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Optimization, Control, and Game Theoretical Problems
in Consensus Protocols

Abstract: Consensus protocols have gained a lot of interest in the recent years. In
this thesis, we study optimization, control, and game theoreticalproblems arising
in consensus protocols.

First, we study optimization techniques for weight selection probéms to increase
the speed of convergence of discrete-time consensus protocols on network&/e
propose to select the weights by applying an approximation algéthm: minimizing
the Schatten p-norm of the weight matrix. We characterize the approximation error
and we show that the proposed algorithm has the advantage thait can be either
solved in a distributed way using a simple projected gradient methodr solved by
Newton's method and achieve faster convergence.

Then we propose a game theoretical framework for an adversary that caadd
noise to the weights used by averaging protocols to drive the syst away from
consensus. We give the optimal strategies for the game players @hadversary and
the network designer) and we show that a saddle-point equilibriumexists in mixed
strategies.

We also analyze the performance of distributed averaging algotiims where the
information exchanged between neighboring agents is subject to deternmistic uni-
form quantization (e.g., when real values sent by nodes to their neighlye are trun-
cated). Using Lyapunov stability analysis, we characterize the covergence proper-
ties of the resulting nonlinear quantized system.

Consensus algorithms require that nodes exchange messages persibtdn reach
asymptotically consensus. The problem of termination of consensugqocols turns
out to be challenging in the distributed setting. We propose a dstributed algorithm
for asymptotic termination of the consensus protocols. The algathm reduces com-
munication overhead while still guaranteeing convergence to consensus.

Finally, we propose a score metric that evaluates the quality of elsters such
that the faster the random walk mixes in the cluster and the slower i escapes, the
higher is the score. A local clustering algorithm based on this metriés proposed.

Keywords: Consensus Protocols; Distributed Averaging; Distributed Opti-
mization; Multi-agent Systems; Game Theory; Adversarial Intervention; Quantiza-
tion; Clustering.




Optimisation, Contrdle et Théorie des Jeux
dans les Protocoles de Consensus

Résumé :

Les protocoles de consensus ont gagné beaucoup d'intérét ces derniéres années
Dans cette theése, nous étudions les problémes d'optimisation, de cadte, et de
théorie de jeu qui se posent dans ces protocoles.

Tout d'abord, nous étudions les techniques d'optimisation pourdes problémes
de sélection de poids permettant ainsi d'augmenter la vitesse de conggmmce de
protocoles de consensus dans les réseaux. Nous proposons de séleaidaa poids en
appliquant un algorithme d'approximation: minimisation d e la normep de Schatten
de la matrice de poids. Nous caractérisons I'erreur induite par cettapproximation
et nous montrons que l'algorithme proposé a l'avantage gu'ipeut étre soit résolu
de facgon distribuée en utilisant une méthode de gradient projeté siple ou résolu
par la méthode de Newton et avec une convergence plus rapide.

Ensuite, nous proposons un cadre conceptuel d'analyse des jeux d'&isaire qui
peut ajouter du bruit aux poids utilisés par l'algorithme de consensus de moyenne
a n d'éloigner le systéme de consensus. Nous donnons les stratégiggimales pour
les joueurs (l'adversaire et le concepteur du réseau) dans ce jeu et nous nrons
gu'un point-selle (saddle-point equilibrium) existe en stratéges mixtes.

Nous analysons également la performance des algorithmes de consendes
moyenne ou les informations échangées entre les agents voisins samirsises a la
guanti cation uniforme déterministe (les valeurs réelles envoyées pales n+uds de
leurs voisins sont tronquées). En utilisant la notion de stabiké au sens de Lyapunov,
nous caractérisons les propriétés de convergence du systéme quanti énniinéaire
résultant.

Le probléme de la terminaison des protocoles de consensus s'avere dle dans
le cadre distribué. Nous proposons un algorithme distribué par la terminaison des
protocoles de consensus. L'algorithme réduit la charge de commumaition tout en
garantissant la convergence vers un consensus. Enn, nous proposoane mesure
de similarité qui évalue la qualité d'un regroupement (clustering des n+uds dans
un réseau. Un algorithme local de clustering basé sur cette métriquetegonné.

Mots clés : Consensus de Moyenne; Calcul Distribué; Optimisation Dis-
tribuée; Systemes Multi-Agents; Théorie des Jeux; Quanti cation; Regoupement.
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- Vectors are usually denoted by small bold letters (e.g.x;w;:::) -
- Matrices are usually denoted by capital letters (e.g.X;W;:::) -
G network of nodes and links -
\% set of nodes/vertices iVi=n
E set of links/edges JEj=m
In identity matrix n n
1, vector of all ones n 1
D degree diagonal matrix n n
A adjacency matrix of a graph n n
Q incidence matrix of a graph n m
L Laplacian matrix L = D A = QQT n n
I (i;j) link labeled | incident to nodesi and j -
k usually a discrete time index integer
X (k) state vector of the system at iteration k n 1
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Who did not wonder how well interconnected we, human beings, are, not juswith

each other, but with the networked environment surrounding us. Mostof the net-
works we face today are highly interconnected. The internet (connectingts users),
the web (connecting its pages), communication networks, wireless sensoetworks,
smart grids, and more recently social networks are just few exampleds intercon-
nected environments. The interesting common feature to these networks ithat

they can be composed of many small subsystems taking local decisiorméed only
on neighboring interaction rules). These local decisions can have crutienpact on
the entire network. For example, a virus spreading from an infected coputer can
lead to a serious damage in the network, and a video sharing by a watbnnected
user in a social network can make the video go viral touching a largportion of the
population.

In general, a network is formed of nodes (or agents) and communicatiolinks
that allow these nodes to share information and resources. An ageim this thesis
is a state machine (possibly an in nite state one) programmed ¢ run algorithms
according to well de ned dynamics of interactions. These dynamics chargthe
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states of agents (and thus the state of the system), and dependinghdocal decisions
these states can converge or not. The local decisions that cause the statof agents
to converge to a common state are calledonsensus protocolsin this thesis we only
consider discrete-time systems, but the rationale for the algorims studied can be
extended to continuous time systems as well.

Consensus protocols can be applied in various and broad network settjs (as the
ones mentioned earlier) where interactions between neighbors are possiblin fact,
these protocols lie at the intersection of di erent research elds as sstems theory,
computational models, and graph theory. Systems theory is the tras-disciplinary
study of the abstract organization of phenomena without being specic to an exact
type of objects, to their exact properties, or to the qualitative desciption of their
interaction rules in the underlying environment. This abstraction in consensus pro-
tocols is given by modeling the network by a graph of vertices (the ages) connected
by edges (if they communicate), and then running consensus algorithmsn the top
of that.

As in any protocol, some parameters can be tuned in the consensus atigom.
Therefore optimizing the choice of these parameters leads to a better perinance in
terms of energy savings, speed of convergence, or robustness of the systemoise.
In addition to optimization, controlling the states of the agents is very important. In
some cases, bad choice of the parameters can cause the divergence of taees and
destabilization of the system. In fact, designing local interactionrules for agents
that provide some global guarantees is one of the main goals ohe distributed
optimization and control community when the agents are strategic paticipants.
Game theory is a natural tool for analyzing these protocols and degning their
interaction strategies for reaching a stabilizing state having sme global optimization
properties.

In this thesis, we investigate optimization problems concerned with dcrete-
time consensus protocols on networks, such as parameter tuning tadrease speed
of convergence, distributed implementation of global optimization woblems, and
minimization of the communication overhead (Chapters 2 and 5). We ao propose
a game theoretical framework to take into account an adversary in thenetwork
trying to disrupt the communication channel (Chapter 3). We designand analyze
consensus algorithms in the presence of communication constraints guantization
(Chapter 4). We address the problem of detecting communities (clustersjn a
network by proposing a novel scoring metric based on the speed of congence of
consensus protocols and the random walk spectral gap properties (Cpigr 6).

The main motivation for this thesis is the following three applicaions where
consensus protocols are a fundamental block in their design:

Distributed optimization and control,
Environmental monitoring in wireless sensor networks,

Multi-agents coordination.



Thus the contribution of this thesis is to add knowledge to the reseash on consensus
protocols in general and to these applications in particular.

Distributed Optimization and Control

There has been recently a signi cant amount of research on distributed dpmization
in networks. New faster techniques \VOJ13, GJS11 have been proposed for the
traditional dual decomposition approach for separable problera that is well known
in the network community since Kelly's seminal work on TCP [KMT98]. Other
work in [NOQ9, JKJJ08] combines a consensus protocol, that is used to distribute the
computations among the agents, and a subgradient method for the mimization of a
local objective. A di erent approach relies on some intelligent randomexploration of
the possible solution space, e.g., using genetic algorithma&IIC* 10] or the annealed
Gibbs sampler KBC * 07]. In fact, distributed optimization by consensus protocols
in the control community goes back to the 80's due to the work of D.P. Bertsekas
and J. N. Tsitsiklis on decentralized decision making and parallel coputing [BT89].

Consensus problems have also a close relationship with the PageRaalgorithm
used by Google search engine to rank the web pages of the search res{B®98].
Since the number of websites so far is more than 1 billiohthe PageRank requires the
calculation of an eigenvector corresponding to the largest eigenvalug extremely
large but sparse matrix. Therefore, the use of global informatio is not feasible
in this case, and distributed and parallel implementations are madatory [LMO6,
ALNOOQ7]. A possible way is by running consensus-like algorithmdT10, ANPO7].
The PageRank problem has recently been of the interest of the systems andntml
community [IT14].

In networks, algorithms for e cient routing and e cient use of resour ces are
proposed to save energy and speed up the processing. For small netwarkt is pos-
sible for a central unit to be aware of all the components of the netark and decide
how to optimally use a resource on a global view basis. As networksxpand, the
central unit needs to handle a larger amount of data, and centralized dpmization
may become unfeasible especially when the network is dynamiBfH13]. In fact,
the optimal con guration needs to be computed whenever a link fails or here is
any change in the network. Moreover, nodes may have some processitagpabilities
that are not used in the centralized optimization. With these points in mind, it
becomes more convenient to perform distributed optimization relying a local com-
putation at each node and local information exchange between neigloips [Joh0§.
Such distributed approach is intrinsically able to adapt to local network changes.

Environmental Monitoring in Wireless Sensor Networks

Emerging technologies as robotics, multi-vehicle cooperation contf, and environ-
mental monitoring have a driving need for wireless sensor networks.nlthese net-
works, a group of sensors communicates in an ad-hoc manner to accoispl the

Lwww.internetlivestats.com



4 Chapter 1. Introduction

tasks they are deployed to do.

Environmental monitoring requires that sensors measure temperate, pressure,
pollution, etc. in their area of deployment. These measurements can be rayi and if,
for example, the noise is additive, zero mean, and Gaussian, then eactniperature
sensor can have a di erent noisy measurement of the nominal temperater It is well
known that a good lIter of the Gaussian noise (achieving the maxinum likelihood)
is the mean lIter. Therefore, averaging the values of the initial meastements can
give a more accurate estimation, this is known asensor fusion Sensor fusion can be
obtained by decentralized communication between sensors by consensus ools.
In fact, sensor fusion is the motivation provided by Boydet al. for their well known
paper on gossiping consensus protocolBGPS04.

Some computational models are also motivated by wireless sensor census
applications. The proposed model, thepopulation protocols was rst introduced
in [AAD * 04] as a model for distributed (computational capable) agents interadhg
locally to infer some global information about the group. This nodel is motivated
by sensors attached to birds in a ock with the goal to check some gbal properties
relying only on local interactions, like determining whether more than 5% of the
population has elevated temperature.

Multi-agents Coordination

Consensus protocols nd their way also in multi-agents coordinaton problems
[OSFMO07]. The agents in such networks also use the wireless sensor technology
to communicate. A group of robots moving in parallel for example sbuld agree
on the direction of motion and the speed to avoid collision. In fornation control
problems, with a leaderless approach, robots only communicate on aeighbor to
neighbor basis to collectively accomplish a global taskILM03, BA98] (like obstacle
avoidance or trajectory following while maintaining connectivity [JEO7]). The main

di culty for the consensus protocols in this category of problems dces not origi-
nate from the large number of robots, but rather from the switching topology and
connectivity issues.

1.1 Background

1.1.1 The Network Model

Consider a network of n nodes that can exchange messages between each other
through communication links. The network of nodes can be modeled as araph

G = (V;E) where V is the set of vertices, labeled froml to n, and E is the set

of edges, labeled froml to m. (i;j) 2 E if nodesi and ] are connected and can
communicate (they are neighbors). If link (i;j ) has labell, we write | (i:j).2

2Most of the work in this thesis deals with static graphs, howe ver some of the results can be
naturally extended to include a dynamic graph topology.
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Unless otherwise speci ed, graphs are considered to m®nnected and undirected.3
Denote by di the degree of nodé in the graph G.

Any given graph G = (V;E) can be represented and fully characterized using
one of the following matrices: the adjacency matrixA, the incidence matrix Q, or
the Laplacian matrix L. The adjacency matrix A is the symmetric n by n square
matrix whose elements are given as follows,

(
A = 1 if(i;j)2E; (1.1)
0 else

The incidence matrix Q is the n by m matrix where each columnk  (i;j ) corre-
sponds to a link and each column has only two nonzero elements,

(
Qk= 1

Qik = Qi;
The value of Qi can be either+1 or 1 because the graph is undirected. Finally,
the Laplacian matrix is the symmetric n by n square matrix such that,

(1.2)

8
3 1 if(ij)2E;

Lij = 5 di ifi=7j (1.3)
-0 else

These matrices are related by the following formula,
L=D A=QQT;

where D is the degree diagonal matrix D; = d; for all i 2 V). From the given
de nition we can deduce some properties of the Laplacian, since = QQT, then
it is a positive semi-de nite matrix having nonnegative eigenvalies. Given that
L1 = 0, wherel is a vector of all ones, and) is the vector of all zeros, then0 is an
eigenvalue andp%l is the corresponding right unit eigenvector. Since the network
is connected, it is well known that the second smallest eigenvalue of thealplacian
is strictly positive (and is called the algebraic connectivity [Fie73]). These matrices
will appear often in this thesis.

Since most of the results in this thesis are theoretical, simulatios and perfor-
mance evaluation are done to support the theoretical ndings. We mainly relied on
connected random graphg, so we give here an overview of these random networks:

Random Geometric Graphs (RGGs) Pen03 where n nodes are placed uni-
formly at random on a convex unit area (we considered a unit square an),
and any two nodes are connected by an edge if the distance between them is

3Since the graph is undirected graph, then (i;j ) = ( ;i) are eventually the same link.

“In some cases we also did simulations on real networks as Enro company internal email
exchange network [SA04] and the dolphin social network [ LSB™ 03], or static networks as grids or
rings.
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Figure 1.1: RGG with n = 100 nodes and di erent values of the connectivity radius.

q___

less than the radiusr, = ¢ 2" wherecis a constant, see Fig1.1 The
connectivity of RGG graphs is usually studied as a function of the sdar c
[GK98]. RGGs are well suited to model wireless sensor networks where the
nodes have been deployed randomly on a eld and the transmission rge
of each sensor is,. When the transmission ranger, is small, the network

presents clusters of nodes.

Erd®s-Rényi (ER) graphs, these graphs have a parametér for the probability
that a link to exist between any pair of vertices. They are constructed as
follows: starting from an n-nodes-fully-connected graph, every link can be
removed from the graph with probability 1 P and is left there with probability
P.

1.1.2 Average Consensus

The graph G = (V;E) is an abstraction of the network topology connecting com-
municating agents. Each agent (or node) inV can only communicate with its
neighbors . Neighbor relations are described as follows: ageitis a neighbor of
agenti if (i;j ) is an edge ofG, i.e., (i;j ) 2 E. We denote byN; the neighborhood
set of nodei. Every nodei in the network has control over a real-valued scalar
guantity x; called anagreement variablewhose value can be updated by the agent
from time to time. Initially each agent i has a real scalar valuex;(0) 2 R. Let
X
Xave = 1 Xi(0);
Niav

be the average of initial values of all agreement variables in the netrk. The
purpose of the average consensus (distributed averaging) probleia to devise an
algorithm for each agent which enables alh agents to asymptotically determine in
a decentralized manner, the average of the initial values of their scalavariables,
i.e.,

I(I!ilm Xi(K) = Xave: (1.49)
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A well studied approach to the problem is for each agent to use a lineaterative
update rule of the form

X
Xi(k+1) = wii ()i (k) + wij (K)x; (k); 8i 2 V; (1.5)
i 2N;
wherek is a discrete time index, andw; (k) are real-valued weights to be designed
(in general they are time varying specially for dynamic networks). Equation (1.5)
can be written in a matrix form as

x(k+1)= W(K)Xx(K); (1.6)

where x (k) is the state vector of agreement values whoseth element is x;(k), and
W (k) is the weight matrix whose ij -th entry equals wj; (k). Equation (1.5) is the
general state dynamical equation of consensus protocols that will gear often along
this thesis. Therefore, it is important to understand the conditions on the matrix
W (k) that cause the states to converge (and more speci cally to converge tohe
average consensus given by equatiorlid)). Let us rst introduce some notation.
We denote by ; the i-th eigenvalue of a matrix. For real and symmetric matrices,
all eigenvalues are real and hence we can order them 4 2 n), SO i
is the i-th largest eigenvalue of the matrix. Denote by (:) the spectral radius of a
matrix, i.e., =max;j ij, and by the largest eigenvalue in module non considering

1, i.e., =maxf 2; g when the eigﬁnvalues are all real. ; is the i-th largest
singular value of a matrix, i.e., j(X) = i(XTX). Notice that 1(X) = jjXjj2
wherejj:jj2 is the matrix L-induced norm?

1.1.3 Convergence Conditions

Assume that W(0); W(1);::: are independent and identically distributed random
matrices, then su cient conditions for almost sure convergence to consesus starting
from any initial condition are [Bén09:

1"W(k)= 1T; forall k; (1.7)
W(k)1=1; forall k; (1.8)
2(E[W (k) TW (K)]) < L (1.9)

As we will be working on static graphs, then it is important to study the
conditions for convergence when the same matrix is applied at all itetéons, i.e.,
W (k) = W for all k. In this case, XBO4] provides the following set of necessary
and su cient conditions that guarantee convergence to consensus staitig from any
initial condition:

1"wW =1T; (1.10)
W1=1; (1.11)
(W %nT) <1 (1.12)

°A matrix Lp-induced norm is de ned as f0||OWS'pijjjp = max fij Xyjjp 1y 2 K" with jjyjjp =
1g, where K is a eld of real numbers and jjyjj, = CiyiP P is the usual L p-norm of a vector.



8 Chapter 1. Introduction

Note that with these conditions, (W 111T)= (W)and (W 111T)= ,(W).
It is well known that for any matrix X, the following holds [Ber05, p. 351]:

(X)  a(X);

where the equality holds if X is a symmetric matrix. Therefore, (W %11T)

2(W) and thus if (1.9) is satis ed, then so is (1.12), but the inverse is not always
true unlessW is symmetric (W = WT). We also observe that the weights are not
required to be non-negative. Since we will mainly focus on problems wheMW is
symmetric, then the rst two conditions are equivalent to each other and equivalent
to the possibility to write the weight matrix as follows:

W=1 Q diagw) QT; (1.13)
wherel is the identity matrix and w 2 R™ is the vector of all the weights on links

giving a relation between, on one hand, the weights on links ilR™ and, on the other
hand, the weight matrix in R™". To show the importance of this equation, suppose
we have an optimization problem where the elements of the weight matxiw are the
variables of this problem, then the number of variables is12. By applying equation
(1.13, then there will be m variables which guarantees complexity savings specially
on sparse graphs wheren = O(n).

1.1.4 Fastest Consensus

The system equation (.6) for xed weight matrix has a solution given as follows:
x(K) = W*x(0): (1.14)

The speed of convergence of the system given if.(4) is governed by how fastwk
converges. For a real symmetric weight matrix, W has real eigenvalues and it is
diagonalizable. We can writeWX using the orthonormal decomposition as follows
[MeyQ0, p. 517]: X

wk = kGi; (1.15)

|

where G; = vjv[ with v; being the eigenvector corresponding to the eigenvalue;.
We note that the matrices Gjs have the following properti'gs: Gj is the projector
onto the null-space ofW il along the range ofwW il, ;Gi=1andGGj =
0" " 8i 6 j. Conditions (1.10-(1.12 imply that 1 is the largest eigenvalue ofV
in module and is simple. Then =1, Gy =1=n11T andj jj< 1fori> 1. From
the above representation ofW*, we can deduce two important facts:

1. First we can check thatWk actually converges, in fact we havdimy;  x(k) =
limar  Wkx(0) = 1117x(0) = Xavel as expected.
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2. Second, the speed of convergence W is governed by the second largest
eigenvalue in module, i.e., on =maxf ,; ,g= (W G3). For obtaining
the fastest convergence, nodes have to select weights that minimize, or
equivalently maximize the spectral gag of W.

Then the problem of nding the weight matrix that guarantees the fastest conver-
gence can be formalized as follows:

argmin (W)
w
subjectto W = W'; (1.16)
W1-=1,
W 2 Cg;

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarilw; = 0 if (i;j ) 62E.
Problem (1.16) is called in [XB04] the symmetric FDLA problem.

The above minimization problem is a convex one and the function (W) is non-
smooth convex function. It is convex since wherW is a symmetric matrix, we
have (W)= (W Gj) = jjW Gyjj2 which is a composition between an a ne
function and the matrix L-2 norm, and all matrix norms are convex functions. The
function (W)= (W Gj) is non-smooth since the spectral radius of a matrix is
not di erentiable at points where the eigenvalues coalesceFN95]. The process of
minimization itself in ( 1.16) tends to make them coalesce at the solution.

Moreover, the weight matrix solution of the optimization problem is not unique.
For example it can be checked that for the network in Fig.1.2, there are in nite
weight values that can be assigned to the link(2;3) and solve the optimization
problem (1.16), including w3 = 0. Additionally, this shows that adding an extra
link in a graph (e.g., link (2;3) in the Fig. 1.2), does not necessarily reduce the
second largest eigenvalue of the optimal weight matrix.

w

i

HH6

N

4

Figure 1.2: Network of 6 nodes.

5 The spectral gap is the di erence between the largest eigenvalue in module and the second
largest one in module. In this case it is equal to 1
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1.2 Contributions

On the basis of the model equation 1.5), we study in this thesis optimization,
control, and game theoretical problems that may arise. In particula, we raise the
following questions:

Given that the optimal weights to speed up convergence are known (by sdlvg
(1.16 globally), can the nodes in the network eventually infer (or learn)these
weights in a distributed way (without the need of the global knowledg of the
network)?

Given that the network can be susceptible to attacks from an adversarwilling
to drive the system away from consensus, what strategies should besed
by both, the adversary and the network designer, to achieve their gposite
objectives?

Suppose that communication channels between nodes in the network aseb-
ject to bandwidth constraints, and nodes can only receive/send truncated
values of their neighbors' variables. How does this quantization act the
convergence of the resultinghonlinear system?

Given that the state variables are converging asymptotically, can he nodes
know when their state variables are close enough to the asymptoticalue, and
thus decide to stop executing the algorithm only on the bases on sonlecal
knowledge?

Given that nodes forming well connected groups in the graph have sinat
convergence dynamics of their state variables, can we use this obsetiga to
identify these clusters of nodes?

Each chapter in the thesis deals with one of the above questions. Reer than
mentioning here all the previous literature on consensus protocols a general topic,
we preferred to give the related works in every chapter specic to the prblem
studied. Below we list the contribution detailed in the following chapters.

1.2.1 Weight Optimization in Consensus Protocols

As we mentioned in Sectionl.1.4, the convergence rate of the linear consensus
algorithm is determined by the second largest eigenvalue in module dhe weight
matrix W. Optimal weights can be calculated by optimizing spectral properties
of the weight matrix as in problem (1.16), which can be solved by semi-de nite
programming (SDP) as shown by Xiaoet al. in [XB04]. The SDP cannot be
implemented by the nodes in the network unless they have the full knowddge of the
network. For this reason we propose to select the weights through aapproximation
algorithm which minimizes the Schatten p-norm of the weight matrix (essentially
minimizing the trace of WP). We characterize the approximation error and we show
that the approximated solution has the advantage that it can be calculated in a
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distributed way using a simple projected gradient method. We also pvide a faster
Newton's method to determine it.
The publications directly related to this contribution are the foll owing:

[ECNAL15] M. El Chamie, G. Neglia, and K. Avrachenkov, Distributed Weight
Selection in Consensus Protocols by Schatten Norm Minimization , Tappear
in IEEE Transactions on Automatic Control as Technical Note, Volume 60,
No. 4, April 2015.

[ECN14] M. El Chamie and G. Neglia, Newton's Method for Constrained
Norm Minimization and Its Application to Weighted Graph Problems , In
proceedings of the American Control Conference ACC 2014 (Portland, OR,
United States, June 4-6), pp. 6, June 2014.

Other publications also related to this topic are the following:

[SECN13 L. Severini, M. El Chamie, and G. Neglia, Topology versus Link
Strength for Information Dissemination in Networks , In proceedings of AL-
GOTEL 2013 (Pornic, Loire-Atlantique, France, May 28-31), pp. 4, May 2013.

[AECN11] K. Avrachenkov, M. EI Chamie, and G. Neglia, A local average
consensus algorithm for wireless sensor networks, In proceedings &HE
International Conference on Distributed Computing in Sensor Sytems ad
Workshops DCOSS 2011 (Barcelona, Spain June 27-29), pp. 6, Jun81A.

