H. Kroto, A. Allaf, S. Balm, V. L. Kuznetsov, A. Oberlin et al., Who should be given the credit for the discovery of carbon nanotubes? Filamentous growth of carbon through benzene decomposition Helical microtubules of graphitic carbon Single-shell carbon nanotubes of 1-nm diameter Cobant-catalysed growth of carbon nanotubes with single-atomiclayer walls Synthesis of aligned carbon nanotubes Production of carbon nanotubes, Shanov, Kinetics of growing centimeter long carbon nanotube arrays. InTech, pp.162-165, 1976.

M. Cadek, R. Murphy, B. Mccarthy, B. Drury, R. Lahr et al., Optimisation of the arc-discharge production of multi-walled carbon nanotubes, Carbon, vol.40, issue.6, pp.923-928, 2002.
DOI : 10.1016/S0008-6223(01)00221-4

T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-221, 1992.
DOI : 10.1038/358220a0

A. Loiseau and H. Pascard, Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method, Chemical Physics Letters, vol.256, issue.3, pp.246-252, 1996.
DOI : 10.1016/0009-2614(96)00459-9

T. Guo, P. Nikolaev, and A. Thess, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

T. Guo and P. Nikolaev, Self-Assembly of Tubular Fullerenes, The Journal of Physical Chemistry, vol.99, issue.27, pp.10694-10697, 1995.
DOI : 10.1021/j100027a002

M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chemical Physics Letters, vol.278, issue.1-3, pp.102-106, 1997.
DOI : 10.1016/S0009-2614(97)00952-4

D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard et al., Carbon nanotubes: The solar approach, Carbon, vol.36, issue.5-6, pp.5-6, 1998.
DOI : 10.1016/S0008-6223(98)00025-6

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010.
DOI : 10.1166/jnn.2010.2939

M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud et al., Evidence of Sequential Lift in Growth of Aligned Multiwalled Carbon Nanotube Multilayers, Nano Letters, vol.5, issue.12, pp.2394-2402, 2005.
DOI : 10.1021/nl051472k

URL : https://hal.archives-ouvertes.fr/hal-00084691

C. Lee, J. Park, Y. Huh, and J. Y. Lee, Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chemical Physics Letters, vol.343, issue.1-2, pp.33-38, 2001.
DOI : 10.1016/S0009-2614(01)00680-7

S. Fan, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, Science, vol.283, issue.5401, pp.512-514, 1999.
DOI : 10.1126/science.283.5401.512

J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek et al., Methods for carbon nanotubes synthesis???review, Journal of Materials Chemistry, vol.52, issue.40, p.15872, 2011.
DOI : 10.1016/j.carbon.2011.02.017.

T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno et al., Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature Nanotechnology, vol.3, issue.2, pp.131-137, 2006.
DOI : 10.1038/nnano.2006.95

T. Somanathan, J. Dijon, A. Fournier, and H. Okuno, Effective Supergrowth of Vertical Aligned Carbon Nanotubes at Low Temperature and Pressure, Journal of Nanoscience and Nanotechnology, vol.14, issue.3
DOI : 10.1166/jnn.2014.8504

Q. Zhang, W. Zhou, W. Qian, R. Xiang, J. Huang et al., Synchronous Growth of Vertically Aligned Carbon Nanotubes with Pristine Stress in the Heterogeneous Catalysis Process, The Journal of Physical Chemistry C, vol.111, issue.40, pp.14638-14643, 2007.
DOI : 10.1021/jp073218h

M. Pinault, M. Mayne-l-'hermite, C. Reynaud, O. Beyssac, J. N. Rouzaud et al., Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects, Diamond and Related Materials, vol.13, issue.4-8, pp.1266-1269, 2004.
DOI : 10.1016/j.diamond.2003.12.015

URL : https://hal.archives-ouvertes.fr/hal-00085009

C. Castro, M. Pinault, S. Coste-leconte, D. Porterat, N. Bendiab et al., Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition, Carbon, vol.48, issue.13, pp.3807-3816, 2010.
DOI : 10.1016/j.carbon.2010.06.045

URL : https://hal.archives-ouvertes.fr/hal-00515587

B. Krause, T. Villmow, R. Boldt, M. Mende, G. Petzold et al., Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites, Composites Science and Technology, vol.71, issue.8, pp.1145-1153, 2011.
DOI : 10.1016/j.compscitech.2011.04.004

URL : https://hal.archives-ouvertes.fr/hal-00753181

Q. Zhang, J. Huang, M. Zhao, W. Qian, and F. Wei, Modulating the diameter of carbon nanotubes in array form via??floating catalyst chemical vapor deposition, Applied Physics A, vol.19, issue.4, pp.853-860, 2008.
DOI : 10.1007/s00339-008-4904-5

Y. Wang and J. T. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors, Journal of Sensors, vol.12, issue.3, pp.1-24, 2009.
DOI : 10.1109/LED.2005.851095

R. De-villoria, L. Ydrefors-53rd, and A. Structures, Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference<BR>20th AIAA/ASME/AHS Adaptive Structures Conference<BR>14th AIAA, pp.3-10, 2012.
DOI : 10.2514/6.2012-1566

