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Spécialité: Signal, Image et Automatique

par

Wissam Sammouri

Data mining of temporal sequences for the prediction of
infrequent failure events: Application on Floating Train

Data for predictive maintenance
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plus difficle sans vous. En particulier Mahmoud Sidani, Ghaydaa Assi et
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Abstract

Data mining of temporal sequences for pre-

dictive maintenance: Application on float-

ing train data

In order to meet the mounting social and economic demands, railway operators

and manufacturers are striving for a longer availability and a better reliability of

railway transportation systems. Commercial trains are being equipped with state-

of-the-art on-board intelligent sensors monitoring various subsystems all over the

train. These sensors provide real-time flow of data, called floating train data, con-

sisting of georeferenced events, along with their spatial and temporal coordinates.

Once ordered with respect to time, these events can be considered as long tempo-

ral sequences which can be mined for possible relationships. This has created a

necessity for sequential data mining techniques in order to derive meaningful asso-

ciations rules or classification models from these data. Once discovered, these rules

and models can then be used to perform an on-line analysis of the incoming event

stream in order to predict the occurrence of target events, i.e, severe failures that

require immediate corrective maintenance actions. The work in this thesis tackles

the above mentioned data mining task. We aim to investigate and develop vari-

ous methodologies to discover association rules and classification models which can

help predict rare tilt and traction failures in sequences using past events that are

less critical. The investigated techniques constitute two major axes: Association

analysis, which is temporal and Classification techniques, which is not temporal.

The main challenges confronting the data mining task and increasing its complex-

ity are mainly the rarity of the target events to be predicted in addition to the

heavy redundancy of some events and the frequent occurrence of data bursts. The

results obtained on real datasets collected from a fleet of trains allows to highlight

the effectiveness of the approaches and methodologies used.

Keywords: Data mining, Temporal sequences, Association rules, Pattern recog-

nition, Classification, Predictive maintenance, Floating Train Data.





Abstract

Fouille de séquences temporelles pour la

maintenance prédictive. Application aux

données de véhicules traceurs ferroviaires.

De nos jours, afin de répondre aux exigences économiques et sociales, les systèmes

de transport ferroviaire ont la nécessité d’être exploités avec un haut niveau de

sécurité et de fiabilité. On constate notamment un besoin croissant en termes

d’outils de surveillance et d’aide à la maintenance de manière à anticiper les

défaillances des composants du matériel roulant ferroviaire. Pour mettre au point

de tels outils, les trains commerciaux sont équipés de capteurs intelligents envoyant

des informations en temps réel sur l’état de divers sous-systèmes. Ces informations

se présentent sous la forme de longues séquences temporelles constituées d’une

succession d’événements. Le développement d’outils d’analyse automatique de ces

séquences permettra d’identifier des associations significatives entre événements

dans un but de prédiction d’événement signant l’apparition de défaillance grave.

Cette thèse aborde la problématique de la fouille de séquences temporelles pour la

prédiction d’événements rares et s’inscrit dans un contexte global de développement

d’outils d’aide à la décision. Nous visons à étudier et développer diverses méthodes

pour découvrir les régles d’association entre événements d’une part et à construire

des modèles de classification d’autre part. Ces règles et/ou ces classifieurs peuvent

ensuite être exploités pour analyser en ligne un flux d’événements entrants dans le

but de prédire l’apparition d’événements cibles correspondant à des défaillances.

Deux méthodologies sont considérées dans ce travail de thèse: La première est

basée sur la recherche des règles d’association, qui est une approche temporelle et

une approche à base de reconnaissance de formes. Les principaux défis auxquels

est confronté ce travail sont principalement liés à la rareté des événements cibles

à prédire, la redondance importante de certains événements et à la présence trés

fréquente de “bursts”. Les résultats obtenus sur des données réelles recueillies par

des capteurs embarqués sur une flotte de trains commerciaux permettent de mettre

en évidence l’efficacité des approches proposées.

Mots clés: Fouille de données, Séquences temporelles, Règles d’associations,

Classification, Maintenance Prédictive, Véhicules traceurs ferroviaires.
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Chapter 1

Introduction

1.1 Context and Problematic

In order to meet the mounting social and economic demands as well as the pressure to
stand out within fierce global competitivity, railway operators and manufacturers are
striving for a longer availability and a better reliability of railway transportation sys-
tems. A permissive and lax maintenance strategy such as “run-to-failure” can lead to
sizable maintenance costs not to mention the loss of public credibility and commercial
image. Also, a systematic schedule-based maintenance policy can be uselessly time and
resource consuming. From an intuitive point of view, the most intelligent maintenance
policy exploits the functional lifetime of a component till the end. We thus speak of
opportunistic maintenance which refers to the scheme in which preventive maintenance
is carried out at opportunities based on the physical condition of the system. The
automatic diagnosis of the physical condition of systems allows to detect degradation
or failures either prior or directly upon their occurrence. Diagnosis is a term which
englobes at the same time the observation of a situation (monitoring of an industrial
system) and the relevant decisions to be taken following this observation (system de-
graded or not, etc.). It is a vast research field uniting researchers of multiple scientific
communities such as control, signal processing, statistics, artificial intelligence, machine
learning, etc.

In order to establish this maintenance policy in the railway domain, probe train
vehicles equipped with intelligent sensors dedicated for the monitoring of railway in-
frastructure (rail, high-voltage lines, track geometry, etc.) have been widely used in
the recent years. However, these vehicles require certain logistic measures since they
cannot circulate all the time. This shifted railway operators and manufacturers towards
instrumenting commercial trains with sensors for the same purpose. While a commer-
cial train is operating, these sensors monitor different systems and send information in
real time via wireless technology to centralized data servers. This new approach thus
allows the constant and daily diagnosis of both vehicle components and railway infras-
tructure. However, the high number of commercial trains to be equipped demands a
trade-off between the equipment cost and their performance in order to install sensors

1



1.2 Positioning, objectives and case study of the thesis

on all train components. The quality of these sensors reflects directly on the frequency
of data bursts and signal noise, both rendering data analysis more challenging. The
main advantage of this approach lies in the huge quantity of obtained data, which if
exploited and mined, can contribute to the benefit of the diagnosis process.

1.2 Positioning, objectives and case study of the thesis

The recent leaps in information technology have reflected a boost in the capacity to
stock data as well as in both processing and computational powers. This has leveraged
the use of intelligent monitoring systems which paved the way for automatic diagnosis
procedures. Similar to floating car data systems which are now broadly implemented
in road transportation networks, floating train data systems have also been recently
developed in the railway domain. Commercial trains equipped with state-of-the-art
on-board intelligent sensors provide real-time flow of data consisting of georeferenced
events, along with their spatial and temporal coordinates. Once ordered with respect
to time, these events can be considered as long temporal sequences which can be mined
for possible relationships. This has created a necessity for sequential data mining
techniques in order to derive meaningful association rules or classification models from
these data. Once discovered, these rules and models can then be used to perform an on-
line analysis of the incoming event stream in order to predict the occurrence of target
events, i.e, severe failures that require immediate corrective maintenance actions.

The work in this thesis tackles the above mentioned data mining task. We aim
to investigate and develop various methodologies to discover associations (association
rules and episode rules) and classification models which can help predict rare failures
in sequences. The investigated techniques constitute two major axes: Association
analysis, which is temporal, and aims to discover rules of the form A −→ B where B
is a failure event using significance testing techniques (T-Patterns, Null models, Double
Null models) as well as Weighted association rule mining (WARM)-based algorithms,
and Classification techniques, which is not temporal, where the data sequence is
transformed using a methodology that we propose into a data matrix of labeled observa-
tions and selected attributes, followed by the application of various pattern recognition
techniques, namely K-Nearest Neighbours, Naive Bayes, Support Vector Machines and
Neural Networks to build a classification model that will help predict failures.

The main challenges confronting the data mining task and increasing its complexity
are mainly the rarity of the target events to be predicted in addition to the heavy
redundancy of some events and the frequent occurrence of data bursts.

Industrial subsystems susceptible to be the most monitored are those presenting

strong security requirements and low intrinsic reliability. Within a railway context,

in a train, the tilt and traction systems correspond to this type of description. A

failure in any of these subsystems can result in an immediate stop of the vehicle which

can heavily impact the whole network both financially and operationally. The present

work will focus on the prediction of these two types of target events using past events

that are less critical. The real data upon which this thesis work is performed was

2



1.3 Organization of the dissertation

provided by Alstom transport, a subsidiary of Alstom. It consists of a 6-month extract

from the TrainTracer database. TrainTracerTM is a state-of-the-art Centralized Fleet

Management (CFM) software conceived by Alstom to collect and process real-time

data sent by fleets of trains equipped with on-board sensors monitoring 31 various

subsystems such as the auxiliary converter, doors, brakes, power circuit and tilt.

1.3 Organization of the dissertation

This document consists of six chapters.

In Chapter 2, we introduce the context and the problematic of the study. We precise

where the work of this thesis stands in the corresponding research field and identify the

objectives and the applicative case study. First, we discuss the field of Data Mining

and explain its general process, we then highlight the different types of maintenance

policies while emphasizing on predictive maintenance in which the context of this thesis

lies. We present an extended state of the art survey on data mining approaches applied

to the railway domain. Following that, we then tackle the applicative context of the

thesis. We introduce TrainTracer, from which the data extracts used in this thesis were

furnished and describe how data is organized. We then invoke the major constraints

and expected difficulties. Finally, we converge the above tackled subjects into formally

defining the applicative and theoretical contexts in which the thesis lie.

Chapter 3 introduces our first contribution in this thesis. We first formally define

the association rule mining problem and discuss its two most influential breadth-first

and depth-first approaches used. In this chapter, two hypothesis-test-based signif-

icance testing methods are especially adapted and compared to discover significant

co-occurrences between events in a sequence: Null models and T-Patterns algo-

rithm. In addition to that, a bipolar significance testing approach, called Double

Null Models (DNM) is proposed, applied and confronted with the above mentioned

approaches on both synthetic and real data.

In Chapter 4, We focus on the problem of Episode rule mining in sequences. We for-

malize the problem by introducing basic notations and definitions and then discussing

related work in this context. Following an extensive literature survey, we formally define

the weighted association rule mining problem and adapt it to the problem of mining

episode rules in temporal sequences. We propose a methodology called Weighted

Winepi aimed to find significant episode rules between events and an approach de-

rived from it to better include infrequent events in the mining process. We also propose

“Oriented Weighted Winepi” which is more suitable to the applicative problematic

of this thesis which is to find episodes leading to target events. Methods are confronted

and tested on synthetic and real data.

In Chapter 5, we first introduce the general principle of pattern recognition. We

explain briefly the principal approaches used in our work: K-Nearest Neighbours,

3



1.3 Organization of the dissertation

Naive Bayes, Support Vector Machines and Neural Networks. We propose a

methodology to transform data sequence into a labelled data matrix of labelled obser-

vations and selected attributes. We then propose a hypothesis-testing-based approach

to reduce the dimensionality of the data. Results obtained by all classifiers on real data

are confronted and analyzed.

In the last part of this thesis in Chapter 6, we review and conclude the contributions

of our work and discuss research perspectives as well as arising issues.

4



Chapter 2

Applicative context: Predictive

maintenance to maximize rolling

stock availability

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data Mining: Definition and Process Overview . . . . . . . 7

2.3 Railway Context . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Existing Maintenance Policies . . . . . . . . . . . . . . . . . . 11

2.3.2 Data mining applied to the railway domain: A survey . . . . 13

2.4 Applicative context of the thesis: TrainTracer . . . . . . . . 17

2.4.1 TrainTracer Data . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Raw data with challenging constraints . . . . . . . . . . . . . 19

2.4.3 Cleaning bursts . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Positioning our work . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Approach 1: Association Analysis . . . . . . . . . . . . . . . 25

2.5.2 Approach 2: Classification . . . . . . . . . . . . . . . . . . . . 27

2.1 Introduction

Computers have promised us a fountain of wisdom but delivered a flood of data.

– A frustrated MIS executive (Fayyad et al., 1996)

The recent couple of decades have witnessed an unprecedented advancement in

information technologies which has leveraged a gigantic upgrade in data storage capac-
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2.1 Introduction

ities. For instance, the amount of data that can be stocked in hard drives has increased

from the order of Kilobytes (103 bytes) in the 1980s to Petabytes (1015 bytes) very

recently. This on-the-go advancement did not only concern hardware but software as

well. Database utilities have been revolutionized in its various functional aspects such

as: data collection, database creation, data management (storage and retrieval), ad-

vanced data analysis (ERP software, data warehousing and mining) and visualization.

This technology reflected in the boost of the database and information industry, and

led to the abundancy of huge volumes of databases and information repositories which

can be analyzed and mined for valuable information within various domains and appli-

cations. However, the enormous amounts of data have far exceeded our human analysis

ability, thus transforming data repositories into data archives that are rarely consulted.

This situation can best be described as a data rich but information poor situation. This

has created a need for data mining techniques to do an automated analysis that is at

the same time powerful and fast.

In this thesis, we are particularly interested in the railway transportation field. Sys-

tem failures and general upkeep of rolling stock aren’t just costly to operators because

of repairs. The time loss in maintenance depots as well as in corrective maintenance

procedures affects negatively the quality of the operator’s service due to reduced fleet

availability. Diagnosing the problem, ordering replacement parts, troubleshooting: all

of these time-consuming activities are the greatest impediments keeping operators from

peak efficiency, and thus from optimal profit. The recent leaps in information and

communication technologies have revolutionized support techniques for rail equipment

maintenance and triggered an evolution in preventive maintenance strategies towards

more optimized and cost effective solutions that aim to provide longer availability

and better reliability of transportation systems. Similar to smart vehicles, commer-

cial trains are being equipped with positioning and communication systems as well

as on-board intelligent sensors monitoring various subsystems such as tilt, traction,

signalling, pantograph, doors, etc. These sensors provide a real-time flow of spatio-

temporal data consisting of georeferenced alarms, called events, which are transferred

wirelessly towards centralized data servers where they are stocked and exploited within

a specially-conceived data-warehousing and analysis system called Floating Train

Data system (FTD). The information extracted from these data are used to es-

tablish a unified preventive (condition-based) maintenance management as well as a

more-advanced predictive maintenance approach which consists of performing an on-

line analysis of the incoming event stream in order to predict and alert the imminent

arrival or the increased probability of occurrence of severe failure events, i.e., failures

requiring immediate corrective maintenance actions, also called target events.

In this chapter, we introduce the applicative context of this thesis which is the

maximization of rolling stock availability by mining floating train data sequences within

a predictive maintenance framework. We first define Data Mining and explain its

general process in section 2.2. We then highlight the different types of maintenance
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policies in 2.3.1 while emphasizing on predictive maintenance in which the context

of this thesis lies. In 2.3.2 we present an extended literature survey on data mining

approaches applied to the railway domain. We then tackle the applicative context of

the thesis in 2.4. We introduce TrainTracer, from which the data extracts used in this

thesis were furnished and describe how data is organized in 2.4.1. We then invoke the

major constraints and difficulties in 2.4.2 and the approaches used to clean data in

2.4.3. Finally, we converge the above tackled subjects into positioning the work of this

thesis by formally defining the applicative and theoretical contexts in 2.5.

2.2 Data Mining: Definition and Process Overview

Data mining refers to the extraction or “mining” of knowledge from large amounts of

observed data. It is a vast domain of diverse algorithms and techniques which comply

with different types of data types and problems. It involves an integration of techniques

and methods from multiple disciplines such as database and warehouse technology,

statistics, probability, pattern recognition (Neural Networks, Support Vector Machine,

K-Nearest Neighbours, Decision Trees, etc.), data visualization, etc. It is an essential

step in the process of Knowledge Discovery in Databases (KDD).

KDD is the nontrivial process of identifying valid, novel, potentially useful, and

ultimately understandable patterns in data (Fayyad et al., 1996) and consists of an iter-

ative sequence of steps that can be classified into three main categories: pre-processing,

data mining and post-processing, which will be briefly defined next.

1. Data Pre-processing

This stage is considered as preparing the data for mining. It consists of a set of

measures and operations executed over data in order to improve its quality, which

will directly reflect on mining results. This step consists of three main types of

techniques precised by (Han et al., 2006) to be: data integration, data cleaning

and data reduction.

- Data Integration

Data integration consists of concatenating and merging data from different sources.

The main obstacles are mainly homogenizing data by neutralizing possible struc-

tural differences behind the different data sources without losing valuable infor-

mation, in addition to the identification and removal of redundancies, i.e duplicate

data records.

- Data Cleaning

Once the data integration is achieved, noise and errors should be handled. Data

is cleaned in order to enhance mining quality. The cleaning process aims to
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eliminate inconsistent or missing values, outliers and noise either manually or

automatically. The approaches used to deal with this problem consist mainly

of either ignoring/deleting records that contain missing or inconsistent values or

correcting these records by injecting acceptable values.

- Data Reduction

One of the most important challenges facing data mining algorithms is scalabil-

ity. Practically all learning algorithms consider in advance that data are fit to

main memory and disregard how extremely sizable databases could be dealt with

when only a limited portion of data can be viewed. In addition to that, computa-

tional time increases significantly with the size or complexity of the data. For this

reason, data reduction is a real need to simplify the mining process. Several pos-

sible approaches can be carried out to reduce dimensionality including removing

redundancies and irrelevant data, data sampling, feature selection, windowing,

batch-incremental mode and parametric modelling for a lighter presentation of

the data.

2. Data Mining

This step is the core and the major challenge in the KDD process. It involves the

selection and application of appropriate algorithms and methodologies to extract

patterns or knowledge from the data. One big challenge, which is also the main

motivation behind this thesis, is to adapt existing algorithms, exploiting all known

information and imposing constraints, on “dirty and ambiguous” data in order to

focus the discovery process to comply with users expectations as well as with the

applicative context. Another related challenge is the analysis of complex temporal

data, which will be discussed more in details in the next chapter.

Data mining is a vast domain of algorithms and techniques that can be very

diversified to comply with different types of problems such as mining frequent

or rare patterns in different types of data such as transaction databases or se-

quences of events that can be temporal or non temporal. These techniques can

be assembled into three main categories: classification/prediction, clustering and

association rule mining, succinctly described below.

- Classification and Prediction

Classification is the task of assigning observations to one of several predefined

data classes. In order to describe and differentiate between these classes, classifi-

cation methods aim at learning a classifying model or function, called classifier c,

which can be defined as a function from a set of instances each with an attribute

set x and a set of class labels y (c : x −→ y). For the model to be derived within
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a supervised context, a set of already labelled observations, called training set,

is used. This model will then be implemented to predict the class of unlabelled

observations. A classification model can be viewed as a black box that automat-

ically assigns a class label when presented with the attribute set of an unknown

observation. Book references: (Bishop, 2006; Han et al., 2006; Hastie et al., 2003)

- Cluster analysis

Cluster analysis divides data into clusters that are meaningful, useful or both

(Tan et al., 2005). It is used in situations where the privilege of having a train-

ing set with known class labels does not exist, which means that the training is

performed in an unsupervised framework. Clustering techniques analyze similari-

ties and dissimilarities between instances and partition data into natural classes,

clusters, which are then used to predict labels. The similarity measure used to

identify clusters, also called distance function, is a major challenge to define, es-

pecially in the presence of complex data types. Book references: (Han et al.,

2006; Hastie et al., 2003)

- Association analysis: Association and Episode rule mining

Association rule mining is the discovery of existing reliable (and not necessary fre-

quent) dependencies between items in transaction data or events in a sequence.

These dependencies are called association rules. More formally, an association

rule is an implication of the form A =⇒ B, where Ai (for i ∈ 1, ...,m) and Bj
(for j ∈ 1, ..., n) are attribute-value pairs, indicating that when A occurs, B oc-

curs with a certain probability P (B|A), called confidence. Association analysis,

although initially developed for market basket analysis problems, is now widely

used for transaction data analysis and more recently in sequence analysis to dis-

cover what is called episode rules between events (Mannila and Toivonen, 1996).

Most of the developed algorithms are frequency-oriented, i.e, discover frequent

itemsets and episodes first before generating the rules, which leads to a sizable

number of discovered associations that are not necessarily significant and inter-

esting. Strong but rare associations remain usually undetected, mainly due to

frequency constraints set to reduce time complexity. This problem is a major

motivation in this thesis and will be discussed further. Book references: (Han

et al., 2006; Hastie et al., 2003; Ye, 2003).

3. Post-processing

With insufficient ground truth or the lack of it, data mining operations may

lead classification and clustering algorithms to discover various models that can

explain or describe the data very differently. Furthermore, after a learning system

discovers concept models from the training set, their evaluation should take place
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on a testing set using several criteria and measures such as classification accuracy,

mean square error, correct classification rate, scalibility, etc.

Similarly, association rule mining algorithms are destined to estimate a huge

number of associations of which the majority is of low significance and utility. It

is vital to analyze results in order to select the best ones to the final users. This has

motivated a large number of researchers to develop interestingness measures that

are used to evaluate results. Interestingness measures can be assembled into two

main categories: Objective and Subjective. Objective interestingness measures

are generally probability-based and are usually functions of a 2x2 contingency

table. A survey of those measures can be found in (Nada Lavrac et al., 1999; Tan

and Kumar, 2002) as well as in (Lenca et al., 2004; Ohsaki et al., 2004).

In some cases, the information provided by objective measures might not be suffi-

cient to judge if a rule is significant enough to be considered and thus a subjective

point of view is needed. A subjective interestingness measure takes into account

both the data and the user’s knowledge. Such a measure is appropriate when: (1)

the background knowledge of users varies, (2) the interests of the users vary, and

(3) the background knowledge of users evolve. Subjective measures cannot be

represented by simple mathematical formulas because the user’s knowledge may

be expressed in various forms such as visualization, experience, etc. Instead, they

are usually incorporated into the mining process.

Although we agree that data mining is a step in the knowledge discovery process,

however in reality, the term data mining is used by industry, media and research to

describe the whole knowledge discovery process instead of just a step in it. Therefore

in this thesis, we choose to adopt the latter view since it broadens the data mining

functionality and is more appropriate for the industry-oriented applicative nature of

this work.

2.3 Railway Context

The recent leaps in information and communication technologies have revolutionized

support techniques for rail equipment maintenance and triggered an evolution in preven-

tive maintenance strategies toward more optimized and cost effective solutions. These

processes aim to provide longer availability and better reliability of transportation sys-

tems. Similar to smart vehicles, commercial trains are being equipped with positioning

and communication systems as well as on-board intelligent sensors monitoring various

subsystems such as tilt, traction, signalling, pantograph, doors, etc. These sensors pro-

vide a real-time flow of spatio-temporal data consisting of georeferenced alarms, called

events, which are transferred wirelessly towards centralized data servers where they are

stocked and exploited within a specially-conceived data-warehousing and analysis sys-

tem called Floating Train Data system (FTD). The information extracted from these
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data are used to establish a unified preventive (condition-based) maintenance manage-

ment as well as a more-advanced predictive maintenance approach which consists of

performing an on-line analysis of the incoming event stream in order to predict and

alert the imminent or increased probability of occurrence of severe failure events, i.e.,

failures requiring immediate corrective maintenance actions, also called target events.

2.3.1 Existing Maintenance Policies

Maintenance costs are a major portion of the total operating costs of all manufacturing

or production plants. Depending on the specific industry, these costs can represent

between 15 and 60 percent of the costs of goods produced (Mobley, 2002). The recent

development of microprocessor and computer-based instrumentation that can be used

to monitor the operating condition of equipment and systems have provided the means

to eliminate unnecessary repairs, prevent catastrophic machine failures and reduce the

negative impact of maintenance operations on the profitability of manufacturing and

production plants.

To understand what predictive maintenance is, traditional policies should first be

considered. Figure 2.1 shows the evolution of maintenance strategies in time. The

earliest technique (and the most frequent up-till-now), corrective maintenance (also

called Run-to-failure or reactive maintenance), is a simple and straightforward proce-

dure which consists of waiting till the failure occurs to replace defected pieces. The

main disadvantages of this approach include fluctuant and unpredictable production

as well as the high costs of un-planned maintenance operations. The advancement

in industrial diagnosis instrumentation led to the emergence of time-driven preventive

maintenance policies such as schedule-based preventive maintenance where pieces are

replaced before their formally-calculated Mean Time To Failure (MTTF) is attained.

In order to efficiently implement this periodic maintenance policy, an operational re-

search is required to find the optimal maintenance schedule that can reduce operation

costs and increase availability. This scheduling takes into consideration the life cycle

of equipment as well as man power and work hours required. In many cases, mainte-

nance policies are still based on the maintenance schedules recommended by the user,

which are usually conservative or are only based on qualitative information driven by

experience and engineering rationale (Zio, 2009). Several approaches were developed to

assess the performance of a maintenance policy, especially in case of complicated sys-

tems. For instance, in (Marseguerra and Zio, 2002; Zio, 2013), Monte Carlo simulation

is used in order to avoid the introduction of excessively simplifying hypotheses in the

representation of the system behavior. This framework was extended in (Baraldi et al.,

2011) by combining it with fuzzy logic in the aim of modelling component degradation

in electrical production plants.
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Figure 2.1: Evolution of maintenance policies in time

The development of intelligent sensors and condition-assessment tools have paved

the way for a condition-based maintenance policy. The operating state of a system is

constantly monitored by means of a dedicated monitoring tool. Once degradation is

detected, the system is replaced. This method increases the component operational

lifetime and availability and allows preemptive corrective actions. On the other hand,

it necessitates an increased investment in efficient monitoring equipment as well as in

maintenance staff training.