1.2.2 Adversarial Intervention

In this work, we propose a game theoretical framework for an adveasy that can
add noise to the weights used by averaging protocols to drive theystem away from
consensus. We give the equilibrium strategies for the players (thadversary and
the network designer) in this game and we show that a saddle-poinequilibrium
(SPE) does not exist in pure strategies but it does in mixed strategies We also
study dynamic optimal weight selection optimal control for consenas protocols.
For the multi-stage case, the solution exists but can rarely be exmssed in closed-
form equations. In view of this, we apply optimization techniguesto obtain a locally
(and possibly globally) optimizing feasible control path. Forthe one-stage case, we
obtain a closed-form solution for the optimal control and provide su cient conditions
for the existence of a control that makes the system reach consensus inlp one
iteration.
The publication related to this contribution is the following:

[ECB14] M. El Chamie and T. Ba3ar, Optimal Strategies for Dynamic Weight
Selection in Consensus Protocols in the Presence of an Adversary , Accepted
to the 53rd IEEE Conference on Decision and Control CDC 2014 (Los Angeles
California, Dec. 15-17), pp. 6, Dec. 2014.
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1.2.3 Quantized Communication

We analyze the performance of distributed averaging algorithms wire the infor-
mation exchanged between neighboring agents is subject to deterministiuniform
guantization (i.e., real values sent by nodes to their neighbors arertincated). With
such quantization, convergence to the precise average cannot be acléevin general,
but the convergence would be to some value close to it, called quantizemnsensus.
Using Lyapunov stability analysis, we characterize the convergere properties of the
resulting nonlinear quantized system. We show that in nite time and depending
on initial conditions, the algorithm will either cause all n agents to reach a quan-
tized consensus where the consensus value is the largest quantized vaha greater
than the average of their initial values, or will lead all n variables to cycle in a
small neighborhood around the average. In the latter case, we ideifyi tight bounds
for the size of the neighborhood and we further show that the erroccan be made
arbitrarily small by adjusting the algorithm's parameters in a distributed manner.
The publication related to this contribution is the following:

[ECLB14] M. El Chamie, J. Liu, and T. Ba%ar, Design and Analysis of Dis-
tributed Averaging with Quantized Communication, Accepted to the 53rd
IEEE Conference on Decision and Control CDC 2014 (Los Angeles, Califor-
nia, Dec. 15-17), pp. 6, Dec. 2014.

1.2.4 Reducing Communication Overhead

Consensus algorithms require that nodes exchange messages persifeto reach
asymptotically consensus. The problem of termination of consensugqocols turns
out to be challenging in the distributed setting. We propose a taally distributed
algorithm for average consensus where nodes send more messages when tlaeg h
large dierences in their estimates, and reduce their message sending eatwhen
the consensus is almost reached. The convergence of the system is gutgad to
be within a prede ned margin . Tuning the parameter provides a trade-o
between consensus precision and communication overhead of the protocol'he
proposed algorithm is robust against nodes changing their inial values and can
also be applied in dynamic networks with faulty links.

The publication related to this contribution is the following:

[ECNA13] M. El Chamie, G. Neglia, and K. Avrachenkov, Reducing Commu-
nication Overhead for Average Consensus, In proceedings of IFIP Netwking
2013 (Brooklyn, NY, USA, May 22-24), May 2013.

1.2.5 Detecting Communities

Finally, we study the problem of nding well connected clusters (of nales) in a
network. It is well known that the mixing time of a random walk on a network
is related to the speed of convergence of consensus protocols. We propasgcore
metric that evaluates the quality of clusters such that the faster the random walk
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mixes in the cluster and the slower it escapes, the higher is the score. Adal
clustering algorithm based on this metric is given.
The publication related to this contribution is the following:

[AECN14] K. Avrachenkov, M. ElI Chamie, and G. Neglia, Graph Clustering
Based on Mixing Time of Random Walks , In proceedings of the IEEE Iner-
national Conference on Communications ICC 2014 (Sydney, AustraliaJune
10-14), pp. 6, June 2014.

1.2.6 Open Research Direction

We further introduce in the Appendix, as an open future research diection for
consensus protocols, a novel model for averaging on networks with dgmic nodes.
In dynamic networks, the network topology in the network changeswith time. This
can be due to mobility, link failure, or node failure. Most of thework on consensus in
dynamic network settings consider a xed number of nodes trying to reah agreement
in the presence of mobility or non-robust links (so only the links are dynamic).
However, little study has been made on networks with dynamic number fonodes.
In this chapter, we study this problem on simple graph topologynetworks (like
complete graphs and trees) and we leave the full model study as a futel open
research direction.
This work is due to the following presentation:

M. El Chamie, G. Neglia, and K. Avrachenkov, "Averaging on Dynamic Net-
works", 10éme Atelier en Evaluation de Performances (Inria, Sophiéntipolis,
11-13 juin), June 2014. (abstract)
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The speed of convergence of average consensus protocols depends on the tgeigh
selected on links (to neighbors). We address in this chapter how to sait the weights
in a given network in order to have a fast convergence speed for these pogbls. We
approximate the problem of optimal weight selection by the minimgation of the
Schatten p-norm of a matrix with some constraints related to the connectivity of
the underlying network. We rst provide a methodology for solving the Schatten
p-norm optimization using the Newton's method. We then provide a tdally dis-
tributed gradient method to solve the Schatten p-norm optimization problem. By
tuning the parameter p in our proposed distributed minimization, we can simply
trade-o the quality of the solution (i.e., the speed of convergence) dr communi-
cation/computation requirements (in terms of number of messages excinged and
volume of data processed). The weight optimization iterative procedre can also
run in parallel with the consensus protocol and form a joint consenssioptimization
procedure.

2.1 Optimization Problem

We start by introducing formally the problem studied in this chapter. As mentioned
in the introduction, the network of nodes can be modeled as a grape = (V;E)
whereV is the set of vertices, labeled froml to n, and E is the set of edges, then
(i;j) 2 E if nodesi andj are connected and can communicate (they are neighbors)
and JEj = m. We label the edges froml to m. If link (i;j) has labell, we write

I (i;j). Nj is the neighborhood set of node. All graphs in this chapter are
considered to beconnectedand undirected Let x;(0) 2 R be the initial value of the
local variable at nodei. We are interested in computing the average

X
Xave = (1=n) Xi(0);
i=1
in a decentralized manner with nodes only communicating with their neighbos. The
network is supposed to operate synchronously: when a global clocicks, all nodes
in the system perform the iteration of the averaging protocol. At iteration k + 1,
nodei updates its state valuex; as follows:

X
Xi(k+1) = w;xi(k)+ wij Xj (K): (2.1)
i 2N;

As it is commonly assumed, in this chapter we consider that two neighors select
the same weight for each other, i.e.wj = w;;. The matrix form equation is:

x(k+1) = Wx(K); 2.2)

where x (k) is the state vector of the system andW is the weight matrix. The main
problem we are considering in this chapter is how a nodecan choose the weightsvj;
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for its neighbors so that the state vectorx of the system converges fast to consensus.
As we have seen in the introduction, the necessary and su cient conditons for the
convergence of the system to average consensus starting from any ialtvalue are
the following:

1w = 1T; (2.3)

W1 = 1; (2.4)

(W) < 1; (2.5)

where (W) = (W Gj) is the second largest eigenvalue dfV in module and

G = %11T. For symmetric weight matrices, the problem of nding the weight
matrix that guarantees the fastest convergence, also given in the Intrduction, can
be formalized as follows:

argmin (W)
w
subjectto W = W'; (2.6)
W1-=1,
W 2 Cg;

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarilw;; =0 if (i;j ) 62E.
The constraint W = W in the optimization requires any two neighborsi andj to
choose the same weight on their common link  (i;j ) i.e., wj = wji = w;. The
condition W1 = 1 means that at every nodei the sum of all weights on its incident
links plus its self-weight wij must be equal to one. This condition is satis ed if
nodes choose rst weights on links, and then adapt consequently theself-weights
w;i . Thus all three constraints in (2.6) lead to the possibility to write W as follows:

W=1 Q diagw) QT; (2.7

incidence matrix of the graph (given in the introduction chapter asone of the three
matrices that characterize the nodes and links in a graph). ProblemZ.6) is called
in [XB04] the symmetric FDLA problem.

2.2 Related Work

Xiao and Boyd in [XB04] have shown that the symmetric FDLA problem (2.6) can
be formulated as a Semi-De nite Program (SDP) that can be solved bya centralized
unit using interior point methods. The semi-de nite program is the following:

miulimsize S
subjectto sl | Q dagw) Q' G; (2.8)
| Q diagw) Q' Gi sl;
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where s is an auxiliary real optimization variable, A B ifandonly if B A is
positive semi-de nite, and G; = %11T. The output of this program is the optimal
weight vector w 2 R™ such that w;;1 = 1;:::;m is the weight selected for linkl.
The weight matrix can be then deduced fromw using Eq. (2.7).

The limit of such centralized approach to weight selection is shown by th
fact that a popular solver as CVX matlab software for disciplined convex program-
ming [GB11], can only nd the solution of (2.8) for networks with at most tens of
thousands of links.

The optimal solution in larger networks can be found iteratively usng a central-
ized subgradient method. The authors of XB04] present a sub-gradient method for
selecting weights on links in a network by minimizing the following uwconstrained
problem (whose solution is equivalent to solving problemsZ.6) or (2.8)):

argmin r(w)= (I Q diag(w) QT Gy):
w
Each link weight is updated according to the following sub-gradieniteration:
k k K) o (K)

w = w 0gRSigMj; (2.9)
where Wl(k) is the weight on link | at iteration k, gl(k) is the I-th component of a
subgradient g¥) of the objective function calculated inw(®), and & is the step-
size sajisfying the following su cient conditions for convergence, limy (k) =

Oand 4, ® = 1. The components of the sub-gradient can be calculated as
follows:

if r(w)=»(W), then
g= (u u)ddZifl (i) l=21;0m,

whereu; is the i-th component of a unit eigenvector of the weight matrixW (k)
corresponding to the eigenvalue ».

if r(w) = n(W), then
a=(u u)Zifl (Gj);1=21;00m;

where u; is the i-th component of the unit eigenvector of the weight matrix
W (k) corresponding to the eigenvalue .

Contrary to the centralized approach for the subgradient method, ina dis-
tributed solution all the nodes in the network contribute to calculate the solution of
the optimization problem. The whole network then bene ts from nodes' pocessing
capabilities. However, the subgradient approach given above is ndlistributed for
di erent reasons. First, the stepsize used in 2.9) is normalized by jjg(jj which
cannot be locally computed by each node. While this problem can probdp be
circumvented by a di erent choice of the stepsize (without loosing the cavergence
properties of (2.9)), there are other aspects that make problematic this distributed
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implementation. In fact this iterative procedure requires at every stepto calculate
2(W(k)) and (W (K)), and determine an eigenvector corresponding to one of these

two eigenvalues that is the largest in module. For the solution to le really distributed
also these quantities have to be calculated in a distributed way. Ths is not an easy
task. There are some distributed iterative techniques KM04, FGGS09, YFG* 0§
that converge asymptotically to the correct eigenvalue-eigenvector pajrbut then
each step of the optimization procedure requires itself the convergencé an iterative
sub-procedure to calculate the two eigenvalues and the correspondirgggenvectors
with signi cant computation and communication costs. We remark in particular
that at each step the sub-procedure has to run long enough to guaréee that the
estimations are accurate enough to not jeopardize the convergence ofetloptimiza-
tion procedure. Deciding when to terminate the sub-procedure at each stemay
require itself another distributed mechanisms or the use of worstase bounds on the
errors.

A similar optimization problem but with some additional constraints is to nd
the fastest converging algorithm for randomized gossiping, and has been studied
in [BGPS04g. The authors provide a subgradient method that projects the varables
violating the constraints back onto the feasible set. The projectbn can be done in a
distributed way and the stepsize sequence can be calculated at each nodesvdrthe-
less, the gradient of the cost function depends also in this case on emyalues and
eigenvectors of the underlying graph, so its calculation incurs theane problems
exposed above.

Kim et al. in [KGP09] propose a weight selection algorithm using thegth-
order spectral norm minimization (g-SNM). They showed that if a symmetric weight
matrix is considered, then the solution of theg-SNM is equivalent to that of the
symmetric FDLA problem. Nevertheless, their remark is not tailored fo- symmetric
weight matrix because their algorithm is computationally more exgensive than the
SDP. Another global weight optimization to approximate problem (2.6) is given
in [JXM10] where the authors consider a cost function over nite time horizon
and observe numerically that the more eigenvalues are considered inghobjective
function ( 2; 3;:::) the faster it is in the transient phase. In conclusion, how to
solve the problem @.6) in a distributed way is still an open challenge.

Some heuristics for the weight selection problem that guarantee convgence of
the average protocol and attracted some interest in the literature éher due to their
distributed nature or to their easy implementation are the following [XBK07, XB04]:

max degree weights (MD):
W= 41— 8l=1;:11;m;

local degree (Metropolis) weights (LD):
W, = ml (i;j) 8=1;2:::;m;
optimal constant weights (OC):

— 2 —_ e .
W = w0 8l=1;:::;:m;
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where =max ifd;gis the maximum degree in the network andL is the Laplacian
of the graph. A similar heuristic, called neighborhood algorithm(NA) [ AECN11],
was proposed by the author in his master thesisGhall]. Each nodei sets the
weight of a link (i;j ) depending on the similarity between its neighborhood set
and the neighborhood of nodg . NA quanti es such similarity by resorting to the
Jaccard index de ned in the set theory?!

2.3 Schatten Norm Minimization

We change the original minimization problem in (2.6) by considering a di erent cost
function that is a monotonic function of the Schatten norm. The S|g1atten p-norm

of a matrix W is the Lp-norm of its singular values, i.e.,jjWjj, =( ; ip)lzp. The
minimization problem we propose is the following one:
argmin h(w) = jjwijiF,
W
subjectto W = WT'; (2.10)
W1l=1;
W 2 Cg;

wherep is an even positive integer. The following result establishes thatZ.10 is a
smooth convex optimization problem and also it provides an alternave expression
of the cost function in terms of the trace of WP. For this reason we refer to our
problem also asTrace Minimization (TM).

Proposition 1. For any even positive integer p, the function
h(W) = jjwjj% = Tr(WP) is scalar-valued, smooth, and convex on its feasible
domain whenW is symmetric.
Proof. We have Tr(WP) = P L ip. Since W is symmetric, its non-zero singular
values are I;he absolufgr values of its non-zero eigenvaludddy0(. Given that p is
even, then L, P=" ", P Therefore, Tr(WP)= jjwij% .

The Schatten norm jjWjj , is a nonnegative convex function, thenh is convex
because it is the composition of a non-decreasing convex function th&inction xP
where x is non-negative and a convex function BV04, p. 84].

The function is also di erentiable and we have Ber05, p. 411]

@ - .
@y W= POWP By (2.11)

O]

We now illustrate the relation between (2.10 and the optimization (2.6). The
following lemmas will prepare the result:

1For any two sets A, and B, the Jaccard index is: J(A;B) = jA\ Bj5A[ Bj.
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Lemma 1. For any symmetric weight matrix W whose rows (and columns) sum
to 1 and with eigevalues (W) 2(W) n(W), there exist two integers
K12f1;2:::n 1g;K» 2f0;1;2;:::n 1g and a positive constant < 1 such

that for any even positive integemp we have:

1+ (W)PKp Tr(WP) 1+ (W)P(Kp+ Ky P); (2.12)

where _
(W) = (W) =maxf (W), n(W)g !f (W) > 1, (2.13)
(W)=maxf »(W); n(W)g if (W) L

multiplicities. We observe that they are all nhon-negative and thenthey are also
di erent in module. For convenience we consider s = mg =0 for s >r. Sincep is
an even positive integer, it can be written asp = 2q where q positive integer. We
can then write:
X X
Tr(WP) = P= m
i=1 i=1
The matrix W2 has1 as an eigenvalue. Let us denote by its position in the ordered
sequence of distinct eigenvalues, i.e.; = 1. Then it holds:
X
TT(WP)=1+(m; 1)+ m
i6]

If (W)=1 (i.e., 1is the largest eigenvalue in module ofV), then 1 is also the
largest eigenvalue ofW?2 ( 1 = 1). If my > 1, then it has to be either (W) =1
(the multiplicity of the eigenvalue 1 for W is larger than 1) or (W) = 1. In
both cases (W)= (W)=1,

X
TT(WP)=1+(my 1D+ m; !

P
and the result holds with K; = m; 1, K= . ;mjand = ple Ifm =1,
then ,= 3. We can write:

X .q
TTWP)=1+ § my+ m -+
i>2 2
: P p——
and the result holds with Ky = mp, Ko = ,m;,and = 3= 2.
If (W)>1,then ;= (W)?> 1and we can write:
0

1
X . q 1 d
Tr(WP)=1+ f%oml+ m — +(m 1) = X
1 1

i>1
i6]

P
Therbthe result holds with (W) = pT = (W), Ki=mg, K=, ;mj, and
= 2= 1. ]



22 Chapter 2. Weight Optimization in Consensus Protocols

Lemma 2. Let us denote byW, the solution of the minimization problem(2.10).
If the graph of the network is strongly connected then W, < 1 for p su ciently
large.

Proof. If the graph is strongly connected then there are multiple ways to asign the
weights such that the convergence conditions2.3)-(2.5) are satis ed. In particular
the local degree method described in SectioB.2 is one of them. Let us denote by
W(p) its weight matrix. A consequence of the convergence conditions is that is
a simple eigenvalue oW p, and that all other eigenvalues are strictly less than
one in magnitude [XBO4]. It follows that W p) in Lemma 1 is strictly smaller

than one and that limpy  Tr W(pLD) =1. Then there exists a valuepy such that
for eachp > pog
p .
Tr W(LD) < 2

Let us consider the minimization problem .10 for a value p > po. W(p) is a
feasible solution for the problem, then

Tr (W Tr(WP. )< 2

o)
(®) (o)

Using this inequality and Lemma 1, we have:
p p p :
1+ W(p) 1+ W(p) K1 Tr (W(p)) < 2
from which the lemma follows immediately. O

We are now ready to state our main results in the following two prgositions:

Proposition 2. If the graph of the network is strongly connected, then the kb
tion W, of the Schatten Norm minimization problem(2.10 satis es the consensus
protocol convergence conditions foip su ciently large, i.e.,

— T. -1 .
W(p) = W(p)’ W(p)l =1; and (W(p)) <1

Proof. The solution of problem (2.10, Wy is necessarily symmetric and its rows
sum to 1. From Lemma 2 it follows that for p su ciently large Wy <1
then by the de nition of (:) it has to be (W) =1 and (W(,) < 1. Therefore
W, satis es all the three convergence conditionsZ.3)-(2.5) and then the consensus
protocol converges.

It is further possible to show that in fact, as p approachesl , the Schatten
Norm minimization problem (2.10) is equivalent to the minimization problem (2.6)
(i.e., to minimize the second largest eigenvalue (W)). To show this, we observe
that with respect to the variable weight matrix W, minimizing Tr (WP) is equivalent
to minimizing (Tr(WP)  1)¥*P. From Eq. (2.12), it follows:

WK (TrWP) 1)F  (W)(K1+ Kp P)i:
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K1 is bounded betweenl and n 1 and K, is bounded between0 and n 1, and
< 1,then it holds:

W)KP  (Tr(WP) 1)F (WK F;

with K =2(n 1). For p large enough W, = (W), then

=1
=

(MTWP) 1)F (W) (W) KrP 1 K

p
®)
Then the dierence of the two cost functions converges to zero ap approaches

in nity. O

Proposition 3. The Schatten Norm minimization (2.10 is an approximation for
the original problem (2.6) with a guaranteed error bound,

J (Wesory) (Wi (Wisppy)  (P)s

where (p) =(n 1) 1 and whereWspp) and Wy, are the solutions of (2.6)
and (2.10) respectively.

Proof. Let S be the feasibility set of the problem @.6) (and (2.10), we have
P 1

(W) = maxf 2(W); n(W)gand let g(W) = i 2 }D(W) - Since W(spp)

is a solution of (2.6), then

(Wspp))  (W); 8W 2 S: (2.14)

Note that the minimization of g(W) is equivalent to the minimization of Tr (WP)
whenW 2 S (i.e., argmin g(W) = argmin Tr (WP)), then
W2s W2s

aWp)) 9(W); 8w 2 S: (2.15)

Finally for a vector v 2 R™ all norms are equivalent and in particular jjvjj1
jiviip  m¥Pjjvjj, forall p 1. By applying this inequality to the vector whose
elements are then 1 eigenvalues di erent from 1 of the matrix W, we can write

(W) gW) (n 1¥P (W); 8w 2s: (2.16)
Using these three inequalities we can derive the desired bound:

14) (2.16) (2.15) (2.16) _

(W(p) a(Wp)) 9(W(spr)) (n 1) (Wspp));
(2.17)

where the number above the inequalities shows the equation used in deirg the

bound. Therefore (Wspp)) (W(p)) (n 1P (W(spp)) and the thesis

follows directly. O

@.
(W(spp))
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Figure 2.1: For this network the matrix solution of Schatten Norm minimiza-
tion (2.10 with p = 2 does not guarantee convergence of average consensus to
the true average becausevj = 0 which separates the network into two parts, each

of which can converge to a totally di erent value (but not to the average of initial
values).

Remark: Comparing the results of Schatten Norm minimization 2.10) with the
original problem (2.6), we observe that on some graphs the solution of problen2(10)
already for p = 2 gives the optimal solution of the main problem @.6); this is for
example the case for complete graph%.However, on some other graphs, it may give
a weight matrix that does not guarantee the convergence of the consersprotocol
to the true average because the second largest eigenvalue can be lardeart or equal
to 1 (the other convergence conditions are intrinsically satis ed). We fave built a
toy example, shown in Fig.2.1, where this happens. The solution of 2.10 assigns
weight 0 to the link (i;j ); wj = O separates the network into two disconnected
subgraphs, so (W) = 1 in this case. We know by Lemma2 that this problem
cannot occur for p large enough. In particular for the toy example the matrix
solution for p = 4 already guarantees convergence. We discuss how to guarantee
convergence for any value op in Section 2.7.

Given that problem (2.10) is smooth and convex, it can be solved by interior
point methods which would be a centralized solution. In the next sectio we are
going to show a centralized approach using Newton's method, and in Sech 2.5 a
distributed algorithm using projected sub-gradients.

2.4 Newton's Method for Schatten Norm Minimization

Solutions of actual optimization problems are rarely expressed in &losed-form.
More often they are obtained through iterative methods, that can bevery e ective
in some cases (e.g., when the objective function is convex). Among theeitative ap-

2 This can be easily checked. In fact, for any the matrix that guar antees the convergence of
average consensus protocols it holds (W) 0and Tr(W?2) 1 (becausel is an eigenvalue ofW).
The matrix W = 1=n11" (corresponding to each link having the same weight 1=n) has eigenvalues
1 and 0 with multiplicity 1 and n 1 respectively. Then (W) =0 and Tr(W?2)=1. It follows
that W minimizes both the cost function of problem ( 2.6) and (2.10).
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proaches, gradient methods converge under quite general hypothesesit they may

su er from very slow convergence rates as they are coordinate dependentcéding

the variables in the problem a ects the convergence speed). The Newton's migbdd

converges locally quadratically fast and is coordinate independentB\V04]. The

drawback of Newton's method is that it requires the knowledge of the Hesan of the

function that may be computationally too expensive to calculate. Havever, with the

continuous increase of computation power and the existence of e cient glorithms

for solving linear equations, Newton's method is the object of an in@asing interest
[WOEJ12, LSch, ARS1Z. In this section, we provide a methodology for solving the
Schatten norm minimization (2.10 using the Newton's method. We also show later
by simulations that it signi cantly outperforms rst order meth ods (decent gradient,
Nestrov, etc.) both in terms of convergence speed and in term of robustness the

step size selection.

2.4.1 Preliminaries

The de nitions of the gradient and Hessian of a scalar function varydepending on
the argument of the function. For the scalar function of avector, f : R™ | R,
the gradient of the function f (x) with respect to the vector x 2 R™ is denoted by
r xf 2 R™ and its Hessian is denoted by the matrixr 2f 2 R™M whose elements
are given by the following equations:

o :
@x k' @x@x ’

For a scalar function of amatrix, h : R™™ | R, the gradient of the function h(X)
with respect to the vector vec{X) 2 R™1 is denoted byr xh 2 R™*1 and its

Hessian is denoted by the matrixr Z h 2 RM*M? \whose elements are given by the
equations:
@h

@h, 2 .
r xh(”) s @, andr Xh(ij )(st) 7@% @gt

(r «f),, and r 2f

Newton's method is an iterative technique that nds the roots of a function.
For an unconstrained convex minimization problem, the roots of thegradient of
the function to minimize are the minimizers of the function itself. The Newton's
method is very popular due to its fast speed of convergence. Consider thellbwing
unconstrained minimization problem:

minimize f (w); (2.18)

wheref : R™ | R is strongly convex and twice continuously di erentiable. We
suppose that the problem has a solutionf and the solution is obtained atw
ie., f = f(w ). Sincef is a convex and dierentiable function, a point w is
optimal if and only if the gradient of the function vanishes:

rwf(w )= 0: (2.19)
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Therefore, solving them equations of m variables in (2.19 is equivalent to solv-
ing the optimization problem (2.18. The Newton's method (also called damped
Newton's method) is outlined below BVO04]:

Newton's Method Algorithm

Given
A starting point w 2 domf, a tolerance > O.
Repeat

1. Compute Newton's step and decrement:
W= or2f(w) Trowf(w);

2oz p W W) r2f(w) o (w):

2. Stopping criterion: if 2=2 exit.
3. Line search: use exact or backtracking line search to nd.
4. Update:
wi=w t w:
In the following, we will apply the Newton's method to the Schatten norm min-
imization problem (2.10.
2.4.2 The Unconstrained Minimization

As mentioned earlier, the constrains in 2.10 lead to the possibility to write W
as follows: W = 1 Q diag(w) QT, wherew 2 R™ is the vector of all the

equivalent to the following unconstrained problem:

minimize f(w)=Tr (I Q diagw) QM) : (2.20)

2.4.3 Gradient and Hessian

To apply Newton's method to minimize the function f in (2.20, we have to cal-
culate rst the gradient r f and the Hessian matrix r 3vf. The function f is
a composition of the scalar functionh(W) = Tr(WP) and the matrix function
W =1 Qdiag(w)Q":

f(w)= Tr(WP)iw=1, Qdiagw)oT"
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wherer whgjy = p(WP 1)j;i (from (2.11). Due to the conditions merlyioned earlier

(Wij = Wi = w for all | (Ij ) and Wij =0 if (Ij ) 2E andw; =1 j2NiWii ), if
I (ab) we have 8
+1 ifi=aandj=b
@ +1 ifi=bandj =a
W o_ - .
— = 1 ifi=zaandj=a 2.21
Qw - . (221
1 ifi=bandj=Db
"0 else.

