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Abstract

Future wireless communication systems will need to feature multi cellular hetero-
geneous architectures consisting of improved macro cells and very dense small
cells, in order to support the exponentially rising demand for physical layer
throughput. Such structures cause unprecedented levels of inter and intra cell
interference, which needs to be mitigated or, ideally, exploited in order to im-
prove overall spectral efficiency of the communication network. Techniques like
massive multiple input multiple output (MIMO), cooperation, etc., that also
help with interference management, will increase the size of the already large
heterogeneous architectures to truly enormous networks, that defy theoretical
analysis via traditional statistical methods.

Accordingly, in this thesis we will apply and improve the already known
framework of large random matrix theory (RMT) to analyse the interference
problem and propose solutions centred around new precoding schemes, which
rely on large system analysis based insights. First, we will propose and analyse a
new family of precoding schemes that reduce the computational precoding com-
plexity of base stations equipped with a large number of antennas, while main-
taining most of the interference mitigation capabilities of conventional close-to-
optimal regularized zero forcing. Second, we will propose an interference aware
linear precoder, based on an intuitive trade-off and recent results on multi cell
regularized zero forcing, that allows small cells to effectively mitigate induced
interference with minimal cooperation. In order to facilitate utilization of the
analytic RMT approach for future generations of interested researchers, we will
also provide a comprehensive tutorial on the practical application of RMT in
communication problems.
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Résumé

Les futurs systèmes de communication sans fil devront utiliser des architectures
cellulaires hétérogènes composées de grandes cellules (macro) plus performantes
et de petites cellules (femto, micro, ou pico) très denses, afin de soutenir la de-
mande de débit en augmentation exponentielle au niveau de la couche physique.
Ces structures provoquent un niveau d’interférence sans précèdent à l’intérieur,
comme à l’extérieur des cellules, qui doit être atténué ou, idéalement, exploité
afin d’améliorer l’efficacité spectrale globale du réseau. Des techniques comme
le MIMO à grande échelle (dit massive MIMO), la coopération, etc., qui con-
tribuent aussi à la gestion des interférences, vont encore augmenter la taille
des grandes architectures hétérogènes, qui échappent ainsi à toute possibilité
d’analyse théorique par des techniques statistiques traditionnelles.

Par conséquent, dans cette thèse, nous allons appliquer et améliorer des
résultats connus de la théorie des matrices aléatoires à grande échelle (RMT)
afin d’analyser le problème d’interférence et de proposer de nouveaux systèmes
de précodage qui s’appuient sur les résultats acquis par l’analyse du système à
grande échelle. Nous allons d’abord proposer et analyser une nouvelle famille
de précodeurs qui réduit la complexité de calcul de précodage pour les stations
de base équipées d’un grand nombre d’antennes, tout en conservant la plupart
des capacités d’atténuation d’interférence de l’approche classique et le caractère
quasi-optimal du précodeur regularised zero forcing. Dans un deuxième temps,
nous allons proposer une variation de la structure de précodage linéaire optimal
(obtenue pour de nombreuses mesures de performance) qui permet de réduire
le niveau d’interférence induit aux autres cellules. Ceci permet aux petites cel-
lules d’atténuer efficacement les interférences induites et reçues au moyen d’une
coopération minimale. Afin de faciliter l’utilisation de l’approche analytique
RMT pour les futures générations de chercheurs, nous fournissons également un
tutoriel exhaustif sur l’application pratique de la RMT pour les problèmes de
communication en début du manuscrit.
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General Notation

Linear algebra
x scalar
X matrix
IN identity matrix of size N×N
0N×K all zero matrix of size N×K
diag(x1, . . . , xN ) diagonal matrix with entries x1, . . . , xN

diag(X) column vector of the diagonal entries of matrix X
[X]i,j , Xi,j (i, j)th entry of matrix X
XT transpose of X
XH complex conjugate transpose of X
X∗ complex conjugate of X
trX trace of X
detX determinant of X
‖X‖2 spectral norm of matrix X
‖X‖F Frobenius norm of matrix X
λi(X) ith largest eigenvalue of matrix X
Λ(X) diagonal matrix of the eigenvalues of the matrix X
x column vector
xi ith entry of vector x
‖x‖2 L2 norm of vector x
1N×1, 0N×1 all one and all zero column vector of size N ; abbreviated

as 1N , 0N if clear from context

Analysis
C, R, the complex and real numbers
C+ {z ∈ C : Im{z} > 0}
R+ {x ∈ R : x > 0}
R+

0 {x ∈ R : x ≥ 0}
CM×K set of matrices with size M×K
CM×1 set of vectors with size M

xi



Notation

|x| absolute value
(x)+ max(x, 0)
Re{z} real part of z
Im{z} imaginary part of z
i i =

√
−1 with Im{i} = 1

δx(A) Dirac measure, i.e., δx(A) = 1, if x ∈ A, and δx(A) = 0,
otherwise; alternative 1A(x) often found in literature

O(βM ) Landau’s big-O notation, i.e., αM = O(βM ) is a flexible
abbreviation for |αM | ≤ CβM , where C is a generic
constant

o(βM ) Landau’s small-o notation, i.e., αM = o(βM ) is short-
hand for αM = εMβM with εM → 0, as M →∞

f ′(x) first derivative of f(x)
(xn)n≥1 infinite sequence of numbers (or sets) x1, x2, . . .

lim supn xn limit superior of (xn)n≥1, i.e., for every ε > 0, there
exists n0(ε), such that xn ≤ lim supn xn+ε ∀n > n0(ε)

lim infn xn limit inferior, i.e., lim infn xn = − lim supn−xn

Probability related
(Ω,F , P ) probability space Ω with σ-Algebra F and probability

measure P
X scalar random variable
µ general measure
FX distribution function of X, i.e., FX(x) = P (X ≤ x)
supp (µ) support of the measure µ
E [X] expectation of X, i.e., E [X] =

∫
ΩX(ω)dP (ω)

var[X] variance of X
a.s.−→ almost sure convergence
∼ distributed as, e.g., X ∼ CN (0, 1)
CN (m,Φ) complex Gaussian distribution with mean m and covari-

ance Φ
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4G forth generation
ASIC application-specific integrated circuit
BER bit-error rate
BF beam forming
BS base station
CBF coordinated beamforming
CDMA code-division multiple access
CoMP coordinated multi-point
CS coordinated scheduling
CSI channel state information
CUBF constrained unitary beamforming
DAS distributed antenna system
DE deterministic equivalent
e.s.d. empirical spectral distribution
FDD frequency-division duplexing
FDMA frequency division multiple access
i.i.d. independent and identically distributed
IA interference alignment
iaRZF interference aware regularized zero forcing
JT joint transmission
LDPC low density parity-check
LHS left-hand side
LMMSE linear minimum-mean-square-error (estimation)
LOS line-of-sight
LTE long term evolution
LTE-A long term evolution advanced
MAC multiple access channel
MC Monte-Carlo
MF matched filter
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Acronyms

MISO multiple input single output
MMSE minimum-mean-square-error
MRT maximum ratio transmission
MU multi-user
OFDM orthogonal frequency-division multiplexing
PAPR peak-to-average-power-ratio
PE polynomial expansion
PL path-loss
RHS right-hand side
RMT large random matrix theory
RZF regularized zero-forcing
SC small cell
SDMA space division multiple access
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
STR simultaneous transmission and reception
SR sum rate
TDD time-division duplexing
TDMA time-division multiple access
TPE truncated polynomial expansion
TPS transmission point selection
UT user terminal
VFDM Vandermonde frequency division multiplexing
ZF zero-forcing
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to facilitate partial reading of the manuscript.
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Synopsis en Français

État de l’art dans les communications mobiles

L’industrie de la communication sans fil connaît actuellement une croissance ex-
ponentielle en termes de demande de trafic réseau (croissance annuelle du trafic
de données de 61%); et ce sans aucun signe de ralentissement [1]. La même
croissance est attendue par rapport du nombre d’appareils connectés. Cela est
principalement dû à l’évolution des attentes des consommateurs, qui exigent une
connectivité sans fil accrue et l’accès aux services de streaming, que ce soit via
les smartphones, les ordinateurs portables ou les tablettes. Ces appareils sont
également de plus en plus orientés vers la communication de données, plutôt que
la communication vocale. En outre, le marché des machines type communica-
tions (MTC) devient de plus en plus importante [2]. Dans l’ensemble, l’industrie
estime qu’une augmentation de 1000x la capacité du réseau cellulaire est néces-
saire au cours des 15 prochaines années [3] et 2000x d’ici à 2030. Les réseaux
actuels ont atteint leurs limites de capacité par rapport à la couche physique
(classiquement appelé “déficit du spectre” [4] ou “tsunami de données”), en
particulier dans les zones urbaines fortement peuplées avec une forte densité de
périphériques connectés. Du fait des heures de pointe, les transmissions con-
naissent des pics [5] causés par des couches de protocole de transmission plus
élevés et les limites sont déjà en train de devenir un problème aujourd’hui.

Que faisons-nous à ce sujet?

La grande question dans la communauté de communication sans fil est de savoir
comment on pourrait alors augmenter la capacité du réseau afin de répondre
à la demande de trafic en augmentation exponentielle. La capacité totale d’un
réseau sans fil est directement liée au débit par zone (en bits/s par unité de
surface) du réseau, qui est une combinaison de trois facteurs multiplicatifs [6],

1
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à savoir:

Débit par zone︸ ︷︷ ︸
bit/s/area

= Spectre disponible︸ ︷︷ ︸
Hz

·Densité Cellulaire︸ ︷︷ ︸
Cells/area

·Efficacité spectrale︸ ︷︷ ︸
bit/s/Hz/Cell

.

L’augmentation du débit par zone peut être atteint (et a traditionnellement été
atteint) en allouant plus de spectre de fréquence (Hz) pour les communications
sans fil, par l’augmentation de la densité cellulaire (plus de cellules par zone),
ou encore par l’amélioration de l’efficacité spectrale (bit/s/Hz/Cell).

Nous allons maintenant discuter la façon dont la recherche actuelle traite
chacun des trois facteurs pour améliorer le débit global et par conséquent com-
ment nous pourrions préparer les communications sans fil pour l’avenir. Nous
invitons le lecteur à lire les articles suivants, permettant une vue d’ensemble de
ces technologies [7, 8].

Augmentation du Spectre

La solution la plus évidente pour augmenter le débit est d’utiliser plus de
ressources spectrales. C’est d’une part l’approche la plus simple, comme le
doublement du spectre utilisé dans la bande de 300MHz à 3000MHz, qui double
instantanément le débit, et ce sans apporter de nouveaux problèmes techniques
ou de recherche (en supposant que la puissance globale d’émission peut égale-
ment être doublée1). D’autre part, le spectre est fortement réglementé dans la
région en dessous de 10GHz, puisque prisé par tous les opérateurs. Par con-
séquent, utiliser plus du spectre est très coûteux et fondamentalement limité
par la physique. Selon la région géographique concernée, jusqu’à environ 1GHz
du spectre de fréquence peut-être déjà attribuée aux services de données sans fil,
limitant ainsi les gains réalisables par cette approche à une amélioration de 2−3
fois la capacité actuelle. Curieusement, cette réglementation aggrave également
l’observation que la plupart du spectre disponible n’est pas utilisé la plupart du
temps. S’en est suivi l’idée de la radio cognitive [10, 11], à savoir un appareil
qui vise à utiliser les parties du spectre pour communiquer qui sont déjà alloués
aux différents services, mais ne sont pas en utilisation constante (dit “ trous du
spectre ”). Bien sûr, cela doit être réalisé sans gêner les services déjà alloué
et c’est là que la partie cognitive, ou intelligente, de cette approche est néces-
saire. Une autre idée évidente est d’aller à des fréquences plus élevées, où aucun
service n’est encore alloué et la bande passante est abondante. Par ailleurs,

1Pour illustrer l’origine de ce fait parfois négligé, nous nous souvenons du théorème de
Shannon-Hartley [9]. Prenant S et N pour représenter la puissance des signaux et du bruit en
moyenne par rapport de la bande passante B: C = B log2(1+S/N) = B log2(1+ Psum/B

N0B/B
) =

B log2(1+ Psum/B
N0

).
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la plupart des recherches actuelles portent sur l’utilisation de la bande d’ondes
millimétriques, entre 3GHz et 300GHz [12, 13]. Cependant, cette approche fait
toujours face à des nombreux obstacles. Par exemple, le matériel émetteur-
récepteur couramment utilisé (en particulier les amplificateurs) n’est pas encore
en mesure de soutenir de telles fréquences [14]. En outre, les caractéristiques
de propagation des ondes à ces fréquences ne manifestent pas de nombreuses
propriétés que les ingénieurs de la communication utilisent habituellement. Par
exemple, des onde des longueurs très courtes sont plus ou moins limitées aux
chemins à la ligne de visée directe (LOS) et sont très sensibles à l’obstruction
et la météo.

Augmentation de la densité du réseau

Historiquement, diminuer la taille des cellules (ce qui revient à augmenter la
densité des cellules) a été la technique la plus aboutie pour satisfaire la demande
pour la capacité du réseau [15, Chapitre 6.3.4]. C’est une approche intuitive, vu
que les émetteurs et récepteurs sont spatialement proches (c’est à dire, réduction
de perte de trajet, moins réflexions/évanouissement). En outre, plus de densité
signifie que plus de cellules peuvent être mises dans la même superficie, ce
qui influe directement sur l’équation du débit ci-dessus. Fait intéressant, cette
simple densification augmente la puissance des interférences et du signal. Ceci
est le plus intuitivement compris dans un environnement de propagation simple
et homogène (par exemple, ligne de vue). Ici, la puissance d’interférence et la
puissance du signal augmentent proportionnellement quand la distance diminue,
c’est à dire, le SIRreste plus ou moins le même [16] [17, Chapitres 6,2-6,4] [18,
esp., l’équation(21)]. Aussi, l’efficacité spectrale reste la même en approximation
du premier ordre. Cependant, la réutilisation spatiale augmenté, ce qui améliore
le débit par zone [19]. Dans tous les cas, l’interférence induite par des cellules
voisines augmente, si les cellules denses servent plus des terminaux d’utilisateur
(UT). La manière classique pour lutter contre l’interférence entre les cellules est
d’utiliser des fréquences différentes dans les cellules qui sont proches (facteur de
réutilisation de fréquence supérieure à un) [17]. Toutefois, cela réduit l’efficacité
spectrale, limitant ainsi le gain global réalisable. La version moderne de la
densification des cellules est souvent décrite dans le cadre de petites cellules
(SC) [20, 21, 22]. Ici, une architecture hétérogène est envisagée, dans laquelle
les grandes cellules classiques (dites macro) sont exploitées pour certaines tâches
(par exemple, gestion de la mobilité), mais une décharge de trafic par des petites
cellules existantes dans le même environnement est employé. Cela veut dire
qu’une quantité arbitraire de petites cellules, capables d’auto-organisation, sont
déployés à l’intérieur/l’extérieur soit par l’opérateur soit par le consommateur.
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Afin de ouvoir offrir une capacité élevée, à basse consommation, l’accès au réseau
localisé pas cher. Le mélange de cellules macro et SC aura une incidence sur
l’efficacité spectrale dans chaque cellule, en particulier si les small cells (SC)
sont déployées par des consommateurs non-organisés.

Augmentation de l’efficacité spectrale

Le sujet de recherche le plus actif de la recherche sur l’amélioration de débit
concerne l’augmentation de l’efficacité spectrale. Aujourd’hui les réseaux cel-
lulaires sont, avant tout, limitée par l’interférence intra cellulaire, et en par-
ticulier, l’interférence entre les cellules [23, 24]. Cette situation va également
s’aggraver, comme les réseaux cellulaires modernes devront servir une multi-
tude d’utilisateurs en utilisant les mêmes ressources (temps/fréquences) pour
obtenir une plus grande efficacité spectrale. Nous remarquons également que
cette thèse, semblable à la majorité de la recherche, ne traitera pas directement
les sujets SISO, comme cela est techniquement inclus dans le cas de MIMO.

MIMO, MU-MIMO et Précodage. Probablement l’idée la plus influ-
ente dans le domaine de l’amélioration de l’efficacité spectrale a été l’introduction
de systèmes MIMO [25, 26], qui a ensuite été popularisée par d’innombrables
publications (comme [27] qui est un exemple remarquable). Le résultat princi-
pal de MIMO (ensuite développé en [28, 29]) est que la capacité d’un système
MIMO mono-utilisateur, dans le régime de grand puissance d’émission (propor-
tionnelle au rapport signal-sur-bruit (SNR), avec Nt antennes d’émission, Nr
antennes de réception, et le temps de cohérence2 T , évolue comme dans [31]:

C(SNR) = min{Nt, Nr, T/2}
(
1− 1

T min{Nt, Nr, T/2}
)

log2 (SNR)+O(1).

En d’autres termes l’efficacité spectrale augmente linéairement avec min{Nt, Nr}
pour T grand. Cela montre instantanément le problème pour les appareils
d’antennes simples, c’est à dire dans le cas Nr = 1. Il y a une extension intu-
itive du concept MIMO pour le cas multi-utilisateurs (MU-MIMO)3: On traite
des groupes de K utilisateurs (antenne unique) comme un seul récepteur, dont
les antennes de réception sont distribuées. Donc l’efficacité augmente linéaire-
ment avec min{Nt,K}, dans des circonstances idéales. Nous remarquons que ce
qui est considéré comme des circonstances favorables varie pour les différentes
variantes de MIMO. Dans le cas de réception sur des antennes non coopératives,

2T est mesurée comme "dimensions” complexe du signal dans la domaine temps-fréquence.
Il est proportionnelle au produit WcTC , où Tc (en s) est l’intervalle de cohérence du canal, et
Wc (en Hz) est la largeur de bande de cohérence du canal [30].

3Il est historiquement pas très clair si MIMO multi-utilisateur ou MIMO mono-utilisateur
a été découvert en premier.

4



Synopsis

de telles circonstances pourraient alors amener à ce que la transmission simul-
tanée à partir des antennes d’émission soit effectuée de façon à ce qu’aucune
interférence ne soit provoquée au niveau des récepteurs. Alors que, dans le cas
MIMO utilisateur unique l’interférence induite n’est peut-être pas un tel prob-
lème. Il y a plusieurs termes différents qui décrivent l’approche MIMO dans
des circonstances différentes, par exemple accès multiple par répartition spatial
(SDMA) ou la transmission simultanée (par précodage). Les systèmes de trans-
mission (ou précodage4), à la fois optimale et sous-optimale, ont fait l’objet de
beaucoup de recherches, par exemple en utilisant les méthodes de la théorie de
l’optimisation [32, 33]. Un système sous-optimal mais extrêmement populaire
est forçage à zéro régularisée (RZF) [34, 35], qui est aussi parfois appelé min-
imisation de l’erreur quadratique moyenne (MMSE), filtre de transmission de
Wiener, formation de faisceau généralisée en fonction des valeurs propres, etc.
(voir [36, Remarque 3.2] pour une histoire complète de ce système de précodage
et [37] pour une très bonne explication). Une grande partie de la popularité de
RZF provient du fait qu’il peut être donné sous forme explicite, ce qui n’est pas
possible pour les régimes linéaires optimaux à ce jour. Récemment, une struc-
ture de précodage linéaire optimal a été décrit dans [38] (cellule unique, par
rapport à une fonction strictement croissante du SINR, tandis que la puissance
d’émission totale est limitée). Il reste néanmoins que le problème d’interférence
est généralement aggravé par l’effet de la connaissance imparfaite concernant les
informations d’état du canal (CSI). Ces imperfections sont inévitables, car des
effets imparfaits comme algorithmes d’estimation imparfaite, nombre limité de
séquences pilotes orthogonaux, la mobilité des utilisateurs, des retards, etc ne
peuvent pas être évités dans la pratique. Par conséquent, on est essaie générale-
ment d’employer des systèmes de précodage qui sont robustes aux erreurs CSI
et qui exploitent la CSI disponible le plus efficacement possible.

MIMO à grande échelle. Une façon très prometteuse pour améliorer
l’efficacité spectrale est maintenant communément appelé massive MIMO ou
MIMO à grande échelle. L’idée est d’augmenter considérablement le nombre
d’antennes à la station de base (de l’ordre de centaines ou de milliers) [97]. Cette
technologie est basée sur l’invocation des effets statistiques à grande échelle qui
(dans des conditions optimales) éliminent les évanouissements rapides, les in-
terférences, et le bruit du système de communication. En plus, cette technique
concentre l’énergie transmise seulement à la cible visée. Cela permet de servir
beaucoup plus d’UT comparé à ce qui est possible aujourd’hui, augmentant

4Nous allons utiliser le terme “beamforming” comme synonyme de “orientation du fais-
ceau”, tandis que de nombreux autres ouvrages utilisent ce terme comme synonyme pour
précodage.
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alors grandement l’efficacité spectrale globale. Fait intéressant, l’hypothèse de
centaines d’antennes n’est pas si utopique, comme la station de base 4G/LTE-A
à taille maximale a déjà 240 antennes. Une station de base comme ça peut
employer 4-MIMO à sa phase d’expansion maximale qui figure 3 secteurs de
4 tableaux verticaux par secteur avec 10 antennes fois 2 polarisations chacun.
Toutefois, ils n’offrent pas encore 240 émetteurs-récepteurs indépendants et sou-
tiennent ainsi essentiellement seulement un réseau de faisceaux. Massive MIMO
a beaucoup attiré l’attention de la communauté des chercheurs [39, 40] et son po-
tentiel est aujourd’hui très largement étudié. Surtout, de nombreuses approches
pour formuler l’hypothèse de base plus pratique ont été découvertes. Des pro-
grès ont été réalisés sur le problème de l’estimation du CSI par rapport aux
centaines de canaux (chaque antenne de la BS à chaque antenne d’utilisateur)
[41, 42, 43, 44, 45]. Le nombre d’antennes nécessaires pour atteindre les effets de
massive MIMO a été considérablement réduit [31, 46, 47]. Le problème du coût
de calcul de précodage dans la grande échelle [40] est traité [48] et les aspects de
l’efficacité énergétique sont à l’étude [49, 50]. Même les déficiences matérielles,
qui sont certainement importantes comme le coût par l’émetteur-récepteur doit
être réduit en utilisant des centaines des antennes, sont à l’étude [51, 52, 53]
et il a été récemment découvert que cela cause en réalité moins de problèmes
que prévu. Enfin, des campagnes de mesure et les mises en œuvre de massive
MIMO dans le monde réel ont également été faites [54, 55, 56].

Coopération et coordination. Le terme générique pour la plupart des
techniques de coopération et de coordination sont la transmission et la réception
multipoints coordonnées (CoMP). L’idée est d’assurer un niveau de coordination
entre les émetteurs et récepteurs de toutes les cellules d’un réseau hétérogène
aussi bien que possible, afin de former (impossible pour l’instant) un grand sys-
tème MIMO, qui obéit à la capacité MIMO mono utilisateur. Cette coopération
peut se faire de manière explicite (par exemple par des backhaul directs) ou im-
plicitement (par sondage). Un autre point de vue (en particulier dans le contexte
de MU-MIMO) est d’exploiter l’interférence de façon avantageuse [57, 58, 36].
Dans tous les cas, CoMP peut considérablement réduire l’interférence entre les
cellules et, dans une certaine mesure, l’interférence intra cellulaire en servant
certains utilisateurs en utilisant des antennes hors de leur cellule. En raison
de la grande quantité de possibilités de coopération et de coordination [24], on
introduit souvent de nombreuses sous-catégories de CoMP: Tout d’abord, nous
reconnaissons que les systèmes d’antennes distribuées (DAS) [59] qui tombent
dans le régime d’applications de CoMP, mais ce terme ne décrit que diffusément
un système dans lequel les antennes sont distribuées et connectées les unes
aux autres. La planification coordonnée (Coordinated Scheduling, CS) évite
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l’interférence en planifiant seulement de servir à chaque BS les utilisateurs dont
les canaux ne provoquent (preque) pas d’interférence (inter et intra cellulaire).
Le beamforming coordonné (CBF) [60, 61, 62] suppose que toutes les stations
de base précodent de manière à ce que les autres utilisateurs ne subissent pas
l’interférence. Un exemple de système coopératif est la sélection du point de
transmission (TPS) [63], où toutes les BS qui collaborent ne servent qu’un util-
isateur, le meilleur. Le but final est la transmission jointe (Joint transmissions,
JT) aussi dit réseau MIMO [64, 65]. Ceci est le système décrit au début, qui
essaie de former un grand système MIMO multi-utilisateur, comme une seule
cellule. Pour arriver a ce but, il faut que toutes les BS soient directement con-
nectées les unes aux autres, qu’elles soient commandées centralement, et qu’elles
transmettent leurs données partagées par tous les utilisateurs en même temps.
Dans la domaine de coopération, la recherche a déjà donné une grande nombre
des résultats par rapport aux limites du régime. Par exemple, nous savons déjà
que CBF optimal est NP-hard (par rapport de la métrique débit sommaire)
[66], que les capacités de backhaul limitées empêchent la coopération [67], et
que la nécessité de l’acquisition de CSI dégrade fortement les gains espérés [68].
Cependant, un travail très récent [69] a montré que la coopération pourrait être
simplifiée dans les DAS en exploitant le comportement du sous-espace des ma-
trices de covariance, qui est de faible dimension par rapport aux signaux. En
outre, des techniques pratiques et des essais sur le terrain de CoMP ont été
testés avec succès [63, 70, 71].

Codage amélioré et schèmas de modulation. Avec les schèmas à la
pointe du progrès du codage, comme des codes de contrôle de parité à faible
densité (LDPC) [72], des turbo-codes [73] et des schémas de modulation comme
(OFDM) [74] utilisés, les communications fonctionnent dans un régime déjà rel-
ativement proche de l’optimum d’efficacité spectrale (par rapport au codage et
à la modulation). Cependant, les recherches se poursuivent pour optimiser et
enrichir notre boite des outils en termes de codage et de modulation, afin de trou-
ver le dernier reste d’efficacité manquant ou encore répondre à des besoins très
spécialisés. Voir, par exemple, les travaux les plus récents sur le multiplexage
en fréquence Vandermonde (VFDM) [75, 76], algorithmes des transformations
isotropes et orthogonales (IOTA)-OFDM [77], les codes de la fontaine [78], et les
codes polaires [79]. En particulier, les exigences du nouveau régime de systèmes
d’antennes de très grand échelle ont ravivé l’intérêt pour de nouveaux schémas
de modulation spécialisés. Toute mise en œuvre concrète des systèmes avec
un très grand nombre d’antennes nécessite le matériel pour devenir moins cher
(particulièrement les amplificateurs). Par conséquent, les émetteurs-récepteurs
souffrent d’imperfections matérielles aggravées, comme l’augmentation des non-
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linéarités [80] qui limitent sévèrement la “peak to average poser ratio” (PAPR)
de l’entrée de l’amplificateur et des autres paramètres [81]. Par conséquent, les
schémas de modulation pesant moins lourd sur la qualité du matériel pourraient
finalement s’avérer nécessaires, mais des travaux récents ont montré que ce n’est
pas un si grand problème dans les systèmes massive MIMO (par exemple, [52]).
Pourtant, d’autres comme [82] ont utilisés des antennes MIMO en excès pour
optimiser le précodage pour affaiblir le PAPR, tandis que certains [83] consid-
èrent une modulation à enveloppe constante conçu pour une très faible PAPR.
La formation de faisceau unitaire limitée (CUBF) [84] dans les normes LTE et
LTE-A vont également dans ce sens.

Autres approches. Il y a aussi des certaines technologies et approches
moins conventionnelles, qui pourraient avoir un impact important sur l’efficacité
spectrale: les transmission et réception simultanées (STR), également connu
sous le nom de full-duplex émetteurs-récepteurs [85, 86], offrent le potentiel
de directement doubler la capacité des réseaux sans fil actuel. Les approches
des couches transversales comme décodage de canal et source conjoint [87] qui
exploite la redondance et des informations supplémentaires sur les différentes
couches protocolaires vont également dans ce sens. L’exploitation de la polari-
sation électromagnétique [88, 89] pourrait potentiellement tripler la capacité de
communication sans fil, mais la grande majorité des chercheurs dans le domaine
voient cet approche comme un cas particulier de MIMO.

Conclusion

Après les points soulevés dans ce chapitre, il est devenu clair que les futurs sys-
tèmes de communication mobile pourront probablement répondre à la demande
croissante de débit en combinant plusieurs méthodes. Tout d’abord, la densifica-
tion par les SCs hétérogènes déployées par l’opérateur et le client sera essentielle
à la réalisation de la plus grande partie de l’objectif de débit. Pour atteindre
tout le débit souhaité on pourrait imaginer un effort partage comme 2 times par
augmentation de spectre, 20× par amélioration de l’efficacité spectrale et 25×
par des cellules plus petites. Les petites cellules permettent également de servir
un plus grand nombre d’UTs simultanément. En ajoutant à cela, l’utilisation de
cellules chevauchantes (à cause des architectures hétérogènes) ainsi que la réutil-
isation des mêmes fréquences partout, l’interférence va augmenter à des niveaux
intolérables qui devront être gérés par diverses approches CoMP. Les systèmes
d’antennes à grande échelle seront ensuite utilisés pour fournir la dernière partie
manquante pour atteindre les objectifs de débit et pour combler les points faibles
des approches SCs et CoMP: en particulier les difficultés concernant la mobilité
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et d’autres complications par rapport au backhaul. Nous nous rendons compte
que la solution va, en tout cas donner lieu à de très grands systèmes (par rapport
aux nombres d’utilisateurs, stations de base et antennes), dans lequel l’équilibre
entre les approches discutées n’est pas clair. Les outils employés jusqu’à présent
dans la communauté ont été développés pour l’analyse de systèmes point-à-point
et les petits systèmes MIMO. Par conséquent, il n’est pas surprenant qu’ils ne
parviennent souvent pas à fournir un aperçu significatif de cette nouvelle ère de
grands systèmes denses de cellules multiples hétérogènes. Nous concluons que
de nouveaux outils, adaptés à la grande nature des systèmes doivent être mis
au point et utilisé pour donner un aperçu et trouver le bon équilibre entre les
approches dans les futurs réseaux MU-MIMO. Heureusement, les outils mathé-
matiques de la théorie des grandes matrices aléatoires a mûri suffisamment au
cours de ces dernières années pour représenter maintenant un excellent outil
pour notre tâche.

Sommaire et contributions

Cette thèse tente de répondre au défi d’améliorer le débit des grands réseaux
MU-MIMO à plusieurs cellules, en augmentant l’efficacité spectrale et à rendre
les schémas de transmission possibles pour les systèmes de grand échelle via
l’optimisation du précodage. Les outils de choix pour atteindre cet objectif
sont généralement tirés de la théorie des matrices aléatoires à grand échelle
(RMT), qui a maintenant atteint un niveau de maturité élevé dans le cadre de
la résolution des problèmes de communication [90, 91].

Sommaire de cette thèse

Le chapitre 1 sert d’introduction à l’état actuel de l’industrie des communica-
tions sans fil et met en valeur les défis auxquels l’industrie est confrontée en
raison du “tsunami de données” provoqué par la demande d’accès sans fil par
l’internet mobile. Nous discutons des principales possibilités pour augmenter
le débit dans les systèmes sans fil de prochaine génération. Nous identifions
et donnons un aperçu de la littérature sur les approches et les technologies
couramment traite dans la recherche mondial qui nous aiderons à saisir les pos-
sibilités identifiées. Des réseaux grandes (par rapport au nombre d’utilisateurs,
des cellules et des antennes), hétérogènes et denses sont identifiés comme la so-
lution la plus probable, ce qui nécessite toutefois de nouvelles idées pour lutter
contre le problème d’interférence. La théorie des grandes matrices aléatoires
est mentionnée comme l’outil de choix pour évaluer, équilibrer et optimiser des
combinaisons de technologies denses, coopératives et massives.
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Dans le chapitre 2 nous fournissons un tutoriel sur la RMT. Pour arriver
à ce but, nous donnons d’abord la théorie et les concepts de base nécessaires,
des lemmes et des outils de RMT. Après cela, nous donnons un aperçu des con-
cepts de RMT et de leurs applications dans un tutoriel. Pour familiariser le
lecteur avec les outils mis en place, nous utilisons un exemple illustratif, plus
précisément une dérivation étape par étape de l’équivalent déterministe pour
un modèle de système relativement simple. En outre, nous donnons quelques
conseils pour les calculs RMT, qui sont régulièrement utilisés dans cette thèse et
dans la littérature RMT en général. Enfin, un bref aperçu de certains résultats
RMT/équivalents déterministes existants est donné.
La plupart des concepts dans le chapitre 2 ont déjà été abordées dans de nom-
breux autres travaux (par exemple, [90, 91]). Nous nous distinguons de ces
articles en adhérant à un style plus pédagogique (de type tutoriel). Par con-
séquent, ce chapitre pourrait être utile aux novices et aux chercheurs intéressés
à entrer dans le domaine de la RMT, comme pour les utilisateurs expérimentés
de ces outils.

Dans la première partie du chapitre 3, nous proposons une nouvelle famille
de des régimes de précodage linéaire à complexité réduite pour les systèmes de
liaison descendante pour les cellules multi-utilisateurs individuels, prenant en
compte la corrélation des antennes d’émission à la station de base. Nous ex-
ploitons les techniques d’extension polynomiale tronquée (TPE) pour permettre
un équilibrage de complexité et somme de système débit par rapport au pré-
codage. Une contribution principale analytique est la dérivation des équivalents
déterministes pour les débits d’utilisateurs réalisables en utilisant le précodage
TPE pour tous les ordres J du polynôme. Nous présentons également les co-
efficients qui maximisent le débit. Ce schéma TPE de précodage permet une
transition en douceur entre les performances de transmission du rapport maxi-
male (MRT), encore utilisé régulièrement, (J = 1) et RZF (J = min(M,K)),
où la majorité de l’écart est franchie pour les petites valeurs de J . Nous mon-
trons que J est indépendante des dimensions du système M et K, mais nous
devrons augmenter J par rapport au rapport signal-sur-bruit (SNR) et par rap-
port à la qualité des informations d’état de canal (CSI) pour maintenir un écart
fixe du taux de RZF par utilisateur. La structure à plusieurs polynômes permet
la mise en œuvre du matériel à faible consommation d’énergie plus rapide par
rapport à l’inefficacité du traitement de signal compliqué requis pour calculer
la précodage RZF classique. Une analyse de la complexité étendue sur TPE et
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RZF est effectuée pour prouver ce point. En outre, le retard du premier sym-
bole transmis est réduit de manière significative en TPE, ce qui est d’un grand
intérêt pour les systèmes avec des périodes de cohérence très courtes.

La deuxième partie du chapitre 3 agrandit la première partie aux scénarios
de cellules multiples à grande échelle avec des caractéristiques plus réalistes,
telles que les matrices de covariance du canal spécifiques à l’utilisateur, CSI
imparfait, la contamination de pilote, et des contraintes de la puissance spéci-
fique aux cellules. Le jème BS sert ses utilisateurs en employant le précodage
TPE à un ordre Jj qui peut être différente entre les cellules et donc adapté à
des facteurs tels que la taille des cellules, les exigences de performance et les
ressources matérielles. Nous obtenons de nouveaux équivalents déterministes
pour les débits d’utilisateurs réalisables. En raison de l’interférence inter-cellule
et intra-cellule, des rapports signal-sur-interférence-et-bruit effectives sont des
fonctions des coefficients de TPE dans toutes les cellules. Cependant, les équiva-
lents déterministes ne dépendent que des statistiques du canal, et peuvent donc
être calculées à l’avance. L’optimisation conjointe de tous les coefficients du
polynôme est indiqué comme étant mathématiquement semblable au problème
de l’optimisation de la formation de faisceau multidiffusion, ce qui est exploité
pour l’optimisation hors ligne.

Dans la dernière partie de ce chapitre, nous examinons les différences entre
les modèles de la première (une seule cellule) et la deuxième partie (multi cellu-
laire). Surtout, nous nous concentrons sur la raison pour laquelle ces différences
étaient nécessaires, la façon dont ils compliquent l’analyse pour le cas d’une
seule cellule (ou respectivement la façon dont ils simplifiées l’analyse pour le cas
multi cellulaire) et pourquoi les deux analyses sont difficiles à comparer.

Dans le chapitre 4 nous nous posent sur une structure de précodage linéaire
optimal récemment décrit [36, Eq (3.33)] pour proposer un schéma de précodage
adapté à l’interférence induite (iaRZF) pour les systèmes liaison descendante
multi cellulaire. Tout d’abord, nous facilitons la compréhension intuitive du
précodeur grâce à de nouvelles méthodes d’analyse dans les dimensions finies et
grands, appliqué à des cas limitant. On s’attarde plus particulièrement sur le
mécanisme d’atténuation des interférences induites de iaRZF. Nous montrons
que iaRZF peut améliorer sensiblement les performances somme des débits dans
les scénarios multi cellulaires de forte interférence. En particulier, il n’est pas
nécessaire d’avoir des estimations fiables sur des canaux interférentes; même les
CSI très pauvres permettent des gains importants. Pour obtenir plus des con-
naissances fondamentales, nous dérivons des expressions déterministes pour les
débits des utilisateurs asymptotiques, pour lesquelles seulement les statistiques
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du canal sont nécessaires pour le calcul et la mise en œuvre. Ces expressions
nouvelles généralisent le travail de [92] par rapport aux systèmes des cellules
uniques et [47] par rapport aux systèmes multi cellulaires. Enfin, ces extensions
sont utilisées pour optimiser la somme des débits des utilisateurs du système de
précodage iaRZF dans des cas limite et nous proposent et expliquent des ap-
proches heuristique pour trouver les coefficients de précodeurs appropriées par
rapport aux paramètres divers du système. Ceux-ci offrent une performance
presque optimale en ce qui concerne le sommaire des débits, même dans les cas
non limite.

Nous concluons la thèse dans le chapitre 5, qui rappelle certains résultats
théoriques importants et donne un aperçu bref de travaux futurs possibles. En
particulier, les extensions aux modèles de canal plus réalistes, inclusion de back-
haul et certains modelés d’erreur sont indiquées. En outre, la RMT pourra, dans
un avenir proche, traiter les systèmes encore plus grands, ce qui pourrait enfin
décider de l’équilibre avantageux pour la distribution d’antennes. En outre, des
tests de validation pratique des concepts de cette thèse sont proposés.

Autres contributions

Dans le travail menant à cette thèse, certains autres contributions dans le do-
maine des réseaux sans fil ont été réalisés, dont la description n’est pas incluse
dans ce manuscrit.

Dans [93] nous avons avancé les méthodes RMT existants pour l’analyse des
systèmes multi cellulaires coopératifs pour traiter l’emplacement des utilisateurs
aléatoires. Dans ce travail, nous avons étudié un réseau unidimensionnel consti-
tué de deux stations de base et des utilisateurs déployées de manière aléatoire
sur une ligne simple. Nous avons distingué entre deux scénarios: coopération
parfaite et pas de coopération. Dans le premier scénario, les deux stations de
base décodent conjointement les messages pour les utilisateurs dans les deux
cellules. Nous avons ignoré les contraintes pratiques, telles que la capacité de
backhaul limitée, donc, le système peut être considéré comme un système des
antennes distribuée. Nous avons établi des approximations serrés de la somme
des débits de liaison montante pour les détecteurs optimales et sous-optimales.
Nous avons ensuite utilisé ces résultats pour trouver l’emplacement des stations
de base qui maximise la capacité du système en moyenne (par rapport à le
évanouissement et aux emplacements de l’utilisateur).
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Enfin, dans [94] nous avons utilisé le cadre RMT de systèmes multi cellulaires
coopératifs avec des emplacements des utilisateurs aléatoires pour répondre aux
questions pratiques sur le basculement de l’antenne dans la liaison montante.
Nous avons avancé le cadre RMT pour soutenir la modélisation des groupes
des stations de base coopérantes et nous avons incorporé un modèle de gain
d’antenne directionnelle en trois dimensions. Nous avons ensuite numérique-
ment analysé et optimisé les effets de basculement de l’antenne sur le sommaire
de débits dans les réseaux aux cellules petits. En outre, l’impact du nombre
d’antennes de station de base a été étudié. Contrairement aux outils de simula-
tion numériques standards, nous avons montré que la mise en œuvre des équiv-
alents déterministes de RMT est simple et améliore considérablement l’effort de
simulation.
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� A. Müller, A. Kammoun, E. Björnson, and M. Debbah, “Linear Precod-
ing Based on Polynomial Expansion: Reducing Complexity in Massive
MIMO,” IEEE Trans. Information Theory, 2014, arXiv:1310.1806, sub-
mitted.

� A. Kammoun, A. Müller, E. Björnson, and M. Debbah, “Linear Precoding
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Papiers des conférences:
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Cooperation with Random User Locations Via Deterministic Equivalents,”
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(SpaSWiN), Paderborn, Germany, November 2012.
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� A. Müller, J. Hoydis, R. Couillet, M. Debbah et al., “Optimal 3D Cell
Planning: A Random Matrix Approach,” in Proceedings of IEEE Global
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agement of Heterogeneous User Mobility in Large-scale Downlink Sys-
tems,” in Proceedings of Asilomar Conference on Signals, Systems and
Computers (Asilomar), California, USA, 2013.
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Conclusions de cette thèse

Dans l’introduction nous avons proposé la question comment l’industrie du sans-
fil peut se préparer au défi du “tsunami de données”. Nous avons fait l’hypothèse
que les réseaux hétérogènes composés des BSs macro cellulaire, équipé de nom-
breuses antennes, combinée avec les petites cellules très denses (à la fois avec des
capacités adéquates de gestion d’interférence) seront la réponse la plus probable.
Le travail réalisé pour cette thèse nous donne confiance qu’une telle solution est
en effet réaliste. La densification par SC peut fournir la plupart des gains de
débit nécessaire. MIMO massive à la BS macro peut satisfaire les besoins des
utilisateurs hétérogènes (par exemple, la mobilité), tout en améliorant le débit
par une meilleure efficacité spectrale. Deuxièmement, l’interférence induite peut
être géré via une coopération minimale et en exploitant la résolution spatiale
de MIMO massif. L’interférence causée par les petites cellules (pas si massives)
peut être gérés efficacement, par rapport aux exigences de backhaul et complex-
ité, en utilisant le système de pré-codage iaRZF proposé avec des poids heuris-
tiques du chapitre 4. En outre, la technologie MIMO massive est approche plus
à une technique pratique par le schéma de précodage à faible complexité TPE
présenté au chapitre 3. Nous rappelons que l’idée principale du précodage TPE
était de partir de la structure de précodage RZF qui est relativement efficace
sur le nombre des antennes requis et remplacer le coûteux calcul de l’opération
matrice fois matrice et inversion. L’approche choisi a été de approximer les
calculs par un polynôme tronqué qui permet la utilisation efficace des produits
de vecteur fois matrice dans une manière “domino”, puis de trouver les poids
polynômes nécessaires en optimisant les DEs du SINR. Le point principal de
iaRZF était de partir d’une découverte récente d’une structure optimale de pré-
codage linéaire (optimale par rapport à une fonction strictement croissante du
SINR, tandis que la puissance d’émission totale est limitée). Nous avons ensuite
simplifié cette approche à un point où RMT permet d’avoir des DEs donnant
de la perspicacité, mais où une grande atténuation d’interférence est encore
possible. En analysant la structure de précodage dans plusieurs cas extrêmes,
à la fois dans les régimes aux grandes dimensions et aux dimensions limites,
nous avons découvert des options solides pour choisir les poids de précodage
qui se rapprochent des performances optimales (en ce qui concerne la sommaire
des débits) dans de nombreux scénarios. En général, le travail sur cette thèse
nous a donné l’appréciation et la compréhension intuitive pour la complexité
des calculs concernâtes des précodeurs linéaires dans les systèmes très grands.
Ainsi que pour les approches heuristiques et pour la relégation d’interférence
dans les sous-espaces par des structures de précodage linéaires et plus généraux.
Nous espérons que notre travail sur TPE et iaRZF ait une influence positive
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sur futures normes dans le domaine des communications sans fil. Cependant,
plus des recherches seront nécessaires, concertantes les techniques traitées dans
ce document et aussi pour de nombreuses autres techniques de communications
avancées (esp., CoMP), afin de finalement atteindre les objectifs de débit.

Toutes les analyses et résultats de cette thèse sont ultimement fondés sur
l’approche RMT. Les DEs sortant de cette technique offrent une abstraction
commode des problèmes très complexes de la couche physique, qui se pose
sur relativement peu de paramètres du système. Ainsi, RMT peut offrir des
intuitions sur l’interdépendance des variables différentes et permet également
de trouver analytiquement des solutions optimales qui peuvent directement in-
former des applications pratiques. RMT a déjà été utilisé des nombreuses fois
et a été porté à maturité mathématique dans d’autres œuvres. Nous avons util-
isé le cadre RMT dans cette thèse d’une manière plus pratique. Nous espérons
que notre travail a donné des exemples d’applications RMT, qui peuvent faciliter
l’accès compréhensible à la RMT pour des chercheurs futurs. Alors que RMT est
souvent d’un usage énorme, il faut ne pas oublier les limites de cette approche.
En addition aux points mentionnés dans la section des perspectives qui suit, il
faut être conscient à la détérioration de la performance parfois observé pour de
grandes valeurs de SNR et la possible du convergence relativement lente5 du
DEs à leur quantité aléatoire respectif. Aussi la DE n’est pas garanti d’être
constamment serré pour tous choix de variables système, donc une approche de
bon sens à l’interprétation des résultats et la vérification occasionnelle par des
techniques de Monte-Carlo classiques est conseillé. Pourtant, comme on l’a vu
tout au long de cette thèse et dans des nombreux autres ouvrages, RMT est une
approche très robuste pour l’abstraction des grands systèmes, qui est souvent
aussi correcte pour les tailles du système relativement petites.

Perspectives

Enfin, nous voulons donner des perspectives sur les résultats obtenus, en parlant
de certains défauts et les améliorations possibles. En plus, nous essayons de
donner un aperçu sur des futures évolutions de RMT, en particulier à l’égard de
certaines hypothèses théoriques communes avec le domaine des communications
sans fil.

Perspectives pour TPE

Étant donné que l’objectif principal du approche de précodage TPE est la ré-
duction de la complexité de calcul, la prochaine étape évidente est de vérifier les

5Souvent seulement 1/
√
N pour les résultats du premier ordre comme le SINR.
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gains théoriques dans la pratique. En particulier, les gains de pipelining qui sont
parfois contestées doivent être corroborés par une implémentation sur des sys-
tèmes multi-processeur. En outre, une approche plus facile et moins complexe
à calculer les coefficients des polynômes, contribuerait de manière significative
à susciter l’intérêt de l’industrie. Optimisation sous-optimales ou des approches
complètement heuristiques, éclairées par les résultats analytiques, pourraient
porter un intérêt pratique. Du point de vue analytique, le contrôle direct des
puissances et contraintes de puissance indépendant du nombre des utilisateurs
(c’est-à-dire du bruit non négligeable) pour le scénario multi cellulaire, aiderait
à faire TPE précodage un paquet plus convaincante. Cependant, les premières
expérimentations dans ce sens ont été décevantes. La solution d’un système
aussi complexe peut-être ne pas assez intuitif pour donner un aperçu.

Perspectives pour iaRZF

L’analyse théorique du système de précodage iaRZF est encore loin d’avoir
atteint la maturité. Des propriétés des canaux spatiales spécifiques aux util-
isateurs (par exemple, para des matrices de covariance), le contrôle direct de
la puissance et l’optimisation simultanée de tous les paramètres du système
dans les systèmes non-limites, ne sont que quelques directions dans lesquelles
l’analyse doit être améliorée. De plus, les mêmes analyses doivent être étendues
à l’précodeur plus général (présenté comme genRZF) et les résultats doivent être
comparés avec iaRZF. L’objectif est d’estimer, si les gains de performance po-
tentiels l’emportent sur la coopération, complexité, etc. augmenté. Comme pour
des nombreux résultats théoriques, la vérification expérimentale de l’efficacité
de l’atténuation des interférences aiderait à justifier la poursuite des efforts
dans ce domaine. Cela est particulièrement vrai pour l’utilisation des variations
heuristiques de iaRZF proposées pour les petites cellules denses.