The steady progress of computer hardware technology as well as the affordability

and availability of computers, data collection equipment and storage media has reflected

a boost in the amount of data stocked by people and firms. However, the abundance

of these data without powerful analysis tools has led to data rich but information poor

situations where data repositories became data archives that are seldomly visited. The

presence of this data has inspired researchers to develop algorithms which automati-

cally analyze data in order to find associations or models that can help predict future

failures. These algorithms have established what is now called predictive maintenance.

Predicting system degradation before it occurs may lead to the prevention or at least

the avoidance of bad consequences.

Predictive maintenance can be defined as the measurements which detect the com-

mencement of system degradation and thus an imminent breakdown, thereby allowing

to control or eliminate causal stressors early enough to avoid any serious deterioration

in the component’s physical state. The main difference between predictive maintenance

and schedule-based preventive maintenance is that the former bases maintenance needs

on the actual condition of the machine rather than on some predefined schedule and

hence it is condition-based and not time-based. For example, the VCB (Vacuum Cir-

cuit Breaker), whose role is to isolate the power supply of high voltage lines when there

is a fault or need for maintenance is replaced preventively every 2 years without any

concern for its actual condition and performance capability. It is replaced simply be-

cause it is time to. This methodology would be analogous to a time-based preventive

maintenance task. If, on the other hand, the operator of the train, based on formerly
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acquired experience, have noticed some particular events or incidents which frequently

precede the failure of the VCB, then, after insuring that safety procedures are being

respected, he/she may be able to extend its replacement until these events or incidents

appear, and thus optimizing the usage of material and decreasing maintenance costs.

Figure 2.2 shows a comparison between maintenance policies in terms of total main-

tenance cost and total reliability. Predictive maintenance, in cases where it can be

applied efficiently, is the least expensive and assures an optimal reliability with respect

to other policies.

Figure 2.2: Comparison of maintenance policies in terms of total maintenance costs and total

reliability

2.3.2 Data mining applied to the railway domain: A survey

The mounting socio-economic demand on railway transportation is a challenge for rail-

way network operators. The availability and reliability of the service has imposed

itself as the main competitivity arena between railway manufacturer moguls. Decision-

making for maintenance and renewal operations is mainly based on technical and eco-

nomic information as well as knowledge and experience. The instrumentation of railway

vehicles as well as infrastructure by smart wireless sensors has provided huge amounts

of data that, if exploited, might reveal some important hidden information that can

contribute to enhancing the service and improving capacity usage. For this reason,

recent years have witnessed an increasing uprise in applicative research and projects

in this context. Research fields receiving the biggest focus were railway infrastructure

and railway vehicles. Other fields include scheduling and planning as well as predicting

train delays to increase punctuality. All of which we discuss below.

1. Monitoring railway infrastructure

Railway infrastructure maintenance is a major concern for transportation compa-

nies. Railway infrastructure is constantly subjected to traffic and environmental

effects that can progressively degrade track geometry and materials. It is vital to
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discover these degradations at early stages to insure safety as well as comfort of

the service. There are three main systems that can be used for inspection (Bocci-

olone et al., 2002, 2007; Grassie, 2005): Portable manual devices (which can give

information on a relatively low length of track, operated by maintenance techni-

cians), Movable devices (which are fully mechanically driven and can cover long

distances), and very recently the implementation of sensors on active commercial

or probe vehicles to perform various types of measures in order to identify track

irregularities. The advantage of the latter system is that data can be collected

more frequently and at anytime.

Several tools and methods exploiting collected data for infrastructure condition

inspection (tracks, track circuit, rail switches and power supply system) have been

proposed in the recent years. Table 2.1 summarizes some of the recent works.

Reference Subsystem con-

cerned

Methodologies Used

(Insa et al., 2012), (Vale

and Lurdes, 2013), (An-

drade and Teixeira, 2012),

(Weston et al., 2006,

2007), (Rhayma et al.,

2011, 2013),(Bouillaut

et al., 2013), (Yella et al.,

2009), (Fink et al., 2014)

Track defects Statistical methods, Stochastic

probabilistic model, Bayesian

Networks, Probabilistic ap-

proaches, Stochastic finite

elements methods, Monte-Carlo

simulation procedure, Bayesian

networks, Multilayer feedfor-

ward neural networks based on

multi-valued neurons, Pattern

recognition, Classification

(Kobayashi et al., 2013;

Kojima et al., 2005, 2006;

Matsumoto et al., 2002;

Tsunashima et al., 2008)

Track inspec-

tion using probe

vehicles

Signal processing

(Oukhellou et al., 2010),

(Chen et al., 2008), (Lin-

Hai et al., 2012)

Track circuit Neural networks and decision

tree classifiers, Neuro-fuzzy sys-

tem, Genetic algorithm

(Chamroukhi et al., 2010),

(Samé et al., 2011)

Rail switches Mixture model-based approach

for the clustering of univari-

ate time series with changes in

regime, Regression model

(Cosulich et al., 1996),

(Wang et al., 2005), (Chen

et al., 2007)

Power supply sys-

tem

Probabilistic approach based on

stochastic reward nets, Radial

basis neural networks, finite ele-

ment analysis with Monte Carlo

simulation, Fault Tree Analysis

Table 2.1: Examples of recent research work along with the methodologies used for the

condition inspection of various train infrastructure subsystems
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2. Monitoring railway rolling stock

The recent years have witnessed the development of numerous approaches for the

monitoring of railway rolling stock material. One of the subsystems receiving a lot

of focus is doors. In general, doors of public transportation vehicles are subject to

exhaustive daily use enduring a lot of direct interactions with passengers (pushing

and leaning on the doors). It is important to note that malfunctions encountered

with doors are usually due to mechanical problems caused by the exhaustive use

of components. Each train vehicle is equipped with two doors from each side

which can be either pneumatic or electric.

Reference Subsystem Methodologies

(Miguelanez et al.,

2008), (Lehrasab, 1999;

Lehrasab et al., 2002),

(Roberts et al., 2002),

(Dassanayake, 2002),

(Dassanayake et al.,

2009),(Han et al., 2013)

Doors Ontology-based methods, Neural

networks, Classification, fuzzy

logic, statistical learning

(Bruni et al., 2013) Axle Statistical methods

(Randall and Antoni,

2011),(Capdessus et al.,

2000),(Zheng et al.,

2013),(Antoni and Ran-

dall, 2006),(Pennacchi

et al., 2011)

Rolling element

bearings

Envelope analysis, Squared enve-

lope spectrum, 2nd order cyclo-

stationary analysis, Spectral kur-

tosis , Empirical mode decompo-

sition, Minimum entropy decon-

volution

(Wu and Thompson,

2002),(Pieringer and

Kropp, 2008),(Belotti

et al., 2006),(Jia and

Dhanasekar, 2007),(Wei

et al., 2012),(Liang et al.,

2013)

Wheels Dynamic modelling, Signal

processing, Wavelet transform

methods, Fourier Transform,

Weigner-Villa Transform

Table 2.2: Examples of recent research work along with the methodologies used for the

condition inspection of various train vehicle subsystems

Other subsystems receiving focus are the axle and the rolling element bearings

since they are the most critical components in the traction system of high speed

trains. Monitoring their integrity is a fundamental operation in order to avoid

catastrophic failures and to implement effective condition based maintenance

strategies. Generally, diagnosis of rolling element bearings is usually performed

by analyzing vibration signals measured by accelerometers placed in the prox-

imity of the bearing under investigation. Several papers have been published
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on this subject in the last two decades, mainly devoted to the development and

assessment of signal processing techniques for diagnosis.

With the recent significant increases of train speed and axle load, forces on both

vehicle and track due to wheel flats or rail surface defects have increased and

critical defect sizes at which action must be taken are reduced. This increases the

importance of early detection and rectification of these faults. Partly as a result

of this, dynamic interaction between the vehicle, the wheel, and the rail has been

the subject of extensive research in recent years.

Table 2.2 resumes some of the important works on train vehicle subsystems in

the recent years.

3. Other projects related to railway predictive maintenance

Numerous projects have been developed in the railway domain that are not only

related to railway infrastructure and vehicles but to other applications as well.

For example, in (Ignesti et al., 2013), the authors presented an innovative Weight-

in-Motion (WIM) algorithm aiming to estimate the vertical axle loads of railway

vehicles in order to evaluate the risk of vehicle loading. Evaluating constantly the

axle load conditions is important especially for freight wagons, which are more

susceptible to be subjected to risk of unbalanced loads which can be extremely

dangerous both for the vehicle running safety as well as for infrastructure in-

tegrity. This evaluation could then easily identify potentially dangerous over-

loads or defects of rolling surfaces. When an overload is detected, the axle would

be identified and monitored with non-destructive controls to avoid and prevent

the propagation of potentially dangerous fatigue cracks. Other examples include

the work in (Liu et al., 2011), where the Apriori algorithm is applied on railway

tunnel lining condition monitoring data in order to extract frequent association

rules that might help enhance the tunnel’s maintenance efforts. Also, in (Vettori

et al., 2013), a localization algorithm is developed for railway vehicles which could

enhance the performances, in terms of speed and position estimation accuracy, of

the classical odometry algorithms.

Due to the high cost of train delays and the complexity of schedule modifications,

many approaches were proposed in the recent years in an attempt to predict train

delays and optimize scheduling. For example, in (Cule et al., 2011), a closed-

episode mining algorithm, CLOSEPI, was applied on a dataset containing the

times of trains passing through characteristic points in the Belgian railway net-

works. The aim was to detect interesting patterns that will help improve the total

punctuality of the trains and reduce delays. (Flier et al., 2009) tried to discover

dependencies between train delays in the aim of supporting planners in improving

timetables. Similar projects were carried out in the Netherlands (Goverde, 2011;

Nie and Hansen, 2005; Weeda and Hofstra, 2008), Switzerland (Flier et al., 2009),

Germany (Conte and Shobel, 2007), Italy (De Fabris et al., 2008) and Denmark
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(Richter, 2010), most of them based on association rule mining or classification

techniques.

In the next section, we present the applicative context of this thesis.

2.4 Applicative context of the thesis: TrainTracer

TrainTracer is a state-of-the-art centralized fleet management (CFM) software con-

ceived by Alstom to collect and process real-time data sent by fleets of trains equipped

with on-board sensors monitoring various subsystems such as the auxiliary converter,

doors, brakes, power circuit and tilt. Figure 2.3 is a graphical illustration of Alstom’s

TrainTracer
TM

. Commercial trains are equipped with positioning (GPS) and com-

munications systems as well as on-board sensors monitoring the condition of various

subsystems on the train and providing a real-time flow of data. This data is transferred

wirelessly towards centralized servers where it is stocked, exploited and analyzed by the

support team, maintainers and operators using a secured intranet/internet access to

provide both a centralized fleet management and unified train maintenance (UFM).

Figure 2.3: Graphical Illustration of Alstom’s TrainTracer
TM

. Commercial trains are equipped

with positioning (GPS) and communications systems as well as onboard sensors monitoring the

condition of various subsystems on the train and providing a real-time flow of data. This data

is transferred wirelessly towards centralized servers where it is stocked and exploited.
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2.4.1 TrainTracer Data

The real data on which this thesis work is performed was provided by Alstom trans-

port, a subsidiary of Alstom. It consists of a 6-month extract from the TrainTracer

database. This data consists of series of timestamped events covering the period from

July 2010 to January 2011. These events were sent by the Trainmaster Command Con-

trol (TMCC) of a fleet of pendolino trains that are currently active. Each one of these

events is coupled with context variables providing physical, geographical and technical

information about the environment at the time of occurrence. These variables can be

either boolean, numeric or alphabetical. In total, 9,046,212 events were sent in the

6-month period.

Figure 2.4: Design of a traction-enabled train vehicle (http://railway-technical.com)

• Subsystems

Although all events are sent by the same unit (TMCC) installed on the vehicles,

they provide information on many subsystems that vary between safety, electrical,

mechanical and services (consider figure 2.4). There are 1112 distinct event types

existing in the data extract with varying frequencies and distributions. Each one

of these event types is identified by a unique numerical code.

• Event Criticality Categories

Events belonging to the same subsystem may not have the same critical impor-

tance. Certain events can indicate normative events (periodic signals to indicate

a functional state), or are simply informative (error messages, driver information

messages) while others can indicate serious failures, surpass of certain thresholds

whose attributes were fixed by operators or even unauthorized driver actions. For

this reason, events were divided by technical experts into various intervention cat-

egories describing their importance in terms of the critical need for intervention.
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The most critical category is that of events indicating critical failures that require

an immediate stop/slow down or redirection of the train by the driver towards

the nearest depot for corrective maintenance actions. Example: the ”Pantograph

Tilt Failure” event. These events require high driver action and thus we refer to

their category by “Driver Action High”.

• Target Events

As mentioned before, events are being sent by sensors monitoring subsystems

of diverse nature: passenger safety, power, communications, lights, doors, tilt

and traction etc. Among all events, those requiring an immediate corrective

maintenance action are considered as target events, that is mainly, all “Driver

Action High” events. In this work, we are particularly interested in all subsystems

related to tilt and traction. The tilt system is a mechanism that counteracts the

uncomfortable feeling of the centrifugal force on passengers as the train rounds

a curve at high speed, and thus enables a train to increase its speed on regular

rail tracks. The traction system is the mechanism responsible for the train’s

movement. Railways at first were powered by steam engines. The first electric

railway motor did not appear until the mid 19th century, however its use was

limited due to the high infrastructure costs. The use of Diesel engines for railway

was not conceived until the 20th century, but the evolution of electric motors for

railways and the development of electrification in the mid 20th century paved the

way back for electric motors, which nowadays, powers practically all commercial

locomotives (Faure, 2004; Iwnicki, 2006). Tilt and traction failure events are

considered to be among the most critical, as they are highly probable to cause

a mandatory stop or slowdown of the train and hence impact the commercial

service and induce a chain of costly delays in the train schedule.

In the data extract under disposal, Tilt and Traction driver action high failure

events occur in variable frequencies and consist a tiny portion of 0.5% of all events.

Among them, some occur less than 50 times in the whole fleet of trains within

the 6-month observation period.

2.4.2 Raw data with challenging constraints

In order to acquire a primary vision of the data and to identify the unique charac-

teristics of target events, a graphical user interface (GUI) was developed using Matlab

environment. This interface enabled the visualization of histograms of event frequencies

per train unit as well as in the whole data and provided statistics about event counts

and inter-event times (Figure 2.5).
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Figure 2.5: GUI designed for data vi-

sualization, implemented in Matlab. It

enabled the visualization, for a selected

event and train unit, of various his-

tograms and plots, along with various

statistics concerning counts and inter-

event times

Figure 2.6: GUI designed for data vi-

sualization, implemented in Matlab. It

enabled the request and visualization,

for a selected target event T, of var-

ious histograms and plots, along with

various statistics concerning events and

their inter-event times

Another graphical interface was developed by a masters degree intern (Randria-

manamihaga, 2012) working on the same data and was also used to visualize the en-

semble of sequences preceding the occurrences of a given target event. This interface is

shown in Figure 2.6. Figure 2.7 is one of many examples of data visualization we can

obtain. In this figure, we can visualize a sequence of type (ST , tT − t, tT ) where ST is

the sequence of events preceding target event (T, tT ).
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Figure 2.7: Example of a visualized sequence, after request of target event code 2001.

The y-axis refers to subsystems, the colors represent different intervention categories

and the length of each event designate its count

Both tools developed to visualize data lead to the following interpretation: many

obstacles are to be considered and confronted, namely the rarity and redundancy of

events.

• Rarity:

The variation in event frequencies is remarkable. Some events are very frequent

while others are very rare. Out of the 1112 event types existing in the data, 444

(≈ 40%) have occurred less than 100 times on the fleet of trains in the whole

6-month observation period (see Figure 2.8). These events, although rare, render

the data mining process more complex.
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Figure 2.8: Histogram of event frequencies in the TrainTracer data extract under dis-

posal

• Redundancy:

Another major constraint is the heavy redundancy of data. A sequence w ↓ [{A}]
of the same event A is called redundant (also called bursty), see Figure 2.9, if

in a small lapse of time (order of seconds for example), the same event occurs

multiple times. More formally, if w ↓ [{A}] = 〈 (A, t1), (A, t2), . . . , (A, tn) 〉 is a

sequence of n A events subject to a burst, then

∃ t = tfusion such as ∀ (i, j) ∈ {1, . . . , n}2 , | ti − tj | ≤ tfusion (2.1)

The reasons to why these bursts occur are many. For example, the same event

can be detected and sent by sensors on multiple vehicles in nearly the exact time.

It is obvious that only one of these events needs to be retained since the others do

not contribute with any supplementary useful information. These bursts might

occur due to emission error caused by a hardware or software failure, as well as

reception error caused by similar factors.

Figure 2.9: Illustration of the concept of bursts on event A
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2.4 Applicative context of the thesis: TrainTracer

Figure 2.10 illustrates data bursts in a sequence. We can identify two types of

bursts. The first type consists of a very dense occurrence of multiple types of

events within a short time lapse. Such bursts can occur normally or due to a

signalling/reception error. The second type on the other hand consists of a very

dense occurrence of a single event type within a short period of time, usually

due to a signalling or reception error as well (event sent multiple times, received

multiple times). Bursty events can be generally identified by a typical form of

the histogram of inter-event times depicted in Figure 2.11. This latter has a peak

of occurrences (usually from 0 to 15 seconds) that we can relate to bursts. For

example, 70% of all the occurrences of the code 1308 1 (an event belonging to

category 4 and appears in the data 150000 times) are separated by less than one

second!

Figure 2.10: Illustration of the two types of bursts
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2.4.3 Cleaning bursts

Several pre-treatment measures have been implemented to increase the efficiency of

data mining algorithms to be applied. For instance, 13 normative events that are

also very frequent were deleted from the data. Erroneous event records with missing

data or outlier timestamps were also neglected in the mining process. The work by

(Randriamanamihaga, 2012) during a masters internship on the TrainTracer data has

tackled the bursts cleaning problem and applied tools based on finite probabilistic

mixture models as well as combining events of the same type occurring very closely in

time (≤ 6 seconds, keeping the first occurrence only) to decrease the number of bursts.

This cleaning process has decreased the size of data to 6 million events (instead of 9.1),

limited the number of distinct event codes to 493 (instead of 1112), and the number of

available target events to 13 (instead of 46). Although a significant proportion of data

was lost, the quality of the data to be mined was enhanced, which leads to a better

assessment of applied algorithms and obtained results. For this reason, the resulting

“cleaned” data was used in this thesis work.

2.5 Positioning our work

In the railway domain, instrumented probe vehicles that are equipped with dedicated

sensors are used for the inspection and monitoring of train vehicle subsystems. Main-

tenance procedures have been optimized since then so that to rely on the operational

state of the system (Condition-based maintenance) instead of being schedule-based.

Very recently, commercial trains are being equipped with sensors as well in order to

perform various measures. The advantage of this system is that data can be collected

more frequently and anytime. However, the high number of commercial trains to be

equipped demands a trade-off between the equipment cost and their performance in

order to install sensors on all train components. The quality of these sensors reflects

directly on the frequency of data bursts and signal noise, both rendering data more

challenging to analyze. These sensors provide real-time flow of data consisting of geo-

referenced events, along with their spatial and temporal coordinates. Once ordered

with respect to time, these events can be considered as long temporal sequences that

can be mined for possible relationships.

This has created a necessity for sequential data mining techniques in order to derive

meaningful associations (association and episode rules) or classification models from

these data. Once discovered, these rules and models can then be used to perform an

on-line analysis of the incoming event stream in order to predict the occurrence of target

events, i.e, severe failures that require immediate corrective maintenance actions.

The work in this thesis tackles the above mentioned data mining task. We aim to

investigate and develop various methodologies to discover association rules and clas-
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sification models which can help predict rare failures in sequences. The investigated

techniques constitute two major axes: Association analysis, which is temporal, and

aims to discover association rules of the form A −→ B where B is a failure event using

significance testing techniques (T-Patterns, Null models, Double Null models) as well as

Weighted association rule mining (WARM)-based algorithm to discover episode rules,

and Classification techniques, which is not temporal, where the data sequence is

transformed using a methodology that we propose into a data matrix of labelled obser-

vations and selected attributes, followed by the application of various pattern recogni-

tion techniques, namely K-Nearest Neighbours, Naive Bayes, Support Vector Machines

and Neural Networks to train a static model that will help predict failures.

We propose to exploit data extracted from Alstom’s TrainTracer database in order

to establish a predictive maintenance methodology to maximize rolling stock availability

by trying to predict failures prior to their occurrence, which can be considered as a

technological innovation in the railway domain. Once association rules or classification

models are found, both can then be implemented in rule engines analyzing arriving

events in real time in order to signal and predict the imminent arrival of failures. In

the analysis of these sequences we are interested in rules which help predict tilt and

traction “driver action high” failure events, which we consider as our target events.

To formalize the problem, we consider the input data as a sequence of events,

where each event is expressed by a unique numerical code and an associated time of

occurrence.

Definition 2.5.1. (event) Given a set E of event types, an event is defined by the

pair (R, t) where R ∈ E is the event type (code) and t ∈ <+ its associated time of

occurrence, called timestamp.

Definition 2.5.2. (event sequence) An event sequence S is a triple (S, Ts, Te), where

S = {(R1, t1), (R2, t2), ..., (Rn, tn)} is an ordered sequence of events such that Ri ∈
E ∀i ∈ {1, ..., n} and Ts ≤ t1 ≤ tn ≤ Te.

2.5.1 Approach 1: Association Analysis

Definition 2.5.3. (Association rule) We define an association rule as an implication

of the form A −→ B, where the antecedent and consequent are sets of events with

A ∩B = φ.
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Figure 2.12: A graphical example of mining data sequences for association rules. Discovered

rules are then used for real-time prediction of failures

Consider the Figure 2.12, in the analysis of sequences we are interested in discovering

associations between normal events and target events. Once such relationships are

discovered, they can be integrated in an online rule engine monitoring the incoming

event stream, hence allowing the prediction of target events (failures). Once a target

event is predicted, the maintenance teams are alerted to initiate predictive maintenance

procedures. In order for this prediction to be effective, it is subject to two important

constraints:

• First, target events should be predicted within a time delay that should be suf-

ficient enough to allow logistic and maintenance measures to be taken, such as

directing a train towards a stand-by maintenance team in a nearby depot, thus

avoiding the costly consequences of a train breaking down in-between stations.

This time delay is called warning time (See Figure 2.13).

Figure 2.13: An illustration of warning time prior to the occurrence of a target event

• Secondly, prediction accuracy should be high enough due to high intervention

costs in the case of false predictions. The whole process is depicted in Figure 2.14

below.
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Figure 2.14: Mining association rules for predictive maintenance. Discovering significant as-

sociations between events and validating their abidance to the warning time and accuracy con-

straints leads to association rules. These rules are validated by railway experts and integrated

in online monitoring tools to predict target events.

However, due to the rareness of target events, the existing sequence mining tech-

niques cannot be used since they are designed to discover frequent patterns and associa-

tions between frequent events and not rare ones. Rare events would be directly pruned

out in the process and any correlation between them and other frequent/infrequent

events would remain undiscovered. This problem was the main motivation in orienting

and structuring the theoretical work of this thesis.

This thesis hence tackles the problem of mining temporal sequences for association

rules between infrequent events, an important problem that has not received much aca-

demic attention until recently. In data mining literature, the use of the term “pattern”

is attributed to the repetitive series of correlated events discovered in a sequence and

mostly signifies frequent patterns. However, since in this thesis we are interested in

infrequent patterns, we preferred using the term association and episode rules.

2.5.2 Approach 2: Classification

The second approach which we will adopt is pattern recognition and classification meth-

ods. Figure 2.15 illustrates the process. In this approach we neglect the temporal aspect

of the sequence and transform it into a data matrix of labelled observations and se-

lected attributes. For each occurrence of a target event, events observed within a time

window of width w preceding this event are considered as an observation and given a

label 1. This window is equivalent to a bad window followed by a failure. Random

windows are chosen and constitute the good windows each with a label 0. A random

window is omitted if it contained a failure event. Since the training data are labelled,

the problem in hand is a supervised learning classification problem. All observations

are used to train and learn a classification model using multiple pattern recognition

methods, namely K-Nearest Neighbours, Naive Bayes, Support Vector Machines and

Neural Networks.

Once the classification model is learned, it is tested using a cross validation tech-

nique. Events arriving in real time are considered as an input attribute set (x) to the
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classification model which outputs a class label 1 if a nearby occurrence of a target

event is predicted and a label 0 if not.

Figure 2.15: A graphical illustration of how a classification model can be trained from a data

sequence and then used to predict the near-by occurrence of failures

At the end, the performance of both approaches: Association analysis and Clas-

sification methods are confronted and compared.
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Chapter 3

Detecting pairwise

co-occurrences using hypothesis

testing-based approaches: Null

models and T-Patterns algorithm
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3.1 Introduction

Mining statistically significant rules directly from sequences is an important but ne-

glected problem. In most traditional frequency-confidence framework-based associa-

tion rule approaches, the actual statistical interestingness of the rule is evaluated using

interestingness measures after it has been discovered. Quite likely, the reason is prac-

tical: statistical significance is not a monotonic property and therefore it cannot be

used for pruning the search space in the same manner as the frequency (Hamalainen

and Nykanen, 2008). This leads to a lot of spurious results, without forgetting that

frequency-based approaches are not capable to mine rules between infrequent items

without the use of a low support threshold which in its turn causes a huge computa-

tional complexity.