We can then calculate the gradientr ,f 2 R™. In particular for |  (ab) we have,

(rwf)y=rwhay+rwhpy r whaa r whepy

= p(WP Dpat PWP Dap  pWP Daa  p(WP Dy (2.22)
Applying the chain rule for the Hessian and considering directly hat all the
second order derivatives Iike@@;vi@‘)jw are null because the mapping is a linear trans-
formation, we obtain that for ;) k =1;:::;m:
X
2 _ @f _ 2 @W @wt
rof = = r o he -— 2.23
vl T @uaw Wi @ w @w (2.23)

st

For the calculation of the Hessian off , let us rst give the expression ofr 2, i (st -

Notice that for any a and b we have %‘@f = as th, Where .y is the Kronecker delta,

i.e., ww=21ifu=v, y =0 otherwise. Then the Hessian oh(W) is given by:

can o @Tr (WP)
W () )(st) QW @wt
@
= _— p(wP 1!
ey PV i
@ X
- Paw Wiu 1 Wuzup Wuzus == - Wuyp i
\& Upuz;iiup 2
@ X
= p@ is tuiWuiuWupug - - Wup i
Ul;Uz;:::;Up 2
@ X .
+ p@i Wiuy uis twaWuaus -2 Wuy i
\M Ul;uz;:::;Up 2
@ X
+ o+ Pow Wiu 1 WuzuzWuzug === up 2s
8 UgsUz;iUp 2
X 2
=p  (W?)js(WP 2 %)y (2.:24)
z=0
Thus for the calculation of the Hessian off , let |  (ab), k  (cd) be given

links. Only 16 of the m* terms in Eq. (2.23 (those corresponding toi;j 2 fa;bg
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and s;t 2 fc;dg) are dierent from zero because of 2.21). Moreover using the
expression ofr >2<h(ij )st) IN (2.24) and grouping the terms, we obtain the compact
form:

9( 2
raf w=p @ @® 2 2); (2.25)
z=0
where
(2)=( Wz)a;c +( Wz)b;d (Wz)a;d (Wz)b;c:
2.4.4 Newton's Direction w

Letg2 R™"and H 2 R™ ™ such that g = r ,f (w) whose elements are given by
equation (2.22 and H = r 2f (w) whose elements are given by equation2(25).
Then the direction w to update the solution in Newton's method can be obtained
solving the linear systemH w = g:

2.45 Line Search

The Newton's method usesexact line searchif at each iteration the stepsize is
selected in order to guarantee the maximum amount of decrease of the fation f
in the descent direction, i.e.,t is selected as the global minimizer of the univariate
function (t):

W=Ffw t w)t>0:

Usually exact line search is very di cult to implement, possible alternatives can
be the pure Newton's method that selects a stepsizé = 1 at every iteration or
the backtracking line searchif t is selected to guarantee some su cient amount of
decrease in the function (t). But we bene t from the convexity of our problem to
derive a procedure which gives a high precision estimate of the optirhahoice of the
exact line search stepsize. Notice that (t) can be written as follows:

W=~Ffw t w)

Tr((ln Qdiag(w t w)Q")P)

Tr((ln  Qdiag(w)Q" + tQdiag( w)QT)P)
Tr (W + tU)P)

h(W + tU);

whereU = Qdiag( w)QT is a symmetric matrix. Since 2.10) is a smooth convex

optimization problem, h is also smooth and convex when restricted to any line that

intersects its domain. Then (t) = h(W + tU) is convex int and applying the chain

rule to the composition of the functionh(Y) = Tr(YP) and Y (t) = W+ tU (similarly

to what we have done forf in (2.23), we can nd the rst and second derivative:
1) = ’ @C?;“ii = px (YP Ui = pTr(YP *U);

i i
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0 1
X 2
0ft) = ddot(t) =p T@ YP 2AyydayA;:

a=0
So we can apply a basic Newton's method to nd the optimalt:

Let t; =1 and tg = 0, select a tolerance > 0,

n:=1;

Otn) .
th+1 th TOE
n:=n+1;

end while

At the end of this procedure, we selectt = t, to be used as the stepsize of
the iteration.

2.4.6 The Algorithm
We summarize the Newton's method used for the trace minimization prblem (2.10):

Step 0: Choose a weight matrixW @ that satis es the conditions given in (2.10
(e.g., I, is a feasible starting weight matrix). Choose a precision and set
k O

Step 1: Calculater f ® from equation (2.22) (call this gradient g).

Step 2: Calculater 2 f ) from equation (2.25 (sincef is a convex function, we
haver 2f () is a semi-de nite positive matrix, let H = r 2 + | ., where
can be chosen to be the machine precision to guarantee th&t is positive

de nite and thus can have an inverseH 1).

Step 3: Calculate Newton's direction w®) = H 1g. Stop if jj w®jj
Step 4: Use the exact line search to nd the stepsize (.
Step 5: Update the weight matrix by the following equation:

WD = w4 (W Qdiag( wk)QT:

Step 6: Increment iteration k k+1. Goto Step 1.

2.4.7 Closed Form Solution for p=2

Interestingly, for p = 2 the Newton's method converges inl iteration. In fact for

p =2, the problem (2.10 is the following:
X
minimize h(W)= Tr(W?) = w?
W i (2.26)
subjectto W = WT; W1, = 1,;W 2 Cg:
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Theorem 1. Let W5 be the solution of the optimization problem(2.26), then we
have:

. 1
W = In Qdiag (Im+ EQTQ) 1n QT; (2.27)
where Q is the incidence matrix of the graphG.

Proof. The optimization function is quadratic in the variables wj; , so applying New-
ton's algorithm to minimize the function gives convergence in one gration indepen-
dent from the initial starting point W@, Let W© = |, which is a feasible initial
starting point. The gradient g can be calculated according to equation4.22):

g =2((1n)ij +CIn)ii ()i (Tndjg )
=2(0+0 1 1= 48 =1;:::;m;

so in vector formg = 4 1. To calculate the Hessianr \z,vf , we apply equa-
tion (2.25 for p=2, so for any two links| (ab) andk (cd), we have

r24f =2 ((n)ac*t (o (ndac  (In)ba)®s
and thus
8
32 (22 ifl=k

r ﬁ,f K = 5 2 (1)? if | and k share a common vertex, (2.28)
-0 else.

In matrix form, we can write the Hessian as follows:
raf=2 @n+Q'Q);

where Q is the incidence matrix of the graph given earlier (in fact,Q'Q 2., is
the adjacency matrix of what is called the line graph ofG). Notice that since Q" Q
is semi-de nite positive all the eigenvalues of the Hessian are Iger than 2 and then
the Hessian is invertible. The Newton's direction is calculated as foll@s:

w=H g= (In+ Q'Q) 'n

Thus the optimal solution for the problem for p= 2 is:

W© + Qdiag( w)Q"

I Quiag (In+3Q7Q) ' QT

W2

O]

If the graph is D -regular, the previous expression further simpli es. AD -regular
graph is a graph where every node has the same number of neighbors whis D.
Examples of D regular graphs are cycles (2-regular) and the complete grapm( 1-
regular).
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In fact, the sum of any row in the matrix Q'Q is equal to 2D, then 2D is
an eigenvalue that corresponds to the eigenvectat,,. SinceQTQ is a symmetric
matrix, it has an eigenvalue decomposition form:

T X T
Q Q= kVkVi s
K

where fvig is an orthonormal set of eigenvectors (without loss of generality, let
vi = pt1,). Moreover, (Im + 3QTQ) is invertible because it is positive de nite
and has the same eigenvectors a®' Q. Considering its inverse as a function of
Q' Q, we can write:

1 X
(Im+5Q7Q) *= (1+ ) vivy:
k

Since 1, is an eigenvector ofQT Q and therefore of (I, + %QT Q) 1, it is perpen-
dicular to all the others (vIlrn =0 for all k 6 1). Hence, it follows that:

1
1+D

(In+5Q7Q) n =+ ) Vi(Fm)= 15 lm:

As a result, the solution of the optimization is given by,
1

- T.
W) = In 1+DQQ’
or equivalently as function of w:
1
W|—m8|—l,...,m.

Interestingly, the solution of the suggested optimization probem for p = 2 gives the
same matrix on D-regular graphs as other weight selection algorithms for average
consensus as Metropolis weight selection or maximum degree weight seleati

2.5 A Distributed Algorithm for Schatten Norm Mini-
mization

In this section we will show that the optimization problem (2.10) can be solved
in a distributed way using gradient methods. By distributed algorithm we mean
an algorithm where each node only needs to retrieve information frona limited
neighborhood (possibly larger thanN;) in order to calculate the weights on its
incident links.

We have already seen thaW can be written as follows:W =1 Q diag(w)

that Schatten Norm minimization ( 2.10) is equivalent to the following unconstrained
problem:
minimize f(w)=Tr (I Q diagw) QM) : (2.29)
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We will give a distributed algorithm to solve the Schatten Norm minimization (2.10
by applying gradient techniques to problem @.29. Since the cost function to opti-
mize is smooth and convex as we proved in Propositiof, if the gradient technique
converges to a stationary point, then it converges to the global opthum. The
gradient method uses the simple iteration:

w D = w09l gr=1:1m

where (¥ is the stepsize at iterationk and g’ is the I-th component of the gradient
g of the function f (w). At every iteration k, starting from a feasible solution for

link weights, wl(k), we calculate the gradientgl(k) for every link, and then we obtain

a new weight valuew**" .

There are di erent conditions on the function f (:) and on the stepsize sequence
that can guarantee convergence. A distributed computational model fooptimizing
a sum of non-smooth convex functions is proposed ifN©09, LO11] and its conver-
gence is proved for bounded (sub)gradients for di erent network dynanics. For a
similar objective function, the authors in [JKJJO08] study the convergence of a pro-
jected (sub)-gradient method with constant stepsize. For unbounded gmdients, the
algorithm in [Pol87, Section 5.3.2, p. 140] guarantees global convergence but requires
a centralized calculation of the stepsize sequence. Because the objective fuont
in (2.29 has unbounded gradient, our distributed implementation combinesideas
from unbounded gradients methods and the projecting methods usingheorems
from [BNOOQSJ]. In particular, we will add a further constraint to ( 2.29), looking for
a solution in a compact setX , and we will consider the following projected gradient

method:
wk) = py W (k)g(k)

where Px () is the projection on the setX. We can show that by a particular
choice ofX and () the method converges to the solution of the original problem.
Moreover, all the calculations can be performed in a distributed way b the basis of
local knowledge. In particular, we will show that:

nodes incident tol are able to calculategl(k) using only information they can
retrieve from their (possibly extended) neighborhood;

the stepsize sequence®) is determined a priori and then nodes do not need
to evaluate the function f or any other global quantity to calculate it;

the projection on setX can be performed component-wise, and locally at each
node;

the global convergence of the projected gradient method is guaranteed.

We will start by g and show that it only depends on information local to nodes
and j incident to the link |  (i;j ), then we will discuss the choice of the stepsize
(k) and of the projection setX .
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2.5.1 Locally Computed Gradient

The gradient g of the function f (w) for | (i;) ) can be calculated following
equation (2.22:

@fw)
@w

=p WP I+ wPtoooowktoowkt (2.30)

g =

It is well know from graph theory that if we consider W to be the adjacency
matrix of a weighted graph G, then (W?); is a function of the weights on the edges

of thei | walks (i.e., the walks fromi to j) of length exactly s (in particular
if A is the adjacency matrix of an unweighted graph, then(A®); is the number
of distinct i j s-walks [Wes0(Q). Since for a givenp the gradient g, |  (i;j ),

depends on thefii; jj:ij;ji g terms of the matrix WP 1, g can be calculated locally
by using only the weights of links and nodes at most% hops away fromi or j.3
Practically speaking, at each step, nodes and j need to contact all the nodes up to
p=2 hops away in order to retrieve the current values of the weights on thdinks of
these nodes and the values of weights on the nodes themselves. For exéanpvhen
p =2, then the minimizpation is the same as the minimization of the Frdenius norm
of W since T(W?) = = ;; w# = jjWijjZ, and the gradient g can be calculated as
a=2 (2W; W; Wj ) which depends only on the weights of the vertices incident
to that link and the weight of the link itself. More details about the operations to
carry and their cost in Section2.5.3

An advantage of our approach is that it provides a trade-o betweenlocality and
optimality. In fact, the larger the parameter p, the better the solution of problem
(2.10 approximates the solution of problem @.6), but at the same time the larger
is the neighborhood from which each node needs to retrieve the inforrtian. When
p=2,q wherel (i;j) only depends on the weights of subgraph induced by the
two nodesi and . For p = 4, the gradient g, depends only on the weights found on
the subgraph induced by the set of verticedN; [ Nj, then it is su cient that nodes
i and j exchange the weights of all their incident links.

2.5.2 Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for any initial conilon) has been
proved under a variety of di erent hypotheses on the functionf to minimize and

on the step size sequence(¥). In many cases the step size has to be adaptively
selected on the basis of the value of the function or of the module dfs gradient at

the current estimate, but this cannot be done in a distributed way fa the function

f (w). This leads us to look for convergence results where the step size sequence
can be xed ahead of time. Moreover the usual conditions, like Lipscitzianity or
boundness of the gradient, are not satis ed by the functionf (:) over all the feasible

3 If a link or a node is more than p=2 hops away both from node i and node j, then it cannot
belongto ai | walk of length p.
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set. For this reason we add another constraint to our original prblem (2.29 by
considering that the solution has to belong to a given convex and conget set X .
Before further specifying how we choose the set, we state our convergence result.

Proposition 4.  Given the following problem

minimize  f(w)=Tr (I Q diagw) QT)P :
subjectto w2 X (2.31)

, P P K 2
whereX R™ is a convex and compact set, if , W =1 and , ® “<1,
then the following iterative procedure converges to the mimum of f in X:

wkD = py wk gl (2.32)

where Py (©) is the projection operator on the setX and g is the gradient of f
evaluated inw®).

Proof. The function f is continuous on a compact seX , so it has a point of min-
imum. Moreover also the gradientg is continuous and then bounded onX. The
result then follows from Proposition 8:2:6 in [BNOO3, pp. 480]. O

For example, () = az(b+ k) wherea > O and b 0 satis es the step size
condition in Proposition 4.

While the convergence is guaranteed for any se{ convex and compact, we have
two other requirements. First, it should be possible to calculate he projection Px in
a distributed way. Second, the setX should contain the solution of the optimization
problem (2.20). About the rst issue, we observe that if X is the cartesian product
of real intervals, i.e., if X =[a;bq] [az;bp] :::[am;bm], then we have that the
I-th component of the projection on X of a vectory is simply the projection of the
I-th component of the vector on the interval [a;; h], i.e.,

8
sa ify<ap

[Px ()], = Ppap101) = Y ifa y Db (2.33)
“h ifh<y:

Then in this case Eq. .32 can be written component-wise as
k+1 k K)y.
W = Py g):

We have shown in the previous section thatg, can be calculated in a distributed
way, then the iterative procedure can be distributed. About the secod issue, we
chooseX so that it includes all the weight matrices with spectral radius at mos 1.
The following lemma suggests a possible choice &f.

Lemma 3. Let W be a real and symmetric matrix where each row (and column)
sums to1, then the following holds,

(W)=1 =) maxjw;j L
1)
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Proof. SinceW is real and symmetric, then we can writeW as follows
wW=S ST;

where S is an orthonormal matrix (STS = SS"T = 1), and is a diagonal matrix
having « = « and  is the k-th largest eigenvalue ofW. Let ry and c¢ be the
rows and columns ofS respectively andrl((') be thei-th element of this vector. So,

X
W = KCKCp ;
k
and
X o
wii=i  kg)q)] (2.34)
k
i jiclj (2.35)
X
= r95r (2.36)
k
i riiiziir iz (2.37)
=1: (2.38)

The transition from (2.34) to (2.39 is due to the fact (W) =1, the transition from
(2.36) to (2.37) is due to Cauchy Schwarz inequality. The transition from (2.37) to
(2.39 is due to the fact that S is an orthonormal matrix. O

A consequence of Lemma is that if we chooseX =[ 1;1]™ the weight vector
of the matrix solution of problem (2.6) necessarily belongs toX (the weight matrix
satis es the convergence conditions). The same is true for the solisin of prob-
lem (2.20 for p large enough because of Propositio@. The following proposition
summarizes our results.

Proposition 5.  If the graph of the network is strongly connected, then the Howing
distributed algorithm converges to the solution of the Scki@an norm minimization
problem for p large enough:

k+1 k k

WD =B gl OGOy B a9
P P

where' , ®=1 and , ® %<1,

Proof. The setX =[ 1;1]™, on which the gradient iterate is projected, is a convex
and compact set. From Proposition2, for p su ciently large we have (W) < 1
and hence (W) = 1. Then by applying Lemma 3, the weight matrix W, has
necessarily link weights inX . Therefore, since the solution of the Schatten norm
minimization problem for p large enough lies inX , Proposition 4 ends the proof. [
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Remark : The stepsize () in Propositions 4 and 5 can be replaced by a constant
stepsize (i.e., () = for all k) and the convergence results will still hold provided
that is small enough 0 < < 2=K whereK is the Lipschitz constant of the
gradient of f on X, see Theoreml in [Pol87, p. 207]). The advantage of a constant
stepsize is that it provides better rate of convergence (the convergence céxe with
the rate of geometric progression when the function is strongly comx), but the
nodes should be able to knowK (or at least an upped bound).

2.5.3 Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimization requi res to calculate at
every iteration, the stepsize (%, the gradient gl(k) for every link, and a projection on
the feasible setX . Its complexity is determined by the calculation of link gradient
0, while the cost of the other operations is negligible. In what followswe detail the
computational costs (in terms of humber of operations and memory ragrements)
and communication costs (in terms of volume of information to transmit) incurred
by each node for the optimization with the two valuesp=2 andp=4.

2.5.3.1 Complexity for p=2

Forp=2, Eq. (2.30 reducestog =2 (2W; W; W;j ). Nodes are aware of their
own weights (Wiji) and of the weights of the links they are incident to (WVj; ), hence
the only missing parameter in the equation is their neighbors self gight (Wj; ).
So at every iteration of the subgradient method, nodes must broadcagheir self
weight to their neighbors. We can say that the computational complexy for p =2
is negligible and the communication complexity isl message carrying a single real
value (w;ji ) per link, per node and per iteration.

2.5.3.2 Complexity for p=4

For p = 4, the node must collect information from a larger neighborhood. The
gradient at link | (i;j ) is given by g =4 (W3); +(W3); (W3 (W3
From the equation of g it seems like the node must be aware of all the weight
matrix in order to calculate the 4 terms in the equation, however thisis not true.
As hinted in the previous section, each of the 4 terms can be calculated bnlocally
from the weights within 2-hops fromi or j. In fact, (W?3); depends only on the
weights of links covered by a walk with 3 jumps: starting fromi the rst jump
reaches a neighbor of, the second one a neighbor ¢f and nally the third jump
nishes at j, then we cannot move farther than 2 hops fromi. Then (W3)ij can be
calculated at nodei as follows: every nodes in Nj, sends its weight vectorW s to i,
whereW ¢ 2 RiNsi js a vector that contains all weights selected by the nods to its
neighbors, i.e., the weightsf wg;;t 2 Ngg. The same is true for the addend(W3)ji .
The term (W3);; depends on the walks of length 3 starting and nishing ini, then
nodei can calculate it once it knowsW g for eachs in N;. Finally, the calculation
of the term (W3)jj at node i requiresi to know more information about the links
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existing among the neighbors of nod¢. Instead of the transmission of this detailed
information, we observe that nodej can calculate the vaIue(W3)jj (as nodei can
calculate (W 3);; ) and then can transmit directly the result of the calculation to node
i. Therefore, the calculation ofg, by nodei for every link | incident to i can be done
in three steps:

1. Create the subgraphH; containing the neighbors ofi and the neighbors of its
neighbors by sending YV ;) and receiving the weight vectors W ) from every
neighbor s.

2. Calculate (W3);; and broadcast it to the neighbors (and receivgW 3)ss from
every neighbors).

3. Calculate g.

We evaluate now both the computational and the communication comfexity.

Computation Complexity: Each node i must store the subgraphH; of its

neighborhood. The number of nodes of; is ny 2 +1, the number of
links of Hi is my 2 where is the maximum degree in the network.
Due to sparsity of matrix W, the calculation of the value (W23); requires
O( ®) multiplication operation without the use of any accelerating technique
in matrix multiplication which we believe could further reduce the co  st.

So the total cost for calculating g is in the worst caseO( 3). Since we haven

links, the overall complexity would be O( 3mT¢ony) WhereTeony is the number
of iterations needed for the gradient to converge (i.e., to be smalleihian a given
threshold). Notice that the complexity for solving the SDP for (2.6) is of order
O(m?3) wherem is the number of links in the network. Therefore, on networks
where << m , the gradient method could be computationally more e cient

given that Teony IS not very large.

Communication Complexity: Two packets are transmitted by each nodeon
each link at steps1 and 2. So the complexity would be two messages per link
per node and per iteration. The rst message carries at most values (the
weight vector W ;) and the second message carries one real valug\(%); ).

2.6 Performance Evaluation

In this section we evaluate the di erent optimization algorithms ( Newton, gradient,
etc.) studied in this chapter. We also evaluate the speed of convergencé con-
sensus protocols when the weight matridWV is selected according to our proposed
Schatten norm minimization. As we have discussed so far, this spedsl asymptot-
ically determined by the second largest eigenvalue in module (W)), that will be
one of two performance metrics considered here. For the other metric, we dee
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the convergence time to be the number of iterations needed for the errothe dis-
tance between the estimates and the actual average) to become smaller thargiven
threshold. More precisely, we de ne the normalized errore(k) as

_ dix(k) - Xjip,
= jix@ X, (2:40)
wherex = Xayel.

Additionally, we carry on simulations to study the e ect of a topological opti-
mization (by adding two-hops links in the graph) compared to the weight opimiza-
tion on the links. The simulations are done on random graphs (El6s-Renyi (ER)
graphs and Random Geometric Graphs (RGG)) and on two real networks (tk En-
ron company internal email exchange network$A04] and the dolphin social network

[LSB* 03]). The random graphs are generated as following :

For the ER random graphsER(n; Pr), we start from n nodes fully connected
graph, and then every link is removed from the graph by a probabiliy 1 Pr
and is left there with a probability Pr. We have tested the performance for
di erent probabilities Pr.

For the RGG random graphs, n nodes are thrown uniformly at random on

a unit square area, and any two nodes within a connectivity radiusr are

connected by a link. We have tested the performance for di erent values of
the connectivity radius. It is known that for a small connectivity ra dius, nodes

tend to form clusters.

The description of the two real datasets follows:

The 151 nodes in the Enron dataset correspond to di erent employees of th
company and an edge in the graph refers to an exchange of emails between
two employees (only internal emails within the company are considered wdre

at least 3 emails are exchanged between two nodes in this graph).

The dolphin social network is an undirected social network of frequent sso-
ciations between 62 dolphins in a community living o Doubtful Sound, New
Zealand.

2.6.1 Newton versus Gradient methods for Schatten p-Norm Min-
imization

We apply the optimization techniques developed in this chapter to slve prob-
lem (2.10 on Erdos Renyi random networks. We compare the number of itera-
tions for convergence of Newton's method with those of rst order method like
the Descent Gradient (DG) and the accelerated gradient method (due to Nestexo
[Nes04) using either backtracking line search (denoted by BT-methods in tle g-
ure) or exact line search (denoted by Exact-methods in the gure)ft The Descent

“We implemented directly the methods in Matlab.
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Teonv ER(n =100;Pr =0:07)
(number of iterations) p=2 p=4 p=6 p=10
Exact-Newton 1 5 57 6.1
Pure-Newton 1 9 111 139
Exact-DG 723 2305 4827 15005
Exact-Nesterov 1302 4228 8113 19712
BT-DG or BT-Nesterov | > 5000 > 5000 > 5000 > 5000

Table 2.1. Convergence time using dierent optimization methods for prob-
lem (2.10.

