
HAL Id: tel-01127239
https://theses.hal.science/tel-01127239

Submitted on 7 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization, control, and game theoretical problems in
consensus protocols

Mahmoud El Chamie

To cite this version:
Mahmoud El Chamie. Optimization, control, and game theoretical problems in consensus proto-
cols. Other [cs.OH]. Université Nice Sophia Antipolis, 2014. English. �NNT : 2014NICE4094�. �tel-
01127239�

https://theses.hal.science/tel-01127239
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS
ÉCOLE DOCTORALE DES SCIENCES ET TECHNOLOGIES DE

L’INFORMATION ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention : Informatique

Defended by

Mahmoud EL CHAMIE

Optimization, Control, and Game
Theoretical Problems in Consensus

Protocols

MAESTRO Team

(INRIA)

Advisors:
Konstantin Avrachenkov INRIA Sophia Antipolis (France)
Giovanni Neglia INRIA Sophia Antipolis (France)

Defended on 21 November, 2014

Jury:

Président: Walid Dabbous - INRIA Sophia Antipolis (France)
Rapporteurs: Pascal Bianchi - Télécom ParisTech (France)

Mikael Johansson - KTH Royal Institute of
Technology (Sweden)

Examinateurs: Vivek Shripad Borkar - Indian Institute of Technology
Bombay (India)

Daniel Figueiredo - Federal University of
Rio de Janeiro (Brazil)

Sandro Zampieri - University of Padova (Italy)

Acknowledgements

This thesis has been accomplished with the help and support of a number of peo-
ple that I would like to thank and acknowledge. I would like to express my deep
gratitude to Dr. Giovanni Neglia, my PhD advisor, for guiding me through this pe-
riod. His professional way in work by countless advice, feedback during discussions,
and detailed review of our research reports guided my research. I would also like
to thank my co-advisor Dr. Konstantin Avrachenkov for the discussions during our
meetings. My deep appreciation and thanks go to professor Tamer Başar for hosting
me 4 months in his team and treating me as one of his students at the University
of Illinois at Urbana Champaign (UIUC).

I would also like to acknowledge the permanents in Maestro team (Philippe,
Sara, Alain, and Eitan) for repeatedly providing their feedback on my work. Special
thanks to Laurie (our team assistant) for helping us in filling the mission orders,
going through all the administrative procedures, and helping me personally in french
during my first year with the team. Thanks to Farah and Ali for reviewing the french
translation of the introduction. I would like to acknowledge the committee members
for spending their time in evaluating my work (special thanks to the reviewers of
the manuscript, professor Pascal Bianchi and professor Mikael Johansson, for their
detailed and rigorous review of the thesis). I would also like to thank Dr. Walid
Dabbous for being the president of the jury and for supporting my Ubinet masters
application (the first step that made this PhD possible).

Due to some people, INRIA has been a pleasant working environment and Juan
les Pins has been a nice place to stay. I would like to thank Chadi for the coffee
break chats we used to have. I would also like to extend my appreciation to my
friends Alvinice and Khoa, I used to enjoy our weekly “Friday Ubinet lunch”. Special
thanks to my Juan les Pins neighbors: Ali, Rawad, and Salim for spending good
moments together and finding good times away from work. I would also like to
express my deep and sincere gratitude to Dana for her continuous and unlimited
support all the time, during both health and sickness. To my family, you are my
unwavering support and in spite of the distance, your prayers and encouragement
guided me throughout all my life and made me what I am today and what I will be
in the future.

Mahmoud El Chamie
10 November 2014

Sophia Antipolis, France

Optimization, Control, and Game Theoretical Problems
in Consensus Protocols

Abstract: Consensus protocols have gained a lot of interest in the recent years. In
this thesis, we study optimization, control, and game theoretical problems arising
in consensus protocols.

First, we study optimization techniques for weight selection problems to increase
the speed of convergence of discrete-time consensus protocols on networks. We
propose to select the weights by applying an approximation algorithm: minimizing
the Schatten p-norm of the weight matrix. We characterize the approximation error
and we show that the proposed algorithm has the advantage that it can be either
solved in a distributed way using a simple projected gradient method or solved by
Newton’s method and achieve faster convergence.

Then we propose a game theoretical framework for an adversary that can add
noise to the weights used by averaging protocols to drive the system away from
consensus. We give the optimal strategies for the game players (the adversary and
the network designer) and we show that a saddle-point equilibrium exists in mixed
strategies.

We also analyze the performance of distributed averaging algorithms where the
information exchanged between neighboring agents is subject to deterministic uni-
form quantization (e.g., when real values sent by nodes to their neighbors are trun-
cated). Using Lyapunov stability analysis, we characterize the convergence proper-
ties of the resulting nonlinear quantized system.

Consensus algorithms require that nodes exchange messages persistently to reach
asymptotically consensus. The problem of termination of consensus protocols turns
out to be challenging in the distributed setting. We propose a distributed algorithm
for asymptotic termination of the consensus protocols. The algorithm reduces com-
munication overhead while still guaranteeing convergence to consensus.

Finally, we propose a score metric that evaluates the quality of clusters such
that the faster the random walk mixes in the cluster and the slower it escapes, the
higher is the score. A local clustering algorithm based on this metric is proposed.

Keywords: Consensus Protocols; Distributed Averaging; Distributed Opti-
mization; Multi-agent Systems; Game Theory; Adversarial Intervention; Quantiza-
tion; Clustering.

Optimisation, Contrôle et Théorie des Jeux
dans les Protocoles de Consensus

Résumé :
Les protocoles de consensus ont gagné beaucoup d’intérêt ces dernières années.

Dans cette thèse, nous étudions les problèmes d’optimisation, de contrôle, et de
théorie de jeu qui se posent dans ces protocoles.

Tout d’abord, nous étudions les techniques d’optimisation pour des problèmes
de sélection de poids permettant ainsi d’augmenter la vitesse de convergence de
protocoles de consensus dans les réseaux. Nous proposons de sélectionner les poids en
appliquant un algorithme d’approximation: minimisation de la norme p de Schatten
de la matrice de poids. Nous caractérisons l’erreur induite par cette approximation
et nous montrons que l’algorithme proposé a l’avantage qu’il peut être soit résolu
de façon distribuée en utilisant une méthode de gradient projeté simple ou résolu
par la méthode de Newton et avec une convergence plus rapide.

Ensuite, nous proposons un cadre conceptuel d’analyse des jeux d’adversaire qui
peut ajouter du bruit aux poids utilisés par l’algorithme de consensus de moyenne
afin d’éloigner le système de consensus. Nous donnons les stratégies optimales pour
les joueurs (l’adversaire et le concepteur du réseau) dans ce jeu et nous montrons
qu’un point-selle (saddle-point equilibrium) existe en stratégies mixtes.

Nous analysons également la performance des algorithmes de consensus de
moyenne où les informations échangées entre les agents voisins sont soumises à la
quantification uniforme déterministe (les valeurs réelles envoyées par les nœuds de
leurs voisins sont tronquées). En utilisant la notion de stabilité au sens de Lyapunov,
nous caractérisons les propriétés de convergence du système quantifié non linéaire
résultant.

Le problème de la terminaison des protocoles de consensus s’avère difficile dans
le cadre distribué. Nous proposons un algorithme distribué pour la terminaison des
protocoles de consensus. L’algorithme réduit la charge de communication tout en
garantissant la convergence vers un consensus. Enfin, nous proposons une mesure
de similarité qui évalue la qualité d’un regroupement (clustering) des nœuds dans
un réseau. Un algorithme local de clustering basé sur cette métrique est donné.

Mots clés : Consensus de Moyenne; Calcul Distribué; Optimisation Dis-
tribuée; Systèmes Multi-Agents; Théorie des Jeux; Quantification; Regroupement.

Contents

1 Introduction 1

1.1 Background . 4
1.1.1 The Network Model . 4
1.1.2 Average Consensus . 6
1.1.3 Convergence Conditions . 7
1.1.4 Fastest Consensus . 8

1.2 Contributions . 10
1.2.1 Weight Optimization in Consensus Protocols 10
1.2.2 Adversarial Intervention . 11
1.2.3 Quantized Communication . 12
1.2.4 Reducing Communication Overhead 12
1.2.5 Detecting Communities . 12
1.2.6 Open Research Direction . 13

2 Weight Optimization in Consensus Protocols 15

2.1 Optimization Problem . 16
2.2 Related Work . 17
2.3 Schatten Norm Minimization . 20
2.4 Newton’s Method for Schatten Norm Minimization 24

2.4.1 Preliminaries . 25
2.4.2 The Unconstrained Minimization 26
2.4.3 Gradient and Hessian . 26
2.4.4 Newton’s Direction ∆w . 28
2.4.5 Line Search . 28
2.4.6 The Algorithm . 29
2.4.7 Closed Form Solution for p = 2 29

2.5 A Distributed Algorithm for Schatten Norm Minimization 31
2.5.1 Locally Computed Gradient 33
2.5.2 Choice of Stepsize and Projection set 33
2.5.3 Complexity of the Algorithm 36

2.6 Performance Evaluation . 37
2.6.1 Newton versus Gradient methods for Schatten p-Norm Mini-

mization . 38
2.6.2 Comparison of the Schatten Norm Solution with the Optimal

Solution . 40
2.6.3 Other Distributed Approaches: Asymptotic Convergence Rate 40
2.6.4 Communication Overhead for Local Algorithms 42
2.6.5 Joint Consensus-Optimization (JCO) Procedure 43
2.6.6 Topology versus Weight Optimization 44

vi Contents

2.7 Stability and Misbehaving Nodes . 49
2.7.1 Guaranteeing Convergence of Trace Minimization 49
2.7.2 Networks with Misbehaving Nodes 51

2.8 More on Schatten p-Norm and its Relation to Machine Learning . . . 52
2.9 Conclusion . 56

3 Consensus in the Presence of an Adversary 57

3.1 Problem Formulation . 58
3.2 Optimal Weight Selection on Undirected Graphs 59

3.2.1 Existence of a Solution . 60
3.2.2 Necessary Conditions . 61
3.2.3 Locally Optimal Solution . 62
3.2.4 Closed-Form Solution for the One-Stage Problem 63

3.3 Network with Adversary in Discrete Time 64
3.3.1 The max-min Solution . 65
3.3.2 The min-max Solution . 65
3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies 66

3.4 Simulations . 67
3.4.1 Optimal Control . 67
3.4.2 Adversarial Intervention . 69

3.5 Conclusion . 69

4 Quantized Communication in Consensus Protocols 71

4.1 Literature Review . 72
4.2 System Equation . 73
4.3 Quantized Communication . 73
4.4 Problem Formulation . 75
4.5 Design and Analysis of the System 76

4.5.1 Cyclic Example . 77
4.5.2 Weight Assumption . 78
4.5.3 Cyclic States . 79
4.5.4 Lyapunov Stability . 81
4.5.5 Proof of Main Result . 89

4.6 Discussion . 95
4.6.1 Design of Weights with Arbitrarily Small Error 96

4.7 Simulations . 97
4.7.1 Simple Network . 99
4.7.2 Random Graphs . 99

4.8 Conclusion . 100

5 Reducing Communication Overhead 103

5.1 System equation . 104
5.2 Related Work . 104
5.3 Motivation . 105

Contents vii

5.4 Our Approach . 107
5.4.1 A Centralized Algorithm . 107
5.4.2 Decentralized Environment 110
5.4.3 Message Reducing Algorithm 112
5.4.4 Convergence Study . 115
5.4.5 Simulations . 118

5.5 Conclusion . 122

6 Graph Clustering by Random Walks 123

6.1 Related Work . 124
6.2 Notation . 124
6.3 The Random Walk Fitness Measure 125
6.4 Clustering Algorithm . 127

6.4.1 Bounds on f∗ . 127
6.4.2 Local Search Clustering Algorithm 128

6.5 Numerical Examples . 131
6.6 Conclusion . 136

7 Conclusion and Perspectives 139

A Open Research Direction: Averaging on Networks with Dynamic

Nodes 141

A.1 Introduction . 141
A.2 Model . 142
A.3 Simple Network Topologies . 143

A.3.1 Complete Graph . 143
A.3.2 Directed Tree . 144

A.4 Conclusion . 144

B Présentation des Travaux de Thèse en Francais 145

B.1 Introduction . 145
B.1.1 Optimisation et Contrôle Distribué 147
B.1.2 Monitoring Environnemental 147
B.1.3 Système Multi-agents . 148

B.2 Les Contributions de la Thèse . 148
B.2.1 Sélection de Poids dans les Protocoles de Consensus 149
B.2.2 Un Adversaire dans les Protocoles de Consensus 149
B.2.3 Conception et Analyse d’Algorithmes Distribués de Moyen-

nage avec Valeurs Échangées Discrétisées 150
B.2.4 La Réduction de Charge de Communication dans les Proto-

coles de Consensus . 150
B.2.5 Regroupement . 151

B.3 Conclusion . 151

Bibliography 153

viii Contents

Frequently Used Terms and Notation

Symbol Description Dimension
- Vectors are usually denoted by small bold letters (e.g., x,w, . . .) -
- Matrices are usually denoted by capital letters (e.g., X,W, . . .) -
G network of nodes and links -
V set of nodes/vertices |V | = n

