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ICB, Université de Bourgogne, Dijon

Arthur ISHKHANYAN Professor Examiner

Institute for Physical Research, Ashtarak

Claude LEROY Professor Co-Supervisor
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Etats intriqués et interaction cohérente dans les milieux résonants 

 

L'intrication quantique, l'une des plus intrigantes caractéristiques de la théorie quantique, est 

devenue récemment un thème central de recherches en tant que ressource valorisable en 

communication quantique et traitement de l'information. Elle est au cœur des projets de 

téléportation quantique, de calculs quantiques et des protocoles de cryptographie quantique, et 

elle reconnu non pas comme un mais le trait caractéristique de la mécanique quantique.  

 

Alors qu'on pensait que l'intrication ne pouvait pas se manifester au niveau macroscopique, il 

a été démontré que les états intriqués pouvait exister dans les solides à température donnée. 

Ce type d'intrication est appelée intrication thermique dans la littérature. A partir de mesures 

de susceptibilité magnétique, des preuves expérimentales ont été publiées pour des systèmes 

de spins de basse dimension, confirmant la présence d'intrication dans les matériaux à l'état 

solide. De plus, une observation expérimentale récente a montré la possibilité d'échantillons 

de diamants de taille millimétrique intriqués à température ambiante. D'autre part, des 

systèmes atomiques interagissant avec des champs quantifiés constituent des plates-formes 

alternatives pour le traitement de l'information quantique. En particulier, le transfert de 

population, total ou partiel, entre états de base est aussi au cœur de plusieurs processus 

quantiques allant de la chimie contrôlée par laser  jusqu'à l'optique quantique moderne et 

l'information quantique, y compris la mise en œuvre de portes quantiques. Finalement, la 

condition clé dans quasiment toutes les applications pratiques de la science de l'information 

quantique est de protéger la cohérence des états quantiques contre les effets incohérents 

induits par l'influence incontrôlée de l'environnement. Une méthode puissante, qui permet de 

distribuer l'intrication entre des quantités distantes, implique la notion d'extraction d'un petit 

ensemble d'états plus fortement intriqués à partir d'un plus large ensemble d'états faiblement 

intriqués. Des schémas possibles de ce type peuvent être mis en œuvre, en particulier, dans les 

mémoires quantique, qui implique les principes d'interaction lumière-matière. 

 

Dans le chapitre 1, nous considérons le modèle récemment proposé d'Ising-Heisenberg afin 

d'examiner les caractéristiques d'intrication de quelques composés particuliers, tel que le 

minerai naturel d'azurite (Cu3(CO3)2(OH)2) et une série de composés de coordination 

polymérique isostructurale de dimension deux Cu9X2(cpa)6∙nH2O (X=F, Cl, Br et cpa = 

carboxypentonic acid = acide carboxyle pentanoïque). Le réseau magnétique du premier 

matériau est représenté par une chaîne de diamants de spin 1/2, alors que le second matériau 

est décrit par un réseau triangulaire de Kagome. Bien qu'il soit une approximation du modèle 

d'Heisenberg d'interaction d'échange, le modèle d'Ising-Heisenberg fournit une explication 

satisfaisante des principales caractéristiques de ces matériaux. En raison du caractère 

séparable d'une interaction de type Ising, nous avons calculé l'intrication (quantifié par la 

concurrence) pour chacun des clusters quantiques des matériaux. Un traitement du type 

champ moyen basé sur l'inégalité de Gibbs-Bogoliubov, qui implicitement prend en compte 

l'interaction entre les clusters quantiques triangulaires, a été de plus appliqué au réseau 

triangulaire de Kagome. Nous montrons ici une forte relation entre la thermodynamique et les 

propriétés d'intrication du modèle. En particulier nous mettons en évidence que les pics de 



susceptibilité magnétique correspondent aux valeurs de paramètres pour lesquels l'intrication 

disparait. De plus la température critique d'intrication coïncide avec la transition de phase du 

second ordre du système. Nous avons étudié la structure des états fondamentaux de systèmes 

pour un large intervalle de forces d'interaction, révélant des régimes distincts avec des 

caractéristiques quantiques qualitativement différentes. 

 

Dans le chapitre 2, nous considérons la limite classique de l'interaction de type Heisenberg 

qui se traduit par les modèles de spins classiques. La motivation principale pour étudier ces 

modèles est leur exacte résolution dans des cas particuliers. Ceci conduit à la possibilité de 

dériver des expressions analytiques pour des quantités thermodynamiques importantes. En 

particulier nous examinons la structure de phase du modèle Q-états de Potts et du modèle 

d'Ising d'interaction de trois sites sur des réseaux récursifs qui sont particulièrement 

performants dans l'analyse de nombreux systèmes magnétiques. On notera que l'approche de 

Bethe-Peierls, qui approxime des réseaux réels par des réseaux hiérarchiques (récursifs), est 

plus fiable dans certains cas que le traitement en champ moyen décrit ci-avant. Les modèles 

étudiés ont été exactement résolus par la technique de relation récursive, réduisant les 

propriétés thermodynamiques du modèle à des caractéristiques de morphismes rationnels. La 

structure de phase des ces modèles a été étudiée en détectant les points de bifurcation des 

morphismes correspondants. Une attention particulière a concerné l'apparition de fenêtres 3-

périodiques dans la région chaotique des modèles de Potts et d'Ising (avec un couplage 

antiferromagnétique entre les nœuds de réseau). Nous avons mis en évidence quelques 

propriétés intrinsèques, telles que l'intermittence, apparaissant à chaque bord de la fenêtre et 

un nombre fini de cycles périodiques (modulés en phase) ainsi que le chaos confiné à 

l'intérieur de la fenêtre. 

 

Nous abordons les systèmes de champs et d'atomes en interaction dans le chapitre 3, qui sont 

le cœur du problème du traitement de l'information quantique. En particulier nous considérons 

le modèle de Dicke pour modéliser l'interaction entre trois atomes piégés dans une cavité, 

interagissant via un couplage effectif, induit par le champ radiatif (limite dispersive). Nous 

avons mis en évidence la corrélation forte entre le modèle et les problèmes de frustration 

magnétique, et appliqué des outils similaires pour l'étude de l'intrication et les propriétés 

thermodynamiques du système. Néanmoins, une différence essentielle du système étudié est 

son accordabilité à la force de couplage, ce qui représente une difficulté supplémentaire dans 

le cas des solides. Une autre remarque importante concerne l'effet du vide induit par le 

décalage Stark, qui apparaît naturellement dans ce problème : il s'avère que ce terme change 

fondamentalement la représentation physique du problème. 

 

Dans le chapitre 4, nous présentons une étude détaillée du processus de transfert de 

population via b-STIRAP dans un milieu atomique schématisé par un système Λ à 3 niveaux 

avec des forces d'oscillateurs différentes des transitions atomiques correspondantes. Nous 

avons déterminé les équations de propagation décrivant la dynamique du processus et des 

solutions analytiques approximatives ont été obtenues. Nous avons montré que l'efficacité de 

transfert de population est sensible au rapport des forces d'oscillateurs q=qp/qs, et peut être 

améliorée par un choix approprié de ce paramètre. En particulier, nous déterminons que 



l'efficacité de ce transfert est fortement affecté dans le cas q > 1 et décroit rapidement avec la 

distance de propagation, alors que les pulses se propageant conservent leur capacité à produire 

un transfert complet de population sur de grande distances de propagation quand � ≤ 1 . En 

outre nous montrons que le transfert peut s'opérer de façon superluminique. Les conditions 

restreignant la distance de propagation pour laquelle un transfert complet de population via b-

STIRAP apparait dans un milieu ont été déterminées. De plus, nous avons abordé un autre 

problème, étroitement lié aux questions de traitement de l'information quantique et en 

communication : le problème de la distillation quantique dans les mémoires quantiques. Nous 

avons modélisé les phénomènes dissipatifs qu'un état compressé bimodal (intrication 

ressource initiale) subit quand il est stocké dans une mémoire, et nous avons démontré que les 

pertes affectent surtout le protocole original. En particulier, l'étape préparatoire en vue d'une 

"dé-gaussification" de l'état bimodal compressé initial, peut ne pas résulter en un 

accroissement de l'intrication, bien qu'étant une méthode bien connue d'accroissement local de 

l'intrication dans une mémoire parfaite. Nous avons donc analyser les contraintes sur les 

paramètres du protocole, au sein duquel on continue d'obtenir un gain d'intrication et nous 

avons montré que les restrictions supplémentaires permettent encore la réalisation 

expérimentale du schéma évoqué. 

 

La thèse se termine par une conclusion qui met en évidence les  

principaux résultats de ce travail, et une liste de références récentes. 
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Introduction and motivation

Quantum entanglement, as one of the most intriguing features of quantum theory, has recently

become a central area of research, since it is a valuable resource in quantum communication

and information processing [1–5]. It is at the heart of quantum teleportation schemes [6–11],

quantum computation [12–14] and quantum cryptography protocols [15–17], and is recognized

as not one but rather the characteristic trait of quantum mechanics [18]. On the other

hand, entanglement provides a new perspective for understanding quantum phase transitions

(QPT’s) and collective phenomena in many-body and condensed matter physics, where the

Heisenberg model can be used as an appropriate tool for a detailed theoretical analysis [19–23].

Additionally, a recent research points to a connection between the entanglement of a many-

particle system and the existence of QPT’s and scaling [24,25].

Although it was believed that entanglement should not manifest itself in macroscopic

objects, it was theoretically demonstrated that entangled states can exist in solids at finite

temperatures. Such entanglement is referred in literature to as thermal entanglement [19].

Its existence led to an intense search of a relation between entanglement thermal and ther-

modynamic (e.g. magnetic) properties of a system [26–29]. Based on magnetic susceptibility

measurements [29] a few experimental evidences have been reported for low-dimensional

spin systems, confirming the presence of entanglement in solid state materials. Particu-

larly, thermal entanglement was detected experimentally in a number of compounds, as

Na2Cu5Si4O14 [30], CaMn2Sb2 [31], pyroborate MgMnB2O5 the warwickite MgTiOBO3 [32],

KNaMSi4O10 (M=Mn, Fe or Cu) [33] and metal carboxylates [34]. Moreover a recent experi-

mental observation showed a possibility of entangling macroscopic millimeter-sized diamond

samples at room temperature [35].

Meanwhile, another issue of quantum information processing is the problem of quantifying
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entanglement, which plays a key role in estimating the fidelity of a quantum state telepor-

tation [36], or in defining the amount of noise in a dense coding protocol [37]. Additionally,

the study of entanglement in solid state physics is also of a great interest, since many pro-

posals of quantum chips are solid state-based. A number of entanglement measures has been

proposed recently. As shown in Ref. [38], it is reasonable to define the entanglement of a

pure state of any bipartite system as the von Neumann entropy of either of its two parts.

An explicit way of computing entanglement of formation of a mixed state, by means of a

quantity called concurrence, was proposed in Refs. [39,40]. But, the formula provided there,

is applicable for a mixed state of two qubits only. Another computable measure of entangle-

ment, the negativity [41,42], which is based on Peres’ separability criterion [43], can be used

for an arbitrary bipartite state. We emphasize again the obvious fact, that the amount of

entanglement cannot be measured directly in experiment. Thus one needs a way of tracking

its behavior within an experiment.

One of the goals of the present thesis is to analyze the entanglement features of low-

dimensional frustrated spin systems. Note that during the last two decades low-dimensional

magnetic materials with competing interactions or geometrical frustration have become an

intriguing research object. Particularly, these materials exhibit a rich variety of unusual

ground states and thermal properties, as a result of zero and finite temperature phase tran-

sitions [44–57]. Unfortunately, the rigorous theoretical treatment of geometrically frustrated

quantum Heisenberg models is a complicated procedure. There are very few exact results for

antiferromagnetic spin chains, provided, in particular, through a powerful technique, known

as the Bethe ansatz [58–60]. However, in a general case the problem that arises due to a

non-commutability of spin operators involved in the Heisenberg Hamiltonian, is difficult to

overcome. Therefore, one adopts a number of approximations, which resolve the mathemati-

cal difficulties, still providing satisfactory qualitative and quantitative results. One approach

is based on introduction of Ising spins at some nodal sites of a lattice, which results in an

alternating sequence of Ising and Heisenberg variables [61–68]. Another method for a study

of a system in the thermodynamic limit is the mean field approach. An efficient mean-field-

like treatment is based on the Gibbs-Bogoliubov inequality, which transforms a system into

a collection of clusters in an effective magnetic field [69,70]. Even though within this approx-

7



imation the clusters are considered as being non-interacting, the self-consistency of effective

magnetic fields implicitly involves their mutual coupling.

In what follows we use both of the above approximations for investigation of entanglement

properties of two types of compounds, namely the natural mineral azurite (Cu3(CO3)2(OH)2)

[71] and a series of two-dimensional isostructural polymeric coordination compounds Cu9X2

(cpa)6· nH2O (X = F, Cl, Br and cpa=carboxypentonic acid) [72–76]. The first one is rep-

resented by a diamond chain structure, while the second one is formed by a triangulated

Kagomé lattice. Note that these materials fall into a class of geometrically frustrated sys-

tems and exhibit a rich ground state structure with peculiar quantum behavior. Here we

make an additional remark: within the adopted Ising-Heisenberg model, neighboring Heisen-

berg clusters (a dimer in the case of the diamond chain, and a trimer in the case of the

triangulated Kagomé lattice) are separable from each other due to the classical (diagonal)

nature of Ising-type exchange interactions. Thus, we can calculate entanglement (quantified

by concurrence) for each of these quantum subdivisions separately.

Another approach of dealing with spin lattice models is to work in the limit of classical

exchange interactions, i.e., to substitute the Heisenberg exchange interaction by an Ising

one. Note that this approximation works satisfactory good in a strong magnetic field: when

the latter is directed along the z-axis, a reduction of transverse fluctuations is expected

to occur. In other words, in this case the Sx and Sy-spin components become infinitely

small and thus can be neglected [77, 78]. As a result, one can solve exactly the models

in some particular cases, which leads to analytic expressions for thermodynamic quantities

of interest. Particularly, classical spin models are solved exactly on recursive (hierarchical)

lattices, which are good approximations for real existing ones (the so-called Bethe-Peierls

approximation) [79–82]. An important remark here is that the Bethe-Peierls approximation

is more reliable than the above discussed mean-field approach [83,84].

Distinguishable systems among classical spin models are the Ising and the Potts models.

Particularly, the multisite interaction Ising model is efficient in description of properties of

solid 3He [78, 85] and RNA-like molecules [86–88]. Meanwhile, the Potts model, apart of

being strongly related to problems of magnetism [89–91], falls in the same universality class

as the gelation processes in branched polymers [92, 93]. Note that the model is well-defined
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for non-integer values of Q (as pointed out in Ref. [94]). Besides, many physical phenomena

like the resistor network, dilute spin glass, self organizing critical systems can be formulated

in terms of the Potts model, when Q < 2 [95–97].

In the present thesis we are interested in two particular examples of classical spin models,

namely, the three-site interaction antiferromagnetic Ising (TSAI) model on a Husimi lat-

tice and the Q-state Potts model on a Bethe lattice. The exact solution of these models is

given through the recurrence relation technique. Within this method statistical properties

of a system are defined by one- or multidimensional rational mappings [78–80,83–87]. When

the lattice nodes are coupled through an antiferromagnetic interaction, both models exhibit

a rather complex behavior, featuring doubling bifurcations, intermittency and chaos. The

phase structure of these systems can be studied by detecting their bifurcation points, which

are equivalent to phase transition points between modulated phases of different periods or

between chaotic and periodic regimes. Although the above models are purely classical, they

can be a good testing ground of applied methods and in some cases can also provide satis-

factory quantitative picture [98–101]. We emphasize here a strong relation between quantum

phase transitions, chaos and entanglement: as pointed out in Refs. [102–105], the quantum

features of a system can differ, depending on the initial state, namely if it is chaotic or not.

Quantum information processing can be also implemented in alternative platforms to

solids, such as an atomic system interacting with quantized fields. Many effective models of

such interactions, proposed within the scope of cavity quantum electrodynamics, were inves-

tigated both from theoretical and experimental points of view [106–114]. The Dicke model

(DM), describing the interaction of a single-mode bosonic field with a collection of two-level

atoms [115,116] is of particular interest. It has been predicted to exhibit both equilibrium and

non-equilibrium intriguing quantum phase transitions. The equilibrium superradiant QPT,

followed by a spontaneous symmetry breaking, has been recently implemented experimentally

in a realization of the DM with a Bose-Einstein condensate in an optical cavity [117,118]. On

the other hand, existence of a set of non-equilibrium QPT’s was demonstrated in Ref. [119].

The DM is usually considered in the rotating-wave approximation, which simplifies the

analysis of some important phenomena such as super-radiance, collapses, and revivals of Rabi

oscillations, squeezing, and phase transition [120,121]. Another important special case of the
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DM, corresponds to the so-called dispersive limit [122–124]. The latter regime is widely

used for quantum information processing [125–128]. In this case the radiation field mediates

an effective coupling between the atoms in a cavity, which has a nature of a dipole-dipole

interaction, preserving the number of field photons and of excited atoms. We remark here,

that an experimental realization of entangled states of two and four trapped ions within

this regime has been reported in Ref. [129]. Thus, one could also address to the question of

quantifying entanglement between the trapped atoms (ions), described by the Dicke model

in the dispersive regime. Note that the interaction term of the effective DM in the dispersive

limit can be also regarded as a Heisenberg-type exchange interaction. Hence we find a

strong relation between this model, the above described frustrated magnetism and systems

of interacting magnetic spins.

On the other hand, complete or partial population transfer between ground states is also

at the heart of many quantum processes [130], ranging from laser-controlled chemistry [131] to

modern quantum optics and quantum information, including quantum gate implementation

[132]. Adiabatic passage, which allows the dynamics to follow a single eigenstate of the

system, is often used to implement such transfers due to its robustness with respect to

field fluctuations and to the imperfect knowledge of the studied system. In particular, the

stimulated Raman adiabatic passage (STIRAP) [133, 134], and its various extensions [135–

137], which induce a complete population transfer in a Λ-system, have become much popular

recently. The main advantage relies on its dark-state dynamics which does not involve the

upper state in the adiabatic limit, and makes this process in principle immune to decoherence.

An efficient population transfer has been recently reported in crystals doped with rare-earth

elements Pr3+:Y2SiO5 [138, 139]. However this process requires in practice a large pulse

area to satisfy the adiabaticity and prevents in most cases its use for pulses shorter than

nanoseconds.

An alternative efficient method is provided through the b-STIRAP technique, featuring

an intuitive sequence of pulses with a large one-photon detuning. Unlike the STIRAP, for

which the dynamics adiabatically projects along a dark state, the intuitive process follows

a bright state [140, 141]. The technique is referred to in literature as bright- or b-STIRAP.

The possibility of such a transfer for one atom was predicted and analyzed in Ref. [142].
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Additionally, the effect of spontaneous decay from the intermediate state inside the system

for b-STIRAP was studied in Refs. [143–145]. Note that due to the process of b-STIRAP,

Λ-system is fully reversible in interactions with short laser pulses of durations much shorter

than the relaxation times of the system and may hence serve for implementation of all-optical

reversible processor [146]. Recently, the combination of STIRAP and b-STIRAP has been

also used for the experimental implementation of optical logical gates in a solid memory [147].

Meanwhile, the propagation effects can modify the results of above processes drastically.

A number of works were devoted to the investigation of the population transfer within a

counterintuitive sequences of pulses via STIRAP method [148–152]. Particularly, it was

pointed out that during pulse propagation in the STIRAP regime, the interaction adiabaticity,

as well as the spatial evolution of propagating pulses, are strongly affected by the relationship

between the oscillator strengths of the corresponding atomic transitions. Additionally, in a

recent work [153] a detailed theoretical analysis of the b-STIRAP process in a media with

equal oscillator strengths was performed. However, the physical effects occurring during

population transfer through the b-STIRAP mechanism in a media with unequal oscillator

strengths have not been reported yet. Thus, anticipating a sensibility of the efficiency of

the population transfer to the medium properties (such as the relation between oscillator

strengths), a detailed analysis of b-STIRAP propagation effects becomes motivated.

Finally, the key requirement in essentially all practical applications of quantum informa-

tion science is to protect the coherence of quantum states against decoherence, induced by the

uncontrolled influences of an environment. One of the possible strategies to protect entan-

glement from decoherence effects is based on reducing the interaction with the environment,

which however, is not sufficient in a number of cases. A more powerful method, which allows

one to distribute entanglement between distant parties, involves the notion of extracting a

small ensemble of more strongly entangled states from a larger ensemble of weakly entangled

states. The strategy achieving this is referred to as entanglement distillation [3, 38]. Chal-

lenging experimental realizations of these distillation protocols in qubit systems and other

finite-dimensional settings [154,155] have been performed.

An important step in the theory of entanglement distillation was the invention of continuous-

variable entanglement distillation protocols [156, 157], which turn out to be easier to imple-
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ment in experiment. A continuous-variable entanglement distillation protocol using quantum

memories was recently proposed in Ref. [158]. The authors considered the case of perfect

quantum memories. However, once locally prepared and stored in a memory, two-mode

squeezed states (the initial entanglement resources of the protocol) or any quantum states

are subject to decoherence and deteriorate, with a consequent loss of entanglement. There-

fore, the dissipation can modify strongly the properties of the scheme and thus the question of

how a realistic quantum memory affects the performance of the original compact continuous-

variable entanglement distillation protocol is of particular interest. In what follows we will

study these effects in detail and conclude that the compact distillation protocol with the

practical constraints coming from realistic quantum memories allows a feasible experimental

realization within existing technologies.

Objectives of the thesis:

1. The investigation of entanglement properties of quantum dimeric and trimeric units in

low dimensional spin models, describing real existing materials. Studies of the effects

of the temperature and the external magnetic field and comparison of thermodynamic

and entanglement features.

2. The analysis of exactly solvable classical spin models on hierarchical lattices, which are

considered as approximations for quantum models on real lattices. The investigation

of the phase structure of the systems within the dynamical system approach.

3. The study of quantum information issues in systems of interacting atoms and fields:

quantifying entanglement between effectively coupled atoms in a cavity and the detailed

analysis of population transfer in media of unequal oscillator strengths.

4. The investigation of compact continuous-variable entanglement distillation protocol in

realistic quantum memories in presence of dissipation effects.

Scientific novelty and the practical value of the work:

1. For the first time the entanglement features of low dimensional spin models, describing

the natural mineral azurite (Cu3(CO3)2(OH)2) and copper based coordination com-

pounds [Cu9X2 (cpa)6· nH2O (X = F, Cl, Br)] were investigated. Our studies confirm
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that solid state materials can be considered as a natural entanglement resource. Addi-

tionally, the detailed analysis of the rich phase structure of the present materials reveals

regimes with the most robust entanglement behavior. On the other hand, the strong

relation between thermodynamic and entanglement features, shown in the thesis, allows

one to track the behavior of quantum entanglement through an experiment.

2. Using the dynamical system approach, the phase structure of some classical models

on hierarchical (recursive) lattices has been studied. The distinguishable feature of

the approach is the possibility of obtaining analytic formulas for the thermodynamic

quantities of interest, which allows a comprehensive analysis of the phase structure.

For the first time the transition between chaotic and periodic regimes by means of

tangent bifurcation detection of rational mappings, describing the above models has

been analyzed.

3. A detailed description of entanglement features of three atoms trapped in a cavity

within the dispersive regime is presented. We showed a relatively simple tunability of

the interaction strength of the above system and its close relation to the problems of

frustrated magnetism and interacting magnetic spins.

4. A detailed investigation of propagation of two intense laser pulses in a medium of Λ-

type atoms with unequal oscillator strengths is performed. Obtained results are crucial

in some problems of quantum information theory, as, e.g., in the analysis of population

transfer mechanism in media possessing the above properties.

5. The dissipation effects in a recently proposed compact continuous-variable entangle-

ment distillation protocol have been analyzed. We showed that the losses, present in

any realistic quantum memory, modify strongly the properties of the original protocol,

putting additional constraints on the parameters of the experiment. Nevertheless, our

analysis confirms that entanglement distillation in quantum memories is still possible

within the emerging technologies, which allows its further practical implementation.
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The statements of the thesis:

1. The spin-1/2 Ising-Heisenberg models, describing the natural mineral azurite

(Cu3(CO3)2(OH)2) and copper based coordination compounds [Cu9X2 (cpa)6· nH2O

(X = F, Cl, Br)] possess a rich phase and ground state structures with qualitatively

different thermodynamic and entanglement features. Entanglement and magnetic prop-

erties of the above models share strong common behavior.

2. The three-site interaction Ising and the Q-state Potts models on the Bethe and Husimi

(recursive) lattices exhibit chaos, which is confined inside a three-periodic window.

Phase transition points of the models coincide with bifurcation points of corresponding

one-dimensional rational mappings.

3. The entanglement properties of three atoms trapped in a cavity and effectively cou-

pled by means of a radiation mode are highly pronounced in a specific range of the

temperature, atomic transition eigenfrequency and the effective coupling strength.

4. The efficiency of a superluminal population transfer in a medium of Λ-type atoms can

be increased by an appropriate choice of the oscillator strengths of adjacent transitions.

5. The experimental realization of an effective compact continuous-variable entanglement

distillation protocol is possible within existing technologies, notwithstanding the in-

evitable dissipation effects, present in a realistic quantum memory.

Our results on entanglement properties of spin lattice models are published in Refs. [159–

162]. As for the studies of classical spin models, they are presented in Refs. [163–166]. The

quantum information problems in systems of interacting atoms and fields are addressed to in

Refs. [167–169]. Finally, the dissipation effects of compact continuous-variable entanglement

distillation protocol in realistic quantum memories are studied in Ref. [170].

In the rest, the thesis is organized as follows. In Chapter 1 we consider the entanglement

properties of the spin-1/2 Ising-Heisenberg model on a diamond chain and on a triangulated

Kagomé lattice. We also perform some comparative analysis of their thermodynamic and

entanglement features, pointing out certain similarities between them.
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In Chapter 2 we address to thermodynamic properties of the Q-state Potts and the three-

site interaction Ising models on recursive lattices. Additionally, we study here the phase

structure of these models by detecting bifurcation points of corresponding rational mappings

obtained through the recursion relation technique.

