOI : 10.1016/j.jmb.2007.02.088

URL : https://hal.archives-ouvertes.fr/hal-00170649

E. T. Johnson, S. Ryu, H. Yi, B. Shin, H. Cheong et al., Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase, The Plant Journal, vol.107, issue.3, pp.25-325, 2001.
DOI : 10.1046/j.1365-313x.2001.00962.x

N. Trabelsi, P. Petit, C. Manigand, B. Langlois-d-'estaintot, T. Granier et al., Structural evidence for the inhibition of grape dihydroflavonol 4-reductase by flavonols, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.8, pp.64-883, 2008.
DOI : 10.1107/S0907444908017769

N. Trabelsi, B. Estaintot, G. Sigaud, B. Gallois, and J. Chaudière, Kinetic and binding equilibrium studies of dihydroflavonol 4-reductase from Vitis vinifera and its unusually strong substrate inhibition, Journal of Biophysical Chemistry, vol.02, issue.03, pp.332-344, 2011.
DOI : 10.4236/jbpc.2011.23038

URL : https://hal.archives-ouvertes.fr/hal-00663424

D. R. Gang, H. Kasahara, Z. Xia, K. Vander-mijnsbrugge, G. Bauw et al., Evolution of Plant Defense Mechanisms: RELATIONSHIPS, J Biol Chem, issue.11, pp.274-7516, 1999.

X. Wang, X. He, J. Lin, H. Shao, Z. Chang et al., Crystal Structure of Isoflavone Reductase from Alfalfa (Medicago sativa L.), Journal of Molecular Biology, vol.358, issue.5, pp.358-1341, 2006.
DOI : 10.1016/j.jmb.2006.03.022

C. Maugé, T. Granier, B. L. Estaintot, M. Gargouri, C. Manigand et al., Crystal Structure and Catalytic Mechanism of Leucoanthocyanidin Reductase from Vitis vinifera, Journal of Molecular Biology, vol.397, issue.4, pp.1079-1091, 2010.
DOI : 10.1016/j.jmb.2010.02.002

F. P. Guengerich, Cytochrome P450 and Chemical Toxicology, Chemical Research in Toxicology, vol.21, issue.1, pp.70-83, 2007.
DOI : 10.1021/tx700079z

D. C. Lamb, L. Lei, A. G. Warrilow, G. I. Lepesheva, J. G. Mullins et al., The First Virally Encoded Cytochrome P450, Journal of Virology, vol.83, issue.16, pp.83-8266, 2009.
DOI : 10.1128/JVI.00289-09

V. Cojocaru, K. Balali-mood, M. S. Sansom, W. , and R. C. , Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9, PLoS Computational Biology, vol.15, issue.3, p.1002152, 2011.
DOI : 10.1371/journal.pcbi.1002152.s016

S. Sansen, J. K. Yano, R. L. Reynald, G. A. Schoch, K. J. Griffin et al., Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2, Journal of Biological Chemistry, vol.282, issue.19, pp.282-14348, 2007.
DOI : 10.1074/jbc.M611692200

G. A. Schoch, J. K. Yano, M. R. Wester, K. J. Griffin, C. D. Stout et al., Structure of Human Microsomal Cytochrome P450 2C8: EVIDENCE FOR A PERIPHERAL FATTY ACID BINDING SITE, Journal of Biological Chemistry, vol.279, issue.10, pp.279-9497, 2004.
DOI : 10.1074/jbc.M312516200

J. M. Jez, M. E. Bowman, R. A. Dixon, N. , and J. P. , Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase, Nat Struct Biol, vol.7, issue.9, pp.786-91, 2000.

S. Hur and T. C. Bruice, Enzymes Do What Is Expected (Chalcone Isomerase versus Chorismate Mutase), Journal of the American Chemical Society, vol.125, issue.6, pp.1472-1475, 2003.
DOI : 10.1021/ja0293047

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Hur and T. C. Bruice, The near attack conformation approach to the study of the chorismate to prephenate reaction, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.100-12015, 2003.
DOI : 10.1073/pnas.1534873100

J. J. Ruiz-pernia, E. Silla, and I. Tunon, Enzymatic Effects on Reactant and Transition States. The Case of Chalcone Isomerase, Journal of the American Chemical Society, vol.129, issue.29, pp.129-9117, 2007.
DOI : 10.1021/ja071720+

