F. P. Bowden and A. D. Et-yoffe, Initiation and Growth of Explosion in Liquids and Solids, American Journal of Physics, vol.20, issue.4
DOI : 10.1119/1.1933188

A. F. Belajev, The Production of Detonation in Explosives under the Action of a Thermal Impulse, C. R. Acad. Sci. URSS XVIII, pp.267-269, 1938.

W. E. Garner, 156. The initiation of the detonation wave in solid explosives, Journal of the Chemical Society (Resumed), vol.156
DOI : 10.1039/jr9340000720

W. E. Garner, Detonation or explosion arising out of thermal decomposition, Transactions of the Faraday Society, vol.34
DOI : 10.1039/tf9383400985

J. Sharma, J. W. Forbes, C. S. Coffey, and T. P. Et-liddiard, The physical and chemical nature of sensitization centers left from hot spots caused in triaminotrinitrobenzene by shock or impact, The Journal of Physical Chemistry, vol.91, issue.19, pp.5139-5144, 1987.
DOI : 10.1021/j100303a053

H. J. Bruckman and J. E. Et-guillet, Theoretical Calculations of Hot-Spot Initiation in Explosives, Can, J. Chemistry, vol.46, pp.3221-3228, 1968.

J. N. Johnson, P. K. Tang, and C. A. Forest, Shock???wave initiation of heterogeneous reactive solids, Journal of Applied Physics, vol.57, issue.9, pp.4323-4334, 1985.
DOI : 10.1063/1.334591

F. M. Najjar, W. M. Howard, and L. E. Et-fried, Grain-Scale Simulations of Hot-Spot Initiation for Shocked TATB, Shock Compression of Condensed Matter -2009, pp.49-52, 2009.

P. Hébert and C. Et-saint-amans, Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy, Shock Compression of Condensed Matter -2013, pp.22002-22003, 2013.

S. Root and Y. M. Et-gupta, Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa, The Journal of Physical Chemistry A, vol.113, issue.7, pp.1268-1277, 2009.
DOI : 10.1021/jp809099w

D. S. Moore, S. C. Schmidt, and J. W. Et-shaner, Simultaneous Multimode Pressure-Induced Frequency-Shift Measurements in Shock-Compressed Organic Liquid Mixtures by Use of Reflected Broadband Coherent Anti-Stokes Raman Scattering, Physical Review Letters, vol.50, issue.22, pp.1819-1822, 1983.
DOI : 10.1103/PhysRevLett.50.1819

S. C. Schmidt, D. S. Moore, and J. W. Et-shaner, Backward Stimulated Raman Scattering in Shock-Compressed Benzene, Physical Review Letters, vol.50, issue.9, pp.661-664, 1983.
DOI : 10.1103/PhysRevLett.50.661

G. I. Pangilinan and Y. M. Et-gupta, Temperature determination in shocked condensed materials using Raman scattering, Applied Physics Letters, vol.70, issue.8, pp.967-969, 1997.
DOI : 10.1063/1.118477

X. Zheng, Y. Song, J. Zhao, D. Tan, Y. Yang et al., Nanosecond time-resolved Raman spectroscopy of molecular solids under laser-driven shock compression, Chemical Physics Letters, vol.499, issue.4-6
DOI : 10.1016/j.cplett.2010.09.058

L. Huang, Y. Yang, Y. Wang, P. Jin, Z. Zheng et al., Planar nanosecond shock wave generation and propagation in polyvinyl alcohol investigated by CARS 27th International Congress on High-Speed Photography and Photonics, Xi'an, China, pp.62795-62796, 2006.

A. Matsuda, T. Hongo, H. Nagao, Y. Igarashi, K. G. Nakamura et al., Materials dynamics under nanosecond pulsed pressure loading, Science and Technology of Advanced Materials, vol.5, issue.4, pp.511-516, 2004.
DOI : 10.1016/0009-2614(73)80036-3

S. D. Mcgrane, K. E. Brown, N. C. Dang, C. A. Bolme, and D. S. Et-moore, Coherent Raman studies of shocked liquids, Shock Compression of Condensed Matter -2013, pp.142021-142022, 2013.

D. E. Hare, J. Franken, D. D. Dlott, L. , C. E. Et-flores et al., Dynamics of a polymer shock optical microgauge studied by picosecond coherent Raman spectroscopy, Applied Physics Letters, vol.65, issue.24, pp.3051-3053, 1994.
DOI : 10.1063/1.112500

R. L. Gustavsen and Y. M. Et-gupta, Time resolved Raman measurements in ?????quartz shocked to 60 kbar, Journal of Applied Physics, vol.75, issue.6, pp.2837-2844, 1994.
DOI : 10.1063/1.356176

Y. M. Gupta, P. D. Horn, and C. S. Et-yoo, Time???resolved Raman spectrum of shock???compressed diamond, Applied Physics Letters, vol.55, issue.1, pp.33-35, 1989.
DOI : 10.1063/1.101740

J. M. Boteler and Y. M. Et-gupta, Shock induced splitting of the triply degenerate Raman line in diamond, Physical Review Letters, vol.71, issue.21, pp.3497-3500, 1993.
DOI : 10.1103/PhysRevLett.71.3497

N. C. Holmes, W. J. Nellis, W. B. Graham, and G. E. Et-walrafen, Spontaneous Raman Scattering from Shocked Water, Physical Review Letters, vol.55, issue.22, pp.2433-2436, 1985.
DOI : 10.1103/PhysRevLett.55.2433