Gradient method follows the same steps of the Newton's algorithm (Seitn 2.4.6),
but in Step 2, the HessianH is taken as the identity matrix (for Descent Gradient
methodsHpg = |In). The accelerated gradient (Nesterov) is as follows, starting by
w@ = w( 1) =02 R™, the iterations are given by:

k 2
— ik 1) (k 1) (k 2)y.
y=wr T w2,

W(k) = y t(k)r yf (y),

where t) is the stepsize. The Nesterov algorithm usually achieves faster ratef o
convergence (asymptotically) with respect to traditional rst order m ethods. Since
at the optimal value w the gradient vanishes (i.e.,jjg®jj = 0), we consider the
convergence timeT oy to be:

Teonv = min fk : jjg®jj < 10 g

Table 2.1 shows the results for the Newton's and the other rst order methods.
The initial condition for the optimization is given by W(© = |, which is a feasible
starting point. The values are averaged overl00 independent runs for each of the
(n;Pr;p) values. The results show that the average convergence time of Newton's
method is shorter than that of the rst order methods in terms of the number of
iterations. As we can see, when using exact line search, Exact-Nesterovskwer
than Exact-DG method, this can be due to the fact that the Descent Gradent does
not su er from the zig-zag problem usually caused by poorly conditimed convex
problems. Moreover, using backtracking line search for rst or@ér methods is not
converging in a reasonable number of iterations because the functiome are con-
sidering is not Lipschitz continuous whenp > 2 and because of the high precision
stopping condition. Note that, the number of iterations is not the only factor to
take into account, in fact the Newton's method requires at each iteratim to invert
the Hessian matrix, while DG has lower computational cost. HoweverDG is very
sensitive to changing the stepsize, while Newton's method is not. By agying con-
stant or backtracking line search stepsizes to the DG method, thelgorithm is not
converging in a reasonable number of iterations while even the simpleblewton's
method (pure Newton that uses a stepsize equals to 1 for all iteratio)ss converging
in less than 14 iterations for the ER(n = 100;Pr = 0:07) graphs.
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Figure 2.2: Performance comparison between the optimal solutionfahe FDLA
problem (labeled FDLA) and the approximated solutions obtained ®lving the Schat-
ten Norm minimization for di erent values of p (labeled TM).

2.6.2 Comparison of the Schatten Norm Solution with the Opti mal
Solution

We rst compare W, for the solution W, of the Schatten p-norm (or Trace)
minimization problem (2.10 with its minimum value obtained solving the symmetric
FDLA problem (2.6). To this purpose we used theCVXsolver (see Sectior2.2).
This allows us also to evaluate how well problemZ.10) approximates problem (2.6)
for nite values of the parameter p. The results in Fig. 2.2 have been averaged
over 100 random graphs with 20 nodes generated according to the Erdos-Renyi
(ER) model, where each link is included with probability Pr 2 f 0:2; 0:3; 0:4; 0:5g.
We see from the results that as we solve the trace minimization foftarger p, the
asymptotic convergence speed of our approach converges to the optimahe as
proven in Proposition 2.

2.6.3 Other Distributed Approaches: Asymptotic Convergen ce
Rate

We compare now our algorithm forp = 2 and p = 4 with other distributed weight
selection approaches described in Sectich2.

Fig. 2.3 shows the results on connected Erdds-Renyi (ER) graphs and Random
Geometric Graphs (RGG) with 100 nodes for di erent values respectively of the
probability Pr and of the connectivity radiusr. We provide 95% con dence intervals
by averaging each metric overl00 di erent samples. We see in Fig.2.3 that TM
for p=2 and p = 4 outperforms other weight selection algorithms on ER by giving
lower . Similarly on RGG the TM algorithm reaches faster convergence than the
other known algorithms even when the graph is well connected (large conneetiy
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ER n=100 variable Pr (probability of 2 nodes to be neighbors)
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Figure 2.3: Performance comparison between Schatten Norm minimizan (TM)
for p=2 and p = 4 with other weight selection algorithms on ER and RGG graphs.
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radius). However, the larger the degrees of nodes, the higher the conegity of
our algorithm. Interestingly even performing trace minimization for the smallest
value p = 2 nodes are able to achieve faster speed of convergence than a centralized
solution like the OC algorithm.

Apart from random networks, we performed simulations on two realworld net-
works: the Enron company internal email exchange network§A04] and the dolphin
social network LSB* 03]. The table below compares the second largest eigenvalue

for the di erent weight selection algorithms on these networks:

MD ocC LD TM p=2 | TM p=4
Enron 0.9880| 0.9764| 0.9862| 0.9576 0.9246
Dolphin 0.9867| 0.9749| 0.9796| 0.9751 0.9712

The results show that for Enron network, our totally distributed proposed al-
gorithm TM for p=4 has the best performance ( = 0:9246 among the algorithms
considered, followed by TM for p=2 ( = 0:9576 because they have the smallest

. On the Dolphin network, again TM for p=4 has the smallest ( =0:9712 but
OC has the second best performance (= 0:9749 but TM for p=2 ( = 0:975)
has similar performance to OC.

2.6.4 Communication Overhead for Local Algorithms

Until now we evaluated only the asymptotic speed of convergence, indepdent
from the initial values x;(0), by considering the second largest eigenvalue(W).
We want to study now the transient performance. For this reason, weconsider
in this subsection a random initial distribution of nodes' values and we study the
performance using the convergence time metric (the number of iteratits needed
for the error e(k) given in (2.40) to become smaller than a given threshold), i.e.,
the convergence time is the minimum number of iterations after whiche(k) < 0:001
(note that e(k) is non increasing).

We have shown that the weight matrix with minimum Schatten norm allows
nodes to converge faster than the other heuristics, and then to exchardess mes-
sages, if a mechanism is implemented to stop consensus when estimates ease
enough to the actual average. At the same time, the Schatten norm mimization
algorithm may require itself a large number of messages to calculatine weights,
while other local weight selection algorithms, like MD or LD, require a negligible
communication exchange. In order to have a fair comparison, it is ifportant then to
consider on how many consensus rounds the additional communicain overhead
of our algorithm can be amortized® Therefore, the more stable the network, the
more one is ready to invest for the optimization at the beginning & consensus.

The communication overhead of the local algorithms is plotted in Fig 2.4. For

SFor example, the consensus round of the daily average tempeature in a network of wireless
environmental monitoring sensors is one day because every dy a new averaging consensus algorithm
should be run.
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each algorithm we consider the following criteria to de ne its commurcation over-
head. First we consider the number of messages that should be exchauagin the
network for the weight optimization algorithm to converge. For exanple, in our
networking settings (RGG with 100 nodes and connectivity radius0:1517 the ini-
tialization complexity of MD algorithm is 30 messages per link becausthe maximum
degree can be obtained by running a maximum consensus algorithm thaonverges
after a number of iterations equal to the diameter (the average diamedr for the
graphs was 15 hops), while with LD the nodes only need to send their deggs to
their neighbors. The communication complexity is then only 2 messagesep link,
the smallest among the algorithms considered. The trace minimizatin algorithm
complexity is de ned by the number of iterations needed for the gradientmethod to
converge, multiplied by the number of messages needed per iteration as mamted
in the complexity section. In our networking setting, the TM for p = 2 took on
average66:22 messages per link to converge while th&@ M for p = 4 took 138828
message$. Notice that OC depends on global values (eigenvalues of the laplacian
of the graph) and is not included here because it is not a local algdhim, i.e., the
weights cannot be calculated with simple iterative local methods.

In addition to the initialization complexity, we add the communi cation complex-
ity for the consensus rounds. We consider that the convergence of the mgensus is
reached when the consensus error of Eq2{40 drops below 0:1%. The total com-
munication overhead of the local algorithms is plotted in Fig.2.4. The gure shows
the total number of messages transmitted on a link, considering bt those needed
initially to calculate the weights and those needed to determine the eerage with a
relative error from consensus precision10 3). The TM algorithms have high initial
communication overhead (due to the slow convergence of the gradient nteid for
weight calculation), but then the more the consensus rounds we haviae more the
messages are saved in comparison to the simpler methods. Note théigt asymptotic
results are re ected in the slopes of the lines. As the gure shows, iflte network is
used for more than8 consensus rounds thed M p =4 is recommended, whileT M
p = 2 starts outperforming LD and MD already for 2 consensus rounds.

2.6.5 Joint Consensus-Optimization (JCO) Procedure

In the following experiments we address also another practical concerrt may seem
our approach requires to wait for the convergence of the iterative wght selection
algorithm before being able to run the consensus protocol. This mdye unacceptable
in some applications specially if the network is dynamic and the wights need to
be calculated multiple times. In reality, at each slot the output of the distributed

Schatten norm minimization is a new feasible weight matrix, that can be used by the
consensus protocol, and (secondarily) should also have faster cengence properties
than the one at the previous step. It is then possible to interleavethe weight

optimization steps and the consensus averaging ones:. at a given sleach node

5The step size i is calculated with values a = 10=p and b= 100, and convergence is obtained
when jjgjj drops below the value 0:02.
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Figure 2.4: Communication overhead of local algorithms.

will improve its own weight according to (2.30) and use the current weight values
to perform the averaging @.1). We refer to this algorithm as the joint consensus

optimization (JCO) procedure. Weights can be initially set according © one of the
other existing algorithms like LD or MD. The convergence time of JCO depnds
also on the choice of the stepsize, that is chosen to bék) = p(li:l;k)

The simulations show that our weight selection algorithm outperfams the other
algorithms also in this case. In particular, Fig. 2.5 shows the convergence time for
various weight selection criteria on ER and RGG graphs. For each of th@etwork
topology selected, we averaged the data in the simulation over 100 gerated graphs,
and for each of these graphs we averaged the convergence time of the afient
algorithms over 20 random initial conditions (the initial conditions were the same
for all algorithms). Notice that running at the same time the optimization with
consensus gave good results in comparison to LD, MD, and even OC atgbms.
We also notice, that the initial selection of the weights does not seemot have an
important role for the TM-JCO approach. In fact, despite the LD weight matrix
leads itself a signi cantly faster convergence than the MD weight matix, initializing
the TM method with the LD weight matrix or with the MD weight matrix lea ds
only to minor di erences (compare the results for TM-JCO-LD and TM-JCO-MD),
suggesting that the weight optimization algorithm moves fast avay from the initial
condition.

2.6.6 Topology versus Weight Optimization

We turn our attention in this section to the e ect of the topology on t he performance.
The main optimization problem (2.6) considers a xed topology and optimizes the
weights on top of this topology where simple algorithms do not povide any guaran-
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Figure 2.5: Convergence time of di erent weight selection algorithms o ER and
RGG graphs. TM-JCO-LD p = 4 is the joint consensus-optimization algorithm
initialized with the LD algorithm's weight matrix and the same for TM-JCO-MD

p =4 but initialized with the MD algorithm's one.
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RGG n =50 ER n =50
r=0:25 r=0:3|Pr=0:08 Pr=0:12
(cW(rpLa)) | 0.9390 0.8668 0.8511 0.7241
(c2W(ip)) 0.9070 0.8058| 0.8328 0.7144
Ring Grid Enron
n=50 n=100 | n=36 n=64
(cWEpLa)y) | 0.9921 0.9980| 0.9210 0.9210) 0.8287
(c2Wp)) 0.9843 0.9961| 0.8523 0.9155| 0.8208

Table 2.2: The e ect of Graph Density versus Weight Optimization on the speed
of convergence of consensus protocols. The table shows the comparisondoerent
graph topologies between the speed of convergence ¢f) the simple weight selec-
tion algorithm (LD) on the graph G? quanti ed by (c2W(p)) and (2) the best
weight selection algorithm (FDLA) on the graph G quantied by (cW(rpia ))-

tee on the speed of convergence, and more sophisticated ones are resourcewming
because they select the weights solving complex optimization problemsn this part
we evaluate if simple changes to the network topology may speed ughé conver-
gence of consensus protocols more than complex weight optimization tadques. In
particular we compare the performance of the average consensus poobl in the two
following scenarios. In the rst scenario, the topology is unchaged and weights
are selected according to commonly used algorithms, including thosdat guaran-
tee faster convergence to consensus. In the second scenario, the simplesigivts
selection algorithms are used, but direct links to 2-hop away nodesra added to
the original graph G, then shrinking by 2 the network diameter. We denote byG?
(the square graph this denser graph. Practically speaking this topological change
does not require to really add new links: it can be obtained by forwating nodes'
local variables 2-hops away, so that a generic nodeis aware of all the nodes' beliefs
in the extended neighborhoodNiGz = [j2rn;isigNj- In what follows we are going
to consider this way to operate. It has also the advantage to allowus to quantify
the cost of the topological change in terms of an increase of commumaition over-
head. The comparison is carried on for di erent graph topologies: rigs, square
Grids, random graphs (Erdos-Renyi with link existence probabiliy Pr), Random
Geometric graphs (with connectivity radius r), and real world network topologies as
Enron internal email exchange network §A04]. For convenience, letA be a weight
selection algorithm for the average consensus protocblwe denote by cW(a) the
weight matrix generated by A on the graph G. In order to evaluate the e ect of
weight selection algorithms and of topology on convergence speed, weeagoing to
compare (cWa)), Where A is the optimal weight selection algorithm (that solves
problem (2.6)) or one of its approximations, and  z2Wg) , whereB is a simpler
weight selection algorithm.

"A can be any one of the following weight selection algorithms presented earlier: MD, LD, OC,
™ p=2, or FDLA.
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We rst compare the performance (the asymptotic speed of convergence the
consensus protocol on the denser grapB? when weights are selected according to
the LD algorithm with the performance on the original graph G when the optimal
weight selection algorithm FDLA is used. Results in Table2.2 show that on all
the topologies considered (g2W(p)) < (cW(rpLa)) and then (g2W(p)) <

(cW(a)) for any algorithm A. Then the higher graph density provides a more
signi cant improvement than the optimal choice of links weights.

We now evaluate the communication overhead of the two approaches terms of
the number of messages sent. Equation2(l) requires that nodes at each iteration
k to use the local variables of their neighbors (node usesx; (k) for all j 2 N).
Therefore, each node must receive at every iteration these values and thetab
number of messagedM sent in the system will beM =2 m where m is the
number of links in the graph. On G2, N; in equation (2.1) is replaced byNiGZ. As
we mentioned above, it is possible to mimic the consensus protocohdG? using
only the links in G. In this case the operation requires 2 steps. First each node
broadcasts its belief to its neighbors inN;. Then, each node sends another broadcast
message to its neighbors irN; with all the beliefs that it has collected during the
rst step. In this way every node gets to know the beliefs of all the nales in NiGz.
The total number of messages is then twice as larger than in the rst scen.® For
this reason, we decided to compare the speed of convergence in the two scésr
when the number of messages being equal. This corresponds to consider thiaé
consensus protocol orG performs two weighted linear iterations according to .1)
for each linear iteration on G2. Another possible way to interpret this comparison
is that if the duration of an iteration is determined by the time needed to transmit
one message on a link, then a consensus protocol iteration d& requires twice
as much time than one onG. It is easy to evaluate the speed of convergence
of the accelerated consensus protocol that performs two linear iterabns every
time unit. In fact it can be checked that this corresponds to use as wght matrix
(GW(A))2 [BGPS04. Then, the asymptotic speed of convergence is determined

by (GW(ZA)). Note that the following equation holds: (GW(ZA)) = (cWn)) 2,
Simulation results in Table 2.3 show that (g2W(a)) < (GW(ZA)) for any algorithm

A introduced in the previous sections. Then the denser topology leads taster
convergence speed even when the number of messages is equivalent. For thisoeas
simple weight selection algorithms as LD onG? can still outperform more complex
ones like TM 2 or OC (the results from Table 2.3 show that (g2W(p)) <
(C;W(ZT,\,I 2) and  (c2Wp)) < (GW(ZOC)) on most of the topologies) and also
achieve in some cases results very similar to FDLA (e.g., on the gnd
The nutshell of the simulations on these graphs is given by two maiinteresting
results. The rst result is that simple weight selection algorithms can achieve sig-

8 We observe here that the messages sent in the second step havesually a larger data payload
than those sent in the rst step, because they carry many beli ef values. Here we assume that the
number of messages is an adequate metric to evaluate the perfamance, as for example is the case
if the packet header is much larger than the data payload for th is application.
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RGG n =50 ER n=50

r=0:25 r=0:3|Pr=0:08 Pr=0:12
(C;W(Z,\,ID )) 0.9665 0.9274, 0.9036 0.8327
(c2W(vp)) 0.9319 0.8577, 0.8967 0.7923
(GW(2|_D )) 0.9493 0.8951| 0.8591 0.7572
(c2W(ip)) 0.9070 0.8058, 0.8328 0.7144
(GW(ZOC)) 0.9378 0.8677, 0.8363 0.7276
(c2W(oc)) 0.8761 0.7543, 0.8177 0.6650
(GW(ZTM 2)) 0.9419 0.8800, 0.8334 0.6749
(c2W(tm 2)) | 0.8900 0.7565| 0.7078 0.4590
(GW(ZFDLA )) 0.8817 0.7513| 0.7244 0.5243
(c2W(pLay) | 0.7591  0.5478| 0.5219 0.3098
Ring Grid Enron
nN=50 n=100 | n=36 n=64
(GW(Z,\,ID )) 0.9894 0.9974| 0.8957 0.9401| 0.9761
(c2Wup)) | 0.9843 0.9961| 0.8730 0.9240| 0.9057
(GW(ZLD)) 0.9894 0.9974| 0.8876 0.9364| 0.9726
(c2W(p)) 0.9843 0.9961| 0.8523 0.9155| 0.8208
(GW(ZOC)) 0.9843 0.9960| 0.8662 0.9239 0.9534
(c2W(oc)) 0.9751 0.9937| 0.7919 0.8776| 0.8277
(GW(ZTM 2)) 0.9894 0.9974| 0.8857 0.9359| 0.9143
(c2W(tm 2)) | 0.9843  0.9961| 0.8403 0.9119 0.5568
(W2 ) | 0.9843 0.9960| 0.8482 0.9126| 0.6868

(FDLA )

Table 2.3: The 2-hop averaging topology optimization inG can be done by send-
ing 2-hop messages. Every averaging iteration in this case (havirgpeed governed
by (52W(a))) consumes as many messages as two iterations of normal averag-
ing on G (the speed of two iteration averaging is governed by (GW(zA))). Since

(c2W(ay) < (GW(ZA)) for any weight selection algorithm A and any network, the
2-hop averaging can have a signi cant faster convergence speed than stiard av-
eraging while sending the same number of messages.
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ni cantly faster convergence on the denser graphG? than any weight optimization
technique on the original graphG. This improvement comes at the cost of an in-
crease of communication overhead in the network. Our second (less expected}ult

is that, for a given weight selection algorithm, the convergence is fasr on G2 than

on G even when the number of messages is equal. Because of this, simpler weight
selection algorithms onG? can achieve performance similar to more complex ones on
G. These results suggest that topological optimization can have a merimportant
role than weight optimization techniques to speed up information popagation.

2.7 Stability and Misbehaving Nodes

In this section we rst explain how the convergence of the consensus piacol can
be guaranteed also for small p values (see the remark in sectior2.3) and then we
discuss how to deal with some forms of nodes' misbehavior.

2.7.1 Guaranteeing Convergence of Trace Minimization

The conditions (2.3)-(2.5) guarantee that the consensus protocol converges to the
correct average independently from the initial estimates. In this sectin, for the
sake of conciseness, we call a weight matrix that satis es these set of raditions
a convergent matrix A convergent matrix is then any matrix that guarantees the
convergence of average consensus protocols. We showed in Propositibthat for
p large enough, the solutionW, of (2.10 is a convergent matrix. However, for
small p values, it may happen that (W) 1 (the other conditions are intrinsi-
cally satis ed) and then the consensus protocol does not converge foll ghe possible
initial conditions. We observe that if all the link weights and the self weights inW,
are strictly positive then Wy, is a convergent matrix. In fact from Perron-Frobenius
theorem for nonnegative matrices $en0§ it follows that a stochastic weight matrix
W for a strongly connected graph wherew;; > 0 if and only if (i;j) 2 E satis es
(2.5 (i.e., (W) < 1). Then, the matrix may not be convergent only if one of the
weights is negative. Still in such a case nodes can calculate in a digkiuted way a
convergent weight matrix that is close to the matrix W(;. In this section we show
how it is possible and then we discuss a practical approach to guantee convergence
while not sacri cing the speed of convergence oV, (when it converges).

We obtain a convergent matrix from Wy, in two steps. First, we project W, on
a suitable set of matrices that satisfy conditions 2.3) and (2.5), but not necessarily
(2.4), then we generate a symmetric convergent matrix from the projection. Let
W = W, be the matrix to project, the solution of the following projection is
guaranteed to satisfy @.3) and (2.5):

argmin  jw  Wijj2
W
subjectto W1 = 1; (2.41)
w2 ¢cg;
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where qg is the set of non-negative matrices such thaw; > 0if (i;)) 2 E,
wijj =0 if (i;j ) ZE, and jj:jjr is the Frobenius matrix norm. The constant > Ois
a parameter that is required to guarantee that the feasible set is clesl.

Now, we show how it is possible to project a matrix\W according to (2.41) in a
distributed way. We observe that this approach is feasible becaeswe do not require
the projected matrix to be symmetric (and then satisfy (2.4)). The key element for
the distributed projection is that the Frobenius norm is separabk in terms of the
variables W (the d; 1 vector of weights selected by node for its neighbors), so
that problem (2.41) is equivalent to:

X
argmin r(w;)
W1 W i=1
_ _ (2.42)
subjectto W14 1 8i
Wi > 0 8ij
where 14, is the d; 1 vector of all ones, andr(W ) is de ned as follows:
2 X 2
r(Wi)=(wi  Wi) +  (wj W) (2.43)
i 2N
2
=(W; WpT(w; Wi+ (w; Wi)Ti (2.44)
=(Wi W)T 1g +1g15 (Wi W) (2.45)

where |y is di-identity matrix. Since the variables in (2.42) are separable in

tor W ") by locally minimizing the function r(W ) subject to its constraints.

Once the weight vectorsw ("™ are obtained, the projection of W, on the set
Q is uniquely identi ed. We denote it W (). We can then obtain a convergent
weight matrix W (€°V) by modifying W (P®) as follows. For every linkl  (i;j ), we
set:

WI(COHV) = min W i(DrOJ') . Wj(DfOJ')
() @)
where (j) (similarly (i)) is the index of the nodej (similarly i) in the correspond-

ing vector. Then we calculate the convergent weight matrix:
W(conv) = | Q diag(w(conv)) QTZ

While the matrix W (™) js convergent, its speed of convergence may be slower
than the matrix W, assuming this converges too. Then the algorithm described
above should be ideally limited to the cases wher@/, is known to not be conver-
gent. Unfortunately in many network scenarios this may not be knowna priori. We
discuss a possible practical approach in such cases. Nodes rst coutp W(y,. If all
the link-weights and self-weights are positive then the matrixW can be used in
the consensus protocol without any risk. If one node has calculated @mon-positive
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weight, then it can invoke the procedure described above to calculaté/ (©©V), Nodes
can then run the consensus protocol using only the matriV (<) at the price of a
slower convergence or they can run the two consensus protocols in pasdlaveraging
the initial values both with W (¢°™) and Wy If the estimates obtained usingW;,
appear to be converging to the same value of the estimates obtainedsing W (¢o")
then the matrix Wy is likely to be convergent and the corresponding estimates
should be closer to the actual averagé.

2.7.2 Networks with Misbehaving Nodes

The convergence of the average consensus relies on all the nodes correctlyfqraning
the algorithm. If one node transmits an incorrect value, the estinates of all the
nodes can be aected. In this section we address this particular misbek&r. In
particular, Ieb Xi(k) be the estimate of nodei at iteration k, if x;(k) 6 w; (k
Dxi(k D+ o, Wi (k 1)xj(k 1), then we calli a misbehaving node Stubborn
nodes are a special class of misbehaving nodes that keep sending the sastimate
at every iteration (i.e., a nodei is a stubborn ane when at every iterationk we
have xi(k) = xi(k 1) & wii(k 1)xi(k 1)+ ;5 wj(k 1)xj(k 1)). The
authors of [ACFO11] and [BABJ12] showed that networks with stubborn nodes fail
to converge to consensus. INHABJ12], they proposed a robust average consensus
algorithm that can be applied on networks having one stubborn nde and converges
to consensus. To the best of our knowledge, dealing with multiple stutorn nodes
is still an open issue. It turns out that with a minor modi cation o f our JCO
algorithm, the nodes can detect an unbounded number of misbehaving des under
the following assumptions:

Assumption 1: There is no collusion between misbehaving nodes (every
node, even a misbehaving one, that detects a misbehaving neighbor declares

it).

Assumption 2: At each iteration a misbehaving node sends the same (po-
tentially wrong) estimate to all its neighbors.

The second assumption can be automatically satis ed in the case of arbadcast
medium.

In the JCO procedure in section2.6.5 nodes perform one weight optimization
step and one average consensus step at every iteration. Consider an iteoa Kk,
weight optimization requires nodes to receive the weight vectors used byeir neigh-
bors (in particular, node i will receiver(k Y from every neighborj 2 N;), and the
averaging protocol requires them to receive their neighbors estimatesn(iparticular,
nodei will receive x; (k) from every neighborj 2 Nj). We also require that nodes
send the estimates of their neighbors, e.g., nodewill receive together with the vec-
tor Wj(k Y another vector Xj(k 1) from every neighborj 2 N; where Xj(k 1)

° Note that if (W) > 1 the estimates calculated using W, diverge in general, then it should
be easy to detect that the two consensus protocols are not corverging to the same value.
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is the vector of the estimates of the neighbors of nodg¢. With such additional
information, the following simple algorithm allows nodes to de&ct a misbehaving
neighbor:

Misbehaving Neighbor Detection Algorithm - Nodei
fx; (k); Xj(k 1);Wj(k l)g: the message received from a neighbgr at
iteration k
(i): index of a nodei in the corresponding vector
for all j 2 N;j
C=wy(k Lxk 1+X[(k pwh?

if (xj(k)& C)or xi(k 1)8(Xjk 1))

or wijk 16 wi?