E set of links/edges |E| = m

In identity matrix n× n
1n vector of all ones n× 1

D degree diagonal matrix n× n
A adjacency matrix of a graph n× n
Q incidence matrix of a graph n×m
L Laplacian matrix L = D −A = QQT n× n
l ∼ (i, j) link labeled l incident to nodes i and j -
k usually a discrete time index integer
x(k) state vector of the system at iteration k n× 1

W weight matrix (of the typical dynamics x(k + 1) =Wx(k)) n× n
w vector of weights on links m× 1

diag(v) diagonal matrix having the elements of the n× 1 vector v n× n
CG set of real matrices following G (having 0 at position (i, j) if (i, j) /∈ E) n× n
λi i-th largest eigenvalue (λ1 ≥ λ2 ≥ . . .) scalar
Λ eigenvalues diagonal matrix Λii = λi n× n
σi i-th largest singular value (σ1 ≥ σ2 ≥ . . .) scalar
µ second largest eigenvalue in magnitude of W scalar
ρ(X) spectral radius of matrix X scalar
Tr(X) trace of the matrix X scalar
||X||σp Schatten p-norm of a matrix X (||X||σp = (

∑

i σ
p
i)

1/p) scalar
O(.) Big-O notation (asymptotic notation) -
PS(.) Projection on a set S ⊂ Rm Rm → Rm

Chapter 1

Introduction

Contents
1.1 Background . 4

1.1.1 The Network Model . 4

1.1.2 Average Consensus . 6

1.1.3 Convergence Conditions . 7

1.1.4 Fastest Consensus . 8

1.2 Contributions . 10

1.2.1 Weight Optimization in Consensus Protocols 10

1.2.2 Adversarial Intervention . 11

1.2.3 Quantized Communication 12

1.2.4 Reducing Communication Overhead 12

1.2.5 Detecting Communities . 12

1.2.6 Open Research Direction . 13

Who did not wonder how well interconnected we, human beings, are, not just with
each other, but with the networked environment surrounding us. Most of the net-
works we face today are highly interconnected. The internet (connecting its users),
the web (connecting its pages), communication networks, wireless sensor networks,
smart grids, and more recently social networks are just few examples of intercon-
nected environments. The interesting common feature to these networks is that
they can be composed of many small subsystems taking local decisions (based only
on neighboring interaction rules). These local decisions can have crucial impact on
the entire network. For example, a virus spreading from an infected computer can
lead to a serious damage in the network, and a video sharing by a well connected
user in a social network can make the video go viral touching a large portion of the
population.

In general, a network is formed of nodes (or agents) and communication links
that allow these nodes to share information and resources. An agent in this thesis
is a state machine (possibly an infinite state one) programmed to run algorithms
according to well defined dynamics of interactions. These dynamics change the

2 Chapter 1. Introduction

states of agents (and thus the state of the system), and depending on local decisions
these states can converge or not. The local decisions that cause the states of agents
to converge to a common state are called consensus protocols. In this thesis we only
consider discrete-time systems, but the rationale for the algorithms studied can be
extended to continuous time systems as well.

Consensus protocols can be applied in various and broad network settings (as the
ones mentioned earlier) where interactions between neighbors are possible. In fact,
these protocols lie at the intersection of different research fields as systems theory,
computational models, and graph theory. Systems theory is the trans-disciplinary
study of the abstract organization of phenomena without being specific to an exact
type of objects, to their exact properties, or to the qualitative description of their
interaction rules in the underlying environment. This abstraction in consensus pro-
tocols is given by modeling the network by a graph of vertices (the agents) connected
by edges (if they communicate), and then running consensus algorithms on the top
of that.

As in any protocol, some parameters can be tuned in the consensus algorithm.
Therefore optimizing the choice of these parameters leads to a better performance in
terms of energy savings, speed of convergence, or robustness of the system to noise.
In addition to optimization, controlling the states of the agents is very important. In
some cases, bad choice of the parameters can cause the divergence of the states and
destabilization of the system. In fact, designing local interaction rules for agents
that provide some global guarantees is one of the main goals of the distributed
optimization and control community when the agents are strategic participants.
Game theory is a natural tool for analyzing these protocols and designing their
interaction strategies for reaching a stabilizing state having some global optimization
properties.

In this thesis, we investigate optimization problems concerned with discrete-
time consensus protocols on networks, such as parameter tuning to increase speed
of convergence, distributed implementation of global optimization problems, and
minimization of the communication overhead (Chapters 2 and 5). We also propose
a game theoretical framework to take into account an adversary in the network
trying to disrupt the communication channel (Chapter 3). We design and analyze
consensus algorithms in the presence of communication constraints as quantization
(Chapter 4). We address the problem of detecting communities (clusters) in a
network by proposing a novel scoring metric based on the speed of convergence of
consensus protocols and the random walk spectral gap properties (Chapter 6).

The main motivation for this thesis is the following three applications where
consensus protocols are a fundamental block in their design:

• Distributed optimization and control,

• Environmental monitoring in wireless sensor networks,

• Multi-agents coordination.

3

Thus the contribution of this thesis is to add knowledge to the research on consensus
protocols in general and to these applications in particular.

Distributed Optimization and Control

There has been recently a significant amount of research on distributed optimization
in networks. New faster techniques [WOJ13, GJS11] have been proposed for the
traditional dual decomposition approach for separable problems that is well known
in the network community since Kelly’s seminal work on TCP [KMT98]. Other
work in [NO09, JKJJ08] combines a consensus protocol, that is used to distribute the
computations among the agents, and a subgradient method for the minimization of a
local objective. A different approach relies on some intelligent random exploration of
the possible solution space, e.g., using genetic algorithms [ANC+10] or the annealed
Gibbs sampler [KBC+07]. In fact, distributed optimization by consensus protocols
in the control community goes back to the 80’s due to the work of D. P. Bertsekas
and J. N. Tsitsiklis on decentralized decision making and parallel computing [BT89].

Consensus problems have also a close relationship with the PageRank algorithm
used by Google search engine to rank the web pages of the search results [BP98].
Since the number of websites so far is more than 1 billion,1 the PageRank requires the
calculation of an eigenvector corresponding to the largest eigenvalue of extremely
large but sparse matrix. Therefore, the use of global information is not feasible
in this case, and distributed and parallel implementations are mandatory [LM06,
ALNO07]. A possible way is by running consensus-like algorithms [IT10, ANP07].
The PageRank problem has recently been of the interest of the systems and control
community [IT14].

In networks, algorithms for efficient routing and efficient use of resources are
proposed to save energy and speed up the processing. For small networks, it is pos-
sible for a central unit to be aware of all the components of the network and decide
how to optimally use a resource on a global view basis. As networks expand, the
central unit needs to handle a larger amount of data, and centralized optimization
may become unfeasible especially when the network is dynamic [BFH13]. In fact,
the optimal configuration needs to be computed whenever a link fails or there is
any change in the network. Moreover, nodes may have some processing capabilities
that are not used in the centralized optimization. With these points in mind, it
becomes more convenient to perform distributed optimization relying on local com-
putation at each node and local information exchange between neighbors [Joh08].
Such distributed approach is intrinsically able to adapt to local network changes.

Environmental Monitoring in Wireless Sensor Networks

Emerging technologies as robotics, multi-vehicle cooperation control, and environ-
mental monitoring have a driving need for wireless sensor networks. In these net-
works, a group of sensors communicates in an ad-hoc manner to accomplish the

1www.internetlivestats.com

4 Chapter 1. Introduction

tasks they are deployed to do.
Environmental monitoring requires that sensors measure temperature, pressure,

pollution, etc. in their area of deployment. These measurements can be noisy and if,
for example, the noise is additive, zero mean, and Gaussian, then each temperature
sensor can have a different noisy measurement of the nominal temperature. It is well
known that a good filter of the Gaussian noise (achieving the maximum likelihood)
is the mean filter. Therefore, averaging the values of the initial measurements can
give a more accurate estimation, this is known as sensor fusion. Sensor fusion can be
obtained by decentralized communication between sensors by consensus protocols.
In fact, sensor fusion is the motivation provided by Boyd et al. for their well known
paper on gossiping consensus protocols [BGPS06].

Some computational models are also motivated by wireless sensor consensus
applications. The proposed model, the population protocols, was first introduced
in [AAD+04] as a model for distributed (computational capable) agents interacting
locally to infer some global information about the group. This model is motivated
by sensors attached to birds in a flock with the goal to check some global properties
relying only on local interactions, like determining whether more than 5% of the
population has elevated temperature.

Multi-agents Coordination

Consensus protocols find their way also in multi-agents coordination problems
[OSFM07]. The agents in such networks also use the wireless sensor technology
to communicate. A group of robots moving in parallel for example should agree
on the direction of motion and the speed to avoid collision. In formation control
problems, with a leaderless approach, robots only communicate on a neighbor to
neighbor basis to collectively accomplish a global task [JLM03, BA98] (like obstacle
avoidance or trajectory following while maintaining connectivity [JE07]). The main
difficulty for the consensus protocols in this category of problems does not origi-
nate from the large number of robots, but rather from the switching topology and
connectivity issues.

1.1 Background

1.1.1 The Network Model

Consider a network of n nodes that can exchange messages between each other
through communication links. The network of nodes can be modeled as a graph
G = (V,E) where V is the set of vertices, labeled from 1 to n, and E is the set
of edges, labeled from 1 to m. (i, j) ∈ E if nodes i and j are connected and can
communicate (they are neighbors). If link (i, j) has label l, we write l ∼ (i, j).2

2Most of the work in this thesis deals with static graphs, however some of the results can be

naturally extended to include a dynamic graph topology.

1.1. Background 5

Unless otherwise specified, graphs are considered to be connected and undirected.3

Denote by di the degree of node i in the graph G.
Any given graph G = (V,E) can be represented and fully characterized using

one of the following matrices: the adjacency matrix A, the incidence matrix Q, or
the Laplacian matrix L. The adjacency matrix A is the symmetric n by n square
matrix whose elements are given as follows,

Aij =

{

1 if (i, j) ∈ E,
0 else.

(1.1)

The incidence matrix Q is the n by m matrix where each column k ∼ (i, j) corre-
sponds to a link and each column has only two nonzero elements,

{

Qik = ±1
Qjk = −Qik,

(1.2)

The value of Qik can be either +1 or −1 because the graph is undirected. Finally,
the Laplacian matrix is the symmetric n by n square matrix such that,

Lij =

−1 if (i, j) ∈ E,
di if i = j,

0 else.

(1.3)

These matrices are related by the following formula,

L = D −A = QQT ,

where D is the degree diagonal matrix (Dii = di for all i ∈ V). From the given
definition we can deduce some properties of the Laplacian, since L = QQT , then
it is a positive semi-definite matrix having nonnegative eigenvalues. Given that
L1 = 0, where 1 is a vector of all ones, and 0 is the vector of all zeros, then 0 is an
eigenvalue and 1√

n
1 is the corresponding right unit eigenvector. Since the network

is connected, it is well known that the second smallest eigenvalue of the Laplacian
is strictly positive (and is called the algebraic connectivity [Fie73]). These matrices
will appear often in this thesis.

Since most of the results in this thesis are theoretical, simulations and perfor-
mance evaluation are done to support the theoretical findings. We mainly relied on
connected random graphs,4 so we give here an overview of these random networks:

• Random Geometric Graphs (RGGs) [Pen03] where n nodes are placed uni-
formly at random on a convex unit area (we considered a unit square area),
and any two nodes are connected by an edge if the distance between them is

3Since the graph is undirected graph, then (i, j) = (j, i) are eventually the same link.
4In some cases we also did simulations on real networks as Enron company internal email

exchange network [SA04] and the dolphin social network [LSB+03], or static networks as grids or

rings.

6 Chapter 1. Introduction

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=0.1357

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=0.2146

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=0.3717

Figure 1.1: RGG with n = 100 nodes and different values of the connectivity radius.

less than the radius rn =

√

c× log(n)
n , where c is a constant, see Fig. 1.1. The

connectivity of RGG graphs is usually studied as a function of the scalar c
[GK98]. RGGs are well suited to model wireless sensor networks where the
nodes have been deployed randomly on a field and the transmission range
of each sensor is rn. When the transmission range rn is small, the network
presents clusters of nodes.

• Erdős-Rényi (ER) graphs, these graphs have a parameter P for the probability
that a link to exist between any pair of vertices. They are constructed as
follows: starting from an n-nodes-fully-connected graph, every link can be
removed from the graph with probability 1−P and is left there with probability
P .