D. S. Moore and S. C. Schmidt, Vibrational spectroscopy of materials under extreme pressure and temperature, Journal of Molecular Structure, vol.347, pp.101-112, 1995.
DOI : 10.1016/0022-2860(95)08539-8

D. S. Moore, S. C. Schmidt, M. S. Shaw, and J. D. Et-johnson, Coherent anti???Stokes Raman spectroscopy of shock???compressed liquid nitrogen, The Journal of Chemical Physics, vol.90, issue.3, pp.1368-1376, 1988.
DOI : 10.1063/1.456079

G. I. Pangilinan and Y. M. Et-gupta, Time-Resolved Raman Measurements in Nitromethane Shocked to 140 kbar, The Journal of Physical Chemistry, vol.98, issue.17, pp.4522-4529, 1994.
DOI : 10.1021/j100068a009

J. M. Winey, G. E. Duvall, M. D. Knudson, and Y. M. Et-gupta, Equation of state and temperature measurements for shocked nitromethane, The Journal of Chemical Physics, vol.113, issue.17, pp.7492-7501, 2000.
DOI : 10.1063/1.1312271

J. M. Winey and Y. M. Et-gupta, Shock-Induced Chemical Changes in Neat Nitromethane:?? Use of Time-Resolved Raman Spectroscopy, The Journal of Physical Chemistry B, vol.101, issue.50, pp.10733-10743, 1997.
DOI : 10.1021/jp972588a

S. Dufort, MESURES DE TEMPERATURES SOUS CHOC PAR DIFFUSION RAMAN, Le Journal de Physique Colloques, vol.48, issue.C4, pp.137-144, 1987.
DOI : 10.1051/jphyscol:1987409

URL : https://hal.archives-ouvertes.fr/jpa-00226641

A. Delpuech and A. Menil, Raman scattering temperature measurement behind a shock wave, Shock Waves in Condensed Matter -1983, pp.309-312, 1984.

A. Delpuech, The Use of Time-Resolved Spectrometries in the Study of Initiation of Explosives at Molecular Level, 9th Symposium (International) on Detonation, pp.172-179, 1989.

S. Dufort and A. Et-delpuech, A Molecular Mechanism for the Initiation of Secondary Explosives Influence of a Sock Light-Coupling, 8th Symposium (International) on Detonation, pp.847-854, 1985.

T. Kobayashi, T. Sekine, and H. Et-he, Vibrational spectroscopy of shock-compressed nitromethane-d3, The Journal of Chemical Physics, vol.115, issue.23, pp.10753-10757, 2001.
DOI : 10.1063/1.1418728

Y. A. Gruzdkov, J. M. Winey, and Y. M. Et-gupta, Spectroscopic Study of Shock-Induced Decomposition in Ammonium Perchlorate Single Crystals, The Journal of Physical Chemistry A, vol.112, issue.17, pp.3947-3952, 2008.
DOI : 10.1021/jp711872u

Z. A. Dreger, J. E. Patterson, and Y. M. Et-gupta, Static and shock compression of RDX single crystals: Raman spectroscopy, 21st AIRAPT and 45th EHPRG Int. Conf. on High Pressure Science and Technology, pp.42012-42013, 2007.

N. Hemmi, K. A. Zimmerman, Z. A. Dreger, and Y. M. Et-gupta, High spectral resolution, real-time, Raman spectroscopy in shock compression experiments, Review of Scientific Instruments, vol.82, issue.8, pp.83109-83110, 2011.
DOI : 10.1063/1.3627444

N. Hemmi, Z. A. Dreger, Y. A. Gruzdkov, J. M. Winey, and Y. M. Et-gupta, Raman Spectra of Shock Compressed Pentaerythritol Tetranitrate Single Crystals:?? Anisotropic Response, The Journal of Physical Chemistry B, vol.110, issue.42, pp.20948-20953, 2006.
DOI : 10.1021/jp0680589

W. M. Trott and A. M. Et-renlund, Single-pulse Raman scattering studies of heterogeneous explosive materials, Applied Optics, vol.24, issue.10, pp.1520-1525, 1985.
DOI : 10.1364/AO.24.001520

W. M. Trott and A. M. Et-renlund, Single-pulse Raman and photoacoustic spectroscopy studies of triaminotrinitrobenzne (TATB) and related compounds, Southwest Conference on Optics, pp.368-375, 1985.

W. M. Trott and A. M. Et-renlund, Time-resolved spectroscopic studies of detonating heterogeneous explosives, 8th Symposium (International) on Detonation, pp.691-700, 1986.

W. M. Trott and A. M. Et-renlund, Single-pulse Raman scattering study of triaminotrinitrobenzene under shock compression, The Journal of Physical Chemistry, vol.92, issue.21, pp.5921-5925, 1988.
DOI : 10.1021/j100332a015

D. D. Dlott, S. Hambir, and J. Et-franken, The New Wave in Shock Waves, The Journal of Physical Chemistry B, vol.102, issue.12, pp.2121-2130, 1998.
DOI : 10.1021/jp973404v

J. Franken, S. A. Hambir, and D. D. Et-dlott, Picosecond Vibrational Spectroscopy of Shocked Eenergetic Materials Shock Compression of Condensed Matter -1997, pp.819-822, 1997.

D. E. Hare, J. Franken, and D. D. Et-dlott, A New Methode for Studying Picosecond Dynamics of Shocked Solids: Application to, Crystalline Energetic Materials, Chem. Phys. Lett, vol.224, pp.224-230, 1995.