Declarej as misbehaving node.
end if
end for

()

The rst condition ( xj (k) 6 wj (k 1)xj(k 1)+ X[ (k )W ¥) corresponds
to the de nition of a misbehaving node and allows neighbors to deteca node sending
a wrong estimate. The second and third conditionsXj(k 1) 6 (Xj(k 1)) (i)) or

(wj (k 1)6 Wj(k b (,))detect if nodej is modifying the content of any element
|

in the vectors X (k 1) and Wj(k Y pefore sending them to its neighbors. More
precisely, because of Assumption 2, if a node changes any element in {hr@viously
mentioned vectors, then this message will reach all neighbors includinthe neighbors
concerned by this modi cation. These neighbors will remark this modi cation by
checking the second and the third conditions, and, due to Assumyin 1, they will
declare the node as misbehaving.

Once a node is declared a misbehaving node, the others can ignore it bynply
assigning a null weight to its links in the following iterations.

2.8 More on Schatten p-Norm and its Relation to Ma-
chine Learning

The Schatten p-norm is often considered in machine learning for the regularizatio
problem in applications such as multi-task learning AMPYO07], collaborative Iter-
ing [SRJO and multi-class classi cation [AFSUO07] because it has some favorable
properties (being orthogonally invariant for example). Up to our knowledge, an ex-
act line search Newton's method has not yet been proposed for constrain&thatten
p-norm problems in machine learning but they are usually solved ¥ rst order gra-
dient methods. In this section, we develop Newton's method for the generaorm
optimization problem and we show that the weight selection by Schaen p-norm
proposed in this chapter can be considered a special case of this sectomhore
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general problem. The optimization problem we are interested in is thedilowing:
minixmize iXiip
subjectto (X)) =y; (2.46)
X 2 R"i"2 5y 2 RS

where jjXjj p is the Schatten p-norm of the matrix X which is the L-p norm of
its singular values, i.e., iXjip, =( ; P)'™P and (X) is a linear function of the
elements ofX . For p=1, the norm is known as the nuclear norm, while fopp= 1

it is the spectral norm; for both values of p, problem (2.46 can be formulated
as a semi-de nite programming and solved using standard interiepoint methods
[FHBO1, XB04]. The authors in [AMP10] refer to problem (2.46) as the minimal
norm interpolation problem.

In this section, we show that for an even integemp in problem (2.46), we can
easily calculate explicitly both the gradient and the Hessian by exmiting the special
structure of the objective function, constraints linearity, and by carefully rewriting
the Schatten norm problem by stacking the columns of the matrix b form a long
vector. While we still need to invert the Hessian numerically, this mdrix has lower
dimension than the typical KKT matrix used in Newton's methods for solving such
constrained problems.

We use the same notation for the Hessian and gradient presented ire&tion 2.4,
i.e., for the scalar function of avector, f : R™ ! R, the gradient of the function
f (x) with respect to the vector x 2 R™ is denoted byr xf 2 R™ and its Hessian
is denoted by the matrix r 2f 2 R™™ whose elements are given by the following

eqguations:
@f @f

@x k' @rx@x
For a scalar function of amatrix, h : R"t"2 1 R, the gradient of the function h(X)
with respect to the vector vect(X) 2 R"1"2:1 s denoted byr x h 2 R"t"21 and its
Hessian is denoted by the matrixr 2 h 2 R":"2iM1iNz whose elements are given by
the equations:

@h

@h, .
U @y’ andr & hej ys) - @y @x.

(r «f),, ;and r 2f

As (X)in (2.46) is a linear function of the elements ofX , then it can be written
also as:

(X) = A vect(X);

where A 2 R%""2 gnd c is the number of constraints. We suppose that the problem
admits always a solutionX . Since we are interested in applying Newton's method
to solve equation @.46), the objective function should be twice di erentiable. Not
all the norms satisfy this property, we limit then our study to t he case where is
an even integer because in this case we show that the probler2.46) is equivalent
to a smooth optimization problem. Let p = 2q, raising the objective function to
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the power p will not change the solution set, so we can equivalently consider the
objective function:
h(X) = jiXjj% =T xxT°

Since we only have linear constraints A vect(X) = y), by taking only the linearly
independent equations, and using Gaussian elimination to have a Hurow rank
matrix, we can rewrite the constraints as follows:

I, B P vect(X)=¥;

where |, is the r-identity matrix, r is the rank of the matrix A (the number of
linearly independent equations),B 2 R""1"2 ' ' P js annin, nin, permutation
matrix of the variables, and ¢ 2 R" is a vector. We arrive at the conclusion that
the original problem (2.46) is equivalent to:

minimize h(X)= Tr XX T ¢
X (2.47)
subject to Iy B P vect(X)=¥:

Before applying Newton's method to €.47), we can further reduce the problem
to an unconstrained minimization problem. By considering the equaty constraints,
we can form a mapping fromX 2 R"1:"2 to the vector x 2 R""2 ' as follows:

x = Qomnhz o, 0 ¢ P ovect(X); (2.48)
and X can be obtained fromx and ¢ as

X=vect! pt I XBX ; (2.49)
where vect!l : RMN2 | R"t"2 js the inverse function of vecf), i.e.,

vect 1(vect(X)) = X. The unconstrained minimization problem is then:
m|n|>£n|zef (x); (2.50)

wheref (x)= Tr XX T 9 and X is by (2.49.

All three problems (2.46), (2.47), and (2.50) are convex and are equivalent to
each other. We apply Newton's method to .50 to nd the optimal vector x
and then deduce the solution of the original problemX . The main di culty in
most Newton's methods is the calculation of the gradient and the Hesan. In many
applications, the Hessian is not known and for this reason gradigrmethods are
applied rather than the faster Newton's methods. However, also in thé case, we
show that by exploring the special structure of the functionh(X), we can calculate
explicitly both r «f and r 2f. To this purpose, we rst calculate the gradient
and Hessian ofh(X), and then use the linearity of the constraints. Using matrix
calculus Ber05 ORG12], and similarly to the derivation of equation (2.24), closed
form expressions for the gradient and Hessian dfi(X) are given by the following
Lemma:
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Lemma 4. Leth(X)= Tr XX T 9 whereX 2 R""2, then the gradient ofh is
given by,

rxhgy=2g9 XxT 9 (2.51)
1)
and the Hessian,
X 2 k 2k
q
r >2<h(” Y(st) = 2q XX T X ) XX T X .
k=0 It Sj)
Xt k 1k
+2q xxT°  xTx ¢ , (2.52)
i;s t;j
k=0

We can now apply the chain rule to calculate the gradient and Hessiaof f (x),
taking into account the mapping from x to X in (2.49).
For the gradient r xf, it holds for I =1;:::;niny r:
@f X @x
r<f) = —=—= rxhgiy——;
( X )| @}( - X i) @X

1)

(2.53)

where all the partial derivatives %—ﬁ( are constant values because2(49 is a linear

transformation. Applying the chain rule for the Hessian and casidering directly
@Xij

that all the second order derivatives like axox e null (again because the mapping
(2.49 is a linear transformation), we obtain that for I;k =1;:::;n1ny, r:
X
2 @F > @¥ @ .
ref .= = r 5 hgi — 2.54
'k T @x@x X)) @x @x (2.54)

ij;sit

Sincef (x) is a convex function, then the calculated matrixr 2f is semi-de nite
positive. We can add to the diagonals a small positive value to guarantee the
existence of the inverse without a ecting the convergence. The calculated Heiss
is a square matrix having dimensionsd by d whered = nin, r may be large
for some applications, and at every iteration of the Newton's methodwe need to
calculate the inverse of the Hessian. E cient algorithms for inverting large matrices
are largely discussed in the literature (seellK94] for example) and are not detailed
here. Nevertheless, the given matrix has lower dimension than the typal KKT

matrix 1° used in Newton's method BV04]:

2 T
rgh A

; 2.55

A 0 (2.55)

where A is considered here to be a full row rank matrix, so the KKT matrix is a

square matrix of dimensions dxxt by dkkt wheredkkt = nina +r.
Once we know the gradientr 4f and the Hessianr 2f , we just apply the New-
ton's method to nd the solution x and then obtain the solution of the original

10Note that the sparsity of the matrix to invert is preserved by the proposed method, i.e., if the
KKT matrix is sparse due to the sparsity of A and r % h, then r 2f is also sparse.
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problem X . In fact, the weight selection optimization (2.10 proposed in this
chapter is just a special case of the problem discussed in this sectiolRue to the
constraint that the matrix is symmetric in ( 2.10), we can write the objective func-
tionash(W)= Tr WWT 9 . Moreover, we can see that all constraints are linear
equalities. Therefore, the technique derived here applies to the more spi ¢ case.

2.9 Conclusion

We have proposed in this chapter an approximated solution for tke Fastest Dis-
tributed Linear Averaging (FDLA) problem by minimizing the Schat ten p-norm of
the weight matrix. Our approximated algorithm converges to the sdution of the

FDLA problem as p approachesl , and in comparison to it has the advantage to
be suitable for a distributed implementation. We gave rst a centralized implemen-
tation using Newton's method, and then we gave a totally distribued projection

sub-gradient algorithm for our proposed problem. Moreover, exterige simulations
on random and real networks show that the algorithm outperformsother common
distributed algorithms for weight selection. We also addressed théssue of topolog-
ical optimization and we compared that to the weight optimization. Finally, the

issue of stubborn nodes was discussed where an appropriate algjom to counter

these malicious behaviors was proposed. We concluded this chapter lextending
our approach for Schatten norm minimization to more general prokems which can
be of interest for machine learning applications.
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As we have seen so far, in consensus algorithms, nodes execute updaies
to reach consensus based on neighbor to neighbor weighted average linéara-
tions. As in any protocol, some parameters (e.g., the weights) canebtuned faster
convergence. For instance,{B04] formulates a semi-de nite program (SDP) for a
xed weight selection algorithm to achieve fast convergence of consensus farcols
independent of initial nodes' values, and we proposed a distributeimplementation
for an approximation of the SDP in Chapter 2. Another approach is to design
time-varying weights, for example KG09, HIJOV14] study nite-time consensus by
arbitrary time-varying weights chosen at the time of design usig matrix factoriza-
tion techniques. Reference$M12 considers dynamic weights for least mean square
design in correlated or uncorrelated initial node values.

Further, networks can be susceptible to attacks from adversaries wihg to drive
the system away from consensus. There are di erent types of adversarig¢isat can
harm the network. For example compromised strategic nodes (like tdty nodes
or stubborn ones PCFO11, BABJ12]) can harm the state of the network. Other
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types of strategic intervention include adversaries that cut commurgation links or
insert noise signals in the agents' interaction protocolKTB13]. Yet another type of
adversaries inject false data (collected by nodes) into the system, whidoypass bad-
data detection mechanisms. False data injections are known as stehlattacks and
are widely studied for the security of state estimation in electric pover networks
[VD14, LNRO09]. In order to mitigate the e ect of an adversary, security proce-
dures should be taken into account in the design of optimal strategis in consensus
protocols.

Our present work in this chapter shares with this set of references the sasob-
jectives of designing time-varying weights for faster consensus antuslying optimal
strategies for networks that are vulnerable to attacks. In the rst part we study
time-varying weights for consensus protocols within the frameworkof an optimal
control formulation. We apply optimization techniques to obtain a locally (and pos-
sibly globally) optimizing feasible control path and provide necessary and su cient
conditions for the existence of a control that makes the system reach ngensus in
only one iteration. The di erence with previous related work is that in this chapter
we consider the initial values in ourdynamic weight design. In the second part we
study adversaries that can compromise these weights. We propose arge theo-
retical framework for an adversary that can add noise to the weightgo drive the
system away from consensus. We derive the optimal strategies usirgsaddle-point
equilibrium (SPE) solution in mixed strategies for both players the adversary and
the network designer) in the resulting game.

The contribution of the chapter is as follows:

We formulate, using optimal control, the problem of nding opti mal weights
for discrete time consensus given the information on initial condions, and
provide necessary conditions using the maximum principle for optal design.

Using gradient methods, we solve the weight optimization problenand provide
a locally (and possibly globally) optimizing solution. We al give su cient
conditions for an optimal control to drive the system to consensusn only one
stage (one iteration consensus).

We give a game theoretical approach to model an adversary that can perb
the weights in the network. We provide the optimal strategies gien by the
saddle-point equilibrium of the network in mixed strategies.

3.1 Problem Formulation

In this chapter, we turn our attention to time-varying weights in consensus protocols.
The system equation is then given in matrix form as follows,

x(k+1)= WK)X(K):; (3.1)

where W (k) is the weight matrix at iteration k.
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Under some conditions on the weight3V (k), the values at the nodes are guar-
anteed to converge asymptotically to the average

kl!llm x(k) = x;

P
where X = Xavel and Xave = % ", Xi(0). We have seen that one such set of

conditions is given in [XB04] with xed weights (i.e., W(k) = W 8k):
1"™w=1": wi=1; (W %11T) <1

where 1 is the vector of all ones, and (%) is the largest eigenvalue in magnitude of
a matrix. By the rst condition, the average in the network is conserved, namely

1"x(k) = 1"x(0) = nXave 8K; (3.2)

the second ensures stability, and the last condition guarantees caorgction on the
weight matrix. At any iteration k, we de ne the squared errorL, from consensus
as follows:

X
Lk = (xi(k) Xave)2
i2v
=(x(k)  x)T(x(K) x);
= Ye Yk (3.3)

whereyy = x(k) X.

In this chapter, we design time-varying weight matricesW (k) such that consen-
sus forms in the least number of iterations (achieving faster convegence) under the
criterion of minimum squared error. Our work di ers from the earlier work in the
literature in that we design the weights depending on the initial \alues, i.e.,

W (K) = W (k; x(0)):

3.2 Optimal Weight Selection on Undirected Graphs

Toward the goal stated above, since we are dealing with an undirectedrgph, we
consider the following properties for the weight matrix for all k:

W(k)= W(k)" and W(k)1= 1: (3.4)

Therefore, equation @.2) is satis ed for all k and the average is conserved. Moreover,
we can consider a vectouy 2 R™ as the control variable that represents the weights
on the undirected links (each links (ij ) is given a control ugk)). At stage k, the
network designer will select a controluy. In particular, due to equation (3.4) we
can write the weight matrix as a function of the control vector as folbws:

W(k) = I, Qdiag(ux)Q": (3.5
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For any iteration k, the square errorLy metric measures the distance of the
system from the average. Since the goal is to reach faster the conseadast, cost is
assigned only to the last stage. The optimal control problem of thé chapter is then
given as follows:

argmin Ln

subject to (3.6)

Yke1 = Yk Qdiag(uk)QTyk; fork=0;::5N L
where N is the number of stages in this optimization. Let us rst show that an
optimal control (u,; k=0;:::;N 1) that solves the optimization problem (3.6)
exists.

3.2.1 Existence of a Solution

The cost function of the optimization problem is given by

Ln = YNYN
X(N)TX(N)  2xTx(N)+ x"x
X(N)TX(N)  2Xavel™x(N) + nx2,o

— 2 .
= Jn NX3ves

whereJy = x(N)Tx(N). Then minimizing Ly = y[ yn is equivalent to minimizing
the function Jy = x(N)Tx(N) because the termnx2,, depends only on the initial
values. Let us de ne the product matrix Uy, ,) as follows:

8
3W (k)W (ki +1) 1 Wi(ka) if kg <k2

U(kl:kz) = 3 W (ki)W(ky 1):::W(ky) ifky>k2
W (kq) if ky = k2:

To show that an optimal control (u,; k =0;:::;N 1) exists, we write the opti-
mization as an unconstrained one:

argmin f (Ug;:::;uN 1) (3.7)

where

f(uoiiiiun 1) = In = X(N)TX(N)
x©0)TUN 19Un 10X(0): (3.8)

Since the elements of the matrixUy 1.9) are linear in the control variables,
and U(TN 1;0)U(N 1,0) IS a positive semi-de nite matrix, f (:) is a quadratic func-
tion and bounded from below, and hence there exists at least one control
(Ug; kK=0;:::;N 1) that globally minimizes f .
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3.2.2 Necessary Conditions

To nd necessary conditions for the optimal control, we apply the maximum prin-
ciple [LVS12, p. 24] to problem 3.6). For k =0;:::;N 1, the system equation,
performance index, and Hamiltonian are given as:

System equation:

Yiel = Yk Qdiag(uk)QTy«; (3.9
Performance index:
Ln = YUYN;
Hamiltonian:
H = T vk Qdiagu)Q yk ; (3.10)

where .1 is the costate variable corresponding to iterationk.
Then, the costate equation and the associated boundary condition at

Costate equation:

@H

k= @«

Boundary condition:

= In  Qdiag(u)Q"  s1; (3.11)

N = YN (312)

Any optimal control should minimize the Hamiltonian [ LVS12]. Since the Hamil-
tonian is linear in the unconstrained control variables, if any coe cient of a control
variable in (3.10) is nonzero, the optimal control would be unbounded. But an op-
timal control exists as we have already shown, so all the coe cients othe control
variables in (3.10 are necessarily equal to zero, i.e.,

QH
@k
where is the element-wise product of the vectors and is the vector of all zeros.
Equation (3.13 provides necessary conditions for a controller to minimize 3.8).
These necessary conditions can be further simpli ed giving a simple nebrk in-
terpretation if we consider one stagel = 1). In fact, using the boundary condition
(3.12, the necessary conditions in equation3.13 for N = 1 reduce to

QTyo Q'y: =0;

i.e., for any link (ij ) 2 E we have

QTyk Q" ys1 =0; fork=0;:::;N 1; (3.13)

(xi(0)  x;(0))(xi(1) x;(1))=0: (3.14)

Let H = (V;E9 be a sub-graph ofG de ned on the same set of verticesV, and
with links E® E such that (ij ) 2 E%if (ij) 2 E and xj(0) x;(0) 6 0. Then we
have the following:
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Proposition 6. If H = (V;EY is connected, then any optimal controlu drives the
system to consensus in one iteration, i.e.,

X = I, Qdiag(u )Q" x(0):

Proof. Due to Eq. (3.14), we havex;(1) = x;(1) 8(ij) 2 EC If H is connected, then
there is a path in E between any two vertices, and thusx;(1) = x;(1) 8i;j 2 V.
Using also the fact that the average is conserved (due to equatior3(2)), we get
Xi(1) = Xave 8i 2 V. O

3.2.3 Locally Optimal Solution

In the general case, the optimization problem 8.7) is computationally hard because

stage,uy, but not jointly convex). We therefore turn our attention to locall y optimal
solutions, and to obtain such a solution we apply the gradientmethod to (3.8).

Proposition 7. Letf (ug;:::;un 1) be given by(3.8). Then, fork=0;:::;N 1,
the gradient gl(k) of the function f (:) with respect to its variablesul(k) where ul(k) is
the I-th element of the vectoruy corresponding to link(ij ) (I  (ij)) at stageKk, is

given as follows:

K _ @f
gl - @H()
= 2[(AW (K)Bk)ij + (AW (K)Bk)ji
(AW (K)Bi)ii (AW (K)B)jj I; (3.15)

where Ay and By are as follows:

Ay = ( U(TN 1:k+1) UN 1k+1) fN 1 k+1;
In if N 1<k +1;
- (3.16)
_ Uk 10%0) Uk 10x(0) ifk 1 0
x(0)x(0)T ifk 1<0:

Proof. By using the commutative property of the trace operator (i.e., Tr(XY ) =
Tr(Y X) for any conformable matricesX and Y), f (:) can be written for any k =
0;:::;N 1 as follows:

= Tr W(k)TAW (K)Bk ; (3.17)

where Ay and By are given by (3.16) and are independent of the variables of stagk

(i.e., @(;\H(:"))St = @@?gk)f‘ =0 8s;t2V;andk=0;:::;N 1). From matrix calculus,
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if h(W) = Tr(WTAWB), then @%h =2(AWB); , and sinceW = I, Qdiag(u)QT,
for any u; such that!l (ij ) we have

+1 ifs=iandt=]
+1 ifs=jandt=

@wt _ o .
@u 1 ff s= | andt = |- (3.18)
% 1 ifs=jandt=]j
-0 else.
Thus,
@h_X @h @w_ X @wt
- = _ = 2 AWB —
@ , @& @u ( s @y
= 2[(AWB)ij +(AWB)ji (AWB)ii (AWB)jj ]Z (3.19)

We can apply equation @.19 to every stage separately and this ends the proof. (J

Let us stack up all the elementsul(k) in one vectorw, and also stack up all the
eIementsgI(k) in one vectorg.

Proposition 8. Consider the following gradient iterative procedure

wt = w® g0

where ¢ = m is the stepsize anav©® = 0. Then the elementsul(k) of the vector
w converge to a locally minimizing solution of the optimizatin problem (3.6).

Proof. The given procedure is a standard (sub-)gradient method for optiniation
and the convergenge has been widely studied under the diminishing stepes rule:
limyy (=0and ©, (=1 (seeBho83). O

Remark: The function f (:) can have multiple local minima, and the gradient
method converges to one of them. But simulations show that in sometsiations any
local minimum is in fact a global one. This is the case when we start withnitial
values where only one nodé has a nonzero estimatex;(0) = 1, and all other nodes
have an initial value 0. If d is the largest distance (in terms of the number of hops)
from nodei to a nodej having x;(0) = 0, then we know that any optimal control
needs at least stages to drive the system to consensus because ngdeeeds at least
d iterations to change its valueO. By simulations, the gradient given in Proposition
8 for N = d stages yields weights that lead to consensus (as we will see later in
Section 3.4) and hence the solution turns out to be optimal (global minimum).

3.2.4 Closed-Form Solution for the One-Stage Problem

Consider now the caseN =1, that is with only one stage. Then the control would
be a single vectoru where each component is the weight for the corresponding edge.
The optimization problem in this case is convex:
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us = argmin f (u); (3.20)
u

where us is the solution set (possibly an in nite set) and

f(u)=x©)T(In Qdiag(u)Q")(In Qdiag(u)QT)x(0)
= jix(0)  Qdiag(u)QT x(0)jj?
= jix(0) Qdiag(Q"x(0))ujj?
= jiDu  bjj%
where
D = Qdiag(Q"x(0)), and b = x(0): (3.21)
The problem is then reduced to a least squares approximation problem, vehne
any element in the solution setug satis es what is known as the normal equations:
D'Du=D"b; 8u?2us:
Moreover, us is not empty, with at least one solution @,
0=D"%h;

where D™ is the pseudo inverse oD that can be obtained using the singular value
decomposition ofD. If DTD is a positive de nite matrix, then D* =(DTD) DT

and @ is the unique solution to the least squares problem. We denote by the

minimum value of the function f (u):

S=f(0)
= ji(bD*  1)bjj?%: (3.22)

3.3 Network with Adversary in Discrete Time

Suppose that there is an adversary that can add noise onto the wdits of the links.
The adversary's objective is to drive the system away from consensugonsidering
only one stage optimization (N = 1), the state equation would become

Xx(1) = W(u;v)x(0)
=(l, Qdiag(u + v)QT)x(0); (3.23)
where W (u;v) is the weight matrix that depends on the controlu 2 U; = R™ and
the noise of the adversaryv 2 U, = fy;y 2 R™;jjyii Cg, where C is a given

positive constant and can be seen as the power constraint of the adwary (the
larger C the more powerful is the adversary). The cost function is

J(u;v) = x(1)"x(1)
jilh  Qdiag(u + v)QT)x(0)jj?

= jiD(u+v) bji? (3.24)



3.3. Network with Adversary in Discrete Time 65

whereD and b are given by 3.21). The adversary (v) is the maximizer of J(u;Vv)
while the network designer (1) is the minimizer in this zero-sum two-person game.

Denition 1. A pair (u 2 Uj;v 2 Up) is a saddle-point in pure strategies of
J(u;v) if the following holds:

Ju;v) J@u;v) J(u;v); forall (u2 Ugv 2 Uy):
The lower valueV and the upper valueV of the game are de ned by

V = sup |£1LfJ

J(u;v) ,andV = inf supJ(u;v):
v2U, U u2U

1 1v2Uy

Since the strategy spaces are decouple®, V. If furthermore V = V, then the
common value is called thevalue of the game. Existence of a saddle-point guarantees
existence of the value BO99]. As J is a quadratic function of u, and J(u;v) O
for all (u 2 Ug;v 2 Up), then for any givenv 2 U, J attains a minimum on U;
[Hil08]. Moreover, sincel, is compact, andJ is a continuous function on its domain
of de nition, for any given u 2 U;, J attains a maximum on U, by the Weierstrass
Theorem. Therefore, we can replacénfyzy, by miny2y, and sup,,y, by max,2u,
in the de nitions of the upper and lower values. In the sequel, we willshow that
actually the game does not have a value, and hence does not have a skdgdoint
(in pure strategies). It however has a saddle-point in mixed strategs (shortly to
be de ned).

3.3.1 The max-min Solution

In the max-min solution, the network designer has access to the sttagy played by
the adversary.

argmin J(u;v) = argmin jiD(u + v) bjj?
u u

Db v:
Then we have,
m\?xmuinJ(u;v) = max J(D'b v;v)
=max S
\
=S; (3.25)

where S is the value of the one player optimization problem, given by 8.22 and is
independent ofv.