Perspectives pour les modèles CSI

Avec la apparition possible des réseaux de communication massivement hétérogènes
(par rapport à la couche physique), des nouveaux modèles pour la CSI impar-
faite adaptés à cette situation sont nécessaires d’urgence. De nouveaux cadres
devront modéliser de façon réaliste une multitude d’effets supplémentaires du
monde réel avec une précision acceptable, mais ils doivent encore servir à fa-
ciliter l’analyse. Sans doute, le premier objectif le plus important devrait être la
prise en compte de la mobilité hétérogène et de la CSI retardé. Plus des différen-
ciations utiles seraient d’inclure des variables hétérogènes d’environnement qui
peuvent être utilisés pour distinguer les cellules macro et de petites cellules, des
modèles plus réalistes pour les signaux pilotes imparfaits (déjà provisoirement
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traités par l’estimation LMMSE), les imperfections de backhaul plus réalistes
(par exemple, similaires aux résultats connus de quantification) et peut-être des
déficiences matérielles et des aspects de l’efficacité énergétique.

Deux idées évidentes à inclure directement la mobilité dans les modèles
analysable par RMT sont abordés dans ce qui suit: (1) L’approche la plus simple
serait de prendre une relation directement (et inversement) proportionnelle en-
tre la vitesse de déplacement et la période de la cohérence, c’est à dire, le temps
disponible pour apprendre le canal. Cette approche néglige encore de nom-
breuses variables et ne définit pas une niveau de base pour la qualité du canal.
Donc on veut probablement renoncer à cette idée pour l’approche plus réalisé
qui suit. (2) Une combinaison de la formulation de Gauss-Markov connu dans
les systèmes variables en temps et des techniques d’estimation LMMSE pour-
rait être une solution possible. Le niveau de base de la qualité de l’estimation
de canal pour les utilisateurs fixes pourrait être trouvée par des méthodes de
LMMSE (y compris prendre en considération le SNR de formation, des sym-
boles non gaussiennes et bruit). Ensuite, l’impact de l’utilisateur en mouvement
supérieure à zéro peut être estimé par l’adaptation de l’évolution la formulation
de Gauss-Markov dans le temps pour modéliser l’état du canal pour des vitesses
différentes.

Évolution des applications du cadre RMT

L’application du cadre RMT dans les communications sans fil devra évoluer en
permanence pour répondre aux besoins des futurs problèmes pratiques. Surtout,
afin de faire face à la demande de modèles de systèmes hétérogènes. Cela nous
obligera à repenser des hypothèses trop idéales par rapport à l’application du
cadre RMT et de la théorie de la communication en général aussi:

Jusqu’à présent, nous remarquons une tendance marquée vers les distri-
butions gaussiennes dans les applications de RMT. Ceci est particulièrement
évident dans les hypothèses courantes de signalisation gaussienne et du bruit
gaussien. La modification de ces hypothèse pose des problèmes de la nature
théorie d’informations; Capacités ne sont plus décrits par des log det formula-
tions, ainsi que d’autres paramètres classiques (par exemple, SINR) prennent
des formes plus complexes. Le traitement de ces paramètres est non évident
mais probablement possible, avec les outils actuels de RMT. Nous remarquons
que la signalisation arbitraire est déjà un sujet traité avec RMT, mais seule-
ment par la (non-rigoureuse) méthode de réplique [95, 96]. Il est intéressant de
noter que la plupart des résultats RMT (voir le chapitre 2) posent seulement
les contraintes sur les moments de distributions et ne demandent pas explicite-
ment des distributions gaussiennes. Pourtant, la plupart des applications de ces

18



Synopsis

théorèmes (aussi le nôtre) font cette hypothèse.
En général, les modèles de canal plus spécialises devraient être une priorité

pour les futures analyses par RMT. Même si certaines publications de RMT
prennent des canaux ligne de visée en compte, les outils et les résultats de base
actuels (voir le chapitre 2) mènent généralement à des résultats très complexes
et peu intuitives. Dans un vue plus globale, aujourd’hui la plupart des analyses
ne traitent pas des systèmes non linéaire, variant dans le temps, et les chaînes
dépendant de la fréquence (généralement on utilise les hypothèses évanouisse-
ment plat et en non changeant pendant le temps de cohérence), ce qui empêche
l’analyse des idées alternatives comme le codage “cross layer”. En outre, la
mobilité, les modèles d’antennes complexes, les modèles d’évanouissement plus
complexes (par exemple, évanouissement de Nakagami), les imperfections du
matériel, etc, restent des problèmes ouverts. Sur une note plus optimiste, des
topologies aléatoires ont reçu beaucoup d’attention récemment. En outre, les
techniques qui sont déjà utilisés souvent dans la pratique, comme contraintes de
puissance par antenne et par “standards définis”, la planification, regroupement
d’utilisateur et codage de canal, n’ont pas encore été traitées en utilisant le
cadre RMT. Également, la prise en charge de la mémoire tampon de transmis-
sion plein permettrait implicitement de comptabiliser correctement le nombre
d’utilisateurs actifs au bord de la cellule.

Cependant, nous devons avertir que le cadre RMT a été présenté comme
moyen de simplifier l’analyse et rendre les résultats plus intuitifs. Ainsi, tous les
effets mentionnés précédemment devraient être étudiés séparément, afin de ne
pas perdre cet avantage. les auteurs ont parfois rencontré un problème qui mené
à faire un commentaire plus général sur l’approche utilisant les systèmes a grand
échelle; parfois ces approches font “trop” la moyenne. Par exemple, il est difficile
d’obtenir un aperçu sur quelconque utilisateur spécifique, à l’aide des moyens
de grands systèmes. En outre, des phénomènes intéressants qui concernent
uniquement un petit sous-ensemble du système ont tendance à “noyer dans la
moyenne”.

Jusqu’à ici, nous avons discuté des problèmes qui n’ont pas encore été abor-
dés à l’aide RMT, plutôt que des problèmes qui sont actuellement impossible
à résoudre. Les deux points suivants seront obligés de demander une extension
du cadre de RMT même: Un problème important pour l’avenir de RMT est
la combinaison avec la géométrie stochastique. Afin d’aborder le cadre de la
géométrie stochastique, nous aurions besoin d’envisager des scénarios avec, soit
un nombre infini des UTs, ou un nombre infini des stations de base. L’autre
paramètre, respectivement, aurait alors besoin de grandir. Un tel comporte-
ment n’est pas encore pris en compte dans les outils actuels de RMT. Un autre
problème fondamental de RMT est le traitement des schémas de sélection de
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l’utilisateur. Ici, nous devons sélectionner un vecteur de canal d’utilisateur de
toute la matrice de canal aléatoire, basé sur une certaine métrique. C’est à dire,
le vecteur ne peut pas être choisi aléatoirement. Cela nous empêche d’utiliser
le lemme des traces sur les formes quadratiques comme hH

i H[i]HH
[i]hi, comme le

vecteur n’est plus indépendante de la matrice; même lorsque le vecteur est élim-
iné de manière explicite. Le traitement d’un tel scénario est encore un problème
ouvert avec les outils actuellement disponibles en RMT.

Discussion sur les modèles (presque) tous englobantes

Enfin, nous voulons discuter les avantages et les inconvénients d’un analyse
des modèles de système tout englobantes par rapport à RMT. Le principal
inconvénient est déjà clair dès le départ: Avoir un modèle qui est trop com-
plexe masque le rôle et l’influence de la plupart des paramètres du système
et leurs interdépendances. Cependant, combinant toutes les techniques prin-
cipales décrites pour les futurs réseaux sans fil (par exemple, la densification,
la technologie MIMO massif, la coopération et les petites cellules distribues),
dans les modèles complexités modérément plus élevés pourrait être possible et
nécessaire. En particulier c’est nécessaire, quand on doit se décider sur quel
équilibre/mélange des différentes techniques est nécessaire, et va fonctionner
d’une manière optimale, pour une mise en œuvre pratique à l’avenir. Par ex-
emple, la question de savoir comment un nombre fixe d’antennes devrait être
distribué dans un réseau couvrant une zone fixe; devraient tous les antennes être
réparties uniformément ou devraient-ils être massivement centralisées? Ceci et
beaucoup de questions semblables ne peuvent que répondu en créant des modèles
de système plus grands (mais probablement pas tout-englobant).

Pour des questions sur d’autres modèles de systèmes plus généraux, il n’est
pas encore clair comment RMT devra être adapté. Prenez par exemple les
canaux variables de temps. Jusqu’à présent, nos systèmes ont été relativement
statiques. Ça veut dire, les utilisateurs peuvent avoir une certaine vitesse de dé-
placement, mais ils restent fixés à leurs emplacements respectifs, l’environnement
est prédéfinie et ne change pas, et les connaissances sur un certain point dans
le temps ne peuvent pas être utilisés pour prévoir les états futurs dépendaient.
En tenant compte des modèles de matrices aléatoires, qui sont régis par des
processus stochastiques, c’est à dire, dont les réalisations à un certain moment
dépendra de réalisations à d’autres moments, pourrait ouvrir un nouveau champ
d’applications pour le cadre RMT.
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Chapter 1

Introduction

1.1 Current State of Mobile Communications

The wireless communication industry currently experiences prolonged exponen-
tial growth in the demand for network traffic (61% annual data traffic growth);
with no signs of slowing down [1], the same is expected for the number of con-
nected devices. This is mostly due to changing expectations of consumers, who
want to have constant wireless connectivity and access to streaming services,
be it via smart-phones, laptops or tablets. These devices are also more and
more geared towards data communication, rather than voice communication.
Additionally, the market of machine type communication (MTC) is becoming
important [2]. All in all, the industry estimates that a 1000× increase in cellular
network capacity is required over the next 15 years [3] and 2000× until 2030.
Current networks are reaching their capacity limits w.r.t. the physical layer (the
so-called “spectrum deficit” [4] or “data tsunami”), especially in highly popu-
lated urban areas with a high density of connected devices. Taking also peak
hours and bursty transmissions [5] from the higher transmission protocol layers
into account, this is already becoming a problem today.

What are we doing about it?

So, the big question in the wireless communications community is how to in-
crease the network capacity to match the exponentially increasing traffic de-
mand. The total capacity of a wireless network is directly related to the area
throughput (in bit/s per unit area) of the network, which is a combination of
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three multiplicative factors [6]:

Area Throughput︸ ︷︷ ︸
bit/s/area

= Available Spectrum︸ ︷︷ ︸
Hz

·Cell Density︸ ︷︷ ︸
Cells/area

·Spectral Efficiency︸ ︷︷ ︸
bit/s/Hz/Cell

.

Thus, higher area throughput can be, and traditionally has been, achieved by
allocating more frequency spectrum (Hz) for wireless communications, increas-
ing cell density (more cells per area), and improving the spectral efficiency
(bit/s/Hz/cell).

We will now have a look at how current research approaches in each of the
three factors are improving overall throughput and, thus, are preparing wireless
communications for the future. Good overview articles for these and further
technologies can be found in [7, 8].

More Spectrum

The most obvious solution to increase throughput is to use more frequency
spectrum. This is on the one hand the easiest approach, as doubling the used
spectrum in the 300MHz to 3000MHz band instantly doubles the throughput,
without too much (if any) technical problems or research (assuming the overall
transmit power can also be doubled1). On the other hand, spectrum is heavily
regulated in the sub-10GHz range, since this straightforward solution appeals to
all operators. Hence, this is a very costly and a fundamentally demand limited
possibility. Depending on the geographic region in question, around 1 GHz of
frequency spectrum might already be allocated to wireless data services, thus
limiting the realistic gains from this approach to a 2×−3× improvement. Cu-
riously, this regulation also aggravates the observation that large parts of the
available spectrum are not used most of the time. This fact gives rise to the
idea of the cognitive radio [10, 11], which is a device that seeks to use parts of
the spectrum for communication that are allocated to different services, but are
not in constant use (so-called “spectrum holes”). Of course, this needs to be
achieved without intruding on the allocated service and this is where the cogni-
tive, or intelligent, part of this approach is needed. Another obvious idea is to
go to higher frequencies, where no other services are allocated and bandwidth
is plentiful. Here, most current research focuses on the mmWave band, between
3GHz and 300GHz [12, 13]. However, this approach still faces many obstacles.
For one the common transceiver hardware (esp. the amplifiers) is not yet able
to support such high frequencies [14]. Furthermore, the wave propagation char-

1To illustrate the origin of this sometimes overlooked fact, we remember the Shannon-
Hartley theorem [9]. Taking S and N to be the signal and noise powers averaged w.r.t. the
bandwidth B: C = B log2(1+S/N) = B log2(1+ Psum/B

N0B/B
) = B log2(1+ Psum/B

N0
).
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acteristics at these frequencies disallow many properties that communications
engineers have gotten used to. For example, very short wavelengths are more
or less limited to line-of-sight (LOS) paths (much akin to visible light) and are
very susceptible to obstruction and weather.

Higher Cell Density

Historically, shrinking cell sizes (i.e., increasing cell density) has been the single
most successful technique in satisfying demand for network capacity [15, Chap-
ter 6.3.4]. This is physically intuitive, as transmitters and receivers are spatially
closer (i.e., reduced path-loss, less reflections/fading). Also, more density means
that more cells can be fit in the same space, which directly impacts the above
throughput-equation. Interestingly, simple densification increases interference
and signal power proportionally as the cells move closer together. This is most
intuitively understood in a simple homogeneous propagation environment (e.g.,
line of sight). Here, both the interference power and signal power increase pro-
portionally with shrinking distances, i.e., the SIR will more or less stay the same
[16] [17, chapters 6.2-6.4] [18, esp., Eq(21)]. Thus, the spectral efficiency stays
the same in first order approximation. However, the increased spatial reuse
gives a higher area throughput [19]. In any case, the induced interference from
neighbouring cells increases, if the denser cells serve more user terminals (UTs).
The classical way to counter inter cell interference is to use different frequen-
cies in cells that are close together (frequency reuse factor larger than one) [17].
Yet, this reduces the spectral efficiency, thus limiting the overall achievable gain.
The modern version of cell densification is often described in the framework of
small cells (SCs) [20, 21, 22]. Here, a heterogeneous architecture is envisioned,
in which the classical large macro cells are exploited for certain tasks (i.e., mo-
bility management), but one offloads as much traffic as possible to smaller cells
existing in the same environment. This means that an arbitrary quantity of
small, self-organizing outdoor/indoor cells are deployed either by the operator
or by the consumer to provide high capacity, low power and cheap localized net-
work access. The mix of macro cells and SCs will affect the spectral efficiency
in each cell, in particular if the SCs are consumer deployed, i.e., unorganized.

Higher Spectral Efficiency

The arguably largest and most active field of research in the question of im-
proving throughput is concerned with improving spectral efficiency. Cellular
networks nowadays are first and foremost limited by intra cell, and especially,
inter cell interference [23, 24]. This situation will also worsen, as modern cellular
networks will need to serve a multitude of users, using the same time/frequency

23



1.1. Current State Chapter 1. Introduction

resources for increased spectrum efficiency. We also remark that this thesis,
much akin to the majority of research, will not directly treat single-input single-
output topics, though it technically is included in the multiple input multiple
output case.

Single Cell MIMO, MU-MIMO and Precoding. Probably the most
influential idea in the field of spectral efficiency improvement was the introduc-
tion of MIMO systems [25, 26], which was subsequently popularized by countless
publications (as an outstanding example see [27]). The main MIMO result (fur-
ther developed in [28, 29]) is that the high transmit power (proportional to the
signal-to-noise ratio (SNR)) capacity of a single-user MIMO system with Nt

transmit antennas, Nr receive antennas, and fading coherence block length2 T ,
scales as [31]

C(SNR) = min{Nt, Nr, T/2}
(
1− 1

T min{Nt, Nr, T/2}
)

log2 (SNR)+O(1).

In other words the spectral efficiency increases linearly with min{Nt, Nr} for
large T . This instantly shows a bottleneck for single antenna devices, where
Nr = 1. There is a intuitive extension3 of the MIMO concept to the multi-
user case (MU-MIMO): One treats groups of K (single antenna) users as one
receiver, whose receive antennas are distributed. Therefore the efficiency in-
creases linearly with min{Nt,K} under ideal circumstances. We remark that
what is considered as favourable circumstances varies for different variants of
MIMO. In the non-cooperating receive antenna case this might be when the si-
multaneous transmission from the transmit antennas is done in such a way that
no interference is caused at the receivers. While, in the single user MIMO case
induced interference might not be such a problem. There are several alternative
terms describing the MIMO approach in different circumstances, for example
space/spatial division multiplex access (SDMA) or simultaneous transmission
(via precoding). Transmission schemes (or precoding4), both optimal and sub-
optimal, have been subject to much research, for example by using methods
from optimization theory [32, 33]. An extremely popular suboptimal scheme
is regularized zero-forcing (RZF) [34, 35], which is also sometimes called mini-
mum mean square error (MMSE) precoding, transmit Wiener filter, generalized
eigenvalue-based beamformer, etc. (see [36, Remark 3.2] for a comprehensive

2T is measured in signal complex “dimensions” in the time-frequency domain. It is pro-
portional to the product WcTc, where Tc (in s) is the channel coherence interval, and Wc (in
Hz) is the channel coherence bandwidth [30].

3Though, it is historically not so clear if multi user MIMO or single user MIMO was
discovered first.

4We will use the term “beamforming” synonymous with “beam steering”, while many other
works use it synonymous with precoding.
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history of this precoding scheme and [37] for a very good explanation). A large
part of RZF’s popularity stems from the fact that it can be given in closed form,
which is not possible for optimal linear schemes to this day. Recently, a optimal
linear precoding structure was described in [38] (single cell, w.r.t. any strictly
increasing function of the signal to interference plus noise ratios, while the total
transmit power is limited). It remains to caution that, the interference problem
is generally compounded by the effect of imperfect knowledge concerning the
channel state information (CSI). Such imperfections are unavoidable, as imper-
fect estimation algorithms, limited number of orthogonal pilot sequences, user
mobility, delays, etc. can not be avoided in practice. Hence, one is interested
in employing precoding schemes that are robust to CSI errors and exploit the
available CSI as efficiently as possible.

Massive MIMO. A further promising way to improve spectral efficiency
is now commonly referred to as massive MIMO or large-scale MIMO. The idea
is to dramatically increase the number of antennas at the base station (on the
order of hundreds to thousands) [97]. This technology is based on invoking large-
scale statistical effects that (in optimal conditions) eliminate small scale fading,
interference, and noise from the communication system, as well as focus the
transmitted energy only at the intended target. This allows to schedule many
more UTs than is possible today, hence immensely increasing overall spectral
efficiency. Interestingly, the assumption of hundreds of antennas might not be so
far fetched, as a 4G/LTE-A base station at maximal size already has 240 antenna
elements. Such BSs can employ 4-MIMO at its maximal expansion stage of 3
sectors of 4 vertical arrays per sector with 10 antennas times 2 polarizations
each. However, they do not offer 240 independent transceivers and thus mainly
support a grid of beams. Massive MIMO has attracted much attention from
the research community [39, 40] and its potentials are investigated by many.
Crucially, many approaches to making the basic premise more practical have
been discovered, for example: Advances have been made on the problem of
CSI estimation of the hundreds of channels (each BS antenna to each user
antenna) [41, 42, 43, 44, 45]; The number of needed antennas for the massive
MIMO effects to materialise has been significantly reduced [31, 46, 47]; The
problem of the computational cost for the precoding schemes [40] is being treated
[48] and energy efficiency aspects are being looked at [49, 50]; Even hardware
impairments, that are certainly important as the cost per transceiver needs to
be reduced when using hundreds of them, are being investigated [51, 52, 53]
and apparently found to be less of an issue. Finally, measurement campaigns
and real world implementations of massive MIMO have also been carried out
[54, 55, 56].
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Cooperation and Coordination. The official umbrella term for most
cooperation and coordination techniques is coordinated multipoint transmission
and reception (CoMP). The idea is to coordinate between all transmitters and
receivers of all cells of a heterogeneous network as best as possible, with the
(as of yet unattainable) goal of forming one big (network) MIMO system, that
obeys the single user MIMO capacity scaling law. This cooperation can be
done explicitly (for example by back-haul links) or implicitly (for example by
sensing). Another point of view (especially in the context of MU-MIMO) is to
exploit the interference in an advantageous way [57, 58, 36]. In any case, CoMP
can drastically reduce the inter cell interference and, to some extent, intra cell
interference by serving certain users employing out-of-cell antennas. Due to the
large amount of possibilities for cooperation and coordination [24], one often
introduces many sub-categories of CoMP: First, we recognize that distributed
antenna systems (DAS) [59] fall into the scope of CoMP, but only diffusely
describes a system in which the antennas are spatially distributed and connected
to each other. Coordinated Scheduling (CS) avoids interference by each BS only
scheduling users whose channels do (almost) not interfere with each other (inter
and intra cell). Coordinated beamforming (CBF) [60, 61, 62] assumes that all
BSs precode in such a way that the currently scheduled other cell users are not
impeded. One truly cooperative scheme is transmission point selection (TPS)
[63], where all BS cooperatively only serve one user; the “best” one. The final
scheme is joint transmission (JT) / network MIMO [64, 65]. This is the system
described in the beginning, that tries to form one large single cell multi user
MIMO system. It requires that all BS are directly connected to each other, are
centrally controlled, and transmit the shared data to all users simultaneously.
Also in this field, research has already yielded great insight into the limitations of
the scheme. For example, we already know that optimal CBF is NP-hard (w.r.t.
sum rate metric) [66], that limited backhaul capacities impede cooperation [67],
and that the need for CSI acquisition substantially degrades the promised gains
[68]. However, a more recent work [69] has shown that cooperation could be
simplified in DASs by exploiting low-dimensional signal subspace behaviour of
the covariance matrices. Furthermore, practical techniques and field-trials of
CoMP have been successfully carried out [63, 70, 71].

Better Coding and Modulation Schemes. With state-of-the-art cod-
ing schemes, like low density parity check codes (LDPC) [72], turbo codes [73]
and modulation schemes like (OFDM) [74] being used, the communications com-
munity is already operating relatively close to the optimum of spectral efficiency
(w.r.t. coding and modulation). However, research is continuing to optimise and
extend our coding and modulation tool-set to find the last bit of efficiency and to
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fit more specialized needs. See, for example, the more recent works on Vander-
monde frequency division multiplexing (VFDM) [75, 76], isotropic orthogonal
transform algorithm (IOTA)-OFDM [77], fountain codes [78], and polar codes
[79]. Especially the requirements of the new field of massive antenna systems
has rekindled interest in new specialised modulation schemes. Any practical im-
plementation of schemes with a very large number of antennas forcibly requires
the hardware (esp. the amplifiers) to become cheaper. Hence, transceivers suffer
from worsened hardware imperfections, like increased non-linearities [80] that
severely limit the admissible peak-to-average-power-ratio (PAPR) of the ampli-
fier input and so on [81]. Thus, modulation schemes that are less taxing on the
hardware quality could ultimately be needed, though recent works have shown
that this might not be so influential in massive MIMO systems (e.g., [52]). Still,
others like [82] have used excess antennas in massive MIMO to optimize the
downlink precoding for low PAPR, while [83] considered a constant-envelope
modulation precoding scheme designed for very low PAPR and the constrained
unitary beamforming (CUBF) [84] in the LTE and LTE-A standards also goes
in this direction.

Other Approaches. There are also certain technologies and approaches
“waiting on the sidelines”, that could potentially have a large impact on spec-
tral efficiency: Simultaneous transmission and reception (STR), also known as
full-duplex, transceivers [85, 86], have the potential to double the capacity of
any current wireless network. Cross-layer approaches like joint source-channel
decoding [87] which exploits redundancy and side information at different pro-
tocol layers. Exploitation of electromagnetic polarization [88, 89] is promoted as
potentially tripling the capacity of wireless communication, but the overwhelm-
ing majority of researchers in the field sees it as a special case of the MIMO
concept.

Conclusion

After the points made in this chapter, it becomes clear that future mobile com-
munication systems will most likely meet the increased throughput demand by
combining several methods. First, densification via operator and customer de-
ployed heterogeneous SCs will be essential to achieving the biggest part of the
throughput goal. One might imaginge a shared effort like 2× from spectrum,
20× from spectral efficiency and 25× from smaller cells. The small cells also
allow for a larger number of simultaneously served UTs. This, and the use of
overlapping cells (heterogeneous architectures) as well as full frequency reuse,
increase interference to intolerably high levels that can not only be managed, but
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will be exploited for increased spectral efficiency by various CoMP approaches.
Large scale antenna systems will then provide the last push to the throughput
goals and fix weak points of SCs and CoMP, especially where mobility and other
backhaul intensive complications are concerned. We realise that the solution will
in any case result in very large systems (w.r.t. the numbers of users, BSs and
antennas), in which the balance between the discussed approaches is not clear.
Tools used until now in the communications community were developed for the
analysis of point-to-point and small MIMO systems. Therefore, it is not a sur-
prise that they often fail to provide meaningful insight into this new era of large
dense heterogeneous multi cell systems. New tools, adapted to the large nature
of the system need to be developed and used to give insight and find the right
balance of approaches in future MU-MIMO networks. Fortunately, the mathe-
matical tool of large random matrix theory has matured enough in recent years,
to be of excellent use in our task.

1.2 Outline and Contributions

This thesis tries to contribute to the challenge of improving the throughput of
large future multi cell MU-MIMO networks, by increasing spectral efficiency and
making large scale transmission schemes possible via precoding optimization.
The tools of choice to achieve this goal are generally taken from the field of
large random matrix theory (RMT), which now has reached a high level of
maturity in the context of solving communication problems [90, 91].

Outline and Contributions of this Thesis

Chapter 1 served as an introduction to the current state of the wireless commu-
nications industry and the challenges it faces due to the “data tsunami” caused
by the demand for wireless mobile internet access. We discussed the main possi-
bilities to increase throughput in next generation wireless systems. We identified
and gave a literature overview of current research approaches and technologies
that will help seize the identified possibilities. Large (w.r.t. numbers of users,
cells, and antennas) dense heterogeneous networks were identified as the most
probable solution, which however requires new ideas to counter the interference
problem. Large random matrix theory was mentioned as the tool of choice to
evaluate, balance and optimize combinations of dense, cooperative and massive
technologies.
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In Chapter 2 we provide the theory needed to soundly use the framework
of RMT. To this end, we first state the necessary basic theoretical concepts,
lemmas and tools from RMT. After this we will build intuition, confidence, and
insight into RMT concepts and their applications, by putting the introduced
theoretical results into a tutorial like context. To familiarize the reader with
the introduced tools, using an example of a step by step derivation of the de-
terministic equivalent for a relatively simple model. Furthermore, we will give
some hints for practical RMT calculations, which are regularly used in this the-
sis and in the RMT literature in general. Finally, a short overview of some
existing RMT/deterministic equivalent results is given.
Most of the concepts in Chapter 2 have already been discussed in many other
works (e.g., [90, 91]). We will distinguish ourselves from these works by adher-
ing to a more pedagogical (tutorial-like) style. Hence, this chapter might be
more useful to novices and researchers interested to get into the field of RMT,
than to experienced users of the tools.

In the first part of Chapter 3 we propose a new family of low-complexity
linear precoding schemes for single cell multi-user downlink systems, taking
into account the transmit antenna correlation at the base station. We exploit
truncated polynomial expansion (TPE) techniques to enable a balancing of pre-
coding complexity and system sum throughput. A main analytic contribution
is the derivation of deterministic equivalents for the achievable user rates for
any polynomial order J of the TPE precoding. We also derive the coefficients
that maximize the throughput. This TPE precoding scheme enables a smooth
transition in performance between regularly used maximum-ratio-transmission
(MRT) (J = 1) and RZF (J = min(M,K)), where the majority of the gap
is bridged for small values of J . We infer intuitively and by simulation that
J is independent of the system dimensions M and K, but must increase with
the signal-to-noise ratio (SNR) and the channel state information (CSI) qual-
ity to maintain a fixed per-user rate gap to RZF. The polynomial structure
enables energy-efficient multi stage hardware implementation as compared to
the complicated/inefficient signal processing required to compute conventional
RZF. Extensive complexity analysis on TPE and RZF is carried out to prove
this point. Also, the delay to the first transmitted symbol is significantly re-
duced in TPE, which is of great interest in systems with very short coherence
periods.

The second part of Chapter 3 extends the first part to a large-scale multi
cell scenario with more realistic characteristics, such as user-specific channel
covariance matrices, imperfect CSI, pilot contamination, and cell-specific power
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constraints. The jth BS serves its users employing TPE precoding with an order
Jj that can be different between cells and thus tailored to factors such as cell size,
performance requirements, and hardware resources. We derive new determinis-
tic equivalents for the achievable user rates. Due to the inter-cell and intra-cell
interference, the effective signal-to-interference-and-noise ratios are functions of
the TPE coefficients in all cells. However, the deterministic equivalents only
depend on the channel statistics, and can thus be calculated beforehand. The
joint optimization of all the polynomial coefficients is shown to be mathemat-
ically similar to the problem of multi-cast beamforming optimization, which is
exploited for offline optimization.

In the final part of this chapter, we take a closer look at the model differences
between the first (single cell) and second (multi cell) part. Especially we focus
on the reason why those differences were needed, how they complicated the
analysis for the single cell case (or respectively how they simplified and enabled
analysis for the multi cell case) and why the two analyses are hard to compare.

In Chapter 4 we build on an intuitive trade-off and recent results on multi
cell RZF in [36, Eq (3.33)] to propose an interference aware RZF (iaRZF) pre-
coding scheme for multi cell downlink systems. First, we facilitate intuitive
understanding of the precoder through new methods of analysis in both finite
and large dimensions, applied to limiting cases. Special emphasis is placed on
the induced interference mitigation mechanism of iaRZF. We show that iaRZF
can significantly improve the sum-rate performance in high interference multi
cellular scenarios. In particular, it is not necessary to have reliable estimations
of interfering channels; even very poor CSI allows for significant gains. To ob-
tain further fundamental insights, we derive deterministic expressions for the
asymptotic user rates, where merely the channel statistics are needed for calcu-
lation and implementation. These novel expressions generalise the prior work
in [92] for single cell systems and in [47] for multi cell systems. Finally, these
extensions are used to optimize the sum rate of the iaRZF precoding scheme
in limiting cases and we propose and explain the appropriate heuristic scaling
of the precoder weights w.r.t. various system parameters. These offer close to
optimal sum rate performance, also in non limit cases.

We conclude the thesis in Chapter 5, which recalls some important concep-
tual results and gives a brief outlook to possible future work. In particular,
extensions to more realistic channel, backhaul and error models are indicated.
Furthermore, the far future goal of an all encompassing RMT framework is
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spelled out, which could finally decide the advantageous balance for the distri-
bution of antennas. Also, practical validation tests of the concepts in this thesis
are suggested.

Further Contributions

In the work leading up to this thesis, some further contributions to the field of
future wireless networks were done, the description of which is not included in
this manuscript.

In [93] we extended existing RMT methods for the analysis of multi cell
cooperative systems to account for random user locations. In this work we
investigated a one-dimensional network consisting of two BSs and randomly
deployed users on a simple line. We distinguished between two scenarios: co-
operation and no cooperation. In the first scenario, both base stations jointly
decode the messages for the users in both cells. We ignored practical constraints,
such as limited backhaul capacity, thus, the system can be seen as a distributed
antenna system. We derived tight approximations of the uplink sum-rate with
and without multi cell processing for optimal and sub-optimal detectors. We
then used these results to find the base station placement that maximises the
average system capacity (with respect to fading and to user locations).

Finally, in [94] we used the RMT framework of multi cell cooperative systems
with random user locations to answer practical questions about antenna tilting
in the uplink. We extended the framework to support the modelling of clusters
of cooperating base stations and incorporated a 3D directional antenna gain
pattern. We then numerically analysed and optimised the effects of antenna
tilting on the achievable sum rate of small cell networks. Additionally, the
impact of the number of base station antennas was considered. As opposed
to standard numerical simulation tools, we showed that the implementation
of RMT’s deterministic equivalents is simple and considerably improves the
simulation effort.

1.3 Publications

The following articles were produced during the course of this thesis.
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Chapter 2

Introduction to Large
Random Matrix Theory

This chapter provides the theory needed to soundly use the framework of large
random matrix theory (RMT). To this end, we first state the necessary ba-
sic theoretical concepts, lemmas and tools to work with RMT. After this we
will build intuition and insight into RMT concepts and their applications, by
putting the introduced theoretic results into a tutorial like context. In order
to familiarize the reader with the introduced tools, we will give a step by step
derivation of the deterministic equivalent for the not-so-simple capacity under
given variance profile problem as an example. Furthermore, we will give some
hints for practical RMT calculations, which are of regular use in this thesis and
in the RMT literature in general. Finally, a short overview of some existing
RMT/deterministic equivalent results is given.
Most of the concepts in this chapter have already been discussed in many other
works (e.g., [90, 91]). We will distinguish ourselves from these works by adher-
ing to a more pedagogical (tutorial-like) style. This means that we give more
guidance than usual on how to arrive at a given result. Also, details that are
only of mathematical interest are left out, when they are not essential. Hence,
this chapter might be more useful for future generations of researchers interested
in the analytic RMT approach, than to experts of this topic.

2.1 The Stieltjes Transform

The canonical introduction to the field of RMT is to begin with the definition
of the Stieltjes transform. This is in part due to the history of the field, where
Marc̆enko and Pastur first used this approach [98] to find the distribution of
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the eigenvalues for certain random matrices. Others followed suit by using
(e.g., [26, 99, 100]), extending (e.g., [101, 102]) or building on (e.g., [103]) this
approach in the context of communications systems1. Yet, it also makes sense
from an educational point of view, since Stieltjes transforms show up in many
communications engineering problems and are relatively easy to handle, i.e.,
they serve as a good introduction to the framework of RMT. Let us start by
defining some required terminology:

Definition 2.1. Given a measure µ that assigns finite measure to each bounded
set on R, we denote

Fµ(x) = µ((−∞, x]) .

If µ is a probability measure, then the associated Fµ is called the (cumulative)
distribution function (cdf).

Now, we define the Stieltjes transform of a measure, by

Definition 2.2 (Stieltjes Transform). Let µ be a finite non negative measure
with support supp (µ) ⊂ R, i.e., µ(R) <∞, and Fµ is given as in Definition 2.1.
The Stieltjes transform m(z) of µ is defined ∀ z ∈ C\supp (µ) as

m(z) =
∫
R

1
λ−z

µ(dλ) (∗)=
∫
R

1
λ−z

dFµ(λ) . (2.1)

The equality (∗) is not immediately evident and Billingsley [105] invites us
to best regard

∫
f(x)µ(dx) and

∫
f(x)dFµ(x) as merely notational variants2.

Some literature uses
∫
R

1
λ−zdµ(λ) as an alternative notation to (2.1)3.

We will now summarize several important properties of the Stieltjes trans-
form. These results can be found for example in [103] or [106]. We remark,
that the notation z ∈ C+ excludes the real number line, i.e., z ∈ C+∆={z ∈
C, Im(z) > 0} and analogously for R+.

Property 2.1. Let m(z) be the Stieltjes transform of a finite non negative
measure µ on R. Then,

(i) m(z) is analytic over C\supp (µ),

(ii) z ∈ C+ implies m(z) ∈ C+,
1The work of Marc̆enko and Pastur on the spectra of random matrices in general is preceded

by Wigner [104]. However the first usage of the Stieltjes transform is generally attributed to
Marc̆enko and Pastur.

2The interested reader is invited to study [105, (17.22)ff.] for the subtle distinctions between
th Riemann-Stieltjes Integral and the Lebesgue-Stieltjes Integral, which ultimately turn out
to be unimportant in general measure theory.

3This unfortunate practice seems to stem from a notational generalization of the known
relation

∫
dF (x) =

∫
F (dx).
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(iii) if z ∈ C+, |m(z)| ≤ µ(R)
Im(z) and Im

(
µ(R)
m(z)

)
≤ −Im(z),

(iv) if µ((−∞, 0)) = 0, then m(z) is analytic over C\R+. In addition, z ∈ C+

implies zm(z) ∈ C+ and the following inequalities hold:

|m(z)| ≤


µ(R)
Im(z) , z ∈ C\R
µ(R)
|z| , z < 0
µ(R)

dist(z,R+) , z ∈ C\R+

where dist(·) is the Euclidean distance.

The next set of properties allows one to recover µ when only its Stieltjes
transform m(z) is known.

Property 2.2. Let m(z) be the Stieltjes transform of a finite measure µ on R.
Then,

(i) µ(R) = limy→∞−iym(iy),

(ii) µ([a, b]) = limy→0+
1
π

∫ b
a

Im{m(x+iy)}dx, if a, b are continuity points of µ.

We proceed to define the empirical probability measure of the eigenvalues of
an Hermitian matrix X.

Definition 2.3 (Empirical Probability Measure of Eigenvalues). Let X ∈ CN×N

be a Hermitian matrix with the real valued eigenvalues λ1, . . . , λN . The empir-
ical probability measure µX of the eigenvalues of X is defined as

µX(A) = 1
N

N∑
i=1

δλi(X)∈A .

The equivalent notation variants 1
N

∑N
i=1 δλi(X)(A) and 1

N

∑N
i=1 1A(λi(X))

are also often found in the literature. This measure constitutes a point mea-
sure and can also be seen as a normalised counting measure. We define its
corresponding distribution function (according to Definition 2.1) as

Definition 2.4 (Empirical Spectral Distribution (e.s.d.)). Let the empirical
probability measure µX(a) of the eigenvalues of X be defined as in Definition 2.3.
The empirical (cumulative) distribution function, or empirical spectral distribu-
tion (e.s.d.) FX(x) of the eigenvalues of X is then defined as

FX(x) = µX((−∞, x]) = 1
N

N∑
i=1

1{λi(X)≤x} .
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At this point many people ask themselves, why one would be interested in
the Stieltjes transform. It only seems to complicate and hide the information
contained within the measure. Especially, taking the Stieltjes transform of an
e.s.d. seems to only obscure the information about the eigenvalue distribution.
However, this seemingly additional complication allows us to manipulate this
information using existing tools, that were otherwise not applicable. Or as
Terrence Tao once put it:

As such, [the Stieltjes Transform] neatly packages the spectral in-
formation in a way that can be easily manipulated by the methods
of complex analysis.

[Terrence Tao]

To begin answering the common question about the practical connection
between Stieltjes transforms and the spectra of Hermitian matrices, we introduce
the notion of the resolvent Q of the Hermitian matrix X:

Q(z) = (X−zIM )−1
.

Or, more generally

Definition 2.5 (Notation of Resolvents). The resolvent QM of a matrix AM ∈
CM×M is the complex-indexed matrix

QM (z) = (AM−zI)−1
.

It is defined for any z ∈ C different from the eigenvalues of AM .

The resolvent is a central object in spectral theory. Among other things,
it indicates the eigenvalues of X by defining the support of the complex scalar
variable z.
Taking our definition of the Stieltjes transform and using it with the empiri-
cal probability measure µX from Definition 2.3, which we recall to be a point
measure, one quickly finds:

mµX(z) =
∫
R

1
λ−z

µX(dλ)

= 1
N

N∑
i=1

1
λi(X)−z .

Abusing the diag notation in the sense of common computational software, it is
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possible to obtain

mµX(z) = 1
N

tr diag
(

1
λ1(X)−z , · · · ,

1
λN (X)−z

)
= 1
N

tr
{

[diag (λ1(X), · · · , λN (X))−zIN ]−1
}

∆= 1
N

tr
[
(Λ−zIN )−1

]
for any unitary matrix U ∈ CN×N

mµX(z) = 1
N

tr
[
(ΛUUH−zUUH)−1

]
= 1
N

tr
[
(UΛUH−zIN )−1

]
if now U is chosen to contain the eigenvectors of the Hermitian matrix X, we
finally have

mµX(z) = 1
N

tr
[

(X−zIN )−1︸ ︷︷ ︸
Resolvent of X

]
. (2.2)

For the sake of brevity, we will abbreviate mµX(z) by mX(z) in the following,
whenever it does not impede understanding.

Finally, the content of Chapter 3 will make reference to published results
connecting the Stieltjes transform of a probability measure to the moments of
the underlying distribution. This is possible due to the following theorem.

Theorem 2.1 (Moments and Stieltjes Transforms [90, Theorem 3.3]). Let µ be a
probability measure on R, denote by F the associated distribution function and by
mF (z) its Stieltjes transform. Assuming supp (µF ) ⊂ [a, b] for 0 ≤ a < b <∞,
then for z ∈ C\R, |z| > b, mF (z) can be expanded in a Laurent series as

mF (z) = −1
z

∞∑
k=0

Mk

zk

where Mk are the moments of the distribution function F , defined as

Mk =
∫
R
λkµ(dλ) =

∫
R
λkdF (λ).

We remark that the momentsMk of a Hermitian matrix A can be expressed
in a trace form, by noticing

Mk =
∫
R
λkdFA(λ) = 1

N

N∑
i=1

λi(A)k = 1
N

N∑
i=1

λi(Ak) = 1
N

trAk .
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This theorem is especially useful in combination with the following observation:

Remark 2.1. From Definition 2.2, one realizes that the moments Mk of the
distribution function F can be obtained through successive differentiation of the
function G(z) = 1

zm(−1/z). Denoting G(k)(z) as the kth derivative of G(z), we
observe

Mk =
∫
R
λkdF (λ)

= (−1)k

k!

∫
R

dk

dzk
1

zλ+1dF (λ)
∣∣∣
z=0

= (−1)k

k! G(k)(0) .

So, G(z) is the moment generating function of F .

Thus, once the Stieltjes transform of the e.s.d. of a Hermitian matrix A ∈
CN×N (i.e., mA(z)) is known, one can recover the moments Mk of A by calcu-
lating the derivatives, as shown in Theorem 2.1.

2.2 The Deterministic Equivalent

We will now discuss the arguably most important concept in RMT for the
purpose of this thesis (and maybe for the purpose of wireless communications
at large) – the definition of a deterministic equivalent (DE). In order to define
the DE, it is necessary to introduce the concept of almost sure convergence of
sequences of random variables:

Definition 2.6 (Almost Sure Convergence). The sequence of random variables
(Xn)n≥1 converges almost surely to X, if

P

(
lim sup
n→∞

|Xn−X| = 0
)

= 1 .

This is denoted by Xn
a.s.−−−−→
n→∞

X or Xn
a.s.−−→ X, if the context is unambiguous.

We define the DE of a sequence of random quantities as follows:

Definition 2.7 (Deterministic Equivalent). The deterministic equivalent of a
sequence of random complex values (Xn)n≥1 is a deterministic sequence (Xn)n≥1,
which approximates Xn such that

Xn−Xn
a.s.−−−−−→

n→+∞
0 .
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DEs were first proposed in this form by Hachem et al. in [103, 107]. There is
was also argued that these objects are able to provide accurate deterministic ap-
proximations of important system performance indicators in cellular networks.
For example, the capacity of large dimensional multi antenna channels.

Quite often the quantity Xn is going to be a functional of the resolvent of a
Hermitian matrix. For example a normalized trace, which we know from (2.2)
to be a Stieltjes transform of a probability measure. However, usually we are
interested in more complex forms related to spectral properties. the object Xn

will often concentrate around Xn in the large n regime and if Xn has a limit,
we even obtain (almost sure) convergence. Furthermore, even relatively simple
problems can result in a DE Xn, which is not guaranteed to converge itself.
Yet, it is possible to deterministically calculate Xn.

In the practical application of DEs, the terms of “(almost sure) limit” and
“large-scale approximation” are also often used. The following remarks should
help differentiate those terms from DEs.

Remark 2.2 ((Almost Sure) Limit). If a sequence of random complex vari-
ables (Xn)n≥1 almost surely converges to a simple (non-sequence) deterministic
quantity X, i.e.,

Xn
a.s.−−−−−→

n→+∞
X

then we call this quantity X the (almost sure) limit of Xn. Sometimes this is
also denoted limXn = X.

Remark 2.3 (Large-Scale Approximation). If a DE is used as an approxima-
tion at finite n, it is often referred to as a large-scale approximation.

We want to re-iterate here, that even though the concepts of Stieltjes trans-
form and DE are often introduced alongside each other, they are a-priori com-
pletely independent. The Stieltjes transform is a (precise and non-asymptotic)
tool to open up the spectral analysis of matrices to the tools of complex analy-
sis, often via the empirical spectral distribution. The DE is an (almost surely
asymptotically precise) deterministic approximation to a sequence of random
quantities, which often represents some performance indicator of some problem
defined by random quantities. However, it turns out that DEs of Stieltjes trans-
forms are often relatively easy to find and many performance indicators can be
expressed in terms of Stieltjes transforms.

The following theorems and lemmas, pertaining to DEs give us the theoret-
ical justifications to treat and work with DEs as one would intuitively expect.
First, the continuous mapping theorem is a very useful result if an arbitrary
function f , e.g., a performance metric, is continuous:
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Theorem 2.2 (Continuous mapping theorem [108, Theorem 2.3]). Let (Xn)n≥1

be a sequence of real random variables and let f : R 7→ R be continuous at every
point of a set A such that P (X ∈ A) = 1, for some random variable X. Then,
if Xn

a.s.−−→ X, this implies f(Xn) a.s.−−→ f(X).

This theorems states that a function of a DE behaves, as it would for the
values it approximates.

In some cases, one is able to prove that Xn
a.s.−−→ X, but one would like

to show that (Xn)n≥1 converges also in mean to X, i.e., limn E [|Xn−X|] = 0
(see for example (3.90) later on). This can often be done by the dominated
convergence theorem:

Theorem 2.3 (Dominated Convergence Theorem [105, Theorem 16.4]). Let
(fn)n≥1 be a sequence of real measurable functions such that the pointwise limit
f(x) = limn→∞ fn(x) exists. Assume there is an integrable g : R 7→ [0,∞] with
|fn(x)| ≤ g(x) for each x ∈ R. Then f is integrable, as is fn for each n, and

lim
n→∞

∫
R
fndµ =

∫
R
fdµ .

The standard argument to show that almost sure convergence of the DE
often entails convergence in the mean is then as follows:
Define the functions fn = |Xn−X| for all n. Since Xn

a.s.−→ X, it follows that
fn

a.s.−→ f = 0. If one can show that fn ≤ g and E [g] < ∞, it follows from the
dominated convergence theorem that limn→∞ E [|Xn−X|] = 0. For instance,
Stieltjes transforms are bounded by 1/|z| for real supported measures, e.g., the
empirical probability measure of eigenvalues in Definition 2.3. Hence, Stieltjes
transforms of this measure are bounded functions, which allows us to infer
convergence in the mean from the convergence of the Stieltjes transform.

The final lemma is important when one deals with products or ratios of DEs.

Lemma 2.1. [109, Lemma 1] Let (an)n≥1 and (bn)n≥1 be two sequences of com-
plex random variables. Let (an)n≥1 and (bn)n≥1 be two deterministic sequences
of complex quantities. Assume that an−an

a.s.−−−−→
n→∞

0 and bn−bn
a.s.−−−−→
n→∞

0.

(i) If |an|, |bn| and/or |an|,|bn| are almost surely bounded4, then

anbn−anbn
a.s.−−−−→
n→∞

0.

(ii) If |an|, |bn|−1 and/or |an|,|bn|−1 are almost surely bounded, then

an/bn−an/bn
a.s.−−−−→
n→∞

0.

4I.e., all quantities xn conform to lim sup |xn| <∞ with probability one.
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This Lemma allows us to take a “mix and match” or “divide and conquer”
approach to calculating DEs involving products; much like in the case of simple
sums. To be more precise, Theorems 2.2 and 2.3, combined with Lemma 2.1,
will allow us later on to directly find a DE of some continuous function of the
signal to interference plus noise ratio (SINR), while only DEs for the interference
and signal power terms have been derived.

2.3 Common RMT Related Tools and Lemmas

Prior to demonstrating some calculations involving RMT, we need a few more
standard tools and lemmas that will be of constant use throughout this thesis.

Lemma 2.2 (Common Matrix Identities). Let A, B be complex invertible ma-
trices and C a rectangular complex matrix, all of proper size. We restate the
following, well known, relationships:
Woodbury Identity:

(A+CBCH)−1 =

A−1−A−1C
(
B−1+CHA−1C

)−1 CHA−1. (2.3)

Searl Identity:

(I+AB)−1 A = A (I+BA)−1
. (2.4)

Resolvent Identity:

A−1−B−1 = −A−1 (A−B) B−1

= A−1 (B−A) B−1 . (2.5)

The first lemma completely pertaining to the concept of RMT is com-
monly referred to as the trace lemma. It concerns itself with the convergence
of quadratic forms and was introduced in [110]. We will continue looking
at sequences of matrices and random vectors with growing dimensions, i.e.,
(AM )M≥1 ∈ CM×M and (xM )M≥1 ∈ CM or (yM )M≥1 ∈ CM . However, in
order to improve readability we often abbreviate (AM )M≥1 as AM or even as
A, if the meaning is unambiguous.