D. S. Moore, S. D. Mcgrane, and D. J. Et-funk, Ultrafast Spectroscopic Investigation of Shock Compressed Energetic Polymer Films, Shock Compression of Condensed Matter -2003, pp.1285-1288, 2003.

T. Jr and F. , Synthesis of New High Explosives II, Derivatives of 1,3,5-Tribromo-2,4,6- Trinitrobenzene, 1956.

E. D. Loughran, E. M. Wewerka, R. N. Rogers, and J. K. Et-berlin, The Influence of Metals on the Thermal Decomposition of s-Triaminotrinitrobenzene (TATB), International Syposium on Analytical Methods for Propellants and Explosives, Disponible dans le rapport No. LA-UR-77-857, 1977.

L. L. Stevens, N. Velisavljevic, D. E. Hooks, and D. M. Et-dattelbaum, Hydrostatic Compression Curve for Triamino-Trinitrobenzene Determined to 13.0???GPa with Powder X-Ray Diffraction, Propellants, Explosives, Pyrotechnics, vol.92, issue.4, pp.286-295, 2008.
DOI : 10.1002/prep.200700270

H. H. Cady, Microstructural Differences in TATB that Results from Manufacturing Techniques, 7th International Annual Conference of ICT, pp.53-54, 1986.

B. M. Dobratz, The Insensitive High Explosive Triaminotrinitrobenzene

T. G. Towns, Vibrational-spectrum of 1, pp.5-26

J. Sharma, W. L. Garrett, F. J. Owens, and V. L. Vogel, X-ray photoelectron study of electronic structure, ultraviolet, and isothermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene, The Journal of Physical Chemistry, vol.86, issue.9, pp.1657-1661, 1982.
DOI : 10.1021/j100206a034

R. Belmas, La transition choc-détonation dans les explosifs solides hétérogenes, Rapport Technique No. CEA-R-6021, CEA / Le Ripault, Direction des applications militaires, 2003.

B. M. Dobratz and P. C. Crawford, LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, Rapport Bibliographique No. UCRL -52997 Change 2, 1985.

A. J. Davidson, R. P. Dias, D. M. Dattelbaum, and C. S. Et-yoo, ???Stubborn??? triaminotrinitrobenzene: Unusually high chemical stability of a molecular solid to 150 GPa, The Journal of Chemical Physics, vol.135, issue.17, pp.174507-174508, 2011.
DOI : 10.1063/1.3658385

J. Sharma and F. J. Et-owens, XPS study of UV and shock decomposed triamino-trinitrobenzene, Chemical Physics Letters, vol.61, issue.2, pp.280-282, 1979.
DOI : 10.1016/0009-2614(79)80644-2

D. L. Williams, J. C. Timmons, J. D. Woodyard, K. A. Rainwater, J. M. Lightfoot et al., UV-induced degradation rates of 1, J. Phys. Chem. A, vol.34, issue.107, pp.5-26, 2003.

S. M. Peiris, G. I. Pangilinan, and T. P. Et-russell, The laser-induced decomposition of TATB at static high pressure, Shock Compression of Condensed Matter -1999, pp.849-852, 1999.

M. R. Manaa, R. D. Schmidt, G. E. Overturf, B. E. Watkins, L. E. Fried et al., Towards unraveling the photochemistry of TATB, Towards unraveling the photochemistry of TATB, pp.85-90, 2002.
DOI : 10.1016/S0040-6031(01)00779-1

C. B. Skidmore, D. J. Idar, G. A. Buntain, S. F. Son, and R. K. Sander, Aging and PBX 9502, Disponible dans le Rapport No. LA-UR-98-1206, 1998.

A. D. Britt, W. B. Moniz, G. C. Chingas, D. W. Moore, C. A. Heller et al., Free Radicales of TATB, Propellants, Explosives, Pyrotechnics, vol.34, issue.4, pp.94-95, 1981.
DOI : 10.1002/prep.19810060403

J. Sharma, J. C. Hoffsommer, D. J. Glover, C. S. Coffey, F. Santiago et al., Comparative Study of Molecular Fragmentation in Sub-Initiated TATB Caused by Impact, U.V., Heat and Electron Beams, Shock Waves in Condensed Matter -1983, pp.543-546, 1983.

F. J. Owens, Evidence of laser induced decomposition of triaminotrinitrobenzene from surface enhanced Raman spectroscopy, Molecular Physics, vol.82, issue.22, pp.2587-2592, 2011.
DOI : 10.1021/ja101107z

M. Pravica, B. Yulga, Z. X. Liu, and O. Et-tschauner, Infrared study of 1,3,5-triamino-2,4,6-trinitrobenzene under high pressure, Physical Review B, vol.76, issue.6, pp.64102-64103, 2007.
DOI : 10.1103/PhysRevB.76.064102

M. Pravica, B. Yulga, S. Tkachev, Z. X. Et-liu, H. Giefers et al., High-Pressure Far- and Mid-Infrared Study of 1,3,5-Triamino-2,4,6-trinitrobenzene, The Journal of Physical Chemistry A, vol.113, issue.32, pp.9133-9137, 2008.
DOI : 10.1021/jp903584x

H. Giefers, M. Pravica, W. Yang, and P. Et-liermann, Radiation-induced decomposition of explosives under extreme conditions, Journal of Physics and Chemistry of Solids, vol.69, issue.9, pp.2208-2212, 2008.
DOI : 10.1016/j.jpcs.2008.03.034