3.3.2 The min-max Solution

In the min-max solution, the adversary has access to the strategyfdhe controller.
The cost function J can be written as:

J(u;v) = jiD(u+v)  bjj?
=b"™b+u'D'Du 20"Du+v'D'Dv+2vT D'Du D'b :



66 Chapter 3. Consensus in the Presence of an Adversary

Consider the following strategyvi by the adversary:

(
vi2R(D'D)\ U, ifD'™Du D'h=0

3.26
% otherwise, (3.26)

V1= C

whereR (D "D) is the range of the matrix DT D. Therefore we have,
mulnm\?x\](u;v) rerJ(u;vl)

= min }/IDTDV1+2V%Z D'Du Db

>0

+b"™b+u'™D"Du 20"Du
>min b'Tb+u'D'Du 2b'Du
u
= S:

Hence,
max muin J(u;v) < muin m\;axJ (u;v); (3.27)

which means that there is no saddle-point in pure strategies.

3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies

Since an SPE does not exist in pure strategies, we allow players tondomize their
actions through mixed strategies. A mixed strategy for the network esigner is a
probability distribution on U;, and we denote the space of all such probability
distributions by M;. Similarly, a mixed strategy for the adversary is a probability
distribution  on U,, and the space of all such probability distributions is denoted
by M,. The average cost corresponding to a paif 2 M1; 2 My) is given by
Z
J(; )= J(u;v)d (u)d (v):
Ui Up
Denition 2. A pair ( 2 M3; 2 My) is a saddle-point equilibrium in mixed
strategies if the following holds:

JC ) J3C 5 ) (¢ ), forall ( 2My; 2 Mpy):
Proposition 9. Consider the following strategies:
(u) : u= D" b with probability 1; (3.28)
and
v=2Cp with probability 1/2

(v): , . (3.29)
v= Cp with probability 1/2;

where p is any unit eigenvector of the matrix DT D corresponding to the largest
eigenvalue max(DTD). Then the pair ( ; ) is an SPE in mixed strategies.
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Proof. Let us recall the cost function:
J(u;v)=b'b+u'DTDu 2b"Du
+v'D'Dv+2v D'Du D'b
= jjDu bji?+v'D'Dv+2vT D'Du D'b :
Then the average cost under the given pair of strategies is,

J( ; )=jiDD"b bji*+(Cp)'DTD(Cp) (1=2)
+( Cp)'DTD( Cp) (1=2)
= S+ C? ma: (3.30)
But we have,
ya
J( ; )=jiDD*b bjj?+ | ™DTD d (v)
2

S+ max v'D'Dv
viivii €

S+ C? max
JIC ;) (3.31)

and
Z

J(; )=C? max*+ iiD  Dbji?d (u)
Uz

c? max +an jjiDu bjjz

S+ C? max

=3( ;) (3.32)

Since we have for any paif 2 M1; 2 Mj),

JC ) 3C 5 ) 3G
then ( ; ) is a saddle-point equilibrium. O

Remark: The saddle-point is not unique, as any(; ) where is a point
distribution in the set ug of (3.20) (or any distribution on this set due to the
interchangeability property of saddle-points BO99]), and as in (3.29 where p is
any eigenvector corresponding to max(D T D) (or any distribution on these vectors)
is also a saddle-point. However, iD is full column rank, and nax has geometric
multiplicity of 1, then the saddle-point is unique.

3.4 Simulations

3.4.1 Optimal Control

We illustrate the results obtained on a numerical example. Given theample network
of Fig. 3.1 and the initial values, we are interested in selecting the controls ofinks,
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Figure 3.1: Network with 4 communicating nodes.x; (0) is the initial value of node
i, and ujj is the control value (or weight) of link (ij ).

k=0 k=1
o x(Oi Ug o x(1) 1 u;
0 1 : 0
é 0:8665 8;222 0:2201
% § @ o A % ' § @ 0:6051 A
0 0 0 0
0 0
Jo=x(0)"x(0)=1 J; =0:7686
k=2 k=3
n X@) U, qn X3 .,
0:2949 0:3934 0:25
0:1808 A 0:25
@ 0:0708 )
0: 5243 0:4768 0:25
' 0:25
322013945 J3=0125

Table 3.1: Optimal control results for the network in Fig. 3.1

Uk = ( u(lkz), u(2k3), qu)T, so that the system reaches consensus. We limit the number

of stages toN = 3 because in that case the diameter is equal to three and an optimal
control that drives the system to consensus exists. The optimizatiorproblem (3.6)
reduces to:

argmin J3

Up;ui;uz

subject to
x(k+1)=(14 Qdiag(u)Q")x(k); for k=0;1;2;

wherel 4 is the 4 4 identity matrix and the incidence matrix Q is given by:

O

Q%l §

Table 3.1 shows the optimal control (u,;k = 0;1;2) for the given network. The
control is obtained by the gradient descent iterative procedure of Prposition 8 where
the initial starting point of the gradient was selected 0 on all links of the three stages.
The results indicate that with only three iterations, the system readies consensus.
To compare with other weight selection algorithms, we apply the algathm given in



3.5. Conclusion 69

[XB04] obtained for a related semi-de nite program (SDP). That algorithm nds a
xed set of weights for all iterations that guarantee fastest convergnce independent
of initial values (worst-case analysis). For the network examp@ in Fig. 3.1, the SDP
assigns a value0:5 to all weights for all iterations, and the resulting state vector
after three iterations is xspp (3) = (0:375 0:375 0:125, 0:125)T, which has a cost of
J3 = 0:3125 (thus higher cost than our time-varying weights) and needs an in nte
number of iterations to converge. It is worth mentioning that the SDP weights
are designed for worst-case node initial values, and thus have ¢hadvantage that
they guarantee convergence starting from any initial values. Howeverthe optimal
control in this chapter is designed for a given starting value, and hus if the initial
node values change, the control values must be readjusted.

3.4.2 Adversarial Intervention

In this subsection, we study the e ect of an adversary disrupting the communication
on networks with connected random geometric graphs (RGGs) topology whera
nodes are thrown uniformly at random on a unit square, and any twonodes within
a connectivity radius r are connected by a link (the simulations are done withr =

0:6 % given that the graph is connected). RGGs are generally used as models
for wireless sensor networks, and disruption of communication can b&ccomplished
by insertion of high intensity signals on communication links. The additive white
noise can also be considered as an adversarial input in our setting§Ve compare
the results on di erent RGGs with di erent sizes (number of nodes n) for n 2
f20;40;60; 80; 100g. Fig. 3.2 depicts the di erent costs on the resulting network
with and without the presence of the adversary, averaged over 150 indepdent
runs. We consider only one-stage games where the initial cost functids given by
Jo = x(0)"x(0). For any nodei, the initial node value x;(0) is selected at random
uniformly within the interval [0; 1]. We assume that the adversary power constraint
isjjvjj 1(.e.,C =1). We see from Fig.3.2that the network without an adversary
achieves the least costl;. An adversary selecting uniformly random strategy from
the n-dimensional unit sphere does not substantially a ect the cost; haever, an
adversary with the same power constraint playing the strategy of he saddle-point
equilibrium (equation (3.29) achieves signi cantly higher cost than the uniform
random adversary (even larger cost thanlg for graphs ofn = 20 and n = 40 nodes).

3.5 Conclusion

In this chapter, we have studied a nite-horizon discrete-time optimal control prob-
lem for a network designer to achieve faster consensus given the netwasiktucture
and the initial node values. The optimal control is obtained usirg gradient meth-
ods. We have also provided su cient conditions for reaching consenss in one stage.
Moreover, we have studied the saddle-point equilibrium (SPE) of he consensus
problem in the presence of an adversary, and found that an SPE does hexist in



70 Chapter 3. Consensus in the Presence of an Adversary

35
@ Initial Cost Jg
—8—Without Adversary J;

30 P
« |- %- Saddle Point Jy(7% 8%) Pl
»— B
x i Q.-

‘=4 Uniform Random Adversary J e

125 y 1.\\,-~,x .
=) ‘\n‘;"
s e
= 20f 2
o R4
c e
> P
[ .2
§15* PR
(]

10

20 40 60 80 100
Number of nodesn in the RGG topology

Figure 3.2: The cost function due to di erent adversary settings: atsence of adver-
sary, uniform random adversary that adds a random noise to theontrol values, and
saddle-point adversary that randomizes its strategy in accordance wh the saddle-
point equilibrium.

pure strategies. Nevertheless, an SPE exists in mixed strategies, whereet adver-
sary selects the noise using a randomized strategy, whereas the netwatksigner's
strategy is still pure.
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Most existing algorithms (as well as the ones we've seen so far) forgzrise
distributed averaging require that agents are able to send and recedvreal val-
ues with in nite precision. However, a realistic network can only allov mes-
sages with limited length to be transmitted between agents due to consaints
on the capacity of communication links. With such a constraint, whena real
value is sent from an agent to its neighbors, this value will be trmcated and
only a quantized version will be received by the neighbors. With such canti-
zation, the precise average cannot be achieved (except in particular cagedbut
some value close to it can be achieved, called quantized consensus. A ten
of papers have studied this quantized consensus problem and variopsobabilistic
guantization strategies have been proposed to cause all the agents @annetwork to
reach a quantized consensus with probability one (or at least with hify probability)
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[Sch64 AB10, ACRO7, BTV09, BTV11l, LM12, KM10, KBS07, EB13]. Notwith-
standing this, the problem of how to design and analyzeleterministic quantization
e ects remains open FCFZ09, CYRC13].

In this chapter, we thoroughly analyze the performance of distiuted averaging
algorithms where the information exchange between neighboring agenis subject
to a deterministic uniform quantization. We show that in nite t ime, the algorithm
will either cause all agents to reach a quantized consensus where the consengalue
is the largest integer not greater than the average of their initial \alues, or will lead
all agents' variables to cycle in a small neighborhood around thewerage, depending
on initial conditions. In the latter case, we give tight error bounds for the size of the
neighborhood and it is further shown that the error can be made arlirarily small
by adjusting the algorithm's parameters in a distributed manner, at a cost of slower
convergence.

4.1 Literature Review

Most of the related works for distributed averaging with quantized canmunication
use either a deterministic algorithm (as our approach in this chater) or a proba-
bilistic one.

There are only a few publications which study deterministic algorihms for
guantized consensus. InlFXZ11] the distributed averaging problem with quan-
tized communication is formulated as a feedback control design problerfor cod-
ing/decoding schemes; the paper characterizes the amount of informan needed to
be sent for the agents to reach a consensus and shows that with an appréate scal-
ing function and some carefully chosen control gain, the proposedgtocol can solve
the distributed averaging problem, but some spectral properties othe Laplacian
matrix of the underlying xed undirected graph have to be known in advance. More
sophisticated coding/decoding schemes were proposed inX11] for time-varying
undirected graphs and in gz13] for time-varying directed graphs, all requiring care-
fully chosen parameters. Recently a novel dynamic quantizer has been grosed in
[TKPF13] based on dynamic quantization intervals for coding of the exchaged mes-
sages in wireless sensor networks leading to asymptotic convergence tmsensus.
In [CMO09] a biologically inspired algorithm was proposed which makes all gents
reach some consensus with arbitrary precision, but at the cost of nopreserving
the desired average. Control performance of logarithmic quantizers as studied in
[CFSZ09 and quantization e ects were considered in [NOOTO09]. A deterministic
algorithm of the same form as in this chapter has been only partidy analyzed in
[FCFZ09] where the authors have approximated the system by a probabilist model
and left the design of the weights as an open problem.

Over the past decade quite a few probabilistic quantized consensusgalrithms
have been proposed. The probabilistic quantizer inACRO07] ensures almost sure
consensus at a common but random quantization level for xed (stronly connected)
directed graphs; although the expectation of the consensus value edsahe desired
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average, the deviation of the consensus value from the desired aveeas not tightly

bounded. An alternative algorithm which gets around this limitation was proposed
in [KM10]; the algorithm adds dither to the agents' variables before quatization

and the mean square error can be made arbitrarily small by tuningthe parame-
ters. The probabilistic algorithm in [BTV09, BTV11], called interval consensus
gossip , causes all agents to reach a consensus in nite time almostrely on the
interval in which the average lies, for time-varying (jointly connected) undirected
graphs. Stochastic quantized gossip algorithms were introducenh [LM12, ZM11]

and shown to work properly. The e ects of quantized communication on thestan-

dard randomized gossip algorithm BGPS0q were analyzed in CFFZ10]. An alter-

native approach to analyze the quantization e ect was introduced in[Sch64 AB10]

which model the e ect as noise following certain probability.

Another thread of research has studied quantized consensus with the aitidnal
constraint that the value at each node is an integer. The probabiktic algorithm
in [KBS07] causes all agents to reach quantized consensus almost surely for a xed
(connected) undirected graph; convergence time of the algorithm was stlied in
[EB13], with strong bounds on its expected value. In €I11] a probabilistic algo-
rithm was proposed to solve the quantized consensus problem for xe@strongly
connected) directed graphs using the idea of surplus .

We should note that, in addition, our work in this chapter is also related to the
literature on the problem of load balancing RAMR93, SS94 GM96].

4.2 System Equation

In this chapter, we will refer to the nodes running the distributed averaging as
agents. As assumed so far, the grap® is connected and does not change over time.
Initially each agent i has a real numberx;(0). Let

Xave(K) = r]]-X Xi(K);

i2v
be the average of values of all agreement variables in the networkgye is then simply
Xave(0). The approach studied so far in this thesis to the problem is for edtagent
to use a linear iterative update rule of theXform
Xi(k+1) = w;jxi(k)+ wi Xj (k); 812 V: 4.1)
i 2N;

4.3 Quantized Communication

In a network where links have constraints on the capacity and have mited band-
width (e.qg., digital communication networks), messages cannot havin nite length.
However, the distributed averaging algorithm requires sending rea{in nite preci-
sion) values through these communication links. Therefore, with digal transmis-
sion, the messages transmitted between neighboring agents will have be trun-
cated. If the communication bandwidth was limited, the more the truncation of
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Figure 4.1: The network model for the quantized system.

agents' values, the higher would be the deviation of agent's valuéom the desired
average consensusaye.

To model the e ect of quantized communication, we assume that the link per-

form a quantization e ect on the values transmitted between agents. The etwork
model is given by Fig.4.1. As we can see from the model, each agemntcan have
in nite bandwidth to store its latest value x;(k) and perform computations. How-
ever, when ageni sends its value at timek through the communication network, its
neighbors will receive a valueRj(k) which is the quantized value ofx;(k). A quan-
tizer is a function Q : R! Z that maps a real value to an integer. Quantizers can
be of di erent forms. We present here some widely used quantizers in théérature
[NFZEO7, CFFZ10, NOOTO9]:

. Truncation quantizer Q; which truncates the decimal part of a real number

and keeps the integer part:

Qt(x) = bxc: (4.2)

. Ceiling quantizer Q. which rounds the value to the nearest upper integer:

Qc(x) = dxe: (4.3)

. Rounding quantizer Q, which rounds a real number to its nearest integer:

bxc if x bxc< 1=2
X) = 4.4
Qr(®) dxe ifx bxc 1=2 (4.4)

. Probabilistic quantizer Q, de ned as follows:

bxc  with probability dxe x
Qp(x) = . . _ (4.5)
dxe with probability x b xc:
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In this chapter we study the e ect of the deterministic quantizers (Q:(x), Q¢(X),

and Q(x)) on the performance of the distributed averaging algorithms by kowing

the distance that the agents' stored values can deviate from the iial average X aye.

The quantizers listed before mapR into Z and have quantization jumps of size 1.
Quantizers having a generic real positive quantization step can be simply recovered
by a suitable scaling: Q()(x) = Q(x=) [CFFZ10]. Thus the results in this chapter

cover these generic quantizers as well.

4.4 Problem Formulation

Suppose that alln agents adhere to the same update rule of Eq.4(1). Then with
a quantizer Q(x), the network equation would be
X
Xi(k + 1) = Wi Xi(k) + Wij Q(Xj (k)); 8i 2 V: (4.6)
J2N;i
Simple examples show that this algorithm can cause the system to Bhaway from
the initial average Xaye.

Since agents know exactly the e ect of the quantizer, for the agents notd lose
any information caused by quantization, at each iterationk each agenti can send
out the quantized value Q(x;(k)) (instead of sendingx;(k)) and store in a local
scalar ¢ (k) the di erence between the real valuex;(k) and its quantized version,
ie.,

ci(k) = xi(k) Q (xi(k)):
Then, the next iteration update of agenti can be modi ed to be
X
Xi(k+1) = wii Q(xi(k)) + wij Q(xj (k)) + ci(k); 8i 2 V: (4.7)
i 2N;

A major di erence between this equation and @.6) is that here no information is
lost; i.e., the total average is being conserved in the network, as waeill show shortly
after. The state equation of the system becomes,

x(k+1)= WQ (x(k)) + x(k) Q (x(k)); (4.8)

vector quantization operation. For any W where each column sumstd (1TW = 1T
where 1 is the vector of all ones), the total sum of alln agreement variables does
not change over time if agents followed the protocol of Eq.4.8):

1Tx(k+1)= 1T (WQ (x(k)) + 1Tx(k) 1Tbx(k)c

1TQ(x(k) + 17x(k)  17Q (x(k))

17 x (k)

17x(0)

NXave; (4.9)
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Thus the average is also conservedxfve(k) = Xave; 8k). Equation (4.8) would
be our model of distributed averaging with deterministic quantized canmunication
where the quantizer can take the form of the truncationQy, the ceiling Q¢, or the
rounding one Q; . It is worth noting that the three quantizers can be related by the
following equations:

Qr(x) = Qu(x +1=2); (4.10)
Qc(x) = Q +( x): (4.11)

Given a model with the ceiling quantizer Q¢ in (4.8), by taking y(k) = x(k),
the system evolves as:

y(k+1)= y(k)+ WQ(y(k)) Q (y(k))
y(0) = x(0):

Therefore, by analyzing the above system which has a truncation quaiter Qq,
we can deduce the performance of (k) that satis es equation (4.8) with a ceiling
quantizer Q. because they are related by a simple equatiorny(k) =  x(k)).

Similarly, given a model with the rounding quantizer Q, in (4.8), by taking
y(k) = x(k) + 31, the system evolves as:

y(k+1)= y(k)+ WQ(y(k)) Q t(y(k))
y(0) = x(0) + %1:

Therefore, by analyzing the above system which has a truncation quaiter Q;, we
can deduce the performance ok(k) that satis es equation (4.8) with a rounding
guantizer Q, because they are related by a simple translation equationy(k) =

x (k) + %1). Therefore the e ects of all these three quantizers are essentially the
same.

With this nontrivial observation in mind, we focus on the analysis of the trun-
cation quantizer only in the rest of this chapter. The results can then e easily
extended to the case of the other two quantizers.

In the sequel we will fully characterize the behavior of system 4.8) and its
convergence properties. But rst, we have the following de nition:

De nition 3. A network of n agents reaches quantized consensus if there is an
iteration kg such that

Q(xi(k)) = Q(xj(k)); 8i;j 2 V; 8k ko:

4.5 Design and Analysis of the System

In this section, we carry out the analysis of the proposed quantizedystem equation.
By considering the truncation quantizer Q; in (4.8), the system equation becomes:

x(k+1)= Whx(k)c+ x(k) b x(k)c: (4.12)
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Figure 4.2: Network of two nodes where quantized communication does haon-
verge.

This can be written in a distributed way for every i 2 V as follows:

X
Xi(k+1) = xi(k)+ wii (bxj (k) b xi(k)c); (4.13)
j>%Ni
= Xi(k) + wii Lji (k); (4.14)
i 2N;

where
Lji (k) , bxj(k)c b xi(k)c= Lj (k):

The non-linearity of the system due to quantization complicates theanalysis, and
traditional stability analysis of linear systems (such as ergdicity, products of
stochastic matrices, etc.) cannot be applied here as the system mightot even
converge. As demonstrated in the following subsection.

4.5.1 Cyclic Example

The purpose of the following example is to show that for a bad wajht matrix
design, the quantized system can cycle very far from the average. Considire two-
nodes example of Fig4.2, suppose thatx;(0) = , xp(0) = K + whereK 2 N and

2 (0;1). With these initial values, bxa(0)c = 0, bxp(0)c = K, and Xave = 5 +
The weight matrix for this two-nodes system is assumed to be a doublstochastic
matrix and is given as follows:

wherew 2 (0;1). With this weight matrix, ( 4.9) is satis ed and the average is
conserved. In FCFZ09], the authors de ned the following metric to measure the
performance of the system:

. 1. ..
di (W;x(0)) = "T.fu'o FFHJJ( K)ij; (4.15)
where ( k) is a vector having the elements (k) = xj(k) Xave. SO the worst cycle

(according to this metric), given a doubly stochastic weight matrix, would happen
if the nodes toggled their values with every iteration. Let us derive condions on
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W for which this could happen. With the quantization, the correspondng system
equations are as follows:

Xa(k+1)= Xxa(k)+(1 w) (bxp(k)c b xa(k)c) (4.16)
Xp(k+1) = xp(k)+(1 w) (bxa(k)c b xp(k)c): (4.17)

From the given initial conditions, after one iteration the updated values arex,(1) =

+(1 w)K and xp(1l) = K + (3  w)K. Therefore, the quantized value
of the nodes' variables will toggle betweer0 and K if x5(1) 2 [K;K + 1) and
Xp(1) 2 [0;1). By substituting the values of x5(1) and xu(1) we get the following
necessary conditions for such a cycle,

wK > maxf ; 1g

. (4.18)
wK< minf ;1 g

The rst condition is always satis ed becausewK > 0. Then, a bad design ofW is

to have w < Ki minf ; 1 g because in this case the nodes can cyélaith

( (

Xa(K) = ff k fs even and  xp(K) = K + ff k fs even

K + wK  if k is odd wK + if k is odd:
(4.19)
Thus 4(k) = (k) = K=2if k is even, and sod; (W;x(0)) = K=2. The above
two-node network result can be extended to regular bipartite graphsvhere the rst
set of nodes takes the valuex;(0) and the other set takes the valuex,(0) and all
self-weights are equal tow.? This would also lead to the following inequality on

d1 (W;x(0)) with the given initial conditions and weight matrix:

di (W;x(0)) K=2
This shows that a bad design oW on general graphs can make the cycle arbitrarily
large.

4.5.2 Weight Assumption

The system behavior depends of course on the design of the weight madri In
distributed averaging, it is important to consider weights that can be chosen locally,
avoid bad design, and guarantee desired convergence properties. We impose the
following assumption onW which can be satis ed in a distributed manner.

Assumption 1. The weight matrix in our design has the following properties

In case initial values were not known, since minf ; 1 g 1=2, then, a bad design of W is to
have w < % because in this case there might be some initial values that cause large cycles.

2|n case of hypercube graphs, FCFZ09] shows that if the weights in the network have a constant
value 1=(d + 1) where d = log n is the degree of a node in the hypercube graph, then an upper
bound on di (W) =sup, di (W;x(0)) is the following di (W) "’@’T” Since a hypercube is a
regular bipartite graph, then using our results leads to the following lower bound, di (W) "’QT”
(by taking =0:5and K =(log n)=2 to satisfy (4.18)).
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W is a symmetric doubly stochastic matrix:
Wij = Wi 0 8i;j 2V
X X

wij = wy =15
i i

Dominant diagonal entries of W: w; > 1=2for all i 2 V,

Network communication constraint: if (i;j ) 2 E, then w;j =0,

For any link (i;j) 2 E we havew; 2 Q", where Q" is the set of rational
numbers in the interval (0; 1).

These are also su cient conditions for the linear system é.1) to converge. The
restriction of the weights to the class of rational numbers is jusbecause of a technical
reason to prove convergence results.

We now state the main result of this chapter which will be proved in he following
subsections.

Main Convergence Result 1. Consider the quantized systen(4.12). Suppose
that Assumption 1 holds. Then for any initial value x(0), there is a nite time
iteration where either

1. the system reaches quantized consensus, or

2. the nodes' values cycle in a small neighborhood around theerage, where the
neighborhood can be made arbitrarily small by a decentradid design of the
weights (having trade-o with the speed of convergence).

To highlight the importance of these results, notice that the Man Conver-
gence Resultl implies there is an iteration ko such that x;(k) x;(k) < 1 for
all i;j 2 V for k ko. This gives a constant upper bound on the metric
d1 (W) = supyg d1 (W;x(0)) independent of initial values, i.e., due to Assump-
tion 1, d; (W) 0:5o0n any general graph and for any initial conditions.

4.5.3 Cyclic States

We study in this subsection the convergence properties of the system eafion (4.12
under Assumption 1. Let us rst show that due to quantized communication, the
states of the agents lie in a discrete set. Sincey;; 2 Q* for any link (i;j ), we can
write

aj

bj '

where a; and b are co-prime positive integers. Suppose thaB; is the Least
Common Multiple (LCM) of the integers fbj;(i;j) 2 E;j 2 Njg. Let ¢(k) =

Wi =
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Xi(k) b x;j(k)c; then we havec;(k) 2 [0;1). Let us see howg; (k) evolves:

ci(k) = xi(k) b Xi(i§<)C
=xi(k 1+ Wij (ij (k 1) bxi(k 1))
i2N;j
b xi(k)c
bxigb Dc+ gk 1)

S (g 1e bxi(k 1)) b xi(kc

Z(k).
Bi ’

cG(k 1)+ (4.20)
whereZ (k) 2 Z is an integer. Then with a simple recursion, we can see that for any
iteration k we have:

Z (k)

G(k)= a0+ 5= (4.21)

whereZ (k) 2 Z. Sincec;i(k) 2 [0; 1), this equation shows that the states of the nodes
are gquantized, and the decimal part can have maximunB; quantization levels.
We now give the following de nition,

De nition 4.  The quantized system(4.12) is cyclic if there exists a positive integer
P and a nite time kg such that

x(k+ P)= x(k) 8k ko;
where P is the cycle period.