1.1.2 Average Consensus

The graph G = (V,E) is an abstraction of the network topology connecting com-
municating agents. Each agent (or node) in V can only communicate with its
“neighbors”. Neighbor relations are described as follows: agent j is a neighbor of
agent i if (i, j) is an edge of G, i.e., (i, j) ∈ E. We denote by Ni the neighborhood
set of node i. Every node i in the network has control over a real-valued scalar
quantity xi called an agreement variable whose value can be updated by the agent
from time to time. Initially each agent i has a real scalar value xi(0) ∈ R. Let

xave =
1

n

∑

i∈V
xi(0),

be the average of initial values of all agreement variables in the network. The
purpose of the average consensus (distributed averaging) problem is to devise an
algorithm for each agent which enables all n agents to asymptotically determine in
a decentralized manner, the average of the initial values of their scalar variables,
i.e.,

lim
k→∞

xi(k) = xave. (1.4)

1.1. Background 7

A well studied approach to the problem is for each agent to use a linear iterative
update rule of the form

xi(k + 1) = wii(k)xi(k) +
∑

j∈Ni

wij(k)xj(k), ∀i ∈ V, (1.5)

where k is a discrete time index, and wij(k) are real-valued weights to be designed
(in general they are time varying specially for dynamic networks). Equation (1.5)
can be written in a matrix form as

x(k + 1) =W (k)x(k), (1.6)

where x(k) is the state vector of agreement values whose i-th element is xi(k), and
W (k) is the weight matrix whose ij-th entry equals wij(k). Equation (1.5) is the
general state dynamical equation of consensus protocols that will appear often along
this thesis. Therefore, it is important to understand the conditions on the matrix
W (k) that cause the states to converge (and more specifically to converge to the
average consensus given by equation (1.4)). Let us first introduce some notation.
We denote by λi the i-th eigenvalue of a matrix. For real and symmetric matrices,
all eigenvalues are real and hence we can order them (λ1 ≥ λ2 ≥ · · · ≥ λn), so λi
is the i-th largest eigenvalue of the matrix. Denote by ρ(.) the spectral radius of a
matrix, i.e., ρ = maxi |λi|, and by µ the largest eigenvalue in module non considering
λ1, i.e., µ = max{λ2,−λn} when the eigenvalues are all real. σi is the i-th largest
singular value of a matrix, i.e., σi(X) =

√

λi(XTX). Notice that σ1(X) = ||X||2
where ||.||2 is the matrix L2-induced norm.5

1.1.3 Convergence Conditions

Assume that W (0),W (1), . . . are independent and identically distributed random
matrices, then sufficient conditions for almost sure convergence to consensus starting
from any initial condition are [Bén09]:

1TW (k) = 1T , for all k, (1.7)

W (k)1 = 1, for all k, (1.8)

λ2(E[W (k)TW (k)]) < 1. (1.9)

As we will be working on static graphs, then it is important to study the
conditions for convergence when the same matrix is applied at all iterations, i.e.,
W (k) = W for all k. In this case, [XB04] provides the following set of necessary
and sufficient conditions that guarantee convergence to consensus starting from any
initial condition:

1TW = 1T , (1.10)

W1 = 1, (1.11)

ρ(W − 1

n
11T) < 1. (1.12)

5A matrix Lp-induced norm is defined as follows: ||X||p = max{||Xy||p : y ∈ Kn with ||y||p =

1}, where K is a field of real numbers and ||y||p =
(
∑

i |yi|
p
)1/p

is the usual Lp-norm of a vector.

8 Chapter 1. Introduction

Note that with these conditions, ρ(W− 1
n11

T) = µ(W) and σ1(W− 1
n11

T) = σ2(W).
It is well known that for any matrix X, the following holds [Ber05, p. 351]:

ρ(X) ≤ σ1(X),

where the equality holds if X is a symmetric matrix. Therefore, ρ(W − 1
n11

T) ≤
σ2(W) and thus if (1.9) is satisfied, then so is (1.12), but the inverse is not always
true unless W is symmetric (W = W T). We also observe that the weights are not
required to be non-negative. Since we will mainly focus on problems where W is
symmetric, then the first two conditions are equivalent to each other and equivalent
to the possibility to write the weight matrix as follows:

W = I −Q× diag(w)×QT , (1.13)

where I is the identity matrix and w ∈ Rm is the vector of all the weights on links
wl, l = 1, . . . ,m. Equation (1.13) gives an important representation of the weights,
giving a relation between, on one hand, the weights on links in Rm and, on the other
hand, the weight matrix in Rn,n. To show the importance of this equation, suppose
we have an optimization problem where the elements of the weight matrix W are the
variables of this problem, then the number of variables is n2. By applying equation
(1.13), then there will be m variables which guarantees complexity savings specially
on sparse graphs where m = O(n).

1.1.4 Fastest Consensus

The system equation (1.6) for fixed weight matrix has a solution given as follows:

x(k) =W kx(0). (1.14)

The speed of convergence of the system given in (1.14) is governed by how fast W k

converges. For a real symmetric weight matrix, W has real eigenvalues and it is
diagonalizable. We can write W k using the orthonormal decomposition as follows
[Mey00, p. 517]:

W k =
∑

i

λkiGi, (1.15)

where Gi = viv
T
i with vi being the eigenvector corresponding to the eigenvalue λi.

We note that the matrices Gis have the following properties: Gi is the projector
onto the null-space of W − λiI along the range of W − λiI,

∑

iGi = I and GiGj =

0n×n ∀i ̸= j. Conditions (1.10)-(1.12) imply that 1 is the largest eigenvalue of W
in module and is simple. Then λ1 = 1, G1 = 1/n11T and |λi| < 1 for i > 1. From
the above representation of W k, we can deduce two important facts:

1. First we can check that W k actually converges, in fact we have limk→∞ x(k) =

limk→∞W kx(0) = 1
n11

Tx(0) = xave1 as expected.

1.1. Background 9

2. Second, the speed of convergence of W k is governed by the second largest
eigenvalue in module, i.e., on µ = max{λ2,−λn} = ρ (W −G1). For obtaining
the fastest convergence, nodes have to select weights that minimize µ, or
equivalently maximize the spectral gap6 of W .

Then the problem of finding the weight matrix that guarantees the fastest conver-
gence can be formalized as follows:

argmin
W

µ(W)

subject to W =W T ,

W1 = 1,

W ∈ CG,

(1.16)

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarily wij = 0 if (i, j) ̸∈ E.
Problem (1.16) is called in [XB04] the “symmetric FDLA problem.”

The above minimization problem is a convex one and the function µ(W) is non-
smooth convex function. It is convex since when W is a symmetric matrix, we
have µ(W) = ρ(W − G1) = ||W − G1||2 which is a composition between an affine
function and the matrix L-2 norm, and all matrix norms are convex functions. The
function µ(W) = ρ(W −G1) is non-smooth since the spectral radius of a matrix is
not differentiable at points where the eigenvalues coalesce [FN95]. The process of
minimization itself in (1.16) tends to make them coalesce at the solution.

Moreover, the weight matrix solution of the optimization problem is not unique.
For example it can be checked that for the network in Fig. 1.2, there are infinite
weight values that can be assigned to the link (2, 3) and solve the optimization
problem (1.16), including w23 = 0. Additionally, this shows that adding an extra
link in a graph (e.g., link (2, 3) in the Fig. 1.2), does not necessarily reduce the
second largest eigenvalue of the optimal weight matrix.

✟
✟

✟✟

❍
❍

❍❍

1

2

3

4

5

❍
❍

❍❍

✟
✟

✟✟

6

Figure 1.2: Network of 6 nodes.

6 The spectral gap is the difference between the largest eigenvalue in module and the second

largest one in module. In this case it is equal to 1− µ.

10 Chapter 1. Introduction

1.2 Contributions

On the basis of the model equation (1.5), we study in this thesis optimization,
control, and game theoretical problems that may arise. In particular, we raise the
following questions:

• Given that the optimal weights to speed up convergence are known (by solving
(1.16) globally), can the nodes in the network eventually infer (or learn) these
weights in a distributed way (without the need of the global knowledge of the
network)?

• Given that the network can be susceptible to attacks from an adversary willing
to drive the system away from consensus, what strategies should be used
by both, the adversary and the network designer, to achieve their opposite
objectives?

• Suppose that communication channels between nodes in the network are sub-
ject to bandwidth constraints, and nodes can only receive/send truncated
values of their neighbors’ variables. How does this quantization affect the
convergence of the resulting nonlinear system?

• Given that the state variables are converging asymptotically, can the nodes
know when their state variables are close enough to the asymptotic value, and
thus decide to stop executing the algorithm only on the bases on some local
knowledge?

• Given that nodes forming well connected groups in the graph have similar
convergence dynamics of their state variables, can we use this observation to
identify these clusters of nodes?

Each chapter in the thesis deals with one of the above questions. Rather than
mentioning here all the previous literature on consensus protocols as a general topic,
we preferred to give the related works in every chapter specific to the problem
studied. Below we list the contribution detailed in the following chapters.

1.2.1 Weight Optimization in Consensus Protocols

As we mentioned in Section 1.1.4, the convergence rate of the linear consensus
algorithm is determined by the second largest eigenvalue in module of the weight
matrix W . Optimal weights can be calculated by optimizing spectral properties
of the weight matrix as in problem (1.16), which can be solved by semi-definite
programming (SDP) as shown by Xiao et al. in [XB04]. The SDP cannot be
implemented by the nodes in the network unless they have the full knowledge of the
network. For this reason we propose to select the weights through an approximation
algorithm which minimizes the Schatten p-norm of the weight matrix (essentially
minimizing the trace of W p). We characterize the approximation error and we show
that the approximated solution has the advantage that it can be calculated in a

1.2. Contributions 11

distributed way using a simple projected gradient method. We also provide a faster
Newton’s method to determine it.

The publications directly related to this contribution are the following:

• [ECNA15] M. El Chamie, G. Neglia, and K. Avrachenkov, “Distributed Weight
Selection in Consensus Protocols by Schatten Norm Minimization”, To appear
in IEEE Transactions on Automatic Control as Technical Note, Volume 60,
No. 4, April 2015.

• [ECN14] M. El Chamie and G. Neglia, “Newton’s Method for Constrained
Norm Minimization and Its Application to Weighted Graph Problems”, In
proceedings of the American Control Conference ACC 2014 (Portland, OR,
United States, June 4-6), pp. 6, June 2014.

Other publications also related to this topic are the following:

• [SECN13] L. Severini, M. El Chamie, and G. Neglia, “Topology versus Link
Strength for Information Dissemination in Networks”, In proceedings of AL-
GOTEL 2013 (Pornic, Loire-Atlantique, France, May 28-31), pp. 4, May 2013.

• [AECN11] K. Avrachenkov, M. El Chamie, and G. Neglia, “A local average
consensus algorithm for wireless sensor networks”, In proceedings of IEEE
International Conference on Distributed Computing in Sensor Sytems and
Workshops DCOSS 2011 (Barcelona, Spain June 27-29), pp. 6, June 2011.

1.2.2 Adversarial Intervention

In this work, we propose a game theoretical framework for an adversary that can
add noise to the weights used by averaging protocols to drive the system away from
consensus. We give the equilibrium strategies for the players (the adversary and
the network designer) in this game and we show that a saddle-point equilibrium
(SPE) does not exist in pure strategies but it does in mixed strategies. We also
study dynamic optimal weight selection optimal control for consensus protocols.
For the multi-stage case, the solution exists but can rarely be expressed in closed-
form equations. In view of this, we apply optimization techniques to obtain a locally
(and possibly globally) optimizing feasible control path. For the one-stage case, we
obtain a closed-form solution for the optimal control and provide sufficient conditions
for the existence of a control that makes the system reach consensus in only one
iteration.

The publication related to this contribution is the following:

• [ECB14] M. El Chamie and T. Başar, “Optimal Strategies for Dynamic Weight
Selection in Consensus Protocols in the Presence of an Adversary”, Accepted
to the 53rd IEEE Conference on Decision and Control CDC 2014 (Los Angeles,
California, Dec. 15-17), pp. 6, Dec. 2014.

12 Chapter 1. Introduction

1.2.3 Quantized Communication

We analyze the performance of distributed averaging algorithms where the infor-
mation exchanged between neighboring agents is subject to deterministic uniform
quantization (i.e., real values sent by nodes to their neighbors are truncated). With
such quantization, convergence to the precise average cannot be achieved in general,
but the convergence would be to some value close to it, called quantized consensus.
Using Lyapunov stability analysis, we characterize the convergence properties of the
resulting nonlinear quantized system. We show that in finite time and depending
on initial conditions, the algorithm will either cause all n agents to reach a quan-
tized consensus where the consensus value is the largest quantized value not greater
than the average of their initial values, or will lead all n variables to cycle in a
small neighborhood around the average. In the latter case, we identify tight bounds
for the size of the neighborhood and we further show that the error can be made
arbitrarily small by adjusting the algorithm’s parameters in a distributed manner.

The publication related to this contribution is the following:

• [ECLB14] M. El Chamie, J. Liu, and T. Başar, “Design and Analysis of Dis-
tributed Averaging with Quantized Communication”, Accepted to the 53rd
IEEE Conference on Decision and Control CDC 2014 (Los Angeles, Califor-
nia, Dec. 15-17), pp. 6, Dec. 2014.

1.2.4 Reducing Communication Overhead

Consensus algorithms require that nodes exchange messages persistently to reach
asymptotically consensus. The problem of termination of consensus protocols turns
out to be challenging in the distributed setting. We propose a totally distributed
algorithm for average consensus where nodes send more messages when they have
large differences in their estimates, and reduce their message sending rate when
the consensus is almost reached. The convergence of the system is guaranteed to
be within a predefined margin η. Tuning the parameter η provides a trade-off
between consensus precision and communication overhead of the protocol. The
proposed algorithm is robust against nodes changing their initial values and can
also be applied in dynamic networks with faulty links.