B. L. Deopura and V. D. Et-gupta, Vibration Spectra of 1,3,5???Triamino???2,4,6???trinitrobenzene, The Journal of Chemical Physics, vol.54, issue.9, pp.4013-4019, 1971.
DOI : 10.1063/1.1675458

H. Poulet and J. Et-mathieu, Spectres de vibration et symétrie des cristaux, Gordon & Breach, 1970.

M. M. Sushchinskii, Raman spectra of molecules and crystals. Israel Program for Scientific Translations, 1972.

Z. Huang, B. Chen, and G. Q. Et-gao, IR vibrational assignments for TATB from the density functional B3LYP/6-31G(d) method, Journal of Molecular Structure, vol.752, issue.1-3, pp.87-92, 2005.
DOI : 10.1016/j.molstruc.2005.05.018

G. Vergoten, G. Fleury, M. Blain, and S. Et-odiot, Molecular-structure of aromatic nitroderivatives .5. vibration-spectra and analysis by normal coordinate treatment of 1, J. Raman Spectrosc, vol.34, issue.16, pp.5-26, 1985.

H. Liu, J. J. Zhao, G. F. Ji, D. Q. Wei, and . Gong, Vibrational properties of molecule and crystal of TATB: A comparative density functional study, Physics Letters A, vol.358, issue.1, pp.63-69, 2006.
DOI : 10.1016/j.physleta.2006.04.096

S. D. Mcgrane and A. P. Et-shreve, Temperature-dependent Raman spectra of triaminotrinitrobenzene: Anharmonic mode couplings in an energetic material, The Journal of Chemical Physics, vol.119, issue.12, pp.5834-5841, 2003.
DOI : 10.1063/1.1601601

S. D. Mcgrane, J. Barber, and J. Et-quenneville, Anharmonic Vibrational Properties of Explosives from Temperature-Dependent Raman, The Journal of Physical Chemistry A, vol.109, issue.44, pp.9919-9927, 2005.
DOI : 10.1021/jp0523219

H. L. Sui, F. C. Zhong, K. M. Cheng, X. Y. Liu, and X. Et-ju, IR vibrational assignments for 1,3,5-triamine-2,4,6-trinitrobenzene (TATB) based on the temperature-dependent frequency shifts, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.114, pp.137-143, 2013.
DOI : 10.1016/j.saa.2013.05.067

S. K. Satija, B. Swanson, J. Eckert, and J. A. Et-goldstone, High-pressure Raman scattering and inelastic neutron scattering studies of triaminotrinitrobenzene, The Journal of Physical Chemistry, vol.95, issue.24, pp.10103-10109, 1991.
DOI : 10.1021/j100177a088

B. Olinger and H. H. Et-cady, The Hydrostatic Compression of Explosives and Detonation Produtcs to 10 GPa (100 kbars) and their Calculated Shock Compression : Results for PETN, TATB, CO2 and H2O, 6th Symposium (International) on Detonation, pp.700-709, 1976.

H. Liu, J. J. Zhao, J. G. Du, Z. Z. Gong, G. F. Ji et al., High-pressure behavior of TATB crystal by density functional theory, Physics Letters A, vol.367, issue.4-5, pp.383-388, 2007.
DOI : 10.1016/j.physleta.2007.03.048

I. A. Fedorov and Y. N. Et-zhuravlev, Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations, Chemical Physics, vol.436, issue.437, pp.1-7, 2014.
DOI : 10.1016/j.chemphys.2014.03.013

A. C. Landerville, M. W. Conroy, M. M. Budzevich, Y. Lin, C. T. White et al., Equations of state for energetic materials from density functional theory with van der Waals, thermal, and zero-point energy corrections, Applied Physics Letters, vol.97, issue.25, pp.251908-251909, 2010.
DOI : 10.1063/1.3526754

E. Bourasseau, J. B. Maillet, N. Desbiens, and G. Et-stoltz, Microscopic Calculations of Hugoniot Curves of Neat Triaminotrinitrobenzene (TATB) and of Its Detonation Products, The Journal of Physical Chemistry A, vol.115, issue.39, pp.10729-10737, 2011.
DOI : 10.1021/jp2047739

P. Hébert, V. Bouyer, J. Rideau, M. Doucet, and L. P. Et-terzulli, Raman spectroscopy study of laser-shocked TATB-based explosives, Shock Compression of Condensed Matter -2011, pp.1585-1588, 2011.

J. A. Holy, Raman Spectroscopy of Aminated and Ultrafine 1,3,5-Triamino-2,4,6-trinitrobenzene and PBX 9502 as a Function of Pressing Pressure, The Journal of Physical Chemistry B, vol.112, issue.25, pp.7489-7498, 2008.
DOI : 10.1021/jp801437w

M. F. Foltz, Pressure Dependence of the Reaction Propagation Rate of TATB at High Pressure, Propellants, Explosives, Pyrotechnics, vol.89, issue.11, pp.210-216, 1993.
DOI : 10.1002/prep.199300007

C. M. Tarver, J. W. Kury, and R. D. Et-breithaupt, Detonation waves in triaminotrinitrobenzene, Journal of Applied Physics, vol.82, issue.8, pp.3771-3782, 1997.
DOI : 10.1063/1.365739

A. Sollier, P. Manczur, B. Crouzet, L. Soulard, J. Quesada et al., Single and double shock initiation of TATB-based explosive T2: Comparison of electromagnetic gauge measurements with DNS using different reactive flow models, 14th Symposium (International) on Detonation, pp.563-572, 2010.