J. Xu and T. S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays, International Journal of Heat and Mass Transfer, vol.49, issue.9-10, pp.9-10, 2006.
DOI : 10.1016/j.ijheatmasstransfer.2005.09.039

G. Overney, W. Zhong, and D. Tomanek, Structural rigidity and low frequency vibrational modes of long carbon tubules, Zeitschrift f???r Physik D Atoms, Molecules and Clusters, vol.358, issue.1
DOI : 10.1007/BF01436769

B. Yakobson, C. Brabec, and J. Berhnolc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, vol.76, issue.14, pp.2511-2514, 1996.
DOI : 10.1103/PhysRevLett.76.2511

Y. Jin and F. G. Yuan, Simulation of elastic properties of single-walled carbon nanotubes, Composites Science and Technology, vol.63, issue.11, pp.1507-1515, 2003.
DOI : 10.1016/S0266-3538(03)00074-5

J. P. Lu, Elastic properties of single and multilayered nanotubes, Journal of Physics and Chemistry of Solids, vol.58, issue.11
DOI : 10.1016/S0022-3697(97)00045-0

J. Zang, Q. Yuan, F. Wang, and Y. Zhao, A comparative study of Young???s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations, Computational Materials Science, vol.46, issue.3, pp.621-625, 2009.
DOI : 10.1016/j.commatsci.2009.04.007

C. Li and T. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, vol.63, issue.11, pp.1517-1524, 2003.
DOI : 10.1016/S0266-3538(03)00072-1

M. Treacy, T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, issue.6584, pp.678-680, 1996.
DOI : 10.1038/381678a0

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, vol.277, issue.5334, pp.1971-1975, 1997.
DOI : 10.1126/science.277.5334.1971

J. Salvetat, A. Kulik, and J. Bonard, Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes, Advanced Materials, vol.11, issue.2, pp.161-165, 1999.
DOI : 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J

M. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.637-640, 2000.
DOI : 10.1126/science.287.5453.637

K. T. Kashyap and R. G. , On Young???s modulus of multi-walled carbon nanotubes, Bulletin of Materials Science, vol.381, issue.2, pp.185-187, 2008.
DOI : 10.1007/s12034-008-0032-2

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. Yianilos, and M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.14013-14019, 1998.
DOI : 10.1103/PhysRevB.58.14013

M. Yu, B. Files, S. Arepalli, and R. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, pp.5552-5555, 2000.
DOI : 10.1103/PhysRevLett.84.5552

G. Yamamoto, K. Shirasu, Y. Nozaka, Y. Sato, T. Takagi et al., Structure???property relationships in thermally-annealed multi-walled carbon nanotubes, Carbon, vol.66, pp.219-226, 2014.
DOI : 10.1016/j.carbon.2013.08.061

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun-'ko, Small but strong: A review of the mechanical properties of carbon nanotube???polymer composites, Carbon, vol.44, issue.9, pp.1624-1652, 2006.
DOI : 10.1016/j.carbon.2006.02.038

K. Song, Y. Zhang, J. Meng, E. Green, N. Tajaddod et al., Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing???Structure???Performance Relationship, Materials, vol.6, issue.6, pp.2543-2577, 2013.
DOI : 10.3390/ma6062543

K. Ryan, M. Cadek, V. Nicolosi, D. Blond, M. Ruether et al., Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol), Composites Science and Technology, vol.67, issue.7-8, pp.7-8, 2007.
DOI : 10.1016/j.compscitech.2006.07.006

E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Letters, vol.6, issue.1, pp.96-100, 2006.
DOI : 10.1021/nl052145f

P. R. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures, Journal of Nanoscience and Nanotechnology, vol.7, issue.4, pp.1239-1267, 2007.
DOI : 10.1166/jnn.2007.307

B. Q. Wei, R. Vajtai, and P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-1174, 2001.
DOI : 10.1063/1.1396632

G. Whitesides and C. Weisbecker, Measurements of the Conductivity of Individual 10 Nm Carbon Nanotubes, MRS Proceedings, vol.8, pp.263-268, 1994.
DOI : 10.1063/1.353358

X. Zou, H. Abe, T. Shimizu, and A. Ando, Electrical measurement on individual multi-walled carbon nanotubes, Transactions of Nonferrous Metals Society of China, vol.16, pp.772-775, 2006.
DOI : 10.1016/S1003-6326(06)60298-7

C. Laurent, E. Flahaut, and A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, vol.48, issue.10, pp.2994-2996, 2010.
DOI : 10.1016/j.carbon.2010.04.010

F. Grillard, C. Jaillet, C. Zakri, P. Miaudet, A. Derré et al., Conductivity and percolation of nanotube based polymer composites in extensional deformations, Polymer, vol.53, issue.1, pp.183-187, 2012.
DOI : 10.1016/j.polymer.2011.11.020

URL : https://hal.archives-ouvertes.fr/hal-00697741

S. Berber, Y. Kwon, and D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.84, issue.20, pp.4613-4616, 2000.
DOI : 10.1103/PhysRevLett.84.4613

P. Kim, L. Shi, P. Majumdar, and . Mceuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, p.215502, 2001.
DOI : 10.1103/PhysRevLett.87.215502

J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. Zinn et al., Measurement of the Intrinsic Thermal Conductivity of a Multiwalled Carbon Nanotube and Its Contact Thermal Resistance with the Substrate, Small, vol.18, issue.16, pp.2334-2340, 2011.
DOI : 10.1002/smll.201100429