In chapter 2, we have discussed the complexity of the TrainTracer data extracts

on which the case study of this thesis is focused. One of the main raised issues was

the rareness of the target events, which immediately rules out most of the existing

association rule and pattern mining algorithms such as Apriori (Agrawal et al., 1996)

and its derivatives and FP-tree (Han et al., 2004) and its derivatives due to their

dependence on frequency. Another raised issue was the strong presence of redundancy

and noise in the data, an additional constraint which renders the mining process more

vulnerable to false discoveries. In this chapter, we focus our work on the discovery of

pairwise co-occurrences between events A and B. Once discovered, these co-occurrences

would then be assessed to derive length-2 association rules A −→ B, where B is a target

event.

In order to discover these co-occurrences, two different methodologies have been

adapted to the problem: Null models and T-Patterns algorithm. The first, null mod-

els, consists of randomization techniques followed by the calculation of various co-

occurrence scores. The second, T-Patterns, exploits the temporal dimension by inves-

tigating the statistical dependence between inter-arrival times of couples of events in

order to highlight possible relationships and build trees of hierarchical temporal de-

pendencies. In addition to that, a bipolar significance testing approach, called double

null models (DNM) is proposed. The motivation behind this approach is to render null

models more resistant to spurious results and to integrate the directionality aspect into

the mining process instead of assessing it in post-mining steps. All approaches were

applied and confronted on both synthetic and real data.

Once significant co-occurrent event couples are found, they will be assessed by

means of objective interestingness measures: Recall and Precision which will assess the

directionality aspect and the accuracy, as well as subjective interestingness measures

30



3.2 Association analysis

which mainly evaluate the inter-event times between events A and B. Significant cou-

ples abiding the constraints discussed in chapter 2 (accuracy and inter-event time) are

considered as statistically significant association rules. This methodology is illustrated

in Figure 3.1 below.

Figure 3.1: Illustration of the methodology adapted in this chapter to discover association

rules. Significance testing approaches: Null Models, T-Patterns and Double Null Models (DNM)

are used to discover significant co-occurrences. Once found, these co-occurrences are assessed

using objective and subjective interestingness measures in order to derive association rules.

This chapter is organized as follows: In Section 3.2, we formally define association

analysis and the association rule mining problem. We also give the basic notations and

define the notorious ARM problem and its two pillar approaches. In Section 3.3 we

describe single null models and propose the double null model approach in 3.3.5. We

then explain the T-Patterns algorithm in 3.4. The interesting measures used to evaluate

results and derive rules from discovered co-occurrences are discussed in Section 3.5. In

Section 3.6, experiments are then performed on synthetically generated data in order

to assess the performance of null models and to derive the best combination of double

null models. The most performant single null models, double null models as well as the

T-Patterns algorithm are then applied on real TrainTracer data in Section 3.7. Finally,

we resume and conclude in Section 3.8.

3.2 Association analysis

3.2.1 Introduction

Association analysis is an important omnipresent data mining problem that aims to

discover particular relationships between items in a transaction database or events in

a data sequence. The aim is to discover association rules, which are also referred to

as Episode rules in cases when temporal relationships between events in sequences

are described. In this thesis, we use the term association rule for both temporal and

non-temporal rules in both transaction and sequential data.

The original motivation behind the initial association rule mining algorithms was

the need to analyze supermarket basket transaction data (Agrawal and Srikant, 1994)

in order to examine customer behavior in terms of purchased products. Association
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rules were used to describe how often items are purchased together. For instance, the

rule Fries −→ Ketchup (75%) states that three out of four customers who have bought

fries have also purchased Ketchup. Such rules can be useful for decisions concerning

product pricing, promotions, or store layouts. However, recent years have witnessed a

vast and extensive development of association analysis approaches. These approaches

were applied in a wide range of domains such as environmental monitoring (Tan et al.,

2001), bioinformatics (Haiminen et al., 2008), recognition of human behavior (Ermes

et al., 2008; Honda et al., 2007) and telecommunication alarm log management and

interaction (Mannila et al., 1997) etc. The developed techniques are very diversified

to comply with different types of problems in transaction databases or sequences of

events.

In general, the association rule mining process consists of 2 main steps:

1. Mining associations (itemsets, patterns, episodes, co-occurrences)

2. Evaluating these associations using interestingness measures to generate and val-

idate rules

3.2.2 Association Rule Discovery: Basic notations, Initial problem

In this section, we define some basic notions and concepts of association rule mining.

We briefly describe how the field evolved as well as its pillar algorithms. As mentioned

earlier, the initial motivation behind the development of the first association rule mining

algorithms was the analysis of market basket data, which consisted of transactions.

Hence the algorithm was initially conceived for transaction data.

Let I be a set of items, also called itemset. A set X = {i1, i2, .., ik} ⊆ I is called a

k-itemset if it contains k distinct items. Let D, the transaction database, be a set of

transactions over I, where each transaction is a couple T = (tid, X) where tid is the

transaction identifier and X an itemset. Given the following definitions.

Definition 3.2.1. (Association Rule): For a given transaction database D, an as-

sociation rule is an expression of the form X −→ Y , where X and Y ⊂ I are itemsets

and X ∩ Y = {}. Such a rule indicates that if a transaction contains all items in X

then it is highly probable that it also contains all items in Y . X is called the body or

antecedent and Y is called the head or consequent of the rule. An association rule is

accompanied by mathematical statistics that describe the relationship.

Definition 3.2.2. (Support): A transaction T is said to support an item ik if it

contains that item. T is said to support a subset of items X ⊆ I if it supports each

item i in X. The support of an itemset X in D can be defined in various manners. For

instance, the percentage support refers to the percentage of transactions supporting

X. The fractional support (also called frequency) is the proportion of transactions

containing X. The absolute support, also called support count, refers to the absolute
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number of transactions supporting X in D. In this thesis, unless specified otherwise,

we assume the support to be percentage support, which is formalized by the following

equation:

support(X,D) :=
|{I|I ∈ D ∧X ⊆ I}|

|D|
× 100 (3.1)

An itemset is said to be frequent if its support is no less than a given minimal

support threshold minsup. The support of an association rule X −→ Y in D, is the

support of X ∪ Y in D.

Definition 3.2.3. (Confidence): Formally, the confidence of an association rule

X −→ Y in D is the conditional probability of having Y contained in a transaction,

given that X is contained in that transaction as well:

confidence(X −→ Y,D) := P (Y |X) =
support(X ∪ Y,D)

support(X,D)
(3.2)

The rule is called confident if P (Y |X) exceeds a given minimal confidence threshold

minconf , with 0 ≤ minconf ≤ 1.

The original association rule mining approach introduced in (Agrawal and Srikant,

1994) as well as most of the existing association rule mining techniques are based on a

frequency-based support-confidence framework, where the problem consists of mining

all rules that have support and confidence greater than or equal to the user-specified

minimum support and confidence thresholds. Step 1 of the association rule mining

process thus consists of frequent itemset mining where the goal is to discover itemsets

occurring repetitively. Let D be a transaction database over a set of items I, and

minsup a minimal support threshold. The collection of frequent itemsets in D with

respect to minsup is denoted by

F (D,minsup) := {X ⊆ I|support(X,D) ≥ minsup} (3.3)

Once discovered, these frequent itemsets are then evaluated mainly by the confi-

dence measure or other interestingness measures defining to which extent the candidate

rule holds. Supposing confidence is the interestingness measure to be used to evaluate

discovered frequent itemsets, The ARM problem consists of findingR(D,minsup,minconf ),

where

R(D,minsup,minconf) := {X −→ Y |X,Y ⊆ I,X ∩ Y = {}, X ∪ Y ∈ F (D,minsup),

confidence(X −→ Y,D) ≥ minconf}
(3.4)

Most research in the area of association rule discovery has focused on the subproblem

of efficient frequent item set discovery (Han et al., 2004; Park et al., 1995; Pei et al.,
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2001a; Savasere et al., 1995). The task of discovering all frequent itemsets is quite

challenging since its computational requirements are generally more important than

those of rule generation. The search space is exponential in the number of items

occurring in the database. Consider Figure 3.2 below, a lattice structure can be used

to illustrate the list of all possible itemsets for I = {a, b, c, d, e}. In general, a dataset

containing k items can potentially generate up to 2k−1 frequent itemsets, excluding the

null set. In many applications, k can be very large which might implicate an explosion

in the search space of itemsets to be explored. For this reason, not all itemsets should be

explored. The support threshold limits the output to a hopefully reasonable subspace.

Also, the number of transactions contributes to the complexity of the problem.

Figure 3.2: An itemset lattice

Definition 3.2.4. (Candidate itemset) Given a transaction database D, a minimal

support threshold minsup, and an algorithm that computes F (D,minsup), an itemset

I is called a candidate if its support is being evaluated by an ARM process.

Since the release of the first association rule mining algorithms, many approaches

were developed to reduce the computational complexity of frequent itemset generation.

These approaches can be grouped under two major axes:

1. Breadth-first algorithms: which are mostly based on the downward closure prop-

erty of the Apriori algorithm, described further in this section. These approaches

target the reduction of the number of candidate itemsets to be evaluated.

2. Depth-first algorithms: mostly based on the FP-tree algorithm and its derivatives,

these approaches attempt to reduce the number of comparisons between itemsets

and transactions (database scans) by elaborating more advanced data structures

to compress the dataset while conserving the information.

The two main breadth-first and depth-first algorithms are Apriori and FP-tree, both

which we briefly describe below.

34



3.2 Association analysis

Apriori algorithm: A breadth-first approach

The first support-confidence based algorithm was the AIS algorithm, introduced by

(Agrawal et al., 1993). It generated all frequent itemsets and confident association rules

and was proposed along with the introduction of the association rule mining problem.

Shortly after that, the algorithm was improved by the same team and renamed Apri-

ori. The Apriori algorithm was the first to tackle the computational time problem of

association rule mining by reducing the number of item sets that are considered. It was

the first approach to use support-based pruning as well as the downward closure prop-

erty (Agrawal and Srikant, 1994; Srikant and Agrawal, 1995). The same technique was

independently proposed by (Mannila et al., 1994). Both works were joined afterwards

in (Agrawal et al., 1996). The algorithm is guided by the following principle, called the

downward closure property, also called the anti-monotonicity property.

Definition 3.2.5. (Downward Closure Property) Let I be a set of items, and

J = 2I be the power set of I. A measure f is downward closed if ∀X,Y ∈ J : (X ⊆
Y ) −→ f(Y ) ≤ f(X), which means that if an itemset Y is frequent, then all of its

subsets X must also be frequent since a superset cannot have a frequency exceeding

that of its subsets.

Let Ck denote the set of candidate k-itemsets, Fk denote the set of frequent k-

itemsets and X[i] represent the ith item in X. The algorithm initially makes a single

path over the data set to determine the support of each item and obtain frequent

length-1 itemsets F1, hence C1 consists of all items in I. The algorithm performs a

breadth-first search through the search space of all itemsets by iteratively generating

candidate itemsets Ck+1 of size k + 1, starting with k = 1. As mentioned before,

an itemset is candidate if all of its subsets are known to be frequent. To count the

supports of all candidate k-itemsets, the database is scanned one transaction at a time,

and the supports of all candidate itemsets that are included in that transaction are

incremented. All itemsets that turn out to be frequent are inserted into Fk and used

to generate Ck+1. The algorithm halts when there are no new frequent itemsets to be

generated, that is, when Fk = {φ}.

Once the frequent itemsets are obtained, association rules are generated via a

confidence-based process.

The FP-Growth algorithm: A depth-first approach

The first algorithm to generate frequent itemsets in a depth-first manner was the Eclat

algorithm proposed in (Zaki et al., 1997)(Zaki, 2000). Later on, several other depth-first

algorithms have been proposed (Agarwal et al., 2000a,b; Han et al., 2004) of which the

FP-growth algorithm by (Han et al., 1999, 2004) is the most well known and considered

to be the most influential. The algorithm does not implement the generate-and-test
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paradigm of the Apriori algorithm. It consists of two steps. First, it represents the

data differently using a compact structure called an FP-tree and a minimum support

threshold minsup. The construction of the tree requires only two passes over the whole

database. The algorithm then uses this structure instead of the transaction database to

extract frequent itemsets directly. Figure 3.3 gives an example of a transaction dataset

consisting of ten transactions and five items and its corresponding FP-tree.

Figure 3.3: Construction of an FP-tree from transaction data consisting of ten trans-

actions and five items. Each node of the tree represents an item along with a counter

showing the number of transactions mapped onto the given path.

As mentioned earlier, both approaches Apriori and FP-tree are frequency-based and

are thus not suitable for the discovery of association rules leading to infrequent events.

For this reason, we have decided to adopt a different approach based on hypothesis

testing methods: Null-models and T-Patterns. In the next section, we tackle the null

models approach.

3.3 Null models

3.3.1 Formalism

A null model is a sequence-generating model which generates randomizations of data

sequences while conserving their general statistical characteristics. Certain elements of

the data are held constant while others are allowed to vary stochastically. These models

evaluate relationships between couples of events by means of a statistical hypothesis

test, where the null hypothesis refers to the significance of a particular relationship in

the original data sequence. To solve this test, the initial data sequence is randomized

using a null model and the co-occurrence scores of each randomization are calculated.

In order to understand how significant are the scores of the scrutinized couple in the

initial sequence, the empirical p-value which is equal to the fraction of randomizations

with a higher co-occurrence scores than the initial data is calculated and compared to a

pre-defined threshold. If it is inferior to the threshold, the event couple under scrutiny
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is considered to be statistically significant, and highly probable to have not occurred

by chance.

Null models were initially developed in the 1970s for applications in ecology. Their

dominant application domain remains to be ecology, although it has been also applied

in various fields such as genetics (Hannenhalli and Levy, 2002; Klein and Vingron,

2007), physiology (Bellwood et al., 2002; Lavorel and Garnier, 2002), sports (Ermes

et al., 2008), etc.

(Gotelli and Graves, 1996) was the first to introduce and formalize the following

definition:

A null model is a pattern-generating model that is based on randomization of eco-

logical data. Certain elements of the data are held constant and others are allowed to

vary stochastically. The randomization is designed to produce a pattern that would be

expected in the absence of a particular ecological mechanism..

Essentially, there were two views of null models: (Connor and Simberloff, 1983) con-

sidered them as statistical descriptions of randomized data while (Colwell and Winkler,

1984) and (Gotelli and Graves, 1996) considered them as simulations of random assem-

bly processes. The latter definition is the one that will later dominate the concerned

scientific community. Numerous techniques for randomizing data were proposed in the

last years, varying between simple models (Hannenhalli and Levy, 2002), (Levy et al.,

2001) and more complex ones based on SWAP randomization (Gotelli and Entsminger,

2001; Lehsten and P., 2006) or Markov Chains Monte Carlo-based methods (Hanhijrvi

et al., 2009; Ojala et al., 2009).

In this section, we define and evaluate three single null models with 2 different co-

occurrence scores. We also introduce double null models (DNM), a bi-polar significance

testing approach based on single null models.

3.3.2 Co-occurrence scores

In order to assess the relationship between a couple of events, a co-occurrence score is

needed. There are several possible scores that can quantify the degree of co-occurrence

of an event couple. Given a set E of event types and S = {(R1, t1), (R2, t2), ..., (Rn, tn)}
is a temporal sequence of length l time units, Ri ∈ E and ti ∈ <+. Consider the event

couple under scrutiny (A,B) where A ∈ E and B ∈ E, let N(A) be the number of

times an event type A occurs in the sequence S and denote f(A) = N(A)/n. Consider

w as the maximum co-occurrence distance (or scanning window width).

• The directed co-occurrence count score D(A,B, S) is the number of events of

type A that are followed by at least one event of type B within a maximum

co-occurrence distance w. The values of D(A,B, S) ∈ {0, ..., N(A)}.
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• The precedence count score P (A,B, S) for event types A and B is the number

of events of type B that are preceded by at least one event of type A within a

maximum co-occurrence distance w. P (A,B, S) ∈ {0, ..., N(B)}.

Sequence S
AB D

0 1000

A B CC DA

D1

D2

D3

RUL(S)
A B D CA B CCD AB

RFL(S)
CD AA B C BD AB C

RFL(A)(S)
AC BB A D CB CA

D

250 500 750
Time (hours)

P1

P2

P3

Figure 3.4: Graphical illustration of the UL, FL and FL(A) single null models with the P

and D scores for a given event couple (A,B) in an event sequence S of length l = 1000h with

4 event types A, B, C and D

3.3.3 Randomizing data: Null models

In order to evaluate the significance of a co-occurrence score, a null model is needed.

We describe three different single null models: the Uniform Locations (UL) model,

the Fixed Locations (FL) model and the Fixed Locations Fixed Event Type (FL(R))

model. We also propose a double model approach that will be explained in 3.3.5. The

randomization technique defined by each model to generate randomized versions of a

given event sequence S is explained below:

1. The Uniform Locations UL null model, as its name suggests, consists of generating

sequences resulting from the randomization of both the timestamps and the event

codes in the sequence. A similar model is applied in (Levy et al., 2001).

2. The randomized sequence RFL(S) is obtained by the Fixed Locations FL null

model by keeping the event timestamps fixed, and assigning event types at random

on these locations according to their frequencies in the original sequence. This

model was applied in (Hannenhalli and Levy, 2002; Klein and Vingron, 2007).
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3. The randomized sequence RFL(R)(S) for a sequence S and an event type R is

defined similarly to RFL(S), with the exception that the occurrences of events

of type R are kept unchanged. This model was introduced in (Haiminen et al.,

2008).

3.3.4 Calculating p-values

For a given sequence S and a null model M ∈ {UL,FL, FL(R)}, the empirical p-value

for an event couple (A,B) is the fraction of randomizations in which the D (or P )

score in the randomized sequences RM (S) exceeds the D (or P ) score of the original

sequence S:

pD(A,B,M, S) =
#(D(A,B, S) ≤ D(A,B,RM (S)))

#(D(A,B,RM (S)))
(3.5)

3.3.5 Proposed Methodology: Double Null Models

As formally defined and explained in (Haiminen et al., 2008), the UL, FL and FLR

null models with the D and P scores evaluate the variation of the predecessor event A

with respect to a successor event B and not vice versa. However, since the problematic

of this work is to discover rules of the form A −→ B where B is a target event, the

evaluation of the A event with respect to B is also important due to the directionality

aspect imposing the presence of the target event B after the A event since events

succeeding a failure do not help in predicting it.

The proposed methodology consists of a bipolar approach for discovering significant

couples in a way that best assesses recall and precision and renders the mining process

more resistant to spuriousness, hence decreasing the number of discovered couples. For

a given couple (A,B) under scrutiny, this approach first evaluates the variation of

successor event B with respect to the predecessor event A by means of a UL, FL or

FL(A) null model approach with the D score (step 1). Then it evaluates the variation

of the predecessor event A with respect to successor event B using a UL, FL or FL(B)

null model approach with the P score (step 2). Couple discovered by both models

are considered to be statistically significant (See Algorithm 1). This renders results

more robust against spuriousness resulting from the randomness factor as well as data

bursts, as it will be shown in Section 3.6. The main challenge is to find the most

optimal combination of models that can most probably lead to the best results. This

will also be tackled in 3.6. In the next section, a different approach that is also based

on hypothesis testing, the T-Patterns algorithm, is described.
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Algorithm 1 Pseudo code of the Double Null Model (DNM) algorithm
Inputs: Data, w: maximum co-occurrence distance, A-list: list of all non-target events, B-list: list

of target events, number of randomizations, p-value threshold, NM1: Null model 1, NM2: Null model

2

1: for every possible couple of events (Ai, Bj) do

2: Compute D0 and P0 scores of the initial data sequence

3: for n=1:number of randomizations do

4: Generate NM1 randomized data sequence

5: Compute Dn for the couple in NM1

6: Generate NM2 randomized data sequence

7: Compute Pn for the couple in NM2

8: end for

9: Compute p-value pD : pD(A,B,NM1, S) =
#(D(A,B, S) ≤ D(A,B,RNM1(S)))

#(D(A,B,RNM1(S)))

10: Compute p-value pP : pP (A,B,NM2, S) =
#(P (A,B, S) ≤ P (A,B,RNM2(S)))

#(P (A,B,RNM2(S)))
11: if pD, pP ≤ p-value threshold then

12: Couple (Ai, Bj) is statistically significant

13: end if

14: end for

Output: List of all the discovered couples

3.4 T-Patterns algorithm

The T-patterns algorithm (TP) is based on the concept that events can be considered

as temporal processes upon modeling their timestamps in the sequence. The aim is

then to scrutinize the statistical independency between the timestamps of couples of

events by means of a statistical hypothesis test. Two temporal point processes A and

B are considered to be independent if the arrival of an A-event (event type A) does not

lead to an increase in the probability of occurrence of a B-event (event type B). The

hypothesis test is of the form:

• H0: A and B are independent processes

• H1: A and B are dependent

To solve this test, (Magnusson, 2000) assumed that the two processes A and B are

independent random poisson processes distributed over the observation period with a

constant intensity that is equal to the average number of occurrences of each of these

events per unit time interval. Now that the expected number of B-events in an interval

of time is known, the algorithm asserts that after an occurence of an A-event at a time

instant t, there is an interval [t+ d1, t+ d2], where (d2 ≥ d1 ≥ 0), that tends to contain

more occurrence of B than would be normally expected by chance. This interval is

called critical interval (CI) and presented for simplicity as [d1, d2]. To evaluate an

(A,B) couple within a CI, the standard p-value is computed, which is the probability,

under the null hypothesis, of having more B-events in the CI than what was observed.
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If the calculated p-value is inferior to a predefined significance threshold (ex. 1%), the

null hypothesis is rejected.

This algorithm was enhanced by (Tavenard et al., 2008) and (Salah et al., 2010) who

asserted that if A and B temporal processes were to be independent, then whenever

an A-event occurs between two successive B-events, it will be uniformly distributed

in that interval (Salah et al., 2010). The non-uniformity of A within the B-intervals

increases the odds of the dependency of the two temporal processes and thereby makes

it worthy to start looking for critical intervals.

Figure 3.5: Graphical illustration of TAB and T̃B

Consider Figure 3.5 above. Denote by tA = (tA1 , tA2 , ..., tAn , ...) and tB = (tB1 , tB2 , ..., tBn , ...)

the (ordered) sequence of times at which an A-event and a B-event occur respectively.

TA(n) = tAn − tAn−1 represents inter A-event time-intervals and TB(n) = tBn − tBn−1

inter B-event time-intervals. The combination of an A-event and the first subsequent

B-event is referred to as AB-event. The time-interval separating these two events is

denoted by TAB
TAB(k) = tBk∗ − tAk

, (3.6)

where k∗ = arg min{j | tBj > tAk
}. Considering T̃B as the set of TB intervals in which

at least one A-event occurs, TAB should then be uniformly distributed between 0 and

T̃B:

TAB ∼ U(0, T̃B) (3.7)

To obtain a standard uniform distribution, the ratio vector U of the time between

each event Ak and the first succeeding B event to the B-interval length containing Ak
is calculated:

U(k) =
TAB(k)

T̃B(k)
=

tBk∗ − tAk

tBk∗ − tBk∗−1

(3.8)

To validate the null hypothesis (independence), U should be uniformly distributed

between 0 and 1. The test can be solved using a standard Kolmogorov-Smirnov (KS)

test (Tavenard et al., 2008).
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Algorithm 2 Pseudo code of the T-patterns algorithm
Inputs: A − List: List of all non-target events occurring in data, B − List: List of target events

occurring in data, Significance level α of the KS test= 1%

1: for every possible couple of events (Ai, Bj) do

2: Compute vector tA the ordered sequence of times at which the A-event occurred

3: Search for the first B-event succeeding every A-event and Calculate TAB using

equation (3.6)

4: Compute T̃B which is the time distance between the two B-events within which the

A-event occurred

5: Calculate the ratio vector U using equation (3.8)

6: if U is not uniformly distributed using a Kolmogorov Smirnov statistical test

with significance level α then

7: Couple (Ai, Bj) is statistically significant

8: end if

9: end for

Outputs: List of all discovered (A,B) couples

3.5 Deriving rules from discovered co-occurrences

Finding co-occurrences is just the first step of the association rule mining process.

The second step is the analysis of these relationships in order to deduce interesting

association rules. Any large sequence with a big number of event types can lead to the

discovery of a very large number of relationships and co-occurrences of which many are

uninteresting, trivial or redundant. Interestingness measures are used to prune those

who are uninteresting so as to narrow the search space and focus the analysis.

3.5.1 Interestingness measures in data mining

As mentioned before, discovered associations (co-occurrences, itemsets, episodes and

patterns) need to be analyzed in order to deduce those which are solid enough to be

considered as rules. Many of these rules can be uninteresting, trivial or redundant.

Example 3.5.1. An example of a Trivial rule is: Pregnant −→ Female with confi-

dence (accuracy) =100%!