In Chapter 3 we turn to the discussion of systems of interacting atoms and fields. Partic-

ularly, we investigate the entanglement and thermodynamics properties of effectively coupled

three atoms in a cavity, within the dispersive limit. Furthermore, we present a detailed

analysis of the b-STIRAP process in a medium of unequal oscillator strengths.

Finally, Chapter 4 is devoted to the studies of dissipation effects in a compact continuous-

variable entanglement distillation protocol. We consider the efficiency of the realistic scheme

and discuss its possible practical implementation.
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Chapter 1

ENTANGLEMENT PROPERTIES

OF SPIN LATTICE MODELS 1

1.1 Introduction

The study of geometrically frustrated magnetic systems is deeply associated with a number

of aspects of modern physics, including quantum information theory, material science, high

temperature superconductivity and others. As attractive models among these systems one

should mention those having a diamond-chain structure. The latter consists of diamond-

shaped topological units along the chain (Fig. 1.1). It has been observed that the compounds

A3Cu3(PO4)4 with A=Ca, Sr [171, 172], Bi4Cu3V2O14 [173] and Cu3(TeO3)2Br2 [174] can

be nicely modeled by the Heisenberg diamond chain. Addiotionally, recent experimental

results on the natural mineral azurite (Cu3(CO3)2(OH)2) [71] showed that Cu2+ ions of this

material form a spin-1/2 diamond chain. Furthermore, the discovery of a plateau at 1/3

of the saturation value in the low-temperature magnetization curve [71, 175] has triggered

an intensive interest in the magnetic properties of azurite [176–179]. However, the question

of the strength and the type of exchange interactions for this natural mineral, despite the

long-standing interest, is still open. The first diamond spin chain was explored under a

symmetrical condition J1 = J3 [180] that predicted magnetization plateaus both at 1/3

and 1/6 of saturation [181, 182]. Next, the properties of frustrated diamond chain with

1The results considered in this chapter are published in Refs. [159–162].
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k1

k2
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k+1

Figure 1.1: A cross-section of a generalized symmetrical diamond chain (k labels the number of
the cluster). The empty (monomeric units) and full circles (dimeric units) denote lattice positions
of the Heisenberg and Ising spins (within the proposed Ising-Heisenberg model), respectively. Solid
lines schematically reproduce the Heisenberg J2 interactions between dimeric units, while the broken
ones label the Ising-type (nearest-neighbor J1, J3 and next-nearest neighbor Jm) interactions.

ferromagnetic interactions J1, J3 < 0 and antiferromagnetic interaction J2 > 0 was studied

theoretically in Ref. [183]. Other exchange interactions, like an additional cyclic four-spin

[184] and Jm interaction between monomeric units (the so-called generalized diamond chain)

[185] were also taken into account. Additionally, the importance of an anisotropic exchange

and Dzyaloshinskii-Moriya interaction or interchain coupling was discussed in Refs. [186,187].

Summing up, the theory predictions for certain values of exchange coupling constants within

a relatively broad range can fit the experimental results. The controversy on these values

seems to be cleared up only recently (the latest comparison of experimental and theoretical

results can be found in Ref. [188]).

Motivated by the controversies discussed above and the fact that different compounds can

be described by means of a diamond chain, we shall explore systematically the generalized

symmetrical spin-1/2 diamond chain with various competing interactions in a magnetic field.

Owing to the fact, that it is difficult to fulfil fully quantum geometrically frustrated models,

we use the recently proposed geometrically frustrated Ising-Heisenberg diamond chain model

[61–67]. The latter suggests to overcome the mathematical difficulties by introducing Ising

spins at the nodal sites and Heisenberg dimers on the interstitial decorating sites of the

diamond chain (Fig. 1.1). Additionally, for understanding of the properties of underlying
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purely quantum models an analytic expression for all thermodynamic functions of the model

is required. Note that some exactly solvable models with Ising and Heisenberg bonds can

also provide satisfactory quantitative picture [189].

Another interesting system among geometrically frustrated topologies are the magnetic

materials in form of two-dimensional isostructural polymeric coordination compounds Cu9X2

(cpa)6· nH2O (X = F, Cl, Br and cpa=carboxypentonic acid) [72–76]. The magnetic lattice

of these series of compounds consists of copper ions placed at two non-equivalent positions,

which are shown schematically as open and full circles in Fig. 1.2. Cu2+ ions with a square

pyramidal coordination (a-sites) form equilateral triangles (trimers) which are connected one

to another by Cu2+ ions (monomers) with an elongated octahedron environment (b-sites)

forming the sites of Kagomé lattice. This magnetic architecture, which can be regarded

as triangulated (triangles in triangles) Kagomé lattice, is currently under active theoretical

investigation [68,190].

The spin-1/2 Ising model on the triangulated Kagomé lattice has been exactly solved in

Ref. [191]. However, in its initial form theory fails to describe the properties of the aforemen-

tioned compound series, since it entirely neglects quantum fluctuations firmly associated with

a quantum nature of the paramagnetic Cu2+ ions having the lowest possible quantum spin

number 1/2. Further extension to the Ising-Heisenberg model by accounting for quantum

interactions between Cu2+ ions in a-sites (with quantum spin number 1/2) in the limit when

monomeric b-spins have an exchange of Ising character, provides much more richer physics

and displays essential features of the copper based coordination compounds [192, 193]. The

strong antiferromagnetic coupling has been assumed for Jaa between trimeric a-sites, with a

weaker ferromagnetic exchange Jab between the trimer a- and monomer b-sites at the ratio

|Jab/Jaa| ≈ 0, 025 [194].

In what follows we shall mainly deal with the quantum entanglement properties of the

spin-1/2 Ising-Heisenberg model on a generalized symmetrical diamond chain and on a tri-

angulated Kagomé lattice.

Additionally, taking into account that each Heisenberg dimer of the diamond chain inter-

acts with its neighboring dimer through the Ising-type, i.e. classical exchange interaction, we

find that the states of two adjacent dimers become separable (disentangled) [1–3]. Thus, we
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can calculate the concurrence (a measure of pairwise entanglement [39,40]), which character-

izes quantum features of the system, for each dimer separately. One of the main objectives

of the next section is to reveal different regimes of the symmetrical diamond chain and to

analyze new quantum effects (such as a double peak behavior in the concurrence versus tem-

perature curves and existence of magnetic entanglement [19] of two different values). Note

that one finds a similar situation with the triangulated Kagomé lattice: each a-type trimer

interacts with its neighboring trimer through the Ising exchange interaction, therefore the

states of two neighboring a-sublattices are separable.

S S k2

b

k1

b

S k3

b

Sk2

a

Sk1

a

Sk3

a

Jaa

Jab

Figure 1.2: A cross-section of TKL structure. Solid lines represent the intra-trimer Heisenberg

interactions Jaa, while the broken ones label monomer-trimer Ising interactions Jab. The circle

marks k-th cluster (Heisenberg trimer). S
a
ki

presents the Heisenberg and Sb
ki

the Ising spins.

In what follows we shall mainly deal with the quantum entanglement properties of the

spin-1/2 Ising-Heisenberg model on a generalized symmetrical diamond chain and on a tri-

angulated Kagomé lattice.

Additionally, taking into account that each Heisenberg dimer of the diamond chain inter-

acts with its neighboring dimer through the Ising-type, i.e. classical exchange interaction, we

find that the states of two adjacent dimers become separable (disentangled) [1–3]. Thus, we

can calculate the concurrence (a measure of pairwise entanglement [39,40]), which character-

izes quantum features of the system, for each dimer separately. One of the main objectives

of the next section is to reveal different regimes of the symmetrical diamond chain and to
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analyze new quantum effects (such as a double peak behavior in the concurrence versus tem-

perature curves and existence of magnetic entanglement [19] of two different values). Note

that one finds a similar situation with the triangulated Kagomé lattice: each a-type trimer

interacts with its neighboring trimer through the Ising exchange interaction, therefore the

states of two neighboring a-sublattices are separable.

The basic features of entanglement in spin-1/2 finite systems are fairly well understood

by now (see e.g. [195, 196]), while the role of local cluster topology and spin correlations in

thermodynamic limit still remain unanswered. There are some approximate methods, such

as mean-field-like theories based on the Gibbs-Bogoliubov inequality, that one can invoke

to deal with the cases like this, aimed at better understanding of different physical aspects

[197–199]. This method can also be applied for studying thermal entanglement of many-

body systems [200–202]. In spite of the method not being exact, it is still possible to observe

regions of criticality [203].

In the case of the triangulated Kagomé lattice we can calculate concurrence, which char-

acterizes quantum features, for each trimer separately in a self-consistent field. The key

result of Sec. 1.3 is concentrated on the comparison of specific (peak and plateau) features in

magnetization, susceptibility, specific heat and thermal entanglement properties in the above

mentioned model using variational mean-field-like approximation based on Gibbs-Bogoliubov

inequality. We will demonstrate how the order-disorder phase transition temperature is rel-

evant to the the threshold temperature for vanishing of entanglement.

1.2 The spin-1/2 symmetrical diamond chain

1.2.1 Concurrence and thermal entanglement of the spin-1/2

Ising-Heisenberg model on a generalized symmetrical dia-

mond

We consider the spin-1/2 Ising-Heisenberg model on a generalized symmetrical diamond chain

(J1 = J3 = J), which consists of two non-equivalent types of sites, namely, the monomeric

and dimeric ones (empty and full circles in Fig. 1.1, respectively). Within the proposed
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Ising-Heisenberg model, the monomeric sites are occupied by Ising spins, while the dimeric

nodes by Heisenberg ones. The Hamiltonian can be written as follows:

H =
N

∑

k=1

Hk =
N

∑

k=1

[

J2Sk1Sk2 + J(µz
k + µz

k+1)(S
z
k1

+ Sz
k2

)+

+Jmµz
kµ

z
k+1 − H

(

Sz
k1

+ Sz
k2

+
µz

k + µz
k+1

2

)]

, (1.1)

where the summation runs over clusters, depicted in Fig. 1.1. Hk represents the Hamiltonian

of the k − th cluster, Sk = (Sx
k , Sy

k , Sz
k) denotes the Heisenberg spin-1/2 operator and µk is

the Ising variable. Knowing, that each Ising spin belongs simultaneously to two clusters, we

take a 1/2 factor for the Ising spins in the last term of (1.1), which incorporates the effects of

the external magnetic field. Positive values of J, J2 and Jm correspond to antiferromagnetic

couplings. Note that the system is strongly frustrated due to the chain’s geometry and

existence of competing interactions J, J2 and Jm. When J1 = J3 and Jm = 0, we deal with

the so-called ideal diamond chain [61–63]. Meanwhile, in a general case, when J1 6= J3, the

symmetry of the system is broken and one obtains the distorted diamond chain (a detailed

analysis of its thermodynamics can be found in Refs. [64, 187]). Before introducing the

calculations and discussion we emphasize the fact which was already discussed in Sec. 1.1:

the states of two neighboring Heisenberg dimers (with interaction J2) are separable, because

of a classical character of the coupling between them (by means of the Ising spin). Thus

we can calculate the entanglement for each of the dimers individually. Note that a different

approach of a mean-field-like treatment, based on the Gibbs-Bogoliubov inequality was used

in Ref. [28], where all the couplings between the diamond chain sites were chosen to be of a

quantum (Heisenberg-type) character.

For the construction of eigenvectors of each cluster we take into account that Hk possesses

a symmetry corresponding to the permutations µk ↔ µk+1 and {µk ↔ µk+1;Sk1 ↔ Sk2},

which result in the following eigenvectors (hereafter, the letter k labels the number of the

cluster; first bracket corresponds to the Heisenberg dimer):
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ψ1 =
1√
2
(↑k1 ⊗ ↓k2 + ↓k1 ⊗ ↑k2)⊗ ↑k↑k+1;

ψ2 =
1√
2
(↑k1 ⊗ ↓k2 + ↓k1 ⊗ ↑k2) ⊗ (↑k↓k+1 + ↓k↑k+1);

ψ3 =
1√
2
(↑k1 ⊗ ↓k2 + ↓k1 ⊗ ↑k2) ⊗ (↑k↓k+1 − ↓k↑k+1);

ψ4 =
1√
2
(↑k1 ⊗ ↓k2 + ↓k1 ⊗ ↑k2)⊗ ↓k↓k+1;

ψ5 =
1√
2
(↑k1 ⊗ ↓k2 − ↓k1 ⊗ ↑k2)⊗ ↑k↑k+1;

ψ6 =
1√
2
(↑k1 ⊗ ↓k2 − ↓k1 ⊗ ↑k2) ⊗ (↑k↓k+1 + ↓k↑k+1);

ψ7 =
1√
2
(↑k1 ⊗ ↓k2 − ↓k1 ⊗ ↑k2) ⊗ (↑k↓k+1 − ↓k↑k+1);

ψ8 =
1√
2
(↑k1 ⊗ ↓k2 − ↓k1 ⊗ ↑k2)⊗ ↓k↓k+1

ψ9 =↑k1 ⊗ ↑k2 ⊗ ↑k↑k+1;

ψ10 =
1√
2
↑k1 ⊗ ↑k2 ⊗(↑k↓k+1 + ↓k↑k+1);

ψ11 =
1√
2
↑k1 ⊗ ↑k2 ⊗(↑k↓k+1 − ↓k↑k+1);

ψ12 =↑k1 ⊗ ↑k2 ⊗ ↓k↓k+1;

ψk13 =↓k1 ⊗ ↓k2 ⊗ ↑k↑k+1;

ψ14 =
1√
2
↓k1 ⊗ ↓k2 ⊗(↑k↓k+1 + ↓k↑k+1);

ψ15 =
1√
2
↓k1 ⊗ ↓k2 ⊗(↑k↓k+1 − ↓k↑k+1);

ψ16 =↓k1 ⊗ ↓k2 ⊗ ↓k↓k+1;

(1.2)
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and the corresponding eigenvalues:

E1 =
1

4
(−2H + Jm + J2) ; E2 = E3 = −Jm − J2

4
;

E4 =
1

4
(Jm + J2 + 2H); E5 =

1

4
(−2H + Jm − 3J2);

E6 = E7 = −Jm + 3J2

4
; E8 =

1

4
(2H + Jm − 3J2);

E9 = −3H

2
+

Jm + J2

4
+ J ; E10 = E11 = −H − Jm − J2

4
;

E12 = −H

2
+

1

4
(Jm + J2 − 4J) ; E13 =

H

2
+

1

4
(Jm + J2 − 4J) ;

E14 = E15 =
1

4
(−Jm + J2 + 4H); E16 =

3H

2
+

Jm + J2

4
+ J.

(1.3)

Here we study a measure of pairwise entanglement, called concurrence C(ρ) [39,40], which

is defined as

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0}, (1.4)

where λi’s are the square roots of the eigenvalues of the corresponding operator for the density

matrix

ρ̃ = ρ12(σ
y
1 ⊗ σy

2)ρ
∗
12(σ

y
1 ⊗ σy

2) (1.5)

in descending order. Since we consider bipartite entanglement, we should use the reduced

density matrix ρ12, by tracing out two (of four) spins of the cluster. The reduced density

matrix ρ12 is defined as [204]

ρ12 =
∑

α

〈α|ρ|α〉. (1.6)

In this equation |α〉 denotes basis vectors of the Hilbert space associated with the sys-

tem, with respect to which the density matrix is reduced. The summation runs over all

these basis vectors. Since in our case we make reduction with respect to two spins, |α〉 =

{| ↓↓ 〉, | ↓↑ 〉, | ↑↓ 〉, | ↑↑ 〉}.

It is obvious that the only entangled pair is formed by the Heisenberg spins. Other pairs

are disentangled (separable) because of the classical (diagonal) character of the Ising-type

interaction between them. Hence we will be interested in the reduced density matrix, con-

structed by tracing out two Ising-type spins µk and µk+1. In other words, ρk12 = Tr{µk,µk+1}ρk

and the full density matrix ρk of the k− th cluster is defined as (here and further Boltzmann
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constant is set to be kB = 1)

ρk =
1

Zk

16
∑

i=1

exp(−Ei/T )|ψi〉〈ψi|, (1.7)

where Zk is the partition function:

Zk = Trρk = e−
6H+Jm+4J+J2

4T

(

2e
H+Jm+2J

2T + 2e
3H+Jm+2J

2T +

2e
5H+Jm+2J

2T + 2e
3H+Jm+2J+2J2

2T + e
H+J

T + e
2(H+J)

T + (1.8)

e
2H+J

T + e
H+2J

T + e
H+J+J2

T + e
2H+J+J2

T + e
3H
T + 1

)

.

Using the definition (1.6) and the basis vectors |α〉 = {| ↓↓〉, | ↓↑〉, | ↑↓〉, | ↑↑〉}, we obtain the

reduced density matrix ρk12 of the k − th cluster:

ρk12 =



















u 0 0 0

0 w y 0

0 y∗ w 0

0 0 0 v



















, (1.9)

where

u = 2e
4H+Jm−J2

4T + e−
−2H+Jm−4J+J2

4T + e−
−6H+Jm+4J+J2

4T ,

v = e−
6H+Jm+4J+J2

4T

(

2e
H+Jm+2J

2T + e
H+2J

T + 1
)

,

w = 1
2

(

e
J2
T + 1

)

e−
2H+Jm+J2

4T

(

2e
H+Jm

2T + eH/T + 1
)

, (1.10)

y = −1
2

(

e
J2
T − 1

)

e−
2H+Jm+J2

4T

(

2e
H+Jm

2T + eH/T + 1
)

.

The density matrix ρk12 in Eq. (1.9) has a form of a so-called X-state [205, 206], since the

Hamiltonian Hk is translationary invariant with a symmetry [Sz,Hk] = 0 (Sz = 1/2(µz
k +

µz
k+1) + Sz

k1
+ Sz

k2
) [207, 208]. The concurrence C(ρ) of such an X-state density matrix has

the following form [209]:

C(ρ) =
2

Z
max(|y| − √

uv, 0). (1.11)
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It is worth to note here that the density matrix ρk12 of any pair of spins, different from

the Heisenberg dimer has no non-diagonal elements, responsible for the quantum correlations

[see Eq. (1.11)]. Thus we conclude, that there is no entanglement between a pair of spins

which contains at least one Ising spin.

In (1.2), one finds a set of states with maximum value of entanglement, for which the

Heisenberg dimer is in a singlet or in a triplet state (ψi’s with i = 1, ..., 8). As for the rest of

the states (ψi’s with i = 9, ..., 16) the Heisenberg dimer is in a separable state and therefore

these ψi’s are non-entangled ones.

1.2.2 The ideal diamond chain

In this subsection we proceed to the investigation of entanglement features of a dimeric unit

of an ideal diamond chain (Jm = 0). Firstly, we study the behavior of C(ρ) at H = 0.

We discuss here three regimes, depending on the value of J − J2: J − J2 > 0, J − J2 < 0

and J − J2 = 0. In the first case, as one finds from (1.3), the ground state contains two-

fold degenerate states ψ12 and ψ13. Since these states are factorable, the corresponding

dependency curve of C(ρ) from temperature T starts from C(ρ) = 0 (Fig. 1.3). Furthermore,

the entanglement can be invoked by increasing the temperature (for values of J − J2 close

to 0). This happens since the contribution of entangled states in the mixture ρk increases

with the growth of temperature T . The local maximum, appearing here arises due to the

optimal thermal mixing of all eigenstates in the system. This maximum becomes narrower

and smaller and gradually vanishes by increasing J − J2. Note that the value of J − J2,

corresponding to disappearing of C(ρ) also depends on J2 (e.g. for J2 = 1, J−J2 ≈ 0.2). The

latter becomes obvious, if one takes into account that J2, being the coupling constant of the

Heisenberg type interaction between dimeric units, is responsible for the strength of quantum

correlations between Heisenberg spins. We emphasize here that in the case J − J2 > 0 the

system exhibits weak (0 < J2 < J) or no frustration (J2 < 0).

In the second case, when J − J2 < 0, the model obviously manifests more of its quantum

nature. Firstly, the dependency curve of C(ρ) from temperature starts from C(ρ) = 1 at

T = 0 (Fig. 1.3). This happens due to the fact that at a zero temperature the maximum

entangled states ψ5, ψ6, ψ7 and ψ8 form four-fold degenerate ground state with the value
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J=1.02
J=1.1

J=1
J=0.5

Figure 1.3: Concurrence C(ρ) versus temperature T for J2 = 1, Jm = 0, H = 0, and different
values of J .

of C(ρ) = 1 for the corresponding reduced density matrix ρk12 . When the temperature is

increased, the concurrence gradually disappears, because of the thermal mixing with other

states of the system (including the factorable ones). The sudden-death temperature Td,

corresponding to the dying out of quantum correlations in the system can be found through

the equation C(ρ) = 0. It has the following form:

x−J
(

xJ + 1
)2

= 2
∣

∣xJ2 − 1
∣

∣ , (1.12)

where x = e1/T . The solution can be presented as Td = J/ log a (when J − J2 < 0), where

a depends on the ratio parameter J2/J . Increasing this ratio, a decreases, but the linear

dependence on J remains (e.g. when J2/J = 2, a = 1
4
(3 +

√
17)).

Finally, the case J − J2 = 0 can be regarded as a boundary case in the following sense.

Here the ground state is six-fold degenerate, containing additionally ψ12 and ψ13, besides ψ5,

ψ6, ψ7 and ψ8 (in other words all the states from the previous two cases). Since ψ12 and ψ13

are factorable, this leads to lower entanglement of the ground state’s reduced matrix, that is

C(ρ) = 1/3 (Fig. 1.3). Moreover, the above discussed sudden-death temperature Td is lower,

than that for J − J2 < 0 (although again Td = J/ log a with a = 2 +
√

5).

On the other hand, as it can be seen from Fig. 1.3, there are two sudden-death tempera-
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Figure 1.4: Sudden-death temperature Td corresponding to the vanishing or arising of entanglement
at a zero magnetic H versus the ratio parameter J2/J (J = 0.5).

tures in the case J − J2 > 0 (corresponding to arising and vanishing of entanglement) [196].

The dependence of Td on the ratio parameter J2/J is shown in Fig. 1.4. In the area

0 < J2/J < 1, there are two sudden-death temperatures, while for the values J2/J ≥ 1,

the dependence is a linear one.

Our further investigation concerns the effects of the magnetic field H.

Firstly we discuss how the magnetic field affects the above introduced sudden-death tem-

perature Td. While increasing H, Td also increases, but it always remains lower than J2/ log 3

(more precisely limH→∞Td = J2/ log 3). Another interesting fact is that the magnetic field

gives rise to more than two sudden-death temperatures in the case J−J2 > 0 [Fig. 1.5(a)] and

on the dependence of C(ρ) from temperature T one finds two peaks separated by an area of a

zero entanglement [Fig. 1.5(b)]. With increasing H the smaller of aforementioned peaks tears

apart from C(ρ) = 0, starts merging with the bigger one and eventually disappears. An effect

of this kind has not been reported yet, to the best of our knowledge. Although a similar dou-

ble peak behavior of concurrence was found in the dissipative Lipkin-Meshkov-Glick model

versus magnetic field [210]. However, when T → 0, C(ρ) remains finite and becomes zero only
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(a)

(b)

, H=0.95

, H=0.1

, H=0.763

, H=2

Figure 1.5: (a) Sudden-death temperature Td corresponding to the vanishing or arising of entan-
glement versus magnetic field H for J = 2 and different values of J2; (b) Concurrence C(ρ) versus
temperature T for J = 2 and different values of J2 and magnetic field H.

at the absolute zero temperature T = 0 [i.e. there can be not more than three sudden-death

temperatures corresponding to disappearing or arising of thermal entanglement, as it can be

also seen form Fig. 1.5(a)]. In other words in the area of low temperatures the behavior of
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J=1, J2=1, T=0.1
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Figure 1.6: Concurrence C(ρ) versus the magnetic field H for different values of the temperature,
J2 and J .

concurrence is smooth, in contrast with the case when magnetic field is absent.

Now, we concentrate on the dependence of C(ρ) on the magnetic field. Because of the

above introduced ground state structure, the dependency curve of C(ρ) from magnetic field

at zero temperature has a dip at H = 0 with C(ρ) = 1/3 for J − J2 = 0. There is no

dip if J − J2 < 0 (Fig. 1.6). When Ising-type interaction is stronger than the Heisenberg

one (J − J2 > 0), one does not find a magnetic entanglement. Furthermore, magnetic

entanglement is of a higher value than that at zero magnetic field in the case J − J2 = 0.

This happens due to the fact that ground state here is two-fold degenerated and contains

ψ5 and ψ12 with the value C(ρ) = 1/2 for the corresponding reduced density matrix. C(ρ)

becomes zero for the case J − J2 ≤ 0 at the values of H, corresponding to saturation field,

that is when the non-entangled state ↑↑↑↑ (in the area H > 0) or ↓↓↓↓ (in the area H < 0)

becomes the ground state. One can find the described values of H from the conditions

E9 = E5 and E16 = E8, giving H+
s = J +J2 and H−

s = −J−J2, respectively. Thermal effects

smoothes the step-like behavior of concurrence in the case when J − J2 ≥ 0 and induces

thermal entanglement when J − J2 > 0 (see Fig. 1.3). The further increase of temperature

causes the quantum correlations eventually dying out for the both cases.

Summarizing, in Fig. 1.7 we also plot three-dimensional dependencies of the concurrence

C(ρ) versus temperature T and magnetic field H.
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(a)

(b)

Figure 1.7: Concurrence C(ρ) versus the magnetic field H and temperature T for (a) J2 = 2 and
J = 2; (b) J2 = 1.7 and J1 = J3 ≡ J = 2.