J. S. Taurozzi, V. Hackley, and M. R. Wiesner, Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment ??? issues and recommendations, Nanotoxicology, vol.104, issue.2, pp.711-740, 2011.
DOI : 10.1021/ja910675v

S. Dölle, E. Enz, G. Förster, and J. Lagerwall, Liquid crystals from Carbon Nanotubes, pp.1-4

S. Wang, R. Liang, B. Wang, and C. Zhang, Dispersion and thermal conductivity of carbon nanotube composites, Carbon, vol.47, issue.1, pp.53-57, 2009.
DOI : 10.1016/j.carbon.2008.08.024

F. Hennrich, R. Krupke, K. Arnold, J. , R. Stütz et al., The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.111, issue.8, pp.1932-1939, 2007.
DOI : 10.1021/jp065262n

A. Lucas, C. Zakri, M. Maugey, M. Pasquali, P. Van-der et al., Kinetics of Nanotube and Microfiber Scission under Sonication, The Journal of Physical Chemistry C, vol.113, issue.48
DOI : 10.1021/jp906296y

URL : https://hal.archives-ouvertes.fr/hal-00487837

Y. Huang, S. Ahir, and E. Terentjev, Dispersion rheology of carbon nanotubes in a polymer matrix, Physical Review B, vol.73, issue.12, p.125422, 2006.
DOI : 10.1103/PhysRevB.73.125422

F. Qian and . Wei, Fluffy carbon nanotubes produced by shearing vertically aligned carbon nanotube arrays, Carbon, vol.47, issue.2, pp.538-541, 2009.

P. Ma, N. Siddiqui, G. Marom, and J. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing, vol.41, issue.10, pp.1345-1367, 2010.
DOI : 10.1016/j.compositesa.2010.07.003

J. Lee, M. Kim, C. K. Hong, and S. E. Shim, Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents, Measurement Science and Technology, vol.18, issue.12, pp.3707-3712, 2007.
DOI : 10.1088/0957-0233/18/12/005

I. Jeon, D. W. Chang, N. A. Kumar, and J. Baek, Functionalization of Carbon Nanotubes, Carbon Nanotubes -Polymer Nanocomposites, Siva Yellampalli, 2011.
DOI : 10.5772/18396

Z. Zhao, Z. Yang, Y. Hu, J. Li, and X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups, Applied Surface Science, vol.276
DOI : 10.1016/j.apsusc.2013.03.119

G. Lamanna, A. Battigelli, C. Ménard-moyon, and A. Bianco, Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications, Nanotechnol. Rev, vol.1, issue.1, pp.17-29, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00715911

P. C. Ma, J. Kim, and B. Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent, Carbon, vol.44, issue.15, pp.3232-3238, 2006.
DOI : 10.1016/j.carbon.2006.06.032

M. A. Hamon, H. Hui, P. Bhowmik, H. M. Itkis, and R. C. Haddon, Esterfunctionalized soluble single-walled carbon nanotubes

H. Tahermansouri, Y. Aryanfar, and E. Biazar, Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells, Bulletin of the Korean Chemical Society, vol.34, issue.1
DOI : 10.5012/bkcs.2013.34.1.149

P. Liu, Modifications of carbon nanotubes with polymers, European Polymer Journal, vol.41, issue.11, pp.2693-2703, 2005.
DOI : 10.1016/j.eurpolymj.2005.05.017

K. Kamarás, Á. Pekker, and B. Botka, Effect of ionic and covalent defects on the properties of transparent carbon nanotube films, IOP Conf. Ser. Mater
DOI : 10.1088/1757-899X/15/1/012002

M. D. Clark, S. Subramanian, and R. Krishnamoorti, Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes, Journal of Colloid and Interface Science, vol.354, issue.1
DOI : 10.1016/j.jcis.2010.10.027

. Colloid-interface and . Sci, enhanced dispersion of carbon nanotubes in DNA solutions, Chemphyschem, vol.354, issue.10 14, pp.144-51, 2009.

K. Yurekli, C. Mitchell, and R. Krishnamoorti, Small-Angle Neutron Scattering from Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes, Journal of the American Chemical Society, vol.126, issue.32
DOI : 10.1021/ja047451u

S. Aldrich, Detergents Properties and Applications Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Detergents +Properties+and+Applications#5, p.14, 2009.

K. Barut, F. Ari, and F. Öner, Development and Characterization of a Cationic Emulsion Formulation as a Potential pDNA Carrier System, Turkish J. Chem, vol.29, pp.27-40, 2005.