The challenge hence is to select rules that are interesting and significant. In the

original formulation of association rules as well as in most Apriori-based methods,

support and confidence are the main measures used. However, confidence by itself

is not sufficient, since for example if all transactions include item A, then any rule

A −→ B will have a confidence 100%. In this case, other interestingness measures are

necessary to filter rules.

The past few years have witnessed the introduction of many interestingness mea-

sures in literature. Some measures are dedicated to specific applications and not for

others. Using interestingness measures facilitates a general and practical approach to
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automatically identifying interesting patterns. Two recent studies have compared the

ranking of rules by human experts to the ranking of rules by various interestingness

measures, and suggested choosing the measure that produces the ranking which most

resembles the ranking of experts (Ohsaki et al., 2004; Tan and Kumar, 2002). These

studies were based on specific datasets and experts, and their results cannot be taken

as general conclusions (Geng and Hamilton, 2006).

During the data mining process, interestingness measures can be used in three ways,

which we call the roles of interestingness measures and are illustrated in Figure 3.6.

First, measures can be used to prune uninteresting patterns during the mining process

so as to narrow the search space and thus improve mining efficiency. For example, a

threshold for support can be used to filter out patterns with low support during the

mining process (Agrawal and Srikant, 1994). Similarly, for some utility-based measures,

a utility threshold can be defined and used for pruning patterns with low utility values

(Yao et al., 2004). Measures can also be used to rank patterns according to the order

of their interestingness scores or during the postprocessing step to select interesting

patterns. For example, we can use the chi-square test to select all rules that have

significant correlations after the data mining process (Bay and Pazzani, 1999).

Figure 3.6: Roles of interestingness measures in the data mining process

In general, interestingness measures can be divided into two main categories: Ob-

jective and Subjective.

3.5.2 Objective interestingness measures

Objective interestingness measures are generally probability-based such as support,

confidence, lift, Gini, Piatetsky-Shapiro, J-measure and many others (Lenca et al.,

2004; Nada Lavrac et al., 1999; Ohsaki et al., 2004; Tan and Kumar, 2002).

Since directionality is a major aspect to be considered in the association rules to

be derived in this thesis, we have decided to use recall and precision interestingness

measures to assess the robustness of discovered co-occurrences and rules (Ohsaki et al.,

2004). These measures are defined as follows:

Recall =
# Predicted target events

#Total target events
(3.9)
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Precision =
# True predictions

# Total predictions
(3.10)

For an event couple (A,B), recall represents P (A/B), that is the fraction of target

events that were predicted. The precision represents P (B/A) which is the number of

true predictions over the total number of predictions, i.e, the fraction of correct pre-

dictions. A high recall (i.e. low rate of false negatives) means that a few target events

were missed while a high precision reflects a high predictive capability and indicates a

low rate of false positives. A false positive case corresponds to a wrong prediction and

a false negative situation is when no prediction occurs prior to a target event. Since

a high value of both interestingness measures is required considering the high cost of

useless maintenance intervention in case of false positive predictions and the high cost

of corrective maintenance in case of false negatives, a trade-off should be established to

decide whether a significant event couple or pattern under scrutiny can be considered

as an association rule or not.

When calculated in real data, due to the fact that some events have occurred very

frequently in a limited number of trains only, the calculation of the recall/precision is

affected negatively and leads to erroneous high values. To overcome this inconvenience,

a filter was introduced prior to the calculation of interestingness measures of couples

discovered by both the T-patterns and the null models. This filter identifies trains

where the frequency of an event is greater than x + 3σ, where x refers to the mean

frequency of an event among all trains and σ its standard deviation. For an event couple

(A,B), trains in which the frequency of event A or B is greater than the threshold are

neglected. This procedure renders recall and precision values more robust.

3.5.3 Subjective Interestingness measures

In some cases, the information provided by objective measures might not be sufficient

to judge if an itemset or pattern is significant enough to be considered as an association

rule and a subjective point of view is needed based on experience and constraints. A

subjective interestingness measure takes into account both the data and the user’s

knowledge. Such a measure is appropriate when: (1) The background knowledge of

users vary, (2) the interests of the users vary, and (3) the background knowledge of users

evolve. Unlike the objective measures considered in the previous subsection, subjective

measures may not be representable by simple mathematical formulas because the users

knowledge may be represented in various forms. Instead, they are usually incorporated

into the mining process.

Within the applicative context of this thesis, discovered rules should respect two

major constraints: a high global accuracy on one hand and a sufficiently large warning

time on another. Target events should be predicted within a warning time sufficient

enough to allow logistic and maintenance actions to be taken.
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A prediction is considered to be correct if a target event occurs within its prediction

period [W,M ], also called critical interval, which is defined by a warning time, W , and a

monitoring time, M . The warning time is the time delay before a target event becomes

highly probable to occur. The monitoring time determines how far into the future the

prediction extends (see Figure 3.7).

Figure 3.7: Illustration of warning time and monitoring time

Many approaches were proposed in (Magnusson, 2000; Tavenard et al., 2008) to

model critical intervals that are based either on shrinking or splitting techniques till

finding those with a significant p-value. Gaussian mixture models were also used to

fit the histogram of the TAB vector, consisting of the temporal distance between each

A pattern and the first succeeding B event and thus deduce the most optimal critical

interval (Salah et al., 2010). In the applicative case study of this thesis, railway experts

have asked for an inter-event time of 30 minutes (d1) and a prediction period extending

to 24 hours (d2). Thus, the critical interval was fixed to [30 minutes , 24 hours]

which limited the approaches that can be used. In order to evaluate inter-event time,

we compute the TAB vector for each discovered rule A −→ B (where B is a target

event and A can either be a single event or pattern), which is equivalent to the vector

of the time distance between every occurrence of the antecedent A pattern and the

first succeeding B target event. The rule is usually considered to have a sufficiently

acceptable inter-event time if the median of this vector is ≥ 30 minutes.

In the end, discovered couples abiding the inter-event time constraints and having

acceptable recall and precision values are considered as significant association rules. It is

important to mention that burstiness and redundancy in data can lead to the discovery

of false but statistically-significant co-occurrences in the first step of the mining process.

A physical subjective analysis by technical experts can identify such false associations

and prune them out of the search process.

In the next section, experiments on synthetic data are performed in order to derive

the most performant single null model as the well as the best double null model com-

binations which would be applied on real data along with the T-Patterns algorithm in

3.7.
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3.6 Experiments on Synthetic Data

In order to determine the most powerful double null model combination, we need to

search for the most performant single null models with the D and P scores, an experi-

mental study was conducted on synthetic data sequences. This study is based on two

diagnostics: (1) the efficiency to discover the planted co-occurrence or pattern (true

positive) and (2) the ability to discard non-existing co-occurrences (false positives).

The aim is also to analyze the effect of the window size parameter, i.e, the maximum

co-occurrence distance w, as well as the number of bursts and the frequency of the

planted co-occurrences on the performance of the null models in temporal data se-

quences. This knowledge is used to tune w to the value that will mostly contribute to

optimal results on the TrainTracer data.

3.6.1 Generation Protocol

The generative model of the data is as follows. The generated sequences were randomly

divided into sparse and un-overlapped dense segments of various lengths both consti-

tuted of m event types. The timestamps of each event type are generated randomly

and separately by means of a Poisson process of parameter λj , where j ∈ {1, ...,m}
over a period of l hours. λ values are unique for each event type and are generated

by means of a uniform distribution on the interval [L1min;L1max] for sparse segments

and [L2min;L2max] for dense (burst) segments, where L2max << L1min. In the gen-

erated sequences, we have established a directed co-occurrence pattern between two

event types A and B denoted (A,B) or A −→ B that is defined by randomly generated

Recall and Precision values. These values precise the percentage of A events followed

by B events and of B events preceded by A events. B events succeeding the A events

are planted within a temporal delay TAB generated from a uniform distribution on a

defined interval. We have focused on directed co-occurrences since our main goal on

the real train data is to discover directed association rules of the form A −→ B where

B is a target event.

3.6.2 Experiments

In all of the performed experiments, 100 sequences of length 1000 hours were generated

and randomized 100 times. The p-value threshold was fixed to 1%, TAB ∈ [0, 1] hours.

The sequences consisted of 10 event types numbered from 1 to 10. A directed co-

occurrence relationship was established between events 8 and 9 (injected pattern 8 −→
9). The length of dense segments (bursts) varied between 10 minutes and 1 hour.

• It is important to evaluate the performance of single and double null models under

different values of the maximum co-occurrence window w in order to tune its value
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for the remaining experiments on synthetic and real data. Table 3.1 shows the

results for the experimental diagnostics 1 and 2 of the single null models UL,

FL and FL(R) with the D and P scores (see Figure 3.4). Table 3.2 shows the

results of the double null models. Recall and Precision values varied between 0.5

and 1 (50% and 100%). The value of w was varied between 30 minutes and 20

hours. Experimental diagnostic I represents the mean number of pairs that were

discovered by the models in the 100 generated sequences and reflects the false

positive rate. Diagnostic II represents the number of sequence generations where

the injected pattern 8 −→ 9 was discovered and reflects the prediction rate.

Table 3.1: Results of single null models on 100 generated data sequences of l = 1000 hours

and varying values of w.

I - Mean number of discovered event couples in 100 generations

w(h) UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

0.5 90 90 7 8 2 2

1 90 90 7 6 2 2

5 6 6 4 4 3 4

10 1 0 3 4 3 3

20 0 0 1 1 0 1

II - Number of generations where (a,b) was found significant

w(h) UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

0.5 100 100 100 87 100 100

1 100 100 100 99 100 100

5 98 95 100 88 100 99

10 50 43 87 71 83 75

20 0 0 11 13 10 12

Table 3.2: Results of double null models on 100 generated data sequences of l = 1000 hours

and varying values of w.

I - Mean number of discovered event couples in 100 generations

w(h) UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

0.5 90 8 2 7 1 1 2 1 1

1 90 6 2 7 1 1 2 1 1

5 1 1 1 1 1 1 1 1 1

10 0 0.5 0 0 1 1 0 1 1

20 0 0 0 0 0 0 0 0 0

II - Number of generations where (a,b) was found significant

w(h) UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

0.5 100 87 100 100 87 100 100 87 100

1 100 99 100 100 99 100 100 99 100

5 94 87 97 95 88 99 95 88 99

10 38 50 49 43 69 70 42 67 68

20 0 0 0 0 5 5 0 5 5

Knowing that the expected mean number of couples to be discovered is 1, results

in tables 3.1 and 3.2 show that a small value of w leads to a high number of

false positives and a very high value leads to a low prediction rate since it is
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more probable to obtain randomizations with scores that are higher than the

initial scores. A trade-off value of 5 hours leads to the best results in both false

positive and prediction rate. Results show that the false positive rate of double

null models is inferior to that of single null models and hence more precise. The

double null models leading to best results with the variation of the w were the

(FL−D,FL(B)− P ) and (FL(A)−D,FL(B)− P ).

• Although the aim of our work is to discover relevant co-occurrences with high

significance and correlation, it is interesting however to test how far would the

double null models go in the discovery of co-occurrences with variable strength

defined by Recall and Precision values. Consider Figure 3.8 below, we have tested

the single and double null models with the D and P score on zones 1, 2 and 3. In

each case, 100 sequences were generated with a relationship between events 8 and

9 that is defined by recall and precision values that are randomly generated on an

interval defined for each zone. For example, in zone 1, both recall and precision

values vary on the interval [0.5; 1] and thus the relationship between events 8 and

9 is strong. In zones 2 and 3 one of these measures is high (∈ [0.5; 1]) while the

other is weak (∈]0; 0.5]), which might be possible in real cases due to burstiness

or transmission/reception error. In Zone 4, the relationship is very weak and the

performance of single and double null models in this zone is not of much interest

and will not be discussed. Results in tables 3.3 and 3.4 show that the double null

models which gave the best results in both the prediction rate and false positive

rate are the (FL−D,FL(B)−P ) (the FL null model with the D score combined

with the FL(B) null model with the P score) and the (FL(A)−D,FL(B)− P )

(the FL(A) null model with the D score combined with the FL(B) null model

with the P score). We can also see from the results that the double null models

succeed in discovering the injected co-occurrences (with 0 false positives) in zones

1 and 3. In zone 2 with low recall value, the 9 events generated are much more

frequent than the 8 events (in order to respect the recall value) and most of them

are not preceded by the 8 events in the synthetically generated initial data, thus

there is a high probability to obtain a higher score in the randomized data, which

explains why the null models had low prediction rate.
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Figure 3.8: Graphical Illustration of the four test zones

Table 3.3: Results l = 1000 hours, w = 5 hours and varying values of recall and precision.

I - Mean number of discovered event couples in 100 generations

Zone UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

1 7 7 5 5 4 4

2 4 4.5 5 4 1 1

3 11 12 4 4 3 3

II - Number of generations where (a,b) was found significant

Zone UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

1 99 92 100 88 99 95

2 15 1 39 1 33 16

3 100 80 86 73 92 79

Table 3.4: Results l = 1000 hours, w = 5 hours and varying values of recall and precision

I - Mean number of discovered event couples in 100 generations

Zone UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 0

3 2 1 1 1 1 1 1 1 1

II - Number of generations where (a,b) was found significant

Zone UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

1 92 88 94 92 88 95 91 88 94

2 1 1 6 1 1 14 1 1 14

3 80 73 79 74 68 72 76 70 76

• In order to test the efficiency of the single and double null models on bursty data

sequences, the number of bursts was varied. Results in 3.5 and 3.6 show that as

the number of bursts increases, the UL null model loses its predictability as so do

the UL-based double null models. The (FL−D, FL(B)−P ) and the (FL(A)−D,
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FL(B)−P ) double models have showed to give the best results considering both

the false positive rate and the prediction rate. These two null models both out-

perform the single null models as well as the other tested double null models in

giving more precise results with lower false positive rate while conserving approx-

imately the same prediction rate as single null models when predicting strong

and significant co-occurrences. These two null models will hence by applied on

the real TrainTracer data extracts to discover significant co-occurrences between

couples of events. In the following, the (FL−D,FL(B)− P ) double null model

will be referred to as DNM1 and the (FL(A)−D,FL(B)−P ) double models as

DNM2.

Table 3.5: Results of single null models for sequences of l = 1000 hours, w = 5 hours and

varying burstiness.

I - Mean number of discovered event couples in 100 generations

Nb. bursts UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

10 7 7 4 4 3.5 3

20 2 1 6 6 4.5 5

30 1 0 9 9 6.5 6

40 1 0 9.5 9 7 8

II - Number of generations where (a,b) was found significant

Nb. bursts UL-D(A) UL-P(B) FL-D(A) FL-P(B) FL(A)-D FL(B)-P

10 98 93 100 94 100 97

20 90 68 100 74 100 90

30 63 36 100 48 99 70

40 53 19 99 47 99 67

Table 3.6: Results of double null models for sequences of l = 1000 hours, w = 5 hours and

varying burstiness

I - Mean number of discovered event couples in 100 generations

Nb. UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

bursts UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

10 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

30 0 0 1 0 0.5 1 0 1 1

40 0 0 1 0 0 1 0 1 1

II - Number of generations where (a,b) was found significant

Nb. UL-D, UL-D, UL-D, FL-D, FL-D, FL-D, FL(A)-D, FL(A)-D, FL(A)-D,

bursts UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P UL-P FL-P FL(B)-P

10 93 94 95 93 94 97 93 94 97

20 68 74 85 68 74 90 68 74 90

30 36 48 59 36 48 70 36 48 70

40 19 44 51 19 47 67 19 47 67

3.7 Experiments on Real Data

In this section, the results obtained by the most performant single null models (FL−D,

FL(A) − D and FL(B) − P ), the two proposed DNMs as well as by the T-patterns
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algorithm (TP) are presented and discussed. The main issue rendering experiments

on real data difficult lies in the fact that no ground truth is available, and thus we

cannot evaluate the results easily (for example compare the discovered association rules

to ones that are already known). The adopted procedure is hence the following: The

discovered couples are evaluated by means of objective interestingness measures (Recall

and Precision) as well as subjective (Inter-event time). Couples abiding the accuracy

and inter-event time constraints are considered as statistically significant association

rules and are presented to technical experts to obtain a physical analysis and feedback.

In Section 3.6, Experiments have shown that the efficiency of null models decreases

with high values of w. However, knowing that a small value of w signifies a short

co-occurrence scanning distance, this would mean that all pairwise co-occurrences with

an inter-event time longer than w will be neglected. Thus, a trade-off was considered

for experiments with real TrainTracer
TM

data sequences, and w was fixed to 5 hours.

In Table 3.7, Results (1) represents the number of significant couples discovered by

the T-patterns algorithm (TP), the FL and FL(A) null models with the D score, the

FL(B) model with the P score and the double null models DNM1 (FL−D,FL(B)−P )

and DNM2 (FL(A)−D,FL(B)− P ) with a p-value threshold = 1%.

Table 3.7: (1) Number of significant event couples discovered by the T-patterns algorithm

(TP)(α = 1%) as well as single and double null models (p-value threshold = 1%) respectively

in the TrainTracer
TM

data sequences. (2) Number of significant event couples abiding the

inter-event time constraint discovered by the T-patterns algorithm (TP) (α = 1%) as well as

single and double null models (p-value threshold = 1%) respectively in the TrainTracer
TM

data

sequences.

TP FL-D FL(A)-D FL(B)-P DNM1 DNM2

(1) 3667 1454 639 776 598 404

(2) 3608 1300 567 714 547 367

All of the above mentioned discovered couples were subjected to several evaluation

processes in order to determine those satisfying the inter-event and accuracy constraints

and thus would then be considered as reliable rules. These processes consisted of mod-

eling inter-event times in addition to the calculation of recall and precision measures.

Since railway experts from Alstom have asked for a critical interval of [30min, 24hours],

mining was focused on couples with inter-event times at least equal to 30 minutes. Re-

sults (2) in 3.7 represent the number of significant event couples abiding the inter-event

time constraint. In total, 547 couples were discovered by DNM1 consisting of a merge

between FL−D and FL(A)−D, while 367 couples were discovered by DNM2 consist-

ing of a merge between FL(A)−D and FL(B)−P . These couples are hence considered

to be statistically significant and are thus retained to be further scrutinized and post-

treated. Figure 3.9 show the Recall/Precision scatter plots for couples discovered by the
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T-Patterns algorithm, the single null models as well as by the proposed DNM models.
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Figure 3.9: Recall/Precision scatter plot of all couples with TAB median value ≥ 30 min-

utes discovered by the various approaches. Recall threshold = 50%, Precision threshold

= 50%
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As shown in the scatterplots of Figure 3.9, four zones can be defined according to

50% thresholds on both recall and precision. Couples of events belonging to zone 1 are

statistically very relevant and hence can be considered as plausible association rules

with high interestingness. Zone 2 and 3 contain all couples with either a high recall

or precision value. Event couples belonging to these two zones are considered to be

possibly relevant enough to be association rules considering that the weakness of one

of the two measures might be a result of the complexities occurring in the data such

as redundancy or bursts. Zone 4 contains all couples with low recall and precision

values. These couples are considered to be statistically insignificant. The scatterplots

show that the double null models, single null models and the T-patterns algorithm have

discovered the same interesting couples. The difference however, is in the low number of

spurious insignificant couples that were discovered by both algorithms. The proposed

DNM approach have neglected most of the insignificant couples of zone 4 which were

discovered by single null models and the T-Patterns algorithm and hence has shown to

be more robust against spuriousness. Table 3.8 shows the number of discovered couple

per zone.

Table 3.8: Number of couples of events per zone discovered by the T-Patterns algorithm (TP),

DNM1 (FL-D, FL(B)-P), DNM2 (FL(A)-D, FL(B)-P) for Recall threshold = 50%, Precision

threshold = 50%

Zone TP FL-D FL(A)-D FL(B)-P DNM1 DNM2

1 0 0 0 0 0 0

2 12 11 8 9 7 7

3 562 115 85 166 82 71

4 3034 1174 474 539 458 289

The analysis of the discovered association rules had to be both statistical and phys-

ical with the help of railway maintenance experts in order to identify among them

those having a real physical meaning. Indeed, useful dependencies between elements

indirectly connected in the subsystem can be found as well as spurious and normative

association rules which are omitted by knowledgeable experts if they don’t have any

technical significance. Due to confidentiality agreements, it is not possible to provide

examples of the discovered association rules.

It is important to indicate that both recall and precision values may be negatively

affected by data bursts in a specific train or at a certain period of time where failures

were frequent due to infrastructure problems or other factors. That is why, prior to

presenting the rule to technical experts, we have considered the recall and precision

values of the association rule per train as well as the distribution of the two events of

the couple amongst trains over the 6-month observation period (example Figure 3.10).

The observation of unusual distributions decreased the chances of a rule to be credible.
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Figure 3.10: Example of the distribution of Recall/Precision values of an association rule A

−→ B per train as well as the distribution of both events and the histograms of all TAB values

of the rule visible within variable time scales

3.8 Conclusion

In this chapter, two different significance testing approaches were applied to discover

significant co-occurrences leading to length-2 rules of the form A −→ B, where B is a

target event. Although co-occurrences are decided by means of hypothesis test in both

methods, the approaches used to calculate the p-value used by the test are completely

different. The first, Null Models, consists of randomization techniques followed by

the calculation of various co-occurrence scores. The second, T-Patterns, exploits the

temporal dimension by investigating the statistical dependence between inter-arrival

times of couples of events in order to highlight possible relationships. In addition to

that, a new approach called Double Null Models (DNM) was proposed which consists

of a bipolar null model approach emphasizing on detecting interesting recall-precision

relationship between events. The main challenge faced by the algorithms is to dis-

cover significant co-occurrences between infrequent events in bursty sequences, while

maintaining a low false positive rate.

In order to test the efficiency of single null models and to identify the best double

null model combination, synthetically generated data sequences with implemented co-

occurrences and bursts were generated. The aim of these tests was also to tune some

parameter values such as the maximum co-occurrence window w. The proposed null

model approach in its two best combinations was found to outperform single null models

in false positive rate while conserving a high prediction level.

The most performant single null models, double null models and the T-Patterns

algorithm were then applied on real TrainTracer data. The resulting discovered co-

occurrences were then assessed using objective interestingness measures (Recall and
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Precision) and subjective interestingness measures (inter-event time) in order to eval-

uate their abidance to the warning time and accuracy constraints imposed by the

applicative problematic. Those who did were considered as significant rules.

Significance testing algorithms based on statistical hypothesis tests are efficient

methods to discover relationships and co-occurrences between infrequent events in both

bursty and non-bursty sequences, unlike the dominating frequency-based approaches.

The main inconvenience lies in the heavy computational time (few days for complex

TrainTracer sequences) as well as the pattern length which is limited to 2. In the case

of null models, the co-occurrence window w should be tuned appropriately. The T-

Patterns algorithm, although efficient in discovering temporal dependencies, is sensitive

to spuriousness and burstiness. Knowing that the main target of this chapter was

to mine statistically significant co-occurrences leading to length-2 rules, it is always

interesting to search for longer rules. This will be the main task of chapter 4.
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Chapter 4

Weighted Episode Rule Mining

Between Infrequent Events
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4.1 Introduction

Association rule mining has been developed for transaction data problems. However,

when working with temporal long sequences, the term episode rule mining is mostly
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employed. The difference between Episode Rules and Association Rules is that the

former takes timestamps of events into account and the order does not have to be

important (in case of parallel episodes). Association rule mining algorithms, in general,

although effective in mining frequent rules, are vulnerable to the rule explosion problem.

For example, using a low support threshold with Apriori-based algorithms in order

to explore rules between infrequent items or events leads to an infinite number of

combinations of rules growing exponentially with the number of items or events in the

sequence. This places a sizable burden on the decision maker who has to analyze these

rules in order to find those who are of actual interest. One of the recently emerging

approaches which have been developed to overcome this problem and to assist rule

mining algorithms in producing interesting rules is Weighted association rule mining

WARM (Cai et al., 1998; Sun and B., 2008; Wang et al., 2000; Yan and Li, 2006). This

approach was developed mainly for transaction data problems. Unlike the classical

model of association rule mining where all items are treated with equal importance,

WARM suggests to substitute an item’s support with a weighted form of support as a

mean of numerical prioritization to favor items over others. Hence, the higher the weight

of an item, the more important it is. These weights can be assigned manually by field

experts or automatically by means of recently proposed techniques. For example, in

market basket analysis problems, high weights are attached to items of high importance

such as high profit items.

