C. Claude and C. Régis, Précis de télédétection : Tome 3, Traitements numériques d'images de télédétection. Presses de l, p.10, 1992.

S. Aurélia, R. Emmanuel, F. Jean-marie, and C. Bernard, Studying relationships between environment and malaria incidence in camopi (french guiana) through the objective selection of buffer-based landscape characterisations, International journal of health geographics, vol.10, issue.1, pp.1-13, 2011.

A. David, Z. Randell, . Cui, G. Anthony, and . Cohn, A spatial logic based on regions and connection, Proceedings 3rd international conference on knowledge representation and reasoning, 1992.

E. Maxj, A formal definition of binary topological relationships In Foundations of Data Organization and Algorithms, Lecture Notes in Computer Science, pp.457-472, 1989.

J. A. Edward, A. Gardel, N. Gratiot, C. Proisy, M. A. Allison et al., The amazon-influenced muddy coast of south america : A review of mud-bank-shoreline interactions, Earth-Science Reviews, vol.103, issue.58, pp.3-4, 2010.

M. France, Utilisation d'images satellites pour l'étude des pollutions atmosphériques liées à des particules, influences de ces particules sur la santé publique, 2001.

E. Roux, A. Venancio, J. Girres, and R. C. , Spatial patterns and eco-epidemiological systems ??? part II: characterising spatial patterns of the occurrence of the insect vectors of Chagas disease based on remote sensing and field data, Geospatial health, vol.6, issue.1, pp.53-64, 2011.
DOI : 10.4081/gh.2011.157

URL : https://hal.archives-ouvertes.fr/ird-01369930

G. Begni, R. Escadafal, D. Fontannaz, A. , and H. Nguyen, La télédétection : Un outil pour le suivi et l'évaluation de la désertification Les dossiers thématiques du CSFD, 2012.

D. Antoine, Apports de la télédétection spatiale de la « couleur de l'océan » à l'océanographie, Océanie, vol.24, issue.2 3, pp.81-150, 1998.

G. Skupinski, D. Binhtran, and C. Weber, Twenty years of land use land cover changes using Spot images serie and spatial metric - The sub-urban Bruche valley (Bas Rhin France), Cybergeo, issue.3, 2009.
DOI : 10.4000/cybergeo.21995

M. Edouard-n-'guessan, F. Bellan, and . Blasco, suivi par télédétection spatiale d'une forêt tropicale humide protégée soumise à des pressions anthropiques, Télédetection, vol.3, issue.5 3, pp.443-456, 2003.

H. Dibi, N. Da, E. Kouakou-n-'guessan, K. Mathieu-egnankou-wadja, and . Affian, Apport de la télédétection au suivi de la déforestation dans le parc national de la marahoué, Télédetection, vol.8, issue.1 3, pp.17-34, 2008.

S. Arnold, W. N. , W. Marcel, S. Simone, G. Amarnath et al., Content-based image retrieval at the end of the early years, IEEE Transactions, vol.22, issue.12 3, p.1349, 1380.

B. James, R. H. Campbell, and . Wynne, Introduction to Remote sensing, Fifth Edition, p.13, 2011.

C. Robert and E. , Calculating the vegetation index faster, Remote Sensing of Environment, vol.34, issue.1, pp.71-73, 1990.

Z. Yong, G. Jay, and N. Shaoxiang, Use of normalized difference built-up index in automatically mapping urban areas from tm imagery, International Journal of Remote Sensing, vol.24, issue.3, pp.583-594, 2003.

J. Thomas, J. , C. Daoyi, C. Michael, L. Fuqin et al., Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans, Remote Sensing of Environment, vol.92, issue.4, pp.475-482, 2004.

H. Robert, M. , S. Karthikeyan, D. Its, and . Hak, Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on SMC, vol.3, issue.6, pp.610-621, 1973.

J. Rogan, J. Franklin, D. Stow, J. Miller, C. Woodcock et al., Mapping land-cover modifications over large areas: A comparison of machine learning algorithms, Remote Sensing of Environment, vol.112, issue.5, pp.2272-2283, 2008.
DOI : 10.1016/j.rse.2007.10.004

L. A. Clark and D. Pregibon, Tree-based models In Statistical Models in S Pacific Grove, California : Wadsworth, pp.377-419, 1192.