C. Klammt, D. Schwarz, K. Fendler, W. Haase, V. Dötsch et al., Evaluation of detergents for the soluble expression of ??-helical and ??-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system, FEBS Journal, vol.263, issue.23, pp.6024-6062, 2005.
DOI : 10.1111/j.1742-4658.2005.05002.x

B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler et al., Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, Science, vol.290, issue.5495, pp.1331-1334, 2000.
DOI : 10.1126/science.290.5495.1331

B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler et al., A simple method to make carbon nanotubes fibers, AIP Conference Proceedings
DOI : 10.1063/1.1426932

J. M. Razal, J. N. Coleman, E. Muñoz, B. Lund, Y. Gogotsi et al., Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers, Advanced Functional Materials, vol.76, issue.15, pp.2918-2924, 2007.
DOI : 10.1002/adfm.200700210

M. Lewin and E. , Handbook of Fiber Chemistry, Third edit, p.1056, 2006.

X. Zhang, T. Liu, T. V. Sreekumar, S. Kumar, X. Hu et al., Gel spinning of PVA/SWNT composite fiber, Polymer, vol.45, issue.26, pp.8801-8807, 2004.
DOI : 10.1016/j.polymer.2004.10.048

J. Meng, Y. Zhang, K. Song, and M. L. Minus, Forming Crystalline Polymer-Nano Interphase Structures for High-Modulus and High-Tensile/Strength Composite Fibers, Macromolecular Materials and Engineering, vol.79, issue.2, 2013.
DOI : 10.1002/mame.201300025

V. Sa and K. G. Kornev, A method for wet spinning of alginate fibers with a high concentration of single-walled carbon nanotubes, Carbon, vol.49, issue.6, pp.1859-1868, 2011.
DOI : 10.1016/j.carbon.2011.01.008

J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, and M. Holzinger, Production of pure nanotube fibers using a modified wet-spinning method, Carbon, vol.43, issue.11, pp.2397-2429, 2005.
DOI : 10.1016/j.carbon.2005.03.047

M. E. Kozlov, R. C. Capps, W. M. Sampson, V. H. Ebron, J. P. Ferraris et al., Spinning Solid and Hollow Polymer-Free Carbon Nanotube Fibers, Advanced Materials, vol.350, issue.5, pp.614-617, 2005.
DOI : 10.1002/adma.200401130

F. Fourné, Synthetic fibers : machines and equipment, manufacture, properties : handbook for plant engineering, machine design, and operation, 1999.

P. Xue, K. H. Park, X. M. Tao, W. Chen, and X. Y. Cheng, Electrically conductive yarns based on PVA/carbon nanotubes, Composite Structures, vol.78, issue.2, pp.271-277, 2007.
DOI : 10.1016/j.compstruct.2005.10.016

C. Mercader, Filage continu de fibres de nanotubes de carbone : de la solidification aux propriétés finales, 2010.

G. Park, Y. Jung, G. Lee, J. P. Hinestroza, and Y. Jeong, Carbon nanotube/poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning, Fibers and Polymers, vol.288, issue.7, pp.874-879, 2012.
DOI : 10.1007/s12221-012-0874-5

L. M. Ericson, H. Fan, H. Peng, V. Davis, W. Zhou et al., Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers, Science, vol.305, issue.5689, pp.1447-50, 2004.
DOI : 10.1126/science.1101398

J. Otto and M. Pasquali, Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science, vol.339, issue.6116, pp.182-188, 2013.

S. Zhang, K. K. Koziol, I. Kinloch, and A. H. Windle, Macroscopic Fibers of Well-Aligned Carbon Nanotubes by Wet Spinning, Small, vol.41, issue.8, pp.1217-1239, 2008.
DOI : 10.1002/smll.200700998

K. Jiang, Q. Li, and S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns, Nature, vol.87, issue.6909, p.801, 2002.
DOI : 10.1126/science.1062340

K. R. Atkinson, S. C. Hawkins, C. Huynh, C. Skourtis, J. Dai et al., Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications, Physica B: Condensed Matter, vol.394, issue.2, pp.339-343, 2007.
DOI : 10.1016/j.physb.2006.12.061

C. P. Huynh and S. C. Hawkins, Understanding the synthesis of directly spinnable carbon nanotube forests, Carbon, vol.48, issue.4, pp.1105-1115, 2010.
DOI : 10.1016/j.carbon.2009.11.032

Q. W. Li, X. F. Zhang, R. F. Depaula, L. X. Zheng, Y. H. Zhao et al., Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning, Advanced Materials, vol.109, issue.23, pp.3160-3163, 2006.
DOI : 10.1002/adma.200601344

C. Zhu, C. Cheng, Y. H. He, L. Wang, T. L. Wong et al., A self-entanglement mechanism for continuous pulling of carbon nanotube yarns, Carbon, vol.49, issue.15, pp.4996-5001, 2011.
DOI : 10.1016/j.carbon.2011.07.014

C. P. Huynh, S. C. Hawkins, M. Redrado, S. Barnes, D. Lau et al., Evolution of directly-spinnable carbon nanotube growth by recycling analysis, Carbon, vol.49, issue.6, pp.1989-1997, 2011.
DOI : 10.1016/j.carbon.2011.01.024

A. Fallah-gilvaei, K. Hirahara, and Y. Nakayama, In-situ study of the carbon nanotube yarn drawing process, Carbon, vol.49, issue.14, pp.4928-4935, 2011.
DOI : 10.1016/j.carbon.2011.07.017

S. Zhang, L. Zhu, M. L. Minus, H. G. Chae, S. Jagannathan et al., Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition, Journal of Materials Science, vol.51, issue.13, pp.4356-4362, 2008.
DOI : 10.1007/s10853-008-2558-5

Y. Zhang, G. Zou, S. K. Doorn, H. Htoon, L. Stan et al., Tailoring the Morphology of Carbon Nanotube Arrays: From Spinnable Forests to Undulating Foams, ACS Nano, vol.3, issue.8, pp.2157-62, 2009.
DOI : 10.1021/nn9003988