Lemma 2.3 (Preliminary Trace Lemma Result [111, Lemma B.26]). Let A ∈
CM×M be deterministic and x = [x1 . . . xM ]T ∈ CM be a random vector of
independent entries. Assume E [xi] = 0, E

[
|xi|2

]
= 1, and E

[
|xi|`

]
≤ υ` < ∞
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for each ` ≤ 2p. Then, for any p ≥ 1,

E
[
|xHAx−trA|p

]
≤ Cp (trAAH)

p
2
(
υ
p
2
4 +υ2p

)
where Cp is a constant which only depends on p.

Lemma 2.4 (Trace Lemma [110]). Let xM = [x1, . . . , xM ]T be an M×1 vector
where the xm are i.i.d. Gaussian complex random variables with unit variance.
Let AM be anM×M matrix independent of xM . If in addition lim supM ‖A‖2 <
∞, then we have the standard result

1
M

xHAMx− 1
M

tr(AM ) a.s.−−−−−→
M→+∞

0 . (2.6)

Proof. Immediately from Lemma 2.3 we see that for any p ≥ 2, there exists a
constant Cp, depending only on p, such that

ExM

[∣∣∣∣ 1
M

xH
MAMxM−

1
M

tr(AM )
∣∣∣∣p] ≤

Cp
Mp

((
E|xm|4 tr (AAH)

)p/2 +E|xm|2p tr (AAH)p/2
)

where the expectation is taken over the distribution of xM . If in addition
lim supM ‖A‖2 <∞ and noticing that tr (AAH) ≤M‖A‖22 and that tr (AAH)p/2 ≤
M‖A‖p2, we obtain the simpler inequality:

ExM

[∣∣∣∣ 1
M

xH
MAMxM−

1
M

tr(AM )
∣∣∣∣p] ≤ C

′

p‖A‖
p
2

Mp/2

where C ′p = Cp

((
E[|xm|4]

)p/2+E[|xm|2p]
)
. By choosing p = 4, we have

1
M

xHAMx− 1
M

tr(AM ) a.s.−−−−−→
M→+∞

0

where the almost sure convergence is assured by the Markov inequality [105,
Equation (5.31)] in conjunction with the first Borel-Cantelli lemma [105, Theo-
rem 4.3].

Other versions of this result exist, which are adapted to specific variations
of the basic problem and assumptions. For example

• [92, Lemma 4] showed that lim supM ‖A‖2 <∞, only needs to hold almost
surely.

• The assumption of the elements in xM being i.i.d. can be replaced by them
just being independent (see Lemma 2.3 and [91]).
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A natural complement to the lemma about the convergence of quadratic
forms is the following lemma,

Lemma 2.5 ([90, Lemma 3.7]). Let AM be as in Lemma 2.4, i.e., lim supM ‖A‖2 <
∞, and xM ,yM be random, mutually independent with complex Gaussian en-
tries of zero mean and variance 1. Then, for any p ≥ 2 we have

E
[∣∣∣∣ 1
M

yH
MAMxM

∣∣∣∣p] = O(M−p/2) .

In particular,

1
M

yH
MAMxM

a.s.−−−−−→
M→+∞

0 . (2.7)

This lemma indicates, that many random quantities that are similar to
quadratic forms, asymptotically vanish.

We have seen that the previous Lemmas need statistical independence be-
tween the matrix and the vectors of the analysed object. This is often not the
case, thus the following two matrix inversion lemmas can often be used to re-
move interfering columns. This is especially effective in Gram matrices, i.e.,
matrices of the form XXH =

∑
m xmxH

m, for X = [x1, . . . ,xM ] ∈ CM×M .

Lemma 2.6 (Matrix Inversion Lemma I [101, Lemma 2.2]). Let A be anM×M
invertible matrix and x ∈ CM , c ∈ C for which A+cxxH is invertible. Then, as
an application of (2.3), we have

xH (A+cxxH)−1 = xHA−1

1+cxHA−1x (2.8)

and

(A+cxxH)−1 x = A−1x
1+cxHA−1x . (2.9)

Lemma 2.7 (Matrix Inversion Lemma II). Using the same definitions as in
Lemma 2.6 and combining this lemma with (2.5), one finds the relationship

(A+cxxH)−1 = A−1− cA
−1xxHA−1

1+cxHA−1x . (2.10)

The following rank-one perturbation lemma is particularly useful, if one has
used a matrix inversion lemma to remove a statistical dependence before using
the trace lemma. Yet, one wants a DE for the original form. See for example
(2.15).

Lemma 2.8 (Rank-One Perturbation Lemma [112, Lemma 2.1]). Let z ∈ C\
R+, A ∈ CM×M , B ∈ CM×M with B Hermitian non negative definite and
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x ∈ CM . Then

∣∣tr [A ((B−zIM )−1−(B+xxH−zIM )−1)]∣∣ ≤ ‖A‖2
dist(z,R+)

where dist() is the Euclidean distance. If z ∈ R− and lim supM ‖A‖2 <∞, then
this implies

1
M

∣∣tr [A ((B−zIM )−1−(B+xxH−zIM )−1)]∣∣ ≤ 1
M

‖A‖2
|z|

−−−−→
M→∞

0 .

We remark that the variable z will later (see Chapters 3 and 4) often corre-
spond to the inverse of the SNR in communications problems. This will partly
explain the sometimes observed deteriorating approximation performance of
RMT at large SNR.

In [90, Lemma 14.3] one can also find a variant of Lemma 2.8 for z = 0, under
the assumption the smallest eigenvalue of the Hermitian matrix B bounded away
from zero for all large M , i.e, lim infM→∞ λmin(B) > 0:

1
M

tr AB−1− 1
M

tr A (B+vvH)−1 a.s.−−−−→
M→∞

0 .

The lemmas and identities in this section are everything that one needs to
begin RMT calculations. Hence, we can now start the real tutorial part that
includes some example derivations.

2.4 Applied RMT Tutorial

In this section, we will motivate the usage of large random matrix theory and
give a quick tutorial-style introduction to the tools, methods and approaches
used specifically in the analysis of advanced communication systems.

2.4.1 Advantages of Large Dimensional Analyses

A question many researchers ask before becoming interested in the field of RMT,
is why it is necessary in the first place to go to abstract large dimensional
(tending to infinite) analysis.

Wireless communication systems are becoming more and more complicated,
so we need to use tools that simplify the analysis. The standard approach to-
day is to use Monte-Carlo (MC) simulations. However, the introduced DEs
have several advantages over the MC approach. For one, as DEs do not contain
any randomness, it is possible to simplify analysis and facilitate understanding
of the underlying relationships within the respective research problems. Take,
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for example, a system whose performance is influence by several parameters in
non-linear ways. The deterministic solution via DEs shows the direct causal
relationships and interactions between the system parameters and performance;
something that is impossible to achieve with MC analysis. Furthermore, the an-
alytic formulations of DEs enable direct optimization using known mathematical
tools.

Also one might ask, why not go to finite dimensional theoretical analysis?
The short answer is that such analyses are either too complicated to be useful
or they are (usually) unsolvable. Take a look at the following example5:
We define a very simple multi-user (MU) multiple input multiple output (MIMO)
uplink system, in which the base station is comprised of a central processing
station and M distributed antennas (or remote radio heads). We take K single
antenna users that transmit at the same time and at the same frequency, using
Gaussian signalling for the transmit symbols xi ∼ CN (0, P ) that form the ag-
gregate transmit symbol vector x = [x1, . . . xK ]. We assume that P = O(1/K),
such that the transmit power remains bounded for an increasing number of
UTs. For the channel model, we employ Rayleigh fading hi,j ∼ CN (0, vi,j),
1 ≤ i ≤M , 1 ≤ j ≤ K. In other words, the resulting aggregate channel matrix
H has a variance profile V = {vi,j}, 1 ≤ i ≤ M , 1 ≤ j ≤ K. Taking additive
white Gaussian receiver noise into account and without receive processing, we
obtain the standard formula for the received signal:

y = Hx+n .

The usual first question concerning the analysis of this very simple system is
to find its capacity. We know from Telatar [26, Theorem 2] that in the case
of a Gaussian normal i.i.d. channel (i.e., vi,j = 1 ∀i, j), the ergodic mutual
information per receive antenna is given as6

CiidM = EH

[
1
M

log det (IM+PHHH)
]

=
∫ ∞

0
log (1+Pλ) f(λ)dλ

where f(λ) is the probability density function of an unordered eigenvalue λ of

5This example follows closely [113].
6In the case of Gaussian channels with Rayleigh fading, Gaussian signalling with mean

zero and covariance PK
K

IK maximises the mutual information which, thus, is equivalent to
the capacity [26, Theorem 1].
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the Wishart matrix HHH and it is given by

f(λ) = M−K
M

δ(λ)+ K

M

1
K

K−1∑
k=0

k!
(k+M−K)!

[
LM−Kk (λ)

]2
λM−Ke−λ .

Here, LM−Kk (λ) is the associated Laguerre polynomial of order k:

LNk (λ) =λ−Neλ

k!
dk

dλk
(
e−λλk+N)

=
k∑
l=0

(−1)l (k+N)!
(k−l)! (N+l)!l!λ

l .

Dohler [114, Eq. (2.38) and (2.45)] described a way to calculate the integral in
the capacity equation in closed form, e.g. for the case of N = K = 2 we have

f(λ) = 1
2

1∑
k=0

[
L0
k(λ)

]2 e−λ = 1
2
[
1+
(
1−λ2)] e−λ .

Realizing that L0
0 = 1 and L0

1 = 1−λ we arrive at

Ciid2 = 1
2

∫ ∞
0

log (1+Pλ)
[
1+
(
1−λ2)] e−λdλ (2.11)

= 1
2−

1
2P +

(
1+ 1

2P 2 e1/PE1(1/P )
)

(2.12)

where E1(z) =
∫∞

1
e−tz

t dt is the exponential integral for complex values7 and
can be computed using numerical software. In summary it is possible to derive
a closed form solution for the ergodic mutual information for simple systems
featuring channels without variance profiles. However, the resulting formula-
tions do not offer much insight any more. For example, one clearly struggles to
predict the influence exerted by P in (2.12).

Furthermore, the finite dimensional approach breaks down completely, once
one tries to deviate from any of the ideal assumptions. For example, moving
away from the assumption of Gaussian distributions makes problem impossible
to solve. Even if we now start to consider a simple variance profile like

V =
(

1 α

α 1

)
(2.13)

finding the corresponding ergodic mutual information becomes intractable. In
other words, even for simple systems, the finite dimensional theory approach

7This complex version can usually be easily found in mathematical software. The real
version is related by E1(x) = −Ei(−x).
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often results in unsolvable problems. Also, if the problem is solvable the formu-
lations usually become too complicated for drawing conclusions and/or require
numerical tools for solving.

Using the large dimensional approach on the other hand, we can relatively
easily treat, e.g., the case of arbitrary variance profiles. From Hachem et al. [103]
we have the following theorem

Theorem 2.4 (Capacity under Variance Profile [103, Theorem 4.1] (also [115]
and [107, Theorem 1])). Let M,K → ∞ such that 0 < K

M < ∞ and vi,j <

vmax < ∞, ∀i, j. Then for the model used in Subsection 2.4.1, we have CM−
CM

a.s.−→ 0, where

CM = 1
M

K∑
i=1

log (1+δj)−
1
M

M∑
i=1

log
(

1
PK

ei

)
− 1
M

K∑
j=1

δj
1+δj

with δj = 1
K

∑M
l=1 vl,jel for j = 1, . . . ,K and ei for i = 1, . . . ,M is given as the

unique positive solution to the M implicit equations

ei =

 1
PK

+ 1
K

K∑
j=1

vi,j

1+ 1
K

∑M
l=1 vl,jel

−1

.

Incidentally, this theorem represents the first DE discussed in this thesis.
Though it might look daunting at first, Theorem 2.4 offers many analytical
benefits. For example, it lends itself readily optimization, and it gives all the
moments explicitly (via the recursive method from Theorem 2.10). In any case,
DEs like this are the only known deterministic formulations of the channel
capacity, given a variance profile. We will also see later (e.g., Chapter 4), that
DEs can offer direct intuition for simpler cases and thereby offer insights into
more complicated cases. In Figure 2.1 one can observe the approximation of this
Theorem under the variance profile in (2.13). We can see that the approximation
is possible and already very close, even for the case of only two users and two
BS antennas. The main focus of this tutorial from now on is the question of
how one can arrive at such a result.

2.4.2 Accuracy Considerations

Now, we still need to discuss the matter of accuracy and reliability of large
dimensional results in systems of practical sizes. Most publications using large
dimensional techniques, take a rather pragmatic approach to this question and
simply provide one or two simulations that compare the found closed form re-
sults with a few points obtained by exhaustive Monte-Carlo analyses for finite
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Figure 2.1: Capacity of the two user system with variance profile (P = 1).

dimensions. The regions between the verified points are then assumed to follow
the observed trend. We will also employ this method later on to corroborate
our results. Here, we would like to emphasize the large advantage of the pre-
viously introduced deterministic equivalents with respect to the more classical
limit analysis. In Figure 2.2 we show the implications of both approaches. We
have illustrated a typical realization of a sequence of random variables XN (ω1),
which represents some system performance indicator (for example, random with
respect to the channel realisations) that also depends on the generic system
size N . Taking the classic limit w.r.t. the system size one could only obtain
lim→∞XN , which gives an arbitrarily accurate provable result for an infinitely
large system. However, the usefulness of such a result is constraint to only
the infinitely large system. The deterministic equivalent approach on the other
hand gives us more information. Intuitively, one can remark that XN is still
“contains” the factor N , even as N →∞. In fact, the DE gives us an approxi-
mation for each value of N , which becomes more precise for increasing N . The
realizations of the random variable, almost surely (a.s.) fall within a increasingly
narrow bound around the DE; see the “a.s. region” in the figure. Furthermore,
the DE approach also allows for approximations of random sequences that do
not even converge at all (unlike the one chosen for illustrative purposes in Fig-
ure 2.2), which is completely impossible using classic limits. Thus, DEs tend to
be much more accurate for finite (and even small) system dimensions than the
classical limits. In general, one observes good agreement of DE and MC results
for N in the tens, for first order statistics. As we have discussed in Chapter 1,
modern wireless communications systems are increasing in size. This might be
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Figure 2.2: Qualitative comparison of the DE with classical limit calculus and
single realization.

with respect to an increasing number of antennas, base stations or users. This
improves the accuracy of large dimensional approaches for system analysis.

Assume we analyse a random quantity involving a random matrix X ∈
CM×K . RMT handles cases in which both dimensions (M,K) grow large, while
classic limit approximations (e.g., the strong law of large numbers) can only treat
the case where M grows large. As a consequence, RMT results exploit more
degrees of freedom than classical approaches and, thus, usually far outperform
them w.r.t. convergence speed. For example, even an 8×8 matrix offers already
up to 64 degrees of freedom, which mostly leads to quite acceptable convergence.
In general, RMT achieves impressive convergence rates for linear functionals
of eigenvalues, e.g., for central limit theorems in 1/M (i.e., M(XM−XM ) →
N (0, 1)) and for expectations in 1/M2 (i.e., E[XM ] = XM+O(1/M2)), when
the random quantities are complex Gaussian distributed. Quadratic forms are
usually slower, for example central limit theorems in 1/

√
M and expectations

in 1/M .

2.4.3 Stieltjes Transforms and Communications Problems

We have already seen the connection between Stieltjes transforms and traces of
resolvents in (2.2). Now we want to have a quick, but detailed, look at how the
trace of a resolvent is often found in communications problems; especially in
questions pertaining to SINRs. The following example is largely based on [116]
and [90].
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Assume an uplink MU-multiple input single output (MISO) system with K
single antenna users, using random code division multiplexing access (CDMA)
coding, to simultaneously transmit to a single base station, which utilizes lin-
ear MMSE detection.8 Each user k employs a random CDMA spreading code
xk ∼ CN (0, 1

N IN ), i.e., we have N chips per code and ‖xk‖ = 1. The channel
hk from user k to the BS is assumed to be flat-fading and constant over the
spreading code length. Using Gaussian signalling for the transmitted symbols
sk ∼ CN (0, 1) and taking the receiver noise n to be additive Gaussian with
zero mean and variance σ2 leads to the following transmission model at any one
given symbol time instance

y =
K∑
k=1

hkxksk+n = XDs+n

where X = [x1, . . . ,xK ] ∈ CN×K , s = [s1, . . . , sK ] ∈ CK and D = diag(h1, . . . , hK) ∈
CK×K . The linear MMSE detector for each user is given as

rH
k = xH

k

(
XD2XH +σ2IN

)−1
.

Hence, the signal to interference and noise ratio (SINR) pertaining to user k is
defined as

SINRk = Es|rH
khkxksk|2

Es,n|
∑
j 6=k rH

khjxjsj+rH
kn|2

= |hk|2rH
kxkxH

krk∑
j 6=k |hj |2rH

kxjxH
j rk+rH

kσ
2rk

= |hk|2rH
kxkxH

krk
rH
k (XD2XH−|hk|2xkxH

k ) rk+rH
kσ

2rk

= |hk|2rH
kxkxH

krk
rH
k (XD2XH +σ2IN−σ2IN−|hk|2xkxH

k ) rk+rH
kσ

2rk

= |hk|2rH
kxkxH

krk
rH
k (XD2XH +σ2IN ) rK−rH

kσ
2rk−|hk|2rH

kxkxH
krk+rH

kσ
2rk

.

Taking into account the cancelling terms, also those within the definition of rH
k ,

we have:

SINRk = |hk|2rH
kxkxH

krk
xHrK−|hk|2rH

kxkxH
krk

= |hk|2rH
kxk

1−|hk|2rH
kxk

8This system is very closely related the MU-MIMO linear MMSE receiver problem, which
can be treated similarly.
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finally, re-introducing the definition of rH
k everywhere and applying Lemma 2.6,

we have

SINRk = |hk|2xH
(
XD2XH−|hk|2xkxH

k+σ2IN
)−1 xk . (2.14)

Until now, this derivation did not use any concepts from Stieltjes transfor-
mations or RMT in general. This changes now, as one can simplify the SINR
equation in (2.14) even further. This becomes possible in the large system regime
N →∞, where 0 < N/K = c <∞. We begin by calling upon Lemma 2.4 and
Lemma 2.8 to arrive at

SINRk−
1
N
|hk|2tr

(
XD2XH +σ2IN

)−1 a.s.−−−−−→
N→+∞

0 . (2.15)

We then remember that the definition of the Stieltjes transform (Definition 2.2)
together with the normalised counting measure of the eigenvalues of the matrix
XD2XH, i.e., mXD2XH(z) = tr

(
XD2XH−zIN

)−1 (see Definition 2.3). This
allows us to rewrite (2.15) as

SINRk−|hk|2mXD2XH(−σ2) a.s.−−−−−→
N→+∞

0 .

We remember, that the Stieltjes transform mXD2XH(−σ2) still represents a
random quantity. However, It is possible to use known RMT tools to find its
DE to be

mXD2XH(−σ2)−mXD2XH(−σ2) a.s.−−−−−→
N→+∞

0 .

with

mXD2XH(−σ2) =
(
σ2+c

K∑
i=1

|hi|2

1+|hi|2mXD2XH(−σ2)

)−1

This formulation is deterministic w.r.t. the entries of X, but conditionally on
the entries of D, i.e., the channel coefficients hk. If the hk are i.i.d., then we
can use the so called Marc̆enko-Pastur-Law [98, 101] to see that mµXD2XH (−σ2)
converges almost surely in law tomc(−σ2). This limit deterministic distribution
can be calculated as the unique positive solution to the fixed-point equation

mc(−σ2) =
(
σ2+c

∫
h

1+hmc(−σ2)ϑ(dh)
)−1

where ϑ(x) is the distribution law of the squared absolute value of the channel
coefficients (|hk|2). For instance, say that hk is i.i.d. Gaussian, hence |hk|2 is
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exponentially distributed, and we finally arrive at

SINRk−|hk|2mexp
c (−σ2) a.s.−−−−−→

N→+∞
0 .

With mc(−σ2) being the unique positive solution to

mexp
c (−σ2) =

(
σ2+c

∫
h

1+hmexp
c (−σ2)e−hdh

)−1
.

Thus, we get the average SINR in the large dimensional regime, simply as

1
K

K∑
k=1

SINRk ≈
(∫ ∞

0
he−hdh

)
mexp
c (−σ2) = mexp

c (−σ2) .

We furthermore remark that the Stieltjes transform is also directly linked
with the mutual information, as seen by the following relationship

1
N

log det
(

I+ 1
σ2 XXH

)
=
∫ ∞
σ2

(
1
x
−mXXH(−x)

)
dx .

For the interested reader, we decided to include the full derivation of this rela-
tionship in the following.∫ ∞

σ2

(
1
x
−mXXH(−x)

)
dx

=
∫ ∞
σ2

(
1
x
− 1
N

N∑
i=1

1
x+λi(XXH)

)
dx

= 1
N

N∑
i=1

∫ ∞
σ2

(
1
x
− 1
x+λi(XXH)

)
dx

= lim
a→∞

1
N

N∑
i=1

∫ a

σ2

(
1
x
− 1
x+λi(XXH)

)
dx

= lim
a→∞

1
N

N∑
i=1

[log x−log(x+λi(XXH))]aσ2

= 1
N

N∑
i=1

lim
a→∞

[
log
(

a

a+λi(XXH)

)
−log

(
σ2

σ2+λi(XXH)

)]

= 1
N

N∑
i=1

lim
a→∞

[
log
(

a

a+λi(XXH)

)
−log

(
1+ λi(XXH)

σ2

)]

= 1
N

N∑
i=1

log
(

1+ λi(XXH)
σ2

)
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= 1
N

log
N∏
i=1

(
1+ λi(XXH)

σ2

)
= 1
N

log det
(

I+ 1
σ2 ΛXXH

)
= 1
N

log
[
det(U)det

(
I+ 1

σ2 ΛXXH

)
det(UH)

]
= 1
N

log det
[
U
(

I+ 1
σ2 ΛXXH

)
UH

]
= 1
N

log det
(

UUH + 1
σ2 UΛXXHUH

)
= 1
N

log det
(

I+ 1
σ2 XXH

)
.

2.4.4 Derivation of a DE

We continue this chapter by applying the introduced tools and concepts in an
example derivation of a DE. We tried to include every step of the derivation;
even those that might seem obvious to many. This example also serves to
illustrate one approach to finding a DE in the first place9. However, the main
focus here is to give an interesting application case for the previously introduced
tools and lemmas. This example only tries to give an intuitive understanding of
how one could believably take on the derivation of a new DE. The following is
a simplification of the work in [119]. Aspects of the work that were deemed too
technical or not helpful for understanding have been left out. For all technical
details, we invite the reader to refer to the original paper [119], or a less reduced
version in [120].

Theorem 2.5. Let T ∈ CM×K be a non negative definite diagonal matrix and
R ∈ CM×M be a non negative definite matrix, both having bounded spectral
norm, i.e., lim supK→∞ ‖T‖ = lim supK→∞ λmax(T) < ∞ and lim supK→∞
‖R‖ < ∞. Let X ∈ CM×K be a matrix, whose elements are distributed as
CN (0, 1

K ). Define also B = R 1
2 XTXHR 1

2 .

Then, as M,K → ∞, such that M/K → c, where c is some bounded con-
stant, i.e., 0 < c <∞. The following result holds

1
M

tr
[
(B−zIM )−1

]
−mM (z) a.s.−−−−−−−→

M,K→+∞
0

9The method shown in following is often referred to as the “Bai-Silverstein approach”,
after the steps outlined for example in [101]. There are many other proof techniques, e.g. the
“Pastur approach”, which relies on “Gaussian methods” [117, 118] and is generally considered
more powerful, but also less evident.
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where z ∈ C\R+ and to mM is given by

mM = 1
M

tr (R e(z)−zIM )−1

which includes finding the unique positive solution to the fixed-point equation

e(z) = 1
K

K∑
i=1

ti

1+tic 1
M trR (R e(z)−zIM )−1 .

Admittedly, it is not immediately obvious how one could arrive at such a
theorem. Following the Bai-Silverstein approach we start by making an educated
guess of the general form of the result (see Remark 2.4 later on, to motivate
this choice):

1
M

tr (B−zIM )−1− ??? a.s.−−−−−−−→
M,K→+∞

0

educated−−−−−→
guess

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1 a.s.−−−−−−−→
M,K→+∞

0 .

The main goal is now to find a formulation for e(z), that does not depend on
the random quantities and adheres to the almost sure convergence. Using the
resolvent identity (2.5), one quickly finds

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1

(2.5)= 1
M

tr
[
(B−zIM )−1 (e(z)R−B−zIM+zIM ) (R e(z)−zIM )−1

]
= 1
M

tr
[
(B−zIM )−1

(
e(z)R−R 1

2 XTXHR 1
2

)
(R e(z)−zIM )−1

]
= 1
M

tr
[
(B−zIM )−1 R 1

2 (e(z)−XTXH) R 1
2 (R e(z)−zIM )−1

]
= 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

tr
[

(B−zIM )−1 R 1
2 XTXHR 1

2 (R e(z)−zIM )−1
]
.

Remembering that for X = [x1, . . .xK ] and T = diag (t1, . . . , tK), we have
XTXH =

∑K
i=1 tixixH

i . Hence we can pull this sum outside.

= 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

K∑
i=1

titr

(B−zIM )−1 R 1
2 xi︸ ︷︷ ︸

x̃i

xH
i R 1

2 (R e(z)−zIM )−1︸ ︷︷ ︸
x̃H
i

 .
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Since the argument of the trace operators is a scalar, it is possible to remove
the operator, obtaining:

= 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

K∑
i=1

tixH
i R 1

2 (R e(z)−zIM )−1 (B−zIM )−1 R 1
2︸ ︷︷ ︸

∆=Ã

xi .

One might be tempted to apply the trace lemma (Lemma 2.4) to the form
xH
i Ãxi directly at this point, but it is a good idea to verify the prerequisites. In

particular, we need to be sure that xi is statistically independent of Ã, which
is only possible if xi is statistically independent of B. This is obviously not the
case, as (in greatest possible detail):

B = R 1
2 XTXHR 1

2

=
K∑
j=1

tjR
1
2 xjxH

j R 1
2

=
K∑
j 6=i

tjR
1
2 xjxH

j R 1
2 +tiR

1
2 xixH

i R 1
2 .

Hence, we need to apply Lemma 2.6 first, in order to “remove” the dependent
part. So, analogously to what has been done above, it is possible to split the
equation as:

(B−zIM )−1 R 1
2 xi =

( K∑
j 6=i

tjR
1
2 xjxH

j R 1
2−zIM︸ ︷︷ ︸

Ã

+ ti︸︷︷︸
c̃

R 1
2 xi︸ ︷︷ ︸
x̃i

xH
i R 1

2︸ ︷︷ ︸
x̃H
i

)−1
R 1

2 xi︸ ︷︷ ︸
x̃i

and apply the matrix inversion lemma to arrive at

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1

= 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

K∑
i=1

ti

xH
i

Ã︷ ︸︸ ︷
R 1

2 (R e(z)−zIM )−1

 K∑
j 6=i

tjR
1
2 xjxH

j R 1
2−zIM

−1

R 1
2 xi

1+tixH
i R 1

2

(∑K
j 6=i tjR

1
2 xjxH

j R 1
2−zIM

)−1
R 1

2 xi
.

Now, we see that Ã is statistically independent of xi and thus we can finally
apply the trace Lemma (Lemma 2.4) in the numerator and denominator. Thus
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giving us the convergenge xH
i Ãxi− 1

K tr(Ã) a.s.−−−−−→
K→+∞

0. We also remark that the
following steps are only valid in the almost sure sense and only for the defined
large matrix regime. We will slightly abuse the notation “≈” in the following
to mark this restriction, when needed.

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1

≈ 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

K∑
i=1

ti

1
K trR 1

2 (R e(z)−zIM )−1
(∑K

j 6=i tjR
1
2 xjxH

j R 1
2−zIM

)−1
R 1

2

1+ti 1
K trR 1

2

(∑K
j 6=i tjR

1
2 xjxH

j R 1
2−zIM

)−1
R 1

2

.

From the Rank-one-Pertubation lemma (Lemma 2.8), we know that

trR 1
2

 K∑
j 6=i

tjR
1
2 xjxH

j R 1
2−zIM

−1

R 1
2

converges (almost surely) to

trR 1
2

 K∑
j=1

tjR
1
2 xjxH

j R 1
2−zIM

−1

R 1
2

= trR 1
2 (B−zIM )−1 R 1

2 .

Therefore, it is possible to write

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1

≈ 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
M

K∑
i=1

ti

1
K trR 1

2 (R e(z)−zIM )−1 (B−zIM )−1 R 1
2

1+ti 1
K trR 1

2 (B−zIM )−1 R 1
2

= 1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
e(z)

− 1
K

K∑
i=1

ti

1
M tr (B−zIM )−1 R (R e(z)−zIM )−1

1+ti MK
1
M trR 1

2 (B−zIM )−1 R 1
2

Remark 2.4 (Educated Guess). It might only be at this point where one conclu-
sively sees that our educated guess was advantageous. This choice has resulted
in a form tr [A]e(z)−tr [A]x(z), where x(z) is a candidate for the wanted DE.
Finding DE with the educated guess approach usually relies on much trial and
error.
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Collecting the common terms, we finally find

1
M

tr (B−zIM )−1− 1
M

tr (R e(z)−zIM )−1

=

Bounded, as R is bounded.︷ ︸︸ ︷
1
M

tr
[
(B−zIM )−1 R (R e(z)−zIM )−1

]
×[

e(z)− 1
K

K∑
i=1

ti

1+tic 1
M trR (B−zIM )−1

]
︸ ︷︷ ︸

!→0

.

Thus, one realizes that choosing e(z) such that the right multiplicative term be-
comes 0 could give us the wanted result. However, such a result would still con-
tain randomness. Moreover, the expression in the denominator 1

M trR (B−zIM )−1

differs from the desired result. If it was 1
M tr (B−zIM )−1, we could have closed

a loop and could have found a deterministic expression for our original problem.
Instead we created a new term, which needs to be evaluated. This will be done
in the following.

To solve this problem, we need to restart from the beginning. Yet, this time
we begin with the complementary problem 1

M trR (B−zIM )−1 and “guess” the
complementary solution 1

M trR (R e(z)−zIM )−1. This will give us a comple-
mentary solution that, as well shall see, combined with the first result will finally
admit a closed form solution. Following the (exact) same steps as before:

1
M

trR (B−zIM )−1− 1
M

trR (R e(z)−zIM )−1

...

≈ 1
M

tr
[
R (B−zIM )−1 R (R e(z)−zIM )−1

]
[
e(z)− 1

K

K∑
i=1

ti

1+tic 1
M trR (B−zIM )−1

]
.

Now, we finally chose

e(z) = 1
K

K∑
i=1

ti

1+tic 1
M trR (B−zIM )−1

which simultaneously solves this and also our previous “guess”. From the
second “guess” we also see that (for this particular choice of e(z)), we have
1
M trR (B−zIM )−1− 1

M trR (R e(z)−zIM )−1 a.s.−→ 0. Based on this observation,
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another choice for e(z), which is fully deterministic will be

e(z) = 1
K

K∑
i=1

ti

1+tic 1
M trR (R e(z)−zIM )−1

which is an iteratively solvable fixed-point equation10. As a next step, one
would need to show that the fixed-pint equation has a unique solution and
that it converges in the first place. This could be achieved relatively easily by
using the standard interference functions framework from [121], as shown in [91,
Theorems 22, 23, 24].

In Figure 2.3, we have plotted the found DE in comparison to the target
function of a single realization of X simply for illustrative purposes. The pa-
rameters were arbitrarily chosen to be M = 4, K = 2,

T =
(

1 0
0 3

)

and

R =


1.5 1.25 2.25 2
1.25 5.25 2 4.5
2.25 2 3.75 2.75

2 4.5 2.75 5.25

 .

Notice that, even for this extremely small system, we have obtained a very accu-
rate large scale approximation. One also needs to take into account that most in-
teresting performance indicators in communication systems are concerned with
expected values and not only single realizations of the random channel. In this
case, the Monte-Carlo (MC) analysis fits exactly the DE.

Remark 2.5. In [122] a different version to the example in Theorem 2.5 is
provided, which allows for T to be non-diagonal. This, however, is of limited
practical interest, when X is taken to be Gaussian (i.e., being unitarily invari-
ant). As in that case its distribution stays unchanged, if one multiplies it on the
right by a unitary matrix.

2.5 Existing Results for DEs

In the following, we compile a short list of existing results that use DEs in a
similar fashion as this thesis. Hence, we excluded results that only focus on
second order statistics, eigenvalue distributions, iterative DEs, etc. An excel-

10We recognize that the last step in this example is somewhat more intuitive than rigorous.
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Figure 2.3: Qualitative comparison of the DE with a single realization of its
corresponding random quantity.

lent review on results, on which this section is based, and that contains all
of our omissions and more, can be found in [91, Subsections 2.3.1 and 2.3.2].
A further good source for collections of known results is [90]. The theorems,
lemmas and remarks in this section will be referred to repeatedly. We also re-
mind that one continues looking at sequences of objects of growing dimensions
(XM )M≥1. However, in order to conserve readability we abbreviate as X, if
deemed advantageous.

The first theorem gives a DE of the ergodic mutual information for chan-
nel matrices with a variance profile and LOS components. This model is also
referred to as the Rician model.

Theorem 2.6 ([103, Theorems 2.4, 2.5, 3.4, 4.1]). Let BN = (Y+A) be a
N×n random matrix, A being deterministic, with columns and rows uniformly
bounded in the Euclidean norm. The matrix Y ∈ CN×n is random and its
entries Yij are given by the variance profile Yij = σi,j√

n
Xij. The Xij being i.i.d.

with E [Xi,j ] = 0, E
[
|Xi,j |2

]
= 1, and E

[
|Xi,j |4+ε] < ∞ for some ε > 0.

Assume that supN maxi,j σi,j < ∞. Denote Dj = diag
(
σ2

1,j , . . . , σ
2
N,j

)
and

D̃i = diag
(
σ2
i,1, . . . , σ

2
i,n

)
∀i, j. The deterministic system of N+n equations:

ψi(z) = −1
z
(

1+ 1
n tr D̃iT̃(z)

) , 1 ≤ i ≤ N

ψ̃j(z) = −1
z
(
1+ 1

n trDjT(z)
) , 1 ≤ j ≤ n
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where

Ψ(z) = diag (ψ1(z), . . . , ψN (z))

Ψ̃(z) = diag
(
ψ̃1(z), . . . , ψ̃n(z)

)
T(z) =

(
Ψ(z)−1−zAΨ̃(z)AH

)−1

T̃(z) =
(
Ψ̃(z)−1−zAHΨ(z)A

)−1

admits a unique solution (ψ1(z), . . . , ψN (z), ψ̃1(z), . . . , ψ̃n(z)) in a N+n dimen-
sional set of Stieltjes transforms of probability measures over R+, for z ∈ C\R+.
Then, in the asymptotic regime N,n→∞, such that 0 < lim infN N

n ≤ lim supN
N
n <∞, we have the following results:

(i) A DE of the empirical Stieltjes transform of the distribution of the eigen-
values of BNBH

N is given by:

1
N

tr (BNBH
N−zIN )−1− 1

N
trT(z) a.s.−−−−−→

N,n→∞
0 .

(ii) For x > 0, let IN (x) = 1
N log det

(
IN+ 1

xBNBH
N

)
, then a DE to the ergodic

mutual information is given by

E [IN (x)]−ĪN (x) −−−−→
N→∞

0

where

ĪN (x) = 1
N

log det
(

Ψ(−x)−1

x
+AΨ̃(−x)AH

)
+ 1
N

log det
(

Ψ̃(−x)−1

x

)
− x

Nn

∑
i,j

σ2
ijTii(−x)T̃jj(−x) .

The next DE treats the so-called Kronecker model in which random ma-
trices with independent entries are multiplied from the left and right side by
deterministic correlation matrices.

Theorem 2.7 ([119, Corollary 1 and Theorem 2]). For k ∈ {1, . . . ,K}, let
Rk ∈ CN×N , and Tk ∈ Cnk×nk be Hermitian non negative definite matrices,
satisfying lim supN‖Rk‖2 <∞, and lim supN‖Tk‖2 <∞. Let Xk ∈ CN×nk be a
random matrix having i.i.d. Gaussian entries with E [Xi,j ] = 0, E

[
|Xi,j |2

]
= 1

nk
,

and E
[
|√nkXi,j |8

]
<∞. Let

BN =
∑
k

R1/2
k XkTkXH

kR
1/2
k .
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Then, under the asymptotic regime N,nk → ∞, such that ck = nk
N , 0 <

lim infN ck ≤ lim supN ck < ∞ ∀k and for x > 0, the following set of K equa-
tions (1 ≤ k ≤ K),

ēk(−x) = 1
nk

trTk (ckek(−x)Tk+Ink)−1

ek(−x) = 1
N

trRk

(
K∑
i=1

ēi(−x)Ri+xIN

)−1

have a unique solution such that ēk(−x), ek(−x) > 0 ∀k. This lets us state the
following results:

(i) There exists a DE to the Stieltjes transformmM (−x) = 1
N tr (BN+xIN )−1

mM (−x)− 1
N

tr
(

K∑
k=1

ēk(−x)Rk+xIN

)−1
a.s.−−−−→
N→∞

0 .

(ii) Define IN (x) = 1
N log det

(
IN+ 1

xBN

)
. Then

IN (x)−ĪN (x) a.s.−−−−→
N→∞

0

where

ĪN (x) = 1
N

log det
(

IN+ 1
x

K∑
k=1

ēk(−x)Rk

)

+
K∑
k=1

1
N

log det (Ink+ckek(−x)Tk)−
K∑
k=1

ek(−x)ēk(−x).

The authors in [119, Theorem 1] also offer an alternative and more general
version of this theorem. It removes the assumption of Gaussian distributions,
adds a deterministic matrix S, but limits the matrix T to be diagonal. Also,
Theorem 2.7 can be further expanded to also entail

1
N

trDN (BN+xIN )−1− 1
N

trDN

(
K∑
k=1

ēk(−x)Rk+xIN

)−1
a.s.−−−−→

N→∞
0

for DN ∈ CN×N being a Hermitian non negative definite matrix, satisfying
lim supN‖Dk‖2 <∞.

The next theorem introduces a different class of random matrices, where
each column of X can have a different covariance matrix and a deterministic
matrix S is added.
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Theorem 2.8 ([92, Theorem 1],[123, Theorem 2.3]). Let BN = XXH +SN ,
where X ∈ CN×n ∈ CN×N is random and SN ∈ CN×N is Hermitian non
negative definite. The jth column xj of X is given as xj = R̃jzj, where zj =
[zj,1, . . . , zj,N ]T ∈ CN has i.i.d. elements with E [zj,i] = 0, E

[
|zj,i|2

]
= 1

N , and
E
[
|
√
Nzi,j |8

]
< ∞. The deterministic matrices R̃j ∈ CN×N stem from Rj =

R̃jR̃H
j and we assume lim supN‖Rj‖2 <∞. Let DN ∈ CN×N be a deterministic

Hermitian which satisfies lim supN‖DN‖2 <∞. Then, as N,n→∞ such that
0 < lim inf N/n ≤ lim supN/n <∞, the following holds for any z ∈ C\R+:

(i) The following set of n equations (1 ≤ j ≤ n),

ej(z) = 1
N

trRjTN (z) (2.16)

where

TN (z) =
(

1
N

n∑
k=1

Rj

1+ek(z) +SN−zIN

)−1

has a unique solution such that (e1(z), . . . , en(z)) are Stieltjes transforms
of non negative finite measures on R+ (not probability measures). For
z < 0, e1(z), . . . , en(z) are the unique non negative solutions to (2.16)
and can be obtained by a standard fixed-point algorithm with initial values
e

(0)
j (z) > 0 for j = 1, . . . , n.

(ii) We further find the DE:

1
N

trDN (BN−zIN )−1− 1
N

trDNTN (z) a.s.−−−−−→
N,n→∞

0 . (2.17)

(iii) For x > 0, let IN (x) = 1
N log det

(
IN+ 1

xBN

)
. Then,

E [IN (x)]−ĪN (x)→ 0

where

ĪN (x) = 1
N

log det

IN+ 1
x

SN+ 1
x

1
N

n∑
j=1

Rj

1+ej(−x)


+ 1
N

n∑
j=1

log (1+ej(−x))− 1
N

n∑
j=1

ej(−x)
1+ej(−x) .

The following theorem can be seen as an analogous result to Theorem 2.7,
where the matrices Xk have been replaced by Haar-distributed random unitary
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matrices. We note that a Haar random matrix Wk ∈ CNk×Nk will be defined
by Wk = Xk (XH

kXk)−
1
2 for Xk a random matrix with i.i.d. CN (0, 1) entries.

Theorem 2.9 ([124, Theorem 7], [91, Theorem 15]). For i ∈ {1, . . . ,K}, let
Pi ∈ Cni×ni be Hermitian non negative, satisfying lim supni‖Pi‖ < ∞, and
let Wi ∈ CNi×ni be ni < Ni columns of a Haar distributed random matrix.
Let Hi ∈ CN×Ni be a random matrix such that Ri , HiHH

i ∈ CN×N satisfies
lim supN‖Ri‖ <∞, almost surely. Define ci = ni

Ni
, c̄i = Ni

N ,

BN =
K∑
i=1

HiWiPiWH
iHH

i

and denote FN the e.s.d. of BN . For z ∈ D , {z = x+iy : x < 0, |y| ≤ |x| 1−cici
},

the following system of 2K equations (1 ≤ i ≤ K)

ēi(z) = 1
N

trPi (ei(z)Pi+[c̄i−ei(z)ēi(z)]Ini)
−1

ei(z) = 1
N

trRi

 K∑
j=1

ēj(z)Rj−zIN

−1

(2.18)

has a unique solution such that (e1(z) . . . , eK(z)) are Stieltjes transforms of
finite non negative measures over R+ which satisfy for z < 0, 0 ≤ ei(z) <

cic̄i/ēi(z) ∀i, where they are explicitly given by

ēi(z) = lim
t→∞

ē
(t)
i (z)

ei(z) = lim
t→∞

e
(t)
i (z)

ē
(t)
i (z) = lim

k→∞
ē

(t,k)
i (z)

where for k ≥ 1,

e
(t)
i (z) = 1

N
trRi

 K∑
j=1

ē
(t−1)
j (z)Rj−zIN

−1

ē
(t,k)
i (z) = 1

N
trPi

(
e

(t)
i (z)Pi+[c̄i−e(t)

i (z)ē(t,k−1)
i (z)]Ini

)−1

with the initial values ē(t,0)
i (z) = 0 and e(0)

i (z) = 0 ∀i.

We remark, that the second source for this Theorem ([91, Theorem 15])
gives a somewhat simpler proof than in [124, Theorem 7], using the standard
interference function approach.

The next theorem shows a way to use the DE of a Stieltjes transform of a
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e.s.d. to calculate the moments of the approximated distribution function (see
Theorem 2.1 and its associated remarks).

Theorem 2.10 ([125, Theorem 2] and [91, Theorem 19]). Let BN be defined as
in Theorem 2.8, but take SN = 0 and the variance to be 1/n. Let FN be the e.s.d.
of BN and denote by M̄k the kth moment of FN , i.e., M̄k

∆=
∫

)o∞λkdFN (λ).
Then, from Remark 2.1 and Theorem 2.8:

M̄k = (−1)k

k!
1
N

trT(k), k ≥ 0

where T(k), k ≥ 0 is defined recursively by the following set of equations:

Q(k+1) =k+1
n

k∑
j=1

f
(k)
j Rj

T(k+1) =
k∑
i=0

i∑
j=0

(
k

i

)(
i

j

)
T(k−i)Q(i−j+1)T(j)

f
(k+1)
j =

k∑
i=0

i∑
l=0

(
k

i

)(
i

l

)
(k−i+1)f (l)

j f
(i−l)
j e

(k−i)
j , 1 ≤ j ≤ k

e
(k+1)
j = 1

n
trRjT(k+1), 1 ≤ j ≤ k

with the initial values T(0) = IN , f (0)
j = −1 and e(0)

j = 1
n trRj ∀j.

One needs to take into account that this theorem does not imply almost sure
convergence of the moments of the e.s.d. (M̄k) to the non-empirical moments
Mk

∆= 1
N trBk

N of the matrix BN . To guarantee this, can assume the matrices Rj

to be drawn from a finite set of matrices. In this case we obtain the following
stronger result, which implies this almost sure convergence of the moments.

Theorem 2.11 ([125, Theorem 2] and [91, Theorem 19]). For fixed L > 0,
let R = {R̃1, . . . , R̃L} be a finite set of complex N×N matrices and let DN ∈
CN×N be non negative definite Hermitian. Consider the matrix BN as defined
in Theorem 2.8 and assume that Rj ∈ R ∀j. Assume that lim supN‖DN‖ <∞,
lim supN maxl‖R̃l‖ < ∞, and that N,n → ∞, such that 0 < lim inf n

N ≤
lim sup n

N <∞. Then,

1
N

trDNBk
N−

(−1)k

k!
1
N

trDNT(k) a.s.−−→ 0, k ≥ 0

where T(k) is given by Theorem 2.10.
Remembering the relationship Mk =

∫
R λ

kdFB(λ) = 1
N trBk, one obtains in

64



Chapter 2. RMT 2.5. Existing Results for DEs

particular,

1
N

trBk
N−M̄k

a.s.−−→ 0, k ≥ 0.

We remark that the “finite set of matrices” requirement is needed to bound
the spectral norm of the normalized channel matrices. It can be replaced by the
assumption of the matrices Rj belonging to a finite-dimensional matrix space.
The authors do this in Section 3.3 (see Assumption A-3.10).

The last theorem in our overview of existing DE results, generalizes Theo-
rem 2.8 to a slightly more involved type of functionals of random matrices.

Theorem 2.12 ([91, Theorem 21] and [123, Appendix B.3]). Let ΘN ∈ CN×N

be a Hermitian non negative definite matrix satisfying lim supN‖ΘN‖ < ∞.
Then, under the same conditions as in Theorem 2.8, the following holds true
for z < 0:

1
N

trDN (BN+SN−zIN )−1 ΘN (BN+SN−zIN )−1− 1
N

trDNT′N (z) a.s.−−→ 0

where

T′N (z) = TN (z)

ΘN+ 1
N

n∑
j=1

Rje
′
j(z)

(1+ej(z))2

TN (x) .

TN (z), ej(z) ∀j are defined as in Theorem 2.8 (i) and e′(z) = [e′1(z), · · · , e′n(z)]T

is calculated as

e′(z) = (In−J(z))−1 v(z)

where J(z) ∈ Cn×n and v(z) ∈ Cn are defined as

[J(z)]kl =
1
N trRkTN (z)RlTN (z)

N (1+el(z))2 , 1 ≤ k, l ≤ n

[v(z)]k = 1
N

trRkTN (z)ΘNTN (z), 1 ≤ k ≤ n .

The notation chosen in this theorem is reminiscent of the one used for dif-
ferentiation. This is not a coincidence, as e′ and T′N (z) originally related to the
derivative of e and TN (z), and thus J is a Jacobi matrix stemming from the
relationship e′j(z) = 1

N trRjT′N (z).
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2.6 Appendix RMT Introduction

2.6.1 Recipes for Practical RMT Calculations

We finally finish our RMT tutorial, by giving a short tentative overview about
common “tricks” and hints for RMT calculations. These are of widespread use
in this thesis, as well as in the literature in general. The following collection of
hints is non-exhaustive and is presented in no particular order.

Properties of the Stieltjes transform in “unrelated” circumstances:

Surprisingly many mathematical objects can actually be shown to be Stieltjes
transforms. This becomes more obvious, once one remembers that it is defined
for any finite measure (and not just probability measures). Thus, one can often
find a measure that shows a certain problem to be a Stieltjes transform.
Once this has been achieved, the full set Stieltjes properties (see Properties 2.1)
can be used. In a similar spirit one can use the fact that the derivative of a
Stieltjes transform is positive in the case of z ∈ R. This can be quickly verified
by checking the basic definition of a Stieltjes transform:

m(z) =
∫ 1
λ−z

µ(dλ)

d

dz
m(z) =

∫ ( 1
λ−z

)2
µ(dλ) > 0, for z ∈ R .