A. Gail, S. Carpenter, N. Grossberg, . Markuzon, H. John et al., Fuzzy artmap : A neural network architecture for incremental supervised learning of analog multidimensional maps, Neural Networks IEEE Transactions on, vol.3, issue.5, pp.698-713, 1992.

W. Zhou and A. Troy, An object???oriented approach for analysing and characterizing urban landscape at the parcel level, International Journal of Remote Sensing, vol.69, issue.11, pp.3119-3135, 2008.
DOI : 10.1080/014311600210939

D. Flanders, M. Hall-beyer, and J. Pereverzoff, Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction, Canadian Journal of Remote Sensing, vol.22, issue.4, pp.441-452, 2003.
DOI : 10.5589/m03-006

T. Blaschke, Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.1, pp.2-16, 2010.
DOI : 10.1016/j.isprsjprs.2009.06.004

U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS Journal of Photogrammetry and Remote Sensing, vol.58, issue.3-4, pp.3-4, 2004.
DOI : 10.1016/j.isprsjprs.2003.10.002

M. Mueller, K. Segl, and H. Kaufmann, Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery, Pattern Recognition, vol.37, issue.8, pp.1619-1628, 2004.
DOI : 10.1016/j.patcog.2004.03.001

R. Nock and F. Nielsen, Statistical region merging. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, issue.70, pp.1452-1458, 2004.

G. Hay and G. Castilla, Object-based image analysis : Strengths, weaknesses, opportunities and threats (swot), Proc. 1st Int. Conf. OBIA, pp.4-5, 2006.

B. Naga-jyothi, G. R. Babu, and I. V. Krishna, Object oriented and multi-scale image analysis : Strengths, weaknesses, opportunities and threats-a review, Computer Science, vol.4, issue.9, pp.706-712, 2008.

P. Mhangara and V. Kakembo, An object-based classification and fragmentation analysis of land use and cover change in the keiskamma catchment, eastern cape, south africa, World Applied Sciences Journal, vol.19, issue.7, pp.1018-1029, 2012.

L. Sparfel, F. Gourmelon, and I. L. Berre, approche orientéeobjet de l'occupation des sols en zone côtière, Remote sensing, vol.8, issue.4, pp.237-256, 2008.

M. Oruc, A. Marangoz, and G. Buyuksalih, Comparison of pixel-based and objectoriented classification approaches using landsat-7 etm spectral bands, Proceedings of the ISPRS International Society for Photogrammetry and Remote Sensing 20th congress, pp.1118-1122, 2004.

J. F. Gao-yan, B. H. Mas, Z. Maathuis, P. M. Xiangmin, and . Van-dijk, Comparison of pixel???based and object???oriented image classification approaches???a case study in a coal fire area, Wuda, Inner Mongolia, China, International Journal of Remote Sensing, vol.70, issue.18, pp.4039-4055, 2006.
DOI : 10.1080/01431160010004504

M. Robert, L. G. Haralick, and . Shapiro, Survey : Image segmentation techniques, Computer Vision, Graphics, and Image Processing, vol.29, issue.1, pp.100-132, 1985.

T. Pavlidis, Image Analysis, Annual Review of Computer Science, vol.3, issue.1, pp.121-146, 1988.
DOI : 10.1146/annurev.cs.03.060188.001005

R. Nikhil, S. K. Pal, and . Pal, A review on image segmentation techniques, Pattern Recognition, vol.26, issue.9, pp.1277-1294, 1993.

Y. J. Zhang, Evaluation and comparison of different segmentation algorithms, Pattern Recognition Letters, vol.18, issue.10, pp.963-974, 1997.
DOI : 10.1016/S0167-8655(97)00083-4

H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, Color image segmentation: advances and prospects, Pattern Recognition, vol.34, issue.12, pp.2259-2281, 2001.
DOI : 10.1016/S0031-3203(00)00149-7

A. Carleer, O. Debeir, and E. Wolff, Assessment of Very High Spatial Resolution Satellite Image Segmentations, Photogrammetric Engineering & Remote Sensing, vol.71, issue.11, pp.1285-1294, 2005.
DOI : 10.14358/PERS.71.11.1285

Y. Luren and A. Fritz, Lonnestad Tor, and Grottum Per. A supervised approach to the evaluation of image segmentation methods, CAIP, pp.759-765, 1995.