X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang et al., Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays, Advanced Materials, vol.283, issue.12, pp.1505-1510, 2006.
DOI : 10.1002/adma.200502528

Q. Zhang, D. Wang, J. Huang, W. Zhou, G. Luo et al., Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method, Carbon, vol.48, issue.10
DOI : 10.1016/j.carbon.2010.04.017

K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu et al., Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications, Advanced Materials, vol.7, issue.9, pp.1154-1161, 2011.
DOI : 10.1002/adma.201003989

H. Peng, X. Sun, and T. Chen, Polymer Composites with Carbon Nanotubes in Alignment, 2010.
DOI : 10.5772/16997

Y. Inoue, Y. Suzuki, Y. Minami, J. Muramatsu, Y. Shimamura et al., Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs, Carbon, vol.49, issue.7, pp.2437-2443, 2011.
DOI : 10.1016/j.carbon.2011.02.010

A. Kuznetsov, A. F. Fonseca, R. H. Baughman, and A. Zakhidov, Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests, ACS Nano, vol.5, issue.2, pp.985-93, 2011.
DOI : 10.1021/nn102405u

Y. Li, I. Kinloch, and A. H. Windle, Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, Science, vol.304, issue.5668, pp.276-284, 2004.
DOI : 10.1126/science.1094982

H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai et al., Direct Synthesis of Long Single-Walled Carbon Nanotube Strands, Science, vol.296, issue.5569, pp.884-890, 2002.
DOI : 10.1126/science.1066996

X. Xu, A. J. Uddin, K. Aoki, Y. Gotoh, T. Saito et al., Fabrication of high strength PVA/SWCNT composite fibers by gel spinning, Carbon, vol.48, issue.7, pp.1977-1984, 2010.
DOI : 10.1016/j.carbon.2010.02.004

V. Mottaghitalab, G. M. Spinks, and G. G. Wallace, The development and characterisation of polyaniline???single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process, Polymer, vol.47, issue.14, pp.4996-5002, 2006.
DOI : 10.1016/j.polymer.2006.05.037

A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron et al., Super-tough carbon-nanotube fibres, Nature, vol.423, issue.6941, p.703, 2003.
DOI : 10.1038/423703a

M. L. Minus, H. G. Chae, and S. Kumar, Interfacial Crystallization in Gel-Spun Poly(vinyl alcohol)/Single-Wall Carbon Nanotube Composite Fibers, Macromolecular Chemistry and Physics, vol.49, issue.21
DOI : 10.1002/macp.200900223

K. Young, F. M. Blighe, J. J. Vilatela, A. H. Windle, I. A. Kinloch et al., Strong Dependence of Mechanical Properties on Fiber Diameter for Polymer???Nanotube Composite Fibers: Differentiating Defect from Orientation Effects, ACS Nano, vol.4, issue.11, pp.6989-6997, 2010.
DOI : 10.1021/nn102059c

X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang et al., Ultrastrong, Stiff, and Lightweight Carbon-Nanotube Fibers, Advanced Materials, vol.410, issue.23, pp.4198-4201, 2007.
DOI : 10.1002/adma.200700776

X. Zhang, Q. Li, Y. Tu, Y. Li, J. Y. Coulter et al., Strong Carbon-Nanotube Fibers Spun from Long Carbon-Nanotube Arrays, Small, vol.18, issue.2, pp.244-252, 2007.
DOI : 10.1002/smll.200600368

J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong et al., A comparison of the mechanical properties of fibers spun from different carbon nanotubes, Carbon, vol.49, issue.4, pp.1333-1339, 2011.
DOI : 10.1016/j.carbon.2010.11.054

C. Jayasinghe, S. Chakrabarti, M. J. Schulz, and V. Shanov, Spinning yarn from long carbon nanotube arrays, Journal of Materials Research, vol.26, issue.05, pp.645-651, 2011.
DOI : 10.1126/science.1094982

A. Ghemes, Y. Minami, J. Muramatsu, M. Okada, H. Mimura et al., Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays, Carbon, vol.50, issue.12, pp.4579-4587, 2012.
DOI : 10.1016/j.carbon.2012.05.043

K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang et al., Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method, Nanotechnology, vol.21, issue.4, p.45708, 2010.
DOI : 10.1088/0957-4484/21/4/045708

S. Fang, M. Zhang, A. Zakhidov, and R. H. Baughman, Structure and process-dependent properties of solid-state spun carbon nanotube yarns, Journal of Physics: Condensed Matter, vol.22, issue.33
DOI : 10.1088/0953-8984/22/33/334221

P. Miaudet, C. Bartholome, M. Derré, G. Maugey, C. Sigaud et al., Thermo-electrical properties of PVA???nanotube composite fibers, Polymer, vol.48, issue.14, pp.4068-4074, 2007.
DOI : 10.1016/j.polymer.2007.05.028

URL : https://hal.archives-ouvertes.fr/hal-00159254

W. Néri, M. Maugey, P. Miaudet, A. Derré, C. Zakri et al., Surfactant-Free Spinning of Composite Carbon Nanotube Fibers, Macromolecular Rapid Communications, vol.14, issue.13
DOI : 10.1002/marc.200600150