F. Volk and F. Et-schedlbauer, Analysis of Post Detonation Products of Different Explosive Charges, Propellants, Explosives, Pyrotechnics, vol.24, issue.3, pp.182-188, 1999.
DOI : 10.1002/(SICI)1521-4087(199906)24:03<182::AID-PREP182>3.0.CO;2-G

M. Et-tkachev and O. V. , Kinetics of electrical Conductivity of TATB detonation products as an indicator of growth of carbon nanoparticles, Combust. Explos. Shock Waves, vol.43, pp.78-83, 2007.

N. R. Greiner, D. S. Phillips, J. D. Johnson, and F. Volk, Diamonds in detonation soot, Diamonds in Detonation Soot, pp.440-442, 1988.
DOI : 10.1038/333440a0

J. A. Viecelli and F. H. Et-ree, Carbon clustering kinetics in detonation wave propagation, Journal of Applied Physics, vol.86, issue.1
DOI : 10.1063/1.370722

G. Chevrot, A. Sollier, and N. Pineau, Molecular dynamics and kinetic study of carbon coagulation in the release wave of detonation products, The Journal of Chemical Physics, vol.136, issue.8, pp.84506-84507, 2012.
DOI : 10.1063/1.3686750

E. Bourasseau and J. B. Et-maillet, Coupling microscopic and mesoscopic scales to simulate chemical equilibrium between a nanometric carbon cluster and detonation products fluid, Physical Chemistry Chemical Physics, vol.13, issue.3, pp.7060-7070, 2011.
DOI : 10.1039/c0cp02622k

N. Pineau, Molecular Dynamics Simulations of Shock Compressed Graphite, The Journal of Physical Chemistry C, vol.117, issue.24
DOI : 10.1021/jp403568m

H. Östmark, Shock induced sub-detonation chemical reactions in 1,3,5-triamino-2,4,6- trinitrobenzene, Shock Compression of Cendensed Matter -1995, pp.871-874, 1995.

J. Sharma, J. C. Hoffsommer, D. J. Glover, C. S. Coffey, J. W. Forbes et al., Sub-Ignition reactions at Molecular Levels in Explosives Subjected to Impact and Underwater Shock, 8th Symposium (International) on Detonation, pp.725-733, 1985.

M. R. Manaa and L. E. Et-fried, The Reactivity of Energetic Materials Under High Pressure and Temperature, dans Advances in Quantum Chemistry, edité par Sabin, J. R, vol.69, pp.221-252, 2014.

I. I. Oleynik, A. C. Landerville, and C. T. Et-white, First-Principles Investigation of Reactive Molecular Dynamics in Detonating RDX and TATB, Shock Compression of Condensed, pp.817-820, 2009.

E. A. Glascoe, J. M. Zaug, M. R. Armstrong, J. C. Crowhurst, C. D. Grant et al., Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure, The Journal of Physical Chemistry A, vol.113, issue.20, pp.5881-5887, 2009.
DOI : 10.1021/jp809418a

P. Hébert, V. Bouyer, J. Rideau, M. Doucet, and L. P. Et-terzulli, Raman spectroscopy study of laser-shocked TATB-based explosives, Shock Compression of Condensed Matter -2011, pp.1585-1588, 2011.

R. Belmas, La transition choc-détonation dans les explosifs solides hétérogenes, Rapport Technique No. CEA-R-6021, CEA / Le Ripault, Direction des applications militaires, 2003.

C. S. Alexander, L. C. Chhabildas, and D. W. Et-templeton, The Hugoniot elastic limit of soda-lime glass, Shock Compression of Condensed Matter -2007, pp.733-738, 2007.

L. M. Barker, Laser interferometry in shock-wave research, Experimental Mechanics, vol.2, issue.5, pp.209-215, 1972.
DOI : 10.1007/BF02318100

L. M. Barker and R. E. Et-hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, issue.11, pp.4669-4675, 1972.
DOI : 10.1063/1.1660986

L. M. Barker and K. W. Et-schuler, Correction to the velocity???per???fringe relationship for the VISAR interferometer, Journal of Applied Physics, vol.45, issue.8, pp.3692-3693, 1974.
DOI : 10.1063/1.1663841

L. M. Barker, The Accurancy of VISAR Instrumentation, Shock Compression of Condensed Matter -1997, pp.833-836, 1997.

P. Mercier, J. Benier, A. Azzolina, J. M. Lagrange, and D. Et-partouche, Photonic doppler velocimetry in shock physics experiments, Journal de Physique IV (Proceedings), vol.134, pp.805-812, 2006.
DOI : 10.1051/jp4:2006134124

M. Debruyne, Heterodyne velocimetry and detonics experiments, 28th International Congress on High-Speed Imaging and Photonics, p.7126, 2008.

D. E. Grady and L. C. Et-chhabildas, Shock-wave properties of soda-lime glass

J. R. Asay and M. Et-shahinpoor, High-Pressure Shock Compression of Solids, dans Shock Wave and High Pressure Phenomena Springer Sience & Business Media, 1980.

A. N. Dremin and G. A. Et-adadurov, The Behavior of Glass Under Dynamic Loading

J. C. Millett, N. K. Bourne, and Z. Et-rosenberg, Measurements of strain in a shock loaded, high-density glass, Shock Compression of Condensed Matter -1999, pp.607-610, 2000.