1.2.3 Incorporation of Jm interaction

In this subsection we study the effects of the next-nearest neighbor interaction Jm between

the Ising spins of the cluster, using the full expression for (1.10) and (1.11). We start with

the discussion of the ground state structure for the case of H = 0 and J−J2 > 0. It turns out

that here one can distinguish two regimes. Firstly, when 0 < Jm < 2(J − J2), the frustrated

ground state contains two-fold degenerate ψ12 and ψ13 and thus the dependency curve of C(ρ)

from temperature starts up at C(ρ) = 0. However, the thermal effects can cause thermal

entanglement for the values of Jm, close to 2(J − J2) (but remaining Jm < 2(J − J2)). One

finds that C(ρ) exhibits two sudden-death temperature behavior, that is also confirmed in
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J2=1.3, J=1.5

Figure 1.8: Sudden-death temperature Td corresponding to the vanishing or arising of entanglement
versus Jm for H = 0 and different values of J2 and J = 2.

Fig. 1.8. This effect can be understood from the following discussion. The ground state

consists of four-fold degenerate states ψ6, ψ7, ψ12 and ψ13, for the case Jm = 2(J − J2).

Although this mixture contains maximum entangled states ψ6 and ψ7, the corresponding

density matrix for this ground state gives C(ρ) = 0. By increasing temperature, one obtains

the thermal mixing of states which leads to a higher contribution of entangled states. This

contribution, however, becomes less, when the values of Jm are considerably higher than

2(J − J2). Thus, when increasing the difference of Jm and 2(J − J2), the local maximum

becomes narrower and eventually disappears.

In the opposite case, when Jm > 2(J −J2), the frustrated ground state is two-fold degen-

erate, but with ψ6 and ψ7, hence the above mentioned curve of C(ρ) starts from C(ρ) = 1.

We find only one sudden-death temperature here, which increases with the growth of Jm

(Fig. 1.8). In other words, the qualitative picture remains the same as for the case Jm = 0.

Note that C(ρ) is of a maximum value (C(ρ) = 1) at a zero magnetic field and a zero

temperature, regardless of Jm for a dominant Heisenberg interaction (J − J2 < 0).

Concluding the discussion of zero magnetic field properties in the case Jm 6= 0, we note
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Figure 1.9: Concurrence C(ρ) versus the magnetic field H and temperature T for J2 = 1 and
J = 1.5 and Jm = 1.5.

that when Jm < 0 (ferromagnetic coupling), the absolute value of Jm does not interfere with

the ground state properties of the system (it is two-fold degenerate with ψ12 and ψ13, if

J > J2, or ψ5 and ψ8, if J < J2).

Here then, we discuss the regime J − J2 > 0 introducing effects of the magnetic field H.

We differentiate two subcases. First one, when Jm ≤ 2(J − J2), one does not find magnetic

entanglement in the system, since increasing the absolute value of magnetic field H, we obtain

a sequence of separable states (e.g. ψ12 → (ψ10 + ψ11) → ψ9 or ψ12 → ψ9 for H > 0). Here

and further by (ψi + ψj) we mean two-fold degenerate states.

Meanwhile, when Jm > 2(J − J2), the aforementioned sequence of states starts from

(ψ6 + ψ7) with maximum value of C(ρ) = 1, therefore we obtain magnetic entanglement

(Fig. 1.9). One can introduce here critical values of magnetic field H+
c and H−

c , corresponding

to vanishing of magnetic entanglement. In contrary with the case Jm = 0, H±
c does not

coincide with the saturation fields H±
s (see Sec. 1.2.2).

On the one hand, we have the ground state transitions (ψ6+ψ7) → ψ12 → (ψ10+ψ11) → ψ9

(for H > 0) if the value of magnetic field, corresponding to the intersection of energies E6

and E12, is lower than that of E10 and E12 [Fig. 1.10(a)]. This condition gives: Jm < 2J −J2.

Thus the corresponding critical values of magnetic field can be found from E6 = E12 with

H+
c = 2J2 − 2J + Jm (obviously, H−

c = −H+
c , from equation E6 = E13). On the other hand,

when Jm > 2J − J2, we have the ground state transitions (ψ6 + ψ7) → (ψ10 + ψ11) → ψ9

[Fig. 1.10(b)]. Corresponding H+
c = J2, found from E6 = E10 (H−

c = −J2, from E6 = E14).

The ground state transition (ψ6 +ψ7) → ψ9 can not occur, since the corresponding condition
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is inconsistent with Jm > 2J − J2.

Following the same technique as in the previous paragraph (we do not stop on a detailed

phase structure), we obtain the following regimes for J − J2 < 0: H+
c = H+

s = J + J2

(H−
c = −H+

c ) in the case Jm < J2 − J and H+
c = 2J2 − Jm if J2 > Jm > J2 − J , and finally,

when Jm > J2 one finds H+
c = J2.

(a)

E6

E10

E12

(b)

E6

E10

E12

Figure 1.10: Eigenvalues E6, E10 and E12 versus the magnetic field H for (a) Jm > 2J − J2; (b)
Jm < 2J − J2.

The special (boundary) case J − J2 = 0 and Jm 6= 0 is also of interest, since one can

observe here magnetic entanglement of different values (C(ρ) = 1 and C(ρ) = 1/2) (Fig. 1.11),

whereas in the case Jm = 0, these two regimes cannot coexist for a fixed values of J and

J2. This situation arises only for 0 < Jm < J , when one finds the sequence of states

(ψ6 + ψ7) → (ψ5 + ψ12) →(factorable state) (for H > 0). In other words, at the values of

magnetic field H = ±Jm (found from conditions E6 = E12 for H > 0 and E6 = E8 for H < 0)
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Figure 1.11: Concurrence C(ρ) versus the magnetic field H and temperature T for J2 = 2 and
J = 2 and Jm = 1.5.

the states with different values of magnetic entanglement coexist.

As for the sudden-death temperature corresponding to the disappearing or arising of

entanglement at non-zero magnetic field, one finds a similar behavior as in the case Jm = 0,

i.e. here again we find up to three sudden-death temperatures (as in Fig. 1.5), with a double

peak behavior on the dependency of C(ρ) on temperature.

1.3 The triangulated Kagomé lattice

1.3.1 Isotropic Heisenberg model on triangulated Kagomé lattice

In this section we turn to the spin-1/2 Ising-Heisenberg model on a triangulated Kagomé

lattice (TKL) (Fig. 1.2) consisting of two types of sites (a and b). Since the exchange

coupling between Cu2+ ions are almost isotropic, the application of the isotropic, i.e., XXX

Heisenberg model is more appropriate. There is a strong Heisenberg Jaa exchange coupling

between trimeric sites of a type and weaker Ising-type one (Jab) between trimeric a and

monomeric b ones. Thus, the Kagomé lattice of the Ising spins (monomers) contains inside

of each triangle unit a smaller triangle of the Heisenberg spins (trimer). The Hamiltonian

can be written as follows:
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H = Jaa

∑

(i,j)

Sa
i S

a
j − Jab

∑

(k,l)

(Sz)a
k · (Sz)b

l − H

2N
3

∑

j=1

3[(Sz)a
j +

1

2
(Sz)b

j], (1.13)

where Sa = {Sa
x, Sa

y , Sa
z} is the Heisenberg spin-1/2 operator, Sb is the Ising spin. Jaa > 0

corresponds to antiferromagnetic Heisenberg coupling and Jab > 0 to ferromagnetic Ising-

Heisenberg one. The first two summations run over a − a and a − b nearest neighbors

respectively and the last sum incorporates the effect of uniform magnetic field (we have

assumed that the total number of sites is 3N).

1.3.2 Basic mean-field formalism

Here we apply the variational mean-field-like treatment based on Gibbs-Bogoliubov inequal-

ity [69, 70] to solve the Hamiltonian (1.13). This implies that the free energy (Helmholtz

potential) of system is

F ≤ F0 + 〈H −H0〉0, (1.14)

where H is the real Hamiltonian which describes the system and H0 is the trial one. F and

F0 are free energies corresponding to H and H0 respectively and 〈...〉0 denotes the thermal

average over the ensemble defined by H0. Following [68] we introduce the trial Hamiltonian

in the following form:

H0 =
∑

trimers

Hc0 , (1.15)

Hc0 = λaa

(

Sa
k1

Sa
k2

+ Sa
k2

Sa
k3

+ Sa
k1

Sa
k3

)

−
3

∑

i=1

[

γa(S
z)a

ki
+

γb

2
(Sz)b

ki

]

, (1.16)

where the index k labels the number of a trimeric unit. In this Hamiltonian the stronger

quantum Heisenberg antiferromagnetic interactions between a-sites are treated exactly, while

the weaker Ising-type ones between a- and b-sites are replaced by self-consistent (effective)

fields of two types: γa and γb. The variational parameters γa, γb and λaa can be found

from the Bogoliubov inequality after minimizing the RHS of (1.14). Thus our focus is on

the cluster depicted in Fig. 1.2. Each of the b-type spins belongs to two of such clusters
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simultaneously. Hence only the half of each b-spin belongs to one cluster and therefore there

are 3 ·1/2 b-type spins in it. Consequently the total number of (a- and b-) spins in the cluster

will be 3 + 3/2 = 9/2 (there are 3 a-type spins in the triangle). Inequality (1.14) can be

rewritten for the described cluster:

f ≤ f0 + 〈Hc −Hc0〉0, (1.17)

where Hc is the real and Hc0 the trial Hamiltonian of the cluster, f and f0 free energies of

the cluster defined by Hc and Hc0 respectively. Using the fact that in terms of (1.16) Sa- and

Sb-type variables are statistically independent, one obtains 〈Sa ·Sb〉0 = 〈Sa〉0 · 〈Sb〉0. Besides,

taking into account that 〈(Sz)a〉0 = ma (single a-site magnetization), 〈(Sz)b〉0 = mb (single

b-site magnetization), we obtain the following expression:

f ≤ f0 + (Jaa − λaa)〈Sa
k1

Sa
k2

+ Sa
k2

Sa
k3

+ Sa
k1

Sa
k3
〉0

−6Jabmamb − 3Hma − F 3Hmb

2
+ 3γama + 3γbmb

2
. (1.18)

Now, by minimizing the right-hand side of inequality (1.18) with respect to γa, γb and λaa

and using ∂f0

∂γa
= −3ma,

∂f0

∂γb
= −3/2mb,

∂f0

∂λaa
= 〈Sa

k1
Sa

k2
+ Sa

k2
Sa

k3
+ Sa

k1
Sa

k3
〉0, we determine

the variational parameters in the form: λaa = Jaa, γa = 2Jabmb + H, γb = 4Jabma + H.

Parameters γa and γb, which have a meaning of a magnetic field, are interconnected, which

is the consequence of their apparent self-consistency. The Hamiltonian H0 was chosen to be

exactly solved. One finds that Hc0 can be divided into two parts corresponding to a- and

b-type variables:

Hc0 =

[

λaa{Sa
k1

Sa
k2

+ Sa
k2

Sa
k3

+ Sa
k1

Sa
k3
} −

3
∑

i=1

γa(S
z)a

ki

]

−
3

∑

i=1

γb

2
(Sz)b

ki

= Ha
c0

+
3

∑

i=1

(Hb
c0

)i. (1.19)
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Each of Hamiltonians Ha
c0

and (Hb
c0

)i can be solved separately (the variables have been

separated). The eigenvalues of Ha
c0

are:

E1 =
3

4
(λaa + 2γa) ; E2 = E3 =

1

4
(−3λaa + 2γa) ;

E4 =
1

4
(3λaa + 2γa) ; E5 = E6 =

1

4
(−3λaa − 2γa) ;

E7 =
1

4
(3λaa − 2γa) ; E8 =

3

4
(λaa − 2γa)

(1.20)

and the corresponding eigenvectors given by

|ψ1〉 = |000〉

|ψ2〉 =
1√
3

(

q|001〉 + q2|010〉 + |100〉
)

|ψ3〉 =
1√
3

(

q2|001〉 + q|010〉 + |100〉
)

|ψ4〉 =
1√
3

(|001〉 + |010〉 + |100〉)

|ψ5〉 =
1√
3

(

q|110〉 + q2|101〉 + |011〉
)

|ψ6〉 =
1√
3

(

q2|110〉 + q|101〉 + |011〉
)

|ψ7〉 =
1√
3

(|110〉 + |101〉 + |011〉)

|ψ8〉 = |111〉,

(1.21)

where q = ei2π/3 (these eigenvectors should be also the eigenstates of cyclic shift operator P

with eigenvalues 1, q and q2, satisfying q2 + q + 1 = 0).

The partition function Z0a
of the trimer in mean-field approximation is:

Z0a
=

8
∑

k=1

exp(−Ek/T ) = e−
3λaa
4T

[

cosh

(

3γa

2T

)

+ 2e
3λaa
2T cosh

( γa

2T

)

+ cosh
( γa

2T

)]

. (1.22)

Consequently the free energy of a-triangle will be:

f0a
= −T ln Z0a

=
3λaa

4
− T ln

[

cosh

(

3γa

2T

)

+ 2e
3λaa
2T cosh

( γa

2T

)

+ cosh
( γa

2T

)]

. (1.23)

Since the (Hb
c0

)i describes only half a particle (b-type spin), the Hamiltonian of one b-type
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spin will be 2 · (Hb
c0

)i. Hence, following the technique described above one finds the partition

function Z0b
and free energy f0b

of a b-type spin in the adopted approximation:

Z0b
= 2 cosh

( γb

2T

)

, (1.24)

f0b
= −T ln

[

2 cosh
( γb

2T

)]

. (1.25)

As already mentioned, in terms of the trial Hamiltonian a- and b-type spins are statistically

independent [see Eqs. (1.15), (1.16) and (1.19)]. Besides, b-type spins do not interact with

each other. Therefore the partition function f0 of the cluster in mean-field approximation

reads:

f0 = f0a
+

3

2
· f0b

. (1.26)

Consequently the free energy of the cluster fGB in the mean-field approximation based on

the Gibbs-Bogoliubov inequality will be:

fGB = f0 + 〈Hc −Hc0〉0 =
3λaa

4
+ 6Jabmamb − T

[

ln
{

4e
3Jab
2T cosh

( γa

2T

)

+2 cosh
( γa

2T

)

+ 2 cosh

(

3γa

2T

)}

+
3

2
ln

{

2 cosh
( γb

2T

)}

]

. (1.27)

In Eq. (1.27) we have used the values of variational parameters γa, γb and λaa. Besides,

due to the fact that there are 9/2 spins in the cluster and therefore totally 2N/3 clusters

(FGB = 2N/3 · fGB), we obtain:

FGB

N
=

λaa

2
+ 4Jabmamb − 2T

[

1

3
ln

{

4e
3Jab
2T cosh

( γa

2T

)

+2 cosh
( γa

2T

)

+ 2 cosh

(

3γa

2T

)}

+
1

2
ln

{

2 cosh
( γb

2T

)}

]

. (1.28)

As for defined above a- and b-single site magnetizations we obtain:

ma = −1
3

∂f0a

∂γa
= 1

6

3 sinh( 3γa
2T )+2e

3λaa
2T sinh( γa

2T )+sinh( γa
2T )

cosh( 3γa
2T )+2e

3λaa
2T cosh( γa

2T )+cosh( γa
2T )

, (1.29)

mb = −∂f0b

∂γb
= 1

2
tanh

(

γb

2T

)

. (1.30)

Notwithstanding of simplicity and the fact that the effective (self-consistent) field in
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zero magnetic field (H = 0) overestimates ferromagnetic correlations, it is still particularly

useful for detection of spontaneous breaking SU(2) symmetry and possible temperature driven

transitions in the frustrated spin systems (see Sec. 1.3.3). However, we also find that the

strong quantum fluctuations, existing in the isotropic Heisenberg model in the absence of

ferromagnetic type Ising term at H = 0 can restore the broken symmetry by providing

stability to disordered spin-1/2 liquid state in frustrated geometries. Moreover, in general

the presence of magnetic field (H 6= 0) suppresses the spin fluctuations and makes the self-

consistent results more reliable and accurate [211]. Therefore, Eqs. (1.20), (1.21) and (1.27)-

(1.30) with magnetic field are quite sufficient for understanding some intrinsic relationships

between magnetic and entanglement properties [196] that naturally emerge in the Ising-

Heisenberg model when one is complying with the variational mean-field-like procedure.

1.3.3 Magnetization

The results of the previous subsection can be used for investigation of the magnetic properties

of the model. Here we are interested in the sublattice a properties, which, however, depend on

parameters describing b-type spins. It is convenient to introduce a new (ratio) parameter α =

Jab/Jaa. The magnetization curves can be found by solving numerically the transcendental

equations (1.29) and (1.30). The magnetic field dependence of the magnetization per atom is

plotted in Fig. 1.12 at α = 0.025. We find that in the absence of magnetic field, the ordered

ferromagnetic phase with spontaneous magnetization per site ma is a stable ground state for

all |Jab/Jaa| in spite of the high geometric frustration caused by the non-bipartite structure

and antiferromagnetic intra-trimer interaction.

At relatively high temperatures the magnetization curve in Fig. 1.12(a) shows a monotonic

behavior versus magnetic field with a full saturation at strong magnetic field. Upon decreasing

the temperature a new partially saturated phase emerges in form of the (spin) plateaus

shown in Fig. 1.12(b), which can be associated with staggered magnetization or short range

antiferromagnetism (AF) in frustrated Kagomé geometry. Indeed, the appearance of plateau

in magnetization curve at ma = 1/6 can be explained as stability of trimeric a-sites in ↑↑↓

configuration. Thus, at rather low temperatures, the magnetization shows the finite leap

across a plateau at ma = 1/6 at infinitesimal magnetic field and below the critical field for
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Figure 1.12: Single a-site magnetization ma versus external magnetic field H for (a) T = 0.7 and
(b) T = 0.01 for α = 0.025, Jaa = 1. The magnetic field and temperature are in relative units of
kB = 1.

full saturation by flipping a down spin.

In Fig. 1.13 we also show the temperature dependence of the magnetization in equilib-

rium. As one can see from Fig. 1.13(a), in the absence of the external magnetic field the

magnetization tends gradually to zero near the second-order transition temperature Tc be-

tween ordered (ma 6= 0) and disordered (ma = 0) phases. Hence, the magnetization ma can

be expanded into series near the critical temperature of second-order phase transition point:

ma = ama + bm3
a + cm5

a + ... (1.31)

The critical temperature Tc corresponding to the second-order phase transition can be found

from the condition a = 1, b < 0. In particular, for the case Jaa = 1 and α = 0.025,
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Tc = 0.0102062 (in relative units). At zero temperature in the absence of field we find

unsaturated spontaneous ferromagnetism with ma = 1/6 as a stable ground state.
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Figure 1.13: Single a-site magnetization ma per atom versus temperature T for Jaa = 1, α = 0.025
and (a) H = 0 and (b) different non-zero values of H (the inset shows details for the case H = 0.9
at low temperatures).

The magnetization in equilibrium as a function of temperature T at non-zero magnetic

field [212] is plotted in Fig. 1.13(b). There are two distinct magnetic field regimes cor-

responding to ma = 1/6 and saturated zero-temperature magnetization, ma = 1/2. While

fixed magnetic field H is less than the saturation magnetic field value, we deal with ma = 1/6

regime. If we continue increasing the value of H, at the saturation magnetic field the magne-

tization jumps into ma = 1/2 regime [H = 1.5, 2.0 in Fig. 1.13(b)]. There can be also seen

a short plateau at ma = 1/6 in the temperature dependence [H = 0.9 in Fig. 1.13(b)]. The

peaks in the case of low magnetic fields arise due to the frustration effects.
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1.3.4 Susceptibility

We define the magnetic susceptibility χa as

χa =
∂ma

∂H
. (1.32)

First we examine the zero-field susceptibility, which is introduced as follows:

χa0 =
∂ma

∂H

∣

∣

∣

∣

H=0

. (1.33)

The temperature dependence of χa0 in equilibrium is plotted in Fig. 1.14. The zero-field
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Figure 1.14: Zero-field susceptibility χa0 versus temperature T for Jaa = 1 and α = 0.025.

susceptibility χa0 diverges at the critical temperature Tc which is a signature of the second

order phase transition discussed earlier (see Sec. 1.3.3). The temperature dependence of

susceptibility χa at H 6= 0 [213] is presented in Fig. 1.15(a).

The temperature dependence of magnetic susceptibility observed in [214] for [Ni(H2L
2)]4

[Cr(CN)6]5OH · 15H2O compounds resembles the result shown in Fig. 1.14.

Notice, that at high temperatures the external field dependence of the magnetic suscepti-

bility [Fig. 1.15(b)] exhibits one peak. With decreasing temperature, two peaks, symmetric

with respect to H = 0, begin to arise, which correspond to the formation of the incipi-

ent (magnetization) plateau at ma = 1/6. With decreasing further temperature the peaks
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(b)

Figure 1.15: Susceptibility χa versus (a) temperature T at different H and (b) magnetic field H
at different T for Jaa = 1, α = 0.025.

become sharper and bigger in their magnitude.

1.3.5 Specific heat

The internal energy u and the specific heat c(T ) per cluster site are, respectively, determined

as

u = −T 2 ∂

∂T
(FGB/3NT ) (1.34)

c(T ) =
∂u

∂T
= − T

3N

∂2FGB

∂T 2
, (1.35)

FGB taken from (1.28).

The behavior of the specific heat in equilibrium at the absence of the external magnetic
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Figure 1.16: The zero-field specific c(T ) heat versus temperature T for Jaa = 1, α = 0.025.

field (H = 0) is shown in Fig. 1.16. In this plot one can find the presence of second order

phase transition: at the same temperature Tc, described in last two subsections, the specific

heat has discontinuity.

Figure 1.17: Specific heat c(T ) versus temperature T for Jaa = 1, α = 0.025 and different H values.

The temperature dependence of the specific heat at non-zero magnetic field is shown in

Fig. 1.17. Notwithstanding the observation of one peak in the c(T ) at H = 0 the temperature

dependence of specific heat at H 6= 0 exhibits two-peak behavior peculiar to one and quasi

one dimensional systems as one can find in [65, 215–217]. A double-peak structure in the
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specific heat manifests the existence of two energy scales in the system as a result of two

competing orders [218]. Upon increasing the external magnetic field, the peak moves to

higher-temperature region and, at the same time, decreases in amplitude. At higher values

of H close to the transition from ma = 1/6 to saturated ma = 1/2 state the second broad

peak gradually increases.

In Secs. 1.3.7 and 1.3.8 we further discuss magnetic properties by comparison with thermal

entanglement.

1.3.6 Concurrence and thermal entanglement

The mean-field-like treatment of (1.13) transforms many-body system to reduced ”single”

cluster study in a self-consistent field where quantum interactions exist. This allows to study,

in particular, (local) thermal entanglement properties of a-sublattice in terms of three-qubit

XXX Heisenberg model in effective magnetic field γa, which carries the main properties

of the system. Besides, because of the self-consistency and interconnection of the fields γa

and γb the effective γb field has an impact on the concurrence, too. We study concurrence

C(ρ) as in Sec. 1.2.1, to quantify entanglement. Since we consider pairwise entanglement, we

use the reduced density matrix ρ12 = Tr3ρ (Tr3ρ denotes the partial trace operation of the

matrix ρ with respect to the third spin). Before introducing the calculations and discussion

we emphasize the fact which was already discussed in Sec. 1.1: the states of two neighboring

a-type trimers are separable (disentangled). Hence we can calculate the concurrence for each

of them on cluster level individually in effective magnetic field. In our case the density matrix

has the following form

ρ =
1

Z0a

8
∑

k=1

exp(−Ek/T )|ψk〉〈ψk|, (1.36)

Ek, |ψk〉 and Z0a are taken from Eqs. (1.20), (1.21) and (1.22) respectively. The construction

process of the reduced density matrix does not depend on whether γa is an effective or a

real magnetic field, although the presence of effective field γa plays crucial role for the self-

consistent solution. Here we skip the specific details and provide the result of final calculations

of the matrix ρ12, taking into account that the Hamiltonian Hc0 is translationary invariant
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with a symmetry [Sz,Hc0 ] = 0 (Sz =
∑3

k=1(Sz)
a
ki

). Hence [207,208]:

ρ12 =



















u 0 0 0

0 w y 0

0 y∗ w 0

0 0 0 v



















, (1.37)

where

u = 1
3
e

2γa−3λaa
4T

(

1 + 3e
γa
T + 2e

3λaa
2T

)

(1.38)

v = 1
3
e−

3(2γa+λaa)
4T

(

3 + e
γa
T + 2e

2γa+3λaa
2T

)

(1.39)

w = 1
3
e−

2γa+3λaa
4T

(

1 + e
γa
T

)

(

1 + 2e
3λaa
2T

)

(1.40)

y = −1
3
e−

2γa+3λaa
4T

(

1 + e
γa
T

)

(

−1 + e
3λaa
2T

)

. (1.41)

The concurrence C(ρ) of the density matrix ρ12 is given in Eq. (1.11):

C(ρ) =
2

Z
max(|y| − √

uv, 0). (1.42)

Finally, we consider transcendental equations (1.29) and (1.30) by taking into account the

values of variational parameters: λaa = Jaa, γa = 2Jabmb + H, γb = 4Jabma + H, and,

therefore, one can use these parameters to calculate C(ρ). First, we study the behavior of

C(ρ) at H = 0. The temperature dependence of C(ρ) is shown in Fig. 1.18.

Notice, the ”triangle-in-triangle” system can display (bipartite) entanglement described

by concurrence even in the absence of external magnetic field. It is important to mention that

this result does not contradict to the well-known fact that there is no (bipartite) entanglement,

measured by concurrence in isotropic three-qubit XXX Heisenberg model in zero magnetic

field (H = 0) [196]. Indeed this effect is due to the existence of Ising-type interaction replaced

by effective field γa = 2Jabmb +H acting upon a-spins. The latter, in addition to H contains

another quantity having meaning of magnetic (2Jabmb), which is non-zero at H = 0.