W. Zhou, Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport, Journal of Applied Physics, vol.95, issue.2, p.649, 2004.
DOI : 10.1063/1.1627457

URL : http://repository.upenn.edu/cgi/viewcontent.cgi?article=1056&context=mse_papers

G. Sun, Y. Zhang, and L. Zheng, Fabrication of Microscale Carbon Nanotube Fibers, Journal of Nanomaterials, vol.32, issue.4, pp.1-10, 2012.
DOI : 10.1021/nn901515j

Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, Morphology and mechanical and electrical properties of oriented PVA???VGCF and PVA???MWNT composites, Polymer, vol.47, issue.4, pp.1308-1317, 2006.
DOI : 10.1016/j.polymer.2005.12.032

J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang et al., Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes, Advanced Functional Materials, vol.72, issue.16, pp.3207-3215, 2007.
DOI : 10.1002/adfm.200700065

C. Jayasinghe, T. Amstutz, M. J. Schulz, and V. Shanov, Improved Processing of Carbon Nanotube Yarn, Journal of Nanomaterials, vol.7, issue.2-3, pp.1-7, 2013.
DOI : 10.1063/1.3075067

A. E. Aliev, C. Guthy, M. Zhang, S. Fang, A. Zakhidov et al., Thermal transport in MWCNT sheets and yarns, Carbon, vol.45, issue.15, pp.2880-2888, 2007.
DOI : 10.1016/j.carbon.2007.10.010

M. B. Jakubinek, M. B. Johnson, M. A. White, C. Jayasinghe, G. Li et al., Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns, Carbon, vol.50, issue.1, pp.244-248, 2012.
DOI : 10.1016/j.carbon.2011.08.041

M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon, vol.49, issue.12, pp.3755-3761, 2011.
DOI : 10.1016/j.carbon.2011.05.008

X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue et al., Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites, Carbon, vol.53, pp.145-152, 2013.
DOI : 10.1016/j.carbon.2012.10.041

. Dupont, KEVLAR Technical Guide

K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang et al., Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns, ACS Nano, vol.4, issue.10, pp.5827-5861, 2010.
DOI : 10.1021/nn1017318

L. Caramaro, Fibres et fils à usage technique, 2005.

H. Zhao, Y. Zhang, P. D. Bradford, Q. Zhou, Q. Jia et al., Carbon nanotube yarn strain sensors, Nanotechnology, vol.21, issue.30, p.305502, 2010.
DOI : 10.1088/0957-4484/21/30/305502

N. D. Alexopoulos, C. Jaillet, C. Zakri, P. Poulin, and S. K. Kourkoulis, Improved strain sensing performance of glass fiber polymer composites with embedded pre-stretched polyvinyl alcohol???carbon nanotube fibers, Carbon, vol.59, pp.65-75, 2013.
DOI : 10.1016/j.carbon.2013.02.055

URL : https://hal.archives-ouvertes.fr/hal-00840889

A. A. Zakhidov, R. Nanjundaswamy, .. N. Obraztsov, M. Zhang, S. Fang et al., Field emission of electrons by carbon nanotube twist-yarns, Applied Physics A, vol.75, issue.4, pp.593-600, 2007.
DOI : 10.1007/s00339-007-4009-6

Y. Wei, D. Weng, Y. Yang, X. Zhang, K. Jiang et al., Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns, Applied Physics Letters, vol.89, issue.6, p.63101, 2006.
DOI : 10.1063/1.2236465

Y. Wei, L. Liu, and Z. Chen, Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications, Nano Letters, vol.7, issue.12, pp.3792-3797, 2007.
DOI : 10.1021/nl072298y

P. Liu, Y. Wei, K. Jiang, Q. Sun, X. Zhang et al., Thermionic emission and work function of multiwalled carbon nanotube yarns, Physical Review B, vol.73, issue.23, p.235412, 2006.
DOI : 10.1103/PhysRevB.73.235412

R. H. Galvão and . Baughman, Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles, Science, vol.338, issue.6109, pp.928-960, 2012.

L. Viry, C. Mercader, P. Miaudet, C. Zakri, . Derré et al., Nanotube fibers for electromechanical and shape memory actuators, Journal of Materials Chemistry, vol.6, issue.2, p.3487, 2010.
DOI : 10.1039/b924430a

URL : https://hal.archives-ouvertes.fr/hal-00606347

J. Foroughi, G. M. Spinks, G. G. Wallace, J. Oh, M. E. Kozlov et al., Torsional Carbon Nanotube Artificial Muscles, Science, vol.334, issue.6055, pp.494-501, 2011.
DOI : 10.1126/science.1211220

J. Hilding, E. Grulke, Z. G. Zhang, and F. Lockwood, Dispersion of Carbon Nanotubes in Liquids, Journal of Dispersion Science and Technology, vol.1, issue.8, pp.1-41, 2003.
DOI : 10.4028/www.scientific.net/KEM.132-136.743

H. Lin, W. Liu, Y. Liu, and C. Cheng, Complexation Equilibrium Constants of Poly ( vinyl alcohol ) -Borax Dilute Aqueous Solutions ? Consideration of Electrostatic Charge Repulsion and Free Ions Charge Shielding Effect, J