The publication related to this contribution is the following:

• [ECNA13] M. El Chamie, G. Neglia, and K. Avrachenkov, “Reducing Commu-
nication Overhead for Average Consensus”, In proceedings of IFIP Networking
2013 (Brooklyn, NY, USA, May 22-24), May 2013.

1.2.5 Detecting Communities

Finally, we study the problem of finding well connected clusters (of nodes) in a
network. It is well known that the mixing time of a random walk on a network
is related to the speed of convergence of consensus protocols. We propose a score
metric that evaluates the quality of clusters such that the faster the random walk

1.2. Contributions 13

mixes in the cluster and the slower it escapes, the higher is the score. A local
clustering algorithm based on this metric is given.

The publication related to this contribution is the following:

• [AECN14] K. Avrachenkov, M. El Chamie, and G. Neglia, “Graph Clustering
Based on Mixing Time of Random Walks”, In proceedings of the IEEE Inter-
national Conference on Communications ICC 2014 (Sydney, Australia, June
10-14), pp. 6, June 2014.

1.2.6 Open Research Direction

We further introduce in the Appendix, as an open future research direction for
consensus protocols, a novel model for averaging on networks with dynamic nodes.
In dynamic networks, the network topology in the network changes with time. This
can be due to mobility, link failure, or node failure. Most of the work on consensus in
dynamic network settings consider a fixed number of nodes trying to reach agreement
in the presence of mobility or non-robust links (so only the links are dynamic).
However, little study has been made on networks with dynamic number of nodes.
In this chapter, we study this problem on simple graph topology networks (like
complete graphs and trees) and we leave the full model study as a future open
research direction.

This work is due to the following presentation:

• M. El Chamie, G. Neglia, and K. Avrachenkov, "Averaging on Dynamic Net-
works", 10ème Atelier en Evaluation de Performances (Inria, Sophia Antipolis,
11-13 juin), June 2014. (abstract)

Chapter 2

Weight Optimization in Consensus

Protocols

Contents
2.1 Optimization Problem . 16

2.2 Related Work . 17

2.3 Schatten Norm Minimization 20

2.4 Newton’s Method for Schatten Norm Minimization 24

2.4.1 Preliminaries . 25

2.4.2 The Unconstrained Minimization 26

2.4.3 Gradient and Hessian . 26

2.4.4 Newton’s Direction ∆w . 28

2.4.5 Line Search . 28

2.4.6 The Algorithm . 29

2.4.7 Closed Form Solution for p = 2 29

2.5 A Distributed Algorithm for Schatten Norm Minimization 31

2.5.1 Locally Computed Gradient 33

2.5.2 Choice of Stepsize and Projection set 33

2.5.3 Complexity of the Algorithm 36

2.6 Performance Evaluation . 37

2.6.1 Newton versus Gradient methods for Schatten p-Norm Mini-
mization . 38

2.6.2 Comparison of the Schatten Norm Solution with the Optimal
Solution . 40

2.6.3 Other Distributed Approaches: Asymptotic Convergence Rate 40

2.6.4 Communication Overhead for Local Algorithms 42

2.6.5 Joint Consensus-Optimization (JCO) Procedure 43

2.6.6 Topology versus Weight Optimization 44

2.7 Stability and Misbehaving Nodes 49

2.7.1 Guaranteeing Convergence of Trace Minimization 49

2.7.2 Networks with Misbehaving Nodes 51

2.8 More on Schatten p-Norm and its Relation to Machine

Learning . 52

2.9 Conclusion . 56

16 Chapter 2. Weight Optimization in Consensus Protocols

The speed of convergence of average consensus protocols depends on the weights
selected on links (to neighbors). We address in this chapter how to select the weights
in a given network in order to have a fast convergence speed for these protocols. We
approximate the problem of optimal weight selection by the minimization of the
Schatten p-norm of a matrix with some constraints related to the connectivity of
the underlying network. We first provide a methodology for solving the Schatten
p-norm optimization using the Newton’s method. We then provide a totally dis-
tributed gradient method to solve the Schatten p-norm optimization problem. By
tuning the parameter p in our proposed distributed minimization, we can simply
trade-off the quality of the solution (i.e., the speed of convergence) for communi-
cation/computation requirements (in terms of number of messages exchanged and
volume of data processed). The weight optimization iterative procedure can also
run in parallel with the consensus protocol and form a joint consensus–optimization
procedure.

2.1 Optimization Problem

We start by introducing formally the problem studied in this chapter. As mentioned
in the introduction, the network of nodes can be modeled as a graph G = (V,E)

where V is the set of vertices, labeled from 1 to n, and E is the set of edges, then
(i, j) ∈ E if nodes i and j are connected and can communicate (they are neighbors)
and |E| = m. We label the edges from 1 to m. If link (i, j) has label l, we write
l ∼ (i, j). Ni is the neighborhood set of node i. All graphs in this chapter are
considered to be connected and undirected. Let xi(0) ∈ R be the initial value of the
local variable at node i. We are interested in computing the average

xave = (1/n)

n∑

i=1

xi(0),

in a decentralized manner with nodes only communicating with their neighbors. The
network is supposed to operate synchronously: when a global clock ticks, all nodes
in the system perform the iteration of the averaging protocol. At iteration k + 1,
node i updates its state value xi as follows:

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj(k). (2.1)

As it is commonly assumed, in this chapter we consider that two neighbors select
the same weight for each other, i.e., wij = wji. The matrix form equation is:

x(k + 1) =Wx(k), (2.2)

where x(k) is the state vector of the system and W is the weight matrix. The main
problem we are considering in this chapter is how a node i can choose the weights wij

2.2. Related Work 17

for its neighbors so that the state vector x of the system converges fast to consensus.
As we have seen in the introduction, the necessary and sufficient conditions for the
convergence of the system to average consensus starting from any initial value are
the following:

1TW = 1T , (2.3)

W1 = 1, (2.4)

µ(W) < 1, (2.5)

where µ(W) = ρ(W − G1) is the second largest eigenvalue of W in module and
G1 = 1

n11
T . For symmetric weight matrices, the problem of finding the weight

matrix that guarantees the fastest convergence, also given in the Introduction, can
be formalized as follows:

argmin
W

µ(W)

subject to W =W T ,

W1 = 1,

W ∈ CG,

(2.6)

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarily wij = 0 if (i, j) ̸∈ E.
The constraint W =W T in the optimization requires any two neighbors i and j to
choose the same weight on their common link l ∼ (i, j) i.e., wij = wji = wl. The
condition W1 = 1 means that at every node i the sum of all weights on its incident
links plus its self-weight wii must be equal to one. This condition is satisfied if
nodes choose first weights on links, and then adapt consequently their self-weights
wii. Thus all three constraints in (2.6) lead to the possibility to write W as follows:

W = I −Q× diag(w)×QT , (2.7)

where w ∈ Rm is the vector of all the weight links wl, l = 1, . . . ,m, and Q is the
incidence matrix of the graph (given in the introduction chapter as one of the three
matrices that characterize the nodes and links in a graph). Problem (2.6) is called
in [XB04] the “symmetric FDLA problem.”

2.2 Related Work

Xiao and Boyd in [XB04] have shown that the symmetric FDLA problem (2.6) can
be formulated as a Semi-Definite Program (SDP) that can be solved by a centralized
unit using interior point methods. The semi-definite program is the following:

minimize
w, s

s

subject to − sI ≼ I −Q× diag(w)×QT −G1

I −Q× diag(w)×QT −G1 ≼ sI,
(2.8)

18 Chapter 2. Weight Optimization in Consensus Protocols

where s is an auxiliary real optimization variable, A ≼ B if and only if B − A is
positive semi-definite, and G1 = 1

n11
T . The output of this program is the optimal

weight vector w ∈ Rm such that wl, l = 1, . . . ,m is the weight selected for link l.
The weight matrix can be then deduced from w using Eq. (2.7).

The limit of such centralized approach to weight selection is shown by the
fact that a popular solver as CVX, matlab software for disciplined convex program-
ming [GB11], can only find the solution of (2.8) for networks with at most tens of
thousands of links.

The optimal solution in larger networks can be found iteratively using a central-
ized subgradient method. The authors of [XB04] present a sub-gradient method for
selecting weights on links in a network by minimizing the following unconstrained
problem (whose solution is equivalent to solving problems (2.6) or (2.8)):

argmin
w

r(w) = ρ(I −Q× diag(w)×QT −G1).

Each link weight is updated according to the following sub-gradient iteration:

w
(k+1)
l = w

(k)
l − γ(k)g

(k)
l /||g(k)||, (2.9)

where w(k)
l is the weight on link l at iteration k, g(k)l is the l-th component of a

subgradient g(k) of the objective function calculated in w(k), and γ(k) is the step-
size satisfying the following sufficient conditions for convergence, limk→∞ γ(k) =

0 and
∑∞

k=1 γ
(k) = ∞. The components of the sub-gradient can be calculated as

follows:

• if r(w) = λ2(W), then

gl = −(ui − uj)2, if l ∼ (i, j), l = 1, . . . ,m,

where ui is the i-th component of a unit eigenvector of the weight matrix W (k)

corresponding to the eigenvalue λ2.

• if r(w) = −λn(W), then

gl = (ui − uj)2, if l ∼ (i, j), l = 1, . . . ,m,

where ui is the i-th component of the unit eigenvector of the weight matrix
W (k) corresponding to the eigenvalue λn.

Contrary to the centralized approach for the subgradient method, in a dis-
tributed solution all the nodes in the network contribute to calculate the solution of
the optimization problem. The whole network then benefits from nodes’ processing
capabilities. However, the subgradient approach given above is not distributed for
different reasons. First, the stepsize used in (2.9) is normalized by ||g(k)|| which
cannot be locally computed by each node. While this problem can probably be
circumvented by a different choice of the stepsize (without loosing the convergence
properties of (2.9)), there are other aspects that make problematic this distributed

2.2. Related Work 19

implementation. In fact this iterative procedure requires at every step to calculate
λ2(W (k)) and λn(W (k)), and determine an eigenvector corresponding to one of these
two eigenvalues that is the largest in module. For the solution to be really distributed
also these quantities have to be calculated in a distributed way. This is not an easy
task. There are some distributed iterative techniques [KM04, FGGS09, YFG+08]
that converge asymptotically to the correct eigenvalue-eigenvector pair, but then
each step of the optimization procedure requires itself the convergence of an iterative
sub-procedure to calculate the two eigenvalues and the corresponding eigenvectors
with significant computation and communication costs. We remark in particular
that at each step the sub-procedure has to run long enough to guarantee that the
estimations are accurate enough to not jeopardize the convergence of the optimiza-
tion procedure. Deciding when to terminate the sub-procedure at each step may
require itself another distributed mechanisms or the use of worst-case bounds on the
errors.

A similar optimization problem but with some additional constraints is to find
the fastest converging algorithm for randomized gossiping, and it has been studied
in [BGPS06]. The authors provide a subgradient method that projects the variables
violating the constraints back onto the feasible set. The projection can be done in a
distributed way and the stepsize sequence can be calculated at each node. Neverthe-
less, the gradient of the cost function depends also in this case on eigenvalues and
eigenvectors of the underlying graph, so its calculation incurs the same problems
exposed above.

Kim et al. in [KGP09] propose a weight selection algorithm using the qth-
order spectral norm minimization (q-SNM). They showed that if a symmetric weight
matrix is considered, then the solution of the q-SNM is equivalent to that of the
symmetric FDLA problem. Nevertheless, their remark is not tailored for symmetric
weight matrix because their algorithm is computationally more expensive than the
SDP. Another global weight optimization to approximate problem (2.6) is given
in [JXM10] where the authors consider a cost function over finite time horizon
and observe numerically that the more eigenvalues are considered in the objective
function (λ2, λ3, . . .) the faster it is in the transient phase. In conclusion, how to
solve the problem (2.6) in a distributed way is still an open challenge.

Some heuristics for the weight selection problem that guarantee convergence of
the average protocol and attracted some interest in the literature either due to their
distributed nature or to their easy implementation are the following [XBK07, XB04]:

• max degree weights (MD):
wl =

1
∆+1 ∀l = 1, . . . ,m;

• local degree (Metropolis) weights (LD):
wl =

1
max{di,dj}+1 l ∼ (i, j) ∀l = 1, 2, . . . ,m;

• optimal constant weights (OC):
wl =

2
λ1(L)+λn−1(L)

∀l = 1, . . . ,m;

20 Chapter 2. Weight Optimization in Consensus Protocols

where ∆ = maxi{di} is the maximum degree in the network and L is the Laplacian
of the graph. A similar heuristic, called neighborhood algorithm (NA) [AECN11],
was proposed by the author in his master thesis [Cha11]. Each node i sets the
weight of a link (i, j) depending on the similarity between its neighborhood set
and the neighborhood of node j. NA quantifies such similarity by resorting to the
Jaccard index defined in the set theory.1

2.3 Schatten Norm Minimization

We change the original minimization problem in (2.6) by considering a different cost
function that is a monotonic function of the Schatten norm. The Schatten p-norm
of a matrix W is the Lp-norm of its singular values, i.e., ||W ||σp = (

∑

i σ
p
i)

1/p. The
minimization problem we propose is the following one:

argmin
W

h(W) = ||W ||pσp

subject to W =W T ,

W1 = 1,

W ∈ CG,

(2.10)

where p is an even positive integer. The following result establishes that (2.10) is a
smooth convex optimization problem and also it provides an alternative expression
of the cost function in terms of the trace of W p. For this reason we refer to our
problem also as Trace Minimization (TM).

Proposition 1. For any even positive integer p, the function

h(W) = ||W ||pσp = Tr(W p) is scalar-valued, smooth, and convex on its feasible

domain when W is symmetric.

Proof. We have Tr(W p) =
∑n

i=1 λ
p
i . Since W is symmetric, its non-zero singular

values are the absolute values of its non-zero eigenvalues [Mey00]. Given that p is
even, then

∑n
i=1 λ

p
i =

∑n
i=1 σ

p
i . Therefore, Tr(W p) = ||W ||pσp.

The Schatten norm ||W ||σp is a nonnegative convex function, then h is convex
because it is the composition of a non-decreasing convex function –the function xp

where x is non-negative– and a convex function [BV04, p. 84].
The function is also differentiable and we have [Ber05, p. 411]

∂

∂wij
Tr(W p) = p(W p−1)j,i . (2.11)

We now illustrate the relation between (2.10) and the optimization (2.6). The
following lemmas will prepare the result:

1For any two sets A, and B, the Jaccard index is: J(A,B) = |A ∩B|/|A ∪B|.

2.3. Schatten Norm Minimization 21

Lemma 1. For any symmetric weight matrix W whose rows (and columns) sum

to 1 and with eigevalues λ1(W) ≥ λ2(W) ≥ · · · ≥ λn(W), there exist two integers

K1 ∈ {1, 2, . . . n − 1},K2 ∈ {0, 1, 2, . . . n − 1} and a positive constant α < 1 such

that for any even positive integer p we have:

1 + τ(W)pK1 ≤ Tr(W p) ≤ 1 + τ(W)p(K1 +K2α
p), (2.12)

where

τ(W) =

{

ρ(W) = max{λ1(W),−λn(W)} if ρ(W) > 1,

µ(W) = max{λ2(W),−λn(W)} if ρ(W) ≤ 1.
(2.13)

Proof. Let us consider the matrix W 2 and denote by ν1, ν2, . . . , νr its distinct eigen-
values ordered by the largest to the smallest and by m1,m2, . . . ,mr their respective
multiplicities. We observe that they are all non-negative and then they are also
different in module. For convenience we consider νs = ms = 0 for s > r. Since p is
an even positive integer, it can be written as p = 2q where q positive integer. We
can then write:

Tr(W p) =

n∑

i=1

λpi =

r∑

i=1

miν
q
i .

The matrix W 2 has 1 as an eigenvalue. Let us denote by j its position in the ordered
sequence of distinct eigenvalues, i.e., νj = 1. Then it holds:

Tr(W p) = 1 + (mj − 1) +
∑

i ̸=j

miν
q
i .

If ρ(W) = 1 (i.e., 1 is the largest eigenvalue in module of W), then 1 is also the
largest eigenvalue of W 2 (ν1 = 1). If m1 > 1, then it has to be either λ2(W) = 1

(the multiplicity of the eigenvalue 1 for W is larger than 1) or λn(W) = −1. In
both cases τ(W) = µ(W) = 1,

Tr(W p) = 1 + (m1 − 1) +
∑

i>1

miν
q
i

and the result holds with K1 = m1 − 1, K2 =
∑

i>1mi and α =
√
ν2. If m1 = 1,

then ν2 = λ22. We can write:

Tr(W p) = 1 + νq2

(

m2 +
∑

i>2

mi

(
νi
ν2

)q
)

and the result holds with K1 = m2, K2 =
∑

i>2mi, and α =
√

ν3/ν2.
If ρ(W) > 1, then ν1 = ρ(W)2 > 1 and we can write:

Tr(W p) = 1 + νq1

m1 +

∑

i>1
i ̸=j

mi

(
νi
ν1

)q

+ (mj − 1)

(
1

ν1

)q

 .

Then the result holds with τ(W) =
√
ν1 = ρ(W), K1 = m1, K2 =

∑

i>1mi, and
α =

√

ν2/ν1.

22 Chapter 2. Weight Optimization in Consensus Protocols

Lemma 2. Let us denote by W(p) the solution of the minimization problem (2.10).
If the graph of the network is strongly connected then τ

(
W(p)

)
< 1 for p sufficiently

large.

Proof. If the graph is strongly connected then there are multiple ways to assign the
weights such that the convergence conditions (2.3)-(2.5) are satisfied. In particular
the local degree method described in Section 2.2 is one of them. Let us denote by
W(LD) its weight matrix. A consequence of the convergence conditions is that 1 is
a simple eigenvalue of W(LD), and that all other eigenvalues are strictly less than
one in magnitude [XB04]. It follows that τ

(
W(LD)

)
in Lemma 1 is strictly smaller

than one and that limp→∞ Tr
(

W p
(LD)

)

= 1. Then there exists a value p0 such that

for each p > p0

Tr
(

W p
(LD)

)

< 2.

Let us consider the minimization problem (2.10) for a value p > p0. W(LD) is a
feasible solution for the problem, then

Tr(W p
(p)) ≤ Tr(W p

(LD)) < 2.

Using this inequality and Lemma 1, we have:

1 + τ
(
W(p)

)p ≤ 1 + τ
(
W(p)

)p
K1 ≤ Tr(W p

(p)) < 2,

from which the lemma follows immediately.

We are now ready to state our main results in the following two propositions:

Proposition 2. If the graph of the network is strongly connected, then the solu-

tion W(p) of the Schatten Norm minimization problem (2.10) satisfies the consensus

protocol convergence conditions for p sufficiently large, i.e.,

W(p) =W T
(p), W(p)1 = 1, and µ(W(p)) < 1.

Proof. The solution of problem (2.10), W(p) is necessarily symmetric and its rows
sum to 1. From Lemma 2 it follows that for p sufficiently large τ

(
W(p)

)
< 1

then by the definition of τ(.) it has to be ρ(W(p)) = 1 and µ(W(p)) < 1. Therefore
W(p) satisfies all the three convergence conditions (2.3)-(2.5) and then the consensus
protocol converges.

It is further possible to show that in fact, as p approaches ∞, the Schatten
Norm minimization problem (2.10) is equivalent to the minimization problem (2.6)
(i.e., to minimize the second largest eigenvalue µ(W)). To show this, we observe
that with respect to the variable weight matrix W , minimizing Tr(W p) is equivalent
to minimizing (Tr(W p)− 1)1/p. From Eq. (2.12), it follows:

τ(W)K
1
p

1 ≤ (Tr(W p)− 1)
1
p ≤ τ(W)(K1 +K2α

p)
1
p .

2.3. Schatten Norm Minimization 23

K1 is bounded between 1 and n − 1 and K2 is bounded between 0 and n − 1, and
α < 1,then it holds:

τ(W)K
1
p

1 ≤ (Tr(W p)− 1)
1
p ≤ τ(W)K

1
p ,

with K = 2(n− 1). For p large enough τ
(
W(p)

)
= µ(W(p)), then

∣
∣
∣(Tr(W p

(p))− 1)
1
p − µ(W(p))

∣
∣
∣ ≤ µ(W(p))

(

K
1
p − 1

)

≤ K
1
p − 1.

Then the difference of the two cost functions converges to zero as p approaches
infinity.

Proposition 3. The Schatten Norm minimization (2.10) is an approximation for

the original problem (2.6) with a guaranteed error bound,

|µ(W(SDP))− µ(W(p))| ≤ µ(W(SDP))× ϵ(p),

where ϵ(p) = (n− 1)1/p − 1 and where W(SDP) and W(p) are the solutions of (2.6)
and (2.10) respectively.

Proof. Let S be the feasibility set of the problem (2.6) (and (2.10)), we have

µ(W) = max{λ2(W),−λn(W)} and let g(W) =
(
∑

i≥2 λ
p
i (W)

) 1
p

. Since W(SDP)

is a solution of (2.6), then

µ(W(SDP)) ≤ µ(W), ∀W ∈ S. (2.14)

Note that the minimization of g(W) is equivalent to the minimization of Tr(W p)

when W ∈ S (i.e., argmin
W∈S

g(W) = argmin
W∈S

Tr(W p)), then

g(W(p)) ≤ g(W), ∀W ∈ S. (2.15)

Finally for a vector v ∈ Rm all norms are equivalent and in particular ||v||∞ ≤
||v||p ≤ m1/p||v||∞ for all p ≥ 1. By applying this inequality to the vector whose
elements are the n− 1 eigenvalues different from 1 of the matrix W , we can write

µ(W) ≤ g(W) ≤ (n− 1)1/pµ(W), ∀W ∈ S. (2.16)

Using these three inequalities we can derive the desired bound:

µ(W(SDP))
(2.14)

≤ µ(W(p))
(2.16)

≤ g(W(p))
(2.15)

≤ g(W(SDP))
(2.16)

≤ (n− 1)1/pµ(W(SDP)),

(2.17)
where the number above the inequalities shows the equation used in deriving the
bound. Therefore µ(W(SDP)) ≤ µ(W(p)) ≤ (n − 1)1/pµ(W(SDP)) and the thesis
follows directly.

24 Chapter 2. Weight Optimization in Consensus Protocols

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

i j

0 0 0 0

wij=0

Figure 2.1: For this network the matrix solution of Schatten Norm minimiza-
tion (2.10) with p = 2 does not guarantee convergence of average consensus to
the true average because wij = 0 which separates the network into two parts, each
of which can converge to a totally different value (but not to the average of initial
values).

Remark: Comparing the results of Schatten Norm minimization (2.10) with the
original problem (2.6), we observe that on some graphs the solution of problem (2.10)
already for p = 2 gives the optimal solution of the main problem (2.6); this is for
example the case for complete graphs.2 However, on some other graphs, it may give
a weight matrix that does not guarantee the convergence of the consensus protocol
to the true average because the second largest eigenvalue can be larger than or equal
to 1 (the other convergence conditions are intrinsically satisfied). We have built a
toy example, shown in Fig. 2.1, where this happens. The solution of (2.10) assigns
weight 0 to the link (i, j); wij = 0 separates the network into two disconnected
subgraphs, so µ(W) = 1 in this case. We know by Lemma 2 that this problem
cannot occur for p large enough. In particular for the toy example the matrix
solution for p = 4 already guarantees convergence. We discuss how to guarantee
convergence for any value of p in Section 2.7.

Given that problem (2.10) is smooth and convex, it can be solved by interior
point methods which would be a centralized solution. In the next section we are
going to show a centralized approach using Newton’s method, and in Section 2.5 a
distributed algorithm using projected sub-gradients.

2.4 Newton’s Method for Schatten Norm Minimization

Solutions of actual optimization problems are rarely expressed in a closed-form.
More often they are obtained through iterative methods, that can be very effective
in some cases (e.g., when the objective function is convex). Among the iterative ap-

2 This can be easily checked. In fact, for any the matrix that guarantees the convergence of

average consensus protocols it holds µ(W) ≥ 0 and Tr(W 2) ≥ 1 (because 1 is an eigenvalue of W).

The matrix Ŵ = 1/n11T (corresponding to each link having the same weight 1/n) has eigenvalues

1 and 0 with multiplicity 1 and n − 1 respectively. Then µ(Ŵ) = 0 and Tr(Ŵ 2) = 1. It follows

that Ŵ minimizes both the cost function of problem (2.6) and (2.10).

2.4. Newton’s Method for Schatten Norm Minimization 25

proaches, gradient methods converge under quite general hypotheses, but they may
suffer from very slow convergence rates as they are coordinate dependent (scaling
the variables in the problem affects the convergence speed). The Newton’s method
converges locally quadratically fast and is coordinate independent [BV04]. The
drawback of Newton’s method is that it requires the knowledge of the Hessian of the
function that may be computationally too expensive to calculate. However, with the
continuous increase of computation power and the existence of efficient algorithms
for solving linear equations, Newton’s method is the object of an increasing interest
[WOEJ12, LSch, ARS12]. In this section, we provide a methodology for solving the
Schatten norm minimization (2.10) using the Newton’s method. We also show later
by simulations that it significantly outperforms first order methods (decent gradient,
Nestrov, etc.) both in terms of convergence speed and in term of robustness to the
step size selection.

2.4.1 Preliminaries

The definitions of the gradient and Hessian of a scalar function vary depending on
the argument of the function. For the scalar function of a vector, f : Rm → R,
the gradient of the function f(x) with respect to the vector x ∈ Rm is denoted by
∇xf ∈ Rm and its Hessian is denoted by the matrix ∇2

xf ∈ Rm,m whose elements
are given by the following equations:

(∇xf)l ,
∂f

∂xl
, and

(
∇2

xf
)

l,k
,

∂2f

∂xl∂xk
for l, k = 1, . . . ,m.

For a scalar function of a matrix, h : Rm,m → R, the gradient of the function h(X)

with respect to the vector vect(X) ∈ Rm2,1 is denoted by ∇Xh ∈ Rm2,1 and its
Hessian is denoted by the matrix ∇2

Xh ∈ Rm2,m2
whose elements are given by the

equations:

∇Xh(ij) ,
∂h

∂xij
, and ∇2

Xh(ij)(st) ,
∂2h

∂xij∂xst
.

Newton’s method is an iterative technique that finds the roots of a function.
For an unconstrained convex minimization problem, the roots of the gradient of
the function to minimize are the minimizers of the function itself. The Newton’s
method is very popular due to its fast speed of convergence. Consider the following
unconstrained minimization problem:

minimize f(w), (2.18)

where f : Rm → R is strongly convex and twice continuously differentiable. We
suppose that the problem has a solution f∗ and the solution is obtained at w∗,
i.e., f∗ = f(w∗). Since f is a convex and differentiable function, a point w∗ is
optimal if and only if the gradient of the function vanishes:

∇wf(w
∗) = 0. (2.19)

26 Chapter 2. Weight Optimization in Consensus Protocols

Therefore, solving the m equations of m variables in (2.19) is equivalent to solv-
ing the optimization problem (2.18). The Newton’s method (also called damped
Newton’s method) is outlined below [BV04]:

Newton’s Method Algorithm

Given

A starting point w ∈ domf , a tolerance ϵ > 0.

Repeat

1. Compute Newton’s step and decrement:

∆w :=
(
∇2

wf(w)
)−1∇wf(w),

δ2 := ∇wf(w)T
(
∇2

wf(w)
)−1∇wf(w).

2. Stopping criterion: if δ2/2 ≤ ϵ exit.

3. Line search: use exact or backtracking line search to find t.

4. Update:
w := w − t∆w.

In the following, we will apply the Newton’s method to the Schatten norm min-
imization problem (2.10).

2.4.2 The Unconstrained Minimization

As mentioned earlier, the constrains in (2.10) lead to the possibility to write W
as follows: W = I − Q × diag(w) × QT , where w ∈ Rm is the vector of all the
weight links wl, l = 1, . . . ,m. It follows that Schatten Norm minimization (2.10) is
equivalent to the following unconstrained problem:

minimize f(w) = Tr
(
(I −Q× diag(w)×QT)p

)
. (2.20)

2.4.3 Gradient and Hessian

To apply Newton’s method to minimize the function f in (2.20), we have to cal-
culate first the gradient ∇wf and the Hessian matrix ∇2

wf . The function f is
a composition of the scalar function h(W) = Tr(W p) and the matrix function
W = I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

For the gradient ∇wf , it holds for l = 1, . . . ,m:

(∇wf)l =
∑

i,j∈V
∇Wh(ij)

∂wij

∂wl
,

2.4. Newton’s Method for Schatten Norm Minimization 27

where ∇Wh(ij) = p(W p−1)j,i (from (2.11)). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E and wii = 1−∑j∈Ni

wij), if
l ∼ (ab) we have

∂wij

∂wl
=

+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(2.21)

We can then calculate the gradient ∇wf ∈ Rm. In particular for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b − p(W p−1)a,a − p(W p−1)b,b. (2.22)

Applying the chain rule for the Hessian and considering directly that all the

second order derivatives like ∂2wij

∂wl∂wk
are null because the mapping is a linear trans-

formation, we obtain that for l, k = 1, . . . ,m:

(
∇2

wf
)

l,k
=

∂2f

∂wl∂wk
=
∑

i,j,s,t

∇2
Wh(ij)(st)

∂wij

∂wl

∂wst

∂wk
. (2.23)

For the calculation of the Hessian of f , let us first give the expression of ∇2
Wh(ij)(st).

Notice that for any a and b we have ∂wab
∂wst

= δasδtb, where δuv is the Kronecker delta,
i.e., δuv = 1 if u = v, δuv = 0 otherwise. Then the Hessian of h(W) is given by:

∇2
Wh(ij)(st) =

∂2Tr(W p)

∂wij∂wst

=
∂

∂wst

(
p(W p−1)j,i

)

= p
∂

∂wst

∑

u1,u2,...,up−2

wju1wu1u2wu2u3 . . . wup−2i

= p
∂

∂wst

∑

u1,u2,...,up−2

δjsδtu1wu1u2wu2u3 . . . wup−2i

+ p
∂

∂wst

∑

u1,u2,...,up−2

wju1δu1sδtu2wu2u3 . . . wup−2i

+ · · ·+ p
∂

∂wst

∑

u1,u2,...,up−2

wju1wu1u2wu2u3 . . . δup−2sδti

= p

p−2
∑

z=0

(W z)j,s(W
p−2−z)t,i. (2.24)

Thus for the calculation of the Hessian of f , let l ∼ (ab), k ∼ (cd) be given
links. Only 16 of the m4 terms in Eq. (2.23) (those corresponding to i, j ∈ {a, b}

28 Chapter 2. Weight Optimization in Consensus Protocols

and s, t ∈ {c, d}) are different from zero because of (2.21). Moreover using the
expression of ∇2

Xh(ij)(st) in (2.24) and grouping the terms, we obtain the compact
form:

(
∇2

wf
)

l,k
= p

p−2
∑

z=0

ψ(z)ψ(p− 2− z), (2.25)

where
ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

2.4.4 Newton’s Direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w) whose elements are given by
equation (2.22) and H = ∇2

wf(w) whose elements are given by equation (2.25).
Then the direction ∆w to update the solution in Newton’s method can be obtained
solving the linear system H∆w = g.

2.4.5 Line Search

The Newton’s method uses exact line search if at each iteration the stepsize is
selected in order to guarantee the maximum amount of decrease of the function f

in the descent direction, i.e., t is selected as the global minimizer of the univariate
function ϕ(t):

ϕ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement, possible alternatives can
be the pure Newton’s method that selects a stepsize t = 1 at every iteration or
the backtracking line search if t is selected to guarantee some sufficient amount of
decrease in the function ϕ(t). But we benefit from the convexity of our problem to
derive a procedure which gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that ϕ(t) can be written as follows:

ϕ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT)p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT)p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT is a symmetric matrix. Since (2.10) is a smooth convex
optimization problem, h is also smooth and convex when restricted to any line that
intersects its domain. Then ϕ(t) = h(W + tU) is convex in t and applying the chain
rule to the composition of the function h(Y) = Tr(Y p) and Y (t) =W+tU (similarly
to what we have done for f in (2.23)), we can find the first and second derivative:

ϕ′(t) =
∑

i,j

∂h

∂yij
uij = p

∑

i

(Y p−1U)i,i = pTr(Y p−1U),

2.4. Newton’s Method for Schatten Norm Minimization 29

ϕ′′(t) =
dϕ′(t)

dt
= p× Tr

p−2
∑

q=0

Y p−2−qUY qU

 .

So we can apply a basic Newton’s method to find the optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
n := 1;

while |tn − tn−1| > η

tn+1 ← tn − ϕ′(tn)
ϕ′′(tn)

;

n := n+ 1;

end while

At the end of this procedure, we select t = tn to be used as the stepsize of
the iteration.

2.4.6 The Algorithm

We summarize the Newton’s method used for the trace minimization problem (2.10):

Step 0: Choose a weight matrix W (0) that satisfies the conditions given in (2.10)
(e.g., In is a feasible starting weight matrix). Choose a precision ϵ and set
k ← 0.

Step 1: Calculate ∇wf
(k) from equation (2.22) (call this gradient g).

Step 2: Calculate ∇2
wf

(k) from equation (2.25) (since f is a convex function, we
have ∇2

wf
(k) is a semi-definite positive matrix, let H = ∇2

wf
(k) + γIm where

γ can be chosen to be the machine precision to guarantee that H is positive
definite and thus can have an inverse H−1).

Step 3: Calculate Newton’s direction ∆w(k) = H−1g. Stop if ||∆w(k)|| ≤ ϵ.

Step 4: Use the exact line search to find the stepsize t(k).

Step 5: Update the weight matrix by the following equation:

W (k+1) =W (k) + t(k)Qdiag(∆w(k))QT .

Step 6: Increment iteration k ← k + 1. Go to Step 1.

2.4.7 Closed Form Solution for p = 2

Interestingly, for p = 2 the Newton’s method converges in 1 iteration. In fact for
p = 2, the problem (2.10) is the following:

minimize
W

h(W) = Tr(W 2) =
∑

i,j

w2
ij

subject to W =W T ,W1n = 1n,W ∈ CG.
(2.26)

30 Chapter 2. Weight Optimization in Consensus Protocols

Theorem 1. Let W(2) be the solution of the optimization problem (2.26), then we

have:

W(2) = In −Qdiag

(

(Im +
1

2
QTQ)−11m

)

QT , (2.27)

where Q is the incidence matrix of the graph G.

Proof. The optimization function is quadratic in the variables wij , so applying New-
ton’s algorithm to minimize the function gives convergence in one iteration indepen-
dent from the initial starting point W (0). Let W (0) = In which is a feasible initial
starting point. The gradient g can be calculated according to equation (2.22):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)

= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,

so in vector form g = −4 × 1m. To calculate the Hessian ∇2
W f , we apply equa-

tion (2.25) for p = 2, so for any two links l ∼ (ab) and k ∼ (cd), we have
(
∇2

wf
)

l,k
= 2× ((In)a,c + (In)b,d − (In)a,c − (In)b,d)

2 ,

and thus

(
∇2

wf
)

l,k
=

2× (2)2 if l = k

2× (1)2 if l and k share a common vertex,

0 else.

(2.28)

In matrix form, we can write the Hessian as follows:

∇2
wf = 2× (2Im +QTQ),

where Q is the incidence matrix of the graph given earlier (in fact, QTQ − 2Im is
the adjacency matrix of what is called the line graph of G). Notice that since QTQ

is semi-definite positive all the eigenvalues of the Hessian are larger than 2 and then
the Hessian is invertible. The Newton’s direction is calculated as follows:

∆w = H−1g = −(Im +
1

2
QTQ)−11m.

Thus the optimal solution for the problem for p = 2 is:

W(2) =W (0) +Qdiag(∆w)QT

= In −Qdiag

(

(Im +
1

2
QTQ)−11m

)

QT .

If the graph is D-regular, the previous expression further simplifies. A D-regular
graph is a graph where every node has the same number of neighbors which is D.
Examples of D regular graphs are cycles (2-regular) and the complete graph (n− 1-
regular).

2.5. A Distributed Algorithm for Schatten Norm Minimization 31

In fact, the sum of any row in the matrix QTQ is equal to 2D, then 2D is
an eigenvalue that corresponds to the eigenvector 1m. Since QTQ is a symmetric
matrix, it has an eigenvalue decomposition form:

QTQ =
∑

k

λkvkv
T
k ,

where {vk} is an orthonormal set of eigenvectors (without loss of generality, let
v1 = 1√

m
1m). Moreover, (Im + 1

2Q
TQ) is invertible because it is positive definite

and has the same eigenvectors as QTQ. Considering its inverse as a function of
QTQ, we can write:

(Im +
1

2
QTQ)−1 =

∑

k

(1 +
λk
2
)−1vkv

T
k .

Since 1m is an eigenvector of QTQ and therefore of (Im + 1
2Q

TQ)−1, it is perpen-
dicular to all the others (vT

k 1m = 0 for all k ̸= 1). Hence, it follows that:

(Im +
1

2
QTQ)−11m = (1 +

λ1
2
)−1v1(

m√
m
) =

1

1 +D
1m.

As a result, the solution of the optimization is given by,

W(2) = In −
1

1 +D
QQT ,

or equivalently as function of w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Interestingly, the solution of the suggested optimization problem for p = 2 gives the
same matrix on D-regular graphs as other weight selection algorithms for average
consensus as Metropolis weight selection or maximum degree weight selection.

2.5 A Distributed Algorithm for Schatten Norm Mini-

mization

In this section we will show that the optimization problem (2.10) can be solved
in a distributed way using gradient methods. By distributed algorithm we mean
an algorithm where each node only needs to retrieve information from a limited
neighborhood (possibly larger than Ni) in order to calculate the weights on its
incident links.

We have already seen that W can be written as follows: W = I−Q×diag(w)×
QT , where w ∈ Rm is the vector of all the weight links wl, l = 1, . . . ,m. It follows
that Schatten Norm minimization (2.10) is equivalent to the following unconstrained
problem:

minimize f(w) = Tr
(
(I −Q× diag(w)×QT)p

)
. (2.29)

32 Chapter 2. Weight Optimization in Consensus Protocols

We will give a distributed algorithm to solve the Schatten Norm minimization (2.10)
by applying gradient techniques to problem (2.29). Since the cost function to opti-
mize is smooth and convex as we proved in Proposition 1, if the gradient technique
converges to a stationary point, then it converges to the global optimum. The
gradient method uses the simple iteration:

w
(k+1)
l = w

(k)
l − γ(k)g

(k)
l ∀l = 1, . . . ,m ,

where γ(k) is the stepsize at iteration k and g(k)l is the l-th component of the gradient
g(k) of the function f(w). At every iteration k, starting from a feasible solution for

link weights, w(k)
l , we calculate the gradient g(k)l for every link, and then we obtain

a new weight value w(k+1)
l .

There are different conditions on the function f(.) and on the stepsize sequence
that can guarantee convergence. A distributed computational model for optimizing
a sum of non-smooth convex functions is proposed in [NO09, LO11] and its conver-
gence is proved for bounded (sub)gradients for different network dynamics. For a
similar objective function, the authors in [JKJJ08] study the convergence of a pro-
jected (sub)-gradient method with constant stepsize. For unbounded gradients, the
algorithm in [Pol87, Section 5.3.2, p. 140] guarantees global convergence but requires
a centralized calculation of the stepsize sequence. Because the objective function
in (2.29) has unbounded gradient, our distributed implementation combines ideas
from unbounded gradients methods and the projecting methods using theorems
from [BNO03]. In particular, we will add a further constraint to (2.29), looking for
a solution in a compact set X, and we will consider the following projected gradient
method:

w(k+1) = PX

(

w(k) − γ(k)g(k)
)

,

where PX() is the projection on the set X. We can show that by a particular
choice of X and γ(k) the method converges to the solution of the original problem.
Moreover, all the calculations can be performed in a distributed way on the basis of
local knowledge. In particular, we will show that:

• nodes incident to l are able to calculate g(k)l using only information they can
retrieve from their (possibly extended) neighborhood;

• the stepsize sequence γ(k) is determined a priori and then nodes do not need
to evaluate the function f or any other global quantity to calculate it;

• the projection on set X can be performed component-wise, and locally at each
node;

• the global convergence of the projected gradient method is guaranteed.

We will start by gl and show that it only depends on information local to nodes i
and j incident to the link l ∼ (i, j), then we will discuss the choice of the stepsize
γ(k) and of the projection set X.

2.5. A Distributed Algorithm for Schatten Norm Minimization 33

2.5.1 Locally Computed Gradient

The gradient gl of the function f(w) for l ∼ (i, j) can be calculated following
equation (2.22):

gl =
∂f(w)

∂wl

= p
((
W p−1

)

ji
+
(
W p−1

)

ij
−
(
W p−1

)

ii
−
(
W p−1

)

jj

)

. (2.30)

It is well know from graph theory that if we consider W to be the adjacency
matrix of a weighted graph G, then (W s)ij is a function of the weights on the edges
of the i − j walks (i.e., the walks from i to j) of length exactly s (in particular
if A is the adjacency matrix of an unweighted graph, then (As)ij is the number
of distinct i − j s-walks [Wes00]). Since for a given p the gradient gl, l ∼ (i, j),
depends on the {ii, jj, ij, ji} terms of the matrix W p−1, gl can be calculated locally
by using only the weights of links and nodes at most p

2 hops away from i or j.3

Practically speaking, at each step, nodes i and j need to contact all the nodes up to
p/2 hops away in order to retrieve the current values of the weights on the links of
these nodes and the values of weights on the nodes themselves. For example, when
p = 2, then the minimization is the same as the minimization of the Frobenius norm
of W since Tr(W 2) =

∑

i,j w
2
ij = ||W ||2F , and the gradient gl can be calculated as

gl = 2×(2Wij−Wii−Wjj) which depends only on the weights of the vertices incident
to that link and the weight of the link itself. More details about the operations to
carry and their cost in Section 2.5.3.

An advantage of our approach is that it provides a trade-off between locality and
optimality. In fact, the larger the parameter p, the better the solution of problem
(2.10) approximates the solution of problem (2.6), but at the same time the larger
is the neighborhood from which each node needs to retrieve the information. When
p = 2, gl where l ∼ (i, j) only depends on the weights of subgraph induced by the
two nodes i and j. For p = 4, the gradient gl depends only on the weights found on
the subgraph induced by the set of vertices Ni ∪Nj , then it is sufficient that nodes
i and j exchange the weights of all their incident links.

2.5.2 Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for any initial condition) has been
proved under a variety of different hypotheses on the function f to minimize and
on the step size sequence γ(k). In many cases the step size has to be adaptively
selected on the basis of the value of the function or of the module of its gradient at
the current estimate, but this cannot be done in a distributed way for the function
f(w). This leads us to look for convergence results where the step size sequence
can be fixed ahead of time. Moreover the usual conditions, like Lipschitzianity or
boundness of the gradient, are not satisfied by the function f(.) over all the feasible

3 If a link or a node is more than p/2 hops away both from node i and node j, then it cannot

belong to a i− j walk of length p.

34 Chapter 2. Weight Optimization in Consensus Protocols

set. For this reason we add another constraint to our original problem (2.29) by
considering that the solution has to belong to a given convex and compact set X.
Before further specifying how we choose the set X, we state our convergence result.

Proposition 4. Given the following problem

minimize f(w) = Tr
(
(I −Q× diag(w)×QT)p

)
,

subject to w ∈ X (2.31)

where X ⊆ Rm is a convex and compact set, if
∑

k γ
(k) = ∞ and

∑

k

(
γ(k)

)2
< ∞,

then the following iterative procedure converges to the minimum of f in X:

w(k+1) = PX

(

w(k) − γ(k)g(k)
)

, (2.32)

where PX(.) is the projection operator on the set X and g(k) is the gradient of f

evaluated in w(k).

Proof. The function f is continuous on a compact set X, so it has a point of min-
imum. Moreover also the gradient g is continuous and then bounded on X. The
result then follows from Proposition 8.2.6 in [BNO03, pp. 480].

For example, γ(k) = a/(b + k) where a > 0 and b ≥ 0 satisfies the step size
condition in Proposition 4.

While the convergence is guaranteed for any set X convex and compact, we have
two other requirements. First, it should be possible to calculate the projection PX in
a distributed way. Second, the set X should contain the solution of the optimization
problem (2.20). About the first issue, we observe that if X is the cartesian product
of real intervals, i.e., if X = [a1, b1] × [a2, b2] × . . . [am, bm], then we have that the
l-th component of the projection on X of a vector y is simply the projection of the
l-th component of the vector on the interval [al, bl], i.e.,

[PX(y)]l = P[al,bl](yl) =

al if yl < al,

yl if al ≤ yl ≤ bl,
bl if bl < yl.

(2.33)

Then in this case Eq. (2.32) can be written component-wise as

w
(k+1)
l = P[al,bl](w

(k)
l − γ(k)g

(k)
l).

We have shown in the previous section that gl can be calculated in a distributed
way, then the iterative procedure can be distributed. About the second issue, we
choose X so that it includes all the weight matrices with spectral radius at most 1.
The following lemma suggests a possible choice of X.

Lemma 3. Let W be a real and symmetric matrix where each row (and column)

sums to 1, then the following holds,

ρ(W) = 1 =⇒ max
i,j
|wij | ≤ 1.

2.5. A Distributed Algorithm for Schatten Norm Minimization 35

Proof. Since W is real and symmetric, then we can write W as follows

W = SΛST ,

where S is an orthonormal matrix (STS = SST = I), and Λ is a diagonal matrix
having Λkk = λk and λk is the k-th largest eigenvalue of W . Let rk and ck be the
rows and columns of S respectively and r(i)k be the i-th element of this vector. So,

W =
∑

k

λkckc
T
k ,

and

|wij | = |
∑

k

λkc
(i)
k c

(j)
k | (2.34)

≤
∑

k

|c(i)k ||c
(j)
k | (2.35)

=
∑

k

|r(k)i ||r
(k)
j | (2.36)

≤ ||ri||2||rj ||2 (2.37)

= 1. (2.38)

The transition from (2.34) to (2.35) is due to the fact ρ(W) = 1, the transition from
(2.36) to (2.37) is due to Cauchy–Schwarz inequality. The transition from (2.37) to
(2.38) is due to the fact that S is an orthonormal matrix.

A consequence of Lemma 3 is that if we choose X = [−1, 1]m the weight vector
of the matrix solution of problem (2.6) necessarily belongs to X (the weight matrix
satisfies the convergence conditions). The same is true for the solution of prob-
lem (2.20) for p large enough because of Proposition 2. The following proposition
summarizes our results.

Proposition 5. If the graph of the network is strongly connected, then the following

distributed algorithm converges to the solution of the Schatten norm minimization

problem for p large enough:

w
(k+1)
l = P[−1,1](w

(k)
l − γ(k)g

(k)
l), ∀l = 1, . . . ,m, (2.39)

where
∑

k γ
(k) =∞ and

∑

k

(
γ(k)

)2
<∞.

Proof. The set X = [−1, 1]m, on which the gradient iterate is projected, is a convex
and compact set. From Proposition 2, for p sufficiently large we have µ(W(p)) < 1

and hence ρ(W(p)) = 1. Then by applying Lemma 3, the weight matrix W(p) has
necessarily link weights in X. Therefore, since the solution of the Schatten norm
minimization problem for p large enough lies in X, Proposition 4 ends the proof.

36 Chapter 2. Weight Optimization in Consensus Protocols

Remark: The stepsize γ(k) in Propositions 4 and 5 can be replaced by a constant
stepsize (i.e., γ(k) = γ for all k) and the convergence results will still hold provided
that γ is small enough (0 < γ < 2/K where K is the Lipschitz constant of the
gradient of f on X, see Theorem 1 in [Pol87, p. 207]). The advantage of a constant
stepsize is that it provides better rate of convergence (the convergence can be with
the rate of geometric progression when the function is strongly convex), but the
nodes should be able to know K (or at least an upped bound).

2.5.3 Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimization requires to calculate at
every iteration, the stepsize γ(k), the gradient g(k)l for every link, and a projection on
the feasible set X. Its complexity is determined by the calculation of link gradient
gl, while the cost of the other operations is negligible. In what follows, we detail the
computational costs (in terms of number of operations and memory requirements)
and communication costs (in terms of volume of information to transmit) incurred
by each node for the optimization with the two values p = 2 and p = 4.

2.5.3.1 Complexity for p = 2

For p = 2, Eq. (2.30) reduces to gl = 2×(2Wij−Wii−Wjj). Nodes are aware of their
own weights (Wii) and of the weights of the links they are incident to (Wij), hence
the only missing parameter in the equation is their neighbors self weight (Wjj).
So at every iteration of the subgradient method, nodes must broadcast their self
weight to their neighbors. We can say that the computational complexity for p = 2

is negligible and the communication complexity is 1 message carrying a single real
value (wii) per link, per node and per iteration.

2.5.3.2 Complexity for p = 4

For p = 4, the node must collect information from a larger neighborhood. The
gradient at link l ∼ (i, j) is given by gl = 4

(
(W 3)ij + (W 3)ji − (W 3)ii − (W 3)jj

)
.

From the equation of gl it seems like the node must be aware of all the weight
matrix in order to calculate the 4 terms in the equation, however this is not true.
As hinted in the previous section, each of the 4 terms can be calculated only locally
from the weights within 2-hops from i or j. In fact, (W 3)ij depends only on the
weights of links covered by a walk with 3 jumps: starting from i the first jump
reaches a neighbor of i, the second one a neighbor of j and finally the third jump
finishes at j, then we cannot move farther than 2 hops from i. Then (W 3)ij can be
calculated at node i as follows: every node s in Ni, sends its weight vector Ws to i,
where Ws ∈ R|Ns| is a vector that contains all weights selected by the node s to its
neighbors, i.e., the weights {wst, t ∈ Ns}. The same is true for the addend (W 3)ji.
The term (W 3)ii depends on the walks of length 3 starting and finishing in i, then
node i can calculate it once it knows Ws for each s in Ni. Finally, the calculation
of the term (W 3)jj at node i requires i to know more information about the links

2.6. Performance Evaluation 37

existing among the neighbors of node j. Instead of the transmission of this detailed
information, we observe that node j can calculate the value (W 3)jj (as node i can
calculate (W 3)ii) and then can transmit directly the result of the calculation to node
i. Therefore, the calculation of gl by node i for every link l incident to i can be done
in three steps:

1. Create the subgraph Hi containing the neighbors of i and the neighbors of its
neighbors by sending (Wi) and receiving the weight vectors (Ws) from every
neighbor s.

2. Calculate (W 3)ii and broadcast it to the neighbors (and receive (W 3)ss from
every neighbor s).

3. Calculate gl.

We evaluate now both the computational and the communication complexity.

• Computation Complexity: Each node i must store the subgraph Hi of its
neighborhood. The number of nodes of Hi is nH ≤ ∆2 + 1, the number of
links of Hi is mH ≤ ∆2 where ∆ is the maximum degree in the network.
Due to sparsity of matrix W , the calculation of the value (W 3)ii requires
O(∆3) multiplication operation without the use of any accelerating technique
in matrix multiplication which —we believe— could further reduce the cost.
So the total cost for calculating gl is in the worst case O(∆3). Since we have m
links, the overall complexity would be O(∆3mTconv) where Tconv is the number
of iterations needed for the gradient to converge (i.e., to be smaller than a given
threshold). Notice that the complexity for solving the SDP for (2.6) is of order
O(m3) where m is the number of links in the network. Therefore, on networks
where ∆ << m, the gradient method could be computationally more efficient
given that Tconv is not very large.

• Communication Complexity: Two packets are transmitted by each node on
each link at steps 1 and 2. So the complexity would be two messages per link
per node and per iteration. The first message carries at most ∆ values (the
weight vector Wi) and the second message carries one real value ((W 3)ii).

2.6 Performance Evaluation

In this section we evaluate the different optimization algorithms (Newton, gradient,
etc.) studied in this chapter. We also evaluate the speed of convergence of con-
sensus protocols when the weight matrix W is selected according to our proposed
Schatten norm minimization. As we have discussed so far, this speed is asymptot-
ically determined by the second largest eigenvalue in module (µ(W)), that will be
one of two performance metrics considered here. For the other metric, we define

38 Chapter 2. Weight Optimization in Consensus Protocols

the convergence time to be the number of iterations needed for the error (the dis-
tance between the estimates and the actual average) to become smaller than a given
threshold. More precisely, we define the normalized error e(k) as

e(k) =
||x(k)− x̄||2
||x(0)− x̄||2

, (2.40)

where x̄ = xave1.
Additionally, we carry on simulations to study the effect of a topological opti-

mization (by adding two-hops links in the graph) compared to the weight optimiza-
tion on the links. The simulations are done on random graphs (Erdös-Renyi (ER)
graphs and Random Geometric Graphs (RGG)) and on two real networks (the En-
ron company internal email exchange network [SA04] and the dolphin social network
[LSB+03]). The random graphs are generated as following :

• For the ER random graphs ER(n, Pr), we start from n nodes fully connected
graph, and then every link is removed from the graph by a probability 1−Pr
and is left there with a probability Pr. We have tested the performance for
different probabilities Pr.

• For the RGG random graphs, n nodes are thrown uniformly at random on
a unit square area, and any two nodes within a connectivity radius r are
connected by a link. We have tested the performance for different values of
the connectivity radius. It is known that for a small connectivity radius, nodes
tend to form clusters.

The description of the two real datasets follows:

• The 151 nodes in the Enron dataset correspond to different employees of the
company and an edge in the graph refers to an exchange of emails between
two employees (only internal emails within the company are considered where
at least 3 emails are exchanged between two nodes in this graph).

• The dolphin social network is an undirected social network of frequent asso-
ciations between 62 dolphins in a community living off Doubtful Sound, New
Zealand.

2.6.1 Newton versus Gradient methods for Schatten p-Norm Min-
imization

We apply the optimization techniques developed in this chapter to solve prob-
lem (2.10) on Erdos Renyi random networks. We compare the number of itera-
tions for convergence of Newton’s method with those of first order methods like
the Descent Gradient (DG) and the accelerated gradient method (due to Nesterov
[Nes04]) using either backtracking line search (denoted by BT-methods in the fig-
ure) or exact line search (denoted by Exact-methods in the figure).4 The Descent

4We implemented directly the methods in Matlab.

2.6. Performance Evaluation 39

Tconv ER(n = 100, P r = 0.07)

(number of iterations) p = 2 p = 4 p = 6 p = 10

Exact-Newton 1 5 5.7 6.1

Pure-Newton 1 9 11.1 13.9

Exact-DG 72.3 230.5 482.7 1500.5

Exact-Nesterov 130.2 422.8 811.3 1971.2

BT-DG or BT-Nesterov > 5000 > 5000 > 5000 > 5000

Table 2.1: Convergence time using different optimization methods for prob-
lem (2.10).

Gradient method follows the same steps of the Newton’s algorithm (Section 2.4.6),
but in Step 2, the Hessian H is taken as the identity matrix (for Descent Gradient
methods HDG = Im). The accelerated gradient (Nesterov) is as follows, starting by
w(0) = w(−1) = 0 ∈ Rm, the iterations are given by:

y = w(k−1) +
k − 2

k + 1
(w(k−1) −w(k−2));

w(k) = y − t(k)∇yf(y),

where t(k) is the stepsize. The Nesterov algorithm usually achieves faster rate of
convergence (asymptotically) with respect to traditional first order methods. Since
at the optimal value w∗ the gradient vanishes (i.e., ||g(k)|| = 0), we consider the
convergence time Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 2.1 shows the results for the Newton’s and the other first order methods.
The initial condition for the optimization is given by W (0) = In which is a feasible
starting point. The values are averaged over 100 independent runs for each of the
(n, Pr, p) values. The results show that the average convergence time of Newton’s
method is shorter than that of the first order methods in terms of the number of
iterations. As we can see, when using exact line search, Exact-Nesterov is slower
than Exact-DG method, this can be due to the fact that the Descent Gradient does
not suffer from the zig-zag problem usually caused by poorly conditioned convex
problems. Moreover, using backtracking line search for first order methods is not
converging in a reasonable number of iterations because the function we are con-
sidering is not Lipschitz continuous when p > 2 and because of the high precision
stopping condition. Note that, the number of iterations is not the only factor to
take into account, in fact the Newton’s method requires at each iteration to invert
the Hessian matrix, while DG has lower computational cost. However, DG is very
sensitive to changing the stepsize, while Newton’s method is not. By applying con-
stant or backtracking line search stepsizes to the DG method, the algorithm is not
converging in a reasonable number of iterations while even the simplest Newton’s
method (pure Newton that uses a stepsize equals to 1 for all iterations) is converging
in less than 14 iterations for the ER(n = 100, P r = 0.07) graphs.

40 Chapter 2. Weight Optimization in Consensus Protocols

Pr=0.2 Pr=0.3 Pr=0.4 Pr=0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ER n=20 variable Pr (probability of 2 nodes to be neighbors)

S
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

 i
n

 m
a

g
n

it
u

d
e

o

f
th

e
 w

e
ig

h
t

m
a

tr
ix

FDLA

TM p=2

TM p=4

TM p=8

TM p=12

TM p=20

Figure 2.2: Performance comparison between the optimal solution of the FDLA
problem (labeled FDLA) and the approximated solutions obtained solving the Schat-
ten Norm minimization for different values of p (labeled TM).

2.6.2 Comparison of the Schatten Norm Solution with the Optimal
Solution

We first compare µ
(
W(p)

)
for the solution W(p) of the Schatten p-norm (or Trace)

minimization problem (2.10) with its minimum value obtained solving the symmetric
FDLA problem (2.6). To this purpose we used the CVX solver (see Section 2.2).
This allows us also to evaluate how well problem (2.10) approximates problem (2.6)
for finite values of the parameter p. The results in Fig. 2.2 have been averaged
over 100 random graphs with 20 nodes generated according to the Erdos-Renyi
(ER) model, where each link is included with probability Pr ∈ {0.2, 0.3, 0.4, 0.5}.
We see from the results that as we solve the trace minimization for larger p, the
asymptotic convergence speed of our approach converges to the optimal one as
proven in Proposition 2.

2.6.3 Other Distributed Approaches: Asymptotic Convergence
Rate

We compare now our algorithm for p = 2 and p = 4 with other distributed weight
selection approaches described in Section 2.2.

Fig. 2.3 shows the results on connected Erdös-Renyi (ER) graphs and Random
Geometric Graphs (RGG) with 100 nodes for different values respectively of the
probability Pr and of the connectivity radius r. We provide 95% confidence intervals
by averaging each metric over 100 different samples. We see in Fig. 2.3 that TM
for p = 2 and p = 4 outperforms other weight selection algorithms on ER by giving
lower µ. Similarly on RGG the TM algorithm reaches faster convergence than the
other known algorithms even when the graph is well connected (large connectivity

2.6. Performance Evaluation 41

0.04 0.06 0.08 0.10 0.12 0.14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr

S
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

 i
n

 m
a

g
n

it
u

d
e

o
f

th
e

 w
e

ig
h

t
m

a
tr

ix

ER n=100 variable Pr (probability of 2 nodes to be neighbors)

MD

OC

LD

TM p=2

TM p=4

0.1357 0.1517 0.1858 0.2146
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

r

S
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

 i
n

 m
a

g
n

it
u

d
e

o
f

th
e

 w
e

ig
h

t
m

a
tr

ix

RGG n=100 variable r (connectivity radius)

MD

OC

LD

TM p=2

TM p=4

Figure 2.3: Performance comparison between Schatten Norm minimization (TM)
for p = 2 and p = 4 with other weight selection algorithms on ER and RGG graphs.

42 Chapter 2. Weight Optimization in Consensus Protocols

radius). However, the larger the degrees of nodes, the higher the complexity of
our algorithm. Interestingly even performing trace minimization for the smallest
value p = 2 nodes are able to achieve faster speed of convergence than a centralized
solution like the OC algorithm.

Apart from random networks, we performed simulations on two real world net-
works: the Enron company internal email exchange network [SA04] and the dolphin
social network [LSB+03]. The table below compares the second largest eigenvalue
µ for the different weight selection algorithms on these networks:

MD OC LD TM p=2 TM p=4
Enron µ 0.9880 0.9764 0.9862 0.9576 0.9246
Dolphin µ 0.9867 0.9749 0.9796 0.9751 0.9712

The results show that for Enron network, our totally distributed proposed al-
gorithm TM for p=4 has the best performance (µ = 0.9246) among the algorithms
considered, followed by TM for p=2 (µ = 0.9576) because they have the smallest
µ. On the Dolphin network, again TM for p=4 has the smallest µ (µ = 0.9712) but
OC has the second best performance (µ = 0.9749) but TM for p=2 (µ = 0.9751)
has similar performance to OC.

2.6.4 Communication Overhead for Local Algorithms

Until now we evaluated only the asymptotic speed of convergence, independent
from the initial values xi(0), by considering the second largest eigenvalue µ(W).
We want to study now the transient performance. For this reason, we consider
in this subsection a random initial distribution of nodes’ values and we study the
performance using the convergence time metric (the number of iterations needed
for the error e(k) given in (2.40) to become smaller than a given threshold), i.e.,
the convergence time is the minimum number of iterations after which e(k) < 0.001

(note that e(k) is non increasing).
We have shown that the weight matrix with minimum Schatten norm allows

nodes to converge faster than the other heuristics, and then to exchange less mes-
sages, if a mechanism is implemented to stop consensus when estimates are close
enough to the actual average. At the same time, the Schatten norm minimization
algorithm may require itself a large number of messages to calculate the weights,
while other local weight selection algorithms, like MD or LD, require a negligible
communication exchange. In order to have a fair comparison, it is important then to
consider on how many “consensus rounds” the additional communication overhead
of our algorithm can be amortized.5 Therefore, the more stable the network, the
more one is ready to invest for the optimization at the beginning of consensus.

The communication overhead of the local algorithms is plotted in Fig. 2.4. For

5For example, the consensus round of the daily average temperature in a network of wireless

environmental monitoring sensors is one day because every day a new averaging consensus algorithm

should be run.

2.6. Performance Evaluation 43

each algorithm we consider the following criteria to define its communication over-
head. First we consider the number of messages that should be exchanged in the
network for the weight optimization algorithm to converge. For example, in our
networking settings (RGG with 100 nodes and connectivity radius 0.1517) the ini-
tialization complexity of MD algorithm is 30 messages per link because the maximum
degree can be obtained by running a maximum consensus algorithm that converges
after a number of iterations equal to the diameter (the average diameter for the
graphs was 15 hops), while with LD the nodes only need to send their degrees to
their neighbors. The communication complexity is then only 2 messages per link,
the smallest among the algorithms considered. The trace minimization algorithm
complexity is defined by the number of iterations needed for the gradient method to
converge, multiplied by the number of messages needed per iteration as mentioned
in the complexity section. In our networking setting, the TM for p = 2 took on
average 66.22 messages per link to converge while the TM for p = 4 took 1388.28

messages.6 Notice that OC depends on global values (eigenvalues of the laplacian
of the graph) and is not included here because it is not a local algorithm, i.e., the
weights cannot be calculated with simple iterative local methods.

In addition to the initialization complexity, we add the communication complex-
ity for the consensus rounds. We consider that the convergence of the consensus is
reached when the consensus error of Eq. (2.40) drops below 0.1%. The total com-
munication overhead of the local algorithms is plotted in Fig. 2.4. The figure shows
the total number of messages transmitted on a link, considering both those needed
initially to calculate the weights and those needed to determine the average with a
relative error from consensus precision (10−3). The TM algorithms have high initial
communication overhead (due to the slow convergence of the gradient method for
weight calculation), but then the more the consensus rounds we have the more the
messages are saved in comparison to the simpler methods. Note that the asymptotic
results are reflected in the slopes of the lines. As the figure shows, if the network is
used for more than 8 consensus rounds then TM p = 4 is recommended, while TM
p = 2 starts outperforming LD and MD already for 2 consensus rounds.

2.6.5 Joint Consensus-Optimization (JCO) Procedure

In the following experiments we address also another practical concern. It may seem
our approach requires to wait for the convergence of the iterative weight selection
algorithm before being able to run the consensus protocol. This may be unacceptable
in some applications specially if the network is dynamic and the weights need to
be calculated multiple times. In reality, at each slot the output of the distributed
Schatten norm minimization is a new feasible weight matrix, that can be used by the
consensus protocol, and (secondarily) should also have faster convergence properties
than the one at the previous step. It is then possible to interleave the weight
optimization steps and the consensus averaging ones: at a given slot each node

6The step size γk is calculated with values a = 10/p and b = 100, and convergence is obtained