Another important observation is that threshold temperature (or the sudden-death tem-

perature Td) at which entanglement C(ρ) disappear is identical to the critical temperature
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Figure 1.18: Concurrence C(ρ) versus temperature T for Jaa = 1, α = 0.025 and H = 0

Tc of second order phase transition between ordered and disordered phases described earlier

in Sec. 1.3.5. This implies that the concurrence vanishes precisely at Tc, the same tempera-

ture of specific heat discontinuity. This is the consequence of the fact that at Tc the system

undergoes order-disorder phase transition and the second term in γa vanishes, too (mb = 0,

when H = 0 and T ≥ Tc). This factor implies the strong relationship between magnetic and

entanglement properties of the system. In Fig. 1.19 we present the three dimensional plot

of the concurrence as a function of the temperature and external magnetic field. We will

discuss some of these features in behavior of concurrence C(ρ) for studying magnetic and

entanglement thermal properties in Secs. 1.3.7 and 1.3.8.

1.3.7 Common features of magnetic properties and entanglement:

finite temperatures

In this subsection we discuss some similarities of magnetic statistical properties and quantum

entanglement.

First, we consider for general Jaa and H the susceptibility (1.32) as a statistical char-

acteristic. Figure 1.20(a) shows the density distribution of susceptibility reduced per one

47



-2

0

2
H

0.0

0.2

0.4

0.6

T

0.0

0.1

0.2

0.3

C HΡL

Figure 1.19: Concurrence C(ρ) versus temperature T and external magnetic field H for Jaa = 1,
α = 0.025.

a-site as a function of the coupling constant Jaa and the external field H, at a relatively high

temperature T = 0.1, which is higher than Tc. The white stripes on the figure correspond

to peaks of the susceptibility. These stripes have a certain finite width due to nonzero tem-

perature. For consistency in Fig. 1.20(b) a similar plot of concurrence density is shown for

the same values of (Jaa; H) parameters. The existence of entanglement in the infinite XXX

Heisenberg chains of spins-1/2 and spins-1 was pointed in [29]. Here weak probe fields have

been aligned along three orthogonal directions (x, y and z), supposing that magnetic suscep-

tibility is equal in all these directions (χx = χy = χz) and using the fact that χx + χy + χz

is an entanglement witness. In our case there is a magnetic field aligned in the z-direction

only, therefore χz ≡ χa. And we show that the behavior of susceptibility χz is similar to that

of bipartite entanglement. Indeed, comparison of Figs. 1.20(a) and 1.20(b) shows that the

general behavior of the statistical and entanglement properties, such as susceptibility (χa)

and concurrence (C(ρ)), coincide. Our calculations show that the values of variables for the

maximum (peak) in magnetic susceptibility correspond to the critical values on the (Jaa; H)

diagram at which the quantum coherence disappears and concurrence vanishes (C(ρ) = 0).

However, this picture for the Ising-Heisenberg model on the TKL lattice can applied only

for antiferromagnetic coupling Jaa > 0, while for ferromagnetic coupling Jaa < 0 the system
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always remains disentangled.
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Figure 1.20: Density plot for (a) susceptibility χa and (b) concurrence C(ρ) versus magnetic field
H and coupling constant Jaa at α = 0.025 and T = 0.1.

For further comparison we show for various temperatures in Figs. 1.21(a) and (b) the

corresponding dependencies of the concurrence and heat capacity on magnetic field H.

In Fig. 1.21(a) at relatively low temperatures the specific heat exhibits a six peak structure

located symmetrically with respect to the magnetic field (H = 0). As temperature increases,

the middle peaks (on both sides of the H = 0) split and merge with the left and right peaks

in the neighbor areas, near H = 0. At higher temperatures, the two other peaks on both
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Figure 1.21: (a) Specific heat c(T ) and (b) concurrence C(ρ) versus external magnetic field H for
Jaa = 1, α = 0.025.

sides of H = 0 also merge in one. As temperature increases there remain only two peaks,

i.e., the sharp peak structure gradually disappears.

At low temperatures close to Tc (T > Tc), the two most distant peaks from the H = 0

(on each side of H) in Fig. 1.21(a) are approaching closer to each other, but do not merge in

one. Meanwhile, the closest ones to the H = 0 peak (on either side of H) become narrower

and approach closer to the origin, H = 0. For T . Tc, some features are resulting from

the effective Ising field: the local minimum of the curve c(T ) at H = 0 becomes non zero,

c(T )|H=0 6= 0. With further decreasing temperature, the heat capacity in the vicinity of

H = 0 displays one narrow peak (whereas in a normal three-qubit Heisenberg model there

are two symmetrical peaks and c(T )|H=0 = 0). Nevertheless, the described extreme effects do

not affect the behavior of the entanglement (concurrence), which is a purely quantum feature:
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the curve is smooth enough for all T > Tc. However, C(ρ) behaves as a step-like function

by approaching closer to critical temperature Tc. At temperatures below the critical value,

a local dip minimum is non zero, C(T )|H=0 6= 0 (see also Fig. 1.18). This dip disappears at

T ≈ 0.002 by forming a single flat plateau at T = 0.

Our results on Gibbs-Bogoliubov treatment of coupled spins controlled by external mag-

netic field provide understanding of the magnetic ground state properties in ”triangles-in-

triangles” Cu9X2(cpa)6 Kagomé series described in Refs. [75, 76]. This simple approach can

also explain several interesting properties, such as double peaks of the specific heat, different

competing (magnetic) orders, a 1/3 magnetization plateau and susceptibility peaks for the

pulse field reported for classical and quantum Kagomé lattice magnets in [219]. In the end

of the subsection, we emphasize that although introduced (effective) self-consistent γa and

γb fields break the symmetry against H = 0, this does not act upon concurrence and specific

heat.

1.3.8 Zero temperature entanglement and modulated phases

In this subsection the magnetization and entanglement properties of a-sublattice are consid-

ered at zero temperature using variational mean-field approximation. In Fig. 1.22(a) a phase

diagram of constant magnetization is shown for a-sublattice. This diagram differentiates the

following phases: Phase I corresponds to the single a-site magnetization ma = 1/6, when

spins in a-sublattice are in ↑↑↓ configuration; Phase II corresponds to ↓↓↑ configuration with

the single a-site magnetization ma = −1/6. These phases exist only for the antiferromagnetic

coupling, Jaa > 0. For the ferromagnetic case (Jaa < 0) in III and IV regions we get spin

saturation, with maximum ma = 1/2 (↓↓↓) and minimum ma = −1/2 (↑↑↑) magnetization

per atom respectively.

Phase I contains the two-fold degenerate states |ψ5〉 and |ψ6〉, while Phase II − the two-

fold degenerate states |ψ2〉 and |ψ3〉. By constructing the reduced density matrix in Phases I

and II, one can find these phases in maximum entangled state, C(ρ) = 1/3. Phases III and

IV correspond to |ψ1〉 and |ψ8〉 states respectively. These phases are disentangled, C(ρ) = 0.

In Fig. 1.22(b) the concurrence density distribution is shown versus coupling constant (Jaa)

and magnetic field (H) at zero temperature. The area of non-zero entanglement coincides
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with the phase I + II, where |ma| = 1/6, while the one with zero entanglement (C(ρ) = 0)

corresponds to the phase III + IV with |ma| = 1/2.

Notice, the plateau behavior in magnetization corresponds to constant entanglement val-

ues in corresponding density plots. The plateau in magnetization at |ma| = 1/6 corresponds

to maximum entanglement value, C(ρ) = 1/3, where the saturated phase at |ma| = 1/2 is

disentangled, C(ρ) = 0. This descriptive picture is also available at the non-zero temperature.

At relatively low temperatures the plateau of magnetization at |ma| = 1/6 and entanglement

coincide, except the narrow region in the vicinity of H = 0 border. By decreasing the tem-

perature, the middle stripe in Fig. 1.20(b) narrows and gradually disappears (see Fig. 1.22(b)

and also Sec. 1.3.7). This trend becomes apparent by comparison of Figs. 1.20(b) and 1.23.

The latter represents the density distribution of ma magnetization at considerably low tem-

perature T = 0.1. In Fig. 1.23 the grey areas describe the plateau at |ma| = 1/6, while black

and white regions correspond to saturated states, |ma| = 1/2. White regions in Fig. 1.23

correspond to the plateau behavior in the concurrence. As the temperature increases the

borders between distinct (different) phases are gradually smeared out. Summarizing, the

structure of each of the Heisenberg trimers has the crucial impact on the phase diagram in

Fig. 1.22(a): the geometrical structure of a-sublattice is responsible for the frustration ef-

fects arising in the antiferromagnetic Heisenberg model (geometrical frustration). This leads

to above mentioned ground states with definite values of concurrence in Fig. 1.22(b). The

ground state concurrence arises on magnetization plateaus at |ma| = 1/6 (see Fig. 1.12(b)

for non-zero temperatures), which is a consequence of strong geometrical frustration of a-

sublattice. While the octahedron environment (b-sites) are responsible for the effective field

only.

1.4 Summary

1. We studied the thermal entanglement of a spin-1/2 Ising-Heisenberg model on a sym-

metrical diamond chain and on a triangulated Kagomé lattice. The first one was pro-

posed to understand frustrated magnetism of a series of compounds, like A3Cu3(PO4)4

with A=Ca, Sr, Bi4Cu3V2O14, Cu3(TeO3)2Br2 and Cu3(CO3)2(OH)2, while the sec-
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Figure 1.22: (a) Phase diagram of a-sublattice for |α| = 0.025 and (b) density plot of concurrence
C(ρ) versus magnetic field H and coupling constant Jaa for |α| = 0.025 at zero temperature.

ond one describes properties of Cu9X2(cpa)6 · nH2O polymeric coordination compounds

(X = F, Cl, Br and cpa=carboxypentonic acid).

2. For the diamond chain it we showed that the magnetic field can lead to another, yet

not described effect of double peak behavior of concurrence C(ρ) versus temperature

with three sudden-death temperatures (one of them corresponding to reappearance of

concurrence and the other two to its disappearing). Another novel effect was indicated

for the boundary case J = J2 when 0 < Jm < J . Specifically, two states with different

values of magnetic entanglement coexist for the value of magnetic field H = ±Jm.

3. We found strong correlations between magnetic properties and quantum entanglement

in the spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice. The ratio

α = Jab/Jaa = 0.025 (Jaa labels intra-trimer Heisenberg, while Jab monomer-trimer

Ising interactions) is considered, which guaranties experimental realization for suitable

theoretical treatment. We adopted variational mean-field-like treatment (based on

Gibbs-Bogoliubov inequality) of separate clusters in effective interconnected fields of

two types (consisting of Heisenberg a-trimers and Ising-type b-monomers). Moreover,

we found an entanglement resource at a zero magnetic field, which is absent in system

of a free Heisenberg trimer.

4. In addition, the entangled-disentangled phases in concurrence and ordered-disordered
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Figure 1.23: Density plot of magnetization ma versus magnetic field H and coupling constant Jaa

for α = 0.025 and T = 0.1.

phases in quantum phase transitions share many common features. The threshold

(sudden-death) temperature for concurrence is identical to the critical temperature of

the (smooth) second order phase transition. Besides the entanglement and thermody-

namic properties exhibit also common (plateau and peak) behavior in magnetization,

susceptibility and concurrence.
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Chapter 2

THE CLASSICAL LIMIT OF

EXCHANGE INTERACTIONS

AND CHAOTIC BEHAVIOR 1

2.1 Introduction

As already mentioned in the Introduction of the present thesis, the problems of frustrated

magnetism, interaction of atoms with fields and quantum information theory are strongly

interconnected. However, a detailed analysis of complete models with pure quantum inter-

actions is difficult to fulfill and in some cases is even unattainable. In the previous chapter

we demonstrated one of the possible ways of overcoming the above mentioned difficulties,

namely, introducing intermediate Ising spins in the sites of a magnetic lattice as a barrier

for quantum fluctuations. Another method is to approximate the pure quantum Heisenberg

model with the Ising one in the strong magnetic field regime. Specifically, if the magnetic

field is directed along the z-axis, a reduction of transverse fluctuations occurs, and the Sx

and Sy-spin components, becoming infinitely small, can be neglected [77, 78]. Consequently,

models become exactly solvable in some particular cases, which leads to analytic expressions

for thermodynamic quantities of interest.

Note that the dynamical approach plays a crucial role here: it is an essential tool in

1The results considered in this chapter are published in Refs. [163–166].
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the theory of phase transitions and criticality [83, 84, 220–223]. It greatly enhanced our

understanding of phase structure and critical properties of spin and gauge models. The

method is widely used for exact solution of spin models on hierarchical lattices, which are

good approximations for real existing ones (the so-called Bethe-Peierls approximation) [79–

82, 163, 164]. This technique can be also applied to the generalized Bethe lattice (Husimi

lattice) to describe properties of frustrated systems with multisite interactions, and RNA-like

polymers [86–88]. The multisite interaction Ising and Q-state Potts models are of particular

interest here. The first one is efficient in the analyzes of magnetic properties of solid 3He

[78, 85]. On the other hand, as already mentioned in the Introduction, the Potts model

is associated with a number of physical phenomena. It plays a key role in the theory of

magnetism. Additionally, being well defined for non-integer values of Q, it describes the

helix-coil phase transitions for polypeptides and proteins [92,93], the resistor network, dilute

spin glass and self organizing critical systems, when Q < 2.

In the present chapter we consider the three site interaction Ising and the Q-state Potts

models (Q < 2) on Husimi and Bethe lattices, respectively (Fig. 2.1). A distinguishable

feature of these systems is their exact solvability through the recurrence relation technique.

Within this method, statistical properties of a system are defined by one- or multidimen-

sional rational mappings [78–80, 83–87, 163, 164]. In the case of antiferromagnetic coupling

between lattice nodes, both models exhibit a complex behavior, featuring doubling bifurca-

tions, chaotic regimes, intermittency, and superstable cycles.

In what follows we address to the phase structure of the Q-state Potts (QSP) and the

three site interaction Ising (TSAI) models and to the analysis of one-dimensional rational

mappings determining their properties. The bifurcation points of these maps correspond to

points of phase transitions with a change of a symmetry [87, 163, 164, 223, 224]. Apart of

looking at the phase transition mechanism in the conventional period doubling regime of

the QSP model, we additionally study the chaotic−modulated phase transition in the three-

periodic window through a tangent bifurcation [225, 226] for both QSP and TSAI models.

Note that such windows were revealed and studied both theoretically and experimentally in

a number of other systems of applied interest [227–229]. In the three-periodic window we

point out some peculiar features of the above models, such as a chaotic regime confined inside
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(a)

(b)

Figure 2.1: The Bethe (a) and the Husimi (b) lattices with coordination number γ = 3.

the window or a three-periodic window represented within a finite number of 3× 2n-periodic

cycles. To the best of our knowledge this kind of behavior has not been described for rational

mappings yet and was not observed in statistical models before.
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Another tool in the investigation of bifurcation (phase transition) points and in distin-

guishing chaotic and periodic regimes, is the Lyapunov exponent. It serves not only as a good

order parameter, but also gives a relevant information about the geometrical and dynamical

properties of a model’s attractor [230–232].

Additionally, we address to the concepts of Scaling and Universality which have played

an essential role in the description of statistical systems [233]. Particularly, we study the

behavior of Feigenbaum exponents [234, 235] for the rational mapping of the QSP model on

a Bethe lattice and prove their convergence to the well-known values. Note that a similar

analysis was made for the TSAI model on a Husimi lattice, confirming the above universality

hypothesis [224]. It is interesting to note that the universality of Feigenbaum exponents can

also be used as an approximate tool for construction of curves of phase transitions between

different modulated phases [163]. Furthermore, the rate of convergence of these exponents

affects the validity of the approximation much. Thus we find another motivation of analyzing

the behavior of Feigenbaum hypothesis for the present statistical model.

2.2 The Q-state Potts model on a Bethe lattice

2.2.1 Rational mapping for the Potts model and its phase struc-

ture

The Q-state Potts model on a Bethe lattice [Fig. 2.1(a)], with two-site interactions and in

presence of an external magnetic field is defined by the Hamiltonian [236]

H = −J
∑

(i,j)

δ(σi, σj) − H
∑

i

δ(σi, Q). (2.1)

The first sum in Eq. (2.1) goes over all nearest-neighbor pairs and the second one over all

sites of the lattice (J < 0 corresponds to antiferromagnetic coupling). The partition function

59



and the single site magnetization of the model are given by

Z =
∑

{σ}

e
− H

kBT , (2.2)

M = 〈δ(σ0, Q)〉 = Z−1
∑

{σ}

δ(σ0, Q)e
− H

kBT , (2.3)

where kB is the Boltzmann constant (we will set kB = 1). The Bethe lattice can be separated

into γ identical branches by cutting it apart at the central point, resulting in the following

expression for the partition function

Zn =
∑

{σ0}

exp{H

T
· δ(σ0, Q)}[gn(σ0)]

γ, (2.4)

where σ0 is the central spin and gn(σ0) is the contribution of each lattice branch. Following

the well-known procedure [78,237–239], one finds the mapping

xn = f(xn−1),

f(x) =
e

H
T + (e

J
T + Q − 2)xγ−1

e
H+J

T + (Q − 1)xγ−1
, (2.5)

which determines the thermodynamic properties of the model (xn = gn(σ 6= Q)/gn(σ = Q))

and is known as the Potts-Bethe mapping. The magnetization of the central spin is thus

defined as:

Mn = 〈δ(σ0, Q)〉 =
e

H
T

e
H
T + (Q − 1)xγ

n

. (2.6)

In real statistical systems the bifurcation points of mappings like (2.5) correspond to

phase transition points with a change of a symmetry. For systems with Q < 2 with antifer-

romagnetic coupling (J < 0), the dependence of magnetization M on the field H is rather

complicated: a full range of period doubling, chaos and p-cyclic windows is observed here.

Figure 2.2 shows bifurcation diagrams for different values of parameters.

In terms of the mapping (2.5), the area where M is a single-valued function of H [AB

and CD in Fig. 2.2(a), AB in Fig. 2.2(b)], the recursion sequence {xn} converges to one
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Figure 2.2: The magnetization M versus external magnetic field H for γ = 3, (a) Q = 2, J = −1,
T = 1. The areas AB and CD correspond to the phase without sublattice structure (uniform
phase), BC is the antiferromagnetic phase, B and C are the phase transition points; (b) Q = 1.1,
J = −1, T = 1. Here AB correspond to the magnetization of the uniform phase, BC1 and BC2 are
magnetizations of two sublattices of the antiferromagnetic phase.

stable fixed point x0 (phase without sublattice structure). Meanwhile, in the region after the

first bifurcation point [BC in Fig. 2.2(a), C1BC2 in Fig. 2.2(b)], the sequence {xn} has two

stable points. Therefore here we have two values of magnetization, which can be explained,

as an arising of two sublattices of an antiferromagnetic order. The areas between consequent

bifurcation points are described by a sequence of n fixed points (n sublattices), corresponding

to various modulated phases with finite period (commensurate modulated phases).
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2.2.2 Universality of Feigenbaum exponents for the Potts model

In this subsection we address to the universality of Feigenbaum exponents for the Potts-Bethe

mapping. Let rn be the value of a parameter r of a mapping at a period doubling bifurcation

point, and r∞ the value of r from which the chaotic behavior ensues. It turns out that the

values of rn satisfy the following scaling:

rn = r∞ − constδ−n, n ≫ 1. (2.7)

If dn is the distance between the point x∗ for which fr(x) is extremal and the nearest point

on a 2n cycle (Fig. 2.3), than

dn

dn+1

= −α, n ≫ 1. (2.8)

The quantities α in Eq. (2.8) and δ in Eq. (2.7) are known as Feigenbaum exponents [234,235]:

δ = 4, 6692016091... (2.9a)

α = 2, 50290787050... (2.9b)

On the other hand, if Rn is the value of a parameter at which the line x = x∗ intersects

2n periodic cycle (Fig. 2.3), one finds

Rn = R∞ − const′δ−n. (2.10)

An important observation is that the exponents δ and α are universal, i.e., Eqs. (2.7), (2.8)

and (2.10) are true for a wide variety of mappings, with α and δ having the same values as

in Eqs. (2.9a) and (2.9b) [234]. As for const and const′ in Eqs. (2.7) and (2.10), they depend

on the family of reflection functions.

For the numerical analysis of the above universality hypothesis for the Potts-Bethe map-

ping, we introduce a quantity δn, defined as

δn =
Rn − Rn−1

Rn+1 − Rn

. (2.11)
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Figure 2.3: The period doubling process (schematically): rn corresponds to a 2n period-doubling
bifurcation point, Rn is the value of a parameter at which the line x = x∗ intersects a 2n periodic
cycle.

Taking into account that [235]

δ = lim
n→∞

δn (2.12)

and the condition

f
(2n)
Rn

(x∗) = x∗ (2.13)

(f (n)(x) is the n−th iteration of f(x), i.e., f (2)(x) = f [f(x)], f (22)(x) = f (4)(x) = f (2)[f (2)(x)],

etc.), one calculates Feigenbaum exponents for a mapping f(x). In our case

f(x) = e
H
T +(e

J
T +Q−2)xγ−1

e
H
T ·e

J
T +(Q−1)xγ−1

= r+(e
J
T +Q−2)xγ−1

r·e
J
T +(Q−1)xγ−1

, (2.14)

with

r = e
H
T . (2.15)

The Potts-Bethe mapping f(x) is extremal at x∗ = 0.
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Note that the values of Rn and rn must satisfy the following condition (see Fig. 2.3):

r1 < R1 < r2 < R2 < r3 < ... (2.16)

Thus, we start solving Eq. (2.13) from n = 0, and put Rn’s following the order (2.16).

Additionally, one finds that

lim
n→∞

Rn = R∞ = r∞. (2.17)

Our numerical results for J = −1, T = 1, γ = 3, Q = 1.1 and Q = 0.8 are summarized

in Table 2.1. We find that values of α and δ indeed converge to the Feigenbaum exponents

for the Potts-Bethe mapping, which describes physical properties of a real statistical system.

However, the convergence in the case 0 < Q < 1 is faster than for 1 < Q < 2. Below we

find other confirmations of the fact that in the regimes 0 < Q < 1 and 1 < Q < 2 the model

exhibits qualitatively different behavior.

As for const′, presented in Eq. (2.10), we obtained the following values for Q = 0.8 and

Q = 1.1: const′ = −2.682... and const′ = −5.034... respectively. We emphasize again that

the confirmed universality can be used in the approximate analysis of the phase structure

of statistical models. Moreover, the speed of the convergence plays an essential role in

determining the strength of the approximation [163].

2.2.3 Lyapunov exponents for one dimensional rational mapping

As generally known, under the action of a mapping xn+1 = f(xn) two nearby points can

disperse. The Lyapunov exponent λ(x) characterizes the degree of the exponential divergence

of two adjacent points. Its exact formula is:

λ(x) = lim
n→∞

lim
ε→0

1

n
ln

∣

∣

∣

f (n)(x+ε)−f (n)(x)
ε

∣

∣

∣
= limn→∞

1
n

ln
∣

∣

∣

df (n)(x)
dx

∣

∣

∣
. (2.18)

We consider the dependence of λ(x) for the Potts-Bethe mapping on the external magnetic

field H, fixing Q, temperature T and strength of interaction J [Fig. 2.4(a)].

One can also study the behavior of λ(x) on the temperature T , fixing H, Q, and J

[Fig. 2.4(b)]. This helps to examine the behavior of the magnetization at fixed external
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Table 2.1: Feigenbaum exponents for Potts-Bethe mapping [Eq. (2.5)] for T = 1; J = −1;
γ = 3.

period
Q doubling Rn α δn

21 = 2 6.148585490... - -
22 = 4 5.624678677... 3.068429829... 5.321086266...
23 = 8 5.526220056... 2.580752880... 4.731522199...
24 = 16 5.505410977... 2.519238533... 4.688360097...

0.8 25 = 32 5.500972521... 2.506269470... 4.672585925...
26 = 64 5.500022629... 2.503627065... 4.670011847...
27 = 128 5.499819226... 2.503059457... 4.669364508...
28 = 256 5.499775665... 2.502940259... 4.669237820...
...... ...... ...... ......
2∞ = ∞ 5.499764337... - -

21 = 2 3.931868660... - -
22 = 4 2.569022501... 3.358835598... 6.792470680...
23 = 8 2.368381788... 2.654374001... 5.057633178...
24 = 16 2.328710918... 2.534475897... 4.745030314...
25 = 32 2.320350408... 2.509653084... 4.685552342...

1.1 26 = 64 2.318566091... 2.504352497... 4.672658688...
27 = 128 2.318184228... 2.503218367... 4.669946004...
28 = 256 2.318102458... 2.502974448... 4.669360473...
29 = 512 2.318084946... 2.502922160... 4.669235722...
...... ...... ...... ......
2∞ = ∞ 2.318080392... - -
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magnetic field, when temperature is varied (see also Sec. 2.2.4). Comparing Figs. 2.4(a) and

(b) we find, that at a fixed H the chaotic region is richer than at a fixed T : a large variety

of different p-cyclic windows can be observed in the first case.

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

H

Λ

(b)

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

T

Λ

Figure 2.4: The Lyapunov exponent λ(x) of the Potts-Bethe mapping (a) versus magnetic field H
for Q = 0.8, J = −1, γ = 3, T = 2; (b) versus temperature T for Q = 1.2, J = −1, γ = 3, H = 0.2.

One of the major properties of the Lyapunov exponent is that it is equal to zero at a

bifurcation point. This property can be easily deduced from the fact that a bifurcation point

corresponds to a neutral point of a mapping. On the other hand the property is useful for

detecting phase transition points between different modulated phases or between chaotic and

periodic regimes.
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2.2.4 Modulated phase structure

Here we turn to the study of the phase structure of the QSP model on a Bethe lattice by

means of detecting bifurcation points of the mapping (2.5). Values of parameters (external

magnetic field and temperature) at a phase transition (bifurcation) point can be found as a

neutral point of a mapping:

f ′(x) = eiϕ. (2.19)

Different values of ϕ correspond to different types of bifurcation:

1. ϕ = 2πn. This case corresponds to a saddle-node or tangent bifurcation (type I inter-

mittency) [225, 226]. It can be observed e.g. in the logistic map as transition to a p-cyclic

window from a chaotic regime (see also Sec. 2.2.5).