Z. Hui, F. Jason, E. , G. Sally, and A. , Image segmentation evaluation : A survey of unsupervised methods, Computer Vision and Image Understanding, vol.110, issue.2, pp.260-280, 2008.

M. Borsotti, C. Paola, and S. Raimondo, Quantitative evaluation of color image segmentation results, Pattern Recognition Letters, vol.19, issue.8, pp.741-747, 1998.
DOI : 10.1016/S0167-8655(98)00052-X

D. Martin, A. M. Levine, and . Nazif, Dynamic measurement of computer generated image segmentations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.7, issue.2, pp.155-164, 1985.

J. Cocquerez and S. Philipp-foliguet, Analyse d'images : filtrage et segmentation Autres tirages, Impr. en Belgique), vol.23, p.24, 1995.

C. Rosenberger, Mise en oeuvre d'un système adaptatif de segmentation d'images, Thèse de doctorat en traitement de signal et télécommunication université de Rennes I, p.23, 1999.

D. Martin, A. M. Levine, and . Nazif, Dynamic measurement of computer generated image segmentations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.7, issue.2, pp.155-164, 1985.

S. Chabrier, B. Emile, and C. Rosenberger, Quantitative evaluation of color image segmentation results, Pattern EURASIP Journal on Applied Signal Processing, pp.1-12, 2006.

M. Borsotti, P. Campadelli, and R. Schettini, Quantitative evaluation of color image segmentation results, Pattern Recognition Letters, vol.19, issue.8, pp.741-747, 1998.
DOI : 10.1016/S0167-8655(98)00052-X

S. Chabrier, H. Laurent, E. B. Rosenberger, C. Marche, and P. , A comparative study of supervised evaluation criteria for image segmentation, Proceedings of European Signal Processing Conference, pp.1143-1146, 2004.

L. Vinet, Segmentation et mise en correspondance de régions de paires d'images stéréoscopiques, Thèse de Doctorat, p.24, 1991.

C. Sebastien, E. Bruno, R. Christophe, and L. Helene, Unsupervised performance evaluation of image segmentation, EURASIP Journal on Applied Signal Processing, pp.217-217, 2006.

N. Clinton, A. Holt, J. Scarborough, L. Yan, and P. Gong, Accuracy Assessment Measures for Object-based Image Segmentation Goodness, Photogrammetric Engineering & Remote Sensing, vol.76, issue.3, pp.289-299, 2010.
DOI : 10.14358/PERS.76.3.289

J. Desachy, Connaissances et données exogènes dans l'interprétation d'images satellite : le système expert icare, Caractérisation et suivi des milieux terrestres en régions arides et tropicales, Colloques et Séminaires, pp.397-427, 1991.

G. Forestier, A. Puissant, C. Wemmert, and P. Gançarski, Knowledge-based region labeling for remote sensing image interpretation, Computers, Environment and Urban Systems, vol.36, issue.5, pp.470-480, 2012.
DOI : 10.1016/j.compenvurbsys.2012.01.003

P. Anne, S. David, D. D. , W. Christiane, and G. Pierre, Urban ontology for semantic intergretation of muti-source images In 2nd Workshop Ontologies for urban development : conceptual models for practitioners (Urban Ontologies, pp.17-25, 2007.

D. Sébastien, Construction et classification d'objets à partir d'images de télédétection par une approche itérative guidée par des connaissance du domaine, Thèse de doctorat en informatique, p.26, 2009.

A. Samuel, A. Damien, and P. Christelle, Towards an ontological approach for classifying remote sensing images, Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference on, pp.825-832, 2012.

A. Samuel, P. Christelle, and A. Damien, Towards a semantic interpretation of satellite images by using spatial relations defined in geographic standards, GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services, pp.99-104, 2013.