J. J. Ruiz-pernía, S. Martí, V. Moliner, and I. Tuñón, A Novel Strategy to Study Electrostatic Effects in Chemical Reactions: Differences between the Role of Solvent and the Active Site of Chalcone Isomerase in a Michael Addition, Journal of Chemical Theory and Computation, vol.8, issue.5, pp.1532-1535, 2012.
DOI : 10.1021/ct300064f

J. J. Turnbull, J. Nakajima, R. W. Welford, M. Yamazaki, K. Saito et al., Mechanistic Studies on Three 2-Oxoglutarate-dependent Oxygenases of Flavonoid Biosynthesis: ANTHOCYANIDIN SYNTHASE, FLAVONOL SYNTHASE, AND FLAVANONE 3??-HYDROXYLASE, Journal of Biological Chemistry, vol.279, issue.2, pp.279-1206, 2004.
DOI : 10.1074/jbc.M309228200

K. Saito, M. Kobayashi, Z. Gong, Y. Tanaka, Y. et al., Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma ofPerilla frutescens, The Plant Journal, vol.17, issue.2, pp.181-190, 1999.
DOI : 10.1046/j.1365-313X.1999.00365.x

J. Nakajima, Y. Sato, T. Hoshino, M. Yamazaki, and K. Saito, Mechanistic Study on the Oxidation of Anthocyanidin Synthase by Quantum Mechanical Calculation, Journal of Biological Chemistry, vol.281, issue.30, pp.281-21387, 2006.
DOI : 10.1074/jbc.M600303200

L. Chebil, C. Chipot, F. Archambault, C. Humeau, J. M. Engasser et al., Solubilities Inferred from the Combination of Experiment and Simulation. Case Study of Quercetin in a Variety of Solvents, The Journal of Physical Chemistry B, vol.114, issue.38, pp.114-12308, 2010.
DOI : 10.1021/jp104569k

R. A. Steiner, W. Meyer-klaucke, and B. W. Dijkstra, Functional analysis of the copperdependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin, Biochemistry, issue.25, pp.41-7963, 2002.

S. Fiorucci, J. Golebiowski, D. Cabrol-bass, and S. Antonczak, Oxygenolysis of Flavonoid Compounds: DFT Description of the Mechanism for Quercetin, ChemPhysChem, vol.6, issue.11, pp.1726-1759, 2004.
DOI : 10.1002/cphc.200400186

P. E. Siegbahn, Hybrid DFT Study of the Mechanism of Quercetin 2,3-Dioxygenase, Inorganic Chemistry, vol.43, issue.19, pp.5944-53, 2004.
DOI : 10.1021/ic0498541

S. Fiorucci, J. Golebiowski, D. Cabrol-bass, and S. Antonczak, DFT Study of Quercetin Activated Forms Involved in Antiradical, Antioxidant, and Prooxidant Biological Processes, Journal of Agricultural and Food Chemistry, vol.55, issue.3
DOI : 10.1021/jf061864s

S. Chakraborty and P. K. Biswas, Elucidation of the Mechanistic Pathways of the Hydroxyl Radical Scavenging Reaction by Daidzein Using Hybrid QM/MM Dynamics, The Journal of Physical Chemistry A, vol.116, issue.34, pp.116-8775, 2012.
DOI : 10.1021/jp303543z

V. Deepha, R. Praveena, R. Sivakumar, and K. Sadasivam, Experimental and theoretical investigations on the antioxidant activity of isoorientin from Crotalaria globosa, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.121, issue.121, pp.737-745, 2014.
DOI : 10.1016/j.saa.2013.12.025

C. D. Dana, D. R. Bevan, and B. S. Winkel, Molecular modeling of the effects of mutant alleles on chalcone synthase protein structure, Journal of Molecular Modeling, vol.7, issue.6, pp.905-919, 2006.
DOI : 10.1007/s00894-005-0071-1

K. Fujimoto, M. Hara, H. Yamada, M. Sakurai, A. Inaba et al., Role of the conserved Ser???Tyr???Lys triad of the SDR family in sepiapterin reductase, Chemico-Biological Interactions, vol.130, issue.132, pp.130-1321, 2001.
DOI : 10.1016/S0009-2797(00)00238-6

D. K. Owens, A. B. Alerding, K. C. Crosby, A. B. Bandara, J. H. Westwood et al., Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis, PLANT PHYSIOLOGY, vol.147, issue.3, pp.147-1046, 2008.
DOI : 10.1104/pp.108.117457