As a side note, it is sometimes prudent to realize that the notation mB,A(z),
used for example in [92], is somewhat dangerous. This is because these objects
are Stieltjes transforms, but not of probability measures.

Convergence of fixed-point equations:

We have seen that DEs usually take the form of fixed-point equations. So the
question about proving the convergence of these solutions under different algo-
rithms comes up. This question can often quickly be answered by using the
standard interference functions framework from [121], as shown in [91, Theo-
rems 22, 23, 24 and Definition 11]. A function is said to be “standard interfer-
ence”, if it adheres to the following definition:

Definition 2.8 (Standard Interference Function [121]). A K-variate function
g(x) = [g1(x), . . . , gK(x)]T ∈ RK for x ∈ CK is said to be standard if it fulfils
the following conditions:

1. Positivity: if x ≥ 0, then g(x) > 0;

2. Monotonicity: if x ≥ x′, then g(x) ≥ g(x′);
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3. Scalability: if α > 1, then αg(x) > g(αx)

where x ≥ x′, by convention, is an inequality in all components.

The fixed-point theorem ([121, Theorem 2] and [91, Theorems 16]), then
ensures that standard interference functions converge to a unique fixed-point,
even when using a simple standard algorithm.

Theorem 2.13 (Fixed-point Theorem [121, Theorem 2]). If a K-variate func-
tion g(x) is standard and there exists x such that x ≥ g(x), then the algorithm
that consists in setting

x(t+1) = g
(
x(t)

)
, t ≥ 1

for any initial value x(0) ≥ 0, converges to the unique fixed point of x = g(x).

A sometimes non-trivial part of using the standard interference functions
framework is showing that the feasibility condition “there exists x such that
x ≥ g(x)” of Theorem 2.13 is fulfilled.

More derivative tricks:

If one wants to find DEs of derivatives of functions of random quantities, one
classically would need to find the derivatives first and then find a DE for each
derivative. However, if the function of the random quantity f(xN ) is analytic,
we can also take an alternative route. One first finds the DE and then takes the
derivative of the DE:

f(XN (z)) DE−−→ f(XN (z))
(d/dz)l ↓ ↓ (d/dz)l

f(XN (z))(l) −−→
DE

f(XN (z))(l)

Hence, proof often implement the following steps

1. Compute the deterministic equivalents for some random quantity X(z).

2. Use results from complex analysis to extend the convergence to z ∈ C\R−.

3. Exploit that the functions are analytic to prove the convergence of the
derivatives in the complex domain.

Prepared with this knowledge, we now want to have look at one of the
most common tricks in DE calculations: How to treat squared resolvents Q2 =
(HHH−zI)−2. The following hint is based on standard matrix derivation rules:
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Let A(x) be a matrix, whose entries depend on the scalar x, then

d

dx
A−1(x) = −A−1(x)

[
d

dx
A(x)

]
A−1(x) .

It is, thus, easy to see that

d

dz

[
(HHH−zI)−1

]
= (HHH−zI)−2

.

Hence, the DE of the trace of the squared resolvent can be found to be the first
derivative of the DE of the trace of the original resolvent. This trick is used, for
example in Appendix 4.6.3.1.

Random entries scaling with size:

It has become evident by now, that all most RMT results contain some kind
of inverse scaling to the matrix/vector size that affects the entries of the ma-
trix/vector. While, this is certainly needed from a mathematical standpoint, it
is also needed from a physical perspective. Most of the considered matrices and
vectors represent channels or codes. Now, if we go to infinitely large systems
and we do not scale the channel coefficients inverse to the growing size, then
the channel energy becomes infinite. In other words, the capacity or rate always
becomes infinite and conclusions or comparisons make no sense. Hence in large
scale systems, such scaling factors are needed from a physical point of view in
order to obtain meaningful results.

The process of inserting an inverse scaling factor in the channel matrix, can
also be interpreted as transferring a transmit power scaling into the channel it-
self. Or inversely, one can always remove the scaling from the channel definition
and treat it as some form of power control (usually under a constant sum power
limitation).
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Chapter 3

Truncated Polynomial
Expansion Precoding

In this chapter we propose a new family of low-complexity linear precoding
schemes for single cell and multi cell multi-user downlink systems. The main
feature is that we exploit a truncated polynomial expansion (TPE) approxima-
tion of known precoding matrices to enable balancing of precoding complexity
and system throughput via different truncation orders.

History

Before we look into the details of TPE, we will take a quick glance at the
history of of polynomial expansion (PE) techniques in communications: Until
now, PE was used extensively in detection problems to find different reduced-
rank filters. To the best of our knowledge the idea of the PE detector was
first used for direct sequence code division multiple access (DS-CDMA) in 1996
by Moshavi et al. [126]. The authors in this reference also argued that PE
based detectors admit simple and efficient multi stage/pipelined hardware im-
plementation, which stands in contrast to the complicated implementation of
matrix inversion. Finally, [126] cautioned that optimal polynomial coefficients
are expensive to compute, but they are a key requirement to achieve good detec-
tion performance at small polynomial orders. In 2001 interest in PE seemed to
peak as extensions to the PE detector were proposed for various system models
[127, 128] and [129] showed that the polynomial rank does not need to scale with
the system dimensions to maintain a certain approximation accuracy. During
the years 2004-2005 interest continued and even more extensions were proposed
[130, 131, 132], including alternative appropriate scaling approaches to the op-
timal polynomial weight problem [132]. Then, interest in the topic seemed to
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vanish until 2011, when the work by Hoydis et al. [125] on detection using TPE
and asymptotic analysis was published. This paper also motivated our inter-
est in the field and forms the original basis for our TPE precoding technique
introduced later in this chapter. Most recently [133] showed algorithms and
hardware implementation that realize detection based on PE in LTE.
The usage of PE in precoding was noticeably absent in the literature until 2013,
when independent and concurrent [134] or slightly pre-dating [135] works to
our efforts appeared. Furthermore, a similar TPE-based approach was used in
[136] for the purpose of low-complexity channel estimation in massive MIMO
systems.

Motivation

The need for computationally efficient precoding techniques has only recently
resurfaced with the advent of very large scale antenna systems: Massive multiple
input multiple output (MIMO) techniques, also known as large-scale multi-
user MIMO techniques, have been shown to be viable alternatives to small cell
networks and can also complement them well [97, 40, 47, 137, 138]. For example,
large-scale arrays with many antennas can be deployed at current macro base
stations (BSs), resulting in an exceptional array gain and spatial precoding
resolution. This is exploited to achieve higher user terminal (UT) rates and
serve more UTs simultaneously. For example, consider a single-cell downlink
case, in which one BS with M antennas serves K single-antenna UTs. As a
rule-of-thumb, hundreds of BS antennas may be deployed in the near future to
serve several tens of UTs in parallel. If the UTs are selected spatially to have a
very small number of common scatterers, the user channels naturally decorrelate
asM grows large [54, 55] and space-division multiple access (SDMA) techniques
become robust to channel uncertainty [97].

One might imagine that by taking M and K large, it becomes terribly diffi-
cult to optimize the system throughput. The beauty of massive MIMO is that
this is not the case: simple linear precoding is asymptotically optimal in the
regime M � K � 1 [97], and random matrix theory can provide simple deter-
ministic approximations of the stochastic achievable rates [107, 139, 92, 140, 47,
90]. These so-called deterministic equivalents (DEs) are tight as M grows large
due to channel hardening, but are usually also very accurate at small values of
M and K.

Although linear precoding is computationally less demanding than its non-
linear alternatives, the complexity of most linear precoding schemes is still in-
tractable in the large-(M,K) regime, since the number of arithmetic operations
is proportional to the system dimensions. For example, both the optimal precod-
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ing parametrization in [141] and the near-optimal regularized zero-forcing (RZF)
precoding [34] require an inversion of the Gram matrix of the joint channel of
all users, which has a complexity proportional to K2M . A notable exception
is the matched filter, also known as maximum ratio transmission (MRT) [142],
whose complexity only scales as MK. Unfortunately, this precoding scheme
requires roughly an order of magnitude more BS antennas to perform as well
as RZF [47] (at reasonable SNR values). Since it makes little sense to deploy
an advanced massive MIMO system and then cripple the system throughput by
using interference-ignoring MRT, treating the precoding complexity problem is
the main focus of this chapter.

71



3.1. Single Cell Precoding Chapter 3. TPE

3.1 Single Cell Precoding

This section introduces and analyses the family of TPE low-complexity linear
precoding schemes for single cell multi-user downlink systems. A main analytic
contribution is the derivation of deterministic equivalents for the achievable user
rates for any order J of TPE precoding. These expressions are tight whenM and
K grow large with a fixed ratio, but also provide close approximations at small
parameter values. The deterministic equivalents allow for optimization of the
polynomial coefficients; we derive the coefficients that maximise the asymptotic
signal to interference plus noise ratio (SINR). We note that this approach for
precoding design is relatively recent. We only are aware of two other works in
this area. One by Zarei et al. [134], which represents a concurrent independent
approach. Unlike our work, the precoding in [134] is conceived to minimise
the sum mean square error (sum-MSE) of all users. Although our approach
builds upon the same TPE concept as [134], the design method proposed herein
is more efficient since it considers the optimization of the SINR. This metric
is usually more pertinent than the sum-MSE. Additionally, our work is more
comprehensive in that we consider a channel model, which takes into account
the transmit correlation of the antennas at the BS. We also note the work [135]
published slightly in advance to our efforts, which uses the TPE approach to
specifically approximate zero-forcing (ZF) precoding, without optimization of
performance metrics.

The TPE precoding scheme presented in the following enables a smooth
transition in performance between MRT (J = 1) and RZF (J = min(M,K)),
where the majority of the gap is bridged for small polynomial orders (J). We
infer intuitively and by simulation that J is independent of the system dimen-
sions M and K, but must increase with the signal-to-noise ratio (SNR) and
channel state information (CSI) quality to maintain a fixed per-user rate gap
to RZF. We remind that the close-to-optimal and relatively “antenna-efficient”
RZF precoding is very complicated to implement in practice, since it requires
fast inversions of large matrices in every coherence period. The polynomial
structure enables a low-complexity and energy-efficient multi stage hardware
implementation. Extensive complexity analysis on TPE and RZF is carried out
to prove this point. Also, the delay to the first transmitted symbol is signifi-
cantly reduced, which is of great interest in systems with very short coherence
periods. Furthermore, the hardware complexity can be easily tailored to the
deployment scenario or even changed dynamically by increasing and reducing J
in high and low SNR situations, respectively.

Apart from the standard general notation introduced in the front matter,
this section also uses the following specialised conventions. For an infinitely
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differentiable mono-variate function f(t), the `th derivative at t = t0 (i.e.,
d`/dt`f(t)|t=t0) is denoted by f (`)(t0) and more concisely f (`), when t = 0. An
analogue definition is considered in the bivariate case; in particular f (l,m)(t0, u0)
refers to the `th and mth derivative with respect to t and u at t0 and u0, respec-
tively (i.e., ∂`/∂t` ∂

m

/∂umf(t, u)|t=t0,u=u0). If t0 = u0 = 0 we abbreviate again as
f (l,m) = f (l,m)(0, 0).

3.1.1 System Model

This section defines the single cell system with flat-fading channels, linear pre-
coding, common channel covariance matrix and channel estimation errors.

3.1.1.1 Transmission Model

We consider a single cell downlink system in which a BS, equipped with M

antennas, serves K single-antenna UTs. The received complex baseband signal
yk ∈ C at the kth UT is given by

yk = hH
kx+nk, k = 1, . . . ,K (3.1)

where x ∈ CM×1 is the transmit signal and hk ∈ CM×1 represents the ran-
dom channel vector between the BS and the kth UT. The additive circularly-
symmetric complex Gaussian noise at the kth UT is denoted by nk ∼ CN (0, σ2)
for k = 1, . . . ,K, where σ2 is the receiver noise variance.

The small-scale channel fading is modelled as follows.

Assumption A-3.1. The channel vector hk is modelled as

hk = Φ
1
2 zk (3.2)

where the channel covariance matrix Φ ∈ CM×M has bounded spectral norm
‖Φ‖2, as M → ∞, and zk ∼ CN (0M×1, IM ). The channel vector has a fixed
realization for a coherence period and then takes a new independent realization.
This model is known as Rayleigh block-fading.

Note that we assume that the UTs reside in a rich scattering environment de-
scribed by the covariance matrix Φ. This matrix can either be a scaled identity
matrix as in [97] or describe array-specific properties (e.g., non-isotropic radia-
tion patterns) and general propagation properties of the coverage area (e.g., for
practical sectorised sites). We consider a common covariance matrix Φ here,
as the main focus in this work is the precoding scheme. This simplification
has been done in many recent publications in an effort to balance realism and
analytical complexity [143, 144]. Adhikary et.al [145, 45] have shown that UTs
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can often be grouped in relatively few bins of similar covariance matrices, thus
implicating (spatially) large areas where the UTs have similar covariance matri-
ces. The general consensus is that this particular approximation does not lead
to completely unrealistic outcomes. This is mainly due multi-user precoding
generally working well for large-scale MIMO channels that may share the same
statistics, yet exhibit independent fading. Accordingly, Adhikary et.al [146] have
proposed to schedule groups of UTs that share approximately equal covariance
matrices to be served simultaneously, hence providing further motivation behind
Assumption A-3.1.

Assumption A-3.2. The BS employs Gaussian codebooks and linear precoding,
where fk ∈ CM×1 denotes the precoding vector and sk ∼ CN (0, 1) is the transmit
symbol of the kth UT.

Based on this assumption, the transmit signal in (3.1) is

x =
K∑
n=1

fnsn = Fs . (3.3)

The matrix notation is obtained by letting F = [f1 . . . fK ] ∈ CM×K be the pre-
coding matrix and s = [s1 . . . sK ]T ∼ CN (0K×1, IK) be the vector containing
all UT data symbols.

Consequently, the received signal (3.1) can be expressed as

yk = hH
k fksk+

K∑
n=1,n6=k

hH
k fnsn+nk . (3.4)

Let Fk ∈ CM×(K−1) be the matrix F with column fk removed. Then the SINR
at the kth UT becomes

SINRk = hH
k fkfH

k hk
hH
kFkFH

khk+σ2 . (3.5)

By assuming that each UT has perfect instantaneous CSI, the achievable data
rates at the UTs are

rk = log2(1+SINRk), k = 1, . . . ,K .

3.1.1.2 Model of Imperfect Channel Information at Transmitter

Since we typically have M ≥ K in practice, we assume that we either have a
time-division duplex (TDD) protocol where the BS acquires channel knowledge
from uplink pilot signalling [47] or a frequency-division duplex (FDD) protocol
where temporal correlation is exploited as in [147]. In both cases, the transmitter
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generally has imperfect knowledge of the instantaneous channel realizations and
we model this by the generic Gauss-Markov formulation; see [148, 92, 149]:

Assumption A-3.3. The transmitter has an imperfect channel estimate

ĥk = Φ
1
2

(√
1−τ2zk+τvk

)
=
√

1−τ2hk+τnk (3.6)

for each UT, k = 1, . . . ,K, where hk is the true channel, vk ∼ CN (0M×1, IM ),
and nk = Φ

1
2 vk ∼ CN (0M×1,Φ) models the independent error. The scalar

parameter τ ∈ [0, 1] indicates the quality of the instantaneous CSI, where τ = 0
corresponds to perfect instantaneous CSI and τ = 1 corresponds to having only
statistical channel knowledge. Thus, we also see that ĥk ∼ CN (0M×1, ,Φ).

The parameter τ depends on factors such as time/power spent on pilot-based
channel estimation and user mobility. Note that we assume for simplicity that
the BS has the same quality of channel knowledge for all UTs. Based on the
model in (3.6), the matrix

Ĥ =
[
ĥ1 . . . ĥK

]
∈ CM×K (3.7)

denotes the joint imperfect knowledge of all user channels.

3.1.2 Linear Precoding

Many heuristic linear precoding schemes have been proposed in the literature,
mainly because finding the optimal precoding (in terms of weighted sum rate or
other criteria) is very computationally demanding and thus unsuitable for fading
systems [36]. Among the heuristic schemes we distinguish RZF precoding [34],
which is also known as transmit Wiener filter [37], signal-to-leakage-and-noise
ratio maximizing beamforming [150], generalised eigenvalue-based beamformer
[151], virtual SINR maximizing beamforming [58], etc. The reason that RZF
precoding has been proposed by different authors (under different names) is,
most likely, that it provides close-to-optimal performance in many scenarios.
It also outperforms classical MRT and ZF beamforming by combining the re-
spective benefits of these schemes [36]. Therefore, RZF is deemed the natural
starting point for this chapter.

Next, we provide a brief review of RZF and prior performance results in
massive MIMO systems. These results serve as a starting point for Para-
graph 3.1.2.2, where we then finally propose the alternative TPE precoding
scheme with a computational/hardware complexity that is more suited for large
systems.

75



3.1. Single Cell Precoding Chapter 3. TPE

3.1.2.1 Review on RZF Precoding in Massive MIMO Systems

Suppose we have a total transmit power constraint

tr (FFH) = P . (3.8)

We stress that the total power P is fixed, while we let the number of antennas,
M , and number of UTs, K, grow large.

Similar to [92], we define the RZF precoding matrix as

FRZF = ν√
K

Ĥ
(

1
K

ĤHĤ+ξIK
)−1

P 1
2

= ν

(
1
K

ĤĤH +ξIM
)−1 Ĥ√

K
P 1

2 (3.9)

where the power normalization parameter ν is set such that FRZF satisfies the
power constraint in (3.8) and P is a fixed diagonal matrix whose diagonal ele-
ments are power allocation weights for each user. We assume that P satisfies:

Assumption A-3.4. The diagonal values pk, k = 1, . . . ,K in P = diag(p1,

. . . , pK) are positive and of order O( 1
K ).

The scalar regularization coefficient ξ can be selected in different ways, de-
pending on the noise variance, channel uncertainty at the transmitter, and sys-
tem dimensions [34, 92]. In [92], the performance of each UT under RZF pre-
coding is studied in the large-(M,K) regime. This means that M and K tend
to infinity at the same speed, which can be formalised as follows.

Assumption A-3.5. In the large-(M,K) regime, M and K tend to infinity
such that

0 < lim inf K
M
≤ lim sup K

M
< +∞ .

The user performance is characterised by SINRk in (3.5). Although the SINR
is a random quantity that depends on the instantaneous values of the random
users channels in H and the instantaneous estimate Ĥ, it can be approximated
using deterministic quantities in the large-(M,K) regime [107, 139, 92, 140].
These are quantities that only depend on the statistics of the channels and
are referred to as deterministic equivalents (DEs), since they are almost surely
(a.s.) tight in the asymptotic limit (see also Chapter 2). This channel hardening
property is essentially due to the law of large numbers. Deterministic equivalents
were first proposed by Hachem et al. in [107], who have also shown their ability
to capture important system performance indicators. When the DEs are applied
at finite M and K, they are referred to as large-scale approximations.
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As an example, we recall the following result from [107], which provides some
widely known results on DEs. Note that we have chosen to work with a slightly
different definition of the DEs than in [107], since this better fits the analysis of
our proposed precoding scheme.

Theorem 3.1 (Adapted from [107] and Theorem 2.81). Consider the resolvent
matrix2

Q(t) =
(
t

K
HHH +IM

)−1

where the columns of H are distributed according to Assumption A-3.1. Then,
the equation

e(t) = 1
K

tr
(

Φ
(

IM+ tΦ
1+te(t)

)−1
)

admits a unique solution e(t) > 0 for every t > 0.
Let T(t) =

(
IM+ tΦ

1+te(t)

)−1
and let U be any matrix with bounded spectral

norm. Under Assumption A-3.5 and for t > 0, we have

1
K

tr (UQ(t))− 1
K

tr (UT(t)) a.s.−−−−−−−→
M,K→+∞

0 . (3.10)

The statement in (3.10) shows that 1
K tr(UT(t)) is a DE to the random

quantity 1
K tr(UQ(t)).

In this thesis, the DEs are essential to determine the limit to which the
SINRs tend in the large-(M,K) regime. For RZF precoding, as in (3.9), this
limit is given by the following theorem.

Theorem 3.2 (Adapted from Corollary 1 in [92]). Let ρ = P
σ2 and consider the

notation T = T( 1
ξ ) and e = e( 1

ξ ). Define the deterministic scalar quantities

γ = 1
K

tr (TΦTΦ)

and

SINRRZF =
(1−τ2) pk

tr(P)/K e
2 ((e+ξ)2−γ

)
γ (ξ2−τ2(ξ2−(ξ+e)2))+ 1

K tr (ΦT2) (ξ+e)2

ρ

. (3.11)

Then, the SINRs with RZF precoding satisfies

SINRRZF
k −SINRRZF a.s.−−−−−−−→

M,K→+∞
0, k = 1, . . . ,K .

1Realising that Rj = Φ, ∀j and QTheo2.8(t) ≈ 1
t
Q( 1

t
).

2The definition of the resolvent matrix here is slightly different then the one given in
Chapter 2. All results can be adapted to whichever notation, yet in the current chapter this
version will be more natural to handle.
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A step-by-step guide for the interested reader, on how one arrives at (3.11)
with the notation of this chapter is given in Appendix 3.2.9.

Note that all UTs obtain the same asymptotic value of the SINR, since the
UTs have homogeneous channel statistics. Theorem 3.2 holds for any regular-
isation coefficient ξ, but the parameter can also be selected to maximise the
limiting value θ of the SINRs. This is achieved by the following theorem.

Theorem 3.3 (Adapted from Proposition 2 in [92]). Under the assumption of a
uniform power allocation, pk = P

K , the large-scale approximated SINR in (3.11)
under RZF precoding is maximised by the regularization parameter ξ?, given as
the positive solution to the fixed-point equation

ξ? = 1
ρ

1+υ(ξ?)+τ2ρ γ
1
K tr(TΦ2)

(1−τ2)(1+υ(ξ?))+ 1
(ξ?)2 τ2υ(ξ?)(ξ+e)2

where υ(ξ) is given by

υ(ξ) =
ξ 1
K tr

(
ΦT3)

γ 1
K tr (ΦT2)

(
γ

1
K tr (ΦT2)

−
1
K tr

(
Φ2T3)

1
K tr (ΦT3)

)
.

The RZF precoding matrix in (3.9) is a function of the instantaneous CSI
at the transmitter. Although the SINRs converges to the DEs given in Theo-
rem 3.2, in the large-(M,K) regime, the precoding matrix remains a random
quantity that is typically recalculated on a millisecond basis (i.e., at the same
pace as the channel knowledge is updated). This is a major practical issue, be-
cause the matrix inversion operation in RZF precoding is very computationally
demanding in large systems [56]; the number of operations scale as O(K2M)
and the known inversion algorithms are complicated to implement in hardware
(see Subsection 3.1.3 for details). The matrix inversion is the key to interference
suppression in RZF precoding, thus there is need to develop less complicated
precoding schemes that still can suppress interference efficiently.

3.1.2.2 Truncated Polynomial Expansion Precoding

Motivated by the inherent complexity issues of RZF precoding, we now develop
a new linear precoding class that is much easier to implement in large systems.
The precoding is based on rewriting the matrix inversion by a polynomial expan-
sion, which is then truncated. The following lemma provides a major motivation
behind the use of polynomial expansions.
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Lemma 3.1. For any positive definite Hermitian matrix X,

X−1 = κ
(
I−(I−κX)

)−1 = κ

∞∑
`=0

(I−κX)` (3.12)

where the second equality holds if the parameter κ is selected such that 0 < κ <
2

maxn λn(X) .

Proof. The inverse of an Hermitian matrix can be computed by inverting each
eigenvalue, while keeping the eigenvectors fixed. This lemma follows by apply-
ing the standard Taylor series expansion (1−x)−1 =

∑∞
`=0 x

`, for any |x| < 1,
on each eigenvalue of the Hermitian matrix (I−κX). The condition on x corre-
sponds to requiring that the spectral norm ‖I−κX‖2 is bounded by unity, which
holds for κ < 2

maxn λn(X) . See [132] for an in-depth analysis of such properties
of polynomial expansions.

This lemma3 shows that the inverse of any Hermitian matrix can be ex-
pressed as a matrix polynomial. More importantly, the low-order terms are the
most influential ones, since the eigenvalues of (I−κX)` converge geometrically
to zero as ` grows large. This is due to each eigenvalue λ of (I−κX) having an
absolute value smaller than unity, |λ| < 1, and thus λ` goes geometrically to
zero as `→∞. As such, it makes sense to consider a TPE of the matrix inverse
using only the first J terms. This corresponds to approximating the inversion of
each eigenvalue by a Taylor polynomial with J terms, hence the approximation
accuracy per matrix element is independent of M and K; that is, J needs not
change with the system dimensions.

TPE has been successfully applied for low-complexity multi-user detection in
[126, 129, 132, 125] and channel estimation in [136]. Next, we exploit the TPE
technique to approximate RZF precoding by a matrix polynomial. Starting
from FRZF in (3.9), we note that

ν

(
1
K

ĤĤH +ξIM
)−1 Ĥ√

K
P 1

2 (3.13)

= νκ

∞∑
`=0

(
IM−κ

( 1
K

ĤĤH +ξIM
))` Ĥ√

K
P 1

2 (3.14)

≈ νκ
J−1∑
`=0

(
IM−κ

( 1
K

ĤĤH +ξIM
))` Ĥ√

K
P 1

2 (3.15)

=
J−1∑
`=0

(
νκ

J−1∑
n=`

(
n

`

)
(1−κξ)n−`(−κ)`

)( 1
K

ĤĤH
)` Ĥ√

K
P 1

2 (3.16)

3One finds this approach under many names in the literature. For example, matrix Taylor
expansion, matrix von Neumann series or Krylov subspace method.
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where (3.14) follows directly from Lemma 3.1 (for an appropriate selection of
κ), (3.15) is achieved by truncating the polynomial (only keeping the first J
terms), and (3.16) follows from applying the binomial theorem and gathering
the terms for each exponent. Inspecting (3.16), we have a precoding matrix
with the structure

FTPE =
J−1∑
`=0

w`

(
1
K

ĤĤH

)` Ĥ√
K

P 1
2 (3.17)

where w0, . . . , wJ−1 are scalar coefficients. Although the bracketed term in
(3.16) provides a potential expression for w`, we stress that these are generally
not the optimal coefficients when J <∞. Also, these coefficients are not satis-
fying the power constraint in (3.8) since the coefficients are not adapted to the
truncation. Hence, we treat w0, . . . , wJ−1 as design parameters that should be
selected to maximise the performance; for example, by maximizing the limiting
value of the SINRs, as was done in Theorem 3.3 for RZF precoding. We note
especially that the value of κ in (3.16) does not need to be explicitly known in
order to choose, optimise and implement the coefficients. We only need for κ to
exist, which is always the case under Assumption A-3.2. Besides the simplified
structure, the proposed precoding matrix FTPE possesses a higher number of
degrees of freedom (represented by the J scalars w`) than the RZF precoding
(which has only the regularization coefficient ξ).

The precoding in (3.17) is coined TPE precoding and actually defines a whole
class of precoding matrices for different J . For J = 1 we obtain F = w0√

K
ĤP 1

2 ,
which equals MRT. Furthermore, RZF precoding can be obtained by choos-
ing J = min(M,K) and coefficients based on the characteristic polynomial of
( 1
K ĤĤH +ξIM )−1 (directly from Cayley-Hamilton theorem). We refer to J as

the TPE order and note that the corresponding polynomial degree is J−1.
Clearly, proper selection of J enables a smooth transition between the tradi-
tional low-complexity MRT and the high-complexity RZF precoding. Based on
the discussion that followed Lemma 3.1, we assume that the parameter J is a
finite constant that does not grow with M and K.

3.1.3 Complexity Analysis

In this section we compare the complexities of RZF and TPE precoding in a
theoretical fashion and in an implementation sense. The complexities are given
as simple numbers of complex addition and multiplication operations needed for
a given arithmetic operation. The number of floating point operations (flops)
needed to implement these complex operations varies greatly according to the
used hardware and complex number representation (i.e., polar or Cartesian).
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Thus, we will not attempt to give a measure in flops. Also, the ability to paral-
lelise operations and to customise algorithm-specific circuits has a fundamental
impact on the computational delays and energy consumption in practical sys-
tems.

3.1.3.1 Sum Complexity per Coherence Period for RZF and TPE

In order to compare the number of complex operations needed for conventional
RZF precoding and the proposed TPE precoding, it is important to consider
how often each operation is repeated. There are two time scales: 1) operations
that take place once per coherence period (i.e., once per channel realization)
and 2) operations that take place every time the channel is used for downlink
transmission. To differentiate between these time scales, we let T pcp

data denote the
number of downlink channel uses for data transmission per coherence period.
Recall from (3.3) that the transmit signal is Fs, where the precoding matrix
F ∈ CM×K changes once per coherence period and the data transmit symbols
s ∈ CK×1 are different for each channel use.

The RZF precoding matrix in (3.9) is computed once per coherence period.
There are two equivalent expressions in (3.9), where the difference is that the
matrix inversion is either of dimension K×K or M×M . Since K ≤ M in
most cases of practical interest, and especially in the massive MIMO regime, we
consider the first precoding expression: 1√

K
Ĥ
( 1√

K
ĤH 1√

K
Ĥ+ξIK

)−1P 1
2 ν.

Assuming that 1√
K

Ĥ, ξ, ν and P 1
2 are available in advance and the Her-

mitian operation is “free”, we need to 1) compute the matrix-matrix multi-
plication ( 1√

K
ĤH)( 1√

K
Ĥ); 2) add the diagonal matrix ξIK to the result; 3)

compute 1√
K

Ĥ
( 1
K ĤHĤ+ξIK

)−1; and 4) multiply the result with the diagonal
matrix resulting from P 1

2 ν. These are standard operations for matrices, thus
we obtain the numbers of complex operations as: K2(2M−1), K, K

3

3 +2K2M ,
and MK+K operations, respectively. Step 3) is not immediately obvious,
but an efficient method for this part is to compute a Cholesky factorization
of 1

K ĤHĤ+ξIK (at a cost of K3/3) and then solve a simple linear equation
system for each row of 1√

K
ĤH (at a cost of 2K2 each) [152, Slides 9-6, 9]. This

approach is preferable to the alternative of completely inverting the matrix
(again using Cholesky factorization) and then using matrix-matrix multiplica-
tion, as long as K3−KM > 0. Given that the alternative method has a cost
of 4K3/3+MK(2K−1). It is interesting to note here that, for the case of
M � K, the matrix-matrix multiplication is actually more expensive than the
matrix inversion (2MK2 vs. K3).4

4Matrix multiplication combined with matrix inversion can be implemented using the
Strassen’s algorithm in [153] and the improved Coppersmith-Winograd algorithm in [154].
These are divide-and-conquer algorithms that exploit that 2×2 matrices can be multiplied
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Once FRZF has been computed, the matrix-vector multiplication FRZFs re-
quiresM(2K−1) operations per channel use of data transmission. In summary,
RZF precoding has a total number of complex operations per coherence period
of

Cpcp
RZF = 4K2M+K3

3 +K(M+2)−K2+T pcp
data(2MK−M) .

There is a second approach to looking at the RZF precoder complexity. Let
the transmit signal with RZF precoding at channel use t be denoted x(t)

RZF. The
transmitted signal is then x(t)

RZF = FRZFs(t) = 1√
K

Ĥ
( 1
K ĤHĤ+ξIK

)−1
νP 1

2 s(t).
Thus, one can replace the “matrix times inverse of another matrix” operation
taking place each coherence period, by a matrix-inverse operation per coherence
period and two matrix-vector multiplications per data symbol vector. Thus,
one effectively splits the previous point 3) in two parts and waits for the symbol
vector to allow for the matrix-vector multiplications. This results in

Cpcp
RZF2 = 2K2M+ 4K3

3 −K2+2K+T pcp
data(4MK−2M+K) .

Still, this complexity is dominated by the matrix-matrix multiplication inside
the inverse. However, the per coherence period complexity is reduced in ex-
change for a slight increase in complexity per symbol. Depending on the use-
case of the precoder, this change can either be advantageous or disadvantageous
(see Figure 3.1 and Paragraph 3.1.3.2). We note that choosing to incorporate
the multiplication with P 1

2 per coherence period or per symbol vector does only
insignificantly change the stated outcomes. In the following we will chose the
appropriate version for each comparison.

Next, we consider TPE precoding. Similar to before, we assume that 1√
K

Ĥ,
w` and P 1

2 are available in advance and the Hermitian operation is “free”. Let
the transmit signal vector with TPE precoding at channel use t be denoted
x(t)

TPE and observe that it can be expressed as

x(t)
TPE = FTPEs(t) =

J−1∑
`=0

w`x̃(t)
`

efficiently and thereby reduce the asymptotic complexity of multiplying/inverting K×K ma-
trices to O(K2.8074) and O(K2.373), respectively. Unfortunately, the overhead in these algo-
rithms is heavy and thus K needs to be at the order of several thousands to achieve a lower
complexity than the Cholesky approach considered here. Hence, these alternative algorithms
are unfavourable for matrices of practical sizes.
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where s(t) is the vector of data symbols at channel use t and

x̃(t)
` =

 Ĥ√
K

(P 1
2 s(t)), ` = 0,

Ĥ√
K

( ĤH
√
K

x̃(t)
`−1), 1 ≤ ` ≤ J−1 .

This reveals that there is an iterative way of computing the J terms in TPE
precoding. The benefit of this approach is that it can be implemented using
only matrix-vector multiplications.5

Similar to above, we conclude that the case ` = 0 uses K+M(2K−1) op-
erations and each of the J−1 cases of ` ≥ 1 needs M(2K−1)+K(2M−1)
operations. One remarks that it is impractical and unneeded to carry out a
matrix-matrix multiplication at this step. Finally, the multiplication with w`

and the summation requires M(2J−1) further operations. In summary, TPE
precoding has a total number of arithmetic operations of

Cpcp
TPE = T pcp

data
(
(4J−2)MK+(J−1)M+K(2−J)

)
.

When comparing RZF and TPE precoding, we note that the complexity of
precomputing the RZF precoding matrix is very large, but it is only done once
per coherence period. The corresponding matrix FTPE for TPE precoding is
never computed separately, but only indirectly as FTPEs for each data symbol
vector s. Intuitively, precomputation is beneficial when the coherence period is
long (compared toM and K) and the sequential computation of TPE precoding
is beneficial when the system dimensions M and K are large (compared to
the coherence period) or the coherence period is short. This is seen from the
large dimensional complexity scaling which is O(4K2M) or O(2K2M) for RZF
precoding (the latter, if the RZF or RZF2 approach is used) and O(4JKMT pcp

data)
for TPE precoding; thus, the asymptotic difference is significant. The break
even point, where TPE precoding outperforms RZF is easily computed looking
at Cpcp

RZF > Cpcp
TPE

⇒ T pcpdata <
4K2M+K3

3 +K(M+2)−K2

4(J−1)MK+JM+(2−J)K ≈
K

J−1

and similar for Cpcp
RZF2 > Cpcp

TPE.
One should not forget the overhead signalling required to obtain CSI at the

UTs, which makes the number of channel uses Tdata available for data symbols
reduce with K. For example, suppose Tcoherence is the total coherence period

5Intuitively one circumvents the expensive matrix-matrix multiplication with a domino-like
chain of 2J−1 (less expensive) matrix-vector multiplications per transmitted symbol vector.
This became possible by replacing the inverse of a matrix-matrix multiplication in the RZF
with a sum of weighted matrix powers.
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Figure 3.1: Total number of arithmetic operations of RZF precoding and TPE
precoding (with different J) for K = 100 users and M = 500.

and that we use a TDD protocol, where ηDL is the fraction used for downlink
transmission and µK channel uses (for some µ ≥ 1) are consumed by downlink
pilot signals that provide the UTs with sufficient CSI. We then have Tdata =
ηDLTcoherence−µK. Using this relationship, the number of arithmetic operations
are illustrated numerically in Fig. 3.1 for ηDL = 1

2 , K = 100, and µ = 2.6 This
figure shows that TPE precoding uses fewer operations than RZF precoding
when the coherence period is short and the TPE order is small, while RZF is
competitive for long coherence times.

We remark that all previously found results change in favour of TPE, if one
uses the canonical transformation of complex to real operations by doubling all
dimensions.

Remark 3.1 (Power Normalization). In this section we assumed that ν and w`
(and ξ) are known beforehand. These factors are responsible for the power nor-
malization of the transmit signal. Depending on the chosen normalisation, for
example the average per UT normalisation taken in the single cell case here, it
requires the full precoding matrix to be known. Thus it forbids the alternative im-
plementation of RZF precoding detailed before. Note that this could be remedied
by changing to “strict” per UT normalisation. In general, we can find values
for ν and w`, that only rely on channel statistics and are valid in the large-
(M,K) regime. This, and the possible fix for the alternative RZF approach,

6These parameter values correspond to symmetric downlink/uplink transmission, 2 down-
link pilot symbols per UT (at different frequencies). Looking at values similar the LTE
standard [155, Chapter 10], e.g., a coherence bandwidth of 200 kHz, and a coherence period
of 5 ms one would arrive a Tcoherence of 1000.
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Ĥ x̃
(t+1)
0 x̃

(t+2)
0

Timett−1t−2t−3t−4t−5

w0 w0

x̃
(t+1)
1

Ĥ
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Figure 3.2: Illustration of a simple pipelined implementation of the proposed
TPE precoding with J = 2, which removes the delays caused by precomputing
the precoding matrix. Each block performs a simple matrix-vector multipli-
cation, which enables highly efficient hardware implementation and J can be
increased by simply adding additional cores.

have motivated us to assume ν and w` as known.

3.1.3.2 Delay to First Transmission for RZF and TPE

A practically important complexity metric is the number of complex operations
for the first channel use. This number can also be interpreted as the delay until
the start of data transmission. This complexity can easily be found from the
previous results, by choosing Tdata = 1. Directly looking at the massive MIMO
case, we find C1st

RZF = 4MK2, C1st
RZF2 = 2MK2 and C1st

TPE = 4JMK. Hence,
the first data vector is transmitted by a factor of K/(2J) earlier7, when TPE
precoding is employed. This factor is significant and gives TPE precoding prac-
tical relevance, especially in massive MIMO systems and in very fast changing
environments, i.e., when coherence periods are very short. We also remark that
not wasting time during the coherence period pays off greatly, as the lost chan-
nel uses are given by the saved time multiplied by the (often large) coherence
bandwidth.
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3.1.3.3 Implementation Complexity of RZF and TPE Precoding

In practice, the number of arithmetic operations is not the main issue, but
the implementation cost in terms of hardware complexity, time delays, and
energy consumption. The analysis in Paragraph 3.1.3.1 showed that we can only
expect improvements in the sum of complex operations from TPE precoding per
coherence period in certain scenarios. However, one advantage of TPE precoding
is that it enables multistage hardware implementation where the computations
are pipelined [132, 133] over multiple processing cores (e.g., application-specific
integrated circuits (ASICs)). This structure is illustrated in Fig. 3.2, where the
transmitted signal x(t) is prepared in the various cores (black path), while the
preceding and succeeding transmit signals are computed in the “free” cores (grey
paths). Each processing core performs two simple matrix-vector multiplications,
each requiring approximately O(2MK) complex additions and multiplications
per coherence period. This is relatively easy to implement using ASICs or
FPGAs, which are know to be very energy-efficient and have low production
cost. Consequently, we can select the TPE order J as large as needed to obtain
a certain precoding accuracy, if we are prepared to use as many circuits of the
same type as needed. Then, the delay between two consecutive transmitted
symbol vectors is given only by the delay of two matrix-vector multiplications.

In comparison, the inversion of RZF precoding can only be pseudo-parallel-
ised by using tree structures (see e.g. [156]. Hence, the pipelining of the CRZF

complex operations per coherence period is limited by the delay of a single
processing core that implements the inverse of a matrix-matrix product; this
delay is most probably much larger than the two matrix-vector multiplications of
TPE. The delay of a second core implementing the multiplication of the inverse
with the channel matrix is negligible in comparison. Like mentioned before, the
precomputation of the RZF precoding matrix causes non-negligible delays that
forces T pcp

data to be smaller than for TPE precoding; for example, [56] describes
a hardware implementation from [157] where it takes 0.15 ms to compute RZF
precoding for K = 15, which translated to a loss of 0.15ms·200kHz = 30 channel
uses in a system with coherence bandwidth 200kHz. Also, the number of active
UTs can be much larger than this in large-scale MIMO systems [158]. TPE
precoding does not cause such delays because there are no precomputations—
the arithmetic operations are spread over the coherence period.

In practice this means one can argue that only the curve pertaining to J = 1
in Fig. 3.1 is relevant for comparisons between TPE and RZF after implementa-
tion; if one is prepared to add (seemingly unfairly) as many computation cores
as necessary to TPE.

7Depending on the massive MIMO system K can be on the order of 100s [18] and M of
the order 10K, while we will see later that J = 4 is sufficient for many cases.
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3.1.4 Analysis and Optimization of TPE Precoding

In this section, we consider the large-(M,K) regime, defined in Assumption
A-3.5. We show that SINRk, for k = 1, . . . ,K, under TPE precoding con-
verges to a limit, a DE, that depends only on the coefficients w`, the respective
attributed power pk, and the channel statistics.

Recall the SINR expression in (3.5) and observe that fk = Fek and hHFkFH
khk =

hHFFHhk−hHfkfH
k hk, where ek is the kth column of the identity matrix IK . By

substituting the TPE precoding expression (3.17) into (3.5), it is easy to show
that the SINR writes as

SINRk = wHAkw
wHBkw+σ2 (3.18)

where w = [w0 . . . wJ−1]T and the (`,m)th elements of the matrices Ak, Bk ∈
CJ×J are

[Ak]`,m= pk
K

hH
k

(
1
K

ĤĤH

)̀
ĥkĥH

k

(
1
K

ĤĤH

)m
hk (3.19)

[Bk]`,m= 1
K

hH
k

(
1
K

ĤĤH

)̀
ĤPĤ

(
1
K

ĤĤH

)m
hk−[Ak]`,m (3.20)

for ` = 0, . . . , J−1 and m = 0, . . . , J−1.8

Since the random matrices Ak and Bk are of finite dimensions, it suffices to
determine a DE for each of their elements. To achieve this, we express them
using the resolvent matrix of Ĥ. This can be done by introducing the following
random functionals in t and u:

Xk,M (t, u) =
1
K2 hH

k

( t
K

ĤĤH +IM
)−1

ĥkĥH
k

( u
K

ĤĤH +IM
)−1

hk (3.21)

Zk,M (t, u) =
1
K

hH
k

( t
K

ĤĤH +I
)−1

ĤPĤ
( u
K

ĤĤH +IK
)−1

hk . (3.22)

By taking derivatives of Xk,M (t, u) and Zk,M (t, u), we obtain

X
(`,m)
k,M = (−1)`+m`!m!

K2 hH
k

(
ĤĤH

K

)`
ĥkĥH

k

(
ĤĤH

K

)m
hk (3.23)

Z
(`,m)
k,M = (−1)`+m`!m!

K
hH
k

(
ĤĤH

K

)`
ĤPĤ

(
ĤĤH

K

)m
hk . (3.24)

8The entries of matrices are numbered from 0, for notational convenience.
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Substituting (3.23)–(3.24) into (3.19)–(3.20), we obtain the alternative expres-
sions

[Ak]`,m = Kpk(−1)`+m

`!m! X
(`,m)
k,M

[Bk]`,m = (−1)`+m

`!m! (−KpkX(`,m)
k,M +Z(`,m)

k,M ) .

It, thus, suffices to study the asymptotic convergence of the bivariate functions
Xk,M (t, u) and Zk,M (t, u). This is achieved by the following new theorem and
its corollary:

Theorem 3.4. Consider a channel matrix Ĥ whose columns are distributed
according to Assumption A-3.3. Under the asymptotic regime described in As-
sumption A-3.5, we have

Xk,M (t, u)−XM (t, u) a.s.−−−−−−−→
M,K→+∞

0

and
−KpkXk,M (t, u)+Zk,M (t, u)−tr(P) bM (t, u) a.s.−−−−−−−→

M,K→+∞
0

where

XM (t, u) = (1−τ2)e(t)e(u)
(1+te(t))(1+ue(u))

bM (t, u) =
(
τ2+ (1−τ2)

(1+ue(u))(1+te(t))

)
υM (t, u)

and υM (t, u) is given by

υM (t, u) =
1
K tr (ΦT(u)ΦT(t))

(1+te(t))(1+ue(u))− tu
K tr (ΦT(u)ΦT(t))

. (3.25)

Let T(t) =
(
IM+ tΦ

1+te(t)

)−1
and the fixed point equation

e(t) = 1
K

tr
(

Φ
(

IM+ tΦ
1+te(t)

)−1
)

admits a unique solution e(t) > 0 for every t > 0.

Proof. See Appendix 3.2.2.

Corollary 3.1. Assume that Assumptions A-3.3 and A-3.5 hold true. Then,
we have

X
(`,m)
k,M −X(`,m)

M
a.s.−−−−−−−→

M,K→+∞
0
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and (
−KpkX(`,m)

k,M +Z(`,m)
k,M

)
−tr(P) b(`,m)

M
a.s.−−−−−−−→

M,K→+∞
0 .

Proof. See Appendix 3.2.4.

Corollary 3.1 shows that the entries of Ak and Bk, which depend on the
derivatives of Xk,M (t, u) and Zk,M (t, u), can be approximated in the asymptotic
regime by T(`) and e(`), which are the derivatives of T(t) and e(t) at t = 0. Such
derivatives can be computed numerically using the iterative algorithm of [125],
which is provided in Appendix 3.2.6 for the sake of completeness.

It remains to compute the aforementioned derivatives. To this end, we
denote f(t) = − 1

1+te(t) , T (t) = −f(t)T(t) and by f (`), T (`) their deriva-
tives at t = 0. T (`) can be calculated using the Leibniz derivation rule9

T (`) = (−T(t)f(t))(`)|t=0 = −
∑`
n=0

(
`
n

)
T(n)f (`−n) and the respective values

from Appendix 3.2.6. Rewriting (3.25) as

υM (t, u)
(

1− tu
K

tr (ΦT (u)ΦT (t))
)

= 1
K

tr (ΦT (u)ΦT (t))

and using the Leibniz rule, we obtain for any integers ` and m greater than 1,
the expression

υ
(`,m)
M = 1

K
tr
(
ΦT (`)ΦT (m)

)
+
∑̀
k=1

m∑
n=1

kn

(
`

k

)(
m

n

)
υ

(k−1,n−1)
M

1
K

tr
(
ΦT (`−k)ΦT (m−n)

)
.

An iterative algorithm for the computation of υ(`,m)
M is given in Appendix 3.2.5.

With these derivation results on hand, we are now in the position to determine
the expressions for the derivatives of the quantities of interest, namelyXk,m(t, u)
and bM (t, u). Using again the Leibniz derivation rule, we obtain

X
(`,m)
M =(1−τ2)

∑̀
k=0

m∑
n=0

(
`

k

)(
m

n

)
e(k)e(n)f (`−k)f (m−n)

b
(`,m)
M =τ2υ(`,m)+(1−τ2)

∑̀
k=0

m∑
n=0

(
`

k

)(
m

n

)
υ

(`−k,m−n)
M f (k)f (n) .

Using these results in combination with Corollary 3.1, we immediately obtain
the asymptotic equivalents of Ak and Bk:

9See also Lemma 3.6.
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Corollary 3.2. Let Ã and B̃ be the J×J matrices, whose entries are

[
Ã
]
`,m

= (−1)`+mX(`,m)
M

`!m![
B̃
]
`,m

= (−1)`+mb(`,m)
M

`!m! .

Then, in the asymptotic regime, for any k ∈ 1, . . . ,K we have

max
(
‖Ak−KpkÃ‖, ‖Bk−tr (P) B̃‖

)
a.s.−−−−−−−→

M,K→+∞
0 .

3.1.4.1 Optimization of the Polynomial Coefficients

Next, we consider the optimization of the asymptotic SINRs with respect to
the polynomial coefficients w = [w0 . . . wJ−1]T . Using results from the previous
sections, a DE for the SINR of the kth UT is

SINRk = KpkwHÃw
tr (P) wHB̃w+σ2

.

The optimised TPE precoding should satisfy the power constraints in (3.8):

tr (FTPEFH
TPE) = P . (3.26)

Using the TPE precoding expression (3.17), this implies that

1
K

J−1∑
`=0

J−1∑
m=0

wlw
∗
m

1
K

tr

(ĤĤH

K

)`
ĤPĤH

(
ĤĤH

K

)m = P .