2. ϕ = π + 2πn. Here we have a bifurcation corresponding to period doubling [240] (type III

intermittency).

3. A pair of conjugate complex eigenvalues of the Jacobian in the case of a multidimensional

mapping corresponds to the Hopf-bifurcation (type II intermittency) which introduces new

basic frequencies in the system [241].

At the first bifurcation point in the period doubling regime we have:







f(x) = x

f ′(x) = −1.
(2.20)

Eliminating x from (2.20) and solving the obtained equation with respect to H, we obtain

two branches:

H = T · ln
[

1

8(−1 + Q)
e−

3J
T

(

−6e
3J
T (Q − 2) − eJ/T (6Q + u − 6)(Q − 2)

− 3e
4J
T + (Q − 1)(Q + u − 1) −e

2J
T (3(Q − 2)Q + u + 6

)]

(2.21)

and

H = T · ln
[

1

8(−1 + Q)
e−

3J
T

(

−6e
3J
T (Q − 2) − eJ/T (6Q − u − 6)(Q − 2)

− 3e
4J
T + (Q − 1)(Q − u − 1) +e

2J
T (−3(Q − 2)Q + u − 6

)]

,

(2.22)
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where

u =
√

−1 + eJ/T
√

Q + eJ/T − 1
√

9eJ/T Q − Q − 18eJ/T + 9e2J/T + 1. (2.23)

Consider two regimes:

1. Q > 1. In this particular case two branches in (2.21) and (2.22) define the line separating

the phase without sublattice structure (U, i.e. uniform) and the 2AF1 phase (this notation

means AntiFerromagnetic phase of the period 21).

2. Q < 1. This case is more complicated because of the following reason (here and further

γ = 3): when Q < 1, the Potts-Bethe mapping has singular points. Figure 2.5 indicates, that

the behavior of the mapping becomes sensible to initial point of the iteration: a stable point

can fall into the area I or II. But it turns out, that only the area I has a physical meaning:

in the case Q < 1, magnetization can be negative, which has not physical interpretation [see

Eq. (2.3)]. One can easily show that M is negative in the area II. Thus, hereafter we assume,

that stable points of the mapping are in the area I. This corresponds to Eq. (2.22).

Figure 2.5: The Potts-Bethe mapping f(x) for Q = 0.8, J = −1, γ = 3, T = 2, H = 2.

It is also of interest to find the line separating antiferromagnetic (2AF1) and four-periodic

2M2 phases (here and further the notation mMn means a magnetic phase of the period mn)

modulated phases. This means to find the values of T and H, where the second bifurcation

occurs. The procedure is the same with the only difference being that here the second

68



iteration of the mapping (f (2)(x) = f [f(x)]) loses its stability:







f (2)(x) = x

(f (2)(x))′ = −1.
(2.24)

The area between two curves, obtained from Eqs. (2.20) and (2.24), is the one, where the two

periodic modulated (antiferromagnetic) phase exists. Using the same technique we can also

find the line, separating four-periodic (2M2) and eight-periodic (2M3, i.e., 23 = 8-periodic)

modulated phases. The condition reads:







f (4)(x) = x

(f (4)(x))′ = −1.
(2.25)

The area between curves defined by Eqs. (2.24) and (2.25) is the the area of the existence

the four-periodic modulated phase. The results are given in Figs. 2.6 and 2.7.

U

2AF1

U

2AF1

Figure 2.6: The phase diagram of the Q-state Potts model for Q = 1.2, J = −1, γ = 3:
the uniform U phase without sublattice structure and the antiferromagnetic phase 2AF1 (the
insert shows details in the area H > 0). Point C describes the upper bound of the temperature
(Tc = 5.260340).

As mentioned in Sec. 2.2.1 the convergence rate of Feigenbaum exponents in areas 0 <

Q < 1 and 1 < Q < 2 is different. As one can see from Figs. 2.6 and 2.7, the phase structure

is different as well. In other words, the point Qc = 1 can be considered as a critical one,

corresponding to a transition between two regimes with qualitatively different thermodynamic

behavior.
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U

2AF1

Figure 2.7: The same as in Fig. 2.6, but for Q = 0.8, J = −1, γ = 3.

The magnetization M can be also regarded as a function of T , fixing the value of external

magnetic field. Figure 2.6 indicates, that upon lowering H, first two periodic cycles appear,

corresponding to U-2AF1 transition. When the line H intersects the curve of the uniform −

antiferromagnetic phase transition line, one finds a bubble on each branch [Fig. 2.8(a)]. Here

we have U-2AF1-2M2-2AF1 transitions. After the line H intersects the lower curve, we

have another two bubbles which points on the U-2AF1-2M2-2M3-2M2-2AF1 transitions.

Upon further decrease of the external magnetic field new bubbles are formed as parts of the

old ones and for still lower H’s we reach a chaotic region [Fig. 2.8(b)].

2.2.5 The three-periodic window

In this subsection we study the three-periodic window of the Potts-Bethe mapping. Some

definite values of parameters T and H form a line in the parameter space, which separates the

chaotic and the three-periodic regimes. Figure 2.9 presents the third iteration of the mapping

f(x) [Eq. (2.5)] for one point of that line (as one can see the mapping has three stable fixed

points here). On this line the saddle-node bifurcation occurs, i.e. the aforementioned line is

found from the following condition (see Sec. 2.2.4):







f (3)(x) = x

(f (3)(x))′ = 1.
(2.26)
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Figure 2.8: The magnetization M versus temperature T for Q = 1.2, J = −1, γ = 3 (a) H = 1.25;
(b) H = 0.3.

Consequent bifurcations correspond to period doubling, which leads to appearance of

stable 3× 2n periodic cycles. Following the technique described in Sec. 2.2.4, we find the line

separating three- and six-periodic cycles (three- and six- periodic modulated phases) from

the following system of equations:







f (3)(x) = x

(f (3)(x))′ = −1.
(2.27)

Curves found from (2.26) and (2.27) form the area of existence of the three-periodic

modulated phase (3M0, i.e. 3 × 20 = 3 periodic) (Fig. 2.10).

One deduces from Fig. 2.10 that for H > 0 the mapping exhibits an interesting behavior.
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Figure 2.9: The third iteration of the Potts-Bethe mapping f (3)(x) for Q = 1.1, J = −1, γ = 3 at
one point of the saddle-node bifurcation line defined by Eq. (2.26): T = 1.5915, H = −1.

Figure 2.10: The three-periodic modulated phase 3M0 for the Potts model for Q = 1.1, J = −1,
γ = 3 (the insert shows details in the area H > 0).

Firstly, when the line H intersects only the upper transition line, two edges of the window

are plainly distinguishable: the saddle-node bifurcation takes place on both of them and

the window is presented within the three-periodic cycle only [Fig. 2.11(a)]. Here transitions

between chaotic state and the three-periodic modulated phase (3M0) occurs. Secondly when

the line H intersects the lower transition line, a 3 × 21 = 6-periodic cycle appears in a form

of a bubble, which corresponds to the six-periodic modulated phase (3M1, i.e. 3 × 21 = 6-

periodic). This indicates the 3M0-3M1 transition. Obviously if we continue lowering the

values of H, new bubbles appear and ultimately the chaotic region inside the window will

be reached [Fig. 2.11(b)]. However, for H < 0 the saddle-node bifurcation occurs only at one
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edge of the window.
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Figure 2.11: The magnetization M versus temperature T in the three-periodic window for Q = 1.1,
J = −1, γ = 3 (a) H = 1.27; (b) H = 1.22.

We additionally turn to the behavior of the Feigenbaum α and δ exponents for the three-

periodic window. In contrast to the conventional period doubling, the values of Rn here are

found from the following condition:

f
(3·2n)
Rn

(x∗) = x∗. (2.28)

The exponents α and δ converge to the values in Eqs. (2.9a) and (2.9b) for the three-

periodic window as well. For instance, for J = −1, T = 1, γ = 3 and Q = 0.8 at n = 10,

δ = 4.669160924 and α = 2.502899839. While for the const′ in Eq. (2.10) for the same values

of parameters we have: const′ = −0.0167... These results confirm once more the universality
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hypothesis for the rational mapping, which describes the Q-state Potts model on a Bethe

lattice.

2.3 The three-site interaction antiferromagnetic Ising

model on a Husimi lattice

2.3.1 The model and its exact solution

The three-site interaction antiferromagnetic Ising (TSAI) model on a Husimi lattice [Fig. 2.1(b)]

is defined by the following Hamiltonian [238]:

H = −J3

∑

△

σiσjσk − H
∑

i

σi, (2.29)

where σi = ±1 is the spin variable. The second term in the Hamiltonian incorporates the

effects of the external magnetic field. The first sum in (2.29) runs over the triangles of the

lattice, while the second one goes over all sites of the lattice (J3 < 0 corresponds to the

antiferromagnetic case).

The partition function and the single site magnetization of the model are given by

Z =
∑

{σ}

e−
H

T ; (2.30)

M = 〈σ0〉 = Z−1
∑

{σ}

σ0e
−H

T .

Following the recursion relation technique we separate the Husimi lattice into γ identical

branches by cutting it apart at the central triangle. Afterwards, following the well-known

procedure [78–80,83–87,163,164], we obtain:

M = 〈σ0〉 =
e

2H
T yγ

n − 1

e
2H
T yγ

n + 1
, (2.31)
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where

xn = f1(xn−1), (2.32)

f(x) = x2(γ−1)e
4H+2J3

T +2e
2H
T xγ−1+e

2J3
T

2xγ−1e
2H+2J3

T +e
4H
T x2(γ−1)+1

.

Here xn = gn(σ0 = +1)/gn(σ0 = −1), with gn being the contribution from each of γ identical

branches after cutting it apart at the central triangle. We fix the coordination number

to γ = 3 and consider this map in the region x > 0. The mappings f(x) is maximal at

x = x∗ = e−H/T . Note that in contrast to the Q-state Potts model with Q < 1 discussed in

the previous section, the first iteration of the mapping (2.32) does not possess singularities

(Fig. 2.12). Thus the properties of the model are not sensitive to the choice of the initial

point x0 of the recursive sequence {xn}.
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x
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0.4

0.6

0.8
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Figure 2.12: The mapping f(x) from Eq. (2.32) for H = 1, T = 1, J3 = −1 and γ = 3.

2.3.2 Phase structure and the three-periodic window

Since the phase structure of TSAI model in the conventional period doubling regime was

analyzed in details in Refs. [224, 230–232, 238], in what follows we address to the properties

of the model in the three-periodic regime. In other words, we plan to detect the transition

from the chaotic (incommensurate modulated) phase to the three-periodic one. As already

discussed in Sec. 2.2.5, this transition occurs through a tangent bifurcation (type I intermit-
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tency) [225,226]. Thus we look for the solution of the following set of equations in the same

way as in Sec. 2.2.5:







f
(3)
i (x) = x

(f
(3)
i (x))′ = 1, (i = 1, 2).

(2.33)

On the other hand, next bifurcation points correspond to a doubling of a period, leading

to appearance of 3× 2n modulated phases and to transitions between them. In other words,

next bifurcation point occurs within the following condition:







f
(3)
i (x) = x

(f
(3)
i (x))′ = −1, (i = 1, 2).

(2.34)

Solving the previous two sets of equations numerically, we obtain the chaotic − three-

periodic modulated phase (Eq. 2.33) and the three-periodic − six-periodic modulated phase

(Eq. 2.34) transition lines. Meanwhile, the region between the two above curves is the one

where the three-periodic modulated phase (3M0, i.e. 3 × 20) exists.
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Figure 2.13: The three-periodic modulated phase of the three-site interaction antiferromagnetic
Ising model for J3 = −1 and γ = 3.
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In Fig. 2.13 we show the 3M0 phase on the phase diagram (in the (T ; H) plane). Our first

observation here is that the TSAI model possesses some common features compared to the

Q-state Potts model. Firstly, we find that the mapping f(x) (therefore, the magnetization

M) undergoes a tangent bifurcation at both edges of the window, when the temperature

is fixed (T = const) and the external field is varied. If the T = const line intersects only

the curve corresponding to Eq. (2.33), the window is represented by the 3M0 phase only

[Fig. 2.14(a)]. Meanwhile, when the T = const line intersects the curve corresponding to

Eq. (2.34), the six-periodic phase 3M1 (i.e. 3 × 21 = 6) appears in a form of a new bubble,

transition to which happens through a doubling bifurcation, i.e. through a phase transition

with a change of a symmetry [Fig. 2.14(b)]. Upon further decrease in the temperature, chaos

is reached, confined inside the window, as in the Potts model at H = const [Fig. 2.14(c)].

Note that this picture of localization of 3 × 2n phases inside a cyclic period-3 window for

one-dimensional rational mappings given by Eqs. (2.5) and (2.32) describing statistical spin

systems, was also observed in the three-dimensional polynomial Rossler system [242,243].
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Figure 2.14: The magnetization M in the three-periodic window for J3 = −1, γ = 3 (a) versus H
for T = 0.33; (b) versus H for T = 0.325 (the bubbles corresponding to the six-periodic modulated
phase are not seen on the upper and lower branches because of a small difference in sublattices’
magnetizations); (c) versus H for T = 0.3; (d) versus T for H = 1.

Additionally, as is shown in Fig. 2.13, the transition between chaos and the 3M0 phase
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through a tangent bifurcation at a fixed field H occurs only at one edge of the window.

Meanwhile, at the other edge, an abrupt change in the chaotic attractor occurs due to crisis

[242,244], i.e., the collision of the chaotic attractor with the independent unstable fixed point

with a period of 3 (as in the Potts model at a fixed temperature T ). Note there is a certain

interval H ∈ [1.276; 1.375], where the ground state of the TSAI model is the three-periodic

modulated phase 3M0.

Concluding the discussion of the phase structure of the three-periodic window, we con-

sider the Lyapunov exponent λ(x) [defined in Eq. (2.18)] as another order parameter. As

already mentioned in Sec. 2.2.3, the Lyapunov exponent is negative in the periodic regime,

positive in the chaotic one, and is zero at points of bifurcation. Figures 2.15(a) and (b) show

the temperature dependencies of the Lyapunov exponents for the mapping f(x) defined in

Eq. (2.32) for the same parameters as in Figs. 2.14(b) and (c), respectively. According to

Fig. 2.15, λ(x) = −∞ at certain parameters T and H. These points correspond to the

superstable cycles [245,246], which are located in the region of a particular modulated phase.

Therefore, the construction (both analytical and numerical) of the superstable cycle of the

order n makes it possible to determine the regions of T and H where a modulated phase of

a period n exists.

Considering the discussion of the previous two sections, we conclude, that the bifurcation

properties in the cyclic three-periodic window of the antiferromagnetic Potts model on a

Bethe lattice with respect to the temperature T at magnetic fields H > 0 are similar to the

respective properties of the three-site interaction antiferromagnetic Ising model on a Husimi

lattice with respect to the magnetic field H (compare Figs. 2.10 and inset in Fig. 2.13).

An intriguing note is that the intermittency phenomenon (leading to transitions from

chaotic to periodic phases and vice versa), discussed in the present chapter, can also be used

for the construction of so-called Ulam networks, which share certain common features with

real social ones [247]. Moreover, methods of spin dynamics within the models described

above, can be used, particularly, for the analysis of some opinion formation processes. We

have addressed this question in Ref. [165].
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Figure 2.15: The magnetic field dependence of the Lyapunov exponent λ(x) in the three-periodic
window for J3 = −1, γ = 3 and (a) T = 0.325 (b) T = 0.3.

2.4 Summary

1. The thermodynamic properties of the Q-state Potts model on a Bethe lattice and the

three-site interaction antiferromagnetic Ising model on a Husimi lattice are analyzed

by means of the recurrence relation technique.

2. For the rational mapping of the Q-state Potts model we proved the universality of

Feigenbaum exponents and studied their convergence rate (which can be useful for

approximate construction of phase transition lines between different modulated phases).

Furthermore, we revealed two regimes 0 < Q < 1 and 1 < Q < 2 with qualitatively

distinct thermodynamic behavior.

3. The phase structure of both models is analyzed through detecting the bifurcation points
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of corresponding one dimensional rational mappings. Particularly, for the Potts model

we analyzed the conventional period doubling sequence and revealed a number of mod-

ulated phases and phase transitions between them.

4. Additionally, we analyzed the three-periodic window for both models, appearing in

the chaotic regime through a tangent bifurcation. The window exhibits some peculiar

features, as plainly distinguishable edges, presence of a finite number of 3 × 2n cycles

and confinement of chaos inside the window.

5. Finally, we pointed out some common bifurcation (and thus thermodynamic) properties

of the Potts model with respect to the temperature T (for H > 0) on the one hand and

the Ising model with respect to the magnetic field H on the other.

80





Chapter 3

SYSTEMS OF INTERACTING

ATOMS AND FIELDS 1

3.1 Introduction

As already discussed in previous chapters, quantum information processing can be imple-

mented in alternative platforms to solids, such as an atomic system interacting with quan-

tized fields. Particularly, the Dicke model (DM) features the interaction of a single-mode

bosonic field with a collection of two-level atoms [115,116]. The DM is usually considered in

the rotating-wave approximation, when the atom-field coupling strength is relatively weak.

In the present chapter we are mainly interested in an important special case of the DM,

corresponding to the so-called dispersive limit [122–124], which is also widely used for quan-

tum information processing [125–128]. In this case the radiation field mediates an effective

coupling of a dipole-dipole nature between the atoms in a cavity.

In the next section we investigate the entanglement features of three atoms coupled by a

dipole-dipole interaction (in a sense described above), and use the concurrence as a measure

of pairwise entanglement. As already mentioned in the Introduction of the present thesis,

the DM in the dispersive limit is strongly related to the problem of frustrated magnetism,

discussed in the previous two chapters. As it will be shown in the following section, the

effective coupling constant becomes dependent on the detuning between the atomic transition

1The results considered in this chapter are published in Refs. [167–169].
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frequency and the cavity field. This provides a relatively simple way of manipulating the

interaction strength magnitude, what is rather complicated in the case of solids. Besides, a

change of the sign of the interaction strength (corresponding to a switch between regimes with

distinct physical pictures) also becomes possible by appropriate modifications of the setup

parameters. Furthermore, the effective Hamiltonian gives rise to so-called collective spin

models: many-body systems possessing long- or even infinite-range interactions [248–251].

Since in our case the dipole-dipole coupling is mediated by a radiation field, the atoms

can interact with each other on an arbitrary distance within the cavity volume. Thus, the

idealized infinite interaction length becomes practicable. We also take into account the

vacuum induced Stark shift term, which causes qualitative changes in the ground state of

the system. It results in a physical picture, different from the one corresponding to a pure

Heisenberg-type exchange interaction.

Numerous problems of atomic optics and quantum information require atoms and molecules

prepared in specified quantum states. Furthermore with the growing interest in quantum

information, there is also concern with creating and controlling specified coherent superpo-

sitions of quantum states. Therefore there has long been interest in finding techniques to

control the transfer of population between quantum states. A particularly interesting tech-

nique for population transfer is the stimulated Raman adiabatic passage (STIRAP) [135,252]

realized via so-called ”dark” (or ”trapped”) states [253]. In this chapter we focus our at-

tention on the alternative method involving rather ”bright” [254, 255] than ”dark” state.

Unlike STIRAP, which is insensitive to the radiative losses from the excited state that is not

populated, b-STIRAP stores some transient population in the excited state. Radiative losses

are therefore possible resulting in a reduction in the transfer efficiency. Thus contrary to

STIRAP, b-STIRAP should feature a sufficiently large one-photon detuning and sufficiently

short interaction time in order to permit efficient population transfer. The growing interest

for b-STIRAP necessitates a further investigation when the propagation effects are taken

into account. The essential difference of the b-STIRAP method, as compared to STIRAP,

is that the first one is a faster process that is realized with a superluminal velocity. An-

other difference is that the adiabaticity conditions are stronger in the case of b-STIRAP.

For instance, when the oscillator strengths of both transitions are equal, the interaction adi-
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baticity, provided at the medium entrance, is broken down for b-STIRAP, while for STIRAP

it is preserved during propagation. In this context, the natural question arises whether the

population transfer efficiency in a medium via b-STIRAP is also sensitive to the ratio of

oscillator strengths.

To clarify the question addressed, we make a detailed theoretical study of nonlinear pulse

propagation in a Λ-type three-level atomic system under the conditions of the ”bright” state,

for various ratios of the medium coupling constants. Our results show that the population

transfer dynamics strongly depends, in particular, on this ratio. We find that, depending on

the ratio, pulses propagating in a medium will maintain their capacity to produce efficient

adiabatic population transfer for long distances in some cases and loose this property in

others.

3.2 The Dicke model in the dispersive limit

3.2.1 The model

We consider N two-level trapped atoms interacting with a single-mode cavity field. The

Hamiltonian of the system (the DM model) in the rotating wave approximation can be

written as (in units such that ~ = 1)

H = H0 + V, (3.1)

H0 = ω0a
†a +

1

2

N
∑

i=1

ωiS
z
i , (3.2)

V = g

N
∑

i=1

(S+
i a + S−

i a†), (3.3)

where S+
i = |1i〉〈0i|, S−

i = |0i〉〈1i|, Sz
i = |1i〉〈1i| − |0i〉〈0i| (with |0i〉 and |1i〉 the ground and

excited states respectively, of the i − th atom), a† and a are the creation and annihilation

operators for the cavity mode, ωi is the i − th atomic transition frequency, ω0 is the cavity

frequency, and g is the atom-cavity coupling strength [115,116].
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We focus on the dispersive limit [122–127], when

|ωi − ω0| ≫ g
√

n̄ + 1, i = 1, ..., N (3.4)

with n̄ the mean number of photons. In the interaction representation the system is governed

by an effective Hamiltonian [125–127]

Veff = λ

( N
∑

i=1

|1i〉〈1i|aa† − |0i〉〈0i|a†a +
∑

i6=j

S+
i S−

j

)

, (3.5)

where λ = g2/δ is the effective coupling constant and δ = ωi − ω0. In this case there is no

photon exchange between the cavity field and the atomic system. The only allowed transitions

are between the states with the same number of excited atoms and cavity field photons. The

first and second terms in (3.5) describe the photon-number-dependent (dynamical) Stark

shifts, while the third one can be interpreted as all possible flip operator of the atomic

excitation through cavity induced dipole-dipole interaction between the i − th and j − th

atom. Switching to the interaction representation with respect to the diagonal terms of Veff:

|ψ(int)
eff (t)〉 = e−iV0t|ψeff(t)〉, where

V0 = λ

( N
∑

i=1

|1i〉〈1i|aa† − |0i〉〈0i|a†a

)

, (3.6)

one can describe the dynamics of the wave function by the reduced Hamiltonian [126,127]

V(int)
eff = λ

∑

i6=j

S+
i S−

j . (3.7)

However, if one intends to study the thermodynamic features of the DM in a dispersive limit,

the complete Hamiltonian should be considered, i.e. we should switch back to the Schrödinger

representation of (3.7), where the atomic and the field systems appear factorable:

Heff = ω0a
†a +

N
∑

i=1

(1

2
ωi + λa†a

)

Sz
i + λ

( N
∑

i=1

|1i〉〈1i| +
∑

i6=j

S+
i S−

j

)

. (3.8)

An important feature of the final model is the tunability of the coupling constant. The latter
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can be in principle modified, e.g. by a change of the value of the detuning δ (in contrast with

solid-state systems, where the coupling constant is more or less fixed). Note that the sign of

the coupling constant can also be changed by a change of the sign of detuning. In magnetic

systems this would correspond to a transition from a ferromagnetic regime (λ < 0) to an

antiferromagnetic one (λ > 0). As it will be shown in the following subsections, different

signs of λ correspond to different physical pictures. On the other hand one finds that the

term 1/2
∑N

i=1 ωiS
z
i in (3.8), corresponding to the Hamiltonian of the free atomic system,

is equivalent to the term of magnetic field effect in magnetic spin models [compare with

Hamiltonians in Eqs. (1.1) and (1.13)].

In the present section we consider the state of the field to be a vacuum state |vac〉. Thus

we can work with the following reduced Hamiltonian:

Heff = λ

(

N
∑

i=1

|1i〉〈1i| +
∑

i6=j

S+
i S−

j

)

+
1

2

N
∑

i=1

ωiS
z
i . (3.9)

We also emphasize that (3.9) is equivalent to a collective spin model [248–251]. Generally,

this class of systems demands very special characteristics for experimental realization, since

they feature in principle an infinite interaction range. However, quantum electrodynamical

(QED) cavity allows a collective coupling between trapped atoms as photons are shared by

all the atoms.

In this section we will consider identical atoms, i.e. atoms with equal transition frequen-

cies: ωi ≡ ω for i = 1, 2, ..., N .

3.2.2 Entanglement of three coupled atoms

In this subsection we discuss the entanglement properties of three trapped atoms, coupled to

each other by means of an effective dipole-dipole interaction (3.9) mediated by a cavity field.

The eigenvalues of Heff are

E1 = −3ω

2
; E2 = E3 = −ω

2
;

E4 = 3λ − ω

2
; E5 = E6 = λ +

ω

2
;

E7 = 4λ +
ω

2
; E8 =

3ω

2
+ 3λ

(3.10)
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Figure 3.1: Eigenvalues as functions of λ.

with the corresponding eigenvectors given by

|ψ1〉 = |000〉

|ψ2〉 =
1√
3

(

q|001〉 + q2|010〉 + |100〉
)

|ψ3〉 =
1√
3

(

q2|001〉 + q|010〉 + |100〉
)

|ψ4〉 =
1√
3

(|001〉 + |010〉 + |100〉)

|ψ5〉 =
1√
3

(

q|110〉 + q2|101〉 + |011〉
)

|ψ6〉 =
1√
3

(

q2|110〉 + q|101〉 + |011〉
)

|ψ7〉 =
1√
3

(|110〉 + |101〉 + |011〉)

|ψ8〉 = |111〉,

(3.11)

where q = ei2π/3. The states of the whole system, including the dressing field, is of the form
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|ψi〉 ⊗ |vac〉, i = 1, ..., 8. We have here omitted for simplification the vacuum state of the

field. Note that the eigenstates of the present model have the same structure as the ones from

Sec. 1.3.2 [Eq. (1.21)]. This is due to the fact that both systems possess similar symmetries.