P. K. Busk and B. L. Møller, Dhurrin Synthesis in Sorghum Is Regulated at the Transcriptional Level and Induced by Nitrogen Fertilization in Older Plants, PLANT PHYSIOLOGY, vol.129, issue.3, pp.1222-1231, 2002.
DOI : 10.1104/pp.000687

C. Kristensen, M. Morant, C. E. Olsen, C. T. Ekstrom, D. W. Galbraith et al., Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome, Proceedings of the National Academy of Sciences, vol.102, issue.5, pp.102-1779, 2005.
DOI : 10.1073/pnas.0409233102

K. Jensen, S. A. Osmani, T. Hamann, P. Naur, and B. L. Moller, Homology modeling of the three membrane proteins of the dhurrin metabolon: Catalytic sites, membrane surface association and protein???protein interactions, Phytochemistry, vol.72, issue.17, pp.72-2113, 2011.
DOI : 10.1016/j.phytochem.2011.05.001

M. A. Lomize, A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg, OPM: Orientations of Proteins in Membranes database, Bioinformatics, vol.22, issue.5, pp.623-628, 2006.
DOI : 10.1093/bioinformatics/btk023

N. Eswar, B. Webb, M. A. Marti-renom, M. S. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using Modeller, Curr Protoc Bioinformatics, vol.5, p.6, 2006.

M. Zacharias, ATTRACT: Protein-protein docking in CAPRI using a reduced protein model, Proteins: Structure, Function, and Bioinformatics, vol.97, issue.2, pp.252-258, 2005.
DOI : 10.1002/prot.20566

S. Fiorucci and M. Zacharias, Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles, Biophysical Journal, vol.98, issue.9, pp.1921-1951, 2010.
DOI : 10.1016/j.bpj.2009.12.4332

S. Schneider, A. Saladin, S. Fiorucci, C. Prévost, Z. et al., ATTRACT and PTOOLS: Open Source Programs for Protein?Protein Docking #, in T Computational Drug Discovery and Design 2012, pp.221-232

S. K. Ludemann, V. Lounnas, W. , and R. C. , How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms, Journal of Molecular Biology, vol.303, issue.5, pp.303-797, 2000.
DOI : 10.1006/jmbi.2000.4154

A. R. Leach, Molecular Modelling: Principles and Applications, 2001.

Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, Journal of Computational Chemistry, vol.44, issue.16, 1999.
DOI : 10.1002/jcc.10349

M. C. Lee and Y. Duan, Distinguish protein decoys by Using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model, Proteins: Structure, Function, and Bioinformatics, vol.23, issue.3, pp.620-634, 2004.
DOI : 10.1002/prot.10470

D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham-iii et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Computer Physics Communications, vol.91, issue.1-3, pp.1-3, 1995.
DOI : 10.1016/0010-4655(95)00041-D

A. Y. Toukmaji, B. Jr, and J. A. , Ewald summation techniques in perspective: a survey, Computer Physics Communications, vol.95, issue.2-3, pp.2-3, 1996.
DOI : 10.1016/0010-4655(96)00016-1

R. Salomon-ferrer, A. W. Götz, D. Poole, S. Le-grand, and R. C. Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.3878-3888, 2013.
DOI : 10.1021/ct400314y

J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures, The Journal of Chemical Physics, vol.3, issue.5, pp.300-313, 1935.
DOI : 10.1063/1.1749657

G. Torrie and V. J. , Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid, Chemical Physics Letters, vol.28, issue.4, pp.578-581, 1974.
DOI : 10.1016/0009-2614(74)80109-0

G. Torrie and V. J. , Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, vol.23, issue.2, pp.187-199, 1977.
DOI : 10.1016/0021-9991(77)90121-8

B. Roux, The calculation of the potential of mean force using computer simulations, Computer Physics Communications, vol.91, issue.1-3, pp.275-82, 1995.
DOI : 10.1016/0010-4655(95)00053-I

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, Multidimensional free-energy calculations using the weighted histogram analysis method, Journal of Computational Chemistry, vol.61, issue.11, pp.16-1339, 1995.
DOI : 10.1002/jcc.540161104

M. Souaille and B. Ì. Roux, Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations, Computer Physics Communications, vol.135, issue.1, pp.40-57, 2001.
DOI : 10.1016/S0010-4655(00)00215-0

D. Frenkel and S. B. , Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, 2002.
DOI : 10.1063/1.4822570

P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo et al., Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models, Accounts Chem. Res, issue.12, pp.33-889, 2000.

