]. M. Références1 and . Gratton, Comportement d'un composite 3DCC : Méso-modélisation pour la prévision de la réponse sous choc, 1998.

R. Kinslow, High-Velocity Impact Phenomena, 1970.

T. Moritoh, S. Matsuoka, T. Ogura, K. G. Nakamura, K. Kondo et al., Dynamic failure of steel under hypervelocity impact of polycarbonate up to 9 km/s, Journal of Applied Physics, vol.93, issue.10, pp.5983-5988
DOI : 10.1063/1.1569979

H. J. Melosh and G. S. Collins, Planetary science: Meteor Crater formed by low-velocity impact, Nature, vol.18, issue.7030, pp.157-157, 2005.
DOI : 10.1006/icar.1997.5713

]. E. Charlton, Image sous license CC BY 2.0, 2012. URL https

L. W. Alvarez, W. Alvarez, F. Asaro, and H. V. Michel, Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, vol.208, issue.4448, pp.1095-1108, 1980.
DOI : 10.1126/science.208.4448.1095

G. S. Collins, H. J. Melosh, and R. A. Marcus, Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteoritics & Planetary Science, vol.49, issue.6, pp.817-840, 2005.
DOI : 10.1111/j.1945-5100.2005.tb00157.x

M. Jutzi and P. Michel, Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets, Icarus, vol.229, issue.0, pp.247-253, 2014.
DOI : 10.1016/j.icarus.2013.11.020

T. J. Arhens, Deflection and fragmentation of near-earth asteroids, Nature, vol.360, pp.429-433, 1992.

R. M. Canup, Lunar-forming collisions with pre-impact rotation, Icarus, vol.196, issue.2, pp.518-538, 2008.
DOI : 10.1016/j.icarus.2008.03.011

J. Gattacceca, M. Boustie, L. Hood, J. Cuq-lelandais, M. Fuller et al., Can the lunar crust be magnetized by shock: Experimental groundtruth, Earth and Planetary Science Letters, vol.299, issue.1-2, pp.42-53, 2010.
DOI : 10.1016/j.epsl.2010.08.011

O. E. Petel, S. Ouellet, J. Loiseau, B. J. Marr, J. et al., The effect of particle strength on the ballistic resistance of shear thickening fluids, Applied Physics Letters, vol.102, issue.6
DOI : 10.1063/1.4791785

Y. Park, Y. Kim, A. H. Baluch, and C. Kim, Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric, International Journal of Impact Engineering, vol.72, issue.0, pp.67-74, 2014.
DOI : 10.1016/j.ijimpeng.2014.05.007

M. J. Forrestal and A. J. Piekutowski, Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0km/s, International Journal of Impact Engineering, vol.24, issue.1, pp.57-67, 2000.
DOI : 10.1016/S0734-743X(99)00033-0

C. E. Anderson and S. A. Royal-timmons, Ballistic performance of confined 99.5%-Al203 ceramic tiles, International Journal of Impact Engineering, vol.19, issue.8, pp.703-713, 1997.
DOI : 10.1016/S0734-743X(97)00006-7

F. Malaise, Réponse d'une céramique à l'impact d'un barreau à grande vitesse (1500 m/s) ? Croisement essais dynamiques -modélisation numérique, École Nationale Supérieure des Arts et Métiers, 1999.

V. Madhu, K. Ramanjaneyulu, T. B. Bhat, and N. K. Gupta, An experimental study of penetration resistance of ceramic armour subjected to projectile impact, S0734743X0500059X. Fifth International Symposium on Impact Engineering, pp.337-350, 2005.
DOI : 10.1016/j.ijimpeng.2005.03.004

E. Medvedovski, Ballistic performance of armour ceramics: Influence of design and structure. Part 1, Ceramics International, vol.36, issue.7, pp.2103-2115, 2010.
DOI : 10.1016/j.ceramint.2010.05.021

W. Arnold and E. Rottenkolber, High Explosive Initiation Behavior by Shaped Charge Jet Impacts, Proceedings of the 12th Hypervelocity Impact Symposium, pp.184-193, 2013.
DOI : 10.1016/j.proeng.2013.05.022

URL : http://doi.org/10.1016/j.proeng.2013.05.022

C. S. Meyer, Modeling Experiments of Hypervelocity Penetration of Adobe by Spheres and Rods, Proceedings of the 12th Hypervelocity Impact Symposium, pp.138-146, 2013.
DOI : 10.1016/j.proeng.2013.05.017

V. K. Luk and M. J. , Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles, International Journal of Impact Engineering, vol.6, issue.4, pp.291-301, 1987.
DOI : 10.1016/0734-743X(87)90096-0

M. J. Forrestal, D. J. Frew, S. J. Hanchak, and N. S. Brar, Penetration of grout and concrete targets with ogive-nose steel projectiles, International Journal of Impact Engineering, vol.18, issue.5, pp.465-476, 1996.
DOI : 10.1016/0734-743X(95)00048-F

B. G. Cour-palais, Hypervelocity impact in metals, glass and composites, Hypervelocity Impact Proceedings of the 1986 Symposium, pp.221-237, 1987.
DOI : 10.1016/0734-743X(87)90040-6

B. G. Cour-palais, A career in applied physics: Apollo through Space Station, International Journal of Impact Engineering, vol.23, issue.1, pp.137-168, 1999.
DOI : 10.1016/S0734-743X(99)00069-X

D. Davison, B. G. Cour-palais, X. Quan, T. J. Holmquist, L. M. Cohen et al., Computer models of micrometeoroid impact on fused silica glass mirrors, International Journal of Impact Engineering, vol.29, issue.1-10, pp.203-214, 2003.
DOI : 10.1016/j.ijimpeng.2003.09.017

Y. Michel, J. Chevalier, C. Durin, C. Espinosa, F. Malaise et al., Hypervelocity impacts on thin brittle targets: Experimental data and SPH simulations, International Journal of Impact Engineering, vol.33, issue.1-12, pp.441-451, 2006.
DOI : 10.1016/j.ijimpeng.2006.09.081

W. P. Schonberg, Characterizing secondary debris impact ejecta, International Journal of Impact Engineering, vol.26, issue.1-10, pp.713-724, 2001.
DOI : 10.1016/S0734-743X(01)00117-8

R. R. Burt and E. L. Christiansen, Hypervelocity impact testing of transparent spacecraft materials, International Journal of Impact Engineering, vol.29, issue.1-10, pp.153-166, 2003.
DOI : 10.1016/j.ijimpeng.2003.09.014

C. E. Anderson and T. J. Holmquist, Application of a computational glass model to compute propagation of failure from ballistic impact of borosilicate glass targets, International Journal of Impact Engineering, vol.56, issue.0, pp.2-11, 2013.
DOI : 10.1016/j.ijimpeng.2012.06.002

Y. Shanbing, S. Gengchen, and T. Qingming, Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target, International Journal of Impact Engineering, vol.15, issue.1, pp.67-77, 1994.
DOI : 10.1016/S0734-743X(05)80007-7

W. Herrmann and A. H. Jones, Correlation of hypervelocity impact data, Fifth Symposium on Hypervelocity Impact, pp.389-438, 1973.

E. L. Christiansen and L. Friesen, Penetration equations for thermal protection materials, International Journal of Impact Engineering, vol.20, issue.1-5, pp.153-164, 1997.
DOI : 10.1016/S0734-743X(97)87489-1

R. C. Tennyson and C. Lamontagne, Hypervelocity impact damage to composites, Composites Part A: Applied Science and Manufacturing, vol.31, issue.8, pp.31785-794, 2000.
DOI : 10.1016/S1359-835X(00)00029-4

. Wu, Residual microstructure associated with impact crater in Ti-6Al-4V meshes reinforced 5A06Al alloy matrix composite. Micron, pp.201-204, 2012.

D. Numata, K. Ohtani, M. Anyoji, K. Takayama, K. Togami et al., HVI tests on CFRP laminates at low temperature, International Journal of Impact Engineering, vol.35, issue.12, pp.1695-1701, 2008.
DOI : 10.1016/j.ijimpeng.2008.07.055

Y. Michel, J. Chevalier, C. Durin, C. Espinosa, F. Malaise et al., Meshless modelling of dynamic behaviour of glasses under intense shock loadings: Application to matter ejection during high velocity impacts on thin brittle targets, Journal de Physique IV (Proceedings), vol.134
DOI : 10.1051/jp4:2006134165

H. K. Bhadeshia, Steels for bearings, Progress in Materials Science, vol.57, issue.2, pp.268-435, 2012.
DOI : 10.1016/j.pmatsci.2011.06.002

G. T. Hahn and A. R. Rosenfield, Metallurgical factors affecting fracture toughness of aluminum alloys, Metallurgical Transactions A, vol.1, issue.4, pp.653-668, 1975.
DOI : 10.1007/BF02672285

T. Teng, Y. Chu, F. Chang, B. Shen, and D. Cheng, Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact, Computational Materials Science, vol.42, issue.1, pp.90-99, 2008.
DOI : 10.1016/j.commatsci.2007.06.013

P. Rossi, O. Coussy, C. Boulay, P. Acker, and Y. Malier, Comparison between plain concrete toughness and steel fibre reinforced concrete toughness, Cement and Concrete Research, vol.16, issue.3, pp.303-313, 1986.
DOI : 10.1016/0008-8846(86)90105-5

URL : https://hal.archives-ouvertes.fr/hal-00586572

D. Hébert, Communication personnelle, 2011.

M. M. Wood and J. E. Weidlich, Empirical evaluation of fracture toughness ; the toughness of quartz, American Mineralogist, vol.6767, pp.9-101065, 1065.

K. Felkins, H. P. Leigh, and A. Jankovic, The royal mail ship Titanic: Did a metallurgical failure cause a night to remember?, JOM, vol.50, issue.1, pp.12-18, 1998.
DOI : 10.1007/s11837-998-0062-7

D. E. Grady, The spall strength of condensed matter, Journal of the Mechanics and Physics of Solids, vol.36, issue.3, pp.353-384, 1988.
DOI : 10.1016/0022-5096(88)90015-4

H. M. Rootare and J. Spencer, A computer program for pore volume and pore area distribution calculations from mercury porosimeter data on particulate or porous materials, Powder Technology, vol.6, issue.1, pp.17-23, 1972.
DOI : 10.1016/0032-5910(72)80051-2

D. E. Grady and J. Lipkin, Criteria for impulsive rock fracture, Geophysical Research Letters, vol.4, issue.20, pp.255-258, 1980.
DOI : 10.1029/GL007i004p00255

D. E. Grady and M. E. Kipp, Continuum modelling of explosive fracture in oil shale International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, pp.147-157, 1980.

J. E. Miller, W. E. Bohl, E. L. Christiansen, and B. A. Davis, Ballistic Performance of Porous-ceramic, Thermal Protection Systems, Proceedings of the 12th Hypervelocity Impact Sympo- sium, pp.584-593, 2013.
DOI : 10.1016/j.proeng.2013.05.067

S. Tanaka, K. Hokamoto, S. Irie, T. Okano, Z. Ren et al., High-velocity impact experiment of aluminum foam sample using powder gun, Measurement, vol.44, issue.10, pp.2185-2189, 2011.
DOI : 10.1016/j.measurement.2011.07.018

W. Riedel, M. Wicklein, and K. Thoma, Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis, International Journal of Impact Engineering, vol.35, issue.3, pp.155-171, 2008.
DOI : 10.1016/j.ijimpeng.2007.02.001

R. G. Sheppard, D. Morgan, D. M. Mathes, and D. J. Bray, Properties and characteristics of graphite for the EDM industry, 2002.

S. P. Marsh, LASL Shock Hugoniot Data, 1980.

S. Takahashi, S. Aoki, and T. Oku, Impact fracture toughness of a nuclear graphite measured by the one-point-bending method, Carbon, vol.31, issue.2, pp.315-3230008, 1993.
DOI : 10.1016/0008-6223(93)90036-A

A. Salazar, J. Y. Pastor, and J. Llorca, In situ observation of damage nucleation in graphite and carbon/carbon composites, Carbon, vol.40, issue.4, pp.609-616
DOI : 10.1016/S0008-6223(01)00156-7

B. A. Latella and T. Liu, The initiation and propagation of thermal shock cracks in graphite, Carbon, vol.44, issue.14, pp.443043-3048, 2006.
DOI : 10.1016/j.carbon.2006.05.011

A. R. Mirhabibi and B. Rand, Graphite flake-carbon composites. II: Fracture behaviour, toughness, notch insensitivity and Weibull modulus, Carbon, vol.45, issue.5, pp.991-997, 2007.
DOI : 10.1016/j.carbon.2006.12.025

M. R. Ayatollahi, F. Berto, and P. Lazzarin, Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite, Carbon, vol.49, issue.7, pp.2465-2474, 2011.
DOI : 10.1016/j.carbon.2011.02.015

J. Lemaitre and J. L. Chaboche, Mécanique des matériaux solides. Sciences SUP, 2004.

K. B. Broberg, Constant velocity crack propagation??????dependence on remote load, International Journal of Solids and Structures, vol.39, issue.26, pp.6403-6410, 2002.
DOI : 10.1016/S0020-7683(02)00346-3

H. J. Melosh, E. V. Ryan, and E. Asphaug, Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts, Journal of Geophysical Research, vol.70, issue.E9, pp.17735-17749, 1992.
DOI : 10.1029/92JE01632

G. R. Johnson and T. J. Holmquist, An improved computational constitutive model for brittle materials, AIP Conference Proceedings, pp.981-984, 1994.
DOI : 10.1063/1.46199

J. Thouvenin, Action d'une onde de choc sur un solide poreux, Journal de Physique, vol.27, issue.3-4, pp.3-4183, 1966.
DOI : 10.1051/jphys:01966002703-4018300

URL : https://hal.archives-ouvertes.fr/jpa-00206385

D. Zagouri, J. Romain, B. Dubrujeaud, and M. Jeandin, LASER SHOCK COMPACTION OF POROUS MATERIALS, Le Journal de Physique IV, vol.01, issue.C7, pp.47-50, 1991.
DOI : 10.1051/jp4:1991710

W. Herrmann, Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials, Journal of Applied Physics, vol.40, issue.6, pp.2490-2499, 1969.
DOI : 10.1063/1.1658021

M. M. Carroll and A. C. Holt, Static and Dynamic Pore???Collapse Relations for Ductile Porous Materials, Journal of Applied Physics, vol.43, issue.4, pp.1626-1636, 1972.
DOI : 10.1063/1.1661372

K. Wünnemann, G. S. Collins, and H. J. Melosh, A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets, Icarus, vol.180, issue.2, pp.514-527, 2006.
DOI : 10.1016/j.icarus.2005.10.013

L. Seaman, R. E. Tokheim, and D. R. Curran, Computational representation of constitutive relations for porous materials, 1974.

C. Mariotti and F. Thomas, Loi de comportement ARMOR pour g??omat??riaux sous chargement dynamique, Le Journal de Physique IV, vol.04, issue.C8, pp.4577-582, 1994.
DOI : 10.1051/jp4:1994890

P. Forquin, A. Arias, and R. Zaera, Role of porosity in controlling the mechanical and impact behaviours of cement-based materials, International Journal of Impact Engineering, vol.35, issue.3, pp.133-146, 2008.
DOI : 10.1016/j.ijimpeng.2007.01.002

URL : https://hal.archives-ouvertes.fr/hal-00499097

C. Rapport-technique, Études portant sur la caractérisation du comportement mécanique de l'EDM3, 1998.

H. O. Pierson, Handbook of Carbon, Graphite, and Fullerenes : Properties, Processing, and Applications. Materials science and process technology series

M. Sancandi, Communication personnelle, 2014.

M. A. Delesse, Procédé mécanique pour déterminer la composition des roches. F. Savy, 1866. URL http

C. Rapport-technique, Estimation des deux paramètres caractéristiques de la loi de Weibull pour la description du comportement statistique de la rupture des matériaux céramiques, 1999.

A. Saghafi, A. R. Mirhabibi, and G. H. Yari, Improved linear regression method for estimating weibull parameters. Theoretical and Applied Fracture Mechanics, pp.180-182, 2009.

E. Lescoute, Étude de la fragmentation dynamique de métaux sous choc laser, 2010.

D. Laporte, Analyse de la réponse d'assemblages collés sous des sollicitations en dynamique rapide. Essais et modélisations, 2011.

J. M. Mihaly, L. E. Lamberson, M. A. Adams, and A. J. Rosakis, A low cost, small bore light-gas gun facility, 11th Hypervelocity Impact Symposium, 2011.

M. A. Meyers, Dynamic Behavior of Materials
DOI : 10.1002/9780470172278

]. P. Wiley94, J. R. Chevrier, and . Klepaczko, Spall fracture : Mechanical and microstructural aspects, Engineering Fracture Mechanics, vol.63, issue.3, pp.273-294, 1994.

C. Demichelis, Laser interaction with solids - A bibliographical review, IEEE Journal of Quantum Electronics, vol.6, issue.10, pp.630-641, 1970.
DOI : 10.1109/JQE.1970.1076329

A. N. Pirri, Theory for laser simulation of hypervelocity impact, Physics of Fluids, vol.20, issue.2, pp.221-228, 1977.
DOI : 10.1063/1.861859

P. E. Nebolsine, Laser simulation of hypervelocity impact, 14th Aerospace Sciences Meeting, 1976.
DOI : 10.2514/6.1976-52

A. Deom, D. D. Lavergne, and D. L. Balageas, Hypervelocity erosion of carboncarbon composites by laser simulation, 6th International Conference on Erosion by Liquid and Solid Impact, 1983.

L. R. Veeser and J. C. Solem, Studies of Laser-Driven Shock Waves in Aluminum, Physical Review Letters, vol.40, issue.21, pp.1391-1394, 1978.
DOI : 10.1103/PhysRevLett.40.1391

A. Ng, D. Parfeniuk, and L. Dasilva, Hugoniot Measurements for Laser-Generated Shock Waves in Aluminum, Physical Review Letters, vol.54, issue.24, pp.2604-2607, 1985.
DOI : 10.1103/PhysRevLett.54.2604

S. Brygoo, Chocs laser sur l'hélium, l'hydrogène et le diamant : une étude expérimentale de la Warm Dense Matter, 2006.

S. Eliezer, I. Gilath, and T. Bar-noy, Laser???induced spall in metals: Experiment and simulation, Journal of Applied Physics, vol.67, issue.2, pp.715-724, 1990.
DOI : 10.1063/1.345777

M. Boustie and F. Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.69, issue.11, pp.7533-7538, 1991.
DOI : 10.1063/1.347570

J. Grun, R. Decoste, B. H. Ripin, and J. Gardner, Characteristics of ablation plasma from planar, laser???driven targets, Applied Physics Letters, vol.39, issue.7, pp.545-547, 1981.
DOI : 10.1063/1.92788

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laser???produced plasma in confined geometry, Journal of Applied Physics, vol.68, issue.2, pp.775-784, 1990.
DOI : 10.1063/1.346783

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, Shock waves from a water-confined laser-generated plasma, Journal of Applied Physics, vol.82, issue.6, pp.2826-2832, 1997.
DOI : 10.1063/1.366113

L. Videau and P. Combis, Manuel d'utilisation du code Esther, 2010.

E. I. Moses, Advances in inertial confinement fusion at the National Ignition Facility (NIF) Fusion Engineering and Design, pp.983-986, 2010.

D. Loison, T. De-rességuier, A. Dragon, P. Mercier, J. Benier et al., Skew photonic Doppler velocimetry to investigate the expansion of a cloud of droplets created by micro-spalling of laser shock-melted metal foils, Journal of Applied Physics, vol.112, issue.11, pp.1-8, 2012.
DOI : 10.1063/1.4769304

URL : https://hal.archives-ouvertes.fr/hal-00990669

P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro et al., Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance, Materials Science and Engineering: A, vol.280, issue.2, pp.294-302, 2000.
DOI : 10.1016/S0921-5093(99)00698-X

C. Bolis, Étude numérique et expérimentale de la séparation par chocs brefs d'interface de revêtements multi-couches Application au test d'adhérence par chocs laser [113] R. Ecault. Experimental and numerical investigation on the dynamic behavior of aeronautic composites under laser shock -Optimization of a shock wave adhesion test for bonded composites, 2004.

J. Cuq-lelandais, Étude du comportement dynamique de matériaux sous choc laser sub-picoseconde, 2010.

B. Cassany and L. Voisin, Reproducibility improvement on high voltage selfbreak water switches, Pulsed Power Conference, pp.604-607, 2005.

L. Voisin, D. Hébert, T. Desanlis, and A. Galtié, Characterization of an intense electron beam driven by CESAR a 600 kV 300 kA pulsed power generator, Plasma Science ICOPS 2007. IEEE 34th International Conference on, pp.547-547, 2007.

D. Hébert, L. Hallo, L. Voisin, T. Desanlis, A. Galtié et al., A KDP equation of state for laser-induced damage applications, Journal of Applied Physics, vol.109, issue.12, p.123527, 2011.
DOI : 10.1063/1.3600210

B. Cadilhon, B. Bicrel, T. Desanlis, A. Galtié, and L. Voisin, PDV investigations on the CESAR facility : 700kV, 350 kA pulsed electron beam, 2012 Beam Instrumentation Workshop, pp.142-145, 2012.

M. Durand, P. Laharrague, P. Lalle, A. Le-bihan, J. Morvan et al., Interferometric laser technique for accurate velocity measurement in shock wave physics, Review of Scientific Instruments, vol.48, issue.3, pp.275-278, 1977.
DOI : 10.1063/1.1135005

L. M. Barker and R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, issue.11, pp.4669-4675, 1972.
DOI : 10.1063/1.1660986

O. T. Strand and T. L. Whitworth, USING THE HETERODYNE METHOD TO MEASURE VELOCITIES ON SHOCK PHYSICS EXPERIMENTS, AIP Conference Proceedings, pp.1143-1146, 2007.
DOI : 10.1063/1.2832921

P. Mercier, J. Bénier, P. Frugier, A. Sollier, M. Le-gloahec-rabec et al., PDV MEASUREMENTS OF NS AND FS LASER DRIVEN SHOCK EXPERIMENTS ON SOLID TARGETS, AIP Conference Proceedings, vol.1195, issue.1, pp.581-584, 2009.
DOI : 10.1063/1.3295205

URL : https://hal.archives-ouvertes.fr/hal-00471204

M. L. Wilkins, Calculation of elastic-plastic flow, 1963.

M. L. Wilkins, Use of artificial viscosity in multidimensional fluid dynamic calculations, Journal of Computational Physics, vol.36, issue.3, pp.281-303, 1980.
DOI : 10.1016/0021-9991(80)90161-8

D. L. Youngs, Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics, pp.273-285, 1982.

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, issue.1, pp.115-173, 1984.
DOI : 10.1016/0021-9991(84)90142-6

D. Hébert, Communication personnelle, 2014.

M. W. Barsoum, A. Murugaiah, S. R. Kalidindi, T. Zhen, and Y. Gogotsi, Kink bands, nonlinear elasticity and nanoindentations in graphite, Carbon, vol.42, issue.8-9, pp.1435-1445, 2004.
DOI : 10.1016/j.carbon.2003.12.090

S. Basu, A. Zhou, and M. W. Barsoum, On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications, Journal of Structural Geology, vol.31, issue.8, pp.31791-801, 2009.
DOI : 10.1016/j.jsg.2009.05.008

G. Seisson, D. Hébert, I. Bertron, J. Chevalier, L. Hallo et al., Dynamic cratering of graphite: Experimental results and simulations, International Journal of Impact Engineering, vol.63, issue.700, pp.18-2814, 2014.
DOI : 10.1016/j.ijimpeng.2013.08.001

URL : https://hal.archives-ouvertes.fr/hal-01058362

Y. Tanabe, T. Saitoh, T. Akatsu, and A. Sawaoka, Crater formation of carbon materials by impact of a high velocity sphere, Carbon, vol.33, issue.11, pp.1547-15520008, 1995.
DOI : 10.1016/0008-6223(95)00113-R

S. Latunde-dada, C. Cheesman, D. Day, W. Harrison, and S. Price, Hypervelocity impacts into graphite, Condensed Matter and Materials Physics Conference (CMMP10), pp.10-1088, 2011.
DOI : 10.1088/1742-6596/286/1/012042

URL : https://hal.archives-ouvertes.fr/hal-00842145

A. J. Piekutowski, M. J. Forrestal, K. L. Poormon, and T. L. Warren, Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s, International Journal of Impact Engineering, vol.23, issue.1, pp.723-734, 1999.
DOI : 10.1016/S0734-743X(99)00117-7

A. Heine, K. E. Weber, and M. Wickert, Experimental investigation of the penetration and perforation of building materials by projectiles, 26th International Symposium on Ballistics, 2011.

E. Schneider and A. Stilp, Projectile penetration into low density media, 8th International Symposium on Ballistics, 1984.

T. G. Trucano and D. E. Grady, Impact shock and penetration fragmentation in porous media, International Journal of Impact Engineering, vol.17, issue.4-6, pp.861-8720734, 1995.
DOI : 10.1016/0734-743X(95)99906-8

T. Kenkmann, G. Trullenque, A. Deutsch, L. Hecht, M. Ebert et al., Deformation and melting of steel projectiles in hypervelocity cratering experiments, Meteoritics & Planetary Science, vol.41, issue.1, pp.150-164, 12018.
DOI : 10.1111/maps.12018

M. W. Chase, NIST-JANAF Thermochemical tables, 1998.

Y. B. Zel-'dovich and Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, 1967.

J. D. Walker, S. Chocron, and S. ). , Momentum enhancement in hypervelocity impact, Symposium on Hypervelocity Impact, pp.1-7, 2010.
DOI : 10.1016/j.ijimpeng.2010.10.026

D. E. Grady, Local inertial effects in dynamic fragmentation, Journal of Applied Physics, vol.53, issue.1, pp.322-325, 1982.
DOI : 10.1063/1.329934

D. E. Gault and E. D. Heitowit, The partition of energy for hypervelocity impact craters formed in rock, 6th Hypervelocity Impact Symposium, 1963.

D. Braslau, Partitioning of energy in hypervelocity impact against loose sand targets, Journal of Geophysical Research, vol.6, issue.20, pp.3987-3999, 1970.
DOI : 10.1029/JB075i020p03987

M. M. Chaudhri and C. R. Kurkjian, Impact of Small Steel Spheres on the Surfaces of "Normal" and "Anomalous" Glasses, Journal of the American Ceramic Society, vol.46, issue.4, pp.404-410, 1986.
DOI : 10.1016/0022-3093(70)90188-2

B. G. Compton, E. A. Gamble, and F. W. Zok, Failure initiation during impact of metal spheres onto ceramic targets, International Journal of Impact Engineering, vol.55, pp.11-23, 2013.
DOI : 10.1016/j.ijimpeng.2012.12.002

G. Seisson, P. Frugier, G. Prudhomme, D. Hébert, L. Berthe et al., Characterization of the dynamic fragmentation of graphite using high-power laser-driven shocks, Journal of Physics D : Applied Physics, 2014.

E. Lescoute, T. De-rességuier, J. Chevalier, M. Boustie, L. Berthe et al., Cuq-Lelandais. Transverse shadowgraphy and new recovery technique to investigate dynamic fragmentation of laser shock-loaded metals, AIP Conference Proceedings, vol.1195, issue.1, pp.1043-1046, 2009.

P. Frugier, Quantification de surfaces par imagerie nanoseconde : application à l'étude d'un matériau soumis à un choc laser, 6e Forum de la Fédération Laser et Plasma, 2014.

D. Loison, T. De-rességuier, and A. Dragon, Ballistic properties of debris produced by laser shock-induced micro-spallation of tin samples, Journal of Physics: Conference Series, vol.500, issue.11, pp.1742-6596, 112041.
DOI : 10.1088/1742-6596/500/11/112041

URL : https://hal.archives-ouvertes.fr/hal-01132181

E. Buresi, J. Coutant, R. Dautray, M. Decroisette, B. Duborgel et al., Laser program development at CEL-V: overview of recent experimental results, Laser and Particle Beams, vol.21, issue.3-4, pp.531-544, 1986.
DOI : 10.1103/PhysRevLett.52.823

J. N. Johnson, Dynamic fracture and spallation in ductile solids, Journal of Applied Physics, vol.52, issue.4, pp.2812-2825, 1981.
DOI : 10.1063/1.329011

I. V. Lomonosov, A. V. Bushman, and V. E. Fortov, Equations of state for metals at high energy densities, AIP Conference Proceedings, pp.117-120, 1994.
DOI : 10.1063/1.46054

D. J. Steinberg, S. G. Cochran, and M. W. Guinan, A constitutive model for metals applicable at high???strain rate, Journal of Applied Physics, vol.51, issue.3, pp.1498-1504, 1980.
DOI : 10.1063/1.327799

D. L. Preston, D. L. Tonks, and D. C. Wallace, Model of plastic deformation for extreme loading conditions, Journal of Applied Physics, vol.93, issue.1, pp.211-220, 2003.
DOI : 10.1063/1.1524706

B. Jodar, Endommagement et fragmentation d'un graphite poreux sous choc