In this Chapter, we first tackle the problem of Episode Rule mining in sequences

in 4.2 and give an extensive literature study. Afterwards, we discuss the weighted

association rule mining (WARM) problem in 4.3. We formally define it in 4.4 and

adapt it to the problem of mining episode rules in temporal sequences. We then explain

WINEPI in 4.5.2, a frequent episode rule mining algorithm proposed in (Mannila et al.,

1997) consisting of a sliding window transforming a temporal data sequence into a series

of overlapped windows. We also define the valency model proposed in (Koh et al.,

2010) to calculate weights for items in a transaction data based on their interactions

with their neighbours in 4.5.4. We propose an approach based upon WINEPI and the

valency model which we call Weighted WINEPI aimed to find significant episode rules

between infrequent items in 4.5.3 and an approach derived from it in 4.5.5 to better

include infrequent events in the mining process. We also propose “Oriented Weighted

WINEPI” in 4.5.6, which is more suitable to the applicative problematic of this thesis

and tune the mining process towards discovering rules leading to target events. Methods

are confronted and tested on synthetic and real data in 4.5.7 and 4.5.8. Finally, we

resume and conclude in 4.6.
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4.2 Episode rule Mining in Sequences

Many data mining and machine learning techniques are adapted towards the analysis

of unordered collections of data such as transaction databases. However, numerous im-

portant applications require the analyzed data to be ordered with respect to time, such

as data from telecommunication networks, user interface actions, occurrences of recur-

rent illnesses, etc. These datasets are composed of large temporal sequences of events,

where each event is described by a date of occurrence and an event type. The main

aim behind analyzing such sequences is to find episode rules. Informally, an episode

rule is a causal relationship reflecting how often a particular group of event types tends

to appear close to another group. Once these relationships are found, they can be used

to perform an on-line analysis to better explain the problems that cause a particular

event or to predict future events. Episode mining has been of important interest in var-

ious applications, including internet and network anomaly intrusion detection (Luo and

Bridges, 2000; Qin and Hwang, 2004; Su, 2010; Wang et al., 2008), Biology (Bouqata

et al., 2006; Casas-Garriga, 2003b; Méger et al., 2004; Patnaik et al., 2008), stock mar-

ket prediction and finance (Ng and Fu, 2003), climatology (Harms et al., 2001b), chiller

management (Patnaik et al., 2011) and many others. In this section, we formally define

the problem of sequence mining for episode rules. We then present a literature review

of the most notorious algorithms and approaches that have been conceived and used

for this purpose.

4.2.1 Notations and Terminology

In the following, we define the standard notions used in the problems of episode mining

in sequences. Consider the input as a sequence of events, where each event is expressed

by a unique numerical code and an associated time of occurrence.

Definition 4.2.1. (event) Given a set E of event types, an event is defined by the

pair (R, t) where R ∈ E is the event type and t ∈ <+ its associated time of occurrence,

called timestamp.

Definition 4.2.2. (event sequence) An event sequence S is a triple (S, Ts, Te), where

S = {(R1, t1), (R2, t2), ..., (Rn, tn)} is an ordered sequence of events such that Ri ∈
E ∀i ∈ {1, ..., n} and Ts ≤ t1 ≤ tn ≤ Te. Figure 4.1 illustrates an example.

Figure 4.1: A graphical example of a sequence

Definition 4.2.3. (Episode) An episode is a partially ordered collection of events
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occurring together. Episodes can be described as directed acyclic graphs. Consider, for

instance, episodes α, β and γ in figure 4.2.

Episode α is a serial episode: it occurs in a sequence only if there are events of types

A and B that occur in this order in the sequence. Other events can occur between these

two. The event sequence, for instance, is merged from several sources, and therefore

it is useful that episodes are insensitive to intervening events. Episode β is a parallel

episode: no constraints on the relative order of A and B are given. Episode γ is an

example of non-serial and non-parallel episode: it occurs in a sequence if there are

occurrences of A and B and these precede an occurrence of C; no constraints on the

relative order of A and B are given.

Figure 4.2: illustration of serial (α), parallel (β) and composite (γ) episodes

Definition 4.2.4. (Episode rule) We define an episode rule as an implication of the

form A −→ B, where the antecedent and consequent are sets of events (episodes) with

A ∩B = φ.

In this thesis, we employ the term “association rules” when referring to episode

rules as wells.

4.2.2 Literature review

1. Initial algorithms: mining sequences in transaction databases

The problem of mining sequential patterns was initially introduced in (Agrawal

and Srikant, 1995) and applied to database sequences. The problem was formu-

lated as follows: “Given a set of sequences, where each sequence consists of a list

of elements and each element consists of a set of items, and given a user-tuned

minsup threshold, the aim of sequential pattern mining is to find all frequent

subsequences, whose occurrence frequency in the database of sequences is no less

than minsup” (Agrawal and Srikant, 1995). The main difference between frequent

itemsets and sequential patterns is that a sequential pattern considers the order

between items, whereas frequent itemset does not specify the order. The initial

algorithm as well as most of the existing ones are frequency-oriented.

In (Srikant and Agrawal, 1996), an Apriori-based algorithm, GSP (Generalized

Sequential Patterns) was proposed to mine sequential patterns. The approach
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depends on the Apriori monotonicity property adapted to sequences. This prop-

erty states that, if a sequence S is not frequent, then none of the super-sequences

of S can be frequent. For example if sequence {a, b} is infrequent, this implies

that its super-sequences such as {a, b, c} or {a, c, b} would be infrequent too. The

disadvantage of this approach, as all Apriori-based appoaches, is the time com-

plexity in situations with high number of frequent patterns, long patterns or low

minsup threshold, due to the huge number of candidate sets to evaluate as well

as the repetitive database scans to be performed. To overcome this problem,

the Prefix Span algorithm was proposed in (Pei et al., 2001b) by extending the

concept of FP-tree (Han et al., 1999) into a prefix-projected pattern growth. A

notorious algorithm called SPADE is proposed in (Zaki, 2001). SPADE is a verti-

cal format sequential pattern mining method which maps the sequence database

into a vertical id-list database format <Sequence ID, Event ID>, defining each

item. SPADE then uses combinatorial properties to decompose the original prob-

lem into smaller sub-problems which can be independently solved using efficient

lattice search techniques and joint operations. Subsequences are expanded using

Apriori candidate generation strategy. Other algorithms were proposed that use

constraints in order to limit and focus the mining operation, hence affecting what

is called constraint based sequential pattern mining, where the monotonocity and

anti-monotonocity properties can be applied to constraints. Monotonicity means

that if an item set satisfies the rule constraint, then all of its supersets satify as

well, whereas Anti-monotonicity means that if an item set does not satistify the

rule constraint, then none of its supersets do as well.

2. Mining episodes in long sequences

The concept of finding patterns in long sequences of timestamped events as well

as the first algorithm to tackle this problem was described by (Mannila et al.,

1997). Patterns are described as episodes and can be parallel, where the order

in which events occur is irrelevant, or serial, where events occur in a particular

order, or a combination of the two. This problem can be view as a constrained

mining problem since episodes (with their directionality) constrain events in the

form of acyclic graph. The standard episode association rule mining problem

is based on the anti-monotonic Apriori of frequent patterns and tends to find all

episode rules satisfying given frequency and confidence constraints.

Two main approaches were proposed in (Mannila et al., 1997). The first, WINEPI,

slides a window of fixed length over the sequence, and each window containing

the episode counts towards its total frequency, which is defined as the proportion

of all windows containing it. The confidence of an association rule X −→ Y ,

denoted conf(X −→ Y ), is defined as the ratio of the frequency of X ∪ Y and

the frequency of X. Once the frequent episodes have been found, rules between

them are generated in the traditional manner. The second approach, MINEPI,
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searches for frequent episodes based on their minimal occurrences. Here, however,

association rules are of the form X[win1] =⇒ Y [win2], meaning that if itemset X

has a minimal occurrence in a window W1 of size win1, then X∪Y has a minimal

occurrence in a window W2 of size win2 that fully contains W1. Both approaches

have been designed to function using a maximum window size constraint which

specifies the maximum elapsed time between the first and the last event of the

occurrences of the patterns. To be more precise, in the case of WINEPI, the

algorithm uses a single windows size constraint. If the user wants to perform an

extraction with a different window size, the algorithm must be executed again.

The other algorithm, MINEPI, neccessitates a maximal window size constraint

to restrict fairly the search space in practice, but is capable to derive rules for

several window sizes that are inferior to this maximal window size.

Other approaches based on different types of constraints were introduced, for

example, episode rule mining based on maximum gap constraint, as defined by

(Casas-Garriga, 2003a), was done by (Méger and Rigotti, 2004), but only for

serial episodes.

Most other related work were based on the WINEPI definitions, and mainly at-

tempted to find the same rules (or representative subsets) more efficiently (Das

et al., 1998; Harms et al., 2001a), by either decreasing computational time or

reducing the number of unimportant rules obtained. The perfomance of these

algorithms dramatically degrades in the case of mining long sequential patterns

in dense databases or when using a low minimum support threshold. (Yun, 2008)

presented a weighted sequential pattern mining algorithm (WSpan). This al-

gorithm uses weight constraints to reduce the number of unimportant patterns.

During the mining process, weights are used to evaluate patterns in addition to

support. (Chen and Huang, 2008) proposed an algorithm called PTAC (sequen-

tial frequent Patterns mining with Tough Aggregate Constraints) which embodies

two strategies. The first evaluates patterns by means of a “promising-ness” fea-

ture as well as the validity of the corresponding prefix. The second process prunes

unpromising patterns. (Garofalakis et al., 2002) proposed SPIRIT, a family of

algorithms which use relaxed constraints with different properties such as anti-

monotonicity in order to filter out some unpromising candidate patterns in the

early stage of the sequential pattern mining process. In (Pei et al., 2007), authors

propose a pattern-growth method for constraint-based sequential pattern mining

problems. They show that all the monotonic and anti-monotonic constraints are

prefix-monotone and thus can be pushed deep into pattern-growth-based mining.

Other sequential pattern mining methods include the work of (Laur et al., 2007)

in which a new statistical approach was introduced based on statistical supports

to enhance the mining precision and improve the computational efficiency of the

incremental mining process. This approach maximizes either the precision or the

recall and limits the degradation of the other criterion. In (Lin et al., 2008),
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the notion of positive and negative sequential patterns was introduced. When a

particularly-monitored itemset is found to be a subset of a pattern, this pattern is

called positive pattern. Negative patterns represent those lacking this itemset. In

(Kuo et al., 2009), a K-means algorithm was used to acquire better computational

efficiency for fuzzy sequential pattern mining.

3. Mining rules between infrequent events

However, most of the existing algorithms for mining sequential data as well as

the ones existing above are frequency-based and oriented towards the discovery

of frequent patterns. A major limitation of the frequent pattern approach is that

it relies on the existence of a meaningful minimum support level that is suffi-

ciently strong to reduce the number of accepted patterns to a manageable level.

However, in some data mining applications relatively infrequent associations are

likely to be of great interest and might exhibit strong coherence. These associa-

tions are likely to be pruned out by the minimum support threshold used by most

approaches. An example of such association is the Vodka and Caviar problem,

presented by (Cohen et al., 2000). Associations between expensive items such as

Ketel Vodka and Beluga Caviar are likely to be of interest due to the high value

of both products but will be infrequent and probably undetected by frequent

itemset mining algorithms. Another important disadvantage of relying strictly

on frequency constraints is that it treats every item with equal significance, i.e,

every item fulfilling the frequency threshold would be allowed to survive, regard-

less of its informative value, which results in the discovery of numerous spurious

patterns. Significant patterns that are not frequent enough can rarely be detected

unless a very low frequency threshold is used which would imply in its turn a very

heavy computational cost.

To address this problem, recent years have witnessed the uprisal of other algo-

rithms focusing on mining rules between infrequent items and events without the

use of a minimum support constraint. Several algorithms for rule-space search

directly explore the space of potential rules (Bayardo, 1999; Bayardo et al., 2000;

Webb, 2000). This framework allows a wide range of criteria to be applied to iden-

tify interesting rules other than the minimum support criterion used by the Apri-

ori approach. One of the major approaches to handle this problem is constraint-

based association rule mining which increase the level of user engagement in the

mining process (Grahne et al., 2000; Ng et al., 1998; Srikant et al., 1997) as well

as weighted association rule mining techniques which value the importance of

items by assigning them weights either manually (using expert knowledge) or

automatically using models based on the quality of interactions and connections

between items (Koh et al., 2010; Pears et al., 2013). Other interesting approaches

aimed to discover particular associations as pairwise co-occurrences such as null

models, randomization algorithms that are followed by the calculation of different
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scores and a statistical hypothesis test to assess the significance of occurrences

in (Haiminen et al., 2008; Hannenhalli and Levy, 2002; Klein and Vingron, 2007;

Levy et al., 2001) as well as the T-patterns algorithm which exploits the temporal

dimension by investigating the statistical dependence between inter-arrival times

of couples of events in order to highlight possible relationships (Magnusson, 2000;

Salah et al., 2010).

4.3 Weighted Association Rule Mining: Relevant Litera-

ture

The classical association rule mining scheme (Apriori, FP-tree and their variants) is

based primarily on the frequency of items to decide which will be pruned or not. This

strict adherence on support and confidence framework was not designed to deal with

the rare items problem (Koh and Rountree, 2005). Items which are rare but co-occur

together with high confidence levels are unlikely to reach the minimum support thresh-

old and are therefore pruned out. Once of recently emerging approaches to overcome

this problem is weighted association rule mining (Cai et al., 1998; Ramkumar et al.,

1998; Songfeng et al., 2001; Sun and B., 2008; Tao et al., 2003; Wang et al., 2000; Yan

and Li, 2006), developed for transaction data problems. The general principle behind

this approach is to substitute an item’s support with a weighted support, reflecting in-

dividual importance depending on the problematic. Thus rules and itemsets containing

high weight items will have proportionately higher weighted support. This provides an

alternative ranking process to the classical support and confidence framework used for

rule ranking. The notion of weighted support was first introduced to association rule

mining in (Ramkumar et al., 1998) by assigning weights manually to both items and

transactions. In their approach rules whose weighted support is larger than a given

threshold are kept for candidate generation, much like in traditional Apriori (Agrawal

et al., 1993). In (Cai et al., 1998), weighted support was defined in a similar way ex-

cept that weights were applied only to items and not to transactions. Two different

ways were proposed to calculate the weight of an itemset, either as the sum of all the

constituent items weights or as the average of the weights. Both of these approaches

invalidated the downward closure property (Agrawal and Srikant, 1994), which resulted

in additional complexity and time consumption.

This led (Tao et al., 2003) to propose a “weighted downward closure property” that

can be retained by using weighted support. In their approach called WARM, two types

of weights were assigned: item weight and itemset weight. The aim of using weighted

support is to make use of the weight to steer the mining process towards the selection

of targeted itemsets according to their perceived significance in the dataset, influenced

by that weight, rather than by their frequency alone.

Many other techniques have been proposed in the recent years, mostly for transac-
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tion data problems. In (Wang et al., 2000), transactions are transformed into a directed

graph where nodes denote items and links represent association rules. A generalized

version of Kleinberg’s HITS link-based model was then applied on the graph to deduce

item rankings. (Yun and Leggett, 2006) introduced the Weighted Interesting Pattern

(WIP) approach based on a novel measure called w-confidence. The w-confidence for a

given pattern P is defined as the ratio of the minimum weight of items in P to the max-

imum weight within P. Patterns with w-confidence and weighted support are greater

than user defined minimum thresholds were mined from an FP-tree that was built by

ordering items in weight ascending order. (Farhan Ahmed et al., 2011) also used an

FP-tree approach within a market basket analysis context using retail transaction data

defined a utility measure that took into account the number of units purchased per item

in a market basket. They used the unit price and the unit profit for each item to define

a utility value for an item over a transaction. The utility value for an item/itemset over

the entire dataset was then obtained by summing up the utilities over all transactions

in the dataset. They showed that the utility measure satisfied the downward closure

property and this was exploited when mining the prefix tree that was built.

Until now, in most weighted association rule mining approaches, weight assignment

process relies on users subjective judgments. The weight of each item is fixed from the

beginning (Cai et al., 1998; Ramkumar et al., 1998; Tao et al., 2003; Vo et al., 2013;

Wang et al., 2000) and depends heavily on expert knowledge. Research in this area

has concentrated on formulating efficient algorithms for exploiting these pre-assigned

weights. For example, recently (Li et al., 2007) introduced a system for incorporating

weights for mining association rules in communication networks. They made use of a

method based on a subjective judgements matrix to set weights for individual items.

Inputs to the matrix were supplied by domain specialists in the area of communications

networks.

The major issue when relying on subjective input is that rules generated only en-

capsulate known patterns, thus excluding the discovery of unexpected but nonetheless

important rules. Another issue is that the reliance on domain specific information

limits the applicative scope to only those domains where such information is readily

available. Indeed, having such domain specific knowledge would provide an accurate

representation of the current reality. However, many application domains exist where

such knowledge is either unavailable or impractical to obtain.

It is not until recently that dynamic weights have received interest. Yan and Li

(Yan and Li, 2006), working in the Web mining domain, asserted that weights can

be assigned on the basis of the time taken by a user to view a web page. Weights are

allowed to vary according to the dynamics of the system, as pages became more popular

(or less popular) the weights would increase (or decrease). (Li and Li, 2010) used an

FP-tree approach to perform weighted association rule mining in the domain area of

telecommunication networks. The k-support of an itemset was defined as the weighted

support of the itemset relative to a user defined weighted minimum support threshold,

64



4.4 The Weighted Association Rule Mining Problem

wminsup. The main novelty of their work was to use a neural network to adapt item

weights when concept drift in the data caused the weights of items to change.

Recent research has shown that it is possible to deduce the relative importance of

items automatically based on their interactions with each other with no need for explicit

domain-specific knowledge above what is needed by the classical Apriori approach.

(Koh et al., 2010) were the first to propose a totally automated weight-assignment

model in transaction dataset based on an item’s interaction with other items. This

model, called valency model, is based on a linear combination between two main factors:

purity and connectivity. The purity of an item is determined by the number of items

that it is associated with over the entire transaction database; the greater the number

the lower the purity and vice versa, whereas connectivity describes the strength of the

interactions between items. (Koh et al., 2010) applied Principal Component Analysis

to quantify the rule base generated and showed that the rule base captures a higher

degree of variation across the underlying dataset than those generated by Apriori. The

valency model was extended in (Pears et al., 2013) by expanding the field of interaction

beyond immediate neighborhoods by using a graph based connectivity model.

In the following section, we define formally the weighted association rule mining

problem for transaction data, and then adapt it for temporal sequences in 4.5.

4.4 The Weighted Association Rule Mining Problem

The weighted association rule mining problem was initially defined for frequent itemset

mining in transaction datasets and not for sequences. The aim of weighted association

rule mining is to steer the focus of the mining process towards significant relationships

involving items with significant weights rather than to try avoid the combinatorial

explosion of spurious insignificant relationships.

Given a set of items, I = {i1, i2, ..., in}, a transaction may be defined as a subset of

I and a dataset as a set D of transactions. A set X of items is called an itemset. The

support of X, sup(X), is the proportion of transactions containing X in the dataset.

For an association rule of the form X −→ Y , where X ⊂ I, Y ⊂ I, and X ∩ Y = φ,

the support of the rule is s = sup(XY ). This rule holds in the transaction set D with

confidence c where c = conf(X −→ Y ) = sup(XY )/sup(X).

Given a transaction database D, a support threshold minsup and a confidence

threshold minconf , the task of Apriori-based association rule mining algorithms is to

generate all association rules that have support and confidence above the user-specified

thresholds.

However, in weighted association rule mining approaches, a weight wi is assigned to

each item i, where −1 ≤ wi ≤ 1, reflecting the relative importance of an item over other

items that it is associated with. This weight can be assigned manually or generated
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automatically. The weighted support of an item i is wisup(i), which helps control the

frequency factor of items. Similar to traditional association rule mining algorithms

that are a based on support and confidence framework, a weighted support threshold

and a confidence threshold is assigned to measure the strength of the association rules

produced.

The weight of a k-itemset, X, is given by:

(Σwi)sup(X) (4.1)

Here a k-itemset, X, is considered a frequent itemset if its weighted support is greater

than the user-defined minimum weighted support (wminsup) threshold.

(Σwi)sup(X) ≥ wminsup (4.2)

The weighted support of a rule X −→ Y is:

(Σwi)sup(XY ) (4.3)

Algorithm 3 Weighted Association Rule Mining (WARM)

Input: Transaction database D, weighted minimum support wminsup, universe of

items I

k ← 1

Lk ← {{i}|i ∈ I, weight(c) ∗ support(c) > wminsup}
while (|Lk| > 0) do

k ← k + 1

Ck ← {x ∪ y|x, y ∈ Lk−1, |x ∩ y| = k − 2}
Lk ← {c|c ∈ Ck, weight(c) ∗ support(c) > wminsup}

end while

Lk ←
⋃
k Lk

Output: Weighted frequent itemsets

An association rule X −→ Y is considered interesting if X ∪ Y is a frequent item-

set and the confidence of the rule is greater than or equal to a minimum confidence

threshold. A general weighted association rule mining algorithm 3 is shown above.

The algorithm requires a weighted minimum support to be provided. In this algorithm

Lk represents the frequent itemsets also known as the large itemsets and Ck repre-

sents the candidate itemsets. The mining process begins by assigning/calculating the

weight of all unique items in the data. The length-2 candidate itemsets are then gen-

erated and evaluated using frequent items whose weighted support is superior to the

wminsup threshold. Itemsets whose weighted support exceeds the weighted minimum

support are considered frequent itemsets and will be used to build candidate itemsets

of length-3 included in the rule generation phase and so on until no frequent rules can
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be generated. Thus it can be seen that item weighting enables items with relatively

low support to be considered interesting and inversely, items which have relatively high

support may turn out to be uninteresting (not frequent). This adds a new dimension

to the classical association rule mining process and enables rules with high weights in

their rule terms to be ranked ahead of others, thus reducing the burden on the end user

in sifting through and identifying rules that are of the greatest value.

4.5 Adapting the WARM problem for temporal sequences

Although the original motivation behind the association rule algorithms was to analyze

market basket transaction data, they have been extensively used across a wide range of

different application areas which include bioinformatics, text mining, web usage min-

ing, telecommunications, medical disease diagnosis, etc. However, almost all ARM

algorithms were conceived for transaction data and not for temporal sequences. (Man-

nila et al., 1997) was the first to propose an apriori-based approach for ARM mining in

temporal sequences called WINEPI consisting of the same support-confidence frame-

work having segmented the sequence to a set of transactions using a sliding window of

predefined length. The WINEPI algorithm, as Apriori, was conceived to mine frequent

patterns and not rare ones. In this section, we first present the WINEPI algorithm as

defined in (Mannila et al., 1997). We then propose adapting WINEPI to the weighted

association rule mining problem by integrating weights into the mining process. We

call this approach weighted WINEPI. The aim is thus to direct the mining focus to sig-

nificant episode rules which take into account infrequent events. This will give better

integrity to results and help decision makers in their post-analysis task.

4.5.1 Preliminary definitions

In this section, we follow the standard notions of event sequence, episode and support

previously defined in sections 4.2 and 4.4. Consider the input as a sequence of events,

where each event is expressed by a unique numerical code and an associated time of

occurrence.

Definition 1. (operator @) Let α and β be two ordered sequences of events. α is

a subsequence of β, denoted α v β iff α can be obtained by removing the last element

(event) of β.

Definition 2. (Episode) We define an episode as an ordered collection of events

occurring repetitively. Formally, an episode α is a k-tuple of the form α = 〈R1, R2, ..., Rk〉
with ei ∈ E for all i ∈ {1, ..., k}. In the following, we will use the notation R1 −→
R2 −→ ... −→ Rk to denote the episode 〈R1, R2, ..., Rk〉, where −→ is read as ’followed

by’. We denote the empty episode by φ.

Definition 3. (Size of an episode) Let α = 〈R1, R2, ..., Rk〉 be an episode. The
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size of α is denoted by |α| is equal to the number of elements of the tuple α, i.e. |α|=k.

Definition 4. (Suffix and Prefix of an episode) Let α = 〈R1, R2, ..., Rk〉 be

an episode. The suffix of α denotes an episode composed only of the last element of

the tuple α, i.e, suffix(α)=〈ek〉. The prefix of α is the order of events except the last

event, that is episode 〈R1, R2, ..., Rk−1〉. We denote it as prefix(α).

Definition 5. (episode rule) Let α and β be episodes such that prefix(β)=α. An

episode rule built on α and β is the expression α =⇒ suffix(β).

For example, if α = R1 −→ R2 and β = R1 −→ R2 −→ R3; the corresponding

episode rule is denoted R1 −→ R2 =⇒ R3. In this work, the episode rules are restricted

to those having a single event type in their right hand side (suffix), a target event.

4.5.2 WINEPI algorithm

The WINEPI algorithm was developed by (Mannila et al., 1997) to tackle the problem

of mining frequent episode rules in temporal sequences. To be considered interesting,

the events of an episode must occur close enough in time. The user defines how close

is close enough by giving the width of the time window within which the episode must

occur. A window is defined as a slice of an event sequence. Hence, an event sequence

can be defined as a sequence of partially overlapping windows (see Figure 4.3).

Figure 4.3: Overlapping windows

Formally, a window on an event sequence S = (S, Ts, Te) is a subsequence win =

(w, ts, te), where ts < Te and te > Ts, consisting of all events (R, t) from S where

ts ≤ t ≤ te. The time span te − ts is called the width of the window w. By definition,

the first and the last windows on a sequence extend outside the sequence, so that

the first window contains only the first time point(event) of the sequence and the last

window contains only the last event. With this definition an event close to either end

of a sequence is observed in equally many windows as an event in the middle of the

sequence. Given an event sequence S and window width w, the number of possible

windows of width w in S is Te − Ts + w − 1, and the set of all windows is denoted by

W (S,w).

The WINEPI algorithm uses an apriori-based breadth-first strategy to discover all
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frequent episodes. Once these episodes are known, they can be used to derive episodes

rules. The search starts from episodes with only one event. On each level the algorithm

first computes a collection of candidate episodes, and then checks their frequencies from

the event sequence.