However, as shown below, the Stark shift term changes the physical picture drastically. As

already mentioned in the previous subsection, Heff couples only the states which have the

same number of excited atoms. This is a consequence of the fact that the Hamiltonian (3.9)

commutes with
∑N

i=1 Sz
i . In other words the total pseudospin of the system is a conserved

quantity. This implies that state |ψ1〉 (with no excited atoms) and state |ψ8〉 (with all the

atoms excited) are decoupled from each other and also from all the other states with one

single atom excited and with two atoms excited, and while the states with one single atom

excited and the ones with two atoms excited form two decoupled blocks. Transitions inside

each of these two blocks are cavity mode driven Raman transitions.

The resulting eigenvalues (3.10) are plotted in Fig. 3.1 as functions of the coupling λ.

They show a quite simple structure for positive values of λ, as only two crossings between

excited states occur. On the other hand, negative values of λ imply crossing of excited states

with the ground state. In particular, one notices the crossing of E4 with E1 for the relatively

low value of the coupling λ = ω/3. The vacuum induced Stark shift leads to a strong

modification of the regimes. Therefore, we anticipate that the Stark shift terms play an

important role in the formation of the ground state properties of a system, as it is confirmed

below.

3.2.3 Entanglement and concurrence

We study concurrence C(ρ), defined in Sec. 1.2.1, to quantify pairwise entanglement of the

present model. Since we consider bipartite entanglement, we reduce the full density matrix

ρ with respect to the rest of the system (i.e. the third atom) in the same way as was done in

Chapter 1: ρ12 = Tr3ρ. The overall density matrix ρ at a thermal equilibrium, which takes

into account the thermal mixing of the eigenstates (3.11), has the form

ρ =
1

Z

8
∑

k=1

exp(−Ek/T )|ψk〉〈ψk|, (3.12)
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where

Z = e−
8λ+3ω

2T

[

(

2e
3λ
T + 1

)

e
ω
T +

(

2e
3λ
T + 1

)

e
λ+2ω

T + e
4λ+3ω

T + e
λ
T

]

(3.13)

is the partition function, Ek and |ψk〉 are taken from Eqs. (3.10) and (3.11) respectively.

Since in our case the system of three atoms [interacting via (3.9)] possesses a translational

symmetry, the index number of the traced out atom can be chosen arbitrary. We skip the

specific details here and provide the final result of the matrix ρ12, taking also into account

that the Hamiltonian Heff satisfies [Sz,Heff] = 0 (Sz =
∑N

i=1 Sz
i ):

ρ12 =



















u 0 0 0

0 w y 0

0 y∗ w 0

0 0 0 v



















, (3.14)

where

u =
1

3
e−

8λ+3ω
2T

(

2e
3λ+ω

T + 3e
λ
T + e

ω
T

)

v =
1

3
e

ω−6λ
2T

(

3e
3λ+ω

T + 2e
3λ
T + 1

)

w = −1

3

(

e
3λ
T − 1

)

e−
8λ+ω
2T

(

e
λ+ω

T + 1
)

y = −1

3

(

e
3λ
T − 1

)

e−
8λ+ω
2T

(

e
λ+ω

T + 1
)

.

(3.15)

The concurrence C(ρ) of such state has the following form (see Sec. 1.2.1):

C(ρ) =
2

Z
max(|y| − √

uv, 0). (3.16)

Before investigating the ground state entanglement properties, we remark that all the

states |ψi〉 with i = 2, 3, ..., 7 are entangled with an amount of 2/3 for any pair of atoms

[hereafter the amount of entanglement refers to the defined above concurrence C(ρ)].
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Figure 3.2: Concurrence C(ρ) versus atomic transition frequency ω, for λ = 1 and different
values of the temperature T .

3.2.4 Positive coupling

We first discuss the case of positive λ. Within the analogy of magnetic systems, for which the

external magnetic field would correspond to ω and the interaction constant to λ, this regime

can be considered as being antiferromagnetic. Figure 3.2 shows the concurrence C(ρ) versus

the atomic transition frequency ω for different values of temperature T . As one can see, at

a zero temperature the system is not entangled. This is due to the fact that the ground

state is the saturated |ψ1〉 (with all atoms being non-excited). Solid state systems with

antiferromagnetic coupling feature a frustrated ground state, persisting up to some critical

value of ω, corresponding to a transition between frustrated and saturated phases. However

this does not take place in this model for positive λ because of the vacuum induced Stark

shift.

It is also of interest to discuss the case ω → 0. The ground state becomes three-fold

degenerate in this limit, and it additionally contains |ψ2〉 and |ψ3〉 besides |ψ1〉. The system

is described by a mixture of these three states (i.e. by a density matrix) with a non-zero

value of entanglement: C(ρ) = 2/9.

The appearance of a non-zero temperature will smooth the step-like behavior of C(ρ).

Since the temperature mixes all the eigenstates of the system, it can induce the so-called
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Figure 3.3: Dimensionless concurrence C(ρ) versus temperature T (in units of λ), for different
values of the atomic transition frequency ω (in units of λ).

thermal entanglement [19] despite a non-entangled ground state. Particularly, the thermal

effects induce a larger amount of entanglement for ω closer to zero (see Fig. 3.2). Moreover,

the dependency curve of C(ρ) versus temperature exhibits a local maximum, corresponding to

an optimal mixing of the system’s eigenstates (Fig. 3.3). However, the quantum correlations

between the atoms gradually disappear at some temperature Td, referred in the literature to

as sudden-death temperature and discussed in Sec. 1.2.2 (note that the thermal entanglement

appears smoothly for low temperatures, i.e. concurrence becomes zero only at T = 0).

One can notice in Fig. 3.3 that the higher the atomic transition frequency ω is, the higher

is the sudden-death temperature Td. But it turns out that Td remains finite with the growth

of ω, i.e. there exists some saturation temperature Ts such that Td < Ts, or limω→∞ Td = Ts.

3.2.5 Negative coupling

Now we proceed to the case of negative coupling (λ < 0). Figure 3.4 shows the concurrence

C(ρ) versus the atomic transition frequency ω for different values of temperature T . At a

zero temperature the system is entangled if ω is below the critical value ω−
c = −3λ (the

minus sign refers to the negative coupling constant λ), where the states |ψ1〉 and |ψ4〉 cross.

This is due to the fact that for ω > ω−
c the ground state is the saturated |ψ1〉. We also

find a local dip which appears at a point ω = ωd = −λ. At this point a transition between
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the respective frustrated ground states |ψ7〉 (ω < ωd) and |ψ4〉 (ωd < ω < ωc) occurs. For

ω = ωd, |ψ4〉 and |ψ7〉 form a doubly degenerate ground state. Although, each of these states

has a value of entanglement equal to 2/3, their mixture is less entangled (with a value of

1/4). Note that we have a transition between states with the same amount of entanglement

(C(ρ) = 2/3) but different number of excited atoms. We remark, that a transition between

different number of excited atoms becomes possible only due to the vacuum Stark shift term,

present in (3.9). Considering the state |ψ4〉 (|ψ7〉), we also see that the probability of each of

three atoms being excited (non-excited) is equal to 1/3. This is an analog of frustration in

magnetic systems [47,48].
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T=0.02

T=0

Figure 3.4: Concurrence C(ρ) versus atomic transition frequency ω, for λ = −1 and different
values of the temperature T .

Finally, the behavior of C(ρ) versus temperature is exhibited in Fig. 3.5. When the

ground state is not entangled, we find a similar picture as for the case of λ > 0 (see Fig.

3.3), but with a sudden death occurring for a larger temperature. When the ground state

is entangled, we find a decrease of C(ρ) and its eventual abrupt dying out a sudden-death

temperature Td.

3.2.6 Comparative studies of positive and negative coupling

The behavior of the sudden-death temperature Td is analyzed in Fig. 3.6 for both cases of

positive and negative couplings. Both curves in this figure tend to saturation temperature
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Figure 3.5: Concurrence C(ρ) versus temperature T , for λ = −1 and different values of the
atomic transition frequency ω.

Ts. The latter can be found from the equation

e
λ
Ts

√

6e
3λ
Ts + 3 −

∣

∣

∣
e

3λ
Ts − 1

∣

∣

∣
= 0. (3.17)

The solution of Eq. (3.17) can be presented as Ts/λ = const, with the growth rate for Ts

being higher for negative coupling strengths: Ts/λ = −1.32639 (λ < 0) in contrast with

Ts/λ = 0.554641 (λ > 0). Another interesting effect can be found on Fig. 3.6: one can notice

a non-monotonic behavior of Td versus ω for λ < 0. If the vacuum Stark shift term was not

taken into account, the temperature Td would monotonically increase with ω.

Figure 3.7 shows a more global picture as three dimensional plots of C(ρ) versus temper-

ature and atomic transition frequency ω. One can infer that the case λ < 0 exhibits more

robust entanglement behavior, both with respect to atomic frequency ω and the temperature

T , as the system is entangled in a wider range of ω’s and T ’s).

We make here another important remark. As mentioned above, the first level-crossing

for the negative λ occurs at λ = −ω/3, i.e. for a moderately strong coupling. Moreover,

we additionally found that this crossing point behaves like λ = −ω/N (with N being the

number of atoms) as well as for N = 2, 3 and 4. Thus, we anticipate that such a crossing

will occur for a smaller λ (in absolute value) for a larger number of atoms N .
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Figure 3.6: Sudden-death temperature Td corresponding to the vanishing of entanglement
versus transition eigenfrequency ω (in units of |λ|), for different signs of the coupling constant
λ.

3.3 The stimulated Raman adiabatic passage in a medium

of unequal oscillator strengths

3.3.1 The theoretical framework

The b-STIRAP process is defined with respect to population transfer in a three-level system,

which we consider to possess a ground state |1〉, an excited state |2〉, and a final state |3〉 in

which we wish to maximize the population (see Fig. 3.8). These matter states are coupled by

two laser fields: a field that is resonant with the transition from the ground to the excited state

(the pump field) and a field that is resonant with the excited to the final state transition (the

Stokes field). The pump and Stokes pulses, detuned by ∆p,s with respect to the corresponding

resonances, have the Rabi frequencies Ωp and Ωs. The dressed eigenstates of the matter-field
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(a)

(b)

Figure 3.7: Concurrence C(ρ) versus temperature T and atomic transition frequency ω, for
(a) λ = −1; (b) λ = 1.

system in the case of exact-two photon resonance are well-known [130] and are given by

|b1〉 = cos ψ sin θ|1〉 + cos ψ cos θ|3〉 + sin ψ|2〉, (3.18a)

|b2〉 = sin ψ sin θ|1〉 + sin ψ cos θ|3〉 − cos ψ|2〉, (3.18b)

|d〉 = cos θ|1〉 − sin θ|3〉, (3.18c)

where the time-dependent mixing angles are defined as tan θ(t) = Ωp(t)/Ωs(t), and tan 2ψ(t) =

2Ω(t)/∆p, with Ω(t) =
√

Ω2
p(t) + Ω2

s(t) being the generalized Rabi frequency. We assume

that ∆p > 0 without loss of generality .

The central point of interest for b-STIRAP, among the dressed atomic eigenstates in
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Figure 3.8: The three-level Λ-type system coupled by two near resonant pulses with Rabi
frequencies Ωp and Ωs.

Eqs. (3.18), is the bright state |b1〉 which is a linear combination of all three bare states |1〉,

|2〉 and |3〉. Let ∆p 6= 0 and all population initially in |1〉. If the pump pulse precedes (but

overlaps) the Stokes pulse, at time t → −∞, one finds for the mixing angles: θ = 90◦ and

ψ = 0◦. Thus the dressed state |b1〉 corresponds to the bare state |1〉. Meanwhile, at the end

of the interaction, at time t → ∞, where the Stokes pulse is applied after the pump pulse,

we have mixing angles of θ = 0◦ and ψ = 0◦. Therefore, the state |b1〉 becomes the bare state

|3〉 (i.e., the population was projected onto the final state). If both dressing angles θ and

ψ are varied slowly, i.e. by ensuring an adiabatic evolution, all population remains in |b1〉.

Additionally, there is a low probability that the system will make a non-adiabatic transition

to another dressed state.

3.3.2 Description of the model

In the present section we study the population transfer from state |1〉 to state |3〉 by means

of b-STIRAP taking into consideration propagation effects. We consider two time-dependent

laser fields propagating in a medium of three-level atoms in the lambda configuration as
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shown in Fig. 3.8. We assume that both fields propagate in the positive x direction. Let

Ep(x, t) = Ep(x, t) cos(ωpt − kpx − ϕp), (3.19a)

Es(x, t) = Es(x, t) cos(ωst − ksx − ϕs), (3.19b)

where Ep and Es are the slowly varying envelopes of the electric fields of carrier frequencies

ωp and ωs, wave numbers kp, ks and phases ϕp, ϕs. We assume that the temporal durations

of both laser pulses are sufficiently short that we can neglect decay terms, such as arising

from loss to other atomic states, spontaneous emission, or collisional dephasing effects.

The corresponding time-dependent Hamiltonian in the basis {|1〉, |2〉, |3〉} in the Rotating

Wave Approximation (RWA) reads [130]

H = ~













0 −Ωp 0

−Ωp ∆p −Ωs

0 −Ωs δ













, (3.20)

where the Rabi frequencies and the one- and two-photon detunings are defined as follows :

Ωp,s = |Ep,sdp,s|/2~ with dp,s being the transition dipole moments, ∆p = ω2 − ω1 − ωp + ϕ̇p,

and δ = ω3 − ω1 − ωp + ωs + ϕ̇p − ϕ̇s. Here dot means differentiation with respect to time.

The evolution of the populations in the system is determined by the time-dependent

Schrödinger equation

i
∂a1

∂t
= −Ωpa2, (3.21a)

i
∂a2

∂t
= −Ωpa1 + ∆pa2 − Ωsa3, (3.21b)

i
∂a3

∂t
= −Ωsa2 + δa3. (3.21c)

All atoms are assumed to be initially in the ground state |1〉:

a1(−∞, x) = 1, a2(−∞, x) = a3(−∞, x) = 0. The propagation of the pulses is governed

by the Maxwell wave equations which in the slowly varying envelope approximation can be

reduced to two independent first-order wave equations for each individual pulse that in terms
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of traveling coordinates z = x/c, τ = t − x/c reads [130]:

∂Ωp

∂z
= −qpN Im(a∗

1a2), (3.22a)

∂Ωs

∂z
= −qsN Im(a∗

3a2), (3.22b)

Ωp
∂ϕp

∂z
= qpN Re(a∗

1a2), (3.22c)

Ωs
∂ϕs

∂z
= qsN Re(a∗

3a2). (3.22d)

Here qp,s = 2πωp,sd
2
p,s/~c are the oscillator strengths of the atom-field couplings with N being

the atomic number density.

The coupled equations (3.21) and (3.22) give a complete description of the problem we are

considering. Analytical solution to the set of coupled equations for the case of equal oscillator

strengths (qp = qs) was given and studied in the adiabatic approximation in [153]. It was

shown that the efficiency of the population transfer in the case of equal oscillator strengths

decreases rapidly with the propagation length for small one-photon detunings, ∆p ∼ Ω,

meanwhile for large one photon detunings, ∆p ≫ Ω, the population transfer process is more

efficient in the medium and can occur for longer propagation distances.

However, in most practical cases, the oscillator strengths of the allowed transitions are

not equal. We will analyze what happens when the oscillation strengths of the corresponding

transitions are different.

We first solve numerically the set of coupled Schrödinger-Maxwell equations (3.21) and

(3.22), and in Sec. 3.3.6 we interpret them using approximate analytical solutions. Addition-

ally, we define the ratio of the transition strengths q = qp/qs.

3.3.3 Numerical results and analysis

For the desired population transfer it is required that state vector |Φ〉 follows adiabatically

the bright |b1〉 state in the course of the evolution: |〈b1(z, τ)|Φ〉| ≈ 1. This is achieved by

switching on the pulses in the intuitive order (the pump laser first) and by meeting the
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adiabaticity condition [256]

|λb1 − λb2| ≫ |〈b2|ḃ1〉|, (3.23a)

|λb1 − λd| ≫ |〈d|ḃ1〉|, (3.23b)

where λb1 , λb2 and λd are the eigenvalues associated with the dressed states |b1〉, |b2〉 and |d〉,

respectively. These adiabaticity conditions are generally satisfied, for smooth pulses, if:

|∆pT | ≫ 1, |∆pT |ψ2 ∼ Ω2T/ |∆p| ≫ 1. (3.24)

For the numerical investigation we consider Gaussian pulses at the medium entrance

(z = 0) with equal durations and Rabi frequencies. The pulses should act in a way that

eliminates transitions between different dressed states, i.e., they should satisfy conditions

(3.24). For that we choose the following parameters for the pulses: Ω0T = ∆pT = 40,

τd/T = 1.3, where τd is the time delay between the peaks of the pulses and Ω0 is the peaks

value of Ω. The chosen parameters correspond to the case ∆p ≃ Ω0.

3.3.4 Case of equal oscillator strengths

We start with the example when the oscillator strengths of the corresponding atomic transi-

tions are equal, corresponding to q = 1. Figure 3.9 shows the time evolution of the propa-

gating pulses (top left), atomic state populations (bottom left), state vector |Φ〉 projections

onto the dressed states (top right) and mixing angles θ and ψ (bottom right) at the entrance

of the medium. The curves are obtained from a numerical solution of Eqs. (3.21)-(3.22)

using the above mentioned parameters. The figure shows that the pulses induce a very ef-

ficient adiabatic population transfer. However, as the pulses propagate inside the medium,

the population transfer efficiency rapidly decreases. Indeed, as one can see from Fig. 3.10,

at the propagation length qszNT = 7 [see Fig. 3.10(a)] the population transfer is already

not complete (the achieved efficiency is ∼ 95%), and at qszNT = 20 [see Fig. 3.10(b)] the

transfer efficiency is reduced by a factor of 50 (the achieved efficiency ∼ 2%). The reason

for such a loss of the efficiency of the transfer process is that during the propagation the
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Figure 3.9: The interaction dynamics at the input face of the medium (z = 0) with equal
oscillator strengths, qp = qs. Top left: propagating fields; top right: projections of the state
vector |Φ〉 onto dressed |b1〉, |d〉 (projection on the state |b2〉 is negligible); bottom left: atomic
state populations; bottom right: mixing angles θ and ψ.

adiabaticity of the interaction is more and more disturbed. Indeed, the time evolution of

the mixing angle θ(z, τ) inside the medium is not anymore a smooth decreasing monotonic

function (ensuring the evolution of the bright state |b1〉 from the bare state |1〉 initially to the

target state |3〉 at the end of the interaction), but reveals some oscillating behavior, resulting

in nonadiabatic couplings (proportional to θ̇) between the adiabatic states. The violation of

the adiabaticity is more apparent when we look at the top right panels in Figs. 3.10(a) (b)

presenting the populations of the dressed states. One can see that the bright state |b1〉 is not

the only adiabatic state that is populated, as it is depopulated in the course of propagation

and there appears a non-adiabatic coupling to the dark state |d〉, resulting in loss of transfer

efficiency. This is what we also see from the top left panels presenting the atomic state pop-

ulations P1,3: the interference between different evolution paths leads to oscillations in the

populations, rather than to complete population transfer.
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Figure 3.10: The same dynamics as in Fig. 3.9 but at the propagation length: (a) qszNT = 7.
The efficiency achieved for population transfer is ∼ 95%; (b) qszNT = 20. The efficiency
achieved for population transfer is ∼ 2%.
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3.3.5 Case of unequal oscillator strengths

In this subsection we proceed with the same input conditions, but we lift the requirement

of equal coupling constants. Figure 3.11 shows the time evolution of the propagating pulses

(top left), atomic state populations (bottom left), state vector |Φ〉 projections (top right) and

dressing angles θ and ψ (bottom right) at the entrance of a medium with q = 0.1. As seen,

in this case the pulses also provide an adiabatic evolution and a very efficient population

transfer at the entry of the medium. We will study whether this capacity of propagating

pulses is maintained or not in the course of propagation.

In Figs. 3.12(a), (b) we report a numerical plot of the dynamics of the propagating

pulses and of the atomic system at the propagation lengths qszNT = 7 and qszNT =

20, respectively. As seen from the figures, in the course of propagation the interaction

adiabaticity is better preserved as compared to the case q = 1. Indeed, at the propagation

length qszNT = 7 the population transfer is still complete (compare with Fig. 3.10(a) where

at this propagation length the transfer is already not perfect). As to the propagation length

qszNT = 20, the situation is not perfect. However, the time dependence of the mixing angle

θ is without pronounced peaks, its final value goes to zero, and the majority of population

(about 87.5 %) is transferred to the final state |3〉 [compare this result with 2% in case of

equal oscillator strengths, see Fig. 3.10(b)]. It is also notable that while in the case of q = 1

the pulses are considerably distorted at this propagation length, in case of q = 0.1 the pulse

distortion is much less [compare top left panels in Figs. 3.10(b) and 3.12(b)]. Even though

the pulses produce perfect adiabatic population transfer at the entry into the medium both

for q = 1 and q = 0.1, in the course of propagation they maintain this ability much longer in

case of q < 1 as compared to the case where q = 1.

Consider now a medium of unequal oscillator strengths such that q > 1. The dynamics

of the transfer process together with the pulse shapes for this case is shown in Figs. 3.13 and

3.14 for q = 10. It is seen that the population transfer process in the medium is less efficient

compared to the cases q = 0.1 and q = 1. Indeed, by comparing Figs. 3.10(a), 3.12(a) and
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Figure 3.11: The dynamics at the input face of the medium with unequal coupling constants,
q = 0.1. Top left: propagating fields; top right: projections of the state vector |Φ〉 onto
dressed b1, d; bottom left (projection on the state |b2〉 is negligible): atomic state populations;
bottom right: mixing angles θ and ψ.

3.14(a) one can see that while for q ≤ 1, at the propagation length qszNT = 7, the population

transfer works quite well, in case of q = 10 the efficiency of the transfer already at this length

is far from perfect (∼ 25%). So, in this case, in the course of propagation in the medium,

the adiabaticity breaks down rather quickly, and both pulses undergo severe reshaping and,

consequently, loose their capacity to produce an effective population transfer. Hence, the

case q > 1 is more harmful to the transfer process than that of q ≤ 1. In conclusion to

this subsection one can see that the pulse dynamics depends on the ratio of the oscillator

strengths as they characterize the speed of energy transfer from the pulses to the medium

and vice-versus.
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Figure 3.12: The same dynamics as in Fig. 3.11 but at the propagation length: (a) qszNT =
7. The efficiency achieved for population transfer is 100%; (b) qszNT = 20. The efficiency
achieved for population transfer is 87.5%.
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Figure 3.13: The dynamics at the input face of the medium with unequal coupling constants,
q = 10. Top left: propagating fields; top right: projections of the state vector |Φ〉 onto
dressed |b1〉, |d〉 (projection on the state |b2〉 is negligible); bottom left: state populations;
bottom right: mixing angles θ and ψ.

3.3.6 Analytical solutions

We now focus our attention on approximate analytical solutions that give an explanation for

the above numerical results.

By combining Maxwell and Schrödinger equations and differentiating the phase equations

(3.22c) and (3.22d) with respect to time we obtain the following system of equations for the

Rabi frequencies Ωp,s and the one-photon detunings ∆p,s

∂Ω2
p

∂z
= qpN

∂

∂τ
|a1|2, (3.25a)

∂Ω2
s

∂z
= qsN

∂

∂τ
|a3|2, (3.25b)
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Figure 3.14: The same dynamics as in Fig. 3.13 at the propagation length: (a) qszNT = 7.
The efficiency achieved for population transfer is 25%; (b) qszNT = 20. The efficiency
achieved for population transfer is 34%.
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∂∆p

∂z
= qpN

∂

∂τ

Re(a∗
1a2)

Ωp

, (3.26a)

∂∆s

∂z
= qsN

∂

∂τ

Re(a∗
3a2)

Ωs

. (3.26b)

Equations (3.26) describe the change in carrier frequencies of the pulses during propagation

in a non-linear medium due to the parametric broadening of the pulse spectrum (phase-self

modulation).

In the process we are concerned with, the population of the level |1〉 decreases
(

∂|a1|2/∂τ < 0
)

,

while that of the third level increases
(

∂|a3|2/∂τ > 0
)

. Hence, the intensity of the pump

pulse decreases proportionally to qp, and that of the Stokes one increases proportionally to

qs. Choosing a medium with a small value of q = qp/qs, we slow down the process of pump

pulse depletion (but not the process of Stokes pulse amplification), so one would expect to

extend the population transfer process up to longer propagation lengths for such media.

From Eqs. (3.25) we obtain immediately the following equation of motion for the total

photon number density n =
(

Ω2
p

qp
+ Ω2

s

qs

)

, since the system is conservative (|a1|2+|a2|2+|a3|2 =

1):

∂n

∂z
= −N

∂|a2|2
∂τ

. (3.27)

According to this equation, the total photon number density n(z, τ) during the propagation

of the pulses in the medium is not conserved if the intermediate level |2〉 is populated, i.e. a

part of the energy of the pulses is transferred to the medium.

We introduce now a quantity Q =
Ω2

n
that we call two-photon transition strength (similar

to qp,s = Ω2
p,s/np,s) defined as

Q =
qsqp

qs sin2 θ + qp cos2 θ
. (3.28)

Note that in the case of equal oscillator strengths (qp = qs = q) Q = q, while for qp 6= qs Q is

a function of both time and propagation length Q = Q(z, τ).