L. M. Barker and R. E. Et-hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.41, issue.10, pp.4208-4226, 1970.
DOI : 10.1063/1.1658439

D. P. Dandekar, Index of refraction and mechanical behavior of soda lime glass under shock and release wave propagations, Journal of Applied Physics, vol.84, issue.12, pp.6614-6622, 1998.
DOI : 10.1063/1.369035

C. S. Alexander, Index of refraction of shock loaded soda-lime glass, Shock Compression of Condensed Matter -2009, pp.1431-1434, 2009.

Y. M. Gupta, Shock Compression of Condensed Matter -2013, 2013.

C. M. Lopatin, S. J. Bless, and N. S. Et-brar, Dynamic unloading behavior of soda lime glass, Journal of Applied Physics, vol.66, issue.2, pp.593-595, 1989.
DOI : 10.1063/1.343575

T. De-resseguier, F. Cottet, and A. Et-migault, A 1D model for glass dynamic behaviour under explosive loading, Shock Compression of Condensed Matter -1993, pp.1071-1074, 1993.

W. M. Trott and A. M. Et-renlund, Single-pulse Raman scattering studies of heterogeneous explosive materials, Applied Optics, vol.24, issue.10, pp.1520-1525, 1985.
DOI : 10.1364/AO.24.001520

J. E. Kennedy and B. W. Asay, Impact and Shear Ignition by Nonshock Mechanisms, dans Non-Shock Initiation of Explosives, LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, Rapport Bibliographique No. UCRL -52997 Change 2, pp.555-581, 1985.

M. R. Manaa, R. D. Schmidt, G. E. Overturf, B. E. Watkins, L. E. Fried et al., Towards unraveling the photochemistry of TATB, Towards unraveling the photochemistry of TATB, pp.85-90, 2002.
DOI : 10.1016/S0040-6031(01)00779-1

F. J. Owens, Evidence of laser induced decomposition of triaminotrinitrobenzene from surface enhanced Raman spectroscopy, Molecular Physics, vol.82, issue.22, pp.2587-2592, 2011.
DOI : 10.1021/ja101107z

S. M. Peiris, G. I. Pangilinan, and T. P. Et-russell, The laser-induced decomposition of TATB at static high pressure, Shock Compression of Condensed Matter -1999, pp.849-852, 1999.

J. Sharma and F. J. Et-owens, XPS study of UV and shock decomposed triamino-trinitrobenzene, Chemical Physics Letters, vol.61, issue.2, pp.280-282, 1979.
DOI : 10.1016/0009-2614(79)80644-2

J. D. Barnett, S. Block, and G. J. Et-piermarini, An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond???Anvil Cell, Review of Scientific Instruments, vol.44, issue.1, pp.1-9, 1973.
DOI : 10.1063/1.1685943

S. M. Sharma and Y. M. Et-gupta, Relating the ruby R-line spectra to deformation under shock and hydrostatic lading, Shock Compression of Condensed Matter -1989, pp.887-892, 1989.

G. J. Piermarini, G. J. Et-piermarini, F. Datchi, L. Toullec, R. Et-loubeyre et al., Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: Advantages at very high pressures and high temperatures, J. Appl. Phys, vol.32, issue.81, pp.1-74, 1997.

V. C. Baonza, M. Taravillo, A. Arencibia, M. Caceres, and J. Et-nuñez, Diamond as pressure sensor in high-pressure Raman spectroscopy using sapphire and other gem anvil cells, Journal of Raman Spectroscopy, vol.56, issue.4, pp.264-270, 2003.
DOI : 10.1002/jrs.998

B. J. Baer, M. E. Chang, and W. J. Et-evans, Raman shift of stressed diamond anvils: Pressure calibration and culet geometry dependence, Journal of Applied Physics, vol.104, issue.3, pp.34504-34505, 2008.
DOI : 10.1063/1.2963360

S. K. Satija, B. Swanson, J. Eckert, and J. A. Et-goldstone, High-pressure Raman scattering and inelastic neutron scattering studies of triaminotrinitrobenzene, The Journal of Physical Chemistry, vol.95, issue.24, pp.10103-10109, 1991.
DOI : 10.1021/j100177a088

A. J. Davidson, R. P. Dias, D. M. Dattelbaum, and C. S. Et-yoo, ???Stubborn??? triaminotrinitrobenzene: Unusually high chemical stability of a molecular solid to 150 GPa, The Journal of Chemical Physics, vol.135, issue.17, pp.174507-174508, 2011.
DOI : 10.1063/1.3658385

C. Saint-amans, P. Hébert, M. Doucet, and T. Et-de-resseguier, Single-Shot Raman Spectroscopy Study of Shocked TATB-Based Explosive, 45th International Annual Conference of ICT, pp.44-45, 2014.

C. V. Raman, A New Radiation, Indian J. Phys, vol.2, pp.387-398, 1928.

C. V. Raman and K. S. Et-krishnan, A New Class of Spectra due to Secondary Radiation, Indian J. Phys, vol.2, pp.399-419, 1928.

C. V. Raman and K. S. Et-krishnan, A New Type of Secondary Radiation, Nature, vol.121, issue.3048, pp.501-502, 1928.
DOI : 10.1038/121501c0

M. M. Sushchinskii, Raman spectra of molecules and crystals. Israel Program for Scientific Translations, 1972.

G. Placzek and E. A. Marx, The Rayleigh and Raman Scattering, dans Handbuch der Radiologie Traduit en anglais dans le rapport technique UCRL Trans No, Leipzig), vol.2, issue.526, pp.209-374, 1934.

P. Hébert, V. Bouyer, J. Rideau, M. Doucet, and L. P. Et-terzulli, Raman spectroscopy study of laser-shocked TATB-based explosives, Shock Compression of Condensed Matter -2011, pp.1585-1588, 2011.