The frequency of an episode (similar to support in transaction data mining) is

defined as the fraction of windows in which the episode occurs. More formally, given

an event sequence S and a window width w, the frequency of an episode α in S is

fr(α, S,w) =
|w ∈W (S,w)|α occurs in w|

|W (S,win)|
(4.4)

Given a frequency threshold minfr, α is frequent if fr(α, S,w)≥ minfr.

In the candidate generation episode, Apriori’s downward closure property is used

to enhance the pruning process and decrease computational time. This property is

defined by the following.

Definition 6. (Downward Closure Property) If an episode α is frequent in an

event sequence S, then all subepisodes β @ α are frequent.

Once the frequent episodes are identified, they are assessed to obtain rules that

describe connections between events in the given event sequence. Similar to the Apriori

method, the measure used to assess these episodes is the confidence. Formally, for an

episode rule α =⇒ β, where α and β are episodes such that α @ β, the confidence can

be defined as:

conf(α =⇒ β) =
freq(β)

freq(α)
(4.5)

which can be interpreted as the conditional probability of β occurring in a window,

given that α occurs. The reason why confidence is calculated is because it shows

the connections between events more clearly than frequency alone. It is for the same

reason that the mining process does not stop upon the discovery of frequent episodes

and continues towards deriving episode rules.

4.5.3 Weighted WINEPI algorithm

In the proposed Weighted WINEPI algorithm, the event sequence is considered as a

sequence of partially overlapping windows, similar to the WINEPI algorithm. However,

the sliding window process was modified to be adapted for sequences where timestamps

are not necessarily integers. Consider an event sequence S and the first event occurring

in that sequence to be (R1, t1). Unlike the WINEPI algorithm where the first window

contains the R1 only, the first window in the weighted WINEPI algorithm contains

events occurring between t1 + 1 − w and t1 + 1 hours, the second window consists of

events between t1 + 2−w and t1 + 2 and so on. This way, each hour in the sequence is
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scanned by the same number of windows. Figure 4.4 gives an example of this concept.

In the following example, window width w = 2 hours. The corresponding windows are

given in table 4.1.

Figure 4.4: An illustration of the overlapping window strategy adopted in the weighted

WINEPI algorithm

Table 4.1: Windows database (left), Unique events and their respective neighbours

(right)

Window ID Events

100 A, F

200 A, F, D, B, A

300 D, B, A, F, A

400 F, A, F, D, D

500 F, D, B

600 B, A, F, C

700 A, F, C, F

800 F, E

900 E

Event Related unique events

A B, C, D, F

B A, C, D, F

C A, B, F

D A, B, F

E F

F A, B, C, D, E

The support of episodes is replaced by weighted support with weights based on the

valency model introduced in (Koh et al., 2010), with a few differences in order to give

the algorithm the capacity to scrutinize and discover relations between rare events.

Considering the set of windows as a set of transactions, the weighted WINEPI

algorithm calculates the weighted support of all events (episodes of length-1) to deduce

those who are the most significant (not necessarily frequent). These events will be then

used to generate length-2 candidate episodes. The weighted support of these episodes

is then computed and so on.

Given an event sequence S and a window width w, the weighted support of an

episode α in S is
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weightedsup(α, S,w) = wα ∗
|w ∈W (S,w)|α occurs in w|

|W (S,w)|
(4.6)

An episode is considered interesting if its weighted support is superior to a pre-

defined wminsup threshold. Once the interesting episodes are discovered from the

sequence, they can be evaluated using interestingness measaures such as the confidence

which is used by both Apriori and WINEPI in order to derive episode rules or others

such as Recall and Precision.

4.5.4 Calculating weights using Valency Model

The Valency model, as proposed by (Koh et al., 2010) is based on the notion that an

item should be weighted based on how strong his connections to other items as well

are, as well as on the number of items that it is connected to. Two items are considered

to be connected (and are called neighbours) if they have occurred together in at least

one transaction. Items which appear often together when compared to their individual

support have a high degree of connectivity and are thus given a more important weight.

In addition to that, an item that is contained in a small clique of items is considered to

have a high degree of purity and is given a proportionally higher weight as well. Given

two items i and k that co-occur together count(ik) times, the connectivity between i

and k is defined as:

c(k, i) =
count(ki)

count(k)
(4.7)

where count(k) is the support of item k. Given an item k which is connected to n items

in its neighberhood, the connectivity, ck is defined as:

ck =
n∑
i=1

count(ik)

count(k)
(4.8)

The higher the connectivity between item k and its neighbours, the higher its weight

should be. However, it cannot be considered as the main factor in the weighting scheme

because a very frequent item existing in most transactions would naturally have a high

connectivity without necessarily having a significance to its neighbours. With this in

mind, the purity measure is introduced to define the extent to which an item could

be said to be distinctive. The smaller the number of items that a given item interacts

with, the more interesting it would be and the higher the purity value it will have and

vice versa. An item would not be allowed to acquire a high weight unless it had a high

purity value, regardless of its connectivity. The role of purity is thus to ensure that

only items with high discriminating power could be assigned a high weight. Formally,

the purity of a given item k is defined as:

Pk = 1− log2(nk)

log2(U)
, 0 ≤ Pk ≤ 1 (4.9)
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where U represents the number of unique items in the dataset and nk the number of

unique items which co-occur with item k (number of neighbours).

The valency of an item k, denoted by vk is defined as the linear combination of both

the purity and connectivity components:

vk = β.pk + (1− β).

nk∑
i=1

c(k, i).pi (4.10)

where β is a parameter which measures the relative contribution of the item k over the

items that it is connected to in the database and is given by:

β =
1

nk

nk∑
i=1

c(k, i) =
ck
nk

(4.11)

The valency of an item is taken as its weight wα. The two main advantages of this

model are its automated mechanism for weight fitting and its simplicity. It produces

rules with greater diversity than an un-weighted association rule miner.

4.5.5 Adapting Weighted WINEPI to include infrequent events

Weighted WINEPI, as explained above, is efficient for discovering frequent episodes

having a high support. Indeed, episodes between infrequent events have higher chances

to be discovered using Weighted WINEPI than with the original WINEPI but still, the

effect of their high weight value may be suppressed by their low support, and thus many

will be pruned out. To overcome this problem, it is important to identify distinctive

events from the beginning by excluding from the mining process not those with low

weighted support but with low distinctivity, which can be defined by the valency, and

then using the remaining events to create length-2 candidate episodes that will be

scrutinized by their weighted support to keep the most interesting ones and so on.

In order to do that, we replace the minimum weight threshold wminsup by a thresh-

old called tp (signifying top percentage). The weighted WINEPI will be applied as

follows. First, Valency is calculated for all events in the sequence. The tp % events

with the highest valency value are kept for length-2 candidate generation, the others

are pruned out. Length-2 candidate episodes are generated and evaluated by means

of weighted support to derive length-2 episodes and then generate length-3 candidates

and so on.

Since Tilt and Traction “Driver Action High” events which are our target events

in this thesis are very rare and thus have a very low support, there is a high risk that

they will not be included in the mining process, even with Weighted WINEPI. For this

reason we propose Oriented Weighted WINEPI, an approach that will be explained in

the following section 4.5.6.
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4.5.6 Adapting Weighted WINEPI to focus on target events: Ori-

ented Weighted WINEPI

In this section, we propose Oriented weighted WINEPI, which can be considered as

a constraint-based sequential episode mining algorithm. The aim is to mine serial

episodes α leading to a specific target event T . For this reason, the distinctivity of

events with respect to this specific target event should be evaluated. In order to do

so, we propose a measure that we call: cruciality cr(A, T ), that will be injected in the

weighted WINEPI process.

Definition 7. (Cruciality measure) Consider an event sequence S where S =

{(R1, t1), (R2, t2), ..., (Rn, tn)}. E = {R1, R2, ..., Rn} is the set of event types occurring

in S. Let A and T be two events in S where T is a target event. The cruciality of A

with respect to T is equal to:

cr(A, T ) = PT (A −→ T ) ∗ (1− log2(NA)

log2(|E|)
) (4.12)

where 0 ≤ cr(A, T ) ≤ 1 |E| is the number of distinct event types in the data se-

quence and NA represents the number of distinct events which co-occur with A (number

of neighbours). PT (A −→ T ) is the fraction of windows containing events A and T with

T succeeding A relative to the number of windows in which event T occurs. The value

of the cruciality can be also defined by cr(A, T ) = Recall(A −→ T ) ∗ Purity(A). This

measure expresses the particular importance of an event A for a target event T . The

recall is the fraction of target event T that was preceded by an event A within a co-

occurrence distance w equivalent to the window width. The purity states how much

importance should the recall value be accorded. Since, for example, an event with high

number of neighbours occurs frequently all over the sequence, and hence would unlikely

have a particular specificity towards the target event. Thus its high recall value is sup-

pressed by its low purity, and vice versa, in cases where an event has few number of

neighbours and an acceptable recall value, it might be interesting to conserve it.

Oriented Weighted Winepi consists of integrating Cruciality in the mining process

by using it as a filter measure for length-1 candidate events in order to conserve only

events which are significant to the target event. Those events would build up length-2

candidate that are then evaluated using valency-based weighted support and so on.

4.5.7 Experiments on synthetic data

We test the previously described approach on simulated data sequences of variable

lengths. The length of the injected pattern varies from 2 to 4 and so does the number

of times it was injected. In each experiment, 100 sequences are generated using the

same protocol. Four approaches are then applied on these sequences. Experimentation

I in tables 4.2, 4.3 and 4.4 shows the mean number of discovered event couples in 100
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generations. This reflects the false positive rate of each approach. Since we are inter-

ested in serial episodes (directed patterns), the expected number of discovered couples

is 1. Experimentation II gives the number of generations where the injected pattern

was discovered. This reflects the predictive capability of each approach.

The four tested approaches are:

1. WINEPI algorithm (minsup = 1%)

2. Weighted WINEPI 1 (WW1): using valency as weight and a wminsup threshold

(wminsup = 0.1%)

3. Weighted WINEPI 2 (WW2): using a tp threshold (tp=25%) on weighted support

4. Weighted WINEPI 3 (WW3): using tp threshold on valency for length-1 and

weighted support (w-support) for length-2 and above.

Similar to the algorithms discussed in the previous chapters, the value of the w, the

maximum co-occurrence distance (scanning window width) was set to 5 hours.
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Table 4.2: Results of WINEPI, WW1, WW2 and WW3 on synthetic data with length-2

injected patterns, w = 5h and tp = 25%

I - Mean number of discovered patterns in 100 generations

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 61 65 1 1

50 66 66 1 1

100 66 66 1 1

200 66 66 1 1

5000 10 45 46 1 1

50 64 66 1 1

100 66 66 1 1

200 66 66 1 1

10000 10 45 45 1 1

50 46 63 1 1

100 66 65 1 1

200 66 66 1 1

20000 10 45 45 1 1

50 45 45 1 1

100 45 45 1 1

200 46 56 1 1

II - Number of generations where the injected pattern was discovered

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 100 100 0 100

50 100 100 0 100

100 100 100 100 100

200 100 100 100 100

5000 10 0 51 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

10000 10 0 0 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

20000 10 0 0 0 100

50 0 0 0 100

100 0 33 0 100

200 100 100 0 100
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Table 4.3: Results of WINEPI, WW1, WW2 and WW3 on synthetic data with length-3

injected patterns, w = 5h and tp = 25%

I - Mean number of discovered patterns in 100 generations

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 84 412 1 1

50 200 925 1 1

100 440 1269,5 1 1

200 799 1410 1 0

5000 10 18 396 1 1

50 21 476 1 1

100 45,5 583 1 1

200 92,5 816,5 1 1

10000 10 14 445 0 1

50 9 429 0 1

100 12 465,5 0,5 1

200 30 539 1 1

50000 10 5 459 0 1

50 3 391 0 1

100 2 444,5 0 1

200 6 441 0 1

II - Number of generations where the injected pattern was discovered

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 100 100 0 100

50 100 100 0 100

100 100 100 98 99

200 100 100 100 7

5000 10 0 21 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

10000 10 0 0 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

50000 10 0 0 0 100

50 0 0 0 100

100 0 3 0 100

200 100 100 0 100
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Table 4.4: Results of WINEPI, WW1, WW2 and WW3 on synthetic data with length-4

injected patterns, w = 5h and tp = 25%

I - Mean number of discovered patterns in 100 generations

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 5 298 0 1

50 131 1920 0 1

100 510 4452 1 1

200 1790 7994 1 1

5000 10 0 1 0 1

50 1 76 0 1

100 26 162 0 1

200 100 615 0 1

10000 10 0 0 0 1

50 1 13 0 1

100 1 76 0 1

200 23 139 0 1

20000 10 0 0 0 1

50 0 0 0 1

100 0 0 0 1

200 1 3 0 1

II - Number of generations where the injected pattern was discovered

Sequence Length (hours) No. patterns WINEPI WW1 WW2 WW3

1000 10 100 100 0 100

50 100 100 0 100

100 100 100 98 100

200 100 100 100 75

5000 10 0 41 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

10000 10 0 1 0 100

50 100 100 0 100

100 100 100 0 100

200 100 100 0 100

20000 10 0 0 0 100

50 0 0 0 100

100 0 27 0 100

200 100 100 0 100

Knowing that the number of patterns that are expected to be discovered is 1 since

we have injected one type of patterns in the sequence, results in tables 4.2, 4.3 and

4.4 show that using tp threshold on valency for length-1 and weighted support (w-

support) for length-2 and above (WW3) yields better results than the classical WINEPI,

the wminsup-based weighted WINEPI (WW1) and weighted WINEPI with tp on w-

support (WW2) in both false positive rate and predictive ability. As the injected

pattern becomes more rare (example: injected 10 times in sequences of length 20000

hours), the other approaches lose their capacity to predict the injected pattern. In

addition to that, the WINEPI algorithm as well as WW1 and WW2 lead to a rather

high number of false positives. The results comply for injected patterns of length 3 and

4 as well.
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In conclusion, Weighted WINEPI with a tp threshold on valency for length-1 and

weighted support (w-support) for length-2 and above is an efficient approach for mining

patterns between infrequent events in long sequences. In the next section, we apply

this approach as well as WINEPI on the real TrainTracer data sequences.

4.5.8 Experiments on real data

Results on traintracer data are presented in Table 4.5 below. The 2 most performant

approaches among the 4 tested on generated data were launched on real data: WINEPI

and WW3.

The WINEPI algorithm with a minsup threshold = 5% and 1% did not discover

patterns longer than length-2. None of these patterns ended with a target event. As

for WW3, with tp = 5%, mining was stopped at length-4. Analyzing the discovered

length-4, length-3 and length-2 patterns have showed that none of them ended with

a target event as well. Target events are very rare that even if they pass the first

level because of their high valency value, the weighted support calculated to evaluate

length-2 candidates consisting of these events will be very low and thus will be pruned

out from the mining process. This was the main motivation behind proposing the

“Oriented Weighted Winepi” approach proposed in 4.5.6.

Table 4.5: Results of WINEPI with minsup = 5% and WW3 with tp = 5% on Train-

Tracer data

Episodes discovered

Approach Length-2 Length-3 Length-4

WINEPI 4443 0 0

WW3 2453 846 235

We now apply the Oriented Weighted Winepi. With this approach we are sure to

obtain rules leading to a specific target event. In order to evaluate these rules, we use

the precision and recall values. Within a Weighted WINEPI window-sliced-sequence

context, we define these two measures by the following: Let α and β be episodes such

that prefix(β)=α and α −→ β is an episode rule.

Precision =
|w ∈W (s, win)|β ∈ w|
|w ∈W (s, win)|α ∈ w|

(4.13)

Recall =
|w ∈W (s, win)|β ∈ w|

|w ∈W (s, win)|suffix(β) ∈ w|
(4.14)

In other words, the precision is the fraction of windows containing the prefix and

the suffix of the discovered episode (order of events taken into account) over the total
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number of windows containing the prefix. It expresses the fraction of the prefix episodes

that have been succeeded by a target event. If an episode occurs multiple times in a

window, it is only considered once. The recall however is the fraction of windows

containing the prefix and the suffix (target event) of the discovered episode (order of

events taken into account) over the total number of windows containing the suffix.

It expresses the fraction of occurrences of a target event that have been preceded

(predicted) by the prefix. If a window contains multiple occurrences of a target event,

only one occurrence is considered.

Due to confidentiality agreements, it is not possible to provide examples of the

discovered rules.

4.6 Conclusion

In this chapter, we have tackled the problem of Weighted Association rule mining.

We proposed Weighted WINEPI, an episode rule mining algorithm based on the fu-

sion of both the WINEPI frequent episode mining algorithm (Mannila et al., 1997)

consisting of a sliding window transforming a temporal data sequence into a series of

overlapped windows as well as the valency model proposed in (Koh et al., 2010) that

we specially adapted for the problem of data sequences instead of transaction data.

The Weighted WINEPI algorithm was modified to be able to integrate more efficiently

infrequent events into the mining process. Several tests on synthetic data have showed

that Weighted WINEPI outperforms the classical WINEPI algorithm in detecting pat-

terns between infrequent events. However, due to the particular applicative problematic

tackled in this thesis, where the aim is to discover patterns leading to rare target events

in the TrainTracer data, we also proposed a constraint-based approach derived from

Weighted WINEPI that we called Oriented Weighted WINEPI. The weighted WINEPI

algorithm uses a measure called cruciality that we propose as a primary filter to con-

serve events that are useful for the target event in the mining process and neglect the

others. The Oriented Weighted WINEPI, when applied on TrainTracer data discov-

ered episode rules with acceptable recall and precision. Due to the lack of ground truth

knowledge on whether rules actually exist in the data extract under disposal or not, the

physical significance of the obtained rules needs to be analyzed by technical experts.
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5.1 Pattern Recognition

In this chapter, we adopt a non-temporal approach to tackle the problem of the

prediction of infrequent target events in sequences based on pattern recognition tech-

niques. First, we propose a methodology to transform the data sequence into a set of

labelled observations constituting the dataset upon which various classification methods

are applied: K-Nearest Neighbours, Naive Bayes, Support vector machine and Artif-

ical Neural Networks. An attribute selection approach based on hypothesis testing is

then proposed to decrease the number of attributes by selecting those which are most

significant and contributive to the classification performance.

This chapter is organized as follows. We first introduce the general principle of

pattern recognition in Section 5.1 and then present briefly the four main classifiers

we are going to use in Section 5.2: K-Nearest Neighbours in 5.2.1, Naive Bayes in

5.2.2, Support Vector Machines in 5.2.3 and Artificial Neural Networks in 5.2.4. In

Section 5.3 we propose a methodology to transform the temporal data sequence into a

labelled dataset consisting of good and bad observations. Following that in Section 5.4,

we introduce an attribute-selection methodology based on hypothesis testing in order

to select the most informative attributes and the most significant to the classification

process. Finally, the performed experiments and the obtained results are detailed and

discussed in Section 5.5 before concluding in Section 5.6.

5.1 Pattern Recognition

5.1.1 Introduction

The monitoring of the operating state of industrial systems, such as railway rolling

stock and infrastructure, robots, sorting machines, etc. enables the enhancement of

their productivity and availability which reflects positively by a decrease in production

costs. When a failure is detected, the monitoring system executes a corrective proce-

dure to restore normal functionality. Several methods can be used to realize the system

monitoring task. The choice of the method depends on many factors such as the dy-

namics of the system (discrete, continuous, hybrid) and its complexity, the environment

constraints, the representation of information (quantitative or/and qualitative) and the

information available on the system (structural, analytic, heuristic knowledge, etc.).

When the existing knowledge about the physical behavior of a process is not suffi-

cient to construct an analytic model and when only the measures of its operating state

are available, pattern recognition methods become interesting to monitor the operat-

ing states of systems, i.e. fault diagnosis. In such case, the system is considered as

a black box, where no mathematical equations are necessary to model its functioning.

The methods use exclusively a set of measures and/or heuristic knowledge of the func-

tioning of a process in order to build a classification/regression model able to map the

observation space into a decision space. The results of the classification depend on the
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method as it is, the existing knowledge, the attributes characterizing the system and

the quality of data (Bishop, 2006; Han et al., 2006; Hastie et al., 2003; Tan et al., 2005;

Ye, 2003).

5.1.2 Principle

Generally, a pattern recognition approach is used to build a diagnosis tool aiming to

classify new data using a classifier that generates a membership function for each class.

These methods can mainly be divided into two categories: parametric methods and non

parametric methods. Parametric methods consider the learning dataset as independant

data, abiding the same probability law, similar to bayesian classifiers. Non parametric

methods generate the membership function of classifiers, either by estimating the con-

ditional probability density function for each class, like in the Parzen window method

and K-Nearest Neighbours, or by constructing, via learning, the decision regions, such

as in Neural Networks and SVM.

Pattern recognition can be realized in two phases: learning from known data (train-

ing phase) and the classification of new ones (test phase). In addition to these two

phases, a preprocessing step is used to find the minimal set of the most informative

attributes, i.e, an appropriate representation space. The set of major steps of a pattern

recognition approach is presented in Figure 5.1 below.

Figure 5.1: Pattern recognition process: principal steps

5.1.3 Preprocessing of data

The first phase of preprocessing mainly consists of cleaning and filtering data redundan-

cies and errors as well as data concatenation in certain cases when data is collected from

several sources (like in our applicative example with sequences from various trains). In

the second phase of preprocessing, the most discriminative attributes are selected. Two
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types of method exist to establish the representation space, namely parameter selec-

tion methods which choose a subset of attributes among the original ones that are

most informative. Second, parameter extraction methods which create a subset of new

attributes by combining the original ones. To realize these phases of attribute selec-

tion/extraction, data analysis techniques can be used such as Principal Component

Analysis (PCA) (Jolliffe, 1986), Fisher’s linear discriminant (Fisher, 1936), Multidi-

mensional scaling (Sammon, 1969), Wrapper techniques (Uncu and Turksen, 2007),

etc. The more discriminative are the attributes, the better would be the results of the

classification algorithms. The set of attributes provided by these methods represent

the attributes allowing to characterize each form. Each class is associated to an opera-

tional mode (in our situation: normal functioning or failure). These forms, with their

class labels, constitute the learning set. They are represented by d characteristics, or

attributes, which enables to see them as vectors of d dimensions, i.e., points in the

representation space.

Depending on the application field, data collected on a system can be static or

dynamic when their characteristics evolve with time. Static data is represented by a

point in the representation space while dynamic data consists of a suppelementary di-

mension which is time (Angstenberger, 2000). Similarly, classes (operating modes) can

be static or dynamic. Static classes are represented by restraint zones of similar data in

the representation space. Numerous pattern recognition methods exist to treat static

data. For example, K-Nearest Neighbours (Dasarathy, 1991), Support Vector Machine

(Vapnik, 1995), Bayesian methods (Freedman and Spiegelhalter, 1989), Principal com-

ponent analysis (PCA) (Jolliffe, 1986), Fuzzy Pattern Matching (Cayrol et al., 1982;

Dubois and Prade, 2012), Fuzzy C-means (FCM) (Bezdek, 1981), as well as numerous

derivatives of these methods. In certain cases, systems are in constant evolution be-

tween their different operational modes. We hence speak of evolutive systems (Angelov

et al., 2010; Lughofer and Angelov, 2009) upon which it is necessary to use dynamic

classification methods (Kifer et al., 2004; Tsymbal, 2004), which will not be handled in

this thesis. In this thesis, we tackle the problem of static learning of static data.

5.1.4 Learning and classification

Once the representation space is defined, the next step consists of building a classi-

fier. Depending on the apriori information available on the system, three types of

pattern recognition methods can be used: Supervised methods, Non-supervised and

Semi-supervised. When the data are labelled (classes are known for each sample (ob-

servation) in the dataset), learning is performed within a supervised framework (Ther-

rien, 1989). The training set is used to construct a classifier which separates in the best

possible way the different known classes, in the aim to minimize the classification er-

ror (Cristianini and Shawe-Taylor, 2000). Once the training is performed, an inferring

function allows the inference of a new data point to a class. In cases where no infor-
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mation is available on classes of the system (data points are unlabelled), the learning

is considered to be unsupervised (Bezdek, 1981; Bishop, 2006; Frigui and Krishnapu-

ram, 1996, 1997; Gancho, 2009; Hastie et al., 2003). The methods are mainly based

on similarity functions. When data points with similar characteristics appear, they are

assigned to the same class and vice versa when their characteristics are different a new

class is created by the classifier. The third type of learning is semi supervised (Cozman

et al., 2003; Gabrys and Bargiela, 2000; Stephen et al., 2000) which uses known infor-

mation, i.e, known classes and labelled data, to estimate the characteristics of classes

and their inferreing functions while using unsupervised learning to detect new classes

and learn their inferring functions.

In this chapter, we use four different supervised classification methods: k-Nearest

Neighbours, Naive Bayes, Support Vector Machines and Artifical Neural Networks, all

which are tackled in the following section.

5.2 Supervised Learning Approaches

5.2.1 K-Nearest Neighbours Classifier

The K-Nearest Neighbour method first appeared in the early 1950s but did not gain

popularity until the 1960s with the advancement of computing power. This made it

possible for it to be applied on large training sets. The method has been widely used

in the area of pattern recognition since then. The main principle behind Nearest-

Neighbour classifiers is learning by analogy, that is, by comparing a given test data

point with training data points that resemble it. The training data points are described

by d attributes. Hence, all of the training data points are stored in a d-dimensional

pattern space. When given an unknown data point for testing, a K-Nearest Neighbours

classifier searches the pattern space for the k training data points that are closest to

this unknown data point. These k training data points are its k “nearest neighbours”.