D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.01, pp.24-89, 1928.
DOI : 10.1017/S0305004100011919

V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, pp.126-148, 1930.
DOI : 10.1007/bf01340294

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

Y. Zhao and D. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.103, issue.1-3, pp.1-3, 2008.
DOI : 10.1007/s00214-007-0310-x

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, issue.4, pp.404-409, 2000.
DOI : 10.1093/bioinformatics/16.4.404

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, issue.9, pp.25-1189, 2009.
DOI : 10.1093/bioinformatics/btp033

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672624

R. A. Laskowski, M. W. Macarthur, D. S. Moss, T. , and J. M. , PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

J. C. Gordon, J. B. Myers, T. Folta, V. Shoja, L. S. Heath et al., H++: a server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Research, vol.33, issue.Web Server, pp.33-368, 2005.
DOI : 10.1093/nar/gki464

U. Ryde, Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion, Proteins: Structure, Function, and Genetics, vol.34, issue.1, pp.40-56, 1995.
DOI : 10.1002/prot.340210106

N. Holmberg, U. Ryde, and L. Bulow, Redesign of the coenzyme specificity in L-Lactate dehydrogenase from Bacillus stearothermophilus using site-directed mutagenesis and media engineering, Protein Engineering Design and Selection, vol.12, issue.10, pp.12-851, 1999.
DOI : 10.1093/protein/12.10.851

F. Autenrieth, E. Tajkhorshid, J. Baudry, and Z. Luthey-schulten, Classical force field parameters for the heme prosthetic group of cytochrome c, J Comput Chem, issue.13, pp.25-1613, 2004.

A. Oda, N. Yamaotsu, and S. Hirono, New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models, Journal of Computational Chemistry, vol.21, issue.8, pp.26-818, 2005.
DOI : 10.1002/jcc.20221

K. Shahrokh, A. Orendt, G. S. Yost, and T. E. Cheatham, Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle, Journal of Computational Chemistry, vol.126, issue.Pt 3, pp.119-152, 2012.
DOI : 10.1002/jcc.21922

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, C. et al., Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.25-1157, 2004.
DOI : 10.1002/jcc.20035

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, issue.2, pp.31-455, 2010.
DOI : 10.1002/jcc.21334

F. P. Guengerich and E. M. Isin, Mechanisms of cytochrome P450 reactions, Acta Chimica Slovenica, vol.55, issue.1, p.7, 2008.

B. Meunier, S. P. De-visser, and S. Shaik, Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzyme, ChemInform, vol.104, issue.46, pp.3947-80, 2004.
DOI : 10.1002/chin.200446299

S. Mar-]-?, J. Andrés, V. Moliner, E. Silla, I. Tuñón et al., Conformational equilibrium of chorismate. A QM/MM theoretical study combining statistical simulations and geometry optimisations in gas phase and in aqueous solution, Journal of Molecular Structure: THEOCHEM, vol.632, pp.1-3, 2003.

S. Marti, M. Roca, J. Andres, V. Moliner, E. Silla et al., Theoretical insights in enzyme catalysis, Chem. Soc. Rev., vol.125, issue.2, pp.98-107, 2004.
DOI : 10.1039/B301875J

R. Rajamani, K. J. Naidoo, and J. Gao, Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution, Journal of Computational Chemistry, vol.23, issue.14, pp.24-1775, 2003.
DOI : 10.1002/jcc.10315

J. S. Hub, B. L. De-groot, and D. Van-der-spoel, g_wham???A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates, Journal of Chemical Theory and Computation, vol.6, issue.12, pp.3713-3720, 2010.
DOI : 10.1021/ct100494z

H. Lin and D. Truhlar, QM/MM: what have we learned, where are we, and where do we go from here?, Theoretical Chemistry Accounts, vol.109, issue.2, pp.185-199, 2007.
DOI : 10.1007/s00214-006-0143-z

A. J. Mulholland, Computational enzymology: modelling the mechanisms of biological catalysts: Figure 1, Biochemical Society Transactions, vol.36, issue.1, pp.36-58, 2008.
DOI : 10.1042/BST0360022

W. Han, M. Elstner, K. J. Jalkanen, T. Frauenheim, and S. Suhai, Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and ofN-acetyl-(L-Ala)nN?-methylamide helices in water solution, International Journal of Quantum Chemistry, vol.100, issue.6, pp.78-459, 2000.
DOI : 10.1002/(SICI)1097-461X(2000)78:6<459::AID-QUA7>3.0.CO;2-R