G. Vergoten, G. Fleury, M. Blain, and S. Et-odiot, Molecular-structure of aromatic nitroderivatives .5. vibration-spectra and analysis by normal coordinate treatment of 1, J. Raman Spectrosc, vol.34, issue.16, pp.5-26, 1985.

S. K. Satija, B. Swanson, J. Eckert, and J. A. Et-goldstone, High-pressure Raman scattering and inelastic neutron scattering studies of triaminotrinitrobenzene, The Journal of Physical Chemistry, vol.95, issue.24, pp.10103-10109, 1991.
DOI : 10.1021/j100177a088

A. J. Davidson, R. P. Dias, D. M. Dattelbaum, and C. S. Et-yoo, ???Stubborn??? triaminotrinitrobenzene: Unusually high chemical stability of a molecular solid to 150 GPa, The Journal of Chemical Physics, vol.135, issue.17, pp.174507-174508, 2011.
DOI : 10.1063/1.3658385

L. L. Stevens, N. Velisavljevic, D. E. Hooks, and D. M. Et-dattelbaum, Hydrostatic Compression Curve for Triamino-Trinitrobenzene Determined to 13.0???GPa with Powder X-Ray Diffraction, Propellants, Explosives, Pyrotechnics, vol.92, issue.4, pp.286-295, 2008.
DOI : 10.1002/prep.200700270

W. M. Trott and A. M. Et-renlund, Single-pulse Raman scattering study of triaminotrinitrobenzene under shock compression, The Journal of Physical Chemistry, vol.92, issue.21, pp.5921-5925, 1988.
DOI : 10.1021/j100332a015

D. Lacina and Y. M. Et-gupta, Temperature measurements and an improved equation of state for shocked liquid benzene, The Journal of Chemical Physics, vol.138, issue.17, pp.174506-174507, 2013.
DOI : 10.1063/1.4803138

G. I. Pangilinan and Y. M. Et-gupta, Use of time-resolved Raman scattering to determine temperatures in shocked carbon tetrachloride, Journal of Applied Physics, vol.81, issue.10, pp.6662-6669, 1997.
DOI : 10.1063/1.365206

S. Dufort, MESURES DE TEMPERATURES SOUS CHOC PAR DIFFUSION RAMAN, Le Journal de Physique Colloques, vol.48, issue.C4, pp.137-144, 1987.
DOI : 10.1051/jphyscol:1987409

URL : https://hal.archives-ouvertes.fr/jpa-00226641

A. Delpuech and A. Menil, Raman scattering temperature measurement behind a shock wave, Shock Waves in Condensed Matter -1983, pp.309-312, 1984.

D. S. Dolgushin and V. F. Et-anisichkin, Calculation of temperature behind a shock front in condensed matter by the methods of thermodynamic similarity theory, Combustion, Explosion, and Shock Waves, vol.27, issue.No. 5, pp.646-649, 1992.
DOI : 10.1007/BF00754878

M. Cowperthwaite and R. Shaw, C??(T) Equation of State for Liquids. Calculation of the Shock Temperature of Carbon Tetrachloride, Nitromethane, and Water in the 100???kbar Region, The Journal of Chemical Physics, vol.53, issue.2, pp.555-560, 1970.
DOI : 10.1063/1.1674025

M. Cowperthwaite and J. H. Et-blackburn, Shock temperature calculations for silicone fluid, Symposium on the accurate characterization of high pressure environment, pp.137-145, 1968.

K. F. Grebenkin and A. L. Et-zherebtsov, Numerical modeling of TATB shock-wave heating, Combustion, Explosion, and Shock Waves, vol.78, issue.5, pp.246-251, 2000.
DOI : 10.1007/BF02699369

B. M. Dobratz, The Insensitive High Explosive Triaminotrinitrobenzene

N. Pineau, L. Soulard, G. Geneste, and M. Et-torrent, Calcul ab initio de l'equation d'etat du monocristal de TATB par une methode DFT-vdW, 2013.

S. D. Mcgrane and A. P. Et-shreve, Temperature-dependent Raman spectra of triaminotrinitrobenzene: Anharmonic mode couplings in an energetic material, The Journal of Chemical Physics, vol.119, issue.12, pp.5834-5841, 2003.
DOI : 10.1063/1.1601601

S. D. Mcgrane, J. Barber, and J. Et-quenneville, Anharmonic Vibrational Properties of Explosives from Temperature-Dependent Raman, The Journal of Physical Chemistry A, vol.109, issue.44, pp.9919-9927, 2005.
DOI : 10.1021/jp0523219

H. L. Sui, F. C. Zhong, K. M. Cheng, X. Y. Liu, and X. Et-ju, IR vibrational assignments for 1,3,5-triamine-2,4,6-trinitrobenzene (TATB) based on the temperature-dependent frequency shifts, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.114, pp.137-143139, 2013.
DOI : 10.1016/j.saa.2013.05.067

J. G. Harlan, J. K. Rice, R. Jr, and J. W. , The role of air and other gases in flyer plate initiation of explosives, 7th Symposium (International) on Detonation, pp.930-939, 1981.