C. P. Huynh, S. C. Hawkins, M. Redrado, S. Barnes, D. Lau et al., Evolution of directly-spinnable carbon nanotube growth by recycling analysis, Carbon, vol.49, issue.6, pp.1989-1997, 2011.
DOI : 10.1016/j.carbon.2011.01.024

H. Choo, Y. Jung, Y. Jeong, H. C. Kim, and B. Ku, Fabrication and Applications of Carbon Nanotube Fibers, Carbon letters, vol.13, issue.4, pp.191-204, 2012.
DOI : 10.5714/CL.2012.13.4.191

M. Pinault, M. Mayne-l-'hermite, C. Reynaud, O. Beyssac, J. N. Rouzaud et al., Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects, Diamond and Related Materials, vol.13, issue.4-8, pp.1266-1269, 2004.
DOI : 10.1016/j.diamond.2003.12.015

URL : https://hal.archives-ouvertes.fr/hal-00085009

M. Pinault, Synthèse des nanotubes de carbone alignés par CVD d'aérosols: mécanismes de croissance et propriétés physico-chimiques, 2005.

R. J. Yu, N. Grossiord, C. E. Koning, J. Loos, N. Grossiord et al., 185 walled carbon nanotubes in suspension by spectrophotometry Filage continu de fibres de nanotubes de carbone : de la solidification aux propriétés finales Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution Timedependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes, Nanotechnology Carbon Anal. Chem. J, vol.17, issue.77 16, pp.3692-3698, 2005.

F. Colloid-interface-sci, R. Hennrich, K. Krupke, J. Arnold, R. Stütz et al., The mechanism of cavitation-induced scission of single-walled carbon nanotubes, Pasquali, P. Van Der Schoot, and P, pp.144-51, 1932.

. Poulin, Kinetics of Nanotube and Microfiber Scission under Sonication, J
URL : https://hal.archives-ouvertes.fr/hal-00487837

. Phys, J. Chem, E. Hilding, Z. G. Grulke, F. Zhang et al., Dispersion of Carbon Nanotubes in Liquids Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, J. Dispers. Sci. Technol. Nanoscale Res. Lett, vol.113, issue.7 1, pp.20599-20605, 2003.

M. W. Kuijpers, P. D. Iedema, M. F. Kemmere, and J. T. Keurentjes, The mechanism of cavitation-induced polymer scission; experimental and computational verification, Polymer, vol.45, issue.19, pp.6461-6467, 2004.
DOI : 10.1016/j.polymer.2004.06.051

G. Pagani, M. J. Green, P. Poulin, and M. Pasquali, Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication, Proc. Natl
DOI : 10.1073/pnas.1200013109

URL : https://hal.archives-ouvertes.fr/hal-00799738

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz et al., The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.3, issue.1
DOI : 10.1166/jnn.2003.194

G. Yamamoto, K. Shirasu, Y. Nozaka, Y. Sato, T. Takagi et al., Structure???property relationships in thermally-annealed multi-walled carbon nanotubes, Carbon, vol.66, pp.219-226, 2014.
DOI : 10.1016/j.carbon.2013.08.061

C. Tang, T. Zhou, J. Yang, Q. Zhang, F. Chen et al., Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution, Colloids and Surfaces B: Biointerfaces, vol.86, issue.1, pp.189-97, 2011.
DOI : 10.1016/j.colsurfb.2011.03.041

G. Xu, Q. Zhang, J. Huang, M. Zhao, W. Zhou et al., A Two-Step Shearing Strategy To Disperse Long Carbon Nanotubes from Vertically Aligned Multiwalled Carbon Nanotube Arrays for Transparent Conductive Films, Langmuir, vol.26, issue.4, pp.2798-804, 2010.
DOI : 10.1021/la9028436

R. Bandyopadhyaya, E. Nativ-roth, O. Regev, and R. Yerushalmi-rozen, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, Nano Letters, vol.2, issue.1, pp.25-28, 2002.
DOI : 10.1021/nl010065f

A. Zhbanov, E. Pogorelov, and Y. Chang, Van der Waals Interaction between Two Crossed Carbon Nanotubes, ACS Nano, vol.4, issue.10, pp.5937-5945, 2010.
DOI : 10.1021/nn100731u

J. S. Fenner and I. M. Daniel, Hybrid nanoreinforced carbon/epoxy composites for enhanced damage tolerance and fatigue life, Composites Part A: Applied Science and Manufacturing, vol.65
DOI : 10.1016/j.compositesa.2014.05.023

L. Maillaud, C. Zakri, I. Ly, A. Pénicaud, and P. Poulin, Conductivity of transparent electrodes made from interacting nanotubes, Applied Physics Letters, vol.103, issue.26, p.263106, 2013.
DOI : 10.1063/1.4858215

URL : https://hal.archives-ouvertes.fr/hal-00925766

C. Mercader, V. Denis-lutard, S. Jestin, M. Maugey, A. Derré et al., Scalable process for the spinning of PVA-carbon nanotube composite fibers, Journal of Applied Polymer Science, vol.48, issue.S1, pp.191-196, 2012.
DOI : 10.1002/app.36308

C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski, Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes, Science, vol.300, issue.5620, pp.775-783, 2003.
DOI : 10.1126/science.1080848