M. Garcia-viloca, C. Alhambra, D. G. Truhlar, and J. Gao, Hydride transfer catalyzed by xylose isomerase: Mechanism and quantum effects, Journal of Computational Chemistry, vol.46, issue.2, pp.177-90, 2003.
DOI : 10.1002/jcc.10154

T. C. Bruice, Some Pertinent Aspects of Mechanism as Determined with Small Molecules, Annual Review of Biochemistry, vol.45, issue.1, pp.331-374, 1976.
DOI : 10.1146/annurev.bi.45.070176.001555

S. D. Schwartz and V. Schramm, Enzymatic transition states and dynamic motion in barrier crossing, Nature Chemical Biology, vol.38, issue.8, p.551, 2009.
DOI : 10.1038/nchembio.202

F. Claeyssens, K. E. Ranaghan, F. R. Manby, J. N. Harvey, and A. J. Mulholland, Multiple highlevel QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization, Chem Commun (Camb), issue.40, pp.2005-5068

J. L. Griffin, M. W. Bowler, N. J. Baxter, K. N. Leigh, H. R. Dannatt et al., Near attack conformers dominate ??-phosphoglucomutase complexes where geometry and charge distribution reflect those of substrate, Proceedings of the National Academy of Sciences, vol.109, issue.18, pp.109-6910
DOI : 10.1073/pnas.1116855109

K. E. Ranaghan, L. Ridder, B. Szefczyk, W. A. Sokalski, J. C. Hermann et al., Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction, Organic & Biomolecular Chemistry, vol.2, issue.7, pp.968-80, 2004.
DOI : 10.1039/b313759g

S. Hur and T. C. Bruice, Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis, J Am Chem Soc, pp.125-5964, 2003.

I. E. Burbulis and B. Shirley, Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.96-12929, 1999.
DOI : 10.1073/pnas.96.22.12929

B. Winkel-shirley, It Takes a Garden. How Work on Diverse Plant Species Has Contributed to an Understanding of Flavonoid Metabolism, PLANT PHYSIOLOGY, vol.127, issue.4, pp.1399-1404, 2001.
DOI : 10.1104/pp.010675

N. E. Smith, W. J. Tie, G. R. Flematti, K. A. Stubbs, B. Corry et al., Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction, The International Journal of Biochemistry & Cell Biology, vol.45, issue.8, pp.45-1878, 2013.
DOI : 10.1016/j.biocel.2013.05.028

L. Lo-conte, C. Chothia, and J. And-janin, The atomic structure of protein-protein recognition sites11Edited by A. R. Fersht, Journal of Molecular Biology, vol.285, issue.5, pp.2177-98, 1999.
DOI : 10.1006/jmbi.1998.2439

R. P. Bahadur and M. Zacharias, The interface of protein-protein complexes: Analysis of contacts and prediction of interactions, Cellular and Molecular Life Sciences, vol.65, issue.7-8, pp.65-72, 2008.
DOI : 10.1007/s00018-007-7451-x

R. A. Laskowski and M. B. Swindells, LigPlot+: Multiple Ligand???Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, vol.51, issue.10, pp.51-2778, 2011.
DOI : 10.1021/ci200227u

I. M. Nooren and J. M. Thornton, Structural Characterisation and Functional Significance of Transient Protein???Protein Interactions, Journal of Molecular Biology, vol.325, issue.5, pp.991-1018, 2003.
DOI : 10.1016/S0022-2836(02)01281-0

R. P. Bahadur, P. Chakrabarti, F. Rodier, and J. And-janin, A Dissection of Specific and Non-specific Protein???Protein Interfaces, Journal of Molecular Biology, vol.336, issue.4, pp.943-55, 2004.
DOI : 10.1016/j.jmb.2003.12.073

D. Hamelberg, J. Mongan, and J. A. And-mccammon, Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules, The Journal of Chemical Physics, vol.120, issue.24, pp.11919-11929, 2004.
DOI : 10.1063/1.1755656

B. J. Soltys, M. Falah, and R. S. Gupta, Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip, J Cell Sci, issue.109, pp.1909-1926, 1996.

A. S. Mahadevi and G. N. Sastry, Cation?? Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chem Rev, vol.113, issue.3, pp.2100-2138, 2012.