L. M. Barker and R. E. Et-hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.41, issue.10, pp.4208-4226, 1970.
DOI : 10.1063/1.1658439

L. C. Chhabildas and J. R. Et-asay, Rise???time measurements of shock transitions in aluminum, copper, and steel, Journal of Applied Physics, vol.50, issue.4, pp.2749-2756, 1979.
DOI : 10.1063/1.326236

R. E. Setchell, Ramp-wave initiation of granular explosives, Combustion and Flame, vol.43, pp.255-264, 1981.
DOI : 10.1016/0010-2180(81)90025-0

J. E. Kennedy and J. W. Et-nunziato, Shock-wave evolution in a chemically reacting solid, Journal of the Mechanics and Physics of Solids, vol.24, issue.2-3, pp.107-124, 1976.
DOI : 10.1016/0022-5096(76)90021-1

J. Wackerle, Shock???Wave Compression of Quartz, Journal of Applied Physics, vol.33, issue.3, pp.922-937, 1962.
DOI : 10.1063/1.1777192

C. S. Alexander, Index of refraction of shock loaded soda-lime glass, Shock Compression of Condensed Matter -2009, pp.1431-1434, 2009.

J. L. Wise and L. C. Et-chhabildas, Laser interferometer measurements of refractive index in shock-compressed materials, Shock Waves in Condensed Matter -1985, pp.441-454, 1985.

R. Belmas, La transition choc-détonation dans les explosifs solides hétérogenes, Rapport Technique CEA / Le Ripault, Direction des applications militaires, 2003.

O. B. Yakusheva, V. V. Yakushev, and A. N. Et-dremin, The opacity mechanism of shockcompressed organic liquids, pp.261-266, 1971.

N. C. Holmes, G. Otani, P. Mccandless, and S. F. Et-rice, Absorption spectroscopy of shocked benzene, 9th Symposium (International) on Detonation, pp.190-194, 1989.

J. B. Maillet and N. Et-pineau, Thermodynamic properties of benzene under shock conditions, The Journal of Chemical Physics, vol.128, issue.22, pp.224502-224503, 2008.
DOI : 10.1063/1.2917335

V. V. Dremov, G. V. Ionov, F. A. Sapozhnikov, I. V. Derbenev, J. B. Maillet et al., Comparative analysis of the data on shocked benzene properties obtained in MD simulations with different interactomic potentials, Shock Compression of Condensed Matter -2011, pp.1291-1294, 2011.

W. Cong and Z. Et-ping, The equation of state and nonmetal-metal transition of benzene under shock compression, J. Appl. Phys, vol.107, pp.83502-83503, 2010.

N. C. Dang, C. A. Bolme, D. S. Moore, and S. D. Et-mcgrane, Shock Induced Chemistry In Liquids Studied With Ultrafast Dynamic Ellipsometry And Visible Transient Absorption Spectroscopy, The Journal of Physical Chemistry A, vol.116, issue.42, pp.10301-10309, 2012.
DOI : 10.1021/jp307464w

K. Mimura, T. Arao, M. Sugiura, and R. Et-sugisaki, Shock-induced carbonization of phenanthrene at pressures of 7.9 ? 32 GPa, Carbon 41, pp.2547-2553, 2003.

A. Sollier, E. Lescoute, P. Hébert, M. Doucet, R. Letrémy et al., Hugoniot inerte de l'explosif T2 à haute pression : Résultats des expériences de choc laser réalisées à l, Rapport Technique Interne CEA/DAM, 2014.

V. Bouyer, M. Doucet, and L. Et-decaris, Experimental measurements of the detonation wave profile in a TATB based explosive, New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, pp.30-31, 2010.

S. M. Peiris, G. I. Pangilinan, and T. P. Et-russell, The laser-induced decomposition of TATB at static high pressure, Shock Compression of Condensed Matter -1999, pp.849-852, 1999.

L. L. Stevens, N. Velisavljevic, D. E. Hooks, and D. M. Et-dattelbaum, Hydrostatic Compression Curve for Triamino-Trinitrobenzene Determined to 13.0???GPa with Powder X-Ray Diffraction, Propellants, Explosives, Pyrotechnics, vol.92, issue.4, pp.286-295, 2008.
DOI : 10.1002/prep.200700270

C. J. Wu, L. H. Yang, L. E. Fried, J. Quenneville, and T. J. Et-martinez, Electronic structure of solid 1,3,5-triamino-2,4,6-trinitrobenzene under uniaxial compression: Possible role of pressure-induced metallization in energetic materials, Physical Review B, vol.67, issue.23, pp.235101-235102, 2003.
DOI : 10.1103/PhysRevB.67.235101

J. L. Wise and L. C. Et-chhabildas, Laser interferometer measurements of refractive index in shock-compressed materials, Shock Waves in Condensed Matter -1985, pp.441-454, 1985.

B. J. Jensen, D. B. Holtkamp, P. A. Rigg, and D. H. Et-dolan, Accuracy limits and window corrections for photon Doppler velocimetry, Journal of Applied Physics, vol.101, issue.1, pp.13523-13524, 2007.
DOI : 10.1063/1.2407290

C. S. Alexander, Index of refraction of shock loaded soda-lime glass, Shock Compression of Condensed Matter -2009, pp.1431-1434, 2009.

Y. M. Gupta, Shock Compression of Condensed Matter -2013, p.203, 2013.

. Si, une raie sur le capteur est moins large qu'un pixel, alors sa largeur sera perçue par le dispositif comme égale à la largeur d'un pixel. Ainsi, on ne sera pas capable de mesurer une largeur pour une raie plus précise qu'un multiple de la largeur d'un pixel. Cette largeur est la largeur spectrale d'un pixel pour la mesure (Figure A5.1)

A. Figure, 1 : Représentation schématique de la précision d'un capteur