S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, and P. K. Hansma, Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer, Langmuir, vol.10, issue.12, pp.4409-4413, 1994.
DOI : 10.1021/la00024a003

Y. Bai, D. Lin, F. Wu, Z. Wang, and B. Xing, Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions, Chemosphere, vol.79, issue.4, pp.362-369, 2010.
DOI : 10.1016/j.chemosphere.2010.02.023

Y. Geng, M. Y. Liu, J. Li, X. M. Shi, and J. K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, vol.39, issue.12, pp.1876-1883, 2008.
DOI : 10.1016/j.compositesa.2008.09.009

Q. Wang, Y. Han, Y. Wang, Y. Qin, and Z. Guo, Effect of Surfactant Structure on the Stability of Carbon Nanotubes in Aqueous Solution, The Journal of Physical Chemistry B, vol.112, issue.24
DOI : 10.1021/jp711816c

P. Kumar, B. Pani, H. Batra, and N. Gupta, The Influence of Different Surfactants on the Dispersion Behaviour of Single Wall Carbon Nanotube ( SWNT ), Int. J. Eng. ang Technoscience, vol.5, issue.2, pp.16-21, 2014.

N. Grossiord, J. Loos, L. Van-laake, M. Maugey, C. Zakri et al., High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers, Filage continu de fibres de nanotubes de carbone : de la solidification aux propriétés finales, pp.3226-3234, 2008.
DOI : 10.1002/adfm.200800528

URL : https://hal.archives-ouvertes.fr/hal-00680353

G. Carey, F. Hinds, T. Inam, J. P. Vo, X. Jones et al., Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study, J. Phys. Chem. B J. Compos, vol.117, issue.48, pp.15141-50, 2013.

W. Mater, J. Bauhofer, K. Kovacs, M. Ryan, V. Cadek et al., A review and analysis of electrical percolation in carbon nanotube polymer composites A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol) Conductivity and percolation of nanotube based polymer composites in extensional deformations Improved structure and properties of single-wall carbon nanotube spun fibers, [9] B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, pp.2321-2330, 2007.

P. Miaudet, S. Badaire, M. Maugey, V. Derré, P. Pichot et al., Hot-Drawing of Single and Multiwall Carbon Nanotube Fibers for High Toughness and Alignment, Nano Letters, vol.5, issue.11, pp.2212-2217, 2005.
DOI : 10.1021/nl051419w

P. Launois, A. Marucci, B. Vigolo, P. Bernier, A. Derré et al., Structural Characterization of Nanotube Fibers by X-ray Scattering, Journal of Nanoscience and Nanotechnology, vol.1, issue.2
DOI : 10.1166/jnn.2001.025

B. P. Singh, K. Saini, V. Choudhary, S. Teotia, S. Pande et al., Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites, Journal of Nanoparticle Research, vol.19, issue.1
DOI : 10.1007/s11051-013-2161-9

B. P. Singh, K. Saini, V. Choudhary, S. Teotia, S. Pande et al., Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites, Journal of Nanoparticle Research, vol.19, issue.1
DOI : 10.1007/s11051-013-2161-9

F. Dalmas, J. Cavaillé, C. Gauthier, L. Chazeau, and R. Dendievel, Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions, Composites Science and Technology, vol.67, issue.5
DOI : 10.1016/j.compscitech.2006.01.030

URL : https://hal.archives-ouvertes.fr/hal-00434177

J. Zhao, Y. Zhang, Y. Su, X. Huang, L. Wei et al., Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process, Diamond and Related Materials, vol.25, pp.24-28, 2012.
DOI : 10.1016/j.diamond.2012.01.029

K. P. Ryan, M. Cadek, V. Nicolosi, S. Walker, M. Ruether et al., Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites, Synthetic Metals, vol.156, issue.2-4
DOI : 10.1016/j.synthmet.2005.12.015

P. Miaudet, C. Bartholome, M. Derré, G. Maugey, C. Sigaud et al., Thermo-electrical properties of PVA???nanotube composite fibers, Polymer, vol.48, issue.14, pp.4068-4074, 2007.
DOI : 10.1016/j.polymer.2007.05.028

URL : https://hal.archives-ouvertes.fr/hal-00159254

Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, Morphology and mechanical and electrical properties of oriented PVA???VGCF and PVA???MWNT composites, Polymer, vol.47, issue.4, pp.1308-1317, 2006.
DOI : 10.1016/j.polymer.2005.12.032

C. Bartholome, P. Miaudet, M. Derré, O. Maugey, C. Roubeau et al., Influence of surface functionalization on the thermal and electrical properties of nanotube???PVA composites, Composites Science and Technology, vol.68, issue.12, pp.2568-2573, 2008.
DOI : 10.1016/j.compscitech.2008.05.021

URL : https://hal.archives-ouvertes.fr/hal-00509046

J. Affdl and J. Kardos, The Halpin-Tsai equations: A review, Polymer Engineering and Science, vol.4, issue.5
DOI : 10.1002/pen.760160512

G. Yamamoto, K. Shirasu, Y. Nozaka, Y. Sato, T. Takagi et al., Structure???property relationships in thermally-annealed multi-walled carbon nanotubes, Carbon, vol.66, pp.219-226, 2014.
DOI : 10.1016/j.carbon.2013.08.061