N. Durand, S. Derivaux, G. Forestier, C. Wemmert, P. Gançarski et al., Ontology-Based Object Recognition for Remote Sensing Image Interpretation, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007), pp.472-479, 2007.
DOI : 10.1109/ICTAI.2007.111

URL : https://hal.archives-ouvertes.fr/hal-01463170

C. Hudelot, J. Atif, and I. Bloch, Fuzzy spatial relation ontology for image interpretation, Fuzzy Sets and Systems, vol.159, issue.15, pp.1929-1951, 2008.
DOI : 10.1016/j.fss.2008.02.011

URL : https://hal.archives-ouvertes.fr/hal-00824590

D. Malerba, F. Esposito, A. Lanza, A. Francesca, A. Lisi et al., Empowering a GIS with inductive learning capabilities: the case of INGENS, Computers, Environment and Urban Systems, vol.27, issue.3, pp.265-281, 2003.
DOI : 10.1016/S0198-9715(02)00024-8

D. Vaz, M. Ferreira, and R. Lopes, Spatial-Yap: A Logic-Based Geographic Information System, Proceedings of the 23rd international conference on Logic programming, ICLP'07, pp.195-208, 2007.
DOI : 10.1007/978-3-540-74610-2_14

D. Vaz, V. S. Costa, and M. Ferreira, Fire! Firing Inductive Rules from Economic Geography for Fire Risk Detection, ILP, pp.238-252, 2010.
DOI : 10.1007/978-3-642-21295-6_27

M. Bayoudh, H. Prade, and G. Richard, Evaluation of analogical proportions through Kolmogorov complexity, Knowledge-Based Systems, vol.29, pp.20-30, 2012.
DOI : 10.1016/j.knosys.2011.06.022

M. Bayoudh, H. Prade, and G. Richard, A Kolmogorov Complexity View of Analogy: From Logical Modeling to Experimentations, Research and Development in Intelligent Systems XXVII, pp.93-106, 2011.
DOI : 10.1007/978-0-85729-130-1_7

A. Colmerauer, . Kanoui, R. Roussel, and . Pasero, Un système de communication homme machine. Rapport de recherche UFR de Luminy université d, p.32, 1993.

S. Muggleton, Inductive logic programming, New Generation Computing, vol.7, issue.1, pp.295-318, 1991.
DOI : 10.1007/BF03037089

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.5312

N. Lavrac and S. Dzeroski, Inductive Logic Programming : Techniques and Applications, p.32, 1994.
DOI : 10.1007/3-540-63514-9

S. Dzeroski and L. Todorovski, Discovering dynamics: From inductive logic programming to machine discovery, Journal of Intelligent Information Systems, vol.29, issue.3, pp.1-20, 1994.
DOI : 10.1007/BF00962824

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.407.6130

S. Muggleton, D. Luc, and . Raedt, Inductive Logic Programming: Theory and methods, The Journal of Logic Programming, vol.19, issue.20, pp.629-679, 1994.
DOI : 10.1016/0743-1066(94)90035-3

URL : http://doi.org/10.1016/0743-1066(94)90035-3

M. Tom and . Mitchell, Generalization as search, Artificial Intelligence, vol.18, issue.2, pp.203-226, 1982.

S. Muggleton, Inverse entailment and progol, New Generation Computing, vol.12, issue.1, pp.245-286, 1995.
DOI : 10.1007/BF03037227

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1630

T. Abudawood, A. Peter, and . Flach, Learning Multi-class Theories in ILP, Proceedings of the 20th international conference on Inductive logic programming, ILP'10, pp.6-13, 2011.
DOI : 10.1007/978-3-642-21295-6_4

B. Dolsak and S. Muggleton, The application of inductive logic programming to finite element mesh design, Inductive Logic Programming, pp.453-472, 1992.

M. Cordier, Sacadeau : A decision-aid system to improve stream-water quality, ERCIM News, vol.61, pp.37-38, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00511099

T. Luu, A. Rusu, V. Walter, B. Linard, L. Poidevin et al., KD4v: comprehensible knowledge discovery system for missense variant, Nucleic Acids Research, vol.40, issue.W1, pp.71-75, 2012.
DOI : 10.1093/nar/gks474

E. S. Burnside, J. Davis, V. S. Costa, I. De-castro-dutra, C. E. Kahn et al., Knowledge discovery from structured mammography reports using inductive logic programming, AMIA 2005 Symposium Proceedings, pp.96-100, 2005.