C. Grauffel, B. Yang, T. He, M. F. Roberts, A. Gershenson et al., Cation????? Interactions As Lipid-Specific Anchors for Phosphatidylinositol-Specific Phospholipase C, Journal of the American Chemical Society, vol.135, issue.15, pp.135-5740, 2013.
DOI : 10.1021/ja312656v

T. Broemstrup and N. Reuter, How does Proteinase 3 interact with lipid bilayers?, Physical Chemistry Chemical Physics, vol.40, issue.27, pp.12-7487, 2010.
DOI : 10.1039/b924117e

T. Poulos and E. Johnson, Structures of Cytochrome P450 Enzymes, pp.87-114, 2005.

V. Cojocaru, P. J. Winn, W. , and R. C. , The ins and outs of cytochrome P450s, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1770, issue.3, pp.1770-390, 2007.
DOI : 10.1016/j.bbagen.2006.07.005

V. Cojocaru, P. J. Winn, W. , and R. C. , Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9, Current Drug Metabolism, vol.13, issue.2, pp.143-54, 2012.
DOI : 10.2174/138920012798918462

K. Berka, T. Hendrychova, P. Anzenbacher, and M. Otyepka, Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site, The Journal of Physical Chemistry A, vol.115, issue.41, pp.115-156, 2011.
DOI : 10.1021/jp204488j

W. Li, J. Shen, G. Liu, Y. Tang, and T. Hoshino, Exploring coumarin egress channels in human cytochrome p450 2a6 by random acceleration and steered molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics, vol.424, issue.1, pp.271-81, 2011.
DOI : 10.1002/prot.22880

D. Fishelovitch, S. Shaik, H. J. Wolfson, and R. Nussinov, Theoretical Characterization of Substrate Access/Exit Channels in the Human Cytochrome P450 3A4 Enzyme: Involvement of Phenylalanine Residues in the Gating Mechanism, The Journal of Physical Chemistry B, vol.113, issue.39, pp.113-13018, 2009.
DOI : 10.1021/jp810386z

S. K. Lüdemann, V. Lounnas, W. , and R. C. , How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms, Journal of Molecular Biology, vol.303, issue.5, pp.303-797, 2000.
DOI : 10.1006/jmbi.2000.4154

M. M. Gromiha, Influence of cation????? interactions in different folding types of membrane proteins, Biophysical Chemistry, vol.103, issue.3, pp.251-259, 2003.
DOI : 10.1016/S0301-4622(02)00318-6

J. M. Sanderson, Refined models for the preferential interactions of tryptophan with phosphocholines, Organic & Biomolecular Chemistry, vol.39, issue.20, pp.3276-86, 2007.
DOI : 10.1039/b707502b

F. N. Petersen, M. O. Jensen, and C. H. Nielsen, Interfacial Tryptophan Residues: A Role for the Cation-?? Effect?, Biophysical Journal, vol.89, issue.6, pp.3985-96, 2005.
DOI : 10.1529/biophysj.105.061804

P. W. Kuhl, Excess-substrate inhibition in enzymology and high-dose inhibition in pharmacology: a reinterpretation, Biochemical Journal, vol.298, issue.1, pp.298-171, 1994.
DOI : 10.1042/bj2980171

M. C. Reed, A. Lieb, and H. F. Nijhout, The biological significance of substrate inhibition: A mechanism with diverse functions, BioEssays, vol.22, issue.120, pp.422-431, 2010.
DOI : 10.1002/bies.200900167

S. He and L. Lai, Molecular Docking and Competitive Binding Study Discovered Different Binding Modes of Microsomal Prostaglandin E Synthase-1 Inhibitors, Journal of Chemical Information and Modeling, vol.51, issue.12, pp.51-3254, 2011.
DOI : 10.1021/ci200427k

R. Laville, C. Castel, K. Fattarsi, C. Roy, L. Legendre et al., Low sclareol by-product of clary sage concrete: chemical analysis of a waste product of the perfume industry. Flavour Frag, J, issue.2, pp.28-93, 2013.

R. Baron, P. Setny, A. Mccammon, and J. , Water in Cavity?Ligand Recognifon, J. Am. Chem. Soc, issue.34, pp.132-12091, 2010.

D. J. Huggins and B. Tidor, Systematic placement of structural water molecules for improved scoring of protein-ligand interactions, Protein Engineering Design and Selection, vol.24, issue.10, pp.24-777, 2011.
DOI : 10.1093/protein/gzr036

P. Mikulskis, S. Genheden, and U. Ryde, Effect of explicit water molecules on ligand-binding affinities calculated with the MM/GBSA approach, Journal of Molecular Modeling, vol.113, issue.6, pp.20-2273, 2014.
DOI : 10.1007/s00894-014-2273-x