Proposition 10. Suppose Assumptiorl holds. Then, the quantized systeni4.12),
starting from any initial value x(0), is cyclic.

Proof. Let m(k) and M (k) be de ned as follows:

m(k) , Egi\r)bxi(k)c; M (k) , figfil/Xin(k)Ci (4.22)

Notice that for any k, we have

X
Xi(kK+1)= Xj(k)+ wii Lji

2Ne g 1
X
(k) + bxi(k)c+ @ w;i A (M (k) b xi(k)o)
i 2N
ci (k) + M (k);
from which it follows that bx;(k +1)c M (k), and henceM (k +1) M (k). By

a simple recursion we can see that the maximum cannot increas#) (k) M (0).
Similarly, we have m(k) m(0).
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from equation (4.21), ¢ (k) belongs to a nite set that can have at mostB; elements.
Sincex;(k) = bxj(k)c+ ci(k), and each of the elements in the sum belongs to a nite
set, Xj (k) belongs to a nite set as well (of maximum cardinality B;(M (0) m(0)+
1)). But from equation (4.12), we have x(k + 1) = f (x(k)) where the function
f (}) is a deterministic function of the input state at iteration k, so the system is a
deterministic nite state automata. Since the system is determinstic, it would enter
a cycle if the same state is reached at two di erent iterations. The toal number of
states is upper bounded byD = (B(M (0) m(0)+ 1)) " where B = max; B;, and
the system enters a cycle in nite timeT D because ifT > D, then at least one
state is repeated. O

4.5.4 Lyapunov Stability

In this subsection, we will study the stability of the above systm using a Lyapunov
function. Assumption 1 and Eq. (4.21) imply that there exists a xed 3 strictly
positive constant > 0 such that for any i and any iteration k the following hold:

0 1
X X
fak)> @  wy A, then c(k) wi 2 (4.23)
J2N;j i2N;
0 1
X X
If ci(k) > @  w; A, then (k) wij  2; (4.24)
i2N;j i2N;
c(k) 2; (4.25)
1 X
5 wij 2 (4.26)
j2N;

wherec (k) =1 c¢(k). Let max be the maximum that satis es equations (4.23)-
(4.26). The results thereafter hold for any 2 (0; max]-

Remark: Equations (4.23-(4.25 do not hold for the simple linear model of
(4.1). For example, consider a linear model that does not reach ceansus in nite
time, and suppose thatxagye 2 Z. Then, since limyi;  Xj(K) = Xave, We have that
G (k) can be as close tdl as desired, and hence we cannot boungi(k) by a xed
positive value.

In fact, equations (4.23-(4.25 show the discrete nature of the quantized system
where ¢;(k) can only take nite possible values. We will use these equations to
de ne a closed interval (set)| =[a; b having the property that if x;j(k) 2 I, then
Xi(k) is an interior point in this interval with a distance at least far from its
boundaries. Having a xed distance from the boundaries will play an important
role in the stability analysis in what follows because it shows thaif a node's variable
got out of the interval, it must pass at least a distance , i.e., suppose thatx; (k) 2 |

3By " xed' we mean that the value is independent of time and it o nly depends on initial values
and the network structure.
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but xj(k +1) 21, then d(xj(k +1);1) j xj(k+1) x;(k)j where d(x; 1) =
miny2; jX yj is the distance of the node's variablex from the interval | .
Let m(k) and M (k) be de ned as in (4.22). Let us de ne the following set:

Sc=fy2R%jyi m(k) 1j i for all ig; (4.27)
where i =1 wj; + . Note that
=1 wi+
= wij +
j 2N
1
2 )

where the last inequality is due to Eq. @.26), and thus ; 2 (0;1=2). The set S
depends on the iterationk because the valuan does. Since according to the system
(4.12, m(k) cannot decrease and/ (k) cannot increase as indicated earlier, ther®y
can only belong to one of theM (0) m(0) possible compact sets at each iteration
k. Furthermore, if Sy changes to a di erent compact set due to an increase im,

it cannot go back to the old one asm cannot decrease. Additionally, ifx(k) 2 Sy,
then it is an interior point of the set Sk and not °B the boundary because suppose
xi(k) m(k) 1= P then either ¢i(k) = i = 5, Wj + which contradicts
(423 orcg(k)= ;= 2N, Wi + which contradicts (4.24).

Let us de ne the following candidate Lyapunov function:

V (k) = d(x(k); Sk)
min J)J(y x(K)jja

min ivi xi(k)j (4.28)
y2Sy .
i2Vv

By minimizing along each component ofy independently, we get

X
V(k)=  maxfixi(k) m(k) 1 i;0g:

Let us determine the change in the proposed candidate Lyapunov fumtion. In
order to understand the evolution ofr V, = V(k+1) V(k), we group the nodes
depending on their values at iterationk into 6 sets, X1(k), X2(k), X3(k), X4(k),
X5(k), and Xg(k) (see Fig.4.3):

Nodei 2 X1(k) if m(k) xi(k)<m(k)+1 i,
Nodei 2 Xo(k) if m(k)+1 ;i xi(k)<m(Kk)+1,
Nodei 2 X3(k) if m(k)+1 xi(k) m(K)+1+ |,

Nodei 2 X4(k) if m(k)+1+ ;<xi(k)<m(Kk)+2,
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Figure 4.3: Dividing the nodes into sets according to their local vhes.

Nodei 2 Xs(k) if m(k)+2 xi(k)<m(K)+2+ i,
Nodei 2 Xg(k) if m(k)+2+ ;i xi(k).

For simplicity we will drop the index k in the notation of the sets and m(k) when
there is no confusion. To have better insights about these sets, weote that if Xg
becomes empty at a given iteration, then the set remains empty, i.e.,

Lemma 5. If Xg(ko) = ,then Xg(k)= forall k Kko.

Proof. If a nodei 2 Xg(k), then bx;(k)c 2 f m(k); m(k) + 1;m(k) + 2g. So for any
nodei,

X
Xi(k+1) = xi(k)+ wij Lji
J 2N
<m(k)+2+

where the last equality is due to three possibilities,

if bxij(k)c= m(k)+2,thenLj; Oforeveryj 2 N;, andx;(k) <m(k)+2+
sincei 2 X5 in this case;

. P P
if bxj(k)c= m(k)+ 1, then i2n; Wil Lji 2N\ x5 Wi i, and x; (k) <

m(k) + 2 in this case;

P P
if in(k)C = m(k), then i2N; Wij Lji i2N; Wij 2 2 i, and Xi(k) <
m(k) + 1 in this case.

Therefore, sincem(k) m(k+1), then xj(k+1) <m (k+1)+2+ ;andi 2 Xg(k+1)
from the de nition of the sets and this ends the proof. O
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Note that by a similar reasoning as in Lemmab, if fXs; Xgg got empty, then
it remains empty during all further iterations, and if fXy4; X5;Xgg got empty it
remains empty too.

With every iteration, nodes can change their sets. Note that any nodean jump
in one iteration to a higher set, but the other way around is not always possible.
For example, a node at iterationk in X1 can jump at iteration k+ 1 to Xg, but no
node outsideX; can get back to it (if the minimum m(k) is not increased) as we
will show next.

Lemma 6. If m(k+1)= m(k) andi 2 X1(k), theni 2 X(k+1).

Proof. Letus de ne L¥ be the level of node at iteration k, i.e., LXK = bxj(k)c m(k).
Then,
X
Xi(k+1) = xi(k)+ wii Lji
J2N; X
ci(k)+ bxi(k)e+(  w; )(m(k) b xi(k)c)
j2N;
k X k
ci(k)+ Lt + m(k) +( wii )( L{)
j 2N
m(k) + (k) + wi Lf
mk)+1
m(k+1)+1 i

andi 2 X1(k +1). The inequality before the last one is due to two possibilities,
if i 2 X2(k) then LK =0, and m(k) + ¢ (k) = xj(k) m(k)+1 i)
otherwiseLX 1, som(k)+ (k) + wi LK m(kk)+w; mkKk)+1 .
O

Therefore, due to Lemma6 the increaseV (k) is due to nodes changing to a higher
set. However, any node changing its set to a higher one, should haveighbors in
the higher sets that causeV (k) to decrease by at least the same amount. To make
this a formal argument we give the following lemma:

Lemma 7. Consider the quantized systenf4.12). Suppose that Assumptiorl holds.
If m(k+1)= m(k), we have
r Vi 0:

Proof. We de ne r {V as follows:

riVie,, maxfixi(k+1) m 1] i;0g
maxfj xj(k) m 1] i, 0g; (4.29)
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from which it is evident that r Vi = P iov I iVk: Since only nodes moving from a
set X to a higher set X; wheret maxfs;4g can increaseV (k) (we will use the
expressionXs ! X to denote the transition of a node that belongs to the selX ¢ at
iteration k to the set X at iteration k + 1), then we can enumerate all the possible
transitions of nodes that can causeV (k) to increase:

1. X1(k) ! Xe(k+1) :t 4,

riVk = maxfixj(k+1) m 1j i;0g maxfixj(k) m 1j i:0g
=(Xi(k+1))( m 1 ) @+m x(k) i)
Xi (k) + wij (bxj(k)c b xi(k)e)y m 1 m 1+x(k)
i 2N;
wiLji  2(m+1  xi(k))

J'>%Ni

X

= wii Lji  2¢i(k)
i@ Ni
X
= wi Lii  2( i(k) (k) + ci(k))
N X X
=( wij ) + ( Wi 2)+( wij Lji)
jZNj‘(\f X3;X49 j2Ni\ X5 j2N;i\ X6
2( wy + +(c(k) )
J(ZNi
( wi Lji) 4: (4.30)
|12Ni\X{%O }

2. Xo(k) ! X¢(k+1) ;t 4, and the change in the Lyapunov function due to
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these nodes is as follows:

r iVk = maxfj xj(k + 1) m 1 i;0g
maxfj xj(k) m 1 ;09
:(Xi(k+1))( m 1 i) 0

=x(k)+  owili o omo 1
X j2N;
= wilki i ai(k)
i 2N
X
=( wij ) + ( wij  2)
2NV X3:X i 2N\ X
J X 3,X40 JX 5
+( wij Lji) Wi ci(k)
;(ZNi\Xs X j 2N;
( wij ) +( wi Lji) 2:
i 2N\ X i 2N\ X
| {705 bl {%O }

3. X3(k)! X¢(k+1);t 4, then

X
riVk = xi(k) + wijlLji m 1 i
X j 2N
= wiLi (i c(k)
j2N; X X
=( wij (1) +( Wi )
j2Ni\fXX1;ng j2N;j\ X5
+( wiLji) (i ci(k)
9(2Ni\x6 X
( wij )+ ( wi Lji)
|j2Ni\{)Z(5 } |j2Ni\X{(2 }
0 0
4. Xg(k) ! X¢(k+1);t 4, then
X
r in = Wij Lji
g 1 0 1
X X
j2N;\ X j2N;j\ X
|—z——3} | {z }

(4.31)

(4.32)
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5. Xs(k) ! X¢(k+1) ;t 5,then

X
riVk = wij Lji
g 1 0 1
X X
=@ Wij LjiA"'@ Wi LjiAZ
j2N;\ X j2N;;j2
| 3 | iz )
0 0
6. Xo(k) ! Xg(k+1), then
X
riVk = wi Lji
g 1 0 1

X X
=@ Wi LjiA+ @ Wij LjiAZ
j2Ni\ X1 j2Njj2Xl
Rl SR ?{) }

0

where the setX} is the set of nodes such thaj 2 X} if x; (k)  xi(Kk).

Notice that the positive componentinr Vi because of a nods belonging to one
of the presented6 possibilities is only due to a neighborp in f X5(k); Xg(k)g such
that xp(k)  Xs(k). Then p can belong to two possible setsXs or Xs.

Suppose rst that p 2 Xg(k), let A be the increase inr sV, then this increase
is as follows:

but this increase is decreased again im pVi since a node inXg(k) cannot drop
below X 4(k + 1), we can write:
rpVk = maxfixp(k+1) m 1] p; 0g
maxfj Xp(k) m 1] p, 0g
= (xpk + 1;( m 1 ) (Xp(k) 1 m n)
= xp(k) + WipLjp  Xp(k)
jzwpx
= YV_SE%_SFJ’ Wip Ljp:
A

j2Npf sg

Taking the other case, suppose now 2 Xs, let B be the increase inr sV of a
node s due to its neighborp 2 Xs:

B = wsp > 0;

then this increase is decreased again in pVj, but we should consider two cases:
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p: Xs5! Xm; m 4, then

X
g i2Npf sg
p: X5! Xg, then
r oV 1=2
P X
Wpj
J2Np X
= Wip »
|'¥\ZIBEf j2Np f sg

and p decreases in the same amount that its neighbas increased.

Remark: For every positive value that increased/ (k), there is a unique corre-
sponding negative value that compensates this increase bgcrkasingV (k). This is
because for any linkd  (i;j ) 2 E, the increase inr ;Vi due tol forces a decrease in
r j Vk due to the same link, and so there is one to one mapping betweba increased
values and the decreased ones.

As a result of the discussion we can have the total V cannot increase, namely

X
r Vg = riVk 0:

[
Ul

Lemma 7 implies that V (k) is non-increasing with time. We identify some
situations under which V (k) strictly decreases (assuming of coursen(k + 1) =
m(k)). Given for example a nodei 2 Xi(k) that is connected to a node
J 2 fX3(k); X4(k); Xs(k); Xe(k)g, if i jumped to Xi(k +1);t 4, then the term

4 from equation (4.30) causes strict decrease inv(k), Le., r Vi 4 . If
i 2 Xi(k+1);t< 4, thenxi(k+1) = xi(K)+wj (bxs(k)c m)+ oy, Wis(bxs(k)c
m)  xi(k) + w; and thus

riVk minfw; ; d(xi(k);[m+1 im+1+ i]Dg minf ; g;
where d(x;(k);[m + 1 i»m+ 1+ ]) is the distance of x;(k) from the set
[m+1 inm+1+ jJand =min;;)e wj > 0. This decrease inr Vi causes

r Vi to decrease by the same quantity. Another situation can arise if, foexam-
ple, a nodei 2 Xz(k) is connected to a nodej 2 f X4(k); Xs(k); Xe(k)g. If i

jumped to X{(k+1);t 4, thentheterm 2 from equation (4.31) causes a strict
decrease inV (k), i.e., r Vk 2. 1fi2 X¢k+1);t< 4 (and so is any neigh-
Bor in fX2(k); X3(k)g of j ), then x;(k +1) = x-F(k) + wij (bxj(k)c b xj(k)c) +

s2n; i Wsj (xs(k)e b xj(k)e)  xj(k)  wij + g, Wsj(bxs(k)e b xj(k)c)
and thus a term  minfw; ; d(x; (k);[m + 1 jsm+1+ j])gappears inr jV
which causes Vg minf ; g.
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Based on the discussion so far, we can now present two situations (@m third
situation a bit later) under which V (k) is strictly decreasing. These situations will
play an important role in the proof of the main result.

Situation 1 (S1) occurs if at iteration k there exists a link in the network
between a nodg 2f X4[ Xs[ Xgg and a nodei 2 f X1[ X2g, in this case
we have,

r Vi minf ; g; (4.34)
where =min ;y2e Wi > O

Situation 2 (S2) occurs if at iteration k there exists any link in the network
between a nodg 2 Xs5[ Xg and a nodei 2 X3, in this case we have,

r Vi minf ;i ¢(k),wjg
minf ; o (4.35)

455 Proof of Main Result

To show that V (k) is eventually decreasing, we have to introduce some more nota-
tion. Let
R(ko) =minfk ko;k>ko;r W o

where > 0 is a positive constant. Notice that if either S1 or S2 occurs at time
To > ko, then R(kg) To ko by considering =minf ; g, i.e., R(ko) is upper
bounded by the minimum time for at least one of the two situations to occur. We will
show that if there exists at least one node irf X 4; X5; X6g at ko and m(k) = m(ko)
for k < R (ko) + ko, then we can have a xed upper bound onR(kg). If we looked
at the values of the nodes in the network at any iterationkg, we can see that if
k < kg + R(kg), the network has a special structure: only nodes irf X1; X 2; X 30
have links between each other, nodes iX 3 can also have links toX 4, but not to
fX5; Xsg. Nodes inf X 5; Xgg can only be connected taX 4 (see Fig.4.4). Moreover,
the values of nodes inX 3 cannot increase due to the link betweernX; and X4. To

see this, leti 2 X3 and s 2 X4 wheres 2 Ni. Then we have:

X
Xi(k +1) = xj(k) + WisLsi + wi Lji ;
j2N; f sg

But since bxj(k)c = bxg(k)c, we havelLis = 0 and thus xj(k + 1) = x;(k) +
i2N; f sgWii Lji» S0 nodes inX4 do not have any e ect on nodes inX3 and the
values of nodes inX3 cannot increase for allk < kg + R(kg) (we will get back to
this issue later).
To nd the number of iterations for a dotted (red) link to appear, we de ne the
following function for nodes inf X 1; X 2; X 30:

(
k= L if i 2fX1(K); X2(K)g; .36)
’ 0 ifi2 Xa(k); '
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Figure 4.4: The solid lines (blue links) identify the network structure at any iteration
ko k < kg+ R(kp), while if a dotted link (in red) appears, then V (k) strictly
decreases.

and let T;(ko; k) be the number of times a node is in f X 1; X g in the time interval
betweenkgy and k, i.e.,

ek

Ti(ko; k) = f(ijt):
t=ko
In fact, we can partition the nodes inf X 1; X 2; X3g depending on their distance

to nodes in X 4. Let r; be the shortest path distance from a node 2 f X 1; X ;X 30
to the set X4 (i.e., ri = minjax, rij whererj is the number of hops following the

as the set of nodes such that 2 D, if and only if u = r;. For example,D; contains
nodes that have direct neighbors inX4, D, contains the nodes that do not have
direct neighbors in X4 but there is a node in X4 found 2 hops away, and so on.
Moreover, for any nodei 2 D, such that u > 1, we can nd at least one neighbor
j 2 Dy 1. Let P(i) be any one of these neighbors, referred to as the parent of
It is important to note that any node in D, remains in the set as long as non of

ko do not change their elements forkg k < kg + R(kg). We can now obtain the
following lemma:

Lemma 8. If fX4;X5;Xgg$ at an iteration kg, and m(k) = m(kp) for kg k<
ko + R(ko), then for any integer N 2 N: if

. P(i) .
Ti(ko; k N —+1 ;
|( 0 ) Wip (i)
then
Tp(|)(ko,k) N:

Proof. The proof is based on the observation we mentioned earlier. For any de
s 2 X3, its neighbors in X4 do no have any e ect onxs(k + 1) and it cannot have
any neighbor in f X5; Xgg otherwise one of the situations (S1 or S2) occurs and
contradicts the assumptionk < ko + R(kp). Therefore, the decrease of the nodse
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from X3 to X, can only be due to its neighbors inf X 1; X20. Leti 2 f X1;X2g be
a neighbor of nodes, then

X

i2Ns X
= Xs(k)+wis ( D+ Wjs Ljs
j2Ns\f X1;X29f ig
Xs(k) WIS

=1+ m+cs(k)  ws;

and the nodes can either drop to X , or stay in X 3 depending on the resulting value
Xs(k +1). And since cs(k) s and xs(k + 1) cannot increase ifs was in X3 at
iteration k, then we are sure that ifi was infX1;X2g for more than = iterations
(i.e., Ti(ko; k) +1) then s has dropped toX, at least once (i.e. Ts(ko, k) 1.
Thus sinceP (i) 2 N., we have

Tikok) Pl 9 Teploik) L (4.37)
Wip (i)
If Ti(ko;kn) N ﬁ+1 , then we can nd N 1 iterations,
ki;kz;::i;kn 1, such that
Ti(kv ]_;kv 1) P(I) +1 fOfV 1 ..... N:

Wip (i)
By (4.37), we haveTpy(ky 1;ky 1) 1. Therefore,

K 1

Tp(iy(kos k) = Tegy(ky 15ky 1)+ Tp(iy(kn 1, K)
v=1

K 1 !

1 +1

v=1

N;
and the lemma is proved. O

Now we show that there is a xed upper bound on the time for either of he
situations to occur,

Lemma 9. If fX4;X5,Xegg$ at an iteration kg, and m(k) = m(kp) for k Ko,

then
n 1

1
R(ko) n 1+

where = min ()2 Wjj is a positive constant ( > 0).



92 Chapter 4. Quantized Communication in Consensus Protocols

Proof. Notice rst that for any iteration k Ko, if Ti(ko;k) 1wherei 2 D4, then
situation 1 has occurred andR(kg) k Kp.

Moreover, sincem(k) = m(kp) for k ko, then at every iteration k there is at
least one node inf X 1; X 2g, leading to

X
Ti(ko;k) k koI
i2f X1;X2;X 309
Letk=ko+n 1+ 2" 1. then we have
X 1 n 1
Ti(ko;k) n 1+? ;
i2f X1;X2;X30

and there must be a noddg 2 Dy, in this sum such that

1 n 1
Ti(ko; k) 1+ > :

Without loss of generality, we can suppos%1 2 N. So applying Lemma8, we can
see that

1 n 1
Ti(ko; K) 1+ -
2
. n 2
14 PO 1+ 1 ;
Wip (i)
= 1+ "0 N:
Wip (i)
whereN = 1+ 1" 2 which implies
1 n 2
Tj (Ko; k) 1+ — :
2
wherej = P(i) andj 2 Dy 1. Doaing this recursively (u 1 times), we see that

there is a nodes 2 D; such that,
1
Ts(ko; k) 1+ 5 ;

but since u r n, we have Ts(ko; k) 1 which means situation S1 occurred
becauses 2 D;. Therefore,

R(ko) k ko

and the lemma is proved. O



4.5. Design and Analysis of the System 93

We also need the following lemma,

Lemma 10. Suppose Assumptiorl holds. Let =minf ; g, then for the quantized
system (4.12), at any time ko, there is a nite time k;  Kg such that fork kg,
either f X4; X5;Xgg= or m(k) > m (ko). Moreover,

V (ko)

ki ko+n +1 +1

1
2

Proof. Let us prove it by contradiction. Suppose thatf X4; X5;Xgg8 andm(k) =
m(ko) for kK kg. Therefore we can apply Lemmed to show that there is an upper

bound R(kp) for situations S1 or S2 to occur. Whenever one of the situations occsir

we haver Vi , otherwiser V¢ 0. Fork>ko+ n Viko) 41 2i+1 " 1,

we have that situations S1 or S2 have occurred at least Y2 + 1 times; then

V (ko)

V(K)  V(ko) +1 <0

which is a contradiction sinceV (k) 0 is a Lyapunov function. As a result, there
exists an iteration k; satisfying k1  kg+ n Viko) 41 zi +1 " * such that for
k ki, either f X4; X5;Xeg=  or m(k) > m (ko). O

We are now ready to prove the following propositions,

Proposition 11. Consider the quantized system(4.12). Suppose that Assump-
tion 1 holds. Then for any initial value x(0), there is a nite time iteration where
fX4; X5, X609 =

Proof. The value m(k) cannot increase more thanM (0) m(0) number of times
becauseM (k) is non-increasing. Therefore, applying Lemmadl0 for M (0) m(0)
times, we see thatf X4; X5, Xgg = in a nite number of iterations. O

Proposition 11 shows that in fact the nodes are restricted in a nite number of
iterations to the sets f X 1;X2;X3g. In fact, we can even show a stronger result,
that either X1 or X3 can be nonempty, but not both. This is given in the next
proposition.

Proposition 12. Consider the quantized systenf4.12). Suppose that Assumptiorl
holds. Then for any initial value x(0), there is a nite time iteration where either
f X3, X4, X5;Xeg = or fX1;X4;X5,Xe69=

Proof. Due to Proposition 11, we can nd a nite time T such that f X 4; X5; X0 =
. Without loss of generality, we considerT = 0. In fact, a third situation that can
strictly decreaseV (k) occurs when there is a link between a node iX 1 and a node
in X 3. Fig. 4.5 shows the network structure. If Situation 3 (S3) occurs andij ) 2 E
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Figure 4.5: The solid lines (blue links) identify the network structure at any iteration
ko k <kg+ R(kp), while if the dotted link (in red) appears, then V (k) strictly
decreases.

wherei 2 X1 andj 2 X3, then

r Vg minf ¢ (k) i) Wij g
minf ; o (4.38)

In fact, similar to the reasoning along this subsection, we can bawd the number of
iterations for S3 to occur. The bound is exactly the same as the one deloped for
the other situations. Instead of repeating the derivations, the poof reads roughly
the same starting from the beginning of Subsectior®.5.5 but by replacing X1, X,
and X3 by , replacing X, by X3, replacing X3 by X, replacing X4 by X4, and
nally replacing the condition m(k) = m(ko) by X536 . Thus, Lemma 10 will read
as follows: Suppose Assumptiod holds. Let =minf ; g, then for the quantized
system @.12), at any time kg, there is a nite time k; kg such that for k Ky,
either X; = or X3 = . This ends the proof. O

Proposition 13.  Consider the quantized systen4.12). Suppose that Assumptiorl
holds and let = max; ;. Then for any initial value x(0), there is a nite time
iteration where either

the values of nodes are cycling in a small neighborhood araiithe average

such that :
j:Xi(k) X; (k.)j i+t f(?r alli;j 2V (4.39)
iXi(K) Xave] 2 foralli?2V;
or the quantized values have reached consensus, i.e.,
(
bxi(k)c = bx;(k)c for all i;j 2 V
(k)e = bxj (k) g (4.40)

iXi(K)  Xavej < 1lforalli?2V:

Proof. The two possibilities are consequence of the two possible cases of position
12,

Casef X1;X4; X5, X6g= . Then all nodes are inf X »; X 3g and by the de ni-
tion of the sets we havexi(k)  Xj(k)j i+ j foralli;j 2V, sonodes are
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cycling (due to Proposition 10) around m + 1. Moreover, since the average is
conserved from Eq. ¢.9), we have:

iXi(K)  Xavel = jXi(K)  Xave(K)j
i maxxi(k)  minxi(k)j

2max
|

:2;

Casef X3;X4;X5;Xgg = . Then all nodes are inf X 1; X2g and by the de -
nition of the sets we have reached quantized consensus. Since for dngnd |
we havec;(k); ¢ (k) 2 [0;1), then jx;(k) xj(k)j < 1and as in the above due
to Eq. (4.9), we havejx;(k) Xave] < 1.