E. Fromont, M. Cordier, and R. Quiniou, Extraction de connaissances provenant de données multisources pour la caractérisation d'arythmies cardiaques . Revue des Nouvelles Technologies de l'Information RNTI-E-4, pp.25-45, 2005.

A. Srinivasan, S. Muggleton, J. Michael, R. Sternberg, and . King, Theories for mutagenicity: a study in first-order and feature-based induction, Artificial Intelligence, vol.85, issue.1-2, pp.277-299, 1996.
DOI : 10.1016/0004-3702(95)00122-0

J. Santos, H. Nassif, D. Page, S. Muggleton, and M. Sternberg, Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study, BMC Bioinformatics, vol.13, issue.1, pp.162-199, 2012.
DOI : 10.1093/protein/13.2.89

L. Huma, M. Stephen, S. Mike, and J. E. , Multi-class protein fold recognition using large margin logic based divide and conquer learning, Proceedings of the KDD-09 Workshop on Statistical and Relational Learning in Bioinformatics , StReBio '09, pp.22-26, 2009.

A. Amélie and D. Simon, Characterisation of harmony with inductive logic programming, 9th International Society for Music Information Retrieval Conference, p.37, 2008.

J. Goodacre, Inductive Learning of Chess Rules Using Progol, p.37, 1996.

N. Chelghoum, K. Zeitouni, T. Laugier, A. Fiandrino, and L. Loubersac, Fouille de donnees spatiales -approche basee sur la programmation logique inductive, 6 èmes Journées d'Extraction et de Gestion des Connaissances, pp.529-540, 2006.

D. Malerba, F. Esposito, A. Lanza, and F. A. Lisi, Discovering geographic knowledge : The ingens system, Foundations of Intelligent Systems, pp.40-48, 2000.

C. Berardina, L. Francesca, and A. , A nlg-based presentation method for supporting kdd end-users, Foundations of Intelligent Systems, pp.535-543, 2002.

A. Nuno, F. Fonseca, R. Silva, and . Camacho, April -an inductive logic programming system, JELIA, pp.481-484, 2006.

S. Muggleton and C. Feng, Efficient induction of logic programs, New Generation Computing, p.38, 1990.

S. Dzeroski and I. Bratko, Handling noise in inductive logic programming, pp.92-130, 1992.

J. R. Quinlan, Learning logical definitions from relations, Machine Learning, vol.2, issue.3, pp.239-266, 1990.
DOI : 10.1007/BF00117105

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3371

S. Dzeroski, Handling imperfect data in inductive logic programming, Proceedings of the Fourth Scandinavian Conference on Artificial intelligence, SCAI93, pp.111-125, 1993.

M. Pazzani and D. Kibler, The utility of knowledge in inductive learning, Machine Learning, vol.5, issue.1, p.39, 1992.
DOI : 10.1007/BF00993254

W. William and . Cohen, Grammatically biased learning : Learning logic programs using an explicit antecedent description language, Artificial Intelligence, vol.68, issue.2, pp.303-366, 1994.

R. Luc-de, a theory of clausal discovery, Proceedings of the 13th International joint on artificial Intelligence, p.39, 1993.

S. Dzeroski and N. Lavrac, Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL, Proceedings of the 8th International Workshop on Machine Learning, pp.399-402, 1991.
DOI : 10.1016/B978-1-55860-200-7.50082-9

U. Pompe, Restricting the hypothesis space, guiding the search, and handling the redundant information in inductive logic programming, p.39, 1996.

S. Boytcheva and Z. Markov, An algorithm for inducing least generalization under relative implication, Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, pp.322-326, 2002.

L. , R. Bradley, and J. Mooney-raymond, Automated refinement of firstorder horn-clause domain theories, Machine Learning, pp.95-131, 1995.

R. Wirth, Completing logic programs by inverse resolution, Proceedings of 1st international workshop on Machine Learning, pp.239-250, 1989.

C. Sammut, B. Ranan, and . Banerji, Learning concepts by asking questions. Machine learning : An artificial intelligence approach 2, pp.167-192, 1986.