Hence, one can reformulate this power constraint more concisely, as

wHCw = P (3.27)

where the (`,m)th element of the J×J matrix C is

[C]`,m = 1
K

tr

(ĤĤH

K

)`
ĤPĤH

(
ĤĤH

K

)m . (3.28)

In order to make the optimization problem independent of the channel realiza-
tions, we replace the constraint in (3.27) by a deterministic one, which depends
only on the statistics of the channel.
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To find a DE of the matrix C, we introduce the random quantity

YM (t, u) =

1
K

tr
((

t

K
ĤĤH +I

)−1
ĤPĤH

( u
K

ĤĤH +I
)−1

)

whose derivatives Y (`,m)
M satisfy

[C]`,m = (−1)`+mY (`,m)
M

`!m! .

Using the same method as for the matrices A and B, we achieve the following
result:

Theorem 3.5. Considering the setting of Theorem 3.4, we have the following
convergence results:

1. Let c(t, u) =
1
K tr(ΦT(u)T(t))

(1+te(t))(1+ue(u)) (1+tuυ(t, u)), then

YM (t, u)−tr (P) c(t, u) a.s.−−−−−−−→
M,K→+∞

0 .

2. Denote by c(`,m) the `th and mth derivatives with respect to t and u, re-
spectively, then

c(`,m) =
∑̀
k=1

m∑
n=1

kn

(
`

k

)(
m

n

)
υ(n−1,k−1)

× 1
K

tr
(
ΦT (`−k)T (m−n)

)
+ 1
K

tr
(
ΦT (m)T (`)

)
3. Let C̃ be the J×J matrix with entries given by

[C̃]`,m = (−1)`+mc(`,m)

`!m! .

Then, in the asymptotic regime

‖C−tr (P) C̃‖ a.s.−−−−−−−→
M,K→+∞

0 .

Proof. The proof relies on the same techniques as before, so provide only a
sketch in Appendix 3.2.7.

Based on Theorem 3.5, we can consider the deterministic power constraint

tr (P) wHC̃w = P (3.29)
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which can be seen as an approximation of (3.27), in the sense that for any w
satisfying (3.29), we have

wHCw−P a.s.−−−−−−−→
M,K→+∞

0 .

Now the maximisation of the asymptotic SINR of UT k amounts to solving
the following optimization problem:

maximize
w

KpkwHÃw
tr (P) wHB̃w+σ2

subject to tr (P) wHC̃w = P .

(3.30)

The next theorem shows that the optimal solution, wopt, to (3.30) admits a
closed-form expression.

Theorem 3.6. Let a be a unit norm eigenvector corresponding to the maximum
eigenvalue λmax of

(
B̃+ σ2

P
C̃
)− 1

2

Ã
(

B̃+ σ2

P
C̃
)− 1

2

. (3.31)

Then the optimal value of the problem in (3.30) is achieved by

wopt =

√
P

α tr (P)

(
B̃+ σ2

P
C̃
)− 1

2

a (3.32)

where the scaling factor α is

α =

∥∥∥∥∥C̃ 1
2

(
B̃+ σ2

P
C̃
)− 1

2

a

∥∥∥∥∥
2

. (3.33)

Moreover, for the optimal coefficients, the asymptotic SINR for the kth UT is

SINRk = Kpkλmax

tr (P) . (3.34)

Proof. The proof is given Appendix 3.2.8.

The optimal polynomial coefficients for UT k are given in (3.32) of Theorem
3.6. Interestingly, these coefficients are independent of the user index, thus
we have indeed derived the jointly optimal coefficients. Furthermore, all users
converge to the same deterministic SINR up to an UT-specific scaling factor

Kpk
SINR tr(P)

.

Remark 3.2. The asymptotic SINR expressions in (3.34) are only functions of
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the statistics and the power allocation p1, . . . , pK . The power allocation can be
optimised with respect to some system performance metric. For example, one
can show that the asymptotic average achievable rate

1
K

K∑
k=1

log2

(
1+Kpkλmax

tr (P)

)

is maximised by a uniform power allocation pk = P
K for all k, where as the

optimal coefficients are those given by Theorem 3.6.

Remark 3.3. Theorem 3.6 shows that the J polynomial coefficients that jointly
maximise the asymptotic SINRs can be computed using only the channel statis-
tics and the channel estimation error. The optimal coefficients are then given
in closed form in (3.32). Numerical experiments show that the coefficients are
very robust to underestimation of τ and robust to overestimation. Hence, the
main feature of Theorem 3.6 is that the TPE precoding coefficients can be com-
puted beforehand, or at least be updated at the relatively slow rate of change of
the channel statistics. Thus, the cost of the optimization step is negligible with
respect to calculating the precoding itself. The performance of finite-dimensional
large-scale MIMO systems is evaluated numerically in Subsection 3.1.5.

Remark 3.4. Finally, we remark that Assumption A-3.5 prevents us from di-
rectly analysing the scenario where K is fixed and M →∞, but we can infer the
behaviour of TPE precoding based on previous works. In particular, it is known
that MRT is an asymptotically optimal precoding scheme in this scenario [40].
We recall from Paragraph 3.1.2.2 that TPE precoding reduces to MRT for J = 1.
Hence, we expect the optimal coefficients to behaves as w0 6= 0 and w` → 0 for
` ≥ 1 when M → ∞. In other words, we can reduce J as M grows large and
still keep a fixed performance gap to RZF precoding.

3.1.5 Simulation Results

In this section, we compare the RZF precoding from [34] (which was restated in
(3.9)) with the proposed TPE precoding (defined in (3.17)) by means of simu-
lations. The purpose is to validate the performance of the proposed precoding
scheme and illustrate some of its main properties. The performance measure is
the average achievable rate

r = 1
K

K∑
k=1

E[log2(1+SINRk)]

of the UTs, where the expectation is taken with respect to different channel
realizations and users. In the simulations, we model the channel covariance
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Figure 3.3: Average per UT rate vs. transmit power to noise ratio for varying
CSI errors at the BS (J = 3, M = 128, K = 32).

matrix as

[Φ]i,j =

aj−i, i ≤ j,

(ai−j)∗, i > j

where a is chosen to be 0.1. This approach is known as the exponential corre-
lation model [159] and it can be easily shown that it adheres to the assumption
of bounded spectral norm:

||Φ||2 ≤ ||Φ||l1 ≤ 2
M−1∑
n=0
|a|n = 21−|a|M

1−|a| = O(1) .

More involved models could be chosen here, but would make it harder to evaluate
the performance and function of TPE, while not offering more insight. The sum
power constraint

tr
(
FRZF/TPEFH

RZF/TPE

)
= P

is applied for both precoding schemes. Unless otherwise stated, we use uniform
power allocation for the UTs, since the asymptotic properties of RZF precoding
are known in this case (see Theorem 3.3). Without loss of generality, we have
set σ2 = 1. Our default simulation model is a large-scale single cell MIMO
system of dimensions M = 128 and K = 32.

We first take a look at Fig. 3.3. It considers a TPE order of J = 3 and three
different quality levels of the CSI at the BS: τ ∈ {0.1, 0.4, 0.7}. From Fig. 3.3,
we see that RZF and TPE achieve almost the same average UT performance
when a bad channel estimate is available (τ = 0.7). Furthermore, TPE and
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Figure 3.4: Average UT rate vs. transmit power to noise ratio for different
orders J in the TPE precoding (M = 512, K = 128, τ = 0.1).

RZF perform almost identically at low SNR values, for any τ . In general, the
unsurprising observation is that the rate difference becomes larger at high SNRs
and when τ is small (i.e., with more accurate channel knowledge).

Fig. 3.4 shows more directly the relationship between the average achievable
UT rates and the TPE order J . We consider the case τ = 0.1, M = 512, and
K = 128, in order to be in a regime where TPE performs relatively bad (see
Fig.3.3) and the precoding complexity becomes an issue. From the figure, we
see that choosing a larger value for J gives a TPE performance closer to that of
RZF. However, doing so will also require more hardware; see Paragraph 3.1.3.3.
The proposed TPE precoding never surpasses the RZF performance, which is
noteworthy since TPE has J degrees of freedom that can be optimised (see
Paragraph 3.1.4.1), while RZF only has one design parameter. Hence one can
regard RZF precoding as an upper bound to TPE precoding in the single cell
scenario.10

It is desirable to select the TPE order J in such a way that we achieve a
certain limited rate-loss with respect RZF precoding. Fig. 3.5 illustrates the
rate-loss (per UT) between TPE and RZF, while the number of UTs K and
transmit antennas M increase with a fixed ratio (M/K = 4). The figure con-
siders the case of τ = 0.1. We observe, that the TPE order J and the system
dimensions are independent in their respective effects on the rate-loss between
TPE and RZF precoding. This observation is in line with previous results on

10The optimal precoding parametrization in [141] has K−1 parameters. To optimise some
general performance metric, it is therefore necessary to let the number of design parameters
scale with the system dimensions.
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Figure 3.5: Rate-loss of TPE vs. RZF with respect to growing K, where the
ratio M/K is fixed at 4 and the average SNR is set to 10 dB (τ = 0.1).

polynomial expansions, for example [129] where reduced-rank received filtering
was considered. The independence between J and the system dimensionsM and
K (given the same ratio) is indeed a main motivation behind TPE precoding,
because it implies that the order J can be kept small even when TPE precoding
is applied to very large-scale MIMO systems. The intuition behind this result
is that the polynomial expansion approximates the inversion of each eigenvalue
with the same accuracy, irrespective of the number of eigenvalues; see Para-
graph 3.1.2.2 for details. Although the relative performance loss is unaffected
by the system dimensions, we also see that J needs to be increased along with
the SNR, if a constant performance gap is desired.

In the simulation depicted in Fig. 3.6, we introduce a hypothetical case of
TPE precoding (TPEopt) that optimises the J coefficients using the estimated
channel coefficients in each coherence period, instead of relying solely on the
channel statistics. More precisely, the optimal coefficients in Theorem 3.6 are
not computed using the DEs of Ã, B̃, and C̃, but using the original matrices
from (3.19), (3.20) and (3.28). This plot illustrates the additional performance
loss caused by precalculating the TPE coefficients based on channel statistics
and asymptotic analysis, instead of carrying out the optimization step for each
channel realization. The difference is virtually zero at low SNRs and high at
high SNRs. Furthermore, we note that increasing the value of J has the same
performance-gap-reducing effect on TPEopt, as it has on TPE (see Figs. 3.4
and 3.5). In order to preserve readability, only the curves pertaining to J = 3
are shown in Fig. 3.6.

96



Chapter 3. TPE 3.1. Single Cell Precoding

0 5 10 15 20

2

3

4

Transmit Power to Noise Ratio [dB]

Av
er
ag
e
pe

r
U
T

R
at
e
[b
it/

s/
H
z] RZF

TPEopt
TPE

Figure 3.6: Average UT rate vs. transmit power to noise ratio with RZF, TPE,
and TPEopt precoding (J = 3, M = 128, K = 32, τ = 0.4).
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Figure 3.7: Average rate per UT class vs. transmit power to noise ratio with
TPE precoding (J = 3, M = 256, K = 64, τ = 0.1).
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Finally, to assess the validity of our results, we treat the case of non-uniform
power allocation (i.e., with different values for pk). In particular, we consid-
ered a situation where the users are divided into four classes corresponding to
{c1, c2, c4c4} = {1, 2, 3, 4}, where pk = ck

K in order to adhere to the scaling in
Assumption A-3.4. Fig. 3.7 shows the theoretical large-(M,K) regime (DE;
based on (3.34)) and empirical (MC; based on (3.18)) average rate per UT for
each class, when K = 32,M = 128, and τ = 0.1. We especially remark the
very good agreement between our theoretical analysis and the empirical system
performance.

3.1.6 Conclusion Single Cell

Conventional RZF precoding provides attractive system throughput in massive
MIMO systems, but its computational and implementation complexity is pro-
hibitively high, due to the required channel matrix inversion. In this chapter,
we have introduced a new class of TPE precoding schemes where the inversion
is approximated by truncated polynomial expansions to enable simple hardware
implementation. In the single cell downlink with M transmit antennas and K
single-antenna users, this new class can approximate RZF precoding to an arbi-
trary accuracy by choosing the TPE order J in the interval 1 ≤ J ≤ min(M,K).
In terms of implementation complexity, TPE precoding has several advantages:
1) There is no need to compute the complete precoding matrix beforehand
(which leaves more channel uses for data transmission); 2) the delay to the first
transmitted symbol is reduced significantly; 3) the multi stage structure enables
pipelining; and 4) the parameter J can be tailored to the available hardware.

Although the polynomial coefficients depend on the instantaneous channel
realizations, we have shown that the per-user SINRs converge to deterministic
values in the large-(M,K) regime. This enabled us to compute asymptotically
optimal coefficients using merely the statistics of the channels. The simulations
revealed that the difference in performance between RZF and TPE is small at
low SNRs and for large CSI errors. The TPE order J can be chosen very small
in these situations and, in general, it does not need to scale with the system
dimensions. However, to maintain a fixed per-user rate loss compared to RZF,
J should increase with the SNR or as the CSI quality improves.

3.2 Appendix Single Cell

3.2.1 Useful Lemmas

Lemma 3.2 (Lemmas 2.6 and 2.7 adapted to the notation of Theorem 3.1).
Given any matrix Ĥ ∈ CM×K , let ĥk denote its kth column and Ĥk denote the
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matrix obtained after removing the kth column from Ĥ. The resolvent matrices
of Ĥ and Ĥk are denoted by

Q(t) =
(
t

K
ĤĤH +IM

)−1

Qk(t) =
(
t

K
ĤkĤH

k+IM
)−1

respectively. It then holds, that

Q(t) = Qk(t)− 1
K

tQk(t)ĥkĥH
kQk(t)

1+ t
K ĥH

kQk(t)ĥk
(3.35)

and also

Q(t)ĥk = Qk(t)ĥk
1+ t

K ĥH
kQk(t)ĥk

. (3.36)

Lemma 3.3 (Lemma 2.8 adapted to the notation of Theorem 3.1). Let Q(t)
and Qk(t) be the resolvent matrices as defined in Lemma 3.2. Then, for any
matrix A we have:

tr
(
A (Q(t)−Qk(t))

)
≤ ‖A‖2 .

Lemma 3.4. Let XM and YM be two scalar random variables, with variances
such that var(XM ) = O(M−2) and var(XM ) = O(M−2) = O(K−2). Then

E[XMYM ] = E[XM ]E[YM ]+o(1).

Proof. We have

E[XMYM ] = E [(XM−E[XM ])(YM−E[YM ])]+E[XM ]E[YM ] .

Using the Cauchy-Schwartz inequality, we see that

E [|(XM−E[XM ])(YM−E[YM ])|] ≤
√

var(XM )var(YM )

= O(K−2)

which establishes the desired result.

3.2.2 Proof of Theorem 3.4

Here we proof Theorem 3.4, which establishes the asymptotic convergence of
Xk,M (t, u) and Zk,M (t, u) to deterministic quantities.
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3.2.2.1 Deterministic equivalent for Xk,M (t, u)

We will begin by treating the random quantity Xk,M (t, u). Using the notation
of Lemma 3.2, we can write

Xk,M (t, u) = 1
K2 hH

kQ(t)ĥkĥH
kQ(u)hk .

To control the quadratic form 1
KhH

kQ(t)ĥk, we need to remove the dependency
of Q(t) on vector ĥk. For that, we shall use the relation in (3.35), thereby
yielding

1
K

hH
kQ(t)ĥk = 1

K
hH
kQk(t)ĥk

− t

K2
hH
kQk(t)ĥkĥH

kQk(t)ĥk
1+ t

K ĥH
kQk(t)ĥk

. (3.37)

Using Lemma 2.4, we thus have

1
K

ĥH
kQk(t)ĥk−

1
K

tr (ΦQk(t)) a.s.−−−−−−−→
M,K→+∞

0 .

Since 1
K tr (ΦQk(t))− 1

K tr (ΦQ(t)) a.s.−−−−−−−→
M,K→+∞

0, by the rank-one perturbation
property in Lemma 3.3, we have

1
K

ĥH
kQk(t)ĥk−

1
K

tr (ΦQ(t)) a.s.−−−−−−−→
M,K→+∞

0 .

Finally, Theorem 2.8 (and also Theorem 3.1) implies that

1
K

ĥH
kQk(t)ĥk−e(t)

a.s.−−−−−−−→
M,K→+∞

0 . (3.38)

The same kind of calculations can be used to deal with the quadratic form
1
KhH

kQk(t)ĥk, whose asymptotic limit is the same as
√

1−τ2

K ĥH
kQk(t)ĥk, due to

the independence between the channel estimation error and the channel vector
hk. Hence,

1
K

hH
kQk(t)ĥk−

√
1−τ2e(t) a.s.−−−−−−−→

M,K→+∞
0 . (3.39)

Plugging the deterministic approximation of (3.38) and (3.39) into (3.37), we
thus see that

1
K

hH
kQ(t)ĥk−

√
1−τ2e(t)
1+te(t)

a.s.−−−−−−−→
M,K→+∞

0

and hence
Xk,M (t, u)− (1−τ2)e(t)e(u)

1+te(t)(1+ue(u))
a.s.−−−−−−−→

M,K→+∞
0 .
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3.2.2.2 Deterministic equivalent for Zk,M (t, u)

Finding a DE for Zk,M (t, u) is much more involved than for Xk,M (t, u). Follow-
ing the same steps as in Appendix 3.2.2.1, we decompose Zk,M (t, u) as

Zk,M (t, u) = 1
K

hH
kQk(t)ĤPĤHQk(u)hk

−
u
K2 hH

kQk(t)ĤPĤHQk(u)ĥkĥH
kQk(u)hk

1+ u
K ĥH

kQk(u)ĥk

−
t
K2 hH

kQk(t)ĥkĥH
kQk(t)ĤPĤHQk(u)hk

1+ t
K ĥH

kQk(t)ĥk

+
tu
K3 hH

kQk(t)ĥkĥH
kQk(t)ĤPĤHQk(u)ĥkĥH

kQk(u)hk
(1+ t

K ĥH
kQk(t)ĥk)(1+ u

K ĥH
kQk(u)ĥk)

, X1(t, u)+X2(t, u)+X3(t, u)+X4(t, u) .

As it will be shown next, to determine the asymptotic limit of the random
variables Xi(t, u), i = 1, . . . , 4, we need to find a DE for

1
K

tr
(
ΦQ(t)ĤPĤHQ(u)

)
.

This is the most involved step of the proof. It will, thus, be treated separately
in Appendix 3.2.3, where we establish the following lemma:

Lemma 3.5. Let H be an M×K random matrix whose columns are drawn
according to Assumption A-3.1. Define for t ≥ 0, the resolvent matrix Q(t) =(
t
KHHH +IK

)−1
. Let A be anM×M deterministic matrix with uniformly spec-

tral norm and α̂M (t, u,A) given as

α̂M (t, u,A) = 1
K

tr (AQ(t)HPHHQ(u)) .

Then, in the asymptotic regime described by Assumption A-3.5, we have

α̂M (t, u,A)−αM (t, u,A) a.s.−−−−−−−→
M,K→+∞

0

where

αM (t, u,A) = tr(P)
1
K tr (ΦT(u)AT(t))
(1+te(t))(1+ue(u))

+ tr(P)
(1+te(t))(1+ue(u))

×
tu
K tr (ΦT(u)AT(t)) 1

K tr (ΦT(u)ΦT(t))
(1+te(t))(1+ue(u))− tu

K tr (ΦT(u)ΦT(t))
. (3.40)
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In particular, if A = Φ, we have

αM (t, u,Φ) =
tr(P) 1

K tr (ΦT(u)ΦT(t))
(1+te(t))(1+ue(u))− tu

K tr (ΦT(u)ΦT(t))
.

The proof of this lemma is adjourned to Appendix 3.2.3.

Denote by Pk the matrix P without its k-th column and let us begin by
treating X1(t, u).

1
K

hH
kQk(t)ĤPĤHQk(u)hk = 1

K
hh
kQk(t)ĤkPkĤkQk(u)hk

+ pk
K

hH
kQk(t)ĥkĥH

kQk(u)hk .

The right-hand side term in the equation above can be treated using (3.39),
thereby yielding

pk
K

hH
kQk(t)ĥkĥH

kQk(u)hk−Kpk(1−τ2)e(t)e(u) a.s.−−−−−−→
M,K→∞

0 .

Using Lemma 2.4, we can prove that

1
K

hH
kQk(t)ĤkPkĤH

kQk(u)hk

− 1
K

tr
(
ΦQk(t)ĤkPkĤH

kQk(u)
)

a.s.−−−−−−−→
M,K→+∞

0 . (3.41)

Continuing, according to Lemma 3.5, we have

1
K

tr
(
ΦQk(t)ĤkPkĤH

kQk(u)
)
−tr (P) υM (t, u)

a.s.−−−−−−−→
M,K→+∞

0 . (3.42)

Combining (3.41) with (3.42) yields

1
K

hH
kQk(t)ĤkPkĤH

kQk(u)hk−tr (P) υM (t, u) a.s.−−−−−−−→
M,K→+∞

0 .

Thus, in the asymptotic regime we have

X1(t, u)−
(
Kpk(1−τ2)e(t)e(u)+tr(P)υM (t, u)

)
a.s.−−−−−−−→

M,K→+∞
0 . (3.43)

Controlling the other terms Xi(t, u), i = 2, 3, 4, will also include the term υ(t, u).
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First note that X2(t, u) is given by

X2(t, u) = −uY2(t, u)
1
K ĥH

kQk(u)hk
1+ u

K ĥH
kQkĥk

where
Y2(t, u) = 1

K
hH
kQk(t)ĤPĤHQk(u)ĥk .

Observe that Y2(t, u) is very similar to X1(t, u). The only difference is that
Y2(t, u) is a quadratic form involving vectors hk and ĥk whereasX1(t, u) involves
only the vector hk. Following the same kind of calculations leads to

Y2(t, u)−
(
Kpk

√
1−τ2e(t)e(u)+

√
1−τ2 tr (P) υM (t, u)

)
a.s.−−−−−−−→

M,K→+∞
0 .

Since
1
K ĥH

kQk(u)hk
1+ u

K ĥkQk(u)ĥk
satisfies

1
K ĥH

kQk(u)hk
1+ u

K ĥkQk(u)ĥk
−
√

1−τ2e(u)
1+ue(u)

a.s.−−−−−−−→
M,K→+∞

0

we now have

X2(t, u)+
ue(u)

(
Kpk(1−τ2)e(t)e(u)+(1−τ2) tr (P) υM (t, u)

)
1+ue(u)

a.s.−−−−−−−→
M,K→+∞

0 . (3.44)

Similarly, X3(t, u) satisfies

X3(t, u)+
te(t)

(
Kpk(1−τ2)e(t)e(u)+(1−τ2) tr (P) υM (t, u)

)
1+te(t)

a.s.−−−−−−−→
M,K→+∞

0 . (3.45)

Finally, X4(t, u) can be treated using the same approach, thereby providing
the following convergence:

X4(t, u)− tue(t)e(u)(1−τ2) (Kpke(t)e(u)+tr (P) υM (t, u))
(1+te(t))(1+ue(u))

a.s.−−−−−−−→
M,K→+∞

0 . (3.46)

Summing (3.43), (3.44), (3.45), (3.46) yields

Zk,M (t, u)−
(
Kpk(1−τ2)e(t)e(u)
(1+te(t))(1+ue(u))
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+ tr (P)
(
τ2+ (1−τ2)

(1+ue(u))(1+te(t))

)
υM (t, u)

)
a.s.−−−−−−−→

M,K→+∞
0 .

3.2.3 Proof of Lemma 3.5

The aim of this section is to determine a DE for the random quantity

α̂M (t, u,A) = 1
K

tr (AQ(t)HPHHQ(u)) .

The proof is technical and will make frequent use of results from Appendix 3.2.1.
First, we need to control var (α̂M (t, u)). This has already been treated in [107]
where it was proved that var (α̂M (t, u,A)) = O(K−2) when t = u. The same cal-
culations hold for t 6= u, thus we consider in the sequel that var (α̂M (t, u,A)) =
O(K−2). Hence, we have

α̂M (t, u,A)−E[α̂M (t, u,A)] a.s.−−−−−−−→
M,K→+∞

0 . (3.47)

Equation (3.47) allows us to focus directly on controlling E[α̂M (t, u,A)]. Using
the resolvent identity

Q(t)−T(t) = T(t)
(
T−1(t)−Q−1(t)

)
Q(t)

= T(t)
(

tΦ
1+te(t)−

t

K
HHH

)
Q(t)

we decompose α̂M (t, u,A) as

α̂M (t, u,A) = 1
K

tr
(
AT(t)HPHHQ(u)

)
+
t tr
(
AT(t)ΦQ(t)HPHHQ(u)

)
K(1+te(t))

− t

K2 tr
(
AT(t)HHHQ(t)HPHHQ(u)

)
= Z1+Z2+Z3 .

We will only directly deal with the terms Z1 and Z3, since Z2 will be compen-
sated by terms in Z3. We begin with Z1:

E [Z1] = 1
K

K∑
`=1

p`E
[
tr
(
AT(t)h`hH

`Q(u)
)]

= 1
K

K∑
`=1

p`E
[

hH
`Q`(u)AT(t)h`

1+ u
KhH

`Q`(u)h`

]

=
K∑
`=1

p`
K

E

[
hH
`Q`(u)AT(t)h`

(
u
K tr

(
ΦQ`

)
− u
KhH

`Q`(u)h`
)(

1+ u
KhH

`Q`(u)h`
) (

1+ u
K tr ΦQ`(u)

) ]
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+ p`
K

E
[

hH
`Q`(u)AT(t)h`

1+ u
K tr ΦQ`(u)

]
.

Using Lemma 2.4, we can show that the first term on the right hand side of the
above equation is negligible. Therefore,

E [Z1] =
K∑
`=1

p`
K

E

[
hH
`Q`(u)AT(t)h`

1+ u
K tr

(
ΦQ`(u)

)]+o(1)

=
K∑
`=1

p`
K

E

[
tr ΦQ`(u)AT(t)
1+ u

K tr
(
ΦQ`

) ]+o(1) .

Using Lemma 3.3, we have

E [Z1] =
K∑
`=1

p`
K

E

[
tr
(
ΦQ(u)AT(t)

)
1+ u

K tr
(
ΦQ(u)

) ]+o(1) .

Theorem 3.1, thus, implies

E [Z1] =
K∑
`=1

p`
K

E

[
tr
(
ΦT(u)AT(t)

)(
1+ue(u)

) ]
+o(1)

=
1
K tr(P) 1

K tr
(
ΦT(u)AT(t)

)
1+ue(u) +o(1) .

We now look at Z3, where

Z3 = − t

K2

K∑
`=1

tr (AT(t)h`hH
`Q(t)HPHHQ(u)) .

Using (3.36), we arrive at

Z3 = − t

K2

K∑
`=1

tr
(
AT(t)h`hH

`Q`(t)HPHHQ(u)
)

1+ t
KhH

`Q`(t)h`
.

From (3.35), Z3 can be decomposed as

Z3 = − t

K2

K∑
`=1

tr (AT(t)h`hH
`Q`(t)HPHHQ`(u))

1+ t
KhH

`Q`(t)h`

+ tu

K3

K∑
`=1

tr (AT(t)h`hH
`Q`(t)HPHHQ`(u)h`hH

`Q`(u))(
1+ t

KhH
`Q`(t)h`

) (
1+ u

KhH
`Q`(u)h`

)
= Z31+Z32 .
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We sequentially deal with the terms Z31 and Z32. The same arguments as
those used before, allow us to substitute the denominator by 1+te(t), thereby
yielding:

E [Z31] = − t

K2

K∑
`=1

E
[

hH
`Q`(t)HPHHQ`(u)AT(t)h`

1+te(t)

]
+o(1)

= − t

K2

(
K∑
`=1

E
[

hH
`Q`(t)H`P`HH

`Q`(u)AT(t)h`
1+te(t)

]
+p`E

[
hH
`Q`(t)h`hH

`Q`(u)AT(t)h`
1+te(t)

])
+o(1)

= − t

K2

(
K∑
`=1

E

[
tr
(
ΦQ`(t)H`P`HH

`Q`(u)AT(t)
)

1+te(t)

]

+p`E
[

hH
`Q`(t)h`hH

`Q`(u)AT(t)h`
1+te(t)

])
+o(1)

, χ1+χ2 .

By Lemma 2.4, the quadratic forms involved in χ2 have variance O(K−2), and
thus can be substituted by their expected mean (see Lemma 3.4). We obtain

χ2 = −t
K∑
`=1

p`E

[
1
K tr

(
ΦQ`(t)

) 1
K tr

(
ΦQ`(u)AT(t)

)
1+te(t)

]
+o(1)

= − te(t)
1+te(t) tr(P) 1

K
tr
(
ΦT(u)AT(t)

)
+o(1) . (3.48)

The term χ1 will be compensated by Z2. To see that, observe that the first
order of χ1 does not change if we substitute H` by H and P` by P. Besides,
due to Lemma 3.3, we can substitute Q`(t) by Q(t) and Q`(u) by Q(u), hence
proving that

χ1 = −E [Z2]+o(1) . (3.49)

Finally, it remains to deal with Z32. Substituting 1
KhH

`Q`(t)h` and 1
KhH

`Q`(u)h`
by their asymptotic equivalent e(t) and e(u), we get

E [Z32] =

tu

K3

K∑
`=1

E
[

hH
`Q`(u)AT(t)h`hH

`Q`(t)H`P`HH
`Q`(u)h`

(1+te(t))(1+ue(u))

]
+

tu

K3

K∑
`=1

p`E
[

hH
`Q`(u)AT(t)h`hH

`Q`(t)h`hH
`Q`(u)h`

(1+te(t))(1+ue(u))

]
+o(1) .
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Analogously to before, E [Z32] can be simplified:

E [Z32] = tu

K3

K∑
`=1

E

[
tr
(
ΦQ(t)HPHHQ(u)

)
tr
(
ΦT(u)AT(t)

)
(1+te(t))(1+ue(u))

]

+ tu

K

K∑
`=1

p`e(t)e(u) tr
(
ΦT(u)AT(t)

)
(1+te(t))(1+ue(u)) +o(1)

= tu

K

tr
(
ΦT(u)AT(t)

)
E[α̂M (t, u,Φ)]

(1+te(t))(1+ue(u))

+
e(t)e(u) tr(P) tuK tr

(
ΦT(u)AT(t)

)
(1+te(t))(1+ue(u)) +o(1) . (3.50)

Combining (3.48), (3.49) and (3.50), we obtain

E[α̂M (t, u,A)] =
tr(P) 1

K tr
(
ΦT(u)AT(t)

)
(1+te(t))(1+ue(u))

+ tu

K

tr
(
ΦT(u)AT(t)

)
E[α̂M (t, u,Φ)]

(1+te(t))(1+ue(u)) +o(1) . (3.51)

Replacing A with Φ, one finds a DE

E[α̂M (t, u,Φ)] =
tr(P) 1

K tr
(
ΦT(u)ΦT(t)

)
(1+te(t))(1+ue(u))− tu

K tr
(
ΦT(u)ΦT(t)

)+o(1) . (3.52)

Finally, substituting (3.52) into (3.51) establishes (3.40).

3.2.4 Proof of Corollary 3.1

The proof of Corollary 3.1 relies on Montel’s theorem [160]. We only prove
the result for Xk,M (t, u), Zk,M (t, u) follows analogously. Note, that Xk,M (t, u)
and Xk,M (t, u) are analytic functions, when their domains are extended to
C\R−×C\R−, where R− is the set of negative real-valued numbers. Since
Xk,M (t, u)−Xk,M (t, u) is almost surely bounded for large M and K on every
compact subset of C\R−, Montel’s theorem asserts that there exists a converg-
ing subsequence, which converges to an analytic function. Since this limiting
function is necessarily zero on the positive real axis, it must be zero everywhere.
Thus, from every subsequence one can extract a convergent one that converges
to zero, thus

Xk,M (z1, z2)−Xk,M (z1, z2) a.s.−−−−−−−→
M,K→+∞

0 ∀z1, z2 ∈ C\R− . (3.53)
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As Xk,M (z1, z2) is analytic, the derivatives of Xk,M (z1, z2)−Xk,M (z1, z2) con-
verge to zero. In particular, if t̃ and ũ are strictly positive scalars, we have

X
(m,`)
k,M (t̃, ũ)−X(m,`)

k,M (t̃, ũ) a.s.−−−−−−−→
M,K→+∞

0 . (3.54)

This result can be extended to the case of t̃ = 0 and ũ = 0. To see this, let
η > 0 and decompose

X
(m,`)
k,M −X(m,`)

k,M = α1+α2+α3

where

α1 = X
(m,`)
k,M −X(m,`)

k,M (η, η)

α2 = X
(m,`)
k,M (η, η)−X(m,`)

k,M (η, η)

α3 = X
(m,`)
k,M (η, η)−X(m,`)

k,M .

Now, let ε > 0. Since the derivatives of X(m,`)
k,M and X

(m,`)
k,M are almost surely

bounded for large M and K, the quantities |α1| and |α3| can be made smaller
than ε/3 when η is small enough. On the other hand, (3.54) implies that α2

converges to zero almost surely. There exists M0, such that, for M ≥ M0 we
have |α2| ≤ ε

3 . Therefore, for M large enough,∣∣∣X(m,`)
k,M −X(m,`)

k,M

∣∣∣ ≤ ε
thereby proving

X
(m,`)
k,M −X(m,`)

k,M
a.s.−−−−−−−→

M,K→+∞
0 .

3.2.5 Iterative Algorithm for Computing υ
(`,m)
M

An iterative approach for computing υ(`,m)
M is given by the following algorithm:
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Algorithm 1 Iterative algorithm for the computation of υ(`,m)
M

for k = 0→ J do
υ

(k,0)
M ← 1

K tr
(
ΦT (k)Φ

)
, υ(0,k)

M ← 1
K tr

(
ΦT (k)Φ

)
end for
for m = 1→ J do

for k = 1→ J do
υ

(k,m)
M ← 1

K tr
(
ΦT (k)ΦT (m)Φ

)
for pk = 1→ k do

for qm = 1→ m do
υ

(k,m)
M ← υ

(k,m)
M −

pkqm
(
k
pk

)(
m
qm

)
υ

(pk−1,qm−1)
M

1
K tr

(
ΦT (k−pk)ΦT (m−qm))

end for
end for

end for
end for

3.2.6 Iterative Algorithm for Computing T(q)

For the sake of completeness, we provide hereafter an algorithm that can be
used to compute T(q). It is an adapted version of the iterative algorithm given
in [125].

Algorithm 2 Iterative algorithm for computing T(q), q = 1, . . . , p
e(0) ← 1

K tr(Φ)
g(0) ← 0
f (0) ← − 1

1+g(0)

T(0) ← IM
for i = 1→ p do

R(i) ← if (i−1)Φ

T(i) ←
i−1∑
n=0

n∑
j=0

(
i−1
n

)(
n

j

)
T(i−1−n)R(n−j+1)T(j)

f (i) ←
i−1∑
n=0

i∑
j=0

(
i−1
n

)(
n

j

)
(i−n)f (j)f (i−j)e(i−1−n)

g(i) ← ie(i−1)

e(i) ← 1
K tr(ΦT(i))

end for
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3.2.7 Sketch of the proof of Theorem 3.5

The goal of this section is to provide an outline of the proof for finding the DE
of the quantity

[
C̃
]
`,m

= 1
K

tr

(ĤĤH

K

)`
ĤPĤH

(
ĤĤH

K

)m .

A full proof proceeds in the following steps:

1. First compute the DE for

YM (t, u) = 1
K

tr
(
Q(t)ĤPĤHQ(u)

)
where Q(t) =

(
t
KHHH +I

)−1. This can be achieved by using Lemma 3.5,
where it is proved that

YM (t, u)−αM (t, u, I) a.s−−−−−−−→
M,K→+∞

0

and thus
YM (t, u)−tr(P)c(t, u) a.s.−−−−−−−→

M,K→+∞
0 .

2. Now, since [
C̃
]
`,m

= (−1)`+mY (`,m)
M

`!m!
we can prove, using the same approach as in the proof of Corollary 3.1,
that

YM (t, u)(`,m)−tr(P)c(`,m) a.s−−−−−−−→
M,K→+∞

0 .

3. Finally, one computes the derivative of c(t, u) at t = 0 and u = 0, using
the Leibniz rule, to arrive at the desired result.

3.2.8 Proof of Theorem 3.6

By using that tr(P)wHC̃w
P = 1 and dividing the objective function by the constant

Kpk
tr(P) , the problem (3.30) can be rewritten as

(P1) : maximize
w

wHÃw
wHB̃w+ σ2

P wHC̃w
(3.55)

subject to wHC̃w = P

tr (P) .
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Making the change of variable a =
(
B̃+ σ2

P C̃
) 1

2 w, we transform (P1) into

(P2) :

maximize
a

aH
(
B̃+ σ2

P C̃
)− 1

2 Ã
(
B̃+ σ2

P C̃
)− 1

2 a

aHa

s.t. aH

(
B̃+ σ2

P
C̃
)− 1

2

C̃
(

B̃+ σ2

P
C̃
)− 1

2

a= P

tr (P) .

We notice that the objective function of (P2) is independent of the norm of
a. We can, therefore, select a to maximise the objective function and then
adapt the norm to fit the constraint. If we discard the constraint, what remains
is a classic Rayleigh quotient [161], which is maximised by the eigenvector a
corresponding to the maximum eigenvalue of

(
B̃+ σ2

P
C̃
)− 1

2

Ã
(

B̃+ σ2

P
C̃
)− 1

2

.

By transforming a back to the original variable w we obtain (3.32), where the
scaling in (3.33) corresponds to a scaling of a in order to satisfy the constraint.

3.2.9 Step-by-step Guide for (3.11)

First, we take the SINR equation

SINRk = hHfkfH
k hk

hHFkFH
khk+σ2

and replace the precoder with RZF precoder expression from (3.9), i.e,

fk = ν√
K

(
1
K

ĤĤH +ξI
)−1

ĥkp1/2
k

and

Fk = ν√
K

(
1
K

ĤĤH +ξI
)−1

ĤkP
1
2
k

to arrive at

SINRk =
pkν

2 1
KhH

k

(
1
K ĤĤH +ξI

)−1
ĥkĥH

k

(
1
K ĤĤH +ξI

)−1
hk

ν2 1
KhH

k

(
1
K ĤĤH +ξI

)−1
ĤkPkĤH

k

(
1
K ĤĤH +ξI

)−1
hk+P/ρ

=
pkν

2 1
KhH

kWĥkĥH
kWhk

ν2 1
KhH

kWĤkPkĤH
kWhk+P/ρ

.
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Where we used W =
(

1
K ĤĤH +ξI

)−1
and σ2 = P/ρ.

Now realizing that W = 1
ξQ( 1

ξ ), with Q(t) as in Theorem 3.1, we have

SINRk =
pkν

2 1
ξ2

1
KhH

kQ( 1
ξ )ĥkĥH

kQ( 1
ξ )hk

ν2 1
ξ2

1
KhH

kQ( 1
ξ )ĤkPkĤH

kQ( 1
ξ )hk+P/ρ

.

We have already treated most of the terms in SINR in Theorem 3.4, i.e., Ap-
pendix 3.2.2. We will use X � X̄ as a convenient, albeit not rigorous, shorthand
for X−X̄ a.s.−−−−−−−→

M,K→+∞
0. Thus, via Subsection 3.2.2.1 one arrives at

K
1
K2 hH

kQ(t)ĥkĥH
kQ(t)hk = KXk,M (t, t) � K (1−τ2)e(t)2

(1+te(t))2 .

The factor K is not break the overall convergence, as the term will only be used
in forms multiplied by pk, which is of order 1/K. From Theorem 3.4 and (3.42)
we have

1
K

hH
kQ(t)ĤkPkĤH

kQ(t)hk

= 1
K

hH
kQ(t)ĤPkĤHQ(t)hk−pk

1
K

hH
kQ(t)ĥkĥH

kQ(t)hk

= Zk,M (t, t)−KXk,M (t, t)

� KpkXk,M (t, t)+tr(P)bM (t, t)−KpkXk,M (t, t)

= tr(P)bM (t, t)

= tr(P)
(
τ2+ (1−τ2)

(1+te(t))2

)
υM (t, t)

where

υM (t, t) =
1
K tr (ΦT(t)ΦT(t))

(1+te(t))2− t2

K tr (ΦT(t)ΦT(t))
.

Furthermore, we have for the power normalization term ν

ν2 = P
1
K tr WĤPĤHW

= P
1
ξ2

1
K tr Q( 1

ξ )ĤPĤHQ( 1
ξ )
.

With the results from Lemma 3.5.

1
K

tr Q(t)ĤPĤHQ(t)
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� tr(P)
1
K tr

(
ΦT(t)2)

(1+te(t))2 + tr(P)
(1+te(t))2

t2

K
tr
(
ΦT(t)2) υM (t, t)

= tr(P)
1
K tr

(
ΦT(t)2)

(1+te(t))2 + tr(P)
(1+te(t))2

t2

K tr
(
ΦT(t)2) 1

K tr (ΦT(t)ΦT(t))
(1+te(t))2− t2

K tr (ΦT(t)ΦT(t))
.

Combining all terms, introducing γ(t) = 1
K tr (ΦT(t)ΦT(t)) and realizing

that ξ2(1+ 1
ξ e(

1
ξ ))2 = (ξ+e( 1

ξ ))2:

SINRk

=
pk

1
ξ2K

(1−τ2)e( 1
ξ

)2

(1+ 1
ξ
e( 1
ξ

))2

1
ξ2 tr (P)

(
τ2+ (1−τ2)

(1+ 1
ξ
e( 1
ξ

))2

)
γ( 1
ξ

)

(1+ 1
ξ
e( 1
ξ

))2− 1
ξ2
γ( 1
ξ

)
+P/(ρν2)

= pk
1
ξ2K

(1−τ2)e( 1
ξ
)2

(1+ 1
ξ
e( 1
ξ
))2

[
1
ξ2 tr (P)

(
τ2+ (1−τ2)

(1+ 1
ξ
e( 1
ξ
))2

)
γ( 1

ξ
)

(1+ 1
ξ
e( 1
ξ
))2− 1

ξ2 γ( 1
ξ
)

· · ·

+ 1
ρ

1
ξ2

{
tr(P)

1
K

tr
(
ΦT( 1

ξ
)2)

(1+ 1
ξ
e( 1
ξ
))2 + tr(P)

(1+ 1
ξ
e( 1
ξ
))2

1
Kξ2 tr

(
ΦT( 1

ξ
)2) γ( 1

ξ
)

(1+ 1
ξ
e( 1
ξ
))2− 1

ξ2 γ( 1
ξ
)

}]−1

=

pk
tr(P)K

(1−τ2)e( 1
ξ

)2

(ξ+e( 1
ξ

))2(
τ2+ (1−τ2)ξ2

(ξ+e( 1
ξ

))2

)
γ( 1
ξ

)

(ξ+e( 1
ξ

))2−γ( 1
ξ

)
+ 1
ρ

{
1
K

tr
(
ΦT( 1

ξ
)2
)

(ξ+e( 1
ξ

))2
+ 1

(ξ+e( 1
ξ

))2

1
K

tr
(
ΦT( 1

ξ
)2
)
γ( 1
ξ

)

(ξ+e( 1
ξ

))2−γ( 1
ξ

)

}
= pk

tr(P)K(1−τ2)e( 1
ξ
)2 [(ξ+e( 1

ξ
))2−γ( 1

ξ
)
][(

τ2+ (1−τ2)ξ2

(ξ+e( 1
ξ
))2

)
γ( 1

ξ
)(ξ+e( 1

ξ
))2 · · ·

+ 1
ρ

{ 1
K

tr
(
ΦT( 1

ξ
)2) [(ξ+e( 1

ξ
))2−γ( 1

ξ
)
]
+ 1
K

tr
(
ΦT( 1

ξ
)2) γ( 1

ξ
)
}]−1

=
pk

tr(P)K(1−τ2)e2 [(ξ+e)2−γ
](

τ2+ (1−τ2)ξ2
(ξ+e)2

)
γ(ξ+e)2+ 1

ρ
1
K

tr (ΦT2) (ξ+e)2

=
pk

tr(P)K(1−τ2)e2 [(ξ+e)2−γ
]

γ [ξ2+τ2 ((ξ+e)2−ξ2)]+ 1
ρ

1
K

tr (ΦT2) (ξ+e)2 .

Thus, we arrive at the formulation from (3.11).
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3.3 Multi Cell Precoding

A typical multi cell communication system consists of L > 1 base stations (BSs)
each serving K user terminals (UTs). The conventional way of mitigating inter-
user interference in the downlink of such systems has been to assign orthogonal
time/frequency resources to UTs within the cell and across neighbouring cells.
By deploying an array of M antennas at each BSs, one can turn each cell
into a multi-user multiple-input multiple-output (MIMO) system and enable
flexible spatial interference mitigation [24]. The essence of downlink multi-user
MIMO is precoding, which means that the antenna arrays are used to direct
each data signal spatially towards its intended receiver. The throughput of
multi cell multi-user MIMO systems ideally scales linearly with min(M,K).
Unfortunately, the precoding design in multi-user MIMO requires very accurate
instantaneous channel state information (CSI) [57] which can be cumbersome to
achieve in practice [162]. This is one of the reasons why only rudimentary multi-
user MIMO techniques have found the way into current wireless standards, such
as LTE-Advanced [163].

In a realistic multi cell scenario involving large-scale multi-user MIMO sys-
tems, the analytic optimization of regularized zero forcing (RZF) precoding has,
thus far, not been feasible. This is mainly attributed to the high complexity of
the scenario and the non-linear impact of the necessary regularizing parameters.
On the other hand, the simpler relationship via scalar coefficients in truncated
polynomial expansion (TPE) precoding give hope for possible throughput opti-
mization. To this end, we exploit random matrix theory to derive a deterministic
expression of the asymptotic signal-to-interference-and-noise ratio for each user
based on channel statistics.

Building on the proof-of-concept provided in Section 3.1, this section ap-
plies TPE precoding in a large-scale multi cell scenario with realistic charac-
teristics, such as user-specific channel covariance matrices, imperfect CSI, pilot
contamination (due to pilot reuse in neighbouring cells), and cell-specific power
constraints. The jth BS serves its UTs using TPE precoding with an order Jj
that can be different between cells and thus tailored to factors such as cell size,
performance requirements, and hardware resources.

The derivation of new deterministic equivalents for the achievable user rates
is the main analytical contribution of this section and required a major effort
in problems related to the powers of stochastic Gram matrices with arbitrary
covariances. The DEs are tight when M and K grow large with a fixed ratio,
but provide close approximations at small parameter values as well. Due to
the inter-cell and intra-cell interference, the effective signal-to-interference-and-
noise ratios (SINRs) are functions of the TPE coefficients in all cells. However,
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the DEs only depend on the channel statistics, and not the instantaneous real-
izations, and can thus be optimized beforehand/offline. The joint optimization
of all the polynomial coefficients is shown to be mathematically similar to the
problem of multi-cast beamforming optimization considered in [164, 165, 166].
We can therefore adapt the state-of-the-art optimization procedures from the
multi-cast area and use these for offline optimization. We provide a simulation
example that reveals that the optimized coefficients can provide even higher
network throughput than RZF precoding at relatively low TPE orders.

Apart from the standard general notation introduced in the front matter,
this section also uses the following specialised conventions. For an infinitely
differentiable mono-variate function f(t), the `th derivative at t = t0 (i.e.,
d`/dt`f(t)|t=t0) is denoted by f (`)(t0) and more concisely by f (`) when t = 0.

3.3.1 System Model

This section defines the multi cell system with flat-fading channels, linear pre-
coding, and channel estimation errors.

3.3.1.1 Transmission Model

We consider the downlink of a multi cell system consisting of L > 1 cells. Each
cell is composed of anM -antenna BS and K single-antenna UTs. We consider a
time-division duplex (TDD) protocol where the BS acquires instantaneous CSI
in the uplink and uses it for the downlink transmission by exploiting channel
reciprocity. We assume that the TDD protocols are synchronized across cells,
such that pilot signalling and data transmission take place simultaneously in all
cells.

The received complex baseband signal yj,m ∈ C at the mth UT in the jth
cell is

yj,m =
L∑
`=1

hH
`,j,mx`+nj,m (3.56)

where x` ∈ CM×1 is the transmit signal from the `th BS and h`,j,m ∈ CM×1

is the channel vector from that BS to the mth UT in the jth cell, and nj,m ∼
CN (0, σ2) is additive white Gaussian noise (AWGN), with variance σ2, at the
receiver’s input.