4.6 Discussion

Propositions 10 shows that the uniform quantization on communications given by
the model of this chapter can have a very important cyclic property. U to our
knowledge, this is the rst work in deterministic quantized algorithms that shows
this cyclic e ect of nodes' values and it is also shown by Propositiori3that the cyclic
values can be control by a simple distributed adjustment of the weilgts. This can
have an important impact on the design of quantized communication korithms.*
For example, due to the cyclic e ect, nodes can use the history of their Vaes to
reach asymptotic convergence as the following proposition shows:

Corollary 1. Consider the quantized systen{4.12). Suppose that Assumptionl

holds. Then for any initial value x(0), if y;(k) is an estimate of the average at node
i following the recursion:

k 1 : .
yi(k) = m)’i(k 1)+ mxi(k), 8i 2 V; (4.41)
wherey;(0) = x;(0), then y;(k) is converging,
k||i1m yi(k) =y;; 8i 2V, (4.42)

having
IYi  Xave L

“Pattern generation (as for cyclic systems) plays an important role in the design of many
mechanical and electrical systems Bro97].
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Proof. The state equation ofy;(k) for a nodei is give by

W= vk pr Eams L
yl()—m)h( ) mxl()— k+1t—oX|()
| B |
t=T 1 : K :
1 X 1 X
- O+ o X ;
t=0 t=Teonv

where Teony IS the nite time iteration when the nodes' values start cycling. As k
approaches in nity, the left part in the sum vanishes while the right part converges
to the average of the values in a cycle, i.e.,
t=Tegg +P 1
Jmyik =y =5 xi(t);

t=Tconv

where P is the cycle period. Since fork  Teony We havejxj(k) Xave] 1 from
Proposition 13, then jy,  Xave] 1. O

Moreover, since the nal behavior of the system depends on the initiavalues as
shown by Proposition 13, we give here a condition on the initial values for the nodes
to reach quantized consensus in networks:

Corollary 2. Consider the quantized systen{4.12). Suppose that Assumptionl
holds. If the initial values x(0) satisfy,

Xave b XaeC 1 (4.43)
then the network reaches quantized consensus.

Proof. If the system was cyclic, then for any nodel 2 V, we havei 2 f X1;X>g,
soxj(k) 2 m+1 ism+21+ ;]. This implies that Xave(k) 2 [m+1 irm+
1+ ], but since the average is conserved (from equation4(9)), it also implies
that Xagve 2 M +1 i;m+1+ ;]. From the latter condition, we see that if

<X ave b XageC< 1 , the system cannot be cyclic, and by Propositionl3, it
must reach quantized consensus. O

4.6.1 Design of Weights with Arbitrarily Small Error

If the system has reached quantized consensus, the values of the agéaigreement
variables become stationary and the deviation of these values frotlne average is no
larger than 1. In the case when the system does not reach quantized consesdut

becomes cyclic, Propositionl3 shows that the deviation of nodes' values from the
average is upper bounded b2 where =max; ;. Moreover the deviation can be
made arbitrarily small by adjusting the weights in a distributed manner. Toward

that end, we propose the following modi ed Metropolis weights:

1
wi = 1 Wij ; 8i2V

i 2N;
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where C is any rational constant such that C 2. It can be easily checked that
the proposed weights satisfy Assumptioril. Moreover, in addition to its distributed
nature, the choice ofC can be used to de ne the error. Notice that for anyi 2 V,
we have

X 1
wi =1
i N C (maxfdi;djg+1)
X
L g g
ji2Ng
1 d
=1 —
Cd+1
=1 l+71 :
C  C(d+1)
thenl w; ¢& ﬁ,so
i=1  wi+
r 1 .,
C C(d+1)

Since can be chosen arbitrarily from the interval (0; max], by considering a small

enough the following holds L
c

This shows that given an arbitrary level of precision known to all the gents, the
agents can choose the weights with large enoudd in a distributed manner, so that
the neighborhood of the cycle will be close to the average with the gén precision.
Notice that if Xave & bXaveC, then for  small enough, the system cannot be cyclic
and only quantized consensus can be reached (CorollaB). In other words, for
systems starting with di erent initial values, having a smaller leads more of these
systems to converge to quantized consensus (and of course if they cycledey will
cycle in a smaller neighborhood as well due to Propositiod3).

It is worth mentioning that this arbitrarily small neighborho od weight design
has a trade-o with the speed of convergence of quantized consensus protd¢amall
error weight design leads to slower convergence).

4.7 Simulations

In this section, we present some simulations to demonstrate the #oretical results
in the previous section. The weights for the simulations satisfy Asumption 1 and
are the modi ed Metropolis weights with C =2, i.e.,

1

Wi = S maxid g g+ o)) 2E
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4.7.1 Simple Network

Proposition 13 shows that depending on the initial statex(0), the system reaches in
nite time one of the two possibilities: 1) cyclic, 2)quantized congnsus. We show
on a network of 10 nodes with initial values selected uniformly at random from the
interval [0; 100]that both of these are possible. Fig.4.6, shows that after a certain
iteration, the nodes' values enter into a cycle of period 4 iterationswhile Fig. 4.7
shows that starting from di erent initial values, all the 10 nodes reach quantized
consensus in nite time. Mainly, at iteration 38, all nodes' valuesare between 34
and 35; therefore, we have

bxi(k)c =34 8i=1;:::;10 8k 38

4.7.2 Random Graphs

To further simulate our theoretical results, we need to select some netwk model.
The simulations are done on random graphs: Erdds-Renyi (ER) giphs and Random
Geometric Graphs (RGG), given that they are connected. The random graphs ar
generated as follows:

For the ER random graphs, we start from n nodes fully connected graph,
and then every link is removed from the graph by a probabilityl P and is
left there with a probability P. We have tested the performance for di erent
probabilities P given that the graph is connected.

For the RGG random graphs, n nodes are thrown uniformly at random on
a unit square area, and any two nodes within a connectivity r&diusR are
connected by a link (the connectivity radiusR is selected aR = ¢ %
where c is a constant that is studied by wide literature on RGG for connec-
tivity). We have tested the performance for di erent connectivity rad ii given
that the graph is connected. It is known that for a small connectivity radius,

the nodes tend to form clusters.

Since Proposition13 shows that the system would reach one of the cases in nite
time, let us de ne T¢on be this time. Notice that if nodes enter the cyclic states
(case 1), the Lyapunov function is null because forall 2 V andk  Tcony, We have
Xi(k) 2 [m+1 i;m+1+ ], sowe can write,

V(K)=0 8k Teony:

However, if nodes reached quantized convergence (case 2), then the Lyapurionc-
tion is a constant because for ali 2 V and k  Teony, we havex;(k) 2 [m;m + 1],
SO we can write,

V(K) = cte 8k  Teonv:
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Figure 4.8: The system Lyapunov functionV (k).

4.7.2.1 Lyapunov Function

Fig. 4.8 shows the Lyapunov functions for the two di erent cases on an RGG with
100 nodes andR = 0:2146 where each case corresponds to initial values of nodes
selected uniformly at random from the interval [0; 100] The gure also showsR (ko)
which is the number of iterations after ko up till V (k) decreases (S1 or S2 occurs).

4.7.2.2 Quantized Consensus

Given that we are considering Metropolis weights withC = 2, then the system
satis es (4.43 if initial states are such that Xae b XaveC = 0:5. We considered
RGG and ER graphs of 100 nodes, where the initial condition is chosen as folig:
the rst 99 nodes are given uniformly random initial values from the intervad [0; 100]
while the last node is given an initial value such thatxae b XaveC = 0:5is satis ed.
Therefore, with these initial values, by applying Corollary 2, the system reaches
guantized consensus in nite time T¢ony. Table | shows the mean value over 100
runs of the Teony for the RGG with di erent connectivity radii, Ri1 <R, <R3<
R4 <Rs, whereR 2 f 0:1357 0:1517 0:1858 0:2146 0:3714. The results show that
the more the graph is connected, the faster the convergence. These resultg also
shown to be true on ER graphs. Table Il shows the mean value over 10@Qins of
the Teony for the ER with di erent probability P , P; < P, < P3 < P4, where
P 2 f 0:04; 0:06; 0:08; 0:10g.

4.8 Conclusion

In this chapter, we studied the performance of deterministic distibuted averaging
protocols subject to communication quantization. We have shown thadepending
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RGG n =100
Ri1 R> R3 R4 R5
Teonv | 1965.3 1068.9 364.3 233.3 55/9

Table 4.1: Convergence time for Random Geometric Graphs (RGG) with di erem
connectivity radii (averaged over 100 runs).

ER n =100
P1=0:04 P,=0:06 P3=0:08 P,=0:10
Teonv 161.49 99.38 66.58 43.43

Table 4.2: Convergence time for Erdos Renyi (ER) with di erent probabhilities of
link existence (averaged over 100 runs).

on initial conditions, the system converges in nite time to either a quantized con-
sensus, or the nodes' values are entering into a cyclic behavior osatihg in a small
neighborhood around the average. The size of this neghborhood can bentrolled
by a decentralized design of the weight matrix. We also provided condibns for
which quantized consensus is guaranteed.
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As demonstrated in the Introduction, the asymptotic convergence rée of con-
sensus protocols depends on the selected weights. In Chapter 1 we haveposed
an optimization problem that selects the weights in consensus protoé® to achieve
fast asymptotic convergence rates. However, speeding up this rate doast auto-
matically reduce the number of messages that are sent in the network. Téhreason
is that the convergence is reached only asymptotically, and even if n@s' estimates
are very close to the average, nodes keep on performing the averagingdasending
messages to their neighbors.

In this chapter, we address this issue. We propose an algorithningt relies only on
limited local information to reduce communication overhead for averge consensus.
As the nodes' estimates approach the true average, nodes exchange sagges with
their neighbors less frequently. The algorithm has a nice self-adapte feature: even
if it has already converged to a stable state and the message exchantate is very
small, when an exogenous event leads the value at a node to change sicgmtly, the
algorithm detects the change and ramps up its communication rate. Th proposed
algorithm provides also a trade-o between the precision of the estirated average
and the number of messages sent in the network by setting one of its mEneter.
Being totally decentralized, the message reduction algorithm can alsoebapplied in
a dynamic network with faulty links.
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5.1 System equation

The system equation of this chapter at iterationk +1, nodei updates its state value
xi:t X
Xi(k +1) = wiixj(k) + wij X; (K): (5.1)
i 2N;

For a nodei to have access to the values of its neighbors' variables, each node
j 2 Nj should send the valuex; (k) to i before the iteration k + 1 takes place. The
communication overhead due to these messages can be a burden on the neknbd
the algorithm ran for a long time.

The matrix form equation is:

x(k+1) = Wx(K): (5.2)

In this chapter, we considerW to be n n real doubly stochastic matrix having
(W) < 1where (W) is the second largest eigenvalue in module &Y. We also con-
sider that W is constructed locally (e.g., using the Metropolis weights describechi
Chapter 4). With these conditions on W, the convergence to the average consensus
is in general asymptotic:
I(Ililm X(K) = Xavel: (5.3)

Since average consensus is usually reached only asymptotically i5.8), the nodes
will always be busy sending messages. Lbt(k) be the number of nodes transmitting
at iteration k, so without a termination procedure all nodes are transmitting at
iteration k, N (k) = n independently from the current estimates. In this chapter we
present an algorithm that reduces communication overhead and provides trade-o
between precision of the consensus and number of messages sent.

5.2 Related Work

Some previous works considered protocols for average consensus pool to termi-
nate (in nite time) to converge to the exact average or to guaranteed eror bounds.
For example, the approach proposed in$HO07 is based on theminimal polyno-
mial of the matrix W. The authors show that a node, by using coe cients of this
polynomial, can calculate the exact average from its own estimate o consecu-
tive iterations. The drawback is that nhodes must have high memory cpabilities to
storen n matrix, and high processing capabilities to calculate the coe cients d
the minimal polynomial by solving a set of n linearly independent equations. An-
other approach for nite time termination is given in [ YSO07], where the proposed
algorithm does not calculate the exact average, but estimates are guanteed to be
within a prede ned distance from the average. This approach runs threeonsensus

1At one point in the simulations in this chapter, the topology of the network may change
dynamically. This is taken into account in ( 5.1) by letting the neighborhood and the weights be
time-dependent (then we have N; (k) and w; (k)).
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protocols at the same time: the average consensus which runs contowsly and the
maximum and the minimum consensus restarted every iterations where U is an
upper bound on the diameter of the network. The di erence between the maxnum
and the minimum consensus provides a stopping criteria for nodes.

Under the assumption of asynchronous iterations, the authorsn [DRL11] pro-
posed an algorithm that leads to the termination of average consens in nite time
with high probability. In their approach, each node has a counterc; that stores the
number of times the di erence between the new estimate and the old one wasss
than a certain threshold . When the counter reaches a certain value, sag, the
node will stop initiating the algorithm. They proved that by a corr ect choice of
C and (depending on some networks' parameters as the maximum degree in the
network, the number of nodes, and the number of edges) the protocol terinates
with high probability.

A major drawback of these algorithms beside the memory requiremers and
the robustness of the system to changes is the assumption that ea node should
know some global network parameters. This intrinsically contradets the spirit of
distributed consensus protocols. Designing a decentralized algorith for average
consensus that terminates in nite time without using any global network informa-
tion (as the diameter of the network or the number of nodes) is stillan open problem
for which we prove a strong negative result in the next section.

5.3 Motivation

We address the problem of termination of average consensus in thibapter. We will
start by an impossibility result for termination of the average consensus protocol in
nite time without using some network information.

Theorem 2. Given a static network where nodes run the synchronous comseis
protocol described by(5.1) and each node only knows its history of estimates, there
is no deterministic distributed algorithm that can correcty terminate the consensus
with guaranteed error bounds after a nite number of steps forany set of initial
values.

Proof. The proof is conducted by contradiction where we show that there exists
a graph with speci c initial state values which fails to terminate with guaranteed
error bounds. Consider a path graphG of three nodesa, b, and c as in Fig. 5.1
where the weight matrix is real and doubly stochastic with 0 (W) < 1 (so we
have waa;wee > 0). Let x3(0), xp(0), and x¢(0) be the initial estimates for the
nodes and consider = X2©* Xb§°)+ O 5o with the average consensus protocol
using the synchronous iterations in 6.1), all nodes' estimates will converge to
asymptotically:

I(I!llm Xa(k) = ||<|1r1n Xp(k) = L'!T Xe(k) =

We will prove the theorem by contradiction. Suppose there exists a tenination
algorithm for nodes to use only the history of their estimates andterminate the
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Figure 5.1: Path graph G with 3 nodes.
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Figure 5.2: Extended mirror graph of G with 6 nodes andF =2 fragments.

average protocol in nite time within guaranteed error bounds. Then if we run
this algorithm on this graph, there exists an iteration K > 0 and > 0 such that
node a (also true for b and c) decides to terminate at iteration K on the basis of
the history of its estimate: x5(0);Xa(1);Xa(2);:::; Xa(K), and it is guaranteed that
Xa(K)  Xave] < , whereXaye =

We will de ne the F extended mirror graph of G to be a path with n = 3F nodes
ai;ap; i ar; by b bes ey ;i o, formed by Gy Gy, i Ge (F graphs identical
to G) connected by additional links to form a path, the added links aref ¢;; ¢+1 g if
| is odd andfa;;a.+19if | is even (e.g. the graph forF = 2 is shown in Fig. 5.2).
Let us assume rst that the initial estimates for nodes in the subgaphs Gy,...,Gg
are identical to the estimates of the nodes in graphG (e.g. for nodea we have
Xa; (0) = Xa,(0) = i = Xa: (0) = Xxa(0)), the weight matrix for Gy,...,Gr is also
identical to the weight matrix of G except for nodes incident to the added links, if
fc;o+10is an added link, thenwge = Wg,, ., = Weg., = 5 and similarly if
fa;a.19is an added link, thenwa s = Wa,; a,, = Waa, = “5*. Notice that on
the new generated graph we still havexaye =  and also:

Xa; (K) = Xa,(K) = i = Xae (K) = Xa(k) 8k K;

so nodea; applying the termination algorithm on the new graph will decide to
terminate after the same number of iterationsK . Consider now a valueF > K

and that the initial estimate of node cx +1 is changed toxc, ,, (0) = x¢(0)+ n(2 +

, ek o1 (0) Xc(0 :
Xa, (K) ) and the new average is NOWKgye =  + M The estimates

at node a; would not change during the rst K steps, then nodea; would again

terminate at step K, but the error bound is no more guaranteed, becausg,, (K )
o ek +1 0 xc(0) . , .

Xave] = }Xa; (K) M] =2 > . This contradicts the fact that a;

terminates with guaranteed error bounds. The proof can be extended to include
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any graph G, not just path graphs, by using the same technique of generating
extended mirror graphs ofG. O

Theorem 1 shows that in general, nodes cannot stop executing the algorithm.
Motivated by this result, we investigate in what follows algorithms where nodes
can refrain from sending messages at every iteration (e.g. when estimateave not
changed signi cantly during the recent iterations). We will then say that an algo-
rithm terminates when the number of messages sent in the network disagars at

least asymptotically, even if the nodes are still running the algathm internally, i.e.,

PN
jim k=t N

i n 0; (5.4)

where N (k) is the number of nodes transmitting their estimate to their neighbas
at iteration k. In other words, the rate of messages in the network should decrease
as the estimates converge to the average consensus or to a bounded apgmnation.

5.4 Our Approach

Even if the nodes cannot terminate the algorithm in nite time, we are interested
in reducing communication overhead by considering asymptotic termiation of mes-
sages and by decreasing the rate of the messages sent in the network espondingly
to estimates' improvement. For example, if nodes' estimates are widelyigrent,

the messages sent at a given iteration can signi cantly reduce the errdoy making
the estimates approach to the real average. However, when the estimateave al-
most converged , the improvement from each message in terms of error nection
can be negligible. Up to our knowledge, this issue was not taken intocaount in
the related work literature. So from an engineering perspective, it is désable that
nodes send more messages when they have large di erences in their estimatasg
less messages when the estimates have almost converged. In what follows mgé
present a centralized algorithm to provide the intuition of our approach and then
we describe a more practical decentralized solution.

5.4.1 A Centralized Algorithm

In this section, we discuss a simple centralized algorithm for termiation of average
consensus protocols. We call it a centralized protocol because in thisqiocol there
are some global variables known to all the nodes in the network, @heach node
can send a broadcast signal that triggers an averaging operatiorb(1) at all nodes.
Then, if any of the nodes in the network sends this signal, all the ndes will respond
by sending the new estimates to their neighbors according to the averagy equation
(5.2:

x(t+1)= Wx(t): (5.5)

On the contrary, if no signal is sent, the nodes will preserve the samestimate:

X(t+1)= x(t): (5.6)
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If the rate of broadcast signals converges t0, also the rate of the messages contain-
ing the estimates will converge to0 and asymptotically no node in the network will
transmit. As above we consider a time-slotted model where represents a discrete
time iteration.

We now introduce formally the algorithm. Let e(t) and (t) be the values of
two global variables known to all the nodes at timet, such that e0) =0, (0)= o
and 0 e(t) < (t). As we are going to see, both the values of the two variables
cannot decrease. LeWW be the weight matrix of the network satisfying convergence
conditions of average consensus andt) be the state vector of the system at iteration
t. We let L; be a Boolean variable (either true or false) de ned at every iterationt
as:

Le: et D+y(t 1)< (t 1) (5.7)

wherey(t 1) = jjWx(t 1) x(t 1)jji and with Lo := False. Theny(t 1)
stores the estimates change if the linear iterationsH.1) would be executed at step
t and L, evaluates if the change is negligiblel(; = False) and then no message is
transmitted or not (L; = True). Dierent actions are taken on the basis of theL;
value at timeslot t. We also de ne the simple point process = ftx : k 1gto be
the sequence of strictly increasing points

O<ti<ty<:ii;

such that £2 if and only if Ls = False. Let K(t) denote the number of points
of the set that falls in the interval ]0;t], i.e., K(t) = maxfk : tx tg, with

K () :=0. If L is false, a broadcast signal is sent in the network and all nodes
will perform an averaging iteration; while if L; is true, then there is no signal in the
network, and the nodes keep the same estimate as the previous iterati. Network
variables of the centralized algorithm are changed at timet > 0 according to the
equations given in following table:

If Lt is True If L; is False

K({)= K@ 1) K({)=K(@{t 1)+1

X(t)= x(t 1) X(t) = Wx(t 1)

e(t)=e(t 1+y(t 1)|et)= et 1)

= (t 1) = t D+ g

Whent 2 , we callt a silent iteration because the nodes have the same estimate
as the previous iteration (i.e., Xj(t) = x;(t 1)) and there is no need to exchange
messages of these estimates in the network. On the other hand, whe2 , we callt
as a husy iteration because nodes will perform an averaging (i.ex{t) = Wx(t 1))
and the estimates must be exchanged in the network. Lety be the number of silent
iterations betweenty, and tys+1, SO we have that = tysq tx 1.2

After introducing this deterministic procedure, we show by the follbwing lemma
that the messages according to this algorithm disappear asymptatally:

2ty tx 1 is sometimes called thek™ interarrival time in the context of point processes.
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Proposition 14.  For any initial condition x(0), the message rate of the centralized
deterministic algorithm described above disappears asytofically, i.e.,

PNk
jm k=L N g,
til t

where N (k) is the number of nodes transmitting messages at iteratiok.

Proof. The number of nodes transmitting at an iteration t depends on the condition
L. Ift 2 ,then N(t) = n (all nodes are transmitting messages), otherwise
N (t) = 0 (no nodes transmitting messages). Therefore,

Xt K@)
N(K) = N(t)= nK(b);
k=1 k=1

whereK (t) as described earlier is the number of busy iterations until time. We will

consider two cases depending on the evolution & (t) as function oft. The simpler
case is whenlimy; K (t) K < 1 (the number of busy periods is bounded,
e.g. nodes reach consensus in a nite number of iterations), then sincK (t) is

an increasing positive integer sequence, the proposition follows fro the following

inequality and t 11 P,
o _kaN(K) Nk

t t
We consider now the other case, i.elimy; K (t) = 1 . Notice that for any time

iteration t, we have

Ke(t) Ky)+1
(tk te 1) t (tk  tk 1);
k=1 k=1
or in other words
Ky 1 K(®)
(k+1) t (k+1):
k=0 k=0
So we have P,
k=1 N (k) _ nkK (t) nkK (t)
t t K (t) 1 +1

We will prove now that the right hand side of the inequality goes b 0 ast diverges.
Sincelimy; K (t) = 1, itis sucient to prove that limy; ( x+1)=k= 1. Let
z(k) = Wx(tx) x(tx), we can see that according to this algorithm,

Cp (W)

jiz(K)jj1
(t« 1+ o=k® ety 1) 1
jiz(K)jj1

0

Kez(Kiz o
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The last inequality derives from the fact that for any iteration t we have (t) > e(t),
and that for any vector v, the norm inequality jjvjj» jj vjj1 holds. Moreover,z(k)
evolves according to the following equation:

z(k)=(W Jzk 1)
= (W J3)*z(0);
whereJ =1=n11T, so
iiz(Kiiz C( (W Ik, (5.9)

where C = jjz(0)jj; and (W J) = (W) 0 is the spectral radius of the
matrix W J. We know that 0< < 1(0< becauselimy; K(t)= 1 and

< 1 becauseW satis es the condition of a converging matrix. Putting everything
together, we get nally that:

1 (5.10)
and
k+1 0 .
k Ck3 k’
hence( (+1)=k!1 ask!1l . Consequently, the rate of messages sent in the
network vanishes, namely p
k=r N (K)
lim —k=L "2 = ;
i t

O

Three main factors in the above algorithm cause the algorithm to ke centralized:
the global scalare(t), the global scalar (t), and the broadcast signal. In the follow-
ing sections, we will present a decentralized algorithm inspired by the ceralized
one, but all global scalars are changed to local ones, and the nodeaot able to
send a broadcast signal to trigger an iteration.

5.4.2 Decentralized Environment
5.4.2.1 Modied Settings

The analysis of the system becomes more complicated when we deal with the de-
centralized scenario. Each node works independently. We keep the assutiom of
synchronous operation, but the decision to transmit or not is I@al, so a node can be
silent, while its neighbor is not. In this scenario, even the convergencef the system
might not be guaranteed and we see that within an iteration, some ndes will be
transmitting and others will be silent. This can cause instability in the network
because the average of the estimates at every iteration is now not consed (this
is an important property of the standard consensus protocols theican be easily
checked), and the scalars (k) and e(k) de ned in the previous subsection are now
vectors (k) and e(k) where (k) and g (k) are the values corresponding to a node
i and are local to every node. To conserve the average in the decentralized taag,
e(k) must take part in the state equation as we will show in what follows
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