J. Wogulis, A Framework for Improving Efficiency and Accuracy, Proceedings of the sixth international workshop on Machine learning, pp.78-80, 1989.
DOI : 10.1016/B978-1-55860-036-2.50028-X

R. Luc-de, Interactive theory revision : an inductive logic programming approach, p.39, 1992.

J. Kietz and S. Wrobel, Controlling the complexity of learning in logic through syntactic and task-oriented models, Inductive logic programming, pp.335-359, 1992.

S. Muggleton, L. Wray, and . Buntine, Machine Invention of First-order Predicates by Inverting Resolution, Proceedings of the 5th International Conference on Machine Learning, pp.339-352, 1988.
DOI : 10.1016/B978-0-934613-64-4.50040-2

Y. Ehud and . Shapiro, Algorithmic Program DeBugging, p.39, 1983.

S. Tangkitvanich and M. Shimura, Refining a Relational Theory with Multiple Faults in the Concept and Subconcepts, Proceedings of the ninth international workshop on Machine learning, ML92, pp.436-444, 1992.
DOI : 10.1016/B978-1-55860-247-2.50061-9

I. Katsumi, Induction abduction and consequence finding, In Inductive Logic Programming, p.39, 2001.

F. Lang, . Yang, D. Zhao, and . Li, HIERARCHICAL CLASSIFICATION OF POLARIMETRIC SAR IMAGE BASED ON STATISTICAL REGION MERGING, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.147-152, 2012.
DOI : 10.5194/isprsannals-I-7-147-2012

H. T. Li, An efficient multi-scale segmentation for high -resolution remote sensing imagery based on statistical region merging and minimum heterogeneity rule. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal, vol.2, issue.45, pp.67-73, 1999.

J. Cohen, A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, vol.20, issue.1, pp.37-46, 1960.
DOI : 10.1177/001316446002000104

J. V. Anthony and J. M. Garrett, Understanding interobserver agreement : The kappa statistic, Family Medicine, vol.37, pp.360-363, 2005.

G. Debarros, Occupation du sol et dynamique foncière ? bande côtière de la guyane française, Technical report Office National des Forêts (ONF), p.79, 2001.

S. Muggleton, Learning from positive data, Lecture Notes in Computer Science, vol.1314, pp.358-376, 1997.
DOI : 10.1007/3-540-63494-0_65

S. Ryszard and . Michalski, Machine learning : An artificial Intelligence Approach chapter Theory and methodology of inductive learning, pp.110-161, 1983.

L. J. Richard and G. G. Koch, The measurement of observer agreement for categorical data, Biometrics, vol.33, issue.1, pp.159-174, 1977.

A. Gardel and N. Gratiot, A Satellite Image???Based Method for Estimating Rates of Mud Bank Migration, French Guiana, South America, Journal of Coastal Research, vol.214, pp.720-728, 2005.
DOI : 10.2112/03-0100.1

URL : https://hal.archives-ouvertes.fr/insu-00382116

. Samuel, Les ontologies dans les images satellitaires,Interprétation sémantique des images, Thèse de Doctorat, p.102, 2013.

K. Manolis, K. Manos, K. Kostis, N. Charalampos, and S. Michael, Data models and query languages for linked geospatial data, Reasoning Web Semantic Technologies for Advanced Query Answering, pp.290-328, 2012.

E. Clementini, A Conceptual Framework for Modelling Spatial Relations, Thèse de doctorat en informatique INSA Lyon, p.101, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01459695

. Un-fichier-de-connaissances-a-priori, comportant la déclaration des prédicats, des variables, des constantes, la description des objets et des connaissances particulières

L. Commentaires-sont-précédés-d-'un-«-%-», class(c1) % Déclaration des différentes classes. class(c2). class(c3) class(c4) class(c5)

. Surf_num, % La surface de s1 est égale à 672000.89 Surf_Num(s2,19652.50), A>B. % Définition des positions géographiques d'objets

D. Annexe, Régles de classification induites Nous listons dans cet annexe toutes les règles de classification induites par le système inductif Aleph : [1] classeA 0 (A, Espaces verts artificialisés, non agricoles) :-classeA ?3 (A, Espaces verts artificialisés

D. Annexe, Régles de classification induites [75] classeA 0 (A, savanes sèches) :-classeA ?3 (A, savanes sèches)