From Eqs. (3.25) and (3.28), using the adiabatic approximation along the eigenstate |b1〉

[see Eq. (3.18)] and the definition of the two-photon detuning, we arrive at the following
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system of propagation equations for n and δ

∂n

∂z
+

N∆pQ

(∆2
p + 4nQ)3/2

∂n

∂τ
= − Nn∆p

(∆2
p + 4nQ)3/2

∂Q

∂τ
, (3.29)

∂δ

∂z
=

2(qp − qs)

∆p

∂n

∂z
. (3.30)

As can be seen from these equations, the evolution dynamics of both, n and δ, during the

pulse propagation in the medium is clearly dependent on the ratio of qp and qs. Indeed, in

case of equal transition strengths (qp = qs) the condition of two-photon resonance (δ = 0)

is kept automatically. However, for unequal oscillator strengths (qp 6= qs), the two-photon

detuning δ is affected by the evolution dynamics of n(z, τ), and the condition of two-photon

resonance can be broken during the propagation of the pulses in the medium. So, self-phase

modulation can start to develop as the pulses propagate inside the medium leading to a

change in the spectra of both pulses, and consequently to the destruction of the bright state

|b1〉.

However, the analysis of Eq. (3.29) shows that
∂n

∂z
∼ 0 at the propagation length satisfying

the condition

∆pQN

(∆2
p + 4nQ)3/2T

z ≪ 1, (3.31)

which at large one-photon detunings reduces to

QN

∆2
pT

z ≪ 1. (3.32)

Under this condition the two-photon resonance is preserved:
∂δ

∂z
≈ 0. Condition (3.32) is

similar to that of the generalized adiabaticity for a simple two-level system when replacing

the two-photon oscillator strength by a one-photon oscillator strength.

Note that when deriving Eq. (3.30) we neglected the time dependence of the one-photon

detuning ∆p which is valid for large initial values of this parameter and at the propagation

lengths satisfying the condition (3.32).

Thus, provided that one remains in the regime given by the condition (3.31), the conser-

vation law of the total photon number density is guaranteed in case of different transition
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strengths, i.e. n(z, τ) = n0(τ), and one can neglect small deviations from the two-photon

resonance condition.

In case of equal oscillator strengths (qp = qs) the dynamics of the photon number density

n in a medium coincides with that of the generalized Rabi frequency Ω and is studied in [153].

As shown in this subsection, the photon number density n propagates in a medium with a

non-linear group velocity less than c. In this case the condition (3.31) means that the group

delay in the medium is negligibly small.

3.3.7 Equations and solutions for the mixing angle θ: superluminal

population transfer.

As seen from the numerical study performed in Sec. 3.3.3, the mixing angle θ(z, τ) appears

to be the key dynamical parameter in the interaction between the atoms and the fields. In

order to follow the propagation dynamics of the angle θ(z, τ) we will derive an evolution

equation for θ(z, τ).

Using the definitions of θ, Ω and Q, we obtain the following expressions for Ω2
p,s

Ω2
p(z, τ) = nQ(θ(z, τ)) sin2(θ(z, τ)), (3.33a)

Ω2
s(z, τ) = nQ(θ(z, τ)) cos2(θ(z, τ)). (3.33b)

A suitable combination of Eqs. (3.25) and (3.33), yields the desired evolution equation for

θ(z, τ) :

sin 2θ(z, τ)

[

∂θ(z, τ)

∂z
− qpqsN

Q2(θ(z, τ))

cos2 ψ

n0

∂θ(z, τ)

∂τ

]

= 0. (3.34)

This equation is a central equation of our study that helps to understand the main properties

and limitations for population transfer process during propagation in a medium.

For simplicity we consider the case of large one-photon detunings (∆pT ≫ 1) where

cos2 ψ ∼ 1. In this case Eq. (3.34) can be solved analytically by the method of characteristics

as in Ref. [148], and the solution reads

θ(z, τ) = θ0(ξ), (3.35)
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where θ0(ξ) ≡ θ(z = 0, τ = ξ) is the function given at the medium entrance, z = 0. Here

ξ(z, τ) is an implicit function governing the nonlinear propagation of the pulses and deter-

mined from the following integral equation

∫ ξ

−∞

n0(τ
′)dτ ′ =

∫ τ

−∞

n0(τ
′)dτ ′ +

qpqs

Q2(ξ(z, τ))
Nz. (3.36)

Equation (3.36) defines the ”nonlinear” time ξ = τ − z/u(z, τ) with u(z, τ) being the ”non-

linear” velocity at which the mixing angle θ propagates. As seen from this equation, at the

medium entrance (z = 0) ξ = τ , while inside the medium (z 6= 0) the nonlinear time ξ is

larger than τ : ξ > τ = t − x/c. This means that the mixing angle θ(z, τ) propagates with a

velocity exceeding the light speed in vacuum c, i.e. superluminally.

3.3.8 The adiabaticity criterion

The obtained analytical result (3.35) relies on the adiabaticity condition (3.23) requiring

the energy spacing between the eigenvalues to be much larger than the dynamic coupling

term (given by θ̇) which ensures the adiabatic following of the bright state |b1〉 during the

propagation of the pulses. Let us see whether the adiabaticity condition satisfied at the

medium entrance remains valid in the course of propagation.

With propagation effects taken into account, the time derivative θ̇ takes the form dθ0/dτ =

(dθ0/dξ)∂ξ/∂τ . So, even though we impose at the medium entrance a small derivative dθ0/dξ,

the adiabaticity condition can break down, since during the propagation process the derivative

∂ξ/∂τ can become considerably large. Indeed, differentiating Eq. (3.36) with respect to τ ,

we obtain for the derivative ∂ξ/∂τ

∂ξ

∂τ
=

n0(τ)

n0(ξ)
A−1, (3.37)

with

A = 1 − 2(qs − qp)

Ω2
0(ξ)

Nz
dθ0(ξ)

dξ
sin 2θ, (3.38)

where Ω0(ξ) is the function given at the medium entrance, z = 0. As seen from the obtained

equation, at small values of A the derivative ∂ξ/∂τ becomes large leading to the violation
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of the adiabaticity condition. The adiabaticity condition is satisfied if A > 1, namely under

the following condition

(qs − qp)
dθ0

dξ
sin 2θ0 6 0. (3.39)

In particular, for a medium with equal transition strengths (qs = qp) we have A = 1. For

an intuitive pulse sequence the angle θ changes from π/2 to 0, so the derivative dθ0(ξ)
dξ

6 0

throughout the interaction. Hence, in the case where qs > qp the factor A is always more

than 1, and consequently, the adiabaticity condition in principle never breaks down during

the propagation process. In the opposite case of qs < qp, at the propagation lengths defined

by the following condition

z ≈ − Ω2
0T

2(qs − qp)
, (3.40)

the factor A → 0, and consequently ∂ξ/∂τ → ∞ (θ̇ → ∞). The condition qs < qp means

that the probability of the transition |1〉 → |2〉 is greater than that of the transition |2〉 → |3〉

and, thus, the population transfer |1〉 → |2〉 dominates the depletion of level |2〉, i.e., the in-

teraction adiabaticity breaks down, and the state |b1〉 does not carry the dynamics anymore.

Thus, the generalized condition for the interaction adiabaticity is very sensitive to the

ratio of the transition strengths on the adjacent transitions. Note that the increase in the

derivative ∂θ/∂τ during the propagation process (i.e. increase of the influence of supera-

diabatic corrections) is a property of media consisting of atoms with nonequal transition

strengths.

The above arguments are illustrated in Fig. 3.15 presenting the time evolution of the

mixing parameter θ(z, τ) as given by Eq. (3.36) for different values of the parameter q at the

propagation length qszNT = 20. Identifying the slope of θ as the measure of nonadiabaticity,

we can see from this figure that the evolution of the mixing parameter is more adiabatic in

the case where q = 0.1 (dashed curve), while for q = 14 (full curve) the slope becomes steeper

in the course of propagation, implying that the adiabaticity condition breaks down. So, the

population transfer process is more stable against the nonadiabaticity caused by nonequality

of coupling constants in case of qp 6 qs.

The analytical solution given above is valid in the region where both pulses overlap, and
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Figure 3.15: Time evolution of the mixing parameter θ for different relationships between
qp and qs : q = 0.1 (dashed curve), and q = 14 (full curve) at the propagation length
qszNT = 20. The dotted line corresponds to the case where θ̇ → ∞, i.e., when the adiabatic
approximation breaks down.

where the two-photon resonance is physically significant. The overlapping region is defined

by ΩpΩs = Ω2 sin 2θ 6= 0. Note that outside the overlapping region where Ω → 0, even for an

isolated atom the adiabaticity condition (3.23) can not be satisfied.

3.3.9 Population transfer in the adiabatic limit

We now investigate the possibility of a complete population transfer during the pulse prop-

agation in the medium in the adiabatic limit. In this limit the population of the final level

evolves as

P3(z, τ) = cos2 ψ(z, τ) cos2 θ0(ξ(z, τ)). (3.41)

Taking cos2 ψ ∼ 1 (which is valid for large single-photon detunings), we see that a complete

population transfer in the medium at a given propagation length z occurs when θ0(ξ) = 0

which is realized at the times ξ(z, τ) → ∞. Setting ξ(z, τ) equal to ∞ in the analytical
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Figure 3.16: The maximal propagation length zmax(τ) (≡ qszmaxNT ) as given by Eq. (3.43)
for different relationships between qp and qs: q = 0.5 (dashed curve), q = 1 (dotted curve)
and q = 5 (full curve). The curves delimit the regions where the analytical solution obtained
can be applied.

solution (3.36), we can obtain from the curve z(τ) defined from the following equation

∫ ∞

τ

n0(τ
′)dτ ′ = (qp/qs)Nz(τ), (3.42)

a set of points (located on z(τ)) at which the population transfer is complete. The question

is whether for each given value of z there exists τ such that Eq. (3.42) is satisfied. As one

can see, at the medium entrance (z = 0) a complete population transfer is realized at the end

of the interaction (τ → ∞), while for atoms located at z 6= 0, a complete transferral process

occurs at earlier times τ (before the interaction is switched off). As compared to an isolated

atom, the population transfer process via b-STIRAP in a medium is a faster process, that

is, a superluminal population transfer, as long as the distortion of the pulses do not prevent

adiabatic passage.

In principle, Eq. (3.42) leads to the maximal propagations length zmax defined by the
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equation
∫ ∞

−∞

n0(τ
′)dτ ′ = (qp/qs)Nzmax, (3.43)

beyond which population transfer cannot occur. This means in terms of energy that popula-

tion transfer can in principle lasts until the transfer process uses all the photons available in

the pulses.

Figure 3.16 shows the normalized value of zmax as given by solution (3.43) for different

values of the ratios between qp and qs. The analytical solution obtained can not be applied

beyond the regions delimited by the presented curves. Besides condition (3.31), we thus

obtain a second limitation on propagation lengths at which our solution is valid.

The physical meaning of the maximal propagation length zmax given by Eq. (3.43) be-

comes more clear in case of equal oscillator strengths. Indeed in this case on the left-hand side

of Eq. (3.43) we have the total number of photons in both pulses Nph passing through the unit

area, and on the right-hand side of this equation we have the total number of atoms Nzmax

interacting with the radiation in the unit area. So, in the completely symmetric case where

the number of photons in the pump and Stokes pulses are equal, it has a trivial meaning:

two photons correspond to each atom of the medium where the population transfer occurs

at a two-photon resonance. In the asymmetric case, considered in the present subsection, we

have an ”effective photon number” given by

(qp/qs)Nph = Natoms. (3.44)

As follows from the above theoretical analysis, for small propagation lengths at which

pulse deformations are still negligible, the population transfer process does not differ from

that of an isolated atom. However, at large propagation lengths the population transfer

process becomes faster. The transfer process is restricted up to certain propagation lengths

determined from the conditions (3.31) and (3.43) that should be met for a successful trans-

fer. In case of qp/qs > 1 there is an additional limitation on the propagation length given by

the adiabaticity condition (3.40). The propagation length zmax [as given by Eq. (3.43)] at

which a complete population transfer is possible in a medium is the smallest length among

those defined by the conditions (3.31) and (3.40). To estimate propagation distances z, we
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consider a set of parameters relevant to a typical alkali atom vapor: N = 1013 atoms/cm3,

ω = 1015 s−1, d ≃ 0.8 × 10−17 SGS units, T = 10−9 s. Estimations show that qszNT = 1

corresponds to z ≈ 0.05 cm. For a medium with q = 0.5 an efficient b-STIRAP transfer is

possible, in principle, up to z = 300 cm, while for q = 5 it is limited up to z = 13 cm.

3.4 Summary

1. We studied the entanglement and statistical properties of three atoms, coupled by

means of a dipole-dipole interaction induced by a single cavity mode. The properties

of the system are described by the Dicke model in the so-called dispersive limit. We

pointed out the strong relation of the present model to problems of frustrated mag-

netism and the relative simplicity of the interaction strength tunability, what is rather

complicated in the case of solids.

2. We considered the entanglement critical properties, namely, the critical temperature

and transition eigenfrequency values, corresponding to vanishing of entanglement. Ad-

ditionally, two, physically distinct regimes, depending on the sign of the interaction

strength were revealed. We showed that the case of negative coupling strength is more

robust with respect to the entanglement properties.

3. On the other hand, a detailed study of population transfer process via b-STIRAP in

a medium of three-level Λ-atoms with unequal oscillator strengths of corresponding

atomic transitions is performed. The propagation equations describing the dynamics of

the process have been derived and approximate analytical solutions have been obtained.

4. We revealed the sensitivity of the transfer efficiency to the ratio of the oscillator

strengths, q = qp/qs, and pointed out that the transfer efficiency is severely affected in

the case of q > 1 and rapidly decreases with the propagation length. Meanwhile, in

the case of q 6 1, propagating pulses maintain their capacity to produce a complete

population transfer over larger propagation lengths.
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5. The conditions restricting the propagation length at which a complete population trans-

fer via b-STIRAP in a medium occurs are derived.

116





Chapter 4

ENTANGLEMENT DISTILLATION

IN REALISTIC QUANTUM

MEMORIES 1

4.1 Introduction

Efficient distribution of entanglement between distant parties is fundamental to essentially

all practical applications of quantum information science. However, entanglement is fragile

and suffers from decoherence, which is detrimental to the performance of any communica-

tion protocol upon which it relies. Thus, entanglement distillation, which allows to increase

entanglement between communicating parties, becomes vitally important for realization of

most quantum communication protocols. Particularly, continuous-variable entanglement dis-

tillation protocols are currently considered to be relatively easy to implement within existing

technologies. The essential entanglement resource here is provided through Gaussian two-

mode squeezed states, which are relatively easy to produce in the laboratory. These states

are widely used in the realization of several other quantum protocols, including dense coding,

entanglement swapping and others [257–259]. The continuous-variable entanglement distil-

lation protocols [156, 157] circumvent restrictions imposed by the no-go theorem relating to

the distillation of entanglement using only Gaussian local operations and classical communi-

1The results considered in this chapter are published in Ref. [170].
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cation [260–262]. Namely, the proposed procedure offers a complete distillation of Gaussian

states to (asymptotically exact) Gaussian states, but via non-Gaussian territory. Implemen-

tation of some elements of the scheme has already been reported [263–266], though a full

demonstration is still lacking. This is due to demanding technical specifications [267] and

the exponential resource requirements of the protocol. The “de-Gaussification” of the initial

state plays a crucial role in this protocol and can be achieved by subtracting a photon from

the initial state. Note that this process itself can increase the entanglement in the state. Dif-

ferent strategies for enhancing quantum entanglement in continuous-variable systems within

this technique have been found [268].

A continuous-variable entanglement distillation protocol using quantum memories was

recently proposed in Ref. [158]. This scheme uses the same space for both Gaussification and

“de-Gaussification”. Moreover, it has doubly-exponential temporal and exponential spatial

advantage over the earlier procedures. This compact protocol involves only four quantum

memories, allowing one to store results from previous iterations while the subsequent ones

succeed [269], bringing about an exponential advantage in time. Additionally, one can re-

peatedly perform probabilistic operations on the same copy of a quantum state, without

starting the whole process anew as in the case of a failure of a probabilistic local operation.

Another resource-saving comes from the asymmetric Gaussification procedure: in contrast

with earlier schemes, where two identical states are used, in the present protocol one operates

on a fixed resource state and a distinct current state. This approach results in an additional

exponential saving in time (we provide more details on this later). Note that another Gaussi-

fying scheme, which circumvents the need for a growing memory, was proposed in Ref. [270].

The protocol, referred to as the pumping Gaussifier, uses a fixed initial state to repeatedly

pump a target state and results in the same output as an analogous recursive protocol.

In the present chapter we address the question of how a realistic quantum memory affects

the performance of the original compact continuous-variable entanglement distillation proto-

col discussed above. Note that the decoherence dynamics (loss) we are interested in does not

alter the Gaussian character of the state [271], and can be considered as a Gaussian channel.

The approach that we use here for incorporating the dissipation dynamics is based on the

so-called beam splitter model for losses. The latter considers a quantum memory as a set of
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beam splitters, with a lost reflected mode. The model is applicable in the Markovian limit,

when the system dynamics is much slower than the one of the environment. Note that the

dissipation drives the initial pure two-mode squeezed state to a mixed one. For quantifying

entanglement of such states we use the logarithmic negativity [41,42].

We show that the dissipation can modify strongly the preparatory “malting” step of the

protocol [158], which consists in de-Gaussifying the initial two-mode squeezed state (dis-

tributed over two quantum memories), by retrieving a single photon from the quantum state

stored in a memory. The spin-wave-type excitations of the quantum memories we are con-

sidering are similar to optical phonons in condensed matter systems, and so we refer to this

operation as “phonon subtraction”. Particularly, we point out that one may not find en-

tanglement increase after de-Gaussifying the initial state, which is not the case in a perfect

memory. This effect puts additional constraints on the memory time-bandwidth product

and the subtraction probability, which, however, do not complicate much the experimental

realization of the protocol. We also show that high values of the average entanglement of the

output state can be achieved by increasing the subtraction strength.

4.2 A beam splitter model for losses in a quantum

memory

Consider an arbitrary two-mode density matrix, represented in the number basis |n〉 by

coefficients pn,m,k,l (subscripts A and B differentiate the modes):

ρ =
∞

∑

n,m,k,l=0

pn,m,k,l|n〉A ⊗ |m〉B〈k|A ⊗ 〈l|B. (4.1)

We are interested in modeling losses of such a state, when the latter is distributed over

two quantum memories. For that we use a beam splitter model for losses, i.e., we consider

the quantum memory as a set of beam splitters, with the state ρ and a two-mode vacuum

|0〉A ⊗ |0〉B as inputs (Fig. 4.1). In the present model the reflected mode accounts for the

loss.
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{
m

Figure 4.1: The beam splitter model for losses (schematically). Decoherence within a quan-
tum memory is modeled as a set of m beam splitters with a state ρ and a two-mode vacuum
|0〉A ⊗ |0〉B as inputs.

A beam splitter has two input modes a1 and a2, and implements the transformation





a′
1

a′
2



 = U





a1

a2



 (4.2)

with

U =





t r

−r t



 , (4.3)

where t2 and r2 are, respectively, the transmissivity and reflectivity: t2 + r2 = 1 (hereafter

we refer to t and r as simply the transmissivity and reflectivity). Thus, mixing a two-mode

vacuum |0〉A ⊗ |0〉B and the state (4.1) on a beam splitter, one obtains the output state

ρ′
out =

∞
∑

n,m,k,l=0

n,m,k,l
∑

K=0

pn,m,k,lAn,k1(t)Am,k2(t)Ak,k3(t)Al,k4(t)|n − k1, k1〉A|m − k2, k2〉B (4.4)

×〈k − k3, k3|A〈l − k4, k4|B,

with K = {k1, k2, k3, k4} representing the indices,

Aqq′(t) =

√

√

√

√

√





q

q′



tq−q′rq′ (4.5)
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and





q

q′



 are the binomial coefficients. The next step in the beam splitter model for losses

is the trace out operation over the reflected (lost) mode, which yields

ρ
(1)
out =

∞
∑

n,m,k,l=0

min(n,k)
∑

k1=0

min(m,l)
∑

k2=0

pn,m,k,lAn,k1(t)Am,k2(t)Ak,k1(t)Al,k2(t)|n − k1〉A|m − k2〉B (4.6)

×〈k − k1|A〈l − k2|B.

Hereafter, the superscript of the output state labels the number of loss events (beam splitters)

that the initial state has undergone. Note that photons may or may not be lost at each loss

event, but purity of the state decreases after each loss event. The general expression (4.6)

can be used iteratively, considering the output state of the ith beam splitter as an input for

the (i + 1)th one. Note, that the transmissivity t can be also related to the time-bandwidth

product τ of a quantum memory: τ = 1/(1 − t2). Below we use the latter quantity, since it

is a more convenient parameter for characterizing a memory: it determines the number of

iterations that can be executed within the coherence lifetime of the memory.

In the present work, we are mainly interested in a two-mode squeezed state ρTMSS =

|ΨTMSS〉〈ΨTMSS|

|ΨTMSS〉 =
√

1 − λ2

∞
∑

n=0

λn|n〉A|n〉B, (4.7)

where λ is the squeezing parameter (for the compact distillery protocol [158], |n〉 corresponds

to the number of phonons in the matter mode). Using Eq. (4.6), after one loss event for this

particular input state we obtain

ρ
(1)
out = (1−λ2)

∞
∑

n,n′=0

λn+n′

N
∑

k,k′=0

An,k(t)An,k′(t)An′,k(t)An′,k′(t)|n−k〉A|n−k′〉B〈n′−k|A〈n′−k′|B,

(4.8)

where N = min(n, n′). After m loss events, a two-mode squeezed state is mapped into
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ρ
(m)
out = (1 − λ2)

∞
∑

n,n′=0

λn+n′

min(n,n′)
∑

k1,k′
1=0

min(n−k1,n′−k1)
∑

k2,k′
2=0

...

min(n−k1−k2−...−km−1,n′−k1−k2−...−km−1)
∑

km,k′
m=0

An,k1(t)An,k′
1
(t)An′,k1(t)An′,k′

1
(t)An−k1,k2(t)An−k′

1,k′
2
(t)An′−k1,k2(t)An′−k′

1,k′
2
(t)

× An−k1−k2−...−km−1,km
(t)An−k′

1−k′
2−...−k′

m−1,k′
m
(t)An′−k1−k2−...−km−1,km

(t) (4.9)

×An′−k′
1−k′

2−...−k′
m−1,k′

m
(t)|n − k1 − ... − km〉A|n − k′

1 − ... − k′
m〉B

〈n′ − k1 − ... − km|A〈n′ − k′
1 − ... − k′

m|B.

Although, this formula is analytical, it is not convenient for quantitative analyzes. Thus in

what follows, we use the recursive approach, based on Eq. (4.6).

4.3 Malting step with losses

In this section we show how the losses affect the preparatory (malting) step of the original

compact distillery protocol, described in Ref. [158]. The malting procedure results in a non-

Gaussian output state, prepared from an initial two-mode squeezed state (4.7). Namely, the

latter undergoes a non-Gaussian operation of a phonon subtraction from each of the modes,

which can be achieved by sending in weak control pulses and detecting the emission of a

photon at the output. The quantum memories we are considering are based on Raman in-

teractions in atomic ensembles, where light can be stored into a material excitation (phonon

mode) and retrieved from it on-demand, by the application of ancillary “control pulses” that

drive the Raman scattering. There is a formal correspondence between the Raman inter-

action, which couples optical and material modes, and a standard beam splitter interaction

between two optical modes [272]. Making use of this analogy, we are able to implement

phonon subtraction by applying a weak control pulse to the memory, which partially re-

trieves the stored excitation onto a photon detector. This is equivalent to placing a highly

transmissive beam splitter in the path of an all-optical state, and reflecting a small portion

of it towards a detector, which is the standard procedure for photon subtraction [264].

Here we assume that a discrete loss event occurs between two consecutive phonon subtrac-

tion attempts. More precisely, malting starts with one loss event, followed by an attempt of
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a phonon subtraction on both arms. If the attempt was not successful on either of the modes

(i.e. if a vacuum detection took place on both arms), another loss event happens, followed by

a consecutive phonon subtraction attempt, and so on. When one detects a phonon at one of

the arms, it is left to undergo subsequent loss events, with loss and vacuum detection taking

place on the other mode, until a successful phonon retrieval [Fig. 4.2(a)]. The non-Gaussian

output state is considered to be ready when phonons have been subtracted from both modes.

Figure 4.2: (a) Malting step with losses. The initial two-mode squeezed state ρTMSS undergoes
phonon subtraction attempts (achieved by sending in weak control pulses, which implement
the beam splitter interaction, and by detecting the emission of a photon at the output), with
interstitial loss events (modeled by a beam splitter model for losses). The state is considered
to be ready (malted), when phonons have been retrieved from both modes. The left hand
side shows the scheme with memories, and the right hand side shows the all-optical analog.
(b) Mashing step. At the ith iteration of the mashing step a state ρ0 is mapped into the
memories containing the state ρi, with vacuum detected in the transmitted modes. This is
equivalent to the all-optical scheme shown on the right, where the states are interfered on
beam splitters with subsequent vacuum detection.

If a given state (4.1) undergoes a detection of q phonons by an ideal number-resolving

detector, the unnormalized output state reads

ρ′
sub =

∞
∑

n,m,k,l=0

An,q(ts)Am,q(ts)Ak,q(ts)Al,q(ts)

×|n − q〉A|m − q〉B〈k − q|A〈l − q|B, (4.10)

where ts stands for the transmissivity of the subtraction beam splitter interaction. The trace

of ρ′
sub gives the probability of a detection of q phonons, and the normalized output state

reads ρsub = ρ′
sub/Tr (ρ′

sub). In the present protocol we deal only with vacuum detection
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(q = 0) and a single phonon subtraction (q = 1).