How close a data point X2 to a test point X1 is determined by calculating a distance

defined by the following equation:

dist(X1, X2) =

√√√√ d∑
i=1

(x1i − x2i)2 (5.1)

After the k nearest neighbours are discovered, the unknown data point is assigned

to the most common class among its neighbours.

The optimal value of k, the number of neighbours, can be determined experimen-

tally. Starting with k = 1, a test set is used to estimate the error rate of the classifier.

This process can be repeated each time by incrementing k to allow more neighbours.

The value of k which will lead to the minimum error rate is then selected. One ma-
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jor issue about nearest-neighbour classifiers is that the choice of a distance metric can

be critical. Using a distance metric which gives equal importance to each attribute

can lead to poor accuracy, in situations where some attributes are noisy or irrelevant.

The method, however, has been modified to incorporate attribute weighting and the

pruning of noisy data points. The Manhattan (city block) distance, or other distance

measurements, may also be used (Bishop, 2006; Han et al., 2006).

5.2.2 Naive Bayes

A Naive Bayes classifier (Neapolitan et al., 2004; Nielsen and Jensen, 2009) is a sta-

tistical classification model that can predict class membership probabilities, i.e, the

probability that a given observation belongs to a particular class. It assumes that the

effect of an attribute value on a given class is independent of the values of other at-

tributes. This assumption is called class conditional independence (Han et al., 2006).

Naive Bayesian classifiers are based on the Bayes theorem. This latter calculates the

posterior probability of an attribute vector x to belong to a class Ci, using the following

equation:

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
=

P (x|Ci)P (Ci)

ΣjP (x|Cj)P (Cj)
(5.2)

where P (Ci) is the à priori probability of a class Ci, P(x) the probability to observe

characteristic vector x and P (x|Ci) the probability to observe a characteristic vector x

knowing that its corresponding class is Ci. In practice, we are interested only in the

numerator part. The denominator of Bayes’s theorem does not depend on Ci. The

probabilities P (Ci) of each class as well the distributions P (x|Ci) should be estimated

using a training dataset. An attribute vector x of an observation is assigned to the

class which maximizes most the posterior probability, that is:

∀j 6= i, P (Ci|x) > P (Cj |x) (5.3)

With the Naive Bayes classifier, the input characteristics are supposed to be indepen-

dent from each other. Considering this hypothesis, and considering n to be the number

of observations (data points), it is possible to express the likelihood function of each

class as the product of n simple probability density functions. These functions are

generally expressed using the normal unidimensional distributions.

5.2.3 Support Vector Machines

In this section, a general presentation of Support Vector Machines (SVM) is given.

SVM is a well-known method for both linear and nonlinear classification problems. Al-

though the groundwork for this method has been mentioned in (Vapnik, 1979), but the

first paper was presented in the early ninties (Boser et al., 1992). SVMs are reputable
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for their high accuracy with a high capability to model complex nonlinear decision

boundaries and lower sensibility to overfitting than other methods. SVMs can be used

for both prediction and classification and have been applied extensively in various areas

such as object and voice recognition, handwriting character recognition, etc. In gen-

eral, a support vector machine works as follows. It uses nonlinear mapping to transform

the original data into a higher dimension. Within this new dimension, it searches for

the linear optimal separating hyperplane, i.e. a decision boundary separating the data

points (observations) of one class from another. This hyperplane is found using support

vectors (training points) and margins defined by support vectors (Han et al., 2006). We

will briefly investigate these concepts further below within two cases: when data are

linearly separable, and when data are not linearly separable.

Case 1: Data are Linearly Separable

We first consider a two-class problem where the classes are linearly separable. Let

the training data set D consist of l training examples given as (Xi, yi), i = 1, ..., l,

where each example has d inputs, i.e, xi,j ∈ Rd, and a class label yi with one of two

values (yi ∈ {−1,+1}). Since there is no doubt an infinite number of separating hy-

perplanes in Rd which can be drawn to separate data points corresponding to different

classes, the aim is to find the best one, that is, the one with the minimum classifica-

tion error when tested on previously unseen data points. SVM tackles this problem by

searching for the maximum marginal hyperplane (See Figure 5.2), i.e., the hyperplane

with the largest margin, which is logically expected to have the best accuracy.

Figure 5.2: An example of a 2-class, 2-attribute (2-D) training data. Within an infinite

number of possible separating hyperplanes, the one with the largest marginal width is

considered to be the best

All hyperplanes in Rd are parametrized by a vector W and a constant b, and can

be written as
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W.X + b = 0 (5.4)

where W = {w1, w2, ..., wn} is a vector orthogonal to the plane, called weight vector,

n is the number of attributes; and b is a scalar, called bias. Given a hyperplane (W, b)

which separates the data, the aim is to find a function f(x) which classifies the training

data and later on the testing data.

f(x) = sign(W.X + b) (5.5)

Knowing that a given hyperplane represented by (W, b) is equally expressed by all

pairs {λW, λb} for λ ∈ R+, we define a canonical hyperplane as the hyperplane which

separates the data from the hyperplane by a “distance” of at least 1. Thus, the weights

may be adjusted so that the hyperplanes defining the sides of the margin can be written

as

H1 : W.X + b ≥ +1 when yi = +1 (5.6)

H2 : W.X + b ≤ −1 when yi = −1 (5.7)

Hence, any data point which falls on or above H1 belongs to class +1 while any data

point that falls on or below H2 belongs to class -1. Combining the two inequalities of

the above equation, we obtain

yi(W.X + b) ≥ +1 ∀i (5.8)

A support vector defined to be any training data point located on hyperplanes H1 and

H2. These data points are the most difficult to classify and are the most informative

from a classification perspective. From the above, we can obtain the formula for the

size of the maximal margin. The geometric distance from the separating hyperplane

to any point on H1 or H2 is
1

‖W‖
, where ‖W‖ is the euclidean norm. The maximal

margin is thus
2

‖W‖
. The distance between the hyperplane and any given data point

is thus,

d((W, b), X) =
yi(W.X + b)

‖W‖
≥ 1

‖W‖
(5.9)

Intuitively, we are searching for the hyperplane which maximizes the geometric distance

to the nearest data point. The above equation can be rewritten using a Langrangian

formulation and then solved using Karush-Kuhn-Tucker (KKT) conditions. The MMH

can then be rewritten as the decision boundary (Bishop, 2006; Han et al., 2006).

d(XT ) =

l∑
i=1

yiαiXiX
T + b0 (5.10)

where yi is the class label of support vector Xi; X
T is a test data point; αi (lagrangian

multipliers) and b0 are numeric parameters that were determined automatically by the
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optimization or SVM algorithm above, and l is the number of support vectors. Given

a test data point, XT , we calculate the distance and check to see the sign of the re-

sult. This will indicate on which side of the hyperplane the test data point falls. It is

important to indicate that the complexity of the learned classifier is characterized by

the number of support vectors and not the dimensionality of the data, which explains

why SVM are less vulnerable to overfitting than some other methods. Furthermore,

the support vectors found can be used to compute an upper bound on the expected

error rate of the SVM classifier, which is also independent of the data dimensionality.

Case 2: Data are Linearly Inseparable

We have tackled the problem of classifying linearly separable data. However, in many

cases, data can be non linearly separable, as in Figure 5.3. The approach described for

linear SVMs has been extended to create nonlinear SVMs which are capable of finding

nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space. These ap-

proaches mainly consist of two major steps. In the first step, the original input data is

transformed into a higher dimensional space using nonlinear mapping. Once the data

have been transformed into the new higher space, the second step searches for a linear

separating hyperplane in the new space. We again end up with a quadratic optimization

problem that can be solved using the linear SVM formulation. The maximal marginal

hyperplane found in the new space corresponds to a nonlinear separating hypersurface

in the original space (Han et al., 2006).

When solving the quadratic optimization problem of the linear SVM, the training

data points appear only in the form of dot products, φ(Xi).φ(Xj), where φ(X) is the

nonlinear mapping function applied to transform the training data points. This dot

product can be replaced by a kernel function, K(Xi, Xj) applied to the original input

data. That is,

K(Xi, Xj) = φ(Xi).φ(Xj) (5.11)

The procedure to find a maximal separating hyperplane is similar to that described

for linearly separable data, although it involves placing a user-specified upped bound

C (best determined experimentally), on the Lagrange multipliers αi. Other kernels

include:

Polynomial kernel of degree h: K(Xi, Xj) = (Xi.Xj + 1)h (5.12)

Radial basis function kernel: K(Xi, Xj) = e−‖Xi−Xj‖2/2σ2 (5.13)

Sigmoid kernel: K(Xi, Xj) = tanh(κXi.Xj − δ) (5.14)

Each of these kernels leads to a different nonlinear classifier in the original input

space. So far, we have focused on linear and nonlinear SVMs for binary (i.e, two-

class classification) since it is the case of the data used in this thesis. However, SVM
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classifiers can be combined for multiclass cases as well. Given m classes, m classifiers

are trained, one for each class, returning positive value for that class and negative for

the rest. A test data point is assigned to the class corresponding to the largest positive

distance.

Figure 5.3: A 2-D case showing linearly inseparable data. Unlike the linear separable

data of Figure 5.2, the decision boundary here is nonlinear.

5.2.4 Artificial Neural Networks

The idea of Artificial Neural networks was inspired from the neuro-physiological struc-

ture of the brain. They have been applied in numerous fields for pattern classification

purposes such as classification of handwritten characters, image classification, sound

processing and recognition, etc. (Bishop, 1995; Cristianini and Shawe-Taylor, 2000;

Han et al., 2006).

An Artificial Neuron

A neuron is the elementary unit of an artifical neural network which, if activated,

produces an output signal equal to the weighted sum of the its input signals coming

from other neurons. In the following, we consider a particular type of neurons, the

perceptron.

A perceptron is a processing unit with the following characteristics:

• It possesses d + 1 inputs that we note xi ∈ {0, ..., d} ∈ R. The input x0 is

particular and is called the bias and is equal to 1

• It possesses an output S

• Each input is weighted by a weight wi ∈ {0, ..., d} ∈ R

• An activation function, φ(.), which determines the value of S with respect to the
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weighted sum of its inputs
∑i=d

i=0 wixi, that is:

S = φ(
i=d∑
i=0

wixi) (5.15)

In a classification task, the output indicates the class predicted for an input data.

Hence, once the input data has been fixed, the output of the perceptron depends only

on its weights. The learning process of a perceptron consists of tuning the values of the

weights to those which lead to the best results in terms of minimal classification rate.

There are different types of activation functions. It can simply be the linear function:

φ(ν) = ν (5.16)

In this case, the output of the neuron is the weighted sum of its inputs. We talk of

linear neuron. The output takes a value in R.

It can also be the Heaviside function:

φ(ν) =

{
1 si ν ≥ 0

0 si ν < 0
(5.17)

if s ∈ {0, 1}, or

φ(ν) =

{
1 si ν ≥ 0

−1 si ν < 0
(5.18)

if s ∈ {−1, 1}

It can also be a sigmoid function

φ(ν) =
1

1 + e−αν
(5.19)

with a ∈ R if s ∈ [0, 1], or hyperbolic tangent

φ(ν) = tanh(ν) (5.20)

if s ∈ [−1, 1].

In classification, neural networks of the type “multi-layer perceptron” (Broadbent

and Lucas, 1989; Dietz et al., 1989) permit nonlinear separation between classes de-

pending on their architecture as well as the choice of the activation function. Neurons

are distributed among multiple layers: input neurons associated to data, output neu-

rons associated to each class and hidden neurons which are intermediates between the

input and output neurons (see Figure 5.4).
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Figure 5.4: Schema illustrating the principle of a neuron

Multi-Layer Perceptrons

Multi-Layer perceptrons are the combination of neurons into layers, mainly to solve

more-complex non-linear classification problems. A multi-layer perceptron consists of

the following elements (see Figure 5.5):

• An input layer L0: d inputs if the data are described by d attributes (which

should be numerical)

• An output layer Lq: which can contain multiple neurons.

• One or multiple intermediary layers. Each layer is named Li where i varies

between 1 and q − 1, each constituting a certain number of perceptrons |Ci|.

• Each connection between two units is characterized by a real weight value

Figure 5.5: The architecture of a Multi-Layer Perceptron

The learning process of a multi-layer perceptron consists of updating the weights

of the network using non-linear optimization methods. The aim is to minimize a cost

function which defines the gap between the solution given by the network and the

expected solution (Han et al., 2006).
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5.3 Transforming data sequence into a labelled observa-

tion matrix

The four classifiers K-Nearest Neighbours, Naive Bayes, Artificial Neural Networks and

Support Vector Machine cannot be applied on the sequence of events as it is. For this

reason, it is vital to transform the sequence S into an observation matrix. This matrix

will be unique for each target event T to be predicted. In this section, we propose

a specific methodology to transform long temporal data sequences into labelled data

observations.

From the sequence S constituting all events, for each target event T , two types of

sequences are extracted. The first type of sequences, the bad sequences WT , correspond

to the sequences of length w, subsequences of S preceding all occurrences of the target

event T in the sequence. The second type, selected randomly, are the good sequences

WR. These sequences do not exhibit any presence of T nor are they succeeded by T .

Once the sequences WT and WR are extracted, we can define the observation space X =

{X1, ..., Xl+m} consisting of both bad and good sequences (X ∪ {WT ,WR}), where l is

the number of bad windows and m the number of good windows, and Y = {Y1, ..., Yl+m}
the label vector. We attribute a label Yi = 1 for bad sequences and Yi = 0 for good

ones. Each observation Xi consists of d attributes, where d is the number of uncritical

events types occurring in the data. The value of each attribute xi,j , i = {1, ..., l +m},
j = {1, ..., d} is equal to the number of occurrences of uncritical event type Uj in window

Xi.

In the data extract under disposal, there are 436 distinct uncritical event types

U1, ..., U436 which can occur in the window which are not target events, thus there are

436 different attributes. We consider the number of occurrences of each one of these

events Ui in the observation window (whether good or bad sequence) as the attribute

value (see Figure 5.6). In the end, we obtain a data matrix (dataset) of dimensions

(l +m)× 436
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Figure 5.6: The methodology adopted to transform data sequence into labelled obser-

vation matrix constituting the dataset upon which pattern recognition methods can be

applied

In the next section, we attempt to limit the dimensionality of the data matrix

by reducing the number of attributes. We propose a methodology based on statistical

hypothesis testing that will help choose the most significant attributes to be maintained

for the classification process.

5.4 Hypothesis testing: choosing the most significant at-

tributes

In this section, we propose a methodology to identify events which are most likely to

occur prior to a target event. This methodology is based on a hypothesis test which

we shall explain in the following.

Consider n independent and identically distributed (i.i.d.) random variablesX1, X2, ..., Xn

abiding the law X ∼ Ber(p1) and m independent and identically distributed random

variables Y1, Y2, ..., Ym, Y ∼ Ber(p2). Bernoulli law, binary in nature, allows us to test

the presence or not of an event in a given window. We note x = (x1, x2, ..., xn) as the

data points (observations) and y = (y1, y2, ..., yn) as their respective labels.

We are interested in the following hypothesis test for equality of proportions:
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{
H0 : p1 = p2

H1 : p1 > p2
(5.21)

The unknown proportions p1 and p2 are estimated directly from observations by

the frequencies X and Y defined by:

X =
1

n

n∑
i=1

Xi and Y =
1

m

m∑
i=1

Yi (5.22)

According to Annex 1, we propose the critical region to be:

W =

(x; y)|z =
x− y√

x+y
n+m(1− x+y

n+m)( 1
n + 1

m)
> φ−1(1− α∗)

 (5.23)

where φ(.) is the distribution function of the standard normal distribution. The

value of φ−1(1−α∗) can be deduced directly from statistical tables. For z > φ−1(1−α∗),
the hypothesis H0 is rejected and the alternative hypothesis p1 > p2 is adopted.

We apply this test on our data in order to obtain the events which are most likely

to occur prior to a target event. We define the null hypothesis H0 as “the probability

of an event to occur prior to a target event (p1) is equal to its probability to occur in a

random sequence (p2)”. The alternative hypothesis is: “the probability of an event to

occur prior to a target event (p1) is greater than its probability to occur in a random

sequence (p2)”. The test is applied between each event type and the target event as

follows.

For a target event T , we derive the set of sequences WT and WR similarly as

described in the section 5.3, with the sole difference that WR may contain target events

as well. Having derived both, we can now precise Xi and Yj . If we consider Atest to

be the event type which we are testing to validate whether it can potenially predict a

target event T or not. We hence consider the following:

Xi = 1⇐⇒ ∃(A, t) ∈ wT,i such that A = Atest (5.24)

Yj = 1⇐⇒ ∃(A, t) ∈ wR,i such that A = Atest (5.25)

Xi thus marks the existence of event Atest (with a probability p = p1) in the ith sequence

preceding target event T . Similarly for Yi, with p = p2 but applied on randomly

selected sequences. The corresponding X and Y defined in 5.22 hence correspond to

the respective frequencies of Atest in WT and WR.

The algorithm 4 resumes the different steps of this test, which we apply on all target

events, that is, Tilt and Traction “Driver Action High” events. For each target event,

the algorithm returns the list L of A events that have validated H1.
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Algorithm 4 Pseudo-code of the hypothesis test for the equality of two proportions,

performed to search for events that can potentially predict a target event T
Inputs: Target event T , Data sequence S, Significance degree α∗, list of eventsL = φ

1: # Step 1 : Find sequences preceding the each existence of T and randomly selected

sequences

2: - Determine WT and WR

3: # Step 2 : Test H0 against H1

4: for all Distinct events A occurring in WT do

5: Atest = A

6: Calculate Xi according to 5.24

7: Calculate Yj according to 5.25

8: Calculate X, Y according to 5.22

9: According to 5.23 ,

10: if z > Φ−1 (1− α∗) then

11: L ←− Atest

12: end if

13: end for

Output: List L of events that have validated H1

The list of events L validating the alternative hypothesis H1, considered as poten-

tially predictor events with respect to the target event, constitutes our reduced list of

selected attributes. Thus, there is a list of selected attributes for each target event.

5.5 Experimental Results

In this section, we present the results of the experimental study that has been performed

on the TrainTracer data sequences. First, the choice of measures used to assess the

performance of the classifiers is explained, followed by a study we have executed to

tune the value of the scanning window w in order to transform the data sequences into

observation matrix (dataset) in the most optimal way for our problematic. Finally, the

results of the various experiments are presented and a comparative study between the

performance of the four classifiers is established.

5.5.1 Choice of performance measures

The measures which we will use to evaluate the performance of the approaches pre-

sented earlier in this chapter are the Correct classification rate, Recall and Precision.

- Correct classification rate (CCR)

The correct classification rate is calculated by the following:

Correct classification rate =
Number of observations correctly classified

Total number of observations
(5.26)
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Considering a two class classification problem, the confusion matrix can be presented

in table 5.1 below:

Positive decision Negative decision

Positive label True positive (TP) False Negative (FN)

Negative label False positive (FP) True negative (TN)

Table 5.1: Confusion matrix of a 2-class classification problem

The equation 5.26 can thus be written as:

Correct classification rate =
TP + TN

TP + FP + FN + TN
(5.27)

We should note that the correct classification rate is a global general indicator that

cannot take into account the repartition of the classes of the problem. For this reason,

and to reflect a more precise image of the obtained results, we compute two comple-

mentary indicators which are the Recall and Precision.

- Recall and Precision

When the classes of the classification problem are not well balanced, the performance

of the classification can be evaluated using two interestingness measures: recall and

precision. These measures are calculated independently for each class, where:

Recall =
TP

TP+FN
(5.28)

Precision =
TP

TP+FP
(5.29)

For a given class, the recall indicates the percentage of samples of this class that have

been successfully labelled while precision indicates the percentage of samples attributed

to their real class.

5.5.2 Choice of scanning window w

In order to transform the data sequence into observation data matrix, the scanning

window w needs to be set. For this reason, we have applied the four classifiers K-

Nearest Neighbours (K-NN), Naive bayes, SVM and Artifical Neural Networks (ANN)

on observation data matrices obtained with different values of w in order to decide

which value is the most optimal for our case study.

The evaluation of the results of all classifiers was performed using a cross validation

technique, consisting of randomizing the data set before dividing it into training and
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testing datasets. The number of randomizations was set to be 100 and thus the vali-

dation technique consisted of 100 folds. We used 70% of the observations for training

and the remaining 30% for testing. We have also varied some key parameters of certain

classifiers such as the number of hidden neurons and the function type for the neural

networks as well as the type of kernel for SVM and the number of neighbours for the

K-Nearest Neighbour approach.

We consider one particular type of Tilting Pantograph Failures as our target event.

Due to confidentialy reasons, this event will not be revealed and will simple be denoted

by T1. Target event T1 has 302 occurrences in the data sequences, hence there are

302 windows leading to this target event and hence are labelled with 1 following the

methodology we proposed in Section 5.3 to transform data sequence into an observation

data matrix. We have then selected 906 random windows from the sequence that do

not contain nor are directly succeeded by the target event and labelled them 0 (we have

chosen that the number of 0-labelled windows is to be triple the number of 1-labelled

windows). Thus the observation data matrix consists of 1208 observations and is of

dimension 1208 × 436 with all attributes selected and 1208 × d with selected attributes

considered only, where d is the number of attributes. Table 5.2 shows the number of

selected attributes discovered following the approach we previously proposed in Section

5.4 for various values of w. Table 5.3 shows the optimal results of the four classifiers

on the four different datasets.

w (hours) Selected Attributes Dataset dimensions

2 56 1208 × 56

6 58 1208 × 58

10 55 1208 × 55

20 36 1208 × 36

Table 5.2: The number of selected attributes for different values of scanning window w
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w = 2 hours w = 6 hours

CCR Precision Recall CCR Precision Recall

K-NN 91.6 92.7 84.5 90.9 89.6 85.3

NB 85.3 80.5 80 83.1 78.4 74.1

SVM 94.7 95.1 90.5 92.6 93.7 86.2

ANN 90.9 90.5 84 90.5 90.3 83.6

w = 10 hours w = 20 hours

CCR Precision Recall CCR Precision Recall

K-NN 87.8 89.3 77.4 87.5 86.5 78.4

NB 83 79.3 72.5 82.7 78.6 71.8

SVM 89.8 91.5 81 86.4 87.4 75

ANN 87.6 85.5 78.8 87.2 83.4 79.4

Table 5.3: Synthesis of the best correct classification rates (CCR) obtained by four

classifiers: K-NN, Naive Bayes (NB), Support Vector Machines (SVM) and Artifical

Neural Networks (ANN) with different values of w leading to different datasets with

different selected attributes for target event T1

From the table 5.3 above, having varied w from 2 to 20 hours, we can observe that

the performance of all classifiers decreases with the increase of the value of w. Inspite

the fact that transforming the data sequence to an observation dataset with w = 2

hours have led to the best results for target event T1, however, if we consider the case

of a target event that might be caused by a long sequence of events extending beyond

2 hours, a lot of information might be lost. For this reason, we consider a trade-off

between the performance and the abundance of information and we set the value of w

for the following experiments to 6 hours.

5.5.3 Performance of algorithms

In what follows, we give the results for two tilt and traction “Driver Action High” events,

considered as target: T1 corresponding to a particular Tilting Pantograph failure and T2

corresponding to a particular Train Tilt System defect. Knowing that the total number

of attributes is 436, the attribute selection approach proposed in 5.4, with a scanning

window size w defined to 6 hours, cuts the number of attributes for target event T1

to 58 and that of the target event T2 to only 6. In order to evaluate the efficiency

of the attribute selection process, we compare the classification results obtained by all

classifiers with the selected attributes to the results with all attributes considered.

Tables 5.4 and 5.5 show the results of the K-Nearest Neighbours classifier and

Naive Bayes respectively for target event T1. The value of k for the K-NN was varied

from 1 to 11. The best classification results obtained were 88.1% on raw data with all

attributes with k = 9 neighbours and 90.9 % with the 58 selected attributes and k = 1

neighbour. Results show that the performance of the K-NN with selected attributes
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outperforms that with all attributes for whatever number of neighbours used, which

proves the efficiency of the attribute selection approach proposed. On the other hand,

Naive Bayes have led to less important results than K-NN, with 84.6% on centered

data with all attributes and 86.7% on centered data with the 58 selected attributes.

All attributes Selected attributes (58 attributes)

K-NN Raw data Centered data Raw data Centered data

1 87.9 ± 1.3 87.9 ± 1.5 90.9 ± 1.3 90.9± 1.2

3 87.5 ± 1.3 87.5± 1.3 89.7 ± 1.5 89.9± 1.3

5 86.3 ± 1.3 86.3 ± 1.4 89.2 ± 1.3 89.2 ± 1.4

7 85.9 ± 1.2 85.8 ± 1.4 88.7 ± 1.4 88.8± 1.3

9 88.1 ± 1.2 88 ± 1.2 88.3 ± 1.8 88.5 ± 1.5

11 84.6 ± 1.3 84.4± 1.2 88.2 ± 1.3 88.1± 1.2

Table 5.4: Correct classification rates obtained by the K-Nearest Neighbour algorithm

on both raw and centered data with all and selected attributes for target event T1

All attributes Selected attributes (58 attributes)

Raw data Centered data Raw data Centered data

Naive Bayes 81 ± 1.3 84.6 ± 1.5 83.1 ± 1.6 86.7 ± 1.7

Table 5.5: Correct classification rates obtained by the Naive Bayes algorithm on both

raw and centered data with all and selected attributes for target event T1

Similarly, the results of SVM using 2 kernels are shown in 5.6. The two kernels used

were Polynomial and Radial Basis Function (RBF). Following a grid search to find the

optimal parameter value, the degree of the polynomial kernel was set to 1 whereas

the log2(C) and log2(γ) values of the RBF kernel were set to 9 and -15 respectively.

The RBF kernel has slightly outperformed the polynomial kernel on both data with all

attributes and selected attributes, with a maximal correct classification rate of 91.4%

and 92.6% respectively.

All attributes Selected attributes (58 attributes)

SVM Kernel type Raw data Centered data Raw data Centered data

Polynomial (Degree 1) 91.3 ± 1.2 91.4 ± 1.3 92 ± 1.2 91.9 ± 1.2

RBF (log2C = 9, log2(γ) = −15) 91.4 ± 1.2 91.3 ± 0.9 92.6 ± 1.2 92.5 ± 1.1

Table 5.6: Correct classification rates of SVM with two kernels on both raw and centered

data for target event T1. Parameters were defined following an extensive grid search

Tables 5.7 and 5.8 below present results obtained by Artificial Neural Networks on

target event T1. We define a neural network of 2 layers. We vary the number of hidden

neurons as well as the function used.
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Raw data Centered data

Hidden neurons tansig logsig tansig logsig

3 80.1 ± 15 82.2 ± 12.9 79.8 ± 16 81.7 ± 13

5 85.1 ± 7.9 85 ± 9.7 82.3 ± 15 86 ± 5

7 87.2 ± 3.6 86.5 ± 4.3 86.1 ± 7.4 86.2 ± 7.2

10 86.5 ± 3.8 86.5 ± 3.9 86.6 ± 4.1 87.1 ± 3.2

15 87.6 ± 3.8 87.2 ± 3.1 87.2 ± 2.8 87.2 ± 3.3

20 87.4 ± 3 87.2 ± 3.4 87.1 ± 3.3 87 ± 3.3

Table 5.7: Correct classification rates of Artificial Neural Networks on raw and centered

data for target event T1 with all attributes

Raw data Centered data

Hidden neurons tansig logsig tansig logsig

3 86 ± 8.9 86 ± 10.5 84.5 ± 14.8 88.3 ± 5.5

5 87.7 ± 7.9 89.2 ± 4.4 89.1 ± 4.6 89 ± 4.5

7 88.3 ± 10.2 88.9 ± 4.5 89.2 ± 4.8 89.3 ± 4.5

10 88.5 ± 7.8 89.2 ± 4.4 88.9 ± 6.9 89.1 ± 4.5

15 90.5 ± 2.4 89.8 ± 4.1 90.6 ± 2.4 89.6 ± 4.4

20 89.9 ± 3.7 89.7 ± 3.5 89.4 ± 4.4 88.9 ± 4.7

Table 5.8: Correct classification rates of Artifical Neural Networks on raw and centered

data for target event T1 with selected attributes (58 instead of 436)

A network with 15 hidden neurons leads to a slightly better performance than those

with a different number of neurons. The hyperbolic tangent sigmoid transfer function

(tansig) and the log-sigmoid transfer function (logsig) have approximately led to the

same order of results. The best performance was 90.5 % on raw data with selected

attributes and 90.6% on centered data with selected attributes as well, both using the

tansig function.

Now that the optimal parameters for each classifier are known, we establish a com-

parative study aiming to define the approach with the best performance. The results of

this study are exhibited in tables 5.9 and 5.10. In addition to the correct classification

rate, we have calculated Recall and Precision to assess results in a better way. The four

pattern recognition approaches have led to good results with high correct classification

rates as well as Recall and Precision values. The best performance was obtained by the

SVM approach with a Radial Basis Function kernel (with log2(C) and log2(γ) values

equal to 9 and -15 respectively) when applied on data with all attributes as well as

with selected attributes. The Precision values varied between 78.4% with Naive Bayes

on centered data with all attributes up to 93.7% with SVM on raw data with selected

attributes. Similary, the Recall value varied between 64.2% with Naive Bayes on raw

data with all attributes to 86.2% with SVM with selected attributes.
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Raw data Centered data

CCR Precision Recall CCR Precision Recall

K-NN 88.1 87.3 72.2 88 87.2 72.2

NB 81 81.2 64.2 84.6 82.8 73.5

SVM 91.4 92.2 84.8 91.3 91.9 84.6

ANN 87.6 85.5 78.1 87.2 83.6 77.5

Table 5.9: Synthesis of the best correct classification rates obtained by four pattern

recognition classifiers on both raw and centered data with all attributes for target event

T1

Raw data Centered data

CCR Precision Recall CCR Precision Recall

K-NN 90.9 89.6 85.3 90.9 89.2 84.8

NB 83.1 78.4 74.1 86.7 82.1 82.8

SVM 92.6 93.7 86.2 92.5 93.6 86.2

ANN 90.5 90.3 83.6 90.6 90.7 83.6

Table 5.10: Synthesis of the best correct classification rates obtained by each algorithm

on both raw and centered data with selected attributes (58 instead of 436) for target

event T1

From all of the above results, we can notice that the performance of the classifiers

on raw and centered data with the selected attributes was better than that with all

attributes. Thus we can deduce that the attribute selection method that we have

proposed was indeed effective in enhancing the results of the classification process by

increasing the performance of all the classifiers used: K-Nearest Neighbour, Naive

Bayes, SVM and Neural Networks. This also brings to our attention furthermore

that many of the initial attributes were misleading the classification process and can be

considered as noise which needed to be pruned out to sharpen the classification process.

In the following, we apply the classifiers on target event T2, corresponding to a train

tilt system defect, while considering the selected attributes only. As mentioned before,

the attribute selection approach we proposed has cut down the number of attributes

for event T2 from 436 to only 6. Knowing that there are 6226 occurrences of event T2 in

the data sequence, the transformation of the data sequence following the approach we

proposed in Section 5.3 led to an observation matrix of dimensions 24904 x 6, consisting

of 6226 observations labelled 1 and 18678 labelled 0.

Results in tables 5.11 and 5.12 show that the K-Nearest Neighbour classifier has

led to a correct classification rate of 82.6% with 11 neighbours on raw data with the 6

selected attributes. Naive Bayes on the other hand has led to a slightly inferior correct

classification rate of 81.9%.
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Selected attributes (6 attributes)

K-NN Raw data Centered data

1 76.3 ± 14 78.9±8.9

3 79.9 ± 8.9 79±10

5 81.7 ± 1.1 81.2±5.3

7 82.2 ± 0.8 82.1±1

9 82.4 ± 0.6 82.3±0.9

11 82.6 ± 0.6 82.3±0.9

Table 5.11: Correct classification rates obtained by the K-Nearest Neighbour classifier

on both raw and centered data with selected attributes for target event T2

Selected attributes (6 attributes)

Raw data Centered data

Naive Bayes 81.9± 0.4 81.9± 0.3

Table 5.12: Correct classification rates obtained by the Naive Bayes algorithm on both

raw and centered data with selected attributes for target event T2

Similarly, the results of SVM using 2 kernels, Polynomial and Radial Basis Function

(RBF), are given in 5.13. Following a grid search to find the optimal parameter value,

the degree of the polynomial kernel was set to 1 whereas the log2(C) and log2(γ) values

of the RBF kernel were set to 8 and -14 respectively. The RBF kernel outperforms the

Polynomial kernel with a correct classification rate of 83.2% on both raw and centered

data.

Selected attributes (6 attributes)

SVM Kernel type Raw data Centered data

Polynomial (Degree 1) 80.6 ± 0.3 80.6 ± 0.3

RBF (log2C = 8, log2γ = −14) 83.2 ± 0.3 83.2 ± 0.3

Table 5.13: Correct classification rates of SVM with two kernels on both raw and

centered data for target event T2. Parameters were defined following an extensive grid

search

Applying Artifical Neural Network classifier on the data while varying the number

of hidden neurons, the best results (shown in Table 5.14) were obtained with a net-

work consisting of 7 hidden neurons, with a slight difference in results with respect

to a different number of neurons. The hyperbolic tangent sigmoid transfer function

(tansig) slightly outperforms the log-sigmoid transfer function (logsig). The correct

classification rate has reached 81.7 % on raw data.

103



5.5 Experimental Results

Raw data Centered data

Hidden neurons tansig logsig tansig logsig

3 81.3±1.6 81.3±1.9 81.3 ± 1.7 81.2±1.9

5 81.3 ± 1.7 81.1±2.2 81.7 ± 1.1 81.4± 1.7

7 81.7 ± 1 81.2± 2 81.7 ± 0.8 81.6 ± 1.3

10 80.9 ± 1.4 81.2±1.9 81.5 ± 1.5 81.3 ± 1.9

15 81.6 ± 1 81.2 ± 1.7 81.5 ± 1.6 81.5 ± 1

20 80.9 ± 5.9 80.9±2 81.3 ± 1.7 81.2 ± 1.7

Table 5.14: Correct classification rates of Artificial Neural Networks on both raw and

centered data with selected attributes for target event T2

Table 5.15 recapitulates the best results obtained by each classifier. Similar to

before, in addition to the correct classification rate, we have calculated Recall and

Precision to acquire a better vision of results. The four pattern recognition approaches

have led to good results with high correct classification rates as well as Recall and

Precision values. The best performance was obtained by the SVM approach with

a Radial Basis Function kernel (with log2(C) and log2(γ) values equal to 8 and -14

respectively) as well as by the K-Nearest Neighbour classifier with 11 neighbours, both

slightly outperfoming the Artificial Neural Networks and Naive Bayes classifiers. The

Precision values varied from 76.3% with Naive Bayes up to 78.4% with SVM. Similary,

the Recall value varied from 66.6% with SVM up to 72.9% with Naive Bayes.

Raw data Centered data

CCR Precision Recall CCR Precision Recall

K-NN 82.6 77.8 72.7 82.3 77.4 72.7

NB 81.9 76.3 72.9 81.9 76.3 72.9

SVM 83.2 78.4 66.6 83.2 78.4 66.6

ANN 81.7 77 70.3 81.7 76.9 69.8

Table 5.15: Synthesis of the best correct classification rates obtained by each classifier

on both raw and centered data with selected attributes (6 instead of 436) for target

event T2

The four classifiers have maintained a good performance despite the large decrease

of attributes from 436 to only 6. This validates the effectiveness of the attribute selec-

tion process we have proposed and highlights the amplitude of the attributes misleading

the classification process and the importance of pruning them out to sharpen the per-

formance.
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5.6 Conclusion

In this chapter, we have adopted a non-temporal approach to tackle the problem of

the prediction of infrequent target events in sequences based on pattern recognition

techniques. First, we propose a methodology to transform the data sequence into

a set of observation matrix constituting the dataset upon which four classification

methods were applied: K-Nearest Neighbours, Naive Bayes, Support Vector Machines

and Artificial Neural Networks. A hypothesis testing approach was proposed to decrease

the number of attributes by selecting those which are most significant and contributive

to the classification performance. The obtained results have shown that the attribute

selection method was indeed effective and has led to an increase in the performance of

the four classifiers, which highlighted also the fact that many of the initial attributes

were misleading the classification process and can be considered as noise that needed

to be pruned out to sharpen the performance.

After tuning the value of the scanning window width w following a thorough compar-

ative study, the performance of the four approaches was evaluated using three measures:

Correct Classification rate, Recall and Precision. Although the four algorithms have

led to good results that have reached 92.6% with Support Vector Machines using the

RBF kernel as well as high Recall and Precision values, some major points regarding

inconveniences should be highlighted. The main disadvantage of using classification

approaches is that they do not take into account the temporal evolution of data and

sequential nature of events within the window preceding the occurrence of the target

event, and thus cannot indicate the order of events leading to a target event as well as

predict exactly when that event will occur. Furthermore, each target event is handled

and predicted separately since the sequence has to be transformed into a dataset that

is specific for each target event and thus the mining process is complex and consists of

multiple preprocessing steps. In addition to that, the scanning window that we have

fixed to 6 hours following a trade-off might be limiting in case where the target event

is caused by an accumulation of events over a duration exceeding 6 hours. Another

arising problem would be setting the parameters for each dataset and target event,

which might not be a one-time task knowing that the observation dataset should be

updated for every new occurrence of the target event. Performing a grid search for the

best parameters following each update would be computationally expensive and time

consuming.

The pattern recognition approach has shown to be indeed effective for the prediction

of infrequent target events in temporal sequences, once these sequences are transformed

properly into an observation data matrix, and an effective attribute selection process

is established.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

Within the persisting efforts to enhance availability and reliability of railway rolling

stock, railway manufacturers and operators have adopted an automatic diagnosis ap-

proach aiming to establish an effective predictive maintenance process. Commercial

trains are being equipped with state-of-the-art on-board intelligent sensors providing

real-time flow of data consisting of georeferenced events, along with their spatial and

temporal coordinates. Once ordered with respect to time, these events can be consid-

ered as long temporal sequences which can be mined for possible relationships. This

has created a necessity for sequential data mining techniques in order to derive mean-

ingful association rules or classification models from these data. Once discovered, these

rules and models can then be used to perform an on-line analysis of the incoming

event stream in order to predict the occurrence of target events, i.e, severe failures that

require immediate corrective maintenance actions.

The work in this thesis tackles the above mentioned data mining task. We aimed

to investigate and develop various methodologies to discover association rules and clas-

sification models which can help predict rare failures in sequences. The investigated

techniques constituted two major axis: 1- Association analysis, which is temporal

and aimed to discover association and episode rules, and 2- Classification tech-

niques, which is not temporal. The main challenges confronting the data mining task

and increasing its complexity were mainly the rarity of the target events to be predicted

in addition to the heavy redundancy of some events and the frequent occurrence of data

bursts.

Axis 1: Association Analysis

In this axis, constituting Chapters 3 and 4 of this thesis, we analyzed the temporal
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floating data sequences for association and episode rules leading to target events. We

worked on two completely different approaches.

First in chapter 3, we proposed two methodologies based on existing significance-

testing algorithms that have been adapted to our problem, T-Patterns and Null models

in order to derive length-2 association rules of the form A −→ B where B is a failure

event. Although co-occurrences are decided by means of a hypothesis test in both

methods, the approaches used to calculate the p-value used by the test are completely

different. The first, null models, consists of randomization techniques followed by

the calculation of various co-occurrence scores. The second, T-Patterns, exploits the

temporal dimension by investigating the statistical dependence between inter-arrival

times of couples of events in order to highlight possible relationships and temporal

dependencies. We then proposed Double Null Models (DNM) as an extension to null

models, a bipolar approach for discovering significant couples in a way that best assesses

recall and precision and renders the mining process more resistant to spuriousness,

hence decreasing the false positive rate.

In chapter 4, we adopted a different approach based on Weighted Association Rule

Mining (WARM), which we adapted to temporal sequences in order to derive longer

rules. We proposed Weighted WINEPI, an episode rule mining algorithm based on the

fusion of both the WINEPI frequent episode mining algorithm consisting of a sliding

window transforming a temporal data sequence into a series of overlapped windows as

well as the valency model proposed in (Koh et al., 2010) that we especially adapted

for the problem of data sequences instead of transaction data. The Weighted WINEPI

algorithm was modified to be able to integrate more efficiently infrequent events into

the mining process and a measure called cruciality was proposed as a preprocessing

filter to conserve events that are useful for the target event to be predicted. We also

proposed a constraint-based approach derived from Weighted WINEPI that we called

Oriented Weighted WINEPI to focus the mining process on mining rules leading to

a specific target event. Several tests on synthetic data have showed that Weighted

WINEPI outperforms the classical WINEPI algorithm in detecting patterns between

infrequent events.

Axis 2: Classification techniques

In this axis, constituting Chapter 5, we adopted a non-temporal approach to tackle

the problem of the prediction of infrequent target events in sequences based on pattern

recognition techniques. We attempted to train classification models instead of discov-

ering rules. First, we proposed a methodology to transform the long temporal data

sequence into a set of labelled observation matrix constituting the dataset. Following

that, an attribute selection approach based on hypothesis-testing was also proposed to

reduce the dimensionality of the dataset by selecting attributes that are most significant
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and contributive to the classification performance. Four different pattern recognition

classifiers were then applied on the dataset: K-Nearest Neighbours, Naive Bayes, Sup-

port Vector Machines and Artificial Neural Networks and a comparative study has been

established.

Association analysis vs. Classification techniques

Mining temporal sequences for associations between infrequent events is a recent prob-

lem that has not received much attention yet. Most existing sequence mining techniques

are frequency-based and are not suitable for our problem.

The association analysis approaches we have adapted in Axis 1 have led to very good

results on synthetic data which proved their efficiency and capability to detect associa-

tions between infrequent events. The association rules and episode rules that have been

obtained on real data by all of the above approaches were evaluated using precision and

recall measures, which we believe are well capable to evaluate the directionality aspect

of the rule which should be leading to target events and not vice versa. However, the

complex nature of the real floating train data extract under disposal lying in the heavy

presence of redundancies and bursts have disrupted the precise assessement of obtained

rules by these measures and altered their values negatively. No rules have been discov-

ered having both a recall and precision values exceeding 50 %. In addition to that, due

to the lack of ground truth knowledge on whether rules actually exist in the data or

not, it was not possible to verify whether the results and rules obtained were the best

we can find in the data extract under disposal or not. The main advantage lies in the

exploitation of the temporal aspect. T-Patterns algorithm depends on the inter-event

time between events while Null models and Weighted Winepi depend on a temporal

scanning window w. The temporal aspect was also integrated in the calculation of the

recall and precision values.

As for the pattern recognition approach constituting Axis 2. The obtained results

have shown the approach to be indeed effective for the prediction of infrequent target

events in temporal sequences, once these sequences are transformed properly into an

observation data matrix and an effective attribute selection process in established.

However, although the four algorithms have led to good results that have reached 92.6%

with Support Vector Machines using the RBF kernel as well as high Recall and Precision

values, some major points regarding inconveniences should be highlighted. The main

disadvantage of using classification approaches is that they do not take into account the

temporal evolution of data and sequential nature of events within the window preceding

the occurrence of the target event, and thus cannot indicate the order of events leading

to a target event as well as predict exactly when that event will occur. Although, in

our approach to transform the data sequence into observation dataset, the temporal

aspect was indeed taken into account when defining the scanning window value w.
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Furthermore, each target event is handled and predicted separately since the sequence

has to be transformed into a dataset that is specific for each target event and thus

the mining process is complex and consists of multiple preprocessing steps. Another

arising problem would be setting the parameters for each dataset and target event,

which might not be a one-time task knowing that the observation dataset should be

updated for every new occurrence of the target event. Performing a grid search for the

best parameters following each update would be computationally expensive and time

consuming.

If we consider target event T1, corresponding to a Tilting Pantograph failure, as

an example. The approaches of Axis 1 have not discovered rules leading to this event

with recall and precision values exceeding 50%, and hence according to the obtained

results, it is not possible to predict this event with high accuracy. Moreover, due to

the absence of ground truth, we cannot be certain whether there are actually better

rules or not. However, adapting the blackbox-like classification approaches of Axis

2 (where prediction occurs without rules), event T1 was successfully predicted by the

four classifiers combined with the attribute selection process we proposed with a correct

classification rate of at least 83.1% and up to 92.6%, with a precision and recall values

of 93.7% and 86.2% respectively. although, as mentioned before, the temporal aspect

was not taken into account.

6.2 Future Research Directions

This thesis tackled the challenging problem of the analysis of Floating Train Data

(FTD) obtained from intelligent sensors mounted on commercial trains. This auto-

matic diagnosis-enforcing process aims to predict infrequent target events in temporal

sequences. The subject of this work is a recent and novel problem both applicative

wise and scientific wise. The results obtained by the two axis of approaches show the

interest of data mining algorithms applied on Floating Train Data for the prediction of

rare events and encourage the pursuit of the work achieved so far.

Several future research directions and open issues can be derived from our work.

One interesting extension of this thesis would be to merge both axis association rule

mining and classification. For example, the association analysis approaches can be used

as an attribute selection process for pattern recognition approaches. That is, events

constituting the discovered rules can be adapted as selected attributes for pattern

recognition classifiers, since these events have temporal dependencies and relationships

with the target event to be predicted. This way, the temporal aspect is integrated

indirectly in the classification process. Another extension would be to develop an

automatic method which aims to find the optimal value of the scanning window size

w for each target event. This same approach can also be used to find the optimal
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warning time value between the observation (scanning) window and the target event

by sliding the window away from the target event and searching for the optimal window

size-warning time combination that leads to the best correct classification rate.

A second track would be to extend the Null models to discover longer rules (length-

3 and more) in addition to the extension of the Oriented Weighted Winepi algorithm

by integrating the attribute selection technique proposed in Chapter 5. The algorithm

would attempt to discover rules leading to a specific target event by taking into account

only events that were selected by the attribute selection technique instead of those with

the highest cruciality value and establish a comparative study.

Furthermore, it would be interesting to test the performance of all approaches in

an online-prediction environment using untested floating train data sequences. It is

also important to highlight the vital need to establish data cleaning protocols and

techniques to decrease event bursts and redundancies in the data. This would no

doubt reflect very positively on the performance of association analysis algorithms as

well as on the statistical assessment of obtained results thru a more accurate calculation

of interestingness measures.
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Appendix A

A.1 Expression of the critical interval of the test of equality

of proportions

In a test for equality of proportions :

{
H0 : p1 = p2

H1 : p1 > p2
(1)

The unknown proportions p1 et p2 are thus estimated by the frequencies X et Y :

X =
1

n

n∑
i=1

Xi et Y =
1

m

m∑
i=1

Yi (2)

The classical solution relies on the difference X −Y . The hypothesis H0 defined in 1 is

rejected with a fixed error probability α = α∗ when this difference becomes significant.

Supposing H0 to be true, i.e, p1 = p2 = p and considering that the sample sizes are

sufficiently large, the Central Limit Theorem (see 6) enables the approximation of a

sum of Bernoulli distributions by a normal distribution. Hence,

 X
app∼ N

(
p, p(1−p)n

)
Y

app∼ N
(
p, p(1−p)m

) =⇒ X − Y app∼ N
(
0, p(1− p)

(
1
n + 1

m

))
therefore,

X − Y√
p(1− p)

(
1
n + 1

m

) app∼ N (0, 1) (3)
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The proportion p, being known, is substituted under H0 by its estimator asymptotically

without bias X+Y
n+m . But since:

X − Y L−→ N
(
0, p(1− p)

(
1
n + 1

m

))
1√

X+Y
n+m

(
1−X+Y

n+m

)
( 1
n

+ 1
m)

P−→ 1√
p(1−p)( 1

n
+ 1

m)

then using the Theorem of Slutsky (See 7), wee can infer:

X−Y√
X+Y
n+m

(
1−X+Y

n+m

)
( 1
n

+ 1
m)

L−→ X−Y√
p(1−p)( 1

n
+ 1

m)

Finally, under H0:

Z =
X − Y√

X+Y
n+m

(
1− X+Y

n+m

) (
1
n + 1

m

) app∼ N (0, 1) (4)

In order to determine the critical region W , which gives a reply to this decision problem,

we should precise what is to be meant by significant difference. We hence search for

the scalar k such that:

P (Z > k) = α∗

developing the above equation by replacing Z by its value:

P

 X−Y√
X+Y
n+m

(
1−X+Y

n+m

)
( 1
n

+ 1
m)

> k

 = α∗

⇒ 1− P

 X−Y√
X+Y
n+m

(
1−X+Y

n+m

)
( 1
n

+ 1
m)
≤ k

 = α∗

⇒ 1− Φ (k) = α∗

where Φ(.) corresponds to the distribution function of the standard normal distribu-

tion. La value of k corresponding to Φ−1 (1− α∗) can be immediately deduced using

statistical tables, hence enabling us to propose the following critical region as follows:

W =

(x; y) | z =
x− y√

x+y
n+m

(
1− x+y

n+m

) (
1
n + 1

m

) > Φ−1 (1− α∗)

 (5)

For z > Φ−1 (1− α∗), H0 is rejected: the alternative hypothesis p1 > p2 is adopted in

view of the observed data.
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A.2 Central Limit Theorem and Slutsky’s Theorem

Theorem 1. (Central Limit Theorem (CLT)) Let (Xn) be a sequence of an inde-

pendent and identically distributed random variable, with an expected value µ and

variance σ2. We consider (Xn) to be the sequence of general term Xn = 1
n

∑n
i=1Xi.

Hence, asymptotically:

Xn − µ
σ/
√
n

L−→ N (0, 1) (6)

Theorem 2. (Slutsky’s Theorem) Let (Xn) and (Yn) be two sequences of real random

variables which converge in distribution to a random variable X and a constant c re-

spectively, then, the sequence (XnYn) converges in distribution to cX. More generally:

 Xn
L−→ X

Yn
P−→ c

=⇒


Xn + Yn

L−→ X + c

XnYn
L−→ cX

Xn
Yn

L−→ X
c , c 6= 0

(7)
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