The small-scale channel fading is modelled as follows.

Assumption A-3.6. The channel vector h`,j,m is modelled as

h`,j,m = Φ
1
2
`,j,mz`,j,m (3.57)

where z`,j,m ∼ CN (0M×1, IM ) and the channel covariance matrix Φ`,j,m ∈
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CM×M has bounded spectral norm, i.e., lim supM ‖Φ`,j,m‖ < +∞, ∀`, j,m and
also lim infM 1

M tr(Φ`,j,m) > 0, ∀`, j,m. The channel vector has a fixed realiza-
tion for a coherence interval and will then take a new independent realization.
This model is usually referred to as Rayleigh block-fading.

The two technical conditions on Φ`,j,m in Assumption A-3.6 enable asymp-
totic analysis and follow from the law of energy conservation and from increasing
the physical size of the array with M ; see [52] for a detailed discussion.

Assumption A-3.7. All BSs use Gaussian codebooks and linear precoding. The
precoding vector for the mth UT in the jth cell is fj,m ∈ CM×1 and its transmit
symbols are sj,m ∼ CN (0, 1).

Based on this assumption, the BS in the jth cell transmits the signal

xj =
K∑
m=1

fj,msj,m = Fjsj . (3.58)

The latter is obtained by letting Fj = [fj,1, . . . , fj,K ] ∈ CM×K be the precoding
matrix of the jth BS and sj = [sj,1 . . . sj,K ]T ∼ CN (0K×1, IK) be the vector
containing all the data symbols for UTs in the jth cell. The transmission at
BS j is subject to a total transmit power constraint

1
K

tr
(
FjFH

j

)
= Pj (3.59)

where Pj is the average transmit power per user in the jth cell.
The received signal (3.56) can now be expressed as

yj,m =
L∑
`=1

K∑
k=1

hH
`,j,mf`,ks`,k+nj,m . (3.60)

A well-known feature of large-scale MIMO systems is the channel hardening,
which means that the effective useful channel hH

j,j,mfj,m of a UT converges to
its average value when M grows large. Hence, it is sufficient for each UT to
have only statistical CSI and the performance loss vanishes as M → ∞ [47].
An ergodic achievable information rate can be computed using a technique from
[167], which has been applied to large-scale MIMO systems in [97, 41, 47] (among
many others). The main idea is to decompose the received signal as

yj,m = E
[
hH
j,j,mfj,m

]
sj,m+

(
hH
j,j,mfj,m−E

[
hH
j,j,mfj,m

])
sj,m

+
∑

(`,k)6=(j,m)

hH
`,j,mf`,ks`,k+nj,m
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and assume that the channel gain E
[∣∣hH

j,j,mfj,m
∣∣2] is known at the correspond-

ing UT, along with its variance var
[
hH
j,j,mfj,m

]
= E

[∣∣hH
j,j,mfj,m−E

[
hH
j,j,mfj,m

]∣∣2],
and the average sum interference power

∑
(`,k) 6=(j,m) E[|hH

`,j,mf`,k|2] caused by si-
multaneous transmissions to other UTs in the same and other cells. By treating
the inter-user interference (from the same and other cells) and channel uncer-
tainty as worst-case Gaussian noise, UT m in cell j can achieve the ergodic
rate

rj,m = log2(1+SINRj,m)

without knowing the instantaneous values of hH
`,j,mf`,k of its channel [167, 97,

41, 47]. The effective average SINR of the mth UT in the jth cell (SINRj,m) is
given in (3.61).

SINRj,m =
∣∣E [hH

j,j,mfj,m
]∣∣2

σ2+var
[
hH
j,j,mfj,m

]
+

∑
(`,k)6=(j,m)

E
[∣∣hH

`,j,mf`,k
∣∣2]

=
∣∣E [hH

j,j,mfj,m
]∣∣2

σ2+
∑
`,k

E
[∣∣hH

`,j,mf`,k
∣∣2]−∣∣E [hH

j,j,mfj,m
]∣∣2 . (3.61)

The last expression in (3.61) is obtained by using the following identities:

var[hH
j,j,mfj,m] = E

[∣∣hH
j,j,mfj,m

∣∣2]−∣∣E [hH
j,j,mfj,m

]∣∣2∑
(`,k)6=(j,m)

E
[∣∣hH

`,j,mf`,k
∣∣2] =

∑
`,k

E
[∣∣hH

`,j,mf`,k
∣∣2]−E [∣∣hH

j,j,mfj,m
∣∣2]

and is remarkable in the sense that is removes the requirement found in other
works, to known the variance of (hH

j,j,mfj,m). The achievable rates only depend
on the statistics of the inner products hH

`,j,mf`,k of the channel vectors and
precoding vectors. The precoding vectors fj,m should ideally be selected to
achieve a strong signal gain and little inter-user and inter-cell interferences.
This requires some instantaneous CSI at the BS, as described next.

3.3.1.2 Model of Imperfect Channel State Information at BSs

Based on the TDD protocol, uplink pilot transmissions are used to acquire
instantaneous CSI at each BS. All UTs in a cell transmit mutually orthogonal
pilot sequences, which allows the associated BS to estimate the channels to its
users. Due to the limited channel coherence interval of fading channels, the same
set of orthogonal sequences is reused in each cell; thus, the channel estimate is
corrupted by pilot contamination emanating from neighbouring cells [97]. When
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estimating the channel of UT k in cell j, the corresponding BS takes its received
pilot signal and correlates it with the pilot sequence of this UT. This results in
the processed received signal

ytr
j,k = hj,j,k+

∑
` 6=j

hj,`,k+ 1
√
ρtr

ntr
j,k

where ntr
j,k ∼ CN (0M×1, IM ) and ρtr > 0 is the effective training SNR [47]. The

MMSE estimate ĥj,j,k of hj,j,k is given as [168]:

ĥj,j,k = Φj,j,kSj,kytr
j,k

= Φj,j,kSj,k

(
L∑
`=1

hj,`,k+ 1
√
ρtr

ntr
j,k

)

where

Sj,k =
(

1
ρtr

IM+
L∑
`=1

Φj,`,k

)−1

∀j, k

and Φj,j,k is the channel covariance matrix of vector hj,j,k, as described in
Assumption A-3.6. The estimated channels from the jth BS to all UTs in its
cell is denoted

Ĥj,j =
[
ĥj,j,1 . . . ĥj,j,K

]
∈ CM×K (3.62)

and will be used in the precoding schemes considered herein. For notational
convenience, we define the matrices

Φest
j,`,k = Φj,j,kSj,kΦj,`,k

and note that ĥj,j,k ∼ CN (0M×1,Φest
j,j,k), since the channels are Rayleigh fading

and the minimum mean square error (MMSE) estimator is used. We remark
that the orthogonality property of MMSE estimates means that the channel
vector hj,j,k can be decomposed as: hj,j,k = ĥj,j,k+h̃j,j,k, where ĥj,j,k and
h̃j,j,k are independent.

3.3.2 Review on Regularized Zero-Forcing Precoding

The optimal linear precoding (in terms of maximal weighted sum rate or other
criteria) is unknown under imperfect CSI and requires extensive optimization
procedures under perfect CSI [36]. Therefore, only heuristic precoding schemes
are feasible in fading multi cell systems. RZF is a state-of-the-art heuristic
scheme with a simple closed-form precoding expression [34, 92, 47]. The pop-
ularity of this scheme is easily seen from its many alternative names: transmit
Wiener filter [37], signal-to-leakage-and-noise ratio maximizing beamforming
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[150], generalized eigenvalue-based beamformer [151], and virtual SINR maxi-
mizing beamforming [58]. This section provides a brief review of prior perfor-
mance results on RZF precoding in large-scale multi cell MIMO systems. We
also explain why RZF is computationally intractable to implement in practical
large systems.

Based on the notation in [47], the RZF precoding matrix used by the BS in
the jth cell is

Frzf
j =

√
Kνj

(
Ĥj,jĤH

j,j+Zj+KξjIM
)−1

Ĥj,j (3.63)

where the scaling parameter νj is set so that the power constraint 1
K tr

(
FjFH

j

)
=

Pj in (3.59) is fulfilled. The regularization parameters ξj and Zj have the
following properties.

Assumption A-3.8. The regularizing parameter ξj is strictly positive ξj > 0,
for all j. The matrix Zj is a deterministic Hermitian non negative definite
matrix that satisfies lim supN 1

N ‖Zj‖ < +∞, for all j.

Several prior works have considered the optimization of the parameter ξj in
the single cell case [92, 139] when Zj = 0M×M . This parameter provides a bal-
ance between maximizing the channel gain at each intended receiver (when ξj is
large) and suppressing the inter-user interference (when ξj is small), thus ξj de-
pends on the SNRs, channel uncertainty at the BSs, and the system dimensions
[34, 92]. Similarly, the deterministic matrix Zj describes a subspace where inter-
ference will be suppressed; for example, this can be the joint subspace spanned
by (statistically) strong channel directions to users in neighbouring cells, as
proposed in [137]. The optimization of these two regularization parameters is a
difficult problem in general multi cell scenarios. To the authors’ best knowledge,
previous works dealing with the multi cell scenario have been restricted to con-
sidering intuitive choices of the regularizing parameters ξj and Zj . For example,
this was recently done in [47], where the performance of the RZF precoding was
analysed in the following asymptotic regime.

Assumption A-3.9. In the large-(M,K) regime, M and K tend to infinity
such that

0 < lim inf K
M
≤ lim sup K

M
< +∞ .

In particular, it was shown in [47] that the SINRs perceived by the users
tend to deterministic quantities in the large-(M,K) regime. These quantities
depend only on the statistics of the channels and are referred to as DEs (see
also Chapter 2).

In the sequel, by a DE of a sequence of random variables Xn, we mean a
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deterministic sequence Xn which approximates Xn such that

Xn−Xn
a.s.−−−−−→

n→+∞
0 (3.64)

or
E[Xn]−Xn −−−−−→

n→+∞
0 . (3.65)

Before reviewing some results from [47], we shall recall some DEs that play a
key role in the next analysis. They are introduced in the following theorems.11

Theorem 3.7 (Adapted from Theorem 2.8, i.e., Theorem 1 in [92]; similar to
Theorem 3.1). Let U ∈ CM×M have uniformly bounded spectral norm. Assume
that matrix Z satisfies Assumption A-3.8. Let H ∈ CM×K be a random matrix
with independent column vectors hj ∼ CN (0M×1,Φj) while the sequence of
deterministic matrices Φj have uniformly bounded spectral norms. Denote by
P, the sequence of random matrices P = (Φk)k=1,...,K and by Q(t) the resolvent
matrix

Q(t) =
(
tHHH

K
+ tZ
K

+IM
)−1

.

Then, for any t > 0 it holds that

1
K

tr (UQ)− 1
K

tr
(
UT(t,P,Z)

) a.s.−−−−−−−→
M,K→+∞

0

where T(t,P,Z) ∈ CM×M is defined as

T(t,P,Z) =
(

1
K

K∑
k=1

tΦk

1+tek(t,P,Z) +t 1
K

Z+IM

)−1

and the elements of e(t,P,Z) = [e1(t,P,Z), . . . , eK(t,P,Z)]T are solutions to
the following system of equations:

ek(t,P,Z) = 1
K

tr

Φk

 1
K

K∑
j=1

tΦj

1+tej(t,P,Z) + t

K
Z+IM

−1
 .

Theorem 3.7 shows how to approximate quantities with only one occurrence
of the resolvent matrix Q(t). For many situations, this kind of result is sufficient
to entirely characterize the asymptotic SINR, in particular when dealing with
the performance of linear receivers [169, 170]. However, when precoding is
considered, random terms involving two resolvent matrices arise, a case which
is out of the scope of Theorem 3.7. For that, we recall the following result from

11We have chosen to work a slightly different definition of the DEs than in [47], since it fits
better the analysis of our proposed precoding.
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[92], which establishes DEs for this kind of quantities.

Theorem 3.8 ([92]). Let Θ ∈ CM×M be Hermitian non negative definite with
uniformly bounded spectral norm. Consider the setting of Theorem 3.7. Then,

1
K

tr (UQ(t)ΘQ(t))− 1
K

tr
(
UT(t,P,Z,Θ)

) a.s.−−−−−−−→
M,K→+∞

0

where

T(t,P,Z,Θ) = TΘT+t2T 1
K

K∑
k=1

Φkek(t,P,Z,Θ)
(1+tek)2 T .

Furthermore T = T(t,P,Z), and e = e(t,P,Z) are given by Theorem 3.7. Also,
e(t,P,Z,Θ) = [e1(t,P,Z,Θ), . . . , eK(t,P,Z,Θ)]T is computed as

e =
(
IK−t2J

)−1 v

where J ∈ CK×K and v ∈ CK×1 are defined as

[J]k,` =
1
K tr (ΦkTΦ`T)
K(1+te`)2 , 1 ≤ k, ` ≤ K

[v]k = 1
K

tr (ΦkTΘT) , 1 ≤ k ≤ K .

Remark 3.5. Note that the elements e` are DEs of
1
K tr (Φ`Q(u)ΘQ(t)) in the sense that

1
K

tr (Φ`Q(u)ΘQ(t))−e`
a.s.−−−−−−−→

M,K→+∞
0 .

Also, one can check that (ek)Kk=1 is to T as (ek)Kk=1 is to T, since

ek = 1
K

tr (ΦkT) and ek = 1
K

tr
(
ΦkT

)
.

The performance of RZF precoding depends on a sequence of DEs, which
we denote by (T`)L`=1 and

(
T`

)L
`=1. These are defined as

T` = T
(

1
ξ`
, (Φ`,`,k)Kk=1 ,Z`

)
, ` = 1, . . . , L

T` = T
(

1
ξ`
, (Φ`,`,k)Kk=1 ,Z`,

1
ξ`

Z`+IM
)
, ` = 1, . . . , L .

Now we are in a position to state the result establishing the convergence of the
SINRs with RZF precoding.

Theorem 3.9 (Asymptotic SINR (simplified version of [47])). Denote by νj,
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θ`,j,m, κ`,j,m, θ`,j,m and κ`,j,m the deterministic quantities given by

νj = 1
1
ξj

1
K tr(Tj)− 1

Kξj
tr(Tj)

θ`,j,m = 1
K

tr(Φ`,j,mT`)

θ`,j,m = 1
K

tr(Φ`,j,mT`)

κ`,j,m = 1
K

tr(Φest
`,j,mT`)

κ`,j,m = 1
K

tr(Φest
`,j,mT`)

ζj,m = 1
ξj+ej,m

.

The SINR at the mth user in the jth cell converges to SINRj,m, which is given
as

SINRj,m = νj(ej,mζj,m)2

aj,m−νj(ej,mζj,m)2 . (3.66)

with

aj,m =
L∑
`=1

(
ν`
ξ`

(θ`,j,m−ζ`,mκ2
`,j,m)− ν`

ξ`
θ`,j,m

+2ν`
ξ`
κ`,j,mκ`,j,mζ`,m−

ν`
ξ`
κ2
`,j,me`,mζ

2
`,m

)

3.3.2.1 Complexity Issues of RZF Precoding

The SINRs achieved by RZF precoding converge in the large-(M,K) regime
to the DEs in Theorem 3.9. However, the precoding matrices are still random
quantities that need to be recomputed at the same pace as the channel knowl-
edge is updated. With the typical coherence time of a few milliseconds, we
thus need to compute the large-dimensional matrix inverse in (3.63) hundreds
of times per second. The number of arithmetic operations needed for matrix
inversion scales cubically in the rank of the matrix, thus this matrix opera-
tion is intractable in large-scale systems; we refer to Section 3.1 and [56, 134]
for detailed complexity discussions. To reduce the implementation complexity
and maintain most of the RZF performance, the low-complexity TPE precoding
was proposed in Section 3.1 and [134] for single cell systems. The next section
extends this class of precoding schemes to practical multi cell scenarios.
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3.3.3 Truncated Polynomial Expansion Precoding

Building on the concept of TPE, we now provide a new class of low-complexity
linear precoding schemes for the multi cell case. In an alternative approach to
the TPE motivation in Section 3.1, we recall now the Cayley-Hamilton theorem.
It directly states that the inverse of a matrix A of dimension M can be written
as a weighted sum of its first M powers:

A−1 = (−1)M−1

det(A)

M−1∑
`=0

α`A`

where α` are the coefficients of the characteristic polynomial. A simplified
precoding scheme could, hence, be obtained by taking only a truncated sum of
the matrix powers. We refers to it as TPE precoding.

For Zj = 0M×M and truncation order Jj , the proposed TPE precoding is
given by the precoding matrix:

FTPE
j =

Jj−1∑
n=0

wn,j

(
Ĥj,jĤH

j,j

K

)n
Ĥj,j√
K

(3.67)

and {wn,j , j = 0, . . . , Jj−1} are the Jj scalar coefficients that are used in cell j.
While RZF precoding only has the design parameter ξj , the proposed TPE pre-
coding scheme offers a larger set of Jj design parameters. These polynomial
coefficients define a parametrised class of precoding schemes ranging from MRT
(if Jj = 1) to RZF precoding when Jj = min(M,K) and wn,j given by the co-

efficients based on the characteristic polynomial of
√
K
(
Ĥj,jĤj,j+KξjIM

)−1
.

We refer to Jj as the TPE order corresponding to the jth cell and note that the
corresponding polynomial degree in (3.67) is Jj−1. For any Jj < min(M,K),
the polynomial coefficients have to be treated as design parameters that should
be selected to maximize some appropriate system performance metric like in
Section 3.1. An initial choice is

winitial
n,j = νjκj

Jj−1∑
m=n

(
m

n

)
(1−κjξj)m−n(−κj)n (3.68)

where νj and ξj are as in RZF precoding, while the parameter κj can take any
value such that

∥∥∥IM−κj( 1
K ĤĤH +ξjIM

)∥∥∥ < 1. This expression is obtained by
calculating a Taylor expansion of the matrix inverse. The coefficients in (3.68)
gives performance close to that of RZF precoding when Jj becomes large, as we
have seen in Section 3.1. However, the optimization of the RZF precoding has
not, thus far, been feasible. Therefore, we can obtain even better performance
than the suboptimal RZF, using only small TPE orders (e.g., Jj = 4), if the
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coefficients are optimized with the system performance metric in mind. This
optimization of the polynomial coefficients in multi cell systems is dealt with in
Subsection 3.3.5 and the results are evaluated in Section 3.3.6.

A fundamental property of TPE is that Jj is not required to scale with
M and K, because A−1 is equivalent to inverting each eigenvalue of A and
the polynomial expansion effectively approximates each eigenvalue inversion by
a Taylor expansion with Jj terms [132]. More precisely, this means that the
approximation error per UT is only a function of Jj (and not the system di-
mensions), which was proved for multi-user detection in [129] and validated
numerically in Section 3.1 for TPE precoding.

Remark 3.6. The deterministic matrix Zj was used in RZF precoding to sup-
press interference in certain subspaces. Although the TPE precoding in (3.67)
was derived for the special case of Zj = 0M×M , the analysis can easily be ex-
tended for arbitrary Zj. To show this, we define the rotated channels h̃`,j,m =
(Zj
K +ξjIM )−1/2h`,j,m ∼ CN (0M×1, (Zj

K +ξjIM )−1/2Φ`,j,m(Zj
K +ξjIM )−1/2). RZF

precoding can now be rewritten as

Frzf
j = νj√

K

(
Zj
K

+ξjIM
)−1/2

 ̂̃Hj,j
̂̃HH

j,j

K
+IM

−1 ̂̃Hj,j (3.69)

where ̂̃Hj,j = (Zj
K +ξjIM )−1/2[ĥj,j,1 . . . ĥj,j,K ]. When this precoding matrix is

multiplied with a channel as hH
j,`,mFrzf

j , the factor (Zj
K +ξjIM )−1/2 will also

transform hj,`,m into a rotated channel. By considering the rotated channels
instead of the original ones, we can apply the whole framework of TPE precoding.
The only thing to keep in mind is that the power constraints might be different in
the SINR optimization of Subsection 3.3.5, but the extension in straightforward.

Next, we provide an asymptotic analysis of the SINR for TPE precoding.

3.3.4 Large-Scale Approximations of the SINRs

In this section, we show that in the large-(M,K) regime, defined by Assump-
tion A-3.9, the SINR experienced by the mth UT served by the jth cell, can be
approximated by a deterministic term, depending solely on the channel statis-
tics. Before stating our main result, we shall cast (3.61) in a simpler form by
introducing some extra notation.

Let wj =
[
w0,j , . . . , wJj−1,j

]T and let aj,m ∈ CJj×1 and B`,j,m ∈ CJj×Jj be
given by

[aj,m]n =
hH
j,j,m√
K

(
Ĥj,jĤH

j,j

K

)n
ĥj,j,m√
K
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for n ∈ [0, Jj−1] and

[B`,j,m]n,p = 1
K

hH
`,j,m

(
Ĥ`,`ĤH

`,`

K

)n+p+1

h`,j,m

for n, p ∈ [0, J`−1]. Then, the SINR experienced by the mth user in the jth
cell is

SINRj,m =
∣∣E[wH

j aj,m]
∣∣2

σ2

K +
L∑
`=1

E [wH
`B`,j,mw`]−

∣∣E[wH
j aj,m]

∣∣2 . (3.70)

Since aj,m and B`,j,m are of finite dimensions, it suffices to determine an asymp-
totic approximation of the expected value of each of their elements. For that,
similarly to Section 3.1, we link their elements to the resolvent matrix

Q(t, j) =
(
t
Ĥj,jĤH

j,j

K
+IM

)−1

by introducing the functionals Xj,m(t) and Z`,j,m(t)

Xj,m(t) = 1
K

hH
j,j,mQ(t, j)ĥj,j,m (3.71)

Z`,j,m(t) = 1
K

hH
`,j,mQ(t, `)h`,j,m (3.72)

it is ultimately straightforward to see that:

[aj,m]n = (−1)n

n! X
(n)
j,m (3.73)

[B`,j,m]n,p = (−1)(n+p+1)

(n+p+1)! Z
(n+p+1)
`,j,m (3.74)

where X(k)
j,m ,

dkXj,m(t)
dtk

∣∣∣
t=0

and Z(k)
`,j,m ,

dkZ`,j,m(t)
dtk

∣∣∣
t=0

. Higher order moments

of the spectral distribution of 1
K Ĥj,jĤH

j,j appear when taking derivatives of
Xj,m(t) or Z`,j,m(t). The asymptotic convergence of these moments require an
extra assumption ensuring that the spectral norm of 1

K Ĥj,jĤH
j,j is almost surely

bounded. This assumption is expressed as follows.

Assumption A-3.10. The correlation matrices Φ`,j,m belong to a finite-dimensional
matrix space. This means that it exists a finite integer S > 0 and a linear inde-
pendent family of matrices R1, . . . ,RS such that

Φ`,j,m =
S∑
k=1

α`,j,m,kRk
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where α`,j,m,1, . . . , α`,j,m,S denote the coordinates of Φ`,j,m in the basis R1, . . . ,RS.

Two remarks are in order.

Remark 3.7. This condition is less restrictive than the one used in [125], where
Φ`,j,m is assumed to belong to a finite set of matrices.

Remark 3.8. Note that Assumption A-3.10 is in agreement with several phys-
ical channel models presented in the literature. Among them, we distinguish the
following models:

• The channel model of [171], which considers a fixed number of dimensions
or angular bins S by letting

Φ
1
2
`,j,m = d

− θ2
`,j,m [K, 0M,M−S ]

for some positive definite K ∈ CM×M−S, where θ is the path-loss exponent
and d`,j,m is the distance between the mth user in the jth cell and the `th
cell.

• The one-ring channel model with user groups from [146]. This channel
model considers a finite number of groups (G groups) which share approx-
imately the same location and thus the same covariance matrix. Let θ`,j,g
and ∆`,j,g be respectively the azimuth angle and the azimuth angular spread
between the BS of cell ` and the users in group g of cell j. Moreover, let
d be the distance between two consecutive antennas (see Fig. 1 in [146]).
Then, the (u, v)th entry of the covariance matrix Φ`,j,m for users is group
g is

[Φ`,j,m]u,v = 1
2∆`,j,g

∫ ∆`,j,g+θ`,j,g

−∆`,j,g+θ`,j,g
ed(u−v) sinαdα (3.75)

(user m is in group g of cell j) .

Before stating our main result, we shall define (in a similar way, as in the
previous section) the DEs that will be used:

T`(t) = T
(
t, (Φ`,`,k)Kk=1 ,0`

)
e`,k(t) = ek

(
t, (Φ`,`,k)Kk=1 ,0`

)
.

As it has been shown in [125], the computation of the first 2J`−1 derivatives of
T`(t) and e`,k(t) at t = 0, which we denote by T(n)

` and e(n)
`,k , can be performed

using the iterative Algorithm 1, which we provide in Appendix 3.4.4. These
derivatives T(n)

` and e(n)
`,k play a key role in the asymptotic expressions for the

SINRs. We are now in a position to state our main results.
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Theorem 3.10. Assume that Assumptions A-3.6 and A-3.10 hold true. Let
Xj,m(t) and Z`,j,m(t) be

Xj,m(t) = ej,m(t)
1+tej,m(t)

Z`,j,m(t) = 1
K

tr
(
Φ`,j,mT`(t)

)
−
t
∣∣ 1
K tr

(
Φest
`,j,mT`(t)

)∣∣2
1+te`,m(t) .

Then, in the asymptotic regime defined by Assumption A-3.9, we have

E [Xj,m(t)]−Xj,m(t) −−−−−−−→
M,K→+∞

0

E [Z`,j,m(t)]−Z`,j,m(t) −−−−−−−→
M,K→+∞

0 .

Proof. The proof is given in Appendix 3.4.2.

Corollary 3.3. Assume the setting of Theorem 3.10. Then, in the asymptotic
regime we have:

E
[
X

(n)
j,m

]
−X(n)

j,m −−−−−−−→
M,K→+∞

0

E
[
Z

(n)
`,j,m

]
−Z(n)

`,j,m −−−−−−−→
M,K→+∞

0

where X(n)
j,m and Z(n)

`,j,m are the derivatives of X(t) and Z`,j,m(t) with respect to
t at t = 0.

Proof. The proof is given in Appendix 3.4.3.

Theorem 3.10 provides the tools to calculate the derivatives of Xj,m and
Z`,j,m at t = 0, in a recursive manner.

Now, denote by X(0)
j,m and Z(0)

`,j,m the deterministic quantities given by

X
(0)
j,m = 1

K
tr(Φest

j,j,m)

Z
(0)
`,j,m = 1

K
tr(Φ`,j,m) .

We can now iteratively compute the deterministic sequences X(n)
j,m and Z

(n)
`,j,m

as

X
(n)
j,m = −

n∑
k=1

(
n

k

)
kX

(k−1)
j,m e

(n−k)
j,m +e(n)

j,m

Z
(n)
`,j,m = 1

K
tr
(
Φ`,j,mT(n)

`

)
−

n∑
k=1

k

(
n

k

)
e

(n−k)
l,m Z

(k−1)
`,j,m

127



3.3. Multi Cell Precoding Chapter 3. TPE

+
n∑
k=1

k

(
n

k

)
e

(n−k)
l,m

1
K

tr
(
Φ`,j,mT(k−1)

`

)
−

n∑
k=1

k

(
n

k

)
1
K

tr
(
Φest
`,j,mT(k−1)

`

) 1
K

tr
(
Φest
`,j,mT(n−k)

`

)
.

Plugging the DE of Theorem 3.10 into (3.73) and (3.74), we get the following
corollary.

Corollary 3.4. Let aj,m be the vector with elements

[aj,m]n = (−1)n

n! X
(n)
j,m, n ∈ {0, . . . , Jj−1}

and B`,j,m the J`×J` matrix with elements

[
B`,j,m

]
n,p

= (−1)n+p+1

(n+p+1)! Z
n+p+1
`,j,m , n, p ∈ {0, . . . , J`−1} .

Then,

max
`,j,m

(
E
[
‖B`,j,m−B`,j,m‖

]
,E [‖aj,m−aj,m‖]

)
−−−−−−−→
M,K→+∞

0 .

This corollary gives asymptotic equivalents of aj,m and B`,j,m, which are
the random quantities, that appear in the SINR expression in (3.70). Hence,
we can use these asymptotic equivalents to obtain an asymptotic equivalent of
the SINR for all UTs in every cell.

3.3.5 Optimization of the System Performance

The previous section developed DEs of the SINR at each UT in the multi cell
system as a function of the polynomial coefficients

{wj,`, ` ∈ [1, L] , j ∈ [0, J`−1]}

of the TPE precoding applied in each of the L cells. These coefficients can
be selected arbitrarily, but should not be functions of any instantaneous CSI—
otherwise the low complexity properties are not retained. Furthermore, the
coefficients need to be scaled such that the transmit power constraints

1
K

tr
(
F`,TPEFH

`,TPE
)

= P` (3.76)
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are satisfied in each cell `. By plugging the TPE precoding expression from
(3.67) into (3.76), this implies

1
K

J`−1∑
n=0

J`−1∑
m=0

wn,`w
∗
m,`

(
Ĥ`,`ĤH

`,`

K

)n+m+1

= P` . (3.77)

In this section, we optimize the coefficients to maximize a general metric of
the system performance. To facilitate the optimization, we use the asymptotic
equivalents of the SINRs developed in this section and apply the corresponding
asymptotic analysis in order to replace the constraint (3.77) with its asymptot-
ically equivalent condition

wH
`C`w` = P`, ` ∈ {1, . . . , L} (3.78)

where
[
C`

]
n,m

= (−1)n+m+1

(n+m+1)!
1
K tr(T(n+m+1)

` ) for all 1 ≤ n ≤ L and 1 ≤ m ≤ L.
The performance metric in this section is the weighted max-min fairness,

which can provide a good balance between system throughput, user fairness, and
computational complexity [36].12 This means, that we maximize the minimal
value of 1

υj,m
log2(1+SINRj,m), where the user-specific weights υj,m > 0 are

larger for users with high priority (e.g., with favourable channel conditions).
Using DEs, the corresponding optimization problem is

maximize
w1,...,wL

min
j∈[1,L]
m∈[1,K]

1
υj,m
×

log2

(
1+

wH
j aj,maH

j,mwj

L∑
`=1

wH
`B`,j,mw`−wH

j aj,maH
j,mwj

)

subject to wH
`C`w` = P`, ` ∈ {1, . . . , L} .

(3.79)

This problem has a similar structure as the joint max-min fair beamform-
ing problem previously considered in [165] within the area of multi-cast beam-
forming communications with several separate user groups. The analogy is the
following: The users in cell j in our work corresponds to the jth multi-cast
group in [165], while the coefficients wj in (3.79) correspond to the multi-cast
beamforming to group j in [165]. The main difference is that our problem (3.79)
is more complicated due to the structure of the power constraints, the negative
sign of the second term in the denominators of the SINRs, and the user weights.
Nevertheless, the tight mathematical connection between the two problems im-

12Other performance metrics are also possible, but the weighted max-min fairness has often
relatively low computational complexity and can be used as a building stone for maximizing
other metrics in an iterative fashion [36].
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plies, that (3.79) is an NP-hard problem because of [165, Claim 2]. One should
therefore focus on finding a sensible approximate solution to (3.79), instead of
the global optimum.

Approximate solutions to (3.79) can be obtained by well-known techniques
from the multi-cast beamforming literature (e.g., [164, 165, 166]). For the sake of
brevity, we only describe the approximation approach of semi-definite relaxation
in this section. To this end we write (3.79) in its equivalent epigraph form

maximize
w1,...,wL,ψ

ψ (3.80)

subject to tr
(
C`w`wH

`

)
= P`, ` ∈ {1, . . . , L}

aH
j,mwjwH

j aj,m
L∑
`=1

tr
(
B`,j,mw`wH

`

)
−aH

j,mwjwH
j aj,m

≥ 2υj,mψ−1 ∀j,m

where the auxiliary variable ψ represents the minimal weighted rate among
the users. If we substitute the positive semi-definite rank-one matrix w`wH

` ∈
CJ`×J` for a positive semi-definite matrix W` ∈ CJ`×J` of arbitrary rank, we
obtain the following tractable relaxed problem

maximize
W1,...,WL,ψ

ψ (3.81)

subject to W` � 0, tr
(
C`W`

)
= P`, ` ∈ {1, . . . , L}

aH
j,mWjaj,m

L∑
`=1

tr
(
B`,j,mW`

)
−aH

j,mWjaj,m

≥ 2υj,mψ−1 ∀j,m .

This is a so-called semi-definite relaxation of the original problem (3.79). Inter-
estingly, for any fixed value on ψ, (3.81) is a convex semi-definite optimization
problem because the power constraints are convex and the SINR constraints can
be written in the convex form aH

j,mWjaj,m ≥ (2υj,mψ−1)
(∑L

`=1 tr
(
B`,j,mW`

)
−

aH
j,mWjaj,m

)
. Hence, we can solve (3.81) by standard techniques from convex

optimization theory for any fixed ψ [161]. In order to also find the optimal value
of ψ, we note that the SINR constraints become stricter as ψ grows and thus we
need to find the largest value for which the SINR constraints are still feasible.
This solution process is formalized by the following theorem.

Theorem 3.11. Suppose we have an upper bound ψmax on the optimum of the
problem (3.81). The optimization problem can then be solved by line search over
the range P = [0, ψmax]. For a given value ψ? ∈ P, we need to solve the convex
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feasibility problem

find W1 � 0, . . . ,WL � 0 (3.82)

subject to tr
(
C`W`

)
= P`, ` ∈ {1, . . . , L}

2υj,mψ?−1
2υj,mψ?

L∑
`=1

tr
(
B`,j,mW`

)
−aH

j,mWjaj,m ≤ 0 ∀j,m .

If this problem is feasible, all ψ̃ ∈ P with ψ̃ < ψ? are removed. Otherwise, all
ψ̃ ∈ P with ψ̃ ≥ ψ? are removed.

Proof. This theorem follows from identifying (3.81) as a quasi-convex problem
(i.e., it is a convex problem for any fixed ψ and the feasible set shrinks with
increasing ψ) and applying any conventional line search algorithms (e.g., the
bisection algorithm [161, Chapter 4.2]).

Based on Theorem 3.11, we devise the following algorithm based on conven-
tional bisection line search.

Algorithm 3 Bisection algorithm that solves (3.81)
Set ψmin = 0 and initiate the upper bound ψmax
Select a tolerance ε > 0
while ψmax−ψmin > ε do

ψ? ← ψmax+ψmin
2

Solve (3.82) for ψ?
if problem (3.82) is feasible then

ψmin ← ψ?

else ψmax ← ψ?

end if
end while
Output: ψmin is now less than ε from the optimum to (3.81)

In order to apply Algorithm 3.3.5, we need to find a finite upper bound ψmax

on the optimum of (3.81). This is achieved by further relaxation of the problem.
For example, we can remove the inter-cell interference and maximize the SINR
of each user m in each cell j by solving the problem

maximize
wj

1
υj,m

log2

(
1+

wH
j aj,maH

j,mwj

wH
jBj,j,mwj−wH

j aj,maH
j,mwj

)
subject to wH

jCjwj = Pj .

(3.83)

This is essentially a generalized eigenvalue problem and therefore solved by scal-
ing the vector qj,m = (Bj,j,m−aj,maj,m)−1aj,m to satisfy the power constraint.
We obtain a computationally tractable upper bound ψmax by taking the smallest
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of the relaxed SINR among all the users:

ψmax = min
j,m

log2
(
1+aH

j,m(Bj,j,m−aj,maj,m)−1aj,m
)

υj,m
. (3.84)

The solution to the relaxed problem in (3.81) is a set of matrices W1, . . . ,WL

that, in general, can have ranks greater than one. In our experience, the rank
is indeed one in many practical cases, but when the rank is larger than one
we cannot apply the solution directly to the original problem formulation in
(3.79). A standard approach to obtain rank-one approximations is to select the
principal eigenvectors of W1, . . . ,WL and scale each one to satisfy the power
constraints in (3.77) with equality.

As mentioned in the proof of Theorem 3.11, the optimization problem in
(3.81) belongs to the class of quasi-convex problems. As such, the computa-
tional complexity scales polynomially with the number of UTs K and the TPE
orders J1, . . . , JL. It is important to note that the number of base station an-
tennas M has no impact on the complexity. The exact number of arithmetic
operation depends strongly on the choice of the solver algorithm (e.g., interior-
point methods [172]) and if the implementation is problem-specific or designed
for general purposes. As a rule-of-thumb, polynomial complexity means that
the scaling is between linear and cubic in the parameters [173]. In any case, the
complexity is prohibitively large for real-time computation, but this is not an
issue since the coefficients are only functions of the statistics and not the instan-
taneous channel realizations. In other words, the coefficients for a given multi
cell setup can be computed offline, e.g., by a central node or distributively us-
ing decomposition techniques [174]. Even if the channel statistics would change
with time, this happens at a relatively slow rate (as compared to the channel
realizations), which makes the complexity negligible compared the precoding
computations (see also Section 3.1). Furthermore, we note that the same coeffi-
cients can be used for each subcarrier in a multi-carrier system, as the channel
statistics are essentially the same across all subcarriers, even though the channel
realizations are different due to the frequency-selective fading.

Remark 3.9 (User weights that mimic RZF precoding). The user weights υj,m
can be selected in a variety of ways, resulting in different performance at each
UT. Since the main focus of TPE precoding is to approximate RZF precoding,
it makes sense to select the user weights to push the performance towards that
of RZF precoding. This is achieved by selecting υj,m as the rate that user m in
cell j would achieve under RZF precoding for some regularization parameters ξj
(which, preferably, should be chosen approximately optimal), or rather the DE
of this rate in the large-(M,K) regime; see Theorem 3.9 in Subsection 3.3.2
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Figure 3.8: Illustration of the three-sector site deployment with L = 3 cells
considered in the simulations.

for a review of these DEs. The optimal ψ from Theorem 3.11 can then be
interpreted as the fraction of the RZF precoding performance that is achieved by
TPE precoding.

3.3.6 Simulation Example

This section provides a numerical validation of the proposed TPE precoding in
a practical deployment scenario. We consider a three-sector site composed of
L = 3 cells and BSs; see Fig. 3.8. Similar to the channel model presented in
[146], we assume that the UTs in each cell are divided into G = 2 groups. UTs
of a group share approximatively the same location and statistical properties.
We assume that the groups are uniformly distributed in an annulus with an
outer radius of 250 m and an inner radius of 35 m, which is compliant with a
future LTE urban macro deployment [175].

The pathloss between UT m in group g of cell j and cell ` follows the same
expression as in [146] and is given by

PL(d`,j,m) = 1
1+(d`,j,md0

)δ

where δ = 3.7 is the pathloss exponent and d0 = 30 m is the reference distance.
Each base station is equipped with an horizontal linear array of M antennas.
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The radiation pattern of each antenna is

A(θ) = −min
(

12
(

θ

θ3dB

)2
, 30
)

dB

where θ3dB = 70 degrees and θ is measured with respect to the BS boresight.
We consider a similar channel covariance model as the one-ring model described
in Remark 3.8. The only difference is that we scale the covariance matrix in
(3.75) by the pathloss and the antenna gain:

[Φ`,j,m]u,v =10A(θ`,j,g)/10PL(d`,j,m)
2∆`,j,g

×∫ ∆`,j,g+θ`,j,g

−∆`,j,g+θ`,j,g
ed(u−v) sinαdα

where user m is in group g of cell j. We assume that each BS has acquired im-
perfect CSI from uplink pilot transmissions with ρtr = 15 dB. In the downlink,
we assume for simplicity that all BSs use the same normalized transmit power
of 1 with ρdl = P

σ2 = 10 dB.
The objective of this section is to compare the network throughput of the

proposed TPE precoding with that of conventional RZF precoding. To make a
fair comparison, the coefficients of the TPE precoding are optimized as described
in Remark 3.9. More specifically, each user weight υj,m in the semi-definite
relaxation problem (3.79) is set to the asymptotic rate that the same user would
achieve using RZF precoding. Consequently, the relative differences in network
throughput that we will observe in this section hold approximately also for the
achievable rate of each UT.

Using Monte-Carlo (MC) simulations, we show in Fig. 3.9 the average rate
per UT, which is defined as

1
KL

L∑
j=1

K∑
m=1

E [log2 (1+SINRj,m)] .

We consider a scenario with K = 40 users in each cell and different number of
antennas at each BS:M ∈ {80, 160, 240, 320, 400}. The TPE order is the same
in all cells: J = Jj ,∀j. As expected, the user rates increase drastically with
the number of antennas, due to the higher spatial resolution. The throughput
also increases monotonically with the TPE order Jj , as the number of degrees
of freedom becomes larger. Note that, if Jj is equal to 4, increasing Jj leads
to a negligible performance improvement that might not justify the increased
complexity of having a greater Jj . TPE orders of less than 4 can be relevant
in situations when the need for interference-suppression is smaller than usual,
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Figure 3.9: Comparison between conventional RZF precoding and the proposed
TPE precoding with different orders J = Jj ,∀j.

for example, if M/K is large (so that the user channels are likely to be near-
orthogonal) or when the UTs anticipate small SINRs, due to low performance
requirements or large cell sizes. The TPE order is limited only by the available
hardware resources and we recall from Section 3.1 that increasing Jj corresponds
solely to duplicating already employed circuitry.

Contrary to the single cell case analysed in Section 3.1, where TPE precoding
was merely a low-complexity approximation of the optimal RZF precoding, we
observe in Fig. 3.9 that TPE precoding achieves higher user rates for all Jj ≥
5 than the suboptimal RZF precoding (obtained for ξ = σ2). This is due
to the optimization of the polynomial coefficients in Subsection 3.3.5, which
enables a certain amount of inter-cell coordination, a feature which could not
be implemented easily for RZF precoding in multi cell scenarios.

From the results in Section 3.1, we expected that RZF precoding would
provide the highest performance if the regularization coefficient is optimized
properly. To confirm this intuition, we consider the case where all BSs employ
the same regularization coefficient ξ. Fig. 3.10 shows the performance of the
RZF and TPE precoding schemes as a function of ξ, when K = 100, M = 250,
and J = 5. We remind the reader that the TPE precoding scheme indirectly
depends on the regularization coefficient ξ, since while solving the optimization
problem (3.83), we choose the user weights υj,m as the asymptotic rates that
are achieved by RZF precoding. Fig. 3.10 shows that RZF precoding provides
the highest performance if the regularization coefficient is chosen very carefully,
but TPE precoding is generally competitive in terms of both user performance
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Figure 3.10: Comparison between RZF precoding and TPE precoding for a
varying regularization coefficient in RZF.

and implementation complexity.
In an additional experiment, we investigate how the performance depends

on the effective training SNR (ρtr). Fig. 3.11 shows the average rate per UT
for K = 100, M = 250, J ∈ {3, 5}, and ξ = 0.01. Note that, as expected, both
precoding schemes achieve higher performance as the effective training SNR
increases.

The observed high performance of our TPE precoding scheme is essentially
due to the good accuracy of the asymptotic DEs. To assess how accurate our
asymptotic results are, we show in Fig. 3.12 the empirical and theoretical UT
rates with TPE precoding (Jj = 5) and RZF precoding with respect toM , when
ξ = Mσ2

K . We see that the DEs yield a good accuracy even for finite system
dimensions. Similar levels of accuracy are also achieved for other regularization
factors (recall from Fig. 3.9 and 3.10 that the value ξ = Mσ2

K is not optimal),
but we chose to visualize a case, where the differences between TPE and RZF
are large so that the curves are non-overlapping.

3.3.7 Conclusion Multi Cell

This section generalizes the previously proposed TPE precoder to multi cell
large scale MIMO systems. This class of precoders originates from the high-
complexity RZF precoding scheme by approximating the regularized channel
inversion by a truncated polynomial expansion. The two main features of TPE
precoding are the simple implementation and the truncation order being inde-
pendent of the system dimensions.
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Figure 3.11: Comparison between RZF precoding and TPE precoding for a
varying effective training SNR ρtr.
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Figure 3.12: Comparison between the empirical and theoretical user rates. This
figure illustrates the asymptotic accuracy of the deterministic approximations.
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In particular, we derive deterministic expressions for the asymptotic SINRs,
when the number of antennas and number of users grow large. The model in-
cludes important multi cell characteristics, such as user-specific channel statis-
tics, pilot contamination, different TPE orders in different cells, and cell-specific
power constraints. We derived asymptotic SINR expressions, which depend only
on channel statistics, that are exploited to optimize the polynomial coefficients
in an offline manner. The corresponding optimization problem is shown to have
a similar structure as the beamforming optimization in the multi-cast literature
and is solved by a semi-definite relaxation technique.

The effectiveness of the proposed TPE precoding is illustrated numerically.
Contrary to the single cell case, where RZF leads to a near-optimal performance
when the regularization coefficient is properly chosen, the use of the RZF pre-
coding in the multi cell scenario is more delicate. Until now, there is no general
rule for the selection of its regularization coefficients. Contrary to the single
cell case, where RZF precoding appears to be near-optimal, RZF precoding is
known to be suboptimal in multi cell scenarios. This enabled us to achieve higher
throughput with our TPE precoding for certain scenarios. This is a remarkable
result, because TPE precoding therefore has both lower complexity and better
throughput. This is explained by the use of optimal polynomial coefficients
in TPE precoding, while the corresponding optimization of the regularization
matrix in RZF precoding has not been obtained so far.

3.4 Multi Cell Appendix

3.4.1 Useful Lemmas

Lemma 3.6 (Leibniz formula for the derivatives of a product of functions). Let
t 7→ f(t) and t 7→ g(t) be two n times differentiable functions. Then, the nth
derivative of the product f ·g is given by

dnf ·g
dtn

=
n∑
k=0

(
n

k

)
dkf

dtk
dn−kg

dtn−k
.

Applying Lemma 3.6 to the function t 7→ tf(t), we obtain the following
result.

Corollary 3.5. The nth derivative of t 7→ tf(t) at t = 0 yields

dntf(t)
dtn

∣∣∣∣
t=0

= n
dn−1f

dtn−1

∣∣∣∣
t=0

.
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3.4.2 Proof of Theorem 3.10

The objective of this section is to find DEs for E [Xj,m(t)] and E [Zj,m(t)]. These
quantities involve the resolvent matrix

Q(t, j) =
(
t
Ĥj,jĤH

j,j

K
+IM

)−1

.

For technical reasons, the resolvent matrix Qm(t, j), that is obtained by remov-
ing the contribution of vector ĥj,j,m will be extensively used. In particular, if
Ĥj,j,−m denotes the matrix Ĥj,j after removing the mth column, Qm(t, j) is
given by

Qm(t, j) =
(
t
Ĥj,j,−mĤH

j,j,−m

K
+IM

)−1

.

With this notation on hand, we are now in position to prove Theorem 3.10.
In the sequel, we will mean by "controlling a certain quantity" the study of its
asymptotic behaviour in the asymptotic regime.

3.4.2.1 Controlling Xj,m(t) and Z`,j,m(t)

Next, we study sequentially the random quantities Xj,m(t) and Z`,j,m(t). Using
Lemma 3.2, the matrix Q(t, j) writes as

Q(t, j) = Qm(t, j)− t

K

Qm(t, j)ĥj,j,mĥH
j,j,mQm(t, j)

1+ t
K ĥH

j,j,mQm(t, j)ĥj,j,m
. (3.85)

Plugging (3.85) into the expression of Xj,m(t), we get

Xj,m(t) = 1
K

hH
j,j,mQm(t, j)ĥj,j,m−

t
K2 hH

j,j,mQm(t, j)ĥj,j,mĥH
j,j,mQm(t, j)ĥH

j,j,m

1+ t
K ĥH

j,j,mQm(t, j)ĥj,j,m

=
1
KhH

j,j,mQm(t, j)ĥj,j,m
1+ t

K ĥH
j,j,mQm(t, j)ĥj,j,m

. (3.86)

Since hj,j,m−ĥj,j,m is uncorrelated with ĥj,j,m, we have

E [Xj,m(t)] = E

[
1
K ĥH

j,j,mQm(t, j)ĥj,j,m
1+ t

K ĥH
j,j,mQm(t, j)ĥj,j,m

]
.

Using Lemma 2.4, we then prove that

1
K

ĥH
j,j,mQm(t, j)ĥj,j,m−

1
K

tr
(
Φest
j,j,mQm(t, j)

) a.s.−−−−−−−→
M,K→+∞

0 . (3.87)
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Applying the rank one perturbation Lemma 2.8,

1
K

tr
(
Φest
j,j,mQm(t, j)

)
− 1
K

tr
(
Φest
j,j,mQ(t, j)

) a.s.−−−−−−−→
M,K→+∞

0 . (3.88)

On the other hand, Theorem 3.7 implies that

1
K

tr
(
Φest
j,j,mQ(t, j)

)
− 1
K

tr
(
Φest
j,j,mTj(t)

) a.s.−−−−−−−→
M,K→+∞

0 . (3.89)

Combining (3.87), (3.88), and (3.89), we obtain the following result:

1
K

ĥH
j,j,mQm(t, j)ĥj,j,m−ej,m(t) a.s.−−−−−−−→

M,K→+∞
0

where we used the fact that ej,m(t) = 1
K tr(Φest

j,j,mTj(t)). Since f : x 7→ x
tx+1 is

bounded by 1
t , the dominated convergence Theorem 2.3 (from [105]) allows us

to conclude
E [Xj,m(t)]− ej,m(t)

1+tej,m(t) −−−−−−−→M,K→+∞
0 . (3.90)

We now move to the control of E [Zj,`,m(t)]. Similarly, we first decompose
E [Z`,j,m(t)], by using Lemma 3.2, as

Z`,j,m(t) = 1
K

hH
`,j,mQm(t, `)h`,j,m

−
t
K2 hH

`,j,mQm(t, `)ĥ`,`,mĥH
`,`,mQm(t, `)h`,j,m

1+ t
K ĥH

`,`,mQm(t, `)ĥ`,`,m

, U`,j,m(t)−V`,j,m(t) .

Let us begin by treating E [U`,j,m(t)]. Since h`,j,m and Qm(t, `) are independent,
we have

E [U`,j,m(t)] = E
[

1
K

tr
(
Φ`,j,mQm(t, `)

)]
.

Working out the obtained expression using (3.88) and (3.89), we obtain

E [U`,j,m(t)]− 1
K

tr
(
Φ`,j,mT`(t)

)
−−−−−−−→
M,K→+∞

0 .

As for the control of V`,j,m we need to introduce the following quantities:

β`,j,m =
√
t

K
hH
`,j,mQm(t, `)ĥ`,`,m

and
o

β`,j,m= β`,j,m−Eh [β`,j,m]
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where Eh[·] denotes the expectation with respect to vector h`,k,m, k = 1, . . . , L.
Let α`,m = ĥ`,`,mQm(t, `)ĥ`,m. Then, we have

E [V`,j,m(t)] = E

[
|β`,j,m|2

1+tα`,m

]

= E

[
|Ehβ`,j,m|2

1+tα`,m

]
+E

∣∣∣∣Eh [ oβ`,j,m]∣∣∣∣2
1+tα`,m


+E

2Re
(
o

β`,j,m Eh [β`,j,m]
)

1+tαl,m

 (3.91)

where Re(·) denotes the real-valued part of a scalar. Using Lemma 2.4, we can
show that the last terms in the right hand side of (3.91) tend to zero. Therefore,

E [V`,j,m(t)] = E

[
t
∣∣ 1
K tr

(
Φest
`,j,mQm(t, `)

)∣∣2
1+tα`,m

]
+o(1)

(a)= E

[
t
∣∣ 1
K tr

(
Φest
`,j,mT`(t)

)∣∣2
1+tα`,m

]
+o(1) (3.92)

where (a) follows from that

E
[

1
K

tr
(
Φest
`,j,mQm(t, `)

)]
− 1
K

tr
(
Φest
`,j,mT`(t)

)
−−−−−−−→
M,K→+∞

0 .

On the other hand, one can prove using (2.4) that

α`,m−e`,m
a.s.−−−−−−−→

M,K→+∞
0

and as such
E
[

1
1+tα`,m

]
− 1

1+te`,m(t) −−−−−−−→M,K→+∞
0 . (3.93)

Combining (3.92) and (3.93), we obtain

E [V`,j,m(t)] =
t
∣∣ 1
K tr

(
Φest
`,j,mT`(t)

)∣∣2
1+te`,m(t) +o(1) .

Finally, substituting E [U`,j,m(t)] and E [V`,j,m(t)] by their DEs gives the desired
result.

141



3.4. Multi Cell Appendix Chapter 3. TPE

3.4.3 Proof of Corollary 3.3

From Theorem 3.10 we have that, Xj,m(t) and Z`,j,m(t) converge to DEs which
we denote by Xj,m(t) and Z`,j,m(t). Corollary 3.3 extends this result to the
convergence of the derivatives. Its proof is based on the same techniques used
in Section 3.1. We provide hereafter the adapted proof for sake of completeness.
We restrict ourselves to the control ofX(n)

j,m, as Z(n)
`,j,m can be treated analogously.

First note that Xj,m(t)−Xj,m(t) is analytic, when extended to C\R−, where
R− is the set of negative real-valued scalars. As it is almost surely bounded
on every compact subset of C\R−, Montel’s theorem [160] ensures that there
exists a converging subsequence that converges to an analytic function. Since
the limiting function is zero on R+, it must be zero everywhere because of
analyticity. Therefore, from every subsequence one can extract a convergent
subsequence, that converges to zero. Necessarily, Xj,m(t)−Xj,m(t) converges
to zero for every t ∈ C\R−. Due to analyticity of the functions [160], we also
have

X
(n)
j,m(t)−X(n)

j,m(t) a.s.−−−−−−−→
M,K→+∞

0 (3.94)

for every t ∈ C\R−. To extend the convergence result to t = 0 we will, in a
similar fashion as in Section 3.1, decompose X(n)

j,m−X
(n)
j,m as

X
(n)
j,m−X

(n)
j,m = α1+α2+α3

where α1, α2 and α3 are

α1 = X
(n)
j,m−X

(n)
j,m(η)

α2 = X
(n)
j,m(η)−X(n)

j,m(η)

α3 = X
(n)
j,m(η)−X(n)

j,m .

Note that X(n)
j,m(η) and X(n)

j,m(η) are, respectively, the nth derivatives of Xj,m(t)
and Xj,m(t) at t = η. We rewrite α1 as

α1 = 1
K

hH
j,j,m (I−Q(η, j)) ĥj,j,m

= η

K
hH
j,j,m

Ĥj,jĤH
j,j

K
Q(η, j)ĥj,j,m .

Therefore,

|α1| ≤ |η|
∥∥∥∥hj,j,m√

K

∥∥∥∥
∥∥∥∥∥ ĥj,j,m√

K

∥∥∥∥∥
∥∥∥∥∥Ĥj,jĤH

j,j

K

∥∥∥∥∥ .
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Since ‖hj,j,m√
K
‖, ‖ ĥj,j,m√

K
‖ and ‖ Ĥj,jĤH

j,j

K ‖ are almost surely bounded13, there exists
M0 and a constant C0, such that for all M ≥ M0, |α1| ≤ C0η. Hence, for
η ≤ ε

3C0
, we have |α1| ≤ ε

3 . On the other hand, X(n)
j,m(t) is continuous at t = 0.

So there exists η small enough such that |α3| =
∣∣∣X(n)

j,m(η)−X(n)
j,m

∣∣∣ ≤ ε
3 . Finally,

Eq. (3.94) asserts that there exists M1 such that for any M ≥ M1, |α2| ≤ ε
3 .

Take M ≥ max(M0,M1) and η ≤ ε
3C0

, we then have∣∣∣X(n)
j,m−X

(n)
j,m

∣∣∣ ≤ ε,
thereby establishing

X
(n)
j,m−X

(n)
j,m

a.s.−−−−−−−→
M,K→+∞

0 .

3.4.4 Algorithm for Computing T` and e`,m.

Algorithm 4 Iterative algorithm for computing the first q = 1, . . . , p derivatives
of DEs at t = 0.
for ` = 1→ L do

for k = 1→ K do
e

(0)
`,k ←

1
K tr(Φest

`,`,k)
g

(0)
`,k ← 0
f

(0)
`,k ← −

1
1+g(0)

`,k

end for
T(0)
` ← IM

for i = 1→ p do
R(i) ← i

K

∑K
k=1 f

(i−1)
k Φest

`,`,k

T(i)
` ←

i−1∑
n=0

n∑
j=0

(
i−1
n

)(
n

j

)
T(i−1−n)
` R(n−j+1)T(j)

`

for k = 1→ K do

f
(i)
`,k ←

i−1∑
n=0

i∑
j=0

(
i−1
n

)(
n

j

)
(i−n)×f (j)

`,k f
(i−j)
`,k e

(i−1−n)
`,k

g
(i)
`,k ← ie

(i−1)
`,k

e
(i)
`,k ←

1
K tr(Φest

`,`,kT(i)
` )

end for
end for

end for

13For ‖ 1√
K

Ĥj,jĤH
j,j‖ this follows from Assumption A-3.10, using the same method as in

[125, Proof of Theorem 3].
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3.5 Model Differences

One certainly has already noticed that the system models used for the single
cell and the multi cell case differ significantly; to the point where the underlying
assumption become incompatible.

This is for example evident in the power constraints. In the single-cell case, the
total transmit power

tr (FFH) = P

is assumed to be constant, whereas in the multi-cell case the power constraint
is normalized such that the power per user is constant, i.e.,

1
K

tr (FFH) = P .

So, in the single cell case the power per user decays as O( 1
K ), when the number

of users gets larger. As a consequence, the power of the useful signal and
of the interference terms remain at the same order of magnitude as the noise
power. In the multi cell scenario, on the other hand, the interference power
increases with K and thus the noise power becomes negligible in the asymptotic
regime, which noticeably simplifies the –still substantial– analysis. The different
power scaling definitions can be justified in two ways (aside from the analytic
motivations). Both are concerned with the way one increases the number of
antenna elements in massive MIMO. First, the single cell system adheres to
the principle of growing the number of elements, but fixing the area (i.e., gain)
of the antenna. Second, the multi cell system follows Marzetta’s [97] original
approach of letting the area (i.e., gain) grow along with the number of elements.
Both approaches have valid arguments to support them.

Further differences can be found in the inclusion of power control for each user.
Single cell analysis supports this via the diagonal matrix P, while multi cell
does not. This negligence of power control is mainly due to the otherwise steep
increase of complexity in the large scale analysis (inclusion of bivariate functions)
and, especially, in the optimization parts. We carried out some preliminary
analyses for the multi cell case and discovered, that solving these optimization
problems should be possible, but it will be far from simple. We additionally
highlight that the bivariate functions in the single cell section give rise to new
random quantities that, to the best of our knowledge, have not been studied
before.
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Other important differences can be found in the imperfect CSI model. To enable
comparison with prior works, especially the results on optimal regularization,
the single cell part uses the same model as in the single cell analysis of Wagner
et al. in [92]. In other words, the single cell scenario considers a Gauss-Markov
formulation for the channel estimation error. The multi cell part uses the same
model as in the multi cell analysis of Hoydis et al. in [47]. Here, we assume
that the transmitter acquires the CSI by a specific type of uplink pilot signalling.
Since UTs in different cells might employ the same pilot sequences, the estimated
channels at the base station are affected through pilot contamination. Thus, we
need to fall back to assuming linear minimum mean squared error (LMMSE)
estimation of the CSI, in order to specifically incorporate pilot contamination.
This also limits the applicability of our analysis to systems employing the TDD
protocol.

The final large difference between single and multi cell is more a consequence of
the models themselves, than a choice the authors made. Looking at the optimi-
sation process of the SINRs, the single cell scenario considers the maximization
of the SINR of any user of interest. The analysis revealed that the same poly-
nomial coefficients are asymptotically optimal for all users, irrespective of their
individual power allocation. Hence, maximizing the asymptotic performance of
one user leads to the maximization of the sum rate. In the multi cell scenario,
optimizing the sum rate of the system (and other common metrics) leads to a
non convex optimisation problem. We have, thus, chosen to optimise the worst
case weighted SINR performance among all users.

For the sake of clarity, we summarize the main differences between both schemes
in the following table.
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System model Single cell Multi cell
CSI (receiver) Perfect instantaneous CSI Perfect statistical CSI

CSI (transmitter)
Imperfect CSI: Generic
Gauss-Markov model
(TDD or FDD protocol)

Imperfect CSI: Explicit
LMMSE estimation
(TDD protocol)

Pilot contamination No (not applicable) Yes

Power control Yes, arbitrary. No, only by precoding
structure.

Power constraints Fixed power per cell:
tr(FFH) = P .

Fixed power per user:
1
K tr(FFH) = P .

Spatial channel
properties Cell specific User specific

Asymptotic SINRs Denominator: Interfer-
ence + noise

Denominator: Noise is
negligible

Performance opti-
mization

Joint maximization of the
asymptotic SINRs

Maximization of
(weighted) minimum
SINR.

Table 3.1: System model overview comparison table for single cell and multi
cell.
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Interference Aware RZF
Precoding

In the previous chapter we looked at massive multiple input multiple output
(MIMO) systems where, e.g., one thousand base station (BS) antennas serve
one hundred users. We focused on precoding complexity, which is a primary
concern in such large systems. A major goal of massive MIMO is to remove
intra and inter cell interference. In order to better deal with the inter cell
part of this, we propose in the following an interference-aware regularized zero
forcing (RZF) variant of a precoding scheme for multi cell downlink systems that
efficiently mitigates induced interference, while not requiring direct cooperation.
Yet, one might argue that inter cell interference is a weakness of this scheme
in large scale antenna systems, due to pilot contamination, combined with high
spatial resolution and large array gain.

The advantages are more evident, when dealing with small cells (SCs); pos-
sibly user deployed ones. Here interference issues can become even more pro-
nounced, as the number of antennas available for interference mitigation is “not
massive”. Also, in such networks cooperation between BSs is rather difficult,
hence one prefers to use precoding schemes that require little to no coopera-
tion and use already available CSI as advantageously as possible. On a more
positive note, SCs probably employ much fewer BSs antennas and serve much
fewer users, than massive MIMO BSs. Hence the precoding complexity of linear
schemes is usually rather manageable.

A large body of research indicates that interference still is a major limiting
factor for capacity in multi cell scenarios [23, 24]. The situation is unlikely to
improve, as modern cellular networks serve a multitude of users, using the same
time/frequency resources. In general, we see a trend to using more and more
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antennas for interference mitigation, e.g., via the massive MIMO approach [97].
Here, the number of transmit antennas surpasses the number of served user ter-
minals (UTs) by an order of magnitude. Independent of this specific approach,
the surplus antennas can be used to mitigate interference by using spatial pre-
coding [36, 71, 57, 24]. The interference problem is generally compounded by the
effect of imperfect knowledge concerning the channel state information (CSI).
Such imperfections are unavoidable, as imperfect estimation algorithms, lim-
ited number of orthogonal pilot sequences, mobile UTs, delays, etc. can not be
avoided in practice. Hence, one is interested in employing precoding schemes
that are robust to CSI estimation errors and exploit the available CSI as effi-
ciently as possible.

Arguably, the most successful and practically applicable precoding scheme
used today is RZF precoding [34] (also known as minimum mean square error
(MMSE) precoding, transmit Wiener filter, generalized eigenvalue-based beam-
former, etc.; see [36, Remark 3.2] for a comprehensive history of this precoding
scheme). Classical RZF precoders are only defined for single cell systems and
thus do not take inter cell interference into account. Disregarding available
information about inter cell interference is particularly detrimental in high den-
sity scenarios, where high interference levels are the main performance limiting
factor. It is, hence, advisable to look for RZF related precoding schemes that
exploit any additional information about out-of-cell interference. Early multi
cell extensions of the RZF scheme do not take the quality of CSI into account
[176] and later ones either rely on heuristic distributed optimization algorithms
or on inter cell cooperation [177] to determine the precoding vector. Thus, they
offer limited insight into the precoder structure, how the precoder works and
how it can be improved.

An intuitive extension of the single cell RZF, with the goal of completely
eliminating induced interference is to substitute the intra cell channel matrix
H in the precoder formulation F = H(HHH+ξI)−1 by a matrix Ȟ, which is
H projected onto the space orthogonal to the inter cell channel matrices, i.e.,
F̌ = Ȟ

(
ȞHȞ+ξI

)−1
. Hence induced interference can be completely removed,

if the CSI is perfectly known. However, it is immediately clear that this is a very
harsh requirement, since the projection negatively affects the amount of signal
energy received at the served UTs (unless H = Ȟ). Assuming the precoding
objective is system wide sum-rate optimisation, one realizes that single cell RZF
is probably not optimal, since it reduces the rate in other cells due to induced
interference. The projected channel version of RZF is probably also not optimal,
since it might incur significant signal energy loss. Thus, a trade-off between the
two extremes is expected to be beneficial, especially when the channel matrices
are estimated with dissimilar quality. In this chapter we propose and analyse the
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following class of precoders, that we denote interference-aware RZF (iaRZF):

Fmm =
(

L∑
l=1

αml Ĥm
l (Ĥm

l )H +ξmINm

)−1

Ĥm
mν

1
2
m . (4.1)

Here, the imperfect estimate of each aggregated channel matrices from a base
station (BS) m to the UTs in cell l, is denoted Ĥm

l . The factor ξm is a regular-
ization parameter and precoder normalization is done via the variable νm. We
notice that each channel matrix is assigned a factor αml , that can be interpreted
as the importance placed on the respective estimated channel. This structure
can behave according to our motivational intuitive trade-off by selecting appro-
priate weights, as will be shown later on. It is already easy to see that we fall
back on single cell RZF under perfect CSI for αml = 0, l 6= m and αmm = 1.
The weights αml allow balancing signal power directed to the served users with
interference induced to other cells. This can be used to optimise sum-rate per-
formance in certain cases, as will be shown in Section 4.1. In general the optimal
weights are not known and, being in a non cooperative (i.e., we do not transmit
to UTs in other cells) and imperfect CSI context, classical UL/DL duality re-
sults can not be applied to find these weights. We note that every BS can try to
estimate the interference from other cells without explicit inter cell cooperation
or communication, by means of blind or known pilot based schemes, though the
CSI quality might be rather poor. Such estimation might be considered as im-
plicit coordination. In [46] a simplified version of iaRZF was discussed, where a
single subset of UT channels was weighted with respect to an estimated receive
covariance matrix of all interference channels. Hoydis et al. argued, that “large
regularization parameters make the precoding vectors more orthogonal to the
interference subspace”, but they did not conclusively and rigorously show how
or why this is achieved. The iaRZF structure is also partially based on the work
in [36, Eq (3.33)]. There one of the most recent and general treatments of the
multi cell RZF precoder is found, along with proof that the proposed structure
is optimal w.r.t. many utility functions of practical interest (see also [38]).

This chapter analyses the proposed iaRZF scheme, showing that it can signif-
icantly improve sum-rate performance in high interference multi cellular scenar-
ios. In particular, it is not necessary to have reliable estimations of interfering
channels; even very poor CSI allow for significant gains. We facilitate intuitive
understanding of the precoder through new methods of analysis in both finite
and large dimensions. Special emphasis is placed on the induced interference
mitigation mechanism of iaRZF. To obtain fundamental insights, we consider
the large-system regime in which the number of transmit antennas and UTs are
both large. Furthermore, new finite dimensional approaches for analysing multi
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Figure 4.1: Simple 2 BS Downlink System.

cell RZF precoding schemes are introduced and applied for limiting cases. We
derive deterministic expressions for the asymptotic user rates, which also serve
as accurate approximations in practical non-asymptotic regimes. Merely, the
channel statistics are needed for calculation and implementation of our deter-
ministic expressions. These novel expressions generalize the prior work in [92]
for single cell systems and in [47] for multi cell systems where only deterministic
statistical CSI is utilized for suppression of inter cell interference. Then, these
extensions are used to optimize the sum rate of the iaRZF precoding scheme
in limiting cases. Insights gathered from this lead us to propose and motivate
an appropriate heuristic scaling of the precoder weights w.r.t. various system
parameters, that offers close to optimal sum rate performance; also in non-limit
cases.

Apart from the standard general notation introduced in the front matter,
this chapter uses the following specialised conventions. Superscripts generally
refer to the origin (e.g., cell m) and subscripts generally denote the destination
(e.g., cell l or UT k of cell l), when both information are needed. We also employ
⊥⊥ and 6⊥⊥ to mean stochastic independence and dependence, respectively.

4.1 Understanding iaRZF

In order to intuitively understand and motivate the iaRZF precoder we first
analyse its behaviour and impact in a relatively simple system, which is intro-
duced in the following subsection.

4.1.1 Simple System

We start by examining a simple downlink system depicted in Figure 4.1 that
is a further simplification of the Wyner model [178, 179]. It features 2 BSs,
BS1 and BS2, with N antennas each. Every BS serves one cell with K single
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antenna users. For convenience we introduce the notations c = K/N and x̄ =
mod (x, 2)+1, x ∈ {1, 2}. In order to circumvent scheduling complications, we
assume N ≥ K. The aggregated channel matrix between BSx and the affiliated
users is denoted Hx = [hx,1, . . . ,hx,K ] ∈ CN×K and the matrix pertaining to
the users of the other cell Gx(ε) = [gx,1, . . . ,gx,K ] ∈ CN×K , which is usually
abbreviated as Gx. We generally treat ε as an interference channel gain/path-
loss factor. The precoding matrix used at BSx is designated by Fx ∈ CN×K .
For the channel realizations we choose a simple block-wise fast fading model,
where hx,k ∼ CN (0, 1

N IN ) and gx,k ∼ CN (0, ε 1
N IN ) for k = 1, . . . ,K.

Denoting fx,k the kth column of Fx, Fx[k] as Fx with its kth column removed
and nx,k ∼ CN (0, 1) the received additive Gaussian noise at UTx,k, we define
the received signal at UTx,k as

yx,k = hH
x,kfx,ksx,k+ hH

x,kFx[k]sx[k]︸ ︷︷ ︸
intra cell interference

+ gH
x̄,kFx̄sx̄︸ ︷︷ ︸

inter cell interference

+nx,k

where sx ∼ CN (0, ρxIN )1 is the vector of transmitted Gaussian symbols. It de-
fines the average per UT transmit power of BSx as ρx (normalized w.r.t. noise).
The notations sx[k] and sx,k designate the transmit vector without symbol k
and the transmit symbol of UTx,k.

When calculating the precoder Fx, we assume that the channel Hx can be
correctly estimated, however, we allow for mis-estimation of the “inter cell inter-
ference channel” Gx by adopting again the generic Gauss-Markov formulation

Ĝx =
√

1−τ2Gx+τG̃x .

Choosing g̃x,k ∼ CN (0, ε 1
N IN ), we can vary the available CSI quality by ad-

justing 0 ≤ τ ≤ 1 appropriately.

In this section we choose the precoding to be the previously introduced
iaRZF, the unnormalised form of which the simple system reads

Mx =
(
αxHxHH

x+βxĜxĜH
x+ξxI

)−1
Hx . (4.2)

One remarks that the normalization of the identity matrix can also be controlled
by only scaling αx and βx at the same time and fixing ξx to an arbitrary value
(e.g., 1). We still keep all three variables to facilitate easy adaptation to appli-
cations that are closer to traditional RZF (set α, β = 1) or closer to the general

1We remark that ρx is of order 1.
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precoder (set ξ = 1). We assume the following normalization of the precoder:

Fx =
√
K

Mx√
tr (MH

xMx)

i.e., it is assured that the sum energy of the precoder tr (FH
xFx) is K.2

Remark 4.1 (Channel Scaling 1/N). The statistics of the channel matrices
in this section incorporate the factor 1/N , which simplifies comparisons with
the later, more general, large-scale results (see Section 4.2). This can also be
interpreted, as transferring a scaling of the transmit power into the channel
itself. The precoder formulations presented in the current section can be simply
rewritten to fit the more traditional statistics of hk ∼ CN (0, IN ) and gk ∼
CN (0, εIN ), by using

M̃x =
(
αxHxHH

x+βxĜxĜH
x+NξxI

)−1
Hx

instead of M. This equation shows that, under the chosen model, the regu-
larization implicitly scales with N . However, one can either chose ξ or α, β
appropriately, to achieve any scaling.

4.1.2 Performance of Simple System

First, we compare the general performance of the proposed iaRZF scheme with
classical approaches, i.e., non-cooperative zero-forcing (ZF), maximum-ratio
transmission (MRT) and RZF. The rate of UTx,k can be defined as

rx,k = log2

(
1+

Sigx,k
Intax,k+Intrx,k+1

)
where

Sigx,k = ρxhH
x,kfx,kfH

x,khx,k
Intax,k = ρxhH

x,kFx[k]FH
x[k]hx,k

Intrx,k = ρx̄gH
x̄,kFx̄FH

x̄gx̄,k

denote the received signal power, received intra cell interference and received
inter cell interference, respectively.

For comparison we used the following (pre-normalisation) precoders: MMRT
x =

Hx, MZF
x = Hx(HH

xHx)−1, MRZF
x = Hx(HH

xHx+ K
Nρx

I)−1, where the regular-
ization in MRZF

x is chosen according to [38, 92]. The iaRZF weights have been
2It can be shown, using results from Appendix 4.6.3.1 by taking χi = 1 ∀i, that this implies

‖fx,k‖2
2 → 1, almost surely, under Assumption 4.1 for the given simplified system.
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Figure 4.2: Average user rate vs. transmit power to noise ratio (N = 160,
K = 40, ε = 0.7, ρ1 = ρ2 = ρ).

chosen to be α = β = Nρx and ξ = 1, hence simplifying comparison with
RZF precoding. The corresponding performance graphs, obtained by extensive
Monte-Carlo (MC) simulations, can be found in Figure 4.2.

We observe that iaRZF largely outperforms the other schemes. This is not
surprising, as the non-cooperative schemes do not take information about the
interfered UTs into account. What is surprising, however, is the gain in per-
formance even for very bad channel estimates (see curve τ = 0.5). Only for
extremely bad CSI we observe that iaRZF wastes energy due to non-optimized
choice of α, β. Thus, it performs worse than the other schemes, that do not
take τ into account for precoding. This problem can easily be circumvented by
choosing proper weights that let β → 0 for τ → 1; as will be shown later on.

4.1.3 iaRZF for αx, βx → ∞

As has been briefly remarked by Hoydis et al. in [46], the iaRZF weights αx
and βx should, intuitively, allow to project the transmitted signal to subspaces
orthogonal to the UTx’s (“own users”) and UTx̄’s (“other users”) channels,
respectively. This behaviour, in the limit cases of αx or βx →∞, is analysed in
this subsection.

4.1.3.1 Finite Dimensional Analysis

Limiting ourselves to finite dimensional methods and to the perfect CSI case
(τ = 0), we can already obtain the following insights.
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First, we introduce the notation P⊥X as a projection matrix on the space
orthogonal to the column space of X and we remind ourselves that ξ = 1 is still
assumed. Following the path outlined in Appendix 4.6.2.1, one finds for the
limit αx →∞ and assuming HH

xHx invertible (true with probability 1):

αxMx
αx→∞−→ Hx (HH

xHx)−1− (4.3)

P⊥Hx
Gx

(
β−1
x I+GH

xP⊥Hx
Gx

)−1 GH
xHx (HH

xHx)−1
.

Recall that the received signal at the UTs of BSx in our simple model, due to
(only) the intra cell users, is given as3

yintra
x = HH

xFxsx
Lem 4.1= νHH

xHx (HH
xHx)−1 sx = νsx

where the precoder normalisation leaves a scaling factor ν that is independent
of αx. The Lemma 4.1 used here can be found in Appendix 4.6.1. Thus, we
see that for αx →∞ and βx bounded, the precoder acts similar to a traditional
ZF precoder. Thus, the intra cell interference is completely suppressed in our
system. It remains to mention that due to the iaRZF definition, exact ZF can
only be achieved in the limit for N = K, where Hx(HH

xHx)−1 = (HxHH
x)−1Hx

assuming the inverses exist.

Looking at the limit βx →∞, outlined again in Appendix 4.6.2.1, one arrives
at

Mx
βx→∞−→

[
P⊥Gx

−P⊥Gx
Hx

(
α−1
x I+HH

xP⊥Gx
Hx

)−1 HH
xP⊥Gx

]
Hx (4.4)

=Ȟ
(
I+αȞHȞ

)−1
(4.5)

where we introduced Ȟ = P⊥GH, as the channel matrix H projected on the
space orthogonal to the channels of G. One remembers that the received signal
due to inter cell interference in our simple model is given as

yinter
x = GH

x̄Fx̄sx̄

which, via (4.4) and Lemma 4.1, directly gives yinter
x = 0. I.e., we see that for

βx →∞ and αx bounded, the induced inter cell interference vanishes. In (4.5),
we finally see one of the main motivators for defining iaRZF, in the presented
form. Choosing βx = 0 gives the standard single cell RZF solution; choosing
βx → ∞ gives an intuitively reasonable RZF precoder on projected channels

3Realise: HH
x

[
Hx (HH

xHx)−1−P⊥HxGx

(
β−1
x I+GH

xP⊥HxGx

)−1
GH
xHx (HH

xHx)−1
]

=

HH
x

[
Hx (HH

xHx)−1].
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that makes sure no interference is induced in the other cell. It stands to reason
that a sum rate optimal solution can be found as a trade-off between these two
extremes, by balancing induced interference and received signal power.

4.1.3.2 Large-Scale Analysis

We want to be able to study the impact of all system parameters on the average
rate performance in more detail. Many insights on this matter are hidden by
the inherent randomness of the signal to interference plus noise ratios (SINRs).
In order to find an expression of the sum rate that does not rely on random
quantities, we anticipate results from Subsection 4.2.5. There we find a deter-
ministic limit to which the random values of SINRx almost surely converge,
when N,K → ∞, assuming 0 < c < ∞. This will also serve to motivate,
how those later results are advantageous to intuitively and easily analyse more
general system models pertaining to iaRZF formulations. We can adapt the re-
sults from Theorem 4.1 to fit our the current simplified model, by choosing L =
2,Kx = K,Nx = N,χxx = 1, χxx̄ = ε, τxx̄ = τ, τxx = 0, αxx = αx, α

x
x̄ = βx, ξ = 1,

Px = ρx, for x ∈ {1, 2}. Doing so ultimately results in the following performance
indicators Sigx

a.s.−−−−−−−→
N,K→+∞

Sigx and Intx
a.s.−−−−−−−→

N,K→+∞
Intx, where

Sigx = Px

(
1− cα2

xe
2
x

(1+αxex)2−
cβ2
xε

2e2
x

(1+βxεex)2

)
Intx = Pxc

1
(1+αxex)2︸ ︷︷ ︸

from BS x

+Px̄cε
1+2βx̄ετ2ex̄+β2

x̄ε
2τ2e2

x̄

(1+βx̄εex̄)2︸ ︷︷ ︸
from BS x̄

(4.6)

∆=IntBSx
x +IntBSx̄

x

ex =
(

1+ cαx
1+αxex

+ cβxε

1+βxεex

)−1
(4.7)

where ex is the unique non negative solution to the fixed point equation (4.7).
These expressions are precise in the large-scale regime (N,K →∞, 0 < K/N <

∞) and good approximations for finite dimensions. As a consequence of the con-
tinuous mapping theorem the above finally implies SINRx

a.s.−−−−−−−→
N,K→+∞

SINRx =

Sigx( Intx+1 )−1.
After realizing that 0 < lim inf ex < lim sup ex < ∞ for K,N → ∞ (see

Lemma 4.4), the large-scale formulations give the insights we already obtained
from the finite dimensional analysis (see previous subsection). Slightly simpli-
fying (4.6) to reflect the perfect CSI case (τ = 0), one obtains

lim
αx→∞

IntBSx
x = lim

αx→∞
Pxc

1
(1+αxex)2 = 0
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lim
βx→∞

IntBSx̄
x = lim

βx→∞
Px̄c

ε

(1+βxεex)2 = 0

i.e., for αx →∞ the intra cell interference vanishes and for βx →∞ the induced
inter cell interference vanishes. Hence, at this point we have re-obtained the
results from the previous subsection, which only used on finite dimensional
techniques.

The large system formulation can also be used to judge the impact of the
practically very important case of mis-estimation of the channels to the other
cell’s users. Remembering again 0 < lim inf ex < lim sup ex <∞ and (4.6) leads
to

lim
αx→∞

Pxc
1

(1+αxex)2 = 0

lim
βx→∞

Px̄c
(β−2
x +2ετ2exβ

−1
x +ε2τ2e2

x)ε(
β−1
x +εex

)2 = Px̄cτ
2ε

i.e., for αx → ∞ the intra cell interference still vanishes, but for βx → ∞
the induced inter cell interference converges to Px̄cτ2ε. Hence we see that the
induced inter cell interference cannot be completely cancelled any more, due to
imperfect CSI. The impact of this is directly proportional to the transmit power,
distance/gain, number of excessive antennas (N−K) and CSI quality obtained
by the interfering BS.

4.1.3.3 Large Scale Optimization

One advantage of the large-scale approximation, is the possibility to find asymp-
totically optimal weights for the limit behaviour of iaRZF. However, to keep the
calculations within reasonable effort, one needs to limit the model to P1 =
P2 = P . In this case the symmetry of the system entails α1 = α2 = α and
β1 = β2 = β. Employing the steps from the previous subsection, we obtain a
complete formulation for the large-scale approximation of the (now equal) SINR
values, when α → ∞. This is denoted SINRα→∞ = Sigα→∞

(
1+Intα→∞

)−1
,

where

Sigα→∞ = P

(
1−c− cβ2ε2e2

(1+βεe)2

)
Intα→∞ = Pcε

1+2βετ2e+β2ε2τ2e2

(1+βεe)2

and

e
∆=eα→∞ =

(
1+ c

e
+ cβε

1+βεe

)−1
. (4.8)
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The optimal values of the weight β in limit case α → ∞ can be found by
solving ∂SINRα→∞

/∂β = 0. This leads (see Appendix 4.6.2.3) to

βα→∞opt = P (1−τ2)
Pcετ2+1 . (4.9)

This states, that in the perfect CSI case (τ = 0), one should chose β equal
to the transmit power of the BSs. It also shows how one should scale β in
between the two obvious solutions, i.e., full weight on the interfering channel
information for perfect CSI and no weight (disregard all information on the
interfering channel) for random CSI (τ = 1). We remark that the interference
channel gain factor ε is also implicitly included in the precoder. Thus for ε→ 0,
we have β‖ĜH

xĜx‖F → 0, while β remains bounded. Hence no energy is wasted
to precode for non-existent interference, as one would expect.

The same large-scale optimization can also be carried out for the limit of β →
∞. The SINR optimal weight for α can be found as (details in Appendix 4.6.2.4)

αβ→∞opt = P

Pcετ2+1 = 1
cετ2+1/P . (4.10)

The result states, analogue to the previous outcome, that in the perfect CSI case
(τ = 0), one should chose α equal to the transmit power of the BSs. However,
unlike for βα→∞opt , the implications for other limit-cases are not so clear. We
see that increasing the transmit power also increases the weight α, up to the
maximum value of 1/(cετ2). The weight reduces as the interference worsens, i.e.,
when τ2, ε grow. This makes sense, as the precoder would give more importance
on the interfering channel (by indirectly increasing β via normalization). The
weight is also reduced, if the cell performance is expected to be bad, i.e., c
approaches 1, which makes sense from a sum rate optimisation point of view.

Finally, we can easily calculate the SINR in the limit of both α and β inde-
pendently tending to infinity:

SINRα,β→∞ = P (1−2c)
Pcετ2+1 .

We use this result particularly in Figure 4.6 to define the eventual limit.

The rationale behind all analyses in this section is, that optimal weights in
the limit case often make for good heuristic approximations in more general
cases. For instance, one can re-introduce the weights, found under the large-
scale assumption, into the finite dimensional limit formulations. Particularly
interesting for this approach is combining (4.9) with (4.3) to achieve a new
structure, which could be considered a heuristic interference aware zeroforcing
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Figure 4.3: Average user rate vs. precoder weight; DE: Lines, MC: Markers
(N = 160, K = 40, τ = 0.4, ε = 0.7, P = 10dB).

(iaZF) precoder:

MiaZF
x = Hx (HH

xHx)−1−P⊥Hx
Ĝx

×
(
Pcετ2+1
P (1−τ2) I+ĜH

xP⊥Hx
Ĝx

)−1

ĜH
xHx (HH

xHx)−1
.

4.1.3.4 Graphical Interpretation of the Results

We will now proceed to show and compare the influence of the results from the
previous subsection on the system performance of our simple model. Particu-
larly interesting here are comparisons to numerically found, sum rate optimal
weights.

Figure 4.3 shows the agreement of the large-scale rate expressions (lines)
and corresponding MC results (markers). In the graph, we plot the several
combinations of the weights (α, β). The non-fixed variable (either α or β) is
then used as the respective abscissa. Furthermore we see that for each chosen
value of α, β, there exists a complementary α, β that optimizes the sum rate
performance. Furthermore, one observes that letting α and/or β →∞ generally
results in suboptimal performance.

In Figure 4.4 we analyse the average UT rate with respect to CSI randomness
(τ), for different sets of precoder weights (α, β), that (mostly) adapt to the avail-
able CSI quality. The values (αlsopt and βlsopt) are obtained using 2D line search.
Crucially, we see that the performance under (αlsopt, βlsopt) and (αβ→∞opt , βα→∞opt ) is
practically the same (the curves actually are the same within plotting precision).
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Figure 4.4: Average user rate vs. CSI quality for adaptive precoder weights
(N = 160, K = 40, ε = 0.7, P = 10dB).

The plot also contains the pair (αlsopt0, 0), which corresponds to MMSE precod-
ing. The weight αlsopt is again found by line search, hence we name the curve
“optimal” (w.r.t sum rate) MMSE precoding. The performance is constant, as
the precoder does not take the interfering channel (i.e., τ) into account. How-
ever, we see that the optimally weighted iaRZF reduced back to MMSE, when
the channel estimation is purely random.

In Figure 4.5 we illustrate the effect of (sub-optimally, but conveniently)
choosing a constant value for β. We set α = αβ→∞opt for all curves and also give
the familiar (αβ→∞opt , βα→∞opt ) curve, as a benchmark. Furthermore, the actual
value of βlsopt is given on a second axis to illustrate how one would need to adapt
β for optimal average rate performance. Overall one observes that a constant
value for β is (unsurprisingly) only acceptable for a limited region of the CSI
quality spectrum. Small values of β fit well for large τ , middle values fit well
for small τ . Overly large (or small) βs do not reach optimal performance in any
region.

Finally, Figure 4.6 shows the impact of interference channel gain (ε) on over-
all system performance. We re-introduce notation of iaZF here, which follows
naturally from taking the iaRZF scheme and letting α → ∞. For comparison
purposes the iaRZF curve for τ = 0 (and optimal weights) is included. One ob-
serves a similar gap between iaZF and iaRZF for other values of τ . The variable
ε is seen to implicitly act like the weight β, like it was remarked before. So we
observe that the influence of channel mis-estimation is aggravated for large ε.

The encouraging performance of iaRZF using the optimal weights derived
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Figure 4.7: Illustration of a general heterogeneous downlink system.

under limit assumptions, paired with the promise of simple and intuitive in-
sights, provides motivation for the next section, where we will apply the iaRZF
scheme to a more general system.

4.2 General System for iaRZF Analysis

4.2.1 System Model

In the following, we analyse cellular downlink multi-user MIMO systems, of the
more general type illustrated in Fig. 4.7. Each of the L cells consists of one BS
associated with a number of single antenna UTs. In more detail, the lth BS
is equipped with Nl transmit antennas and serves Kl UTs. We generally set
Nl ≥ Kl in order to avoid scheduling complications. We assume transmission
on a single narrow-band carrier, full transmit-buffers, and universal frequency
reuse among the cells.

The lth BS transmits a data symbol vector sl = [sl,1, . . . , sl,Kl ]T intended
for its Kl uniquely associated UTs. This BS uses the linear precoding matrix
Fll ∈ CNl×Kl , where the columns f ll,k ∈ CNl constitute the precoding vectors for
each UT. We note that BSs do not directly interact with each other and users
from other cells are explicitly not served. Thus, the received signal yl,k ∈ C at
the kth UT in cell l is

yl,k =
√
χll,k(hll,k)Hf ll,ksl,k+

∑
k′ 6=k

√
χll,k(hll,k)Hf ll,k′sl,k′

+
∑
m 6=l

√
χml,k(hml,k)HFmmsm+nl,k

where nl,k ∼ CN (0, 1) an additive noise term. The transmission symbols are
chosen from a Gaussian codebook, i.e., sl,k ∼ CN (0, 1). We assume block-wise
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small scale Rayleigh fading, thus the channel vectors are modeled as hml,k ∼
CN (0, 1

Nm
INm). The path-loss and other large-scale fading effects are incorpo-

rated in the χml,k factors. The scaling factor 1
Nm

in the fading variances is of
technical nature and utilized in the asymptotic analysis. It can be cancelled for a
given arbitrarily sized system by modifying the transmission power accordingly;
similar to Remark 4.1.

4.2.2 Imperfect Channel State Information

The UTs are assumed to perfectly estimate the respective channels to their
serving BS, which enables coherent reception. This is reasonable, even for mod-
erately fast travelling users, if proper downlink reference signals are alternated
with data symbols. Generally, downlink CSI can be obtained using either a
time-division duplex protocol where the BS acquires channel knowledge from
uplink pilot signalling [47] or a frequency-division duplex protocol, where tem-
poral correlation is exploited as in [147]. In both cases, the transmitter usually
has imperfect knowledge of the instantaneous channel realizations, e.g., due
to imperfect pilot-based channel estimation, delays in the acquisition protocols,
and user mobility. To model imperfect CSI without making explicit assumptions
on the acquisition protocol, we employ again the generic Gauss-Markov formu-
lation (see e.g. [92, 148, 149] and Assumption 3.3) and we define the estimated
channel vectors ĥml,k ∈ CNm to be

ĥml,k =
√
χml,k

[√
(1−(τml )2)hml,k+τml h̃ml,k

]
(4.11)

where h̃ml,k ∼ CN (0, 1
Nm

INm) is the normalized independent estimation error.
Using this formulation, we can set the accuracy of the channel acquisition be-
tween the UTs of cell l and the BS of cell m by selecting τml ∈ [0, 1]; a small
value for τml implies a good estimate. Furthermore, we remark that these choices
imply ĥml,k ∼ CN (0, χml,k 1

Nm
INm). For convenience later on, we define the aggre-

gated estimated channel matrices as Ĥm
l = [ĥml,1, . . . , ĥml,Kl ] ∈ CNm×Kl .

4.2.3 iaRZF and Power Constraints

Following the promising results observed in Section 4.1, we continue our analysis
of the iaRZF precoding matrices Fmm, m = 1, . . . , L, introduced in (4.1). For
some derivations, it will turn out to be useful to restate this precoder as

Fmm =
(
αmmĤm

m(Ĥm
m)H +Zm+ξmINm

)−1
Ĥm
mν

1
2
m
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where Zm =
∑
l 6=m α

m
l Ĥm

l (Ĥm
l )H. The αml can be considered as weights per-

taining to the importance one wishes to attribute to the respective estimated
channel. We remark, that the regularization parameter ξm is usually chosen to
be the number of users over the total transmit power [38] in classical RZF. The
factors νm are used to fulfil the average per UT transmit power constraint Pm4,
pertaining to BS m:

1
Km

tr [Fmm(Fmm)H] = Pm . (4.12)

4.2.4 Performance Measure

Most performance measures in cellular systems are functions of the SINRs at
each UT; e.g., (weighted) sum rate and outage probability. Under the treated
system model, the received signal power (in expectation to the transmitted
symbols s(l)

l,k) at the kth UT of cell l, i.e., UTl,k, is

Sig(l)
l,k = Es

[∣∣∣√χll,k(hll,k)Hf ll,ks
(l)
l,k

∣∣∣2]
= χll,k(hll,k)Hf ll,k(f ll,k)Hhll,k (4.13)

where the expectation is taken with respect to the transmitted symbols s(l)
l,k.

Similarly, the interference power is

Int(l)
l,k = Es


∣∣∣∣∣∣
∑∑

(m,k′)6=(l,k)

√
χml,k(hml,k)Hfmm,k′s

(m)
m,k′

∣∣∣∣∣∣
2


=
∑
m 6=l

χml,k(hml,k)HFmm(Fmm)Hhml,k+χll,k(hll,k)HFll[k](Fll[k])Hhll,k (4.14)

where

Fll[k] =
(
αllĤl

l(Ĥl
l)H +Zl+ξlINl

)−1
Ĥl
l[k]ν

1
2
l (4.15)

and Ĥl
l[k] is Ĥl

l with its kth column removed. Hence, the SINR at UTl,k can be
expressed as

SINRl,k = Sig(l)
l,k (Intl,k+1)−1

. (4.16)

In the following, we focus on the sum rate, which is a commonly used per-
formance measure utilizing the SINR values and straightforward to interpret.

4We remark that choosing Pm of order 1 will assure proper scaling of all terms of the SINR
in the following (see (4.16)).
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Under the assumption that interference is treated as noise, the sum rate ex-
pressed as

Rsum =
∑
l,k

rl,k =
∑
l,k

log(1+SINRl,k)

where SINRs are random quantities defined by the system model. This random-
ness obscures the influence of the system parameters on sum rate performance.

4.2.5 Deterministic Equivalent of the SINR

In order to obtain tractable and insightful expressions of the system perfor-
mance, we propose a large scale approximation. This allows us to state the sum
rate expression in a deterministic and compact form that can readily be inter-
preted and optimized. Also, the large system approximations are accurate in
both massive MIMO systems and conventional small-scale MIMO of tractable
size, as will be evidenced later via simulations (see Subsection 4.3.2). In certain
special cases, optimizations of such approximations w.r.t. many performance
measures, can be carried out analytically (see for example [92]). In almost all
cases, optimizations can be done numerically. We will derive a deterministic
equivalent (DE) of the SINR values that allows for a large scale approxima-
tion of the sum rate expression in (4.16). DEs are preferable to standard limit
calculations, as they are precise in the limit case, are also defined for finite
dimensions and provably approach the random quantity for increasing dimen-
sions (see Chapter 2). The DE is based on the following technical assumption.
Introducing the ratio ci = Ki/Ni, we make the following assumption.

Assumption A-4.1. Ni,Ki →∞, such that for all i we have

0 < lim inf ci ≤ lim sup ci <∞ .

This asymptotic regime is denoted N →∞ for brevity.

Thus, we require for Ni and Ki to grow large at the same speed. By extend-
ing the analytical approach in [92] and [47] to the SINR expression in (4.16),
we obtain a DE of the SINR, which is denoted SINRl,k in the following.

Theorem 4.1 (Deterministic Equivalent of the SINR). Under A-4.1, we have

SINRl,k−SINRl,k
a.s.−−−−→

N→∞
0 .

Here

SINRl,k = Sig(l)
l,k

(
Intl,k+1

)−1
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with

Sig(l)
l,k = νl(χll,k)2e2

l

(
1−(τ ll )2) (yll,k)2

and

Intl,k =
L∑

m=1
νm
(
1+2xml,kem+αml χml,kxml,ke2

m

)
χml,kgm(yml,k)2

given xml,k = αml χ
m
l,k(τml )2. The parameter νm, the abbreviations gm and yml,k,

as well as the corresponding fixed-point equation em and e′m are given in the
following.

First, we define em to be the unique positive solution of the fixed-point equa-
tion

em =

ξm+ 1
Nm

Km∑
j=1

αmmχ
m
m,jy

m
m,j+

1
Nm

∑
l 6=m

Kl∑
k=1

αml χ
m
l,ky

m
l,k

−1

(4.17)

where yml,k =
(

1+αml χml,kem
)−1

. We also have

νm = Pm
Nm
Km

gm
(4.18)

with

gm = − 1
Nm

Km∑
j=1

χmm,je
′
m(ymm,k)2

and e′m can be found directly, once em is known:

e′m =
[

1
Nm

Km∑
j=1

(αmm)2(χmm,j)2(ymm,j)2+ 1
Nm

∑
l 6=m

Kl∑
k=1

(αml )2(χml,k)2(yml,k)2−e−2
m

]−1

.

(4.19)

Proof. See Appendix 4.6.3.

By employing dominated convergence arguments and the continuous map-
ping theorem (Theorem 2.2), we see that Theorem 4.1 implies, for each UT(l, k),

rl,k−log2(1+SINRl,k) a.s.−−−−→
N→∞

0 . (4.20)

These results have already been used in Section 4.1 and will also serve as
the basis in the following.
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4.3 Numerical Results

In this section we will, first, introduce a heuristic generalization of the previ-
ously found (see Paragraph 4.1.3.3) “limit-optimal” iaRZF precoder weights.
Furthermore, we provide simulations that corroborate the viability of the pro-
posed precoder, even in systems that are substantially different to the idealized
system used in Section 4.1.

4.3.1 Heuristic Generalization of Optimal Weights

Paragraph 4.1.3.3 resulted in some optimal iaRZF precoder weights for the case
of 2 BSs and under various assumptions, most prominently that the respective
other weight is infinitely large. We have already observed in Paragraph 4.1.3.4
that these precoder weights, also offer virtually optimal performance, when
they are applied in the non-limit weight case. Now it is natural to go one
step further and to intuitively generalize the heuristic weights to systems with
arbitrary many BSs, transmit powers, CSI randomness and user/antenna ratios.
Following the insights and the structures discovered before (see (4.9) and (4.10)),
we define the general heuristic precoder weights as

α̃ab = Pa(1−(τab )2)
Pbcaεab (τab )2+1 . (4.21)

Here we introduced the new notation εab , which we take to be the average gain
factor between BS a and the UTs of cell b. It is calculated as εab = 1

Kb

∑
k χ

a
b,k.

One can intuitively understand (4.21) by remembering that αab should be propor-
tional to the “importance” of the associated channels (from BSa to UTs b). The
numerator starts out with large weights, i.e., making orthogonality to everyone
a priority, if the interfering BS has large transmit power (Pa). Importance is
lowered for badly estimated channels. The denominator reduces orthogonality
to cells whose performance is expected to be bad, i.e., cb approaches 1, which
makes sense from a sum rate optimisation point of view. However, this aspect
should be revisited, if interference mitigation is deemed more important than
throughput. Weights are also lowered for cells tolerate interference better due to
high own transmit power (Pb). Also, bad channel estimates reduce importance
yet again; analogously to the numerator. The intuitive reason for having εab in
the denominator is not immediately evident, since one would expect to place
lower importance on UTs, which are very far away. However, it becomes clear
once one realizes that the estimated channels in our model are not normalized
(see (4.11)). Thus, the approximate effective weight of the precoder with respect
to a normalized channel is wab = α̃abε

a
b . Hence, for εab → 0, we have wab → 0, i.e.,

no importance is placed on very weak channels. Using the same deliberation,
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Figure 4.8: Geometries of the 2 BS and 4 BS Downlink Models.

we notice that for εab → ∞ we have wab tending to some constant value and
for τab → 0 we have wab → Paε

a
b . Especially the last observation is important

in order to see why no energy is wasted on far away interferers/weak channels,
even if one has perfect CSI of those channels.

We remind ourselves that in order to arrive at (4.21), we assumed ξ = 1.
Furthermore, systems serving one cluster of closely located UTs per BS, repro-
duce the initial simplified system closely and, thus, should respond particularly
well to the heuristic weights.

4.3.2 Performance

In order to verify the heuristic approach, we introduce two models (see Fig-
ure 4.8). In the first one, two BSs are distanced 1.5 units, have a height of 0.1
units and use 160 antennas each. Around each BS, 40 single antenna UTs of
height 0, are randomly (uniformly) distributed within a radius of 1 unit. Hence,
one obtains clear non-overlapping clusters that are closely related to the Wyner-
like simplified model in Section 4.1. The pathloss between each BS and all UTs
is defined as the inverse of the distance to the power of 2.8. The quality of CSI
estimation between a BS and its associated UTs is defined by τ1

1 = τ2
2 = τa and

inter cell wise by τ1
2 = τ2

1 = τb. Due to the symmetry we can assume that the
chosen channel weighting pertaining to intra cell channels are the same for both
BSs and will be denoted α1

1 = α2
2 = α. Similarly, the inter cell weights will be

denoted α1
2 = α2

1 = β. The transmit power to noise ratio (per UT) at each BS
is taken equal, i.e., P1 = P2 = P . For this system we obtain the average UT
rate performance, shown in Figure 4.9. The markers denote results of MC sim-
ulations that randomize over UT placement scenarios and channel realizations,
when the precoding weights are chosen as in (4.21). The main point of this
graph is to compare the performance under heuristic weights and numerically
optimal weights, found via 2D line search. We observe that the performance
of both approaches is virtually the same. Furthermore, one sees that constant
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Figure 4.9: 2 BSs: Average rate vs. transmit power to noise ratio (Nx = 160,
Kx = 40, PX = P , (τa, τb) ∈ {(0, 0.4), (0.1, 0.5)}, i.e., case a and b).

weights exhibit the same problems as in Section 4.1. Interesting is also the ob-
servation that, when one diverges prominently from the simple system (τa = 0),
by choosing τa = 0.1, the heuristic weights still perform practically the same as
exhaustive numerical optimization.

Finally, we look a more complex system of 4 BSs (see Figure 4.8). The BSs,
of height 0.1 units, are placed on the corners of a square with edge length 1 units.
The UTs are of height 0 and are distributed uniformly in a disc of radius 0.5
units around the corresponding BS. The pathloss is calculated as the inverse of
distance to the power of 2.8. Figure 4.10 shows the performance of the 4 BS sys-
tem, assuming that each BS has 160 antennas with a power constraint of P per
UT and serves 40 UTs. We assume that the CSI randomness is overwhelmingly
determined by inter-BS distance, i.e., we have τa for each BS to the adherent
UTs, τb for each BS to UTs of BSs 1 unit away and τc for each BS to UTs of BSs√

2 units away. It is, thus, reasonable to chose τa < τb < τc. In the graph we
compare the heuristic weights with various other weighting approaches. Round
markers stem from a Monte-Carlo simulation of the performance pertaining to
the heuristic weights, in order to confirm the applicability of our DEs. The
benchmark numeric result in this figure is obtained from optimizing the 8 pre-
coder weights via extensive numerical search, using α̃ab as a starting point. The
observed performance is always better than the heuristic approach, which is not
surprising, as the randomly positioned and non-clustered structure of UTs is
taking the scenario very far away from the original simplified system of Sec-
tion 4.1. More interesting is the performance of taking αab = Pa(1−(τab )2).
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Figure 4.10: 4 BSs: Average rate vs. transmit power to noise ratio (Nx = 160,
Kx = 40, Px = P , (τa, τb, τc) = (0.1, 0.3, 0.4)).

This configuration conforms to not taking any interference into account, i.e.,
εab = 0. We observe that most of the gains of the heuristic method come from
this part; only at very high powers, where interference is the dominant prob-
lem, the Pa(1−(τab )2) approach is noticeably suboptimal. Similarly, choosing
αab = (1−(τab )2) performs well at middle and high transmit signal to noise ratio
(SNR), but losses efficacy at low SNR. The constant weight approach behaves
like in Section 4.1, in that it is only a good match for a limited part of the curve.
However, given the “mis-matched” general scenario, we see that it can also out-
perform the heuristic weights. For comparison purposes, we also compare with
standard non-cooperative RZF, as defined in Subsection 4.1.2.

In general, employing α̃ab is most advantageous in high interference scenar-
ios, as would be expected due to the “interference aware” conception of the
precoder. The figure generally implies that the heuristic approach is close to
the numerical optimum, however we can not be sure that numeric optimization
finds the true optimum. Carrying out the same simulations for different levels
of CSI randomness, one observes that the gain of using the heuristic variant of
iaRZF is substantial as long as the estimations of the interfering channels are
not too bad. For extremely bad CSI, standard non-cooperative RZF can out-
perform iaRZF with α̃ab . We also note that better CSI widens the gap between
the α̃ab and αab = Pa(1−(τab )2) weighted iaRZF versions.
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4.4 Interference Alignment and iaRZF

In some respects the proposed iaRZF has connections to interference alignment
(IA) [180, 181]. Both approaches adapt the precoder to be less aligned with
the “interference conferring” subspaces of the channel matrices, thus mitigating
induced interference. In the case of multi-antenna receivers, also the receive
combiners would need to be taken into account, but here we only look at MU-
MIMO with single antenna terminals. The classical IA condition is WHF→ 0
(power of un-cancelled interference goes to zero, where W = I is the combiner
matrix), which describes a, usually overdetermined, system of equations in the
extreme case of very large SNR. The IA approach and the subspace adaptation
is well understood in this regime, yet in the low and middle SNR region the
IA technique fails. The iaRZF precoder on the other hand, gives us a very
clear and intuitive approach for all SNR regimes. Imperfect knowledge about
interfering channels, is weighted by a clear and plausible process and directly
changes the balance of induced interference to signal power of the precoder.
In the extreme case of β → ∞, it even fulfils the IA condition of completely
nulling the interference (see (4.4)). However by choosing β and especially α

appropriately, we can have an intermediate trade-off of interference and noise
at non-large SNRs. We have found rules to properly chose these values and even
though iaRZF is limited to a specific precoder structure, but it is a natural one,
which is known to be an optimal structure in many circumstances.

4.5 Conclusion iaRZF

In this chapter, we analysed a linear precoder structure for for multi cell sys-
tems, based on an intuitive trade-off and recent results on multi cell RZF, de-
noted iaRZF. It was shown that the relegation of interference into orthogonal
subspaces by iaRZF can be explained rigorously and intuitively, even without
assuming large scale systems. For example, one can indeed observe that the
precoder can either completely get rid of inter cell or intra cell interference
(assuming perfect channel knowledge).

Stating and proving new results from large-scale random matrix theory, al-
lowed us to give more conclusive and intuitive insights into the behaviour of
the precoder, especially with respect to imperfect CSI knowledge and induced
interference mitigation. The effectiveness of these large-scale results has been
demonstrated in practical finite dimensional systems. Most importantly, we
concluded that iaRZF can use all available (also very bad) interference channel
knowledge to obtain significant performance gains, while not requiring explicit
inter base station cooperation.
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Moreover, it is possible to analytically optimize the iaRZF precoder weights
in certain limit scenarios using our large-scale results. Insights from this were
used to propose a heuristic generalization of the limit optimal iaRZF weight-
ing for arbitrary systems. The efficacy of the heuristic iaRZF approach has
been demonstrated by achieving a sum-rate close to the numerically optimally
weighted iaRZF, for a wide range of general and practical systems. The ef-
fectiveness of our heuristic approach has been intuitively explained by mainly
balancing the importance of available knowledge about various channel and sys-
tem variables.

4.6 Appendix iaRZF

4.6.1 Useful Notation and Lemmas

In this appendix we give some further frequently used lemmas and definitions
to facilitate exposition for the rest of the appendix.

Lemma 4.1 (Unitary Projection Matrices). Let X be an N×K complex matrix,
where N ≥ K and rank(X) = K. We define PX = X (XHX)−1 XH and P⊥X =
I−PX. It follows (see e.g., [182, Chapter 5.13])

P = P2 ⇔ P = PH

P⊥XX = 0⇔ XHP⊥X = 0 .

Generally one denotes PX as the projection matrix onto the column space of X
and P⊥X as the projection matrix onto the orthogonal space of the column space
of X.

Definition 4.1 (Adapted Notation of Resolvents). Given the notations from
Section 4.2, we adapt our general resolvent notation from Definition 2.5, to
reflect the resolvent matrices of Ĥa

a:

Qa
∆=
(
αaaĤa

a(Ĥa
a)H +Za+ξaINa

)−1

and we will also make use of the following modified versions

Qa[bc]
∆=
(
αaaĤa

a(Ĥa
a)H +Za−αab ĥab,c(ĥab,c)H +ξaINa

)−1

Qa[b]
∆=
(
αaaĤa

a(Ĥa
a)H +Za−αaaĥaa,b(ĥaa,b)H +ξaINa

)−1

=
(
αaaĤa

a[b](Ĥa
a[b])H +Za+ξaINa

)−1
.
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Lemma 4.2 (Adapted Notation for Matrix Inversion Lemma I). Building on
Lemma 2.6 and the previously defined resolvent matrices, we have

Qaĥaa,b =
Qa[b]ĥaa,b

1+αaa(ĥaa,b)HQa[b]ĥaa,b
.

where Let Qa[b] is an invertible matrix and ĥaa,b is such that Qa[b]+αaaĥaa,b(ĥaa,b)H

is invertible.

Lemma 4.3. [Adapted Notation Rank-One Perturbation Lemma 2.8] Let Qa

and Qa[b] be the resolvent matrices as defined in Definition 4.1. Then, for any
matrix A we have:

tr
[
A
(
Qa−Qa[b]

)]
≤ 1
ξa
‖A‖2 .

4.6.2 Simple System Limit Behaviour Proofs

In this section we provide the proofs pertaining to the limit behaviour of the
simple system in Section 4.1.

4.6.2.1 Finite Dimensions

In order to simplify the notation we will not explicitly state the index x in the
following, unless needed, hence the normalized precoder F for each of the two
cells is F =

√
KM/

√
tr MMH for M = (αHHH +βGGH +ξI)−1 H.

β → ∞: For the limit when β → ∞ we use (2.3) with A = βGGH +ξI and
CBCH = HαIHH to reformulate the matrix M

M = (αHHH +βGGH +ξI)−1 H

=
[
QG−QGH

(
α−1I+HHQGH

)−1 HHQG

]
H

where

QG = (βGGH +ξI)−1

(2.3)= ξ−1I−ξ−1G
(
ξ

β
I+GHG

)−1
GH .

We now let β → ∞, assuming GHG is invertible (which true with probability
1) and ξ bounded. In this regime, we remember Lemma 4.1, and rewrite QG =
ξ−1P⊥G. One finally arrives at

M β→∞−→
[
ξ−1P⊥G−ξ−2P⊥GH

(
α−1I+ξ−1HHP⊥GH

)−1 HHP⊥G
]
H .

172



Chapter 4. iaRZF 4.6. Appendix iaRZF

Relying further on properties of projection matrices (P⊥G = P⊥GP⊥G, (P⊥G)H =
P⊥G) and introducing the matrix Ȟ = P⊥GH, as the channel matrix H projected
on the space orthogonal to the channels of G, we get

M β→∞−→ ξ−1

[
P⊥GH−P⊥GH

(
ξ

α
I+HHP⊥GP⊥GH

)−1
HHP⊥GP⊥GH

]

=ξ−1

[
Ȟ−Ȟ

(
ξ

α
I+ȞHȞ

)−1(
ȞHȞ+ ξ

α
I− ξ

α
I
)]

=ξ−1

[
Ȟ−Ȟ

(
I− ξ

α

(
ξ

α
I+ȞHȞ

)−1
)]

=Ȟ
(
ξI+αȞHȞ

)−1
.

α → ∞: Introducing the abbreviations QH =
(
HHH + ξ

αI
)−1

and Q̄H =(
HHH+ ξ

αI
)−1

, we can rewrite the matrix M as follows.

αM =
(

HHH + β

α
GGH + ξ

α
I
)−1

H

(2.3)=
[
QH−QHG

(
α

β
I+GHQHG

)−1
GHQH

]
H

(2.4)= HQ̄H−QHG
(
α

β
I+GHQHG

)−1
GHHQ̄H .

Applying (2.5) to the expression
(
HHH + ξ

αI
)−1

+
(
− ξ
αI
)−1

, one eventually
finds the relationship QH = αξ−1 (I−HQ̄HHH

)
. Hence,

αM =HQ̄H−ξ−1 (I−HQ̄HHH
)

×G
[

1
β

I+ξ−1GH
(
I−HQ̄HHH

)
G
]−1

GHHQ̄H .

Now, taking the limit of α→∞, assuming HHH invertible (true with probabil-
ity 1), and recognizing P⊥H = I−H (HHH)−1 HH we arrive at

αM α→∞−→H (HHH)−1−ξ−1
[
I−H (HHH)−1 HH

]
G

×
{
β−1I+ξ−1GH

[
I−H (HHH)−1 HH

]
G
}−1

GHH (HHH)−1

= H (HHH)−1−ξ−1P⊥HG
{
β−1I+ξ−1GHP⊥HG

}−1 GHH (HHH)−1
.
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4.6.2.2 Large-Scale Approximation

In this subsection we primarily show that the fixed point equation e is bounded
in the sense of 0 < lim inf e < lim sup e <∞. This knowledge simplifies the limit
calculations in Subsection 4.1.3 to simple operations. We remind ourselves, that
for perfect and imperfect CSI the resulting fixed point equations are equivalent:

e =
(

1+ c

α−1+e+ cε

β−1+εe

)−1
. (4.22)

Where we abbreviated eα with e for notational convenience.

Lemma 4.4 (e is Bounded). For either α → ∞ and β, ε bounded or β → ∞
and α, ε bounded, we have

0 < lim inf e < lim sup e <∞ .

Proof. 1) e <∞ when α or β →∞.
We take either α→∞ and β, ε bounded or β →∞ and α, ε bounded. To give
a proof by contradiction, we assume that e→∞ and one sees:

lim
e→∞

(
1+ cα

1+αe+ cβε

1+βεe

)−1
= 1 .

This implies that e→ 1 and thus contradicts the original assumption.

2) e positive when α or β →∞.
We take either α→∞ and β, ε bounded or β →∞ and α, ε bounded. For the
case α→∞, we first denote ξ = αe and we look at

ξ =
(

1
α

+ c

1+ξ+ cβε

α+βεξ

)−1
.

Now we assume ξ to be bounded for α→∞

ξ = lim
α→∞

(
1
α

+ c

1+ξ+ cβε

α+βεξ

)−1
=
(

c

1+ξ

)−1

thus implying ξ = 1
c−1 < 0, as c < 1. Case 1 directly contradicts the assumption

and case 2 is contradicting, as e can not be negative for positive values of α, β,
c and ε. Thus, ξ is not bounded for α → ∞, hence e can neither be zero nor
negative. For the case of β →∞, we denote ξ = βe and proceed analogously.
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4.6.2.3 Large-Scale Optimization α→∞

Continuing from Appendix 4.6.2.2, we see that in the limit α → ∞ the large-
scale approximation of the SINR values, pertaining to the users of each cell, i.e.,
SINRα→∞, is indeed as stated in Paragraph 4.1.3.3.

Differentiating SINRα→∞ w.r.t. β, while taking into account that e is an
abbreviation for eα→∞β leads us to

∂SINRα→∞

∂β
= −2Pcε2 [e+βe′]

× t1

[P (cβ2e2ε3τ2+2cβeε2τ2+cε)+β2e2ε2+2βeε+1]2
(4.23)

where we used e′ as shorthand for ∂eα→∞(β)
∂β and

t1 = P [c−1−βεe+2βcεe]+βe+β2e2ε−Px̄τ2 [c−1−βεe+βcεe−β2ce2ε2] .
Realizing that the denominator of (4.23) can not become zero, we have

two possible solutions for ∂SINRα→∞
/∂β = 0. In Lemma 4.5 we show that

e+βe′ > 0, hence we only need to deal with the term t1. We remember from
(4.8) that

c−1−βεe+2βcεe+e+βεe2 = 0 .

Thus,

c−1−βεe+βcεe−β2ce2ε2 = −βcεe−e−βεe2−β2ce2ε2

and similarly

P [c−1−βεe+2βcεe]+βe+β2e2ε = −Pe−Pβεe2+βe+β2εe2 .

Hence,

t1 =
(
εe2+Pτ2ce2ε2)(β− P (1−τ2)

Pcετ2+1

)(
β+ 1

eε

)
.

Given that only the middle term can become zero, we find βopt to be

βopt = P (1−τ2)
Pcετ2+1 . (4.24)

as stated in (4.9). The physical interpretation of the SINR guarantees this point
to be the maximum.
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We used the assumption e+βe′ > 0 to arrive at the previous result. This
claim is proved by the following lemma.

Lemma 4.5. Given the notation and definitions from Appendix 4.6.2.3, we
have that e+βe′ > 0.

Proof. Evoking the results from [101] we know that an object of the form

m(z) =
(
−z+c

∫
t

1+tm(z)dυ(t)
)−1

(4.25)

where υ is a non negative finite measure, is a so-called Stieltjes transform of a
measure υ, defined ∀z /∈ supp (υ). For υ(t) = δ1(t), the Dirac delta function
in 1, we see that

m(z) =
(
−z+c 1

1+m(z)

)−1

is a valid Stieltjes transform. Remembering our previous expressions

e =
(

1+ c

e
+ cβε

1+βεe

)−1

⇔ βεe =
(

1
βε(1−c) + c

1−c
1

1+βεe

)−1

and re-naming ẽ∆=βεe, we have

ẽ =
(

1
βε(1−c) + c

1−c
1

1+ẽ

)−1
.

Thus, by comparing this expression with (4.25), one sees that it is indeed a valid
Stieltjes transform:

ẽ = mµ(z) = mµ

(
− 1
βε(1−c)

)
where µ is an appropriately chosen measure. Going back to our original problem
and remembering the basic relationship ∂/∂β (βe) = β∂/∂βe+e, one recognizes

βe′+e = (βe)′ = (βεe)′

ε
= ẽ′

ε
> 0

as the derivative of a Stieltjes transform, which is always positive. This can
be quickly verified by checking the basic definition of a Stieltjes transform (see
Definition 2.2):

m(z) =
∫
R

1
λ−z

µ(dλ)
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dm(z)
dz

=
∫
R

(
1

λ−z

)2
µ(dλ) .

4.6.2.4 Large-Scale Optimization β →∞

Analogue to the steps in Appendix 4.6.2.3, we can treat the limit of β → ∞.
First, we obtain a complete formulation for the large-scale approximation of the
SINR values pertaining to the users of each cell in the limit, when β →∞. This
is denoted

SINRβ→∞ = Sigβ→∞

1+Intβ→∞

where

Sigβ→∞ = P

(
1−c α2e2

(1+αe)2−c
)

Intβ→∞ = Pc
1

(1+αe)2 +Pcετ2

and

eβ→∞ =
(

1+ cα

1+αe+ c

e

)−1
. (4.26)

Differentiating SINRβ→∞ w.r.t. α, while taking into account that e is an
abbreviation for eβ→∞α , we find

∂SINRβ→∞

∂α
= −2Pc [e+αe′]

×

∆=t2︷ ︸︸ ︷[
Pc−P+αe+α2e2−Pαe+2Pαce+Pαceετ2+Pα2ce2ετ2]

[Pcεα2e2τ2+α2e2+2Pcεαeτ2+2αe+Pcετ2+Pc+1]2
(4.27)

where we used e′ as shorthand for d
dαe

β→∞
α .

Lemma 4.5 can easily be modified to show that e+αe′ > 0, thus it suffices
to look at t2 = 0 in order to find ∂SINRβ→∞

/∂α = 0. We rewrite t2 as

t2 = P (c−1−αe+2αce)+αe+α2e2+Pαceετ2 (1+αe)

and remember from (4.26) that

c−1−αe+2αce = −αe2−e
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so we finally arrive at

t2 = e (1+αe)
(
−P+α+Pαcετ2) .

As α ≥ 0 and e positive, we find from setting
(
−P+α+Pαcετ2) = 0, the

optimal weight for α to be

αβ→∞opt = P

Pcετ2+1 (4.28)

as stated was in (4.10).

4.6.3 Proof of Theorem 4.1

The objective of this section is to find a DE for the SINR term (4.16). A broad
outline of the required steps is as follows. In the beginning of the proof we
condition that Zm is fixed to some realization and we follow the steps given in
[92, Appendix II] for the power normalization νm. Invoking Theorem 2.8 we
obtain the fundamental equations for em. We, then, allow Zm to be random
and apply [90, Theorem 3.13] to obtain (4.17). Invoking Tonelli’s theorem,
it is admissible to apply the two theorems one after the other, as Zm is a
bounded sequence with probability one. The DEs of all required terms are
found by following [92, Appendix II] again. This is true for the terms from
Subsection 4.2.4, as well. However here the interference terms ask for a slightly
more generalised version of [92, Lemma 7].

4.6.3.1 Power Normalization Term

We start by finding a DE of the term νm, which will turn out to be a frequently
reoccurring object, throughout this Section. From (4.12), we see that the power
normalization term νm is defined by the relationship

Pm
νm

Km

Nm
= 1
Nm

tr
[
Ĥm
m(Ĥm

m)HQ2
m

]
= ∂

∂ξm

{
1

αmmNm
tr [(Zm+ξmINm) Qm]

}
(4.29)

where we used the general identities

∂

∂y

{
−tr

[
A (A+B+yI)−1

]}
= tr

[
A (A+B+yI)−2

]
and

A (A+B+yI)−1 = I−(B+yI) (A+B+yI)−1
.
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The goal now is to find a deterministic object X̄m that satisfies

1
Nm

tr
[
Ĥm
m(Ĥm

m)HQ2
m

]
−X̄m

a.s.−−−−→
N→∞

0

for the regime defined in A-4.1.
To do this, we apply Theorem 2.8 to (4.29), where we set the respective

variables to be Ψi = χmm,iI, QN = Zm+ξmINm , BN = αmmĤm
m(Ĥm

m)H +Zm and
z = −ξm. Thus, we find the (partially deterministic) quantity

X̄m = ∂

∂ξm

1
αmmNm

tr
[

(Zm+ξmINm)
(

1
Nm

Km∑
j=1

αmmχ
m
m,jINm

1+ejm
+Zm+ξmINm

)−1]

where ejm = αmmχ
m
m,jem and

em = 1
Nm

tr

 1
Nm

Km∑
j=1

αmmχ
m
m,jINm

1+αmmχmm,jem
+Zm+ξmINm

−1

.

Remark 4.2. In order to reuse the results from this section later on, it will
turn out to be useful to realize the following relationship involving em.

1
Nm

trQm−em
a.s.−−−−→

N→∞
0 . (4.30)

This can be quickly verified by using Theorem 2.8, via choosing R̃i = χmm,iI,
DN = I, BN = αmmĤm

m(Ĥm
m)H +Zm and z = −ξm.

One notices, that the fixed-point equation em contains the term Zm, which is
not deterministic. Thus, the derived objects are not yet DEs. In order to resolve
this we need to condition Zm to be fixed, for now. Under this assumption we
now find the DE of em. To do this, it is necessary to realize that em contains
another Stieltjes transform:

em = 1
Nm

tr
[
(Zm+βmINm)−1

]
where

βm = 1
Nm

Km∑
j=1

αmmχ
m
m,j

1+αmmχmm,jem
+ξm . (4.31)

The solution becomes immediate once we rephrase Zm as

Zm =
∑
l 6=m

Kl∑
k=1

αml ĥml,k(ĥml,k)H = Ȟm
[m]Am

[m]

(
Ȟm

[m]

)H
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where Ȟm
[m] ∈ CNm×K[m] , with K[m] =

∑
l 6=mKl, is the aggregated matrix of

the vectors ȟml,k ∼ CN (0, 1
Nm

INm) ,∀ l 6= m and

Am
[m] = diag

[
αm1 χ

m
1,1, . . . , α

m
1 χ

m
1,K1

, αm2 χ
m
2,1, . . . ,

αm2 χ
m
2,K2

, · · · , αmm−1χ
m
m−1,Km−1

,

αmm+1χ
m
m+1,1, · · · , αmBχmB,KB

]
i.e., a diagonal matrix with the terms pertaining to αmm removed.

One can directly apply [101] or [90][Theorem 3.13, Eq 3.23] with T =
Am

[m] and X = (Ȟm
[m])H. Being careful with the notation (XTXH instead of

(Ȟm
[m])HAm

[m]Ȟm
[m]), we arrive at:

em = 1
Nm

tr
{[

Ȟm
[m]Am

[m](Ȟm
[m])H +βmINm

]−1
}

where

em−
1
Nm

βm+ 1
Nm

L∑
l 6=m

Kl∑
k

αml χ
m
l,k

1+αml χml,kem

−1

a.s.−−−−→
N→∞

0 .

Here we used Remark 4.2 and βm is given in (4.31).
Combining the intermediate results, using Remark 4.2 and the relationship

trA (A+xI)−1 = tr I−xtr (A+xI)−1 with A = Zm+ξmINm , we arrive at

X̄m = − 1
αmmNm

Km∑
j=1

αmmχ
m
m,je

′
m

(1+αmmχmm,jem)2

where e′m is shorthand for ∂/∂ξmem and can found (by prolonged calculus) to
be

e′m = e2
m ·

e2
m

 1
Nm

Km∑
j=1

(αmm)2(χmm,j)2

(1+αmmχmm,jem)2 + 1
Nm

L∑
l 6=m

Kl∑
k

−(αml )2(χml,k)2

(1+αml χml,kem)2

−1

−1

.

After further rearrangement one finally arrives at the result as stated in (4.19),
which concludes this part of the proof.

4.6.3.2 Signal Power Term

The important part of finding the DE of the signal power term (4.13) to find
a DE of (hll,k)HQlĥll,k, which will now first be done. Before proceeding, we
remind ourselves that our chosen model of the estimated channel (4.11) entails
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the following relationships: hll,k ⊥⊥ h̃ll,k, ĥll,k 6⊥⊥ hll,k, ĥll,k 6⊥⊥ h̃ll,k, Ql[k] ⊥⊥ ĥll,k,
Ql[k] ⊥⊥ hll,k. Also, formulations containing ĥll,k can often be split into two terms
comprising hll,k and h̃ll,k. Hence, the application of Lemmas 4.2, 2.4, 4.3 and
Lemma 2.5, in the following is well justified. Employing (4.30) one sees

(hll,k)HQlĥll,k−

√
χll,k

√
(1−(τ ll )2)e(l)

1+αllχll,ke(l)

a.s.−−−−→
N→∞

0 .

Finally, applying this result to the complete formulation (4.13), we arrive at the
familiar term from Theorem 4.1:

Sig(l)
l,k = νl(χll,k)2e2

(l)
(
1−(τ ll )2) (f ll,k)2 .

4.6.3.3 Preparation for Interference Terms

In this subsection we derive the deterministic equivalents of the two terms
(hll,k)HBQlhll,k and (hll,k)HBQlh̃ll,k, where B ∈ CNl×Nl has uniformly bounded
spectral norm w.r.t. Nl and is independent of hll,k and h̃ll,k. The following ap-
proach is based on and slightly generalizes [92, Lemma 7]. First, we realize that
it is helpful to realize an implication of our resolvent notation (Definition 4.1)
and channel estimation model (4.11):

Q−1
a −Q−1

a[bc] = c0hab,c(hab,c)H +c2hab,c(h̃ab,c)H +c2h̃ab,c(hab,c)H +c1h̃ab,c(h̃ab,c)H

(4.32)

where c0 = αabχ
a
b,c

(
1−(τab )2), c1 = αabχ

a
b,c(τab )2 and c2 = αabχ

a
b,c

√
(1−(τab )2)τab .

We omitted designating the dependencies of c on a and b, as this is always
clear from the context. To ease the exposition, we also introduce the following
abbreviations

Y1
∆=(h̃ll,k)HQl[k]hll,k Y4

∆=(hll,k)HBQl[k]hll,k

Y2
∆=(hll,k)HQl[k]h̃ll,k Y5

∆=(h̃ll,k)HQl[k]h̃ll,k

Y3
∆=(hll,k)HBQl[k]h̃ll,k Y6

∆=(hll,k)HQl[k]hll,k .

Finally, we begin with the term (hll,k)HBQlh̃ll,k:

(hll,k)HBQlh̃ll,k−(hll,k)HBQl[k]h̃ll,k
(2.5)= −(hll,k)HBQl

(
Q−1
l −Q−1

l[k]

)
Ql[k]h̃ll,k

and, using (4.32), we find the intermediate relationship

(hll,k)HBQlh̃ll,k (1+c2Y2+c1Y5) = Y3−(hll,k)HBQlhll,k (c0Y2+c2Y5) . (4.33)
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Thus,

(hll,k)HBQlh̃ll,k =
Y3−(hll,k)HBQlhll,k (c0Y2+c2Y5)

1+c2Y2+c1Y5
. (4.34)

Similarly, for the term (hll,k)HBQlhll,k we arrive at

(hll,k)HBQlhll,k (1+c0Y6+c2Y1) = Y4−(hll,k)HBQlh̃ll,k (c2Y5+c1Y1) . (4.35)

Now, applying (4.34) to (4.35), one arrives at

(hll,k)HBQlhll,k
[
(1+c0Y6+c2Y1)− (c0Y2+c2Y5) (c2Y6+c1Y1)

1+c2Y2+c1Y5

]
= Y4−

(hll,k)HBQlh̃ll,k (c2Y6+c1Y1)
1+c2Y2+c1Y5

. (4.36)

Similar to Appendix 4.6.3.2, we notice that Y1, Y2 and Y3, converge almost
surely to 0 in the large system limit:

Y1, Y2, Y3
a.s.−−−−→

N→∞
0 .

We also foresee that

Y4−u′
a.s.−−−−→

N→∞
0 , Y5−u1

a.s.−−−−→
N→∞

0 , Y6−u2
a.s.−−−−→

N→∞
0

where the values for u′ , u1 and u2 are not yet of concern. Thus, (4.36) finally
leads to converges almost surely to

(hll,k)HBQlhll,k
[
(1+c0u2)− (c2u1) (c2u2)

1+c1u1

]
= u′

and we finally find the expression we were looking for

(hll,k)HBQlhll,k−
u′ (1+c1u1)

1+c1u1+c0u2+(c0c1−c22)u1u2

a.s.−−−−→
N→∞

0 . (4.37)

In order to find the second original term ((hll,k)HBQlh̃ll,k), we reform and
plug (4.35) into (4.34) and follow analogously the path we took to arrive at
(4.37). We finally find

(hll,k)HBQlh̃ll,k−
−c2u1u

′

1+c1u1+c0u2+(c0c1−c22)u1u2

a.s.−−−−→
N→∞

0 . (4.38)
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4.6.3.4 Interference Power Terms

Having obtained the preparation results in Appendix 4.6.3.3 we can now con-
tinue to find the DEs for different parts of the interference power term. From
(4.14) we arrive at

Int(l)
l,k =

∑
m 6=l

νmχ
m
l,k (hml,k)HQmĤm

m(Ĥm
m)HQmhml,k︸ ︷︷ ︸

Part Am

+νlχll,k (hll,k)HQlĤl
l[k](Ĥl

l[k])HQlhll,k︸ ︷︷ ︸
Part B

.
(4.39)

We start by treating (4.39) Part B first. Employing the relationships ABD =
ACD+A(B−C)D and (2.5) one finds

Part B =(hll,k)HQl[k]Ĥl
l[k](Ĥl

l[k])HQlĤl
l[k]hll,k

−(hll,k)HQl

[
Q−1
l −Q−1

l[k]

]
Ql[k]Ĥl

l[k](Ĥl
l[k])HQlhll,k .

Using the relationship (4.32) pertaining to
[
Q−1
l −Q−1

l[k]

]
, we can split Part B in

Part B = X1−c0X3X1−c2X3X2−c2X4X1−c1X4X2 .

Where we have found and abbreviated the 4 quadratic forms,

X1 = (hll,k)HQl[k]Ĥl
l[k](Ĥl

l[k])HQlhll,k
X2 = (h̃ll,k)HQl[k]Ĥl

l[k](Ĥl
l[k])HQlhll,k

X3 = (hll,k)HQlhll,k
X4 = (hll,k)HQlh̃ll,k .

To find the deterministic equivalents for X1 and X2, we can use (4.37) and
(4.38), respectively, where B = Ql[k]Ĥl

l[k](Ĥl
l[k])H. The respective variables

u1, u2 and u′ for this choice of B are found (using the same standard techniques
as in Appendix 4.6.3.2) to be

u1 = (h̃ll,k)HQl[k]h̃ll,k ⇒ u1−el
a.s.−−−−→

N→∞
0 .

Analogously,

u1−e(l)
a.s.−−−−→

N→∞
0 .

Hence, we see that u1 and u2 converge to the same value and we will abbreviate
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them henceforth as u. For the still missing term u′ we arrive at

u′ = (hll,k)HQl[k]Ĥl
l[k](Ĥl

l[k])HQl[k]hll,k
⇒ u′−gl

a.s.−−−−→
N→∞

0

where the last step makes have use of the results in Appendix 4.6.3.1. Also,
we remind ourselves that we have c0 = αllχ

l
l,k

(
1−(τ ll )2), c1 = αllχ

l
l,k(τ ll )2 and

c2 = αllχ
l
l,k

√
(1−(τ ll )2)τ ll , hence c0+c1 = αllχ

l
l,k and c0c1−c22 = 0. So, finally,

we have

X1−
u′ (1+c1u)

1+(c1+c0)u
a.s.−−−−→

N→∞
0

and similarly

and X2−
−c2uu′

1+(c1+c0)u
a.s.−−−−→

N→∞
0 .

To find the DEs for X3 and X4, we can again use (4.37) and (4.38), respec-
tively. This time B = I and hence the variables simplify to u′ = u1 = u2

∆=u,
where u−el

a.s.−−−−→
N→∞

0 . Thus,

X3−
u (1+c1u)

1+(c1+c0)u
a.s.−−−−→

N→∞
0

X4−
−c2u2

1+(c1+c0)u
a.s.−−−−→

N→∞
0 .

Combining all results after further simplifications, we can express the DE of
Part B, i.e., Part B, as

Part B = gl
1−(τ ll )2(

1+αllχll,kel
)2 +gl(τ ll )2 .

The next step is to derive the DE of (4.39) Part Am, i.e., Part Am. For-
tunately, the sum obliges m 6= l and, thus, the same derivation like for Part B
applies , as:

Remark. The “column removed” term Ĥl
l[k](Ĥl

l[k])H changes to it’s full version
Ĥm
m(Ĥm

m)H. This is not a problem, as “naturally” Ĥm
m ⊥⊥ hml,k, for all m 6= l.

Hence, we arrive at

Part Am = gm
1−(τml )2(

1+αml χml,kem
)2 +gm(τml )2 .
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Combing Part B and the sum of Part Am with our original expression of the
interference power, we arrive at the familiar expression from Theorem 4.1:

Int(l)
l,k =

L∑
m=1

νmχ
m
l,kgm

(
1+αml χml,kem

)−2

×
(
1+2αml χml,k(τml )2em+(αml )2(χml,k)2(τml )2e2

m

)
.
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Chapter 5

Conclusions & Perspectives

5.1 Conclusions

In the introduction we asked how the wireless industry can prepare for the
looming “data tsunami”. We made the presumption that heterogeneous net-
works composed of macro cell BS, equipped with many antennas, combined
with very dense small cells (both with adequate interference mitigation capabil-
ities) are the most probable answer. The work carried out for this thesis gives
us confidence that such an answer is indeed realistic. Densification via SCs can
provide most of the needed throughput gain. Massive MIMO at the macro cell
BSs can deal with the heterogeneous user requirements (e.g., mobility), while
additionally improving throughput via increased spectral efficiency. Secondly,
induced interference can be managed by a minimum level of cooperation and
by exploiting the spatial resolution of massive MIMO. The interference caused
by the “not-so-massive” MIMO small cells can be efficiently managed, w.r.t.
backhaul requirements and complexity, by using the proposed iaRZF precoding
scheme with heuristic weights from Chapter 4. Also, massive MIMO is brought
one step closer to being a practically realistic technique by the presented TPE
low-complexity precoding scheme from Chapter 3. We remind that the key idea
behind TPE precoding was to start from the relatively antenna-efficient RZF
precoding structure and replacing the computationally expensive matrix times
matrix and inversion operations. The chosen approach was to approximate the
manipulations by a truncated polynomial that allows for efficient “domino-like”
matrix vector product implementation and then finding the needed polynomial
weights by optimizing the DEs of the SINR. The main point of iaRZF was to
build on an intuitive trade-off and recent results on multi cell RZF to obtain
a linear precoding structure with induced interference mitigation capabilities.
We then simplified this approach to a point where RMT allows for insightful
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DEs, yet where extensive interference mitigation is still possible. By analysing
the precoding structure in several extreme cases, both in large and finite di-
mensional regime, we then discovered robust choices for the precoder weights
that approach optimal sum rate performance in many scenarios. In general,
working on this thesis has given us appreciation and intuitive understanding
of the computational complexity of linear precoder in very large systems. As
well as for the heuristics and interference subspace relegation in more general
linear precoding structures. We hope to see the work on both TPE and iaRZF
having some positive influence on future wireless standards. However, more re-
search into both, the techniques treated in this paper, and many other advanced
communications techniques (esp. CoMP), will be needed to finally achieve the
throughput goals.

All analyses and results in this thesis are ultimately based on the RMT
approach. The DEs stemming from this technique offer a convenient abstraction
of the very complex physical layer problem, that relies on relatively few system
parameters. Thus, RMT can offer intuitive insights in the interdependencies of
different variables and also allows for finding analytically optimal solutions that
directly can inform practical applications. RMT has been used before many
times and has been brought to mathematical maturity in other works. We
used the RMT framework in this thesis in a more practical fashion. We hope
that our work has resulted in examples of RMT applications, that can also give
others an understandable access to RMT. While RMT is often of tremendous
use, one should also keep its limitation in mind. Additionally to the points
mentioned in the following perspectives section, one should be mindful of the
sometimes deteriorating performance with large SNR values and the possibly
relatively slow convergence1 of the DEs to their respective random quantity.
Also the “tightness” of the DE is not guaranteed to be the same for each choice
of system variables, thus a common sense approach to interpreting the results
and the occasional verification by classical Monte-Carlo techniques is advised.
Still, as was seen throughout this thesis and many other works, RMT is a
very robust approach for the abstraction of large systems, that also holds for
relatively small system sizes.

5.2 Perspectives

Finally, we want to give some perspective on our obtained results by outlining
some shortcomings and possible improvements. Furthermore, we try to give an
outlook to future evolutions of RMT, especially with respect to some common

1Often only 1/
√
N for first order metrics like the SINR.
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theoretical assumptions in the field of wireless communications.

Outlook for TPE

Given that the main goal of the TPE precoding scheme is the reduction of
practical computation complexity, the evident next step is to verify the theo-
retical gains in practice. Particularly, the sometimes disputed pipelining gains
need to be corroborated by a multi-processor hardware implementation. Fur-
thermore, an easier and less complex approach to calculating the polynomial
weights, would significantly help to attract interest from the wireless industry.
Suboptimal optimization or completely heuristic approaches, informed by the
analytic results, might be of practical interest here. From an analytic point of
view, direct power control and non-scaling power constraints (i.e., non-negligible
noise) for the multi cell scenario, would help to make TPE precoding a more
practically convincing package. However, first tentative experiments in this di-
rection have been disappointing. The solution to such a complex system might
be too contrived to provide insight.

Outlook for iaRZF

The theoretical analysis of the iaRZF precoding scheme is still far from reaching
maturity. User specific spatial channel properties (e.g., via covariance matrices),
direct power control and simultaneous optimization of all system parameters
in non-limit systems, are only a few directions in which analysis needs to be
improved. Furthermore, the same analyses need to be extended to the most
general precoder (introduced as genRZF) and the results need to be compared
with iaRZF. The goal is to estimate, if possible performance gains outweigh
the increased cooperation, complexity, etc. Like many theoretical results, ex-
perimental verification on the efficacy of interference mitigation would help to
justify further efforts in this field. This is particularly true for usage of the
proposed heuristic iaRZF variations within dense small cells.

Perspectives of CSI Models

With the possible deployment of massively heterogeneous communication net-
works (w.r.t. the physical layer) on the horizon, new models for imperfect CSI
adapted to this situation are urgently needed. New frameworks will need to
realistically model a multitude of additional real world effects with acceptable
accuracy, but still need to facilitate analysis. Arguably, the most important first
goal should be the inclusion of heterogeneous mobility and delayed CSI. Further
useful differentiations would include heterogeneous environment variables that
can be used to distinguish macro cells and small cells, more realistic models
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for imperfect pilot signals (already tentatively treated via LMMSE estimation),
more realistic backhaul imperfections (e.g., similar to known quantisation re-
sults) and maybe hardware impairments and energy efficiency aspects.

Two evident ideas to directly include mobility into RMT-analysable models
are discussed in the following: (1) The most simple approach would be to assume
a direct (inversely) proportional relationship between movement speed and the
coherence period, i.e., the available time for channel training. This approach still
neglects many variables and does not define a base line for channel quality, hence
one would most likely forgo this idea for the following, more realized, approach.
(2) A combination of the known Gauss-Markov formulation in time changing
system and LMMSE estimation techniques could be a possible solution. The
base line channel estimation quality for stationary users could be found by
LMMSE methods (including training SNR, non Gaussian symbols and noise).
Then, the impact of user speeds larger than zero could be estimated by adapting
the channel state time evolution of the Gauss-Markov formulation to model
different speeds.

Evolving Application of the RMT Framework

The application of the RMT framework in wireless communications will need to
continuously evolve to fit the needs of future practical problems. Especially, in
order to keep up with the demand for heterogeneous system models. This will
force us to rethink some overly ideal assumption w.r.t. the application of RMT
and also communication theory in general:

Until now we notice a marked bias towards Gaussian distributions in the ap-
plications of RMT. This is most obvious in the common assumptions of Gaussian
signalling and Gaussian noise. Changing these assumption poses problems of
information theoretic nature; Capacities are no longer described by log det for-
mulations, and also other classical metrics (e.g., SINR) take on more complex
forms. Treating these metrics is non evident, but probably possible, with the
current RMT tools. We note that arbitrary transmit signalling, including for
example BPSK and QAM, is already a topic in RMT, but only via the (non-
rigorous) replica method [95, 96]. It is interesting to note here, that most RMT
results (see Chapter 2) only place constraints on the moments of distributions
and do not explicitly demand for Gaussian distributions. Still, most applications
of these theorems (also ours) make this assumption.

In general, more differentiated channel models should be a priority for future
RMT analyses, as well. Even though some RMT research publications take line-
of-sight channels into account, the current basic tools and results (see Chapter 2)
usually lead to very complicated and unintuitive results. In a more global view,
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present-day analyses mostly do not treat non-linear, time-variant, and frequency
dependent channels (usually block fading and flat-fading assumptions), which
hinders analysis of alternative ideas like cross carries coding. Also, mobility,
complex antenna models, more complex fading models (e.g., Nakagami fading),
hardware imperfections, etc., remain open problems. On a more positive note,
random topologies have received much attention recently. Furthermore, tech-
niques that are already very prominently used in practice, like antenna and
“standards-defined” power constraints, scheduling, user grouping and channel
coding, have not yet been addressed using the RMT framework. Also, removing
the implicit full transmit buffer assumption would allow to correctly account for
the amount of active users at the cell edge.

However we need to caution that the RMT framework was introduced as
a means to simplify analysis and make the results more intuitive. Thus, all
of the previous effects should be studied separately, in order to not loose this
advantage. As a note on large system approaches in general, the authors have
sometimes come across the problem “averaging too much”. For example, it is
difficult to get insight into any one specific user, using the large system means.
Additionally, interesting phenomena concerning only a small subset of the sys-
tem tend to “drown in the average”.

Until here we have mostly discussed problems that have not yet been ad-
dressed using RMT, rather than problems that are currently impossible to solve.
The next two points will forcibly require and extension of the RMT framework
itself: An important future problem is the combination of RMT with stochastic
geometry. In order to approach the stochastic geometry framework, we would
need to consider scenarios with, either infinitely many UTs, or infinitely many
BSs. The, respectively, other parameter would then need to grow large. Such a
behaviour is not yet considered in the current RMT tools. Another fundamental
problem for RMT is the treatment of user selection schemes. Here we are need
to select a user channel vector from the whole random channel matrix, based on
some metric. I.e., the vector can not be chosen randomly. This prevents us from
using the trace lemma on quadratic forms like hH

i H[i]HH
[i]hi, as the vector is no

longer independent of the matrix; even when the vector is explicitly removed.
Treating such a scenario is still an open problem with the currently available
RMT tools.

Discussion on (Almost) All-Encompassing Models

Finally, we want to quickly discuss the merits and downsides of an all-encompas-
sing system model w.r.t. RMT analysis. The main disadvantage is already clear
from the outset: Having a model that is too complex obscures the role and in-
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fluence of most single system parameters and their interdependencies. However,
combining all the discussed “big” techniques for future wireless networks (i.e.,
densification, massive MIMO, cooperation and distributed small cells), in mod-
erately higher complexity models might be possible and needed. Particularly,
when one needs to decide what balance/mix of the different techniques is re-
quired, and will perform optimally, in future practical deployment. For instance
the question of how a fixed number of antennas should be distributed in a net-
work covering a fixed area; should all of them be uniformly distributed or should
they be massively centralized at one point? This and many similar questions
can only be answered by creating larger (but probably not all-encompassing)
system models.

For questions on other, more general system models, it is not yet clear how
RMT will need to be adapted. Take for example time varying channels. Until
now our systems have been relatively static. E.g., users may have a certain
movement speed, but they stay fixed at their respective locations, the envi-
ronment is set and does not change, and knowledge about a certain point in
time can not be used to anticipate depended future states. Taking into account
random matrix models, which are governed by stochastic processes, i.e., whose
realisations at a certain time depend on realisations at other times, could open
up a whole new field of applications for RMT.
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