For quantifying entanglement we use the logarithmic negativity, defined as

N(ρ) = log2

∣

∣

∣

∣ρTA
∣

∣

∣

∣ , (4.11)

where
∣

∣

∣

∣ρTA

∣

∣

∣

∣ is the trace norm of the partial transposed ρTA of a bipartite density matrix

ρ [41,42].
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Figure 4.3: Logarithmic negativity N(ρ) of a two-mode squeezed state (4.7), versus discrete
time step (memory clock-cycle) m, for λ = 0.1 (full curves), λ = 0.15 (dashed curves) and λ =
0.2 (dot-dashed curves). The state undergoes m vacuum detections with τ = 1/(1−t2) = 100,
ts = t (upper curve of each block); the state undergoes m losses with τ = 1/(1 − t2) = 100,
ts = t (middle curve of each block); the state undergoes m losses and vacuum detections with
τ = 1/(1 − t2) = 100, ts = 0.99 (lower curve of each block).

In Fig. 4.3 we show how the entanglement [quantified by N(ρ)] of a two-mode squeezed

state (4.7) evolves in a discrete time scale if either vacuum detection or loss or both occur.

The curves start from a point corresponding to the amount of entanglement of a two-mode

squeezed state: N(ρ) = log2
1+λ
1−λ

. As expected, in all of these three cases the entanglement

decreases exponentially versus time. However, for equal values of t and ts the loss affects

the rate of decrease more than the vacuum detection. When combined together, these two

effects bring about a steeper slope.

Note that in an ideal memory one finds an increase of entanglement even after a phonon

subtraction on only one arm. However, as we show below, this is not the case if losses are

taken into account. Figure 4.4 shows the evolution of entanglement versus the memory clock-
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cycle m. Although here we suppose that the phonon subtraction happens at a fixed step on

each arm (mA = 15, and mB = 20), the picture remains qualitatively the same for any values

of mA and mB.
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Figure 4.4: Logarithmic negativity N(ρ) of a two-mode squeezed state (4.7), versus discrete
time step (memory clock-cycle) m, for λ = 0.1, ts = 0.99 and different values of τ = 1/(1−t2):
τ = 100, 80, 50, 40, 20, 10 from the upper to the lower curve. The phonon subtraction occurs
at mA = 15 on the mode A, and at mB = 20 on the mode B.

Additionally, as one finds here, the smaller τ is, the less benefit of entanglement increase

we get. In other words, the decoherence damages the initial state, driving its properties away

from that of a two-mode squeezed state. Furthermore, for extremely low values of the time-

bandwidth product, one does not achieve any entanglement increase through a successful

malting step. In this case the distillation attempt can be considered to be ineffective. In

the next section we return to the question of the possible number of phonon subtraction

attempts.

Obviously, the phonon subtraction is a probabilistic process. Thus, it is of interest to

study the behavior of the probability Pij of a phonon subtraction, depending on i and j,

i.e., on the index number, at which a detection occurs on the arms A and B respectively.

The success probability is given by the trace of the matrix ρ′
sub in Eq. (4.10), with q = 1.

In Fig. 4.5 we show the matrix Pij. It is symmetric, which confirms the symmetry of the

distillation protocol with respect to the modes A and B. Secondly, the probability Pij

decreases exponentially with i and j. Thus, most probably the two-mode squeezed state is

malted at the first attempt, which additionally guarantees the least amount of entanglement
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loss due to decoherence.
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Figure 4.5: The matrix Pij of probabilities of a phonon subtraction at ith and jth step on
the first and second arms respectively. Here λ = 0.1, τ = 1/(1 − t2) = 100 and ts = 0.99
(i, j = 1, ..., 20).

4.4 Mashing step and the full distillation protocol

After the initial two-mode squeezed state has been malted in two pairs of quantum memories,

one proceeds to the iterative mashing step. The resource state obtained through malting is

denoted here by ρ0. Note that the Fock decomposition of the state ρ0 retains its original

Fock space structure in the ideal distillery protocol. However, when losses are taken into

account, the Fock decomposition of ρ0 is not similar to that of the two-mode squeezed state:

the decoherence damages its original structure.

In brief, the mashing step involves the following operations. In the first step of its iteration,

two copies of the state ρ0 are combined on two 50/50 beam splitters. In the case that each

party detects vacuum on one of the emerging modes from each beam splitter, the resultant

state in the other two modes is ρ1. Next, ρ1 is interfered with a fresh copy of ρ0 to produce

ρ2 upon a vacuum detection, and so on. At stage i of the protocol, we combine ρi with ρ0

on beam splitters and detect vacuum, to produce the state ρi+1 [Fig 4.2(b)]. This iterative
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procedure can be expressed as

ρi+1 = 〈0A1| ⊗ 〈0A2|(UA1A2
⊗ UB1B2

)(ρA2B2
i ⊗ ρA1B1

0 )(U †
A1A2

⊗ U †
B1B2

)|0A1〉 ⊗ |0A2〉, (4.12)

where A1, A2, B1 and B2 distinguish the four memories used in the protocol and the matrices

U correspond to 50/50 beam splitters.

In the above described scheme of the mashing step we do not take into account the

decoherence affecting a state ρi, while it awaits new states to malt. Although being an

approximation, this assumption keeps the calculations simple, still providing a good insight

into the effects of losses of the protocol. Additionally, as shown below, a large part of the

possible entanglement increase comes from the malting step. Thus one can consider the above

simplification as a good starting point aimed towards the understanding of loss effects in the

present distillation protocol.
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Figure 4.6: The negativity N(ρ) versus the full distillation protocol clock-cycle number m for
λ = 0.1, 0.2, 0.3, 0.4 from the lower to the upper block of three curves. Here, τ = 1/(1− t2) =
100 and ts = 0.99, 0.98, 0.96 from the upper to the lower curve of each block of the same
color. The phonon subtraction occurs at mA = 1 and mB = 10. The full curves correspond
to the malting step, while the dashed ones stand for mashing.

In Fig. 4.6 we show how the full distillation protocol modifies the entanglement properties

of an initial two-mode squeezed state. Firstly, we find that the above mapping, transforming

ρi to ρi+1, converges to its fixed point after quite a small number of iterations. Secondly,

the mashing step does not increase the entanglement of a malted state by very much for low
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values of the squeezing parameter. Meanwhile, its impact becomes significant for relatively

high values of λ.

In Fig. 4.6 we have fixed the number of attempts after which a successful phonon subtrac-

tion occurs. However, as already mentioned in the previous section, a long storage in a lossy

memory during the malting step can result in an absence of a positive entanglement gain.

For moderate amount of losses in a memory, this corresponds to a relatively large number of

unsuccessful subtraction attempts. It is of interest to consider the latter’s threshold number,

after which the protocol should be restarted. More precisely, we are interested in the critical

value mc of subtraction attempts, within which we must succeed if we are to have a gain

in entanglement in the full distillation protocol. Here we propose two possible definitions of

this quantity:

1. mc is the critical number of simultaneous detection attempts on both arms

2. mc is the critical number of subtraction attempts on one of the arms, when the index

mi (i = A,B) of a successful attempt on the opposite arm is considered to be fixed.

Below we study the second option. Additionally, we assume that a successful phonon

subtraction on one of the arms occurs at the first clock-cycle. The reason for this choice is

that it leads to a maximal entanglement gain and has the highest probability. Note that this

option is still symmetric, in a sense that the value of mc does not depend on whether it is

obtained at a fixed mA or mB.

Figure 4.7 shows how the above defined quantity mc depends on the transmissivity ts. We

find that there exists a critical value tcs such, that if ts < tcs, one does not have any increase

of entanglement through the distillation protocol, even if the state was malted at the very

first phonon subtraction attempt. Our calculations show that tcs ≈ 0.7 for a wide range of

parameters τ and λ. This condition puts a constraint on the experimental realization of the

subtraction beam splitter interaction transmissivity t2s: it should be not less than ∼ 50%.

On the other hand, for moderate values of ts, the critical mc properties of the protocol does

not differ much with respect to changes in the time-bandwidth product τ . The difference

becomes significant for values of ts close to one. Note that the quantity mc additionally
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Figure 4.7: The critical number of phonon subtraction attempts mc, versus transmissivity ts
for (a) λ = 0.1 and (b) λ = 0.2. A successful subtraction on the first arm is considered to
occur at the first clock cycle. Here, τ = 1/(1− t2) = 100 (blue curve), 1000 (red curve), and
10000 (green curve).

contains the memory lifetime property. Namely, mc does not increase infinitely: its upper

bound value mu
c is of the order of the time-bandwidth product τ (mu

c ∼ τ).

As an additional measure of the efficiency of the protocol, which incorporates its proba-

bilistic nature, we consider the average entanglement rate 〈E〉. We define it using the above

discussed quantity mc:

〈E〉 =
mc
∑

j=1

P f
mA,jNf (ρ), (4.13)

where P f
i,j corresponds to the joint probability of detecting a phonon at ith and jth attempts

(on arms A and B respectively), with a consequent success probability of a vacuum detection

in the mashing step. The quantity Nf (ρ) stands for the negativity of the final state at the

output of the distillery. Here we put an additional constraint on the phonon subtraction on

arm A: we assume that it occurs at the first step, i.e., mA = 1. Additionally, we truncate

the sum in Eq. (4.13) to incorporate the fact that the protocol is restarted if one does not

succeed to malt the initial two-mode squeezed state within mc attempts.

Figure 4.8 shows that one can increase the average entanglement rate by increasing the

subtraction beam splitter interaction transmissivity ts. This is an obvious consequence of

the fact that higher values of ts allow a larger number of subtraction attempts, each of which

contributes to the above defined average entanglement. Note, however, that the limit ts → 1

reduces the probability of a successful malting (time required to finish the malting step tends
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Figure 4.8: The average entanglement rate 〈E〉 defined in Eq. (4.13), versus transmissivity
ts, for λ = 0.1 and mA = 1. Here, τ = 1/(1 − t2) = 100 (blue curve), 1000 (red curve), and
10000 (green curve).

to infinity), which should result in a decrease of the average entanglement for values of ts

sufficiently close to one. One does not find this effect in the above figure, because of the

assumption of a perfect mashing step. The additional entanglement gain due to the increase

of ts compensates the probability decrease.

4.4.1 Possible realization of the protocol within existing technolo-

gies

Here we briefly address the possible realization of the above discussed protocol within existing

technologies. High efficiency photodetectors based on extremely sensitive phase transitions in

superconducting materials are set to enable vacuum detection and photon number resolution

[273, 274]. Several research groups are developing high efficiency quantum memories with

long storage times [275–279], and the formal analogy between the interaction in a Raman

memory and a beam splitter has been demonstrated [280, 281]. Here it was found that a

wide range of beam splitting ratios can be readily achieved, so that the constraints derived

above can be readily satisfied. Moreover, large values for the time-bandwidth product τ have

been demonstrated, exceeding several thousands [282, 283]. We therefore expect that the

entanglement distillery we have modeled here, including realistic losses, will be feasible in

the near term.
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4.5 Summary

1. We adopt the beam splitter model for losses to analyze the performance of a recent

compact continuous-variable entanglement distillation protocol [158] implemented using

realistic quantum memories. We show that the decoherence undergone by a two-mode

squeezed state while stored in a quantum memory can strongly modify the results of

the preparatory step of the protocol.

2. We find that the well-known method for locally increasing entanglement, phonon sub-

traction, may not result in entanglement gain when losses are taken into account. Thus,

we investigate the critical number mc of phonon subtraction attempts from the mat-

ter modes of the quantum memory. If the initial state is not de-Gaussified within mc

attempts, the protocol should be restarted to obtain any entanglement increase.

3. The condition mc > 1 implies an additional constraint on the subtraction beam splitter

interaction transmissivity, viz. it should be about 50% for a wide range of protocol

parameters.

4. We consider the average entanglement rate, which takes into account both the unavoid-

able probabilistic nature of the protocol and its possible failure as a result of a large

number of unsuccessful subtraction attempts. We find that a higher value of the average

entanglement can be achieved by increasing the subtraction beam splitter interaction

transmissivity.

5. We conclude that the compact distillation protocol with the practical constraints com-

ing from realistic quantum memories allows a feasible experimental realization within

existing technologies.
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Conclusion

We conclude by summarizing our main results. The thesis is devoted to the analysis of

problems of quantum information theory and their strong relation to frustrated spin systems

and propagation of light in media. Our conclusions can be summarized as follows.

We considered the recently proposed Ising-Heisenberg model, for investigating entangle-

ment features of some particular compounds, such as the natural mineral azurite

(Cu3(CO3)2(OH)2) and a series of two-dimensional isostructural polymeric coordination com-

pounds Cu9X2 (cpa)6· nH2O (X = F, Cl, Br and cpa=carboxypentonic acid). The magnetic

lattice of the first material is presented by a spin-1/2 diamond chain, while the second one

is described by a triangulated Kagomé lattice. Although being an approximation of a pure

Heisenberg exchange interaction, the Ising-Heisenberg model provides a satisfactory insight

into the main features of these materials. Owing to the separable character of Ising-type inter-

action, we calculated entanglement (quantified by concurrence) for each of quantum clusters

of the materials. The mean-field-like treatment based on the Gibbs-Bogoliubov inequality,

which implicitly takes into account the interaction between quantum triangular clusters, was

additionally applied to the triangulated Kagomé lattice. Here we revealed a strong rela-

tion between the thermodynamic and entanglement properties of the model. Particularly,

we pointed out that the peaks of the magnetic susceptibility correspond to the values of

parameters at which entanglement vanishes. Additionally the entanglement sudden-death

temperature coincides with the second order phase transition point of the system. As for

the diamond chain compound, we studied the ground-state structure of the system in a wide

range of interaction strengths, revealing distinct regimes with qualitatively different quantum

features. The results with respect to these problems were published in [159–162].

We have also considered another, purely classical limit of the Heiseneberg-type interac-
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tion, which results in classical spin models. The main motivation of exploring these models

is their exact solvability in some particular cases. This leads to a possibility of deriving

analytical expressions for thermodynamic quantities of interest. In particular, we looked into

the phase structure of the Q-state Potts and the three-site interaction Ising models on recur-

sive lattices, which are efficient in analysis of a number of magnetic systems. Note that the

Bethe-Peierls approach, which approximates real lattices with hierarchical (recursive) ones, is

more reliable in some cases than the above discussed mean-field treatment. The models were

solved exactly by means of the recursion relation technique, reducing the thermodynamic

properties of a model to the features of rational mappings. The phase structure of the above

models was investigated by detecting bifurcation points of obtained rational mappings. A

particular attention was devoted to the appearance of three-periodic window in chaotic region

of both Potts and Ising models (with antiferromagnetic coupling between lattice nodes). We

pointed out some intrinsic properties here, such as intermittency, occurring at both edges of

the window and a finite number of periodic cycles (modulated phases), confined inside the

window. The corresponding results are presented in [163–166].

Finally, we addressed to systems of interacting atoms and fields, which are also at the

heart of quantum information processing. Particularly, we considered the Dicke model, for

modeling the interaction of three trapped atoms in a cavity, interacting by means of effective

coupling, mediated by the radiation field (the dispersive limit). We pointed out the strong

relation of the model to the problems of frustrated magnetism, and applied similar tools for

investigation of entanglement and thermodynamic properties of the system. Meanwhile, a

crucial difference of the present system is the tunability of the coupling strength, which is

rather complicated in the case of solids. Another important remark here concerns the effect

of the vacuum induced Stark shift, which naturally arises in the problem: it turns out that

this term changes the physical picture drastically.

We also presented a detailed study of population transfer process via b-STIRAP in a

medium of three-level Λ-atoms with unequal oscillator strengths of corresponding atomic

transitions. The propagation equations describing the dynamics of the process were derived

and approximate analytical solutions were obtained. We showed that the population transfer

efficiency is sensitive to the ratio of the oscillator strengths, q = qp/qs, and can be increased
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by a proper choice of this parameter. In particular, we find that the transfer efficiency is

severely affected in case of q > 1 and rapidly decreases with propagation length, while in

case of q 6 1 propagating pulses maintain their capacity to produce a complete population

transfer over larger propagation lengths. Additionally, we pointed out that the transfer can

occur superluminally. The conditions restricting the propagation length at which a complete

population transfer via b-STIRAP in a medium occurs were also derived. The details on

these problems can be found in Refs. [167–169].

In addition, we considered another problem, closely related to the issues of quantum infor-

mation processing and communication: the problem of entanglement distillation in quantum

memories. We modeled the dissipations that a two-mode squeezed state (the initial entan-

glement resource) undergoes while stored in a memory, and showed that losses affect much

the original protocol. Particularly, the preparatory step, aimed towards the de-Gaussification

of the initial two-mode squeezed state, may not result in entanglement increase, although

being a well-known method for locally increasing entanglement in a perfect memory. Thus

we analyzed the constraints on the parameters of the protocol, within which one still gets

an entanglement gain, and showed that the additional restrictions still allow experimental

realization of the discussed scheme. The corresponding results are presented in Ref. [170].

The main results of the thesis were reported at the following conferences: 39th Confer-

ence of the Middle European Cooperation in Statistical Physics - MECO39 (Coventry, UK,

2014) [284], IOTA Workshop on Cold Molecular Ions (Arosa, Switzerland, 2013) [285], Con-

trol of Quantum Dynamics of Atoms, Molecules and Ensembles by Light workshop - CAMEL9

(Nessebar, Bulgaria, 2013) [286], Les 14èmes Journées de l’Ecole Doctorale Carnot Pasteur

(Dijon, France, 2013) [287], 38th Conference of the Middle European Cooperation in Statisti-

cal Physics - MECO38 (ICTP, Trieste, Italy, 2013) [288], Laser Physics (Ashtarak, Armenia,

2011, 2012 & 2013) [289–291], The 7th International Conference Quantum Theory and Sym-

metries (Prague, Czech Republic, 2011) [292], The 19th International Colloquium on Inte-

grable Systems and Quantum symmetries (Prague, Czech Republic, 2010) [293], Workshop on

Principles and Design of Strongly Correlated Electronic Systems (ICTP, Miramare-Trieste,

Italy, 2010) [294], Pseudochaos and Stable-Chaos in Statistical Mechanics and Quantum

Physics (ICTP, Miramare - Trieste, Italy, 2009) [295]. Some parts of the work were discussed
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Université de Bourgogne, France; Oxford University and Coventry University, UK; University

of Florence, Italy.
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[112] L. Jiang, J. M. Taylor, A. S. Sörensen, and M. D. Lukin, ”Distributed quantum com-

putation based-on small quantum registers”, Phys. Rev. A 76, 062323 (2007).

[113] L.-M. Duan and H. J. Kimble, ”Efficient engineering of multiatom entanglement

through single-photon detections”, Phys. Rev. Lett. 90, 253601 (2003).

147



[114] X. B. Zou, K. Pahlke, and W. Mathis, ”Quantum entanglement of four distant atoms

trapped in different optical cavities”, Phys. Rev. A 69, 052314 (2004).

[115] K. Hepp and E. H. Lieb, ”Equilibrium statistical mechanics of matter interacting with

the quantized radiation field”, Phys. Rev. A 8, 2517 (1973).

[116] Y. K. Wang and F. T. Hioe, ”Phase transition in the Dicke model of superradiance”,

Phys. Rev. A 7, 831 (1973).

[117] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, ”Dicke quantum phase tran-

sition with a superfluid gas in an optical cavity”, Nature (London) 464, 1301 (2010).

[118] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, ”Exploring symmetry breaking

at the Dicke quantum phase transition”, Phys. Rev. Lett. 107, 140402 (2011).

[119] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, ”Nonequilibrium quantum phase

transitions in the Dicke model”, Phys. Rev. Lett. 108, 043003 (2012).

[120] B. W. Shore and P. L. Knight, ”The Jaynes-Cummings model”, J. Mod. Opt. 40, 1195

(1993).

[121] G. Ramon, C. Brif, and A. Mann, ”Collective effects in the collapse-revival phenomenon

and squeezing in the Dicke model”, Phys. Rev. A 58, 2506 (1998).

[122] P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

[123] J. G. Peixoto de Faria and M. C. Nemes, ”Dissipative dynamics of the Jaynes-

Cummings model in the dispersive approximation: analytical results”, Phys. Rev. A

59, 3918 (1999).

[124] V. V. Dodonov, W. D. José and S. S. Mizrahi, ”Dispersive limit of the dissipative

Jaynes-Cummings model with a squeezed reservoir”, J. Opt. B: Quantum Semiclass.

Opt. 5, S567 (2003).

[125] S.-B. Zheng, ”One-step synthesis of multiatom Greenberger-Horne-Zeilinger states”,

Phys. Rev. Lett. 87, 230404 (2001).

148



[126] S.-B. Zheng, and G.-C. Guo, ”Teleportation of atomic states within cavities in thermal

states”, Phys. Rev. A 63, 044302 (2001).

[127] S.-B. Zheng, and G.-C. Guo, ”Efficient scheme for two-atom entanglement and quantum

information processing in cavity QED”, Phys. Rev. Lett. 85, 2392 (2000).
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Guérin, ”Theory of the bright-state stimulated Raman adiabatic passage”, Phys. Rev

A 80, 033402 (2009).

[154] Z. Zhao, J.-W. Pan, M.S. Zhan, ”Practical scheme for entanglement concentration”,

Phys. Rev. A 64, 014301 (2001).

[155] P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, N. Gisin, ”Experimental entanglement

distillation and ’hidden’ nonlocality”, Nature (London) 409, 1014 (2001).

[156] D. E. Browne, J. Eisert, S. Scheel, M. B. Plenio, ”Driving non-Gaussian to Gaussian

states with linear optics”, Phys. Rev. A 67, 062320 (2003).

[157] J. Eisert, D. E. Browne, S. Scheel, M. B. Plenio, ”Distillation of continuous-variable

entanglement with optical means”, Ann. Phys. (N.Y.) 311, 431 (2004).

[158] A. Datta, L. Zhang, J. Nunn, N. K. Langford, A. Feito, M. B. Plenio, and I. A.

Walmsley, ”Compact continuous-variable entanglement distillation”, Phys. Rev. Lett.

108, 060502 (2012).

151



[159] N. S. Ananikian, L. N. Ananikyan, L. A. Chakhmakhchyan, A. N. Kocharian, ”Mag-

netic properties and thermal entanglement on a triangulated Kagomé lattice”, J. Phys.

A: Math. Theor. 44, 025001 (2011).

[160] N. Ananikian, L. Ananikyan, L. Chakhmakhchyan and A. Kocharyan, ”Thermal entan-

glement and critical behavior of magnetic properties on triangulated Kagome lattice”,

Acta Polytechnica 51, 7 (2011).

[161] N. S. Ananikian, L. N. Ananikyan, L. A. Chakhmakhchyan, O. Rojas, ”Thermal en-

tanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain”, J.

Phys.: Condens. Matter, 24, 256001 (2012).

[162] L. Chakhmakhchyan, N. Ananikian, L. Ananikyan and Č. Burd́ık, ”Thermal entangle-
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Title: Entangled states and coherent interaction in resonant media.

Abstract: The entanglement features of some solid state materials, as well as of partic-
ular systems of interacting atoms and fields are analyzed. A detailed investigation of the
rich phase structure of low dimensional spin models, describing the natural mineral azurite
(Cu3(CO3)2(OH)2) and copper based coordination compounds [Cu9X2 (cpa)6· nH2O (X = F,
Cl, Br)], has revealed regimes with the most robust entanglement behavior. Using the dynam-
ical system approach, the phase structure of some classical models on hierarchical (recursive)
lattices has been also studied and, for the first time, the transition between chaotic and peri-
odic regimes by means of tangent bifurcation has been detected.

A detailed description of entanglement properties of three atoms trapped in a cavity within
the dispersive limit is presented. A relatively simple tunability of the atomic interaction
strength of the above system and its close relation to the problems of frustrated magnetism
is shown. Furthermore, the propagation effects of two intense laser pulses in a medium of Λ
atoms with unequal oscillator strengths are investigated. Obtained results are crucial in some
problems of quantum information theory, as, e.g., in the analysis of population transfer mech-
anism in media possessing the above properties. Finally, the dissipation effects in a recently
proposed compact continuous-variable entanglement distillation protocol have been analyzed.
Despite additional constraints on the parameters of the protocol, the discussed entanglement
distillation scheme in quantum memories is still possible to implement within emerging tech-
nologies.

Key words: Quantum entanglement; spin-lattice models; bifurcation; chaos; dispersive regime;
adiabatic population transfer; entanglement distillation.

Titre : Etats intriqués et interaction cohérente dans les milieux résonants.

Résumé : Nous analysons les caractéristiques d’intrication de quelques matériaux à l’état
solide ainsi que des systèmes particuliers d’atomes et de champs interagissants. Une étude
détaillée de la riche structure de phase des modèles de spins de basse dimension, décrivant le
minéral naturel d’azurite (Cu3(CO3)2(OH)2) et les composés de coordination à base de cuivre
[Cu9X2 (cpa)6· nH2O (X = F, Cl, Br)], a révélé des régimes à comportement d’intrication
des plus robustes. En utilisant l’approche des systèmes dynamiques, la structure de phase de
certains modèles classiques en réseaux hiérarchiques (récursifs) a aussi été étudiée et, pour
la première fois, la transition entre régime chaotique et régime périodique au moyen de la
bifurcation tangente a été détectée.

Nous présentons une description détaillée des propriétés d’intrication de trois atomes
piégés dans la limite dispersive. Une relativement simple accordabilité de la force atomique
d’interaction de ce système et son étroite relation aux problèmes de frustration magnétique
est démontrée. En outre, les effets de propagation de pulses laser intenses dans un système
atomique de type Λ avec des forces d’oscillateurs différentes sont analysés. Les résultats
obtenus sont d’extrême importance dans des problèmes d’information quantique, comme par
exemple, dans l’analyse du mécanisme de transfert de population dans des milieux ayant les
propriétés définies ci-avant. Enfin, nous avons analysé les effets dissipatifs dans un protocole
de distillation de l’intrication à variable continue récemment proposé. En dépit de contraintes
additionnelles sur les paramètres du protocole, il est encore possible d’implémenter ce schéma
de distillation de l’intrication évoqué ci-avant dans les technologies émergentes.

Mots clefs : Intrication quantique ; modèles de réseaux de spins ; bifurcation ; chaos ; régime
dispersif ; transfert adiabatique de population ; distillation de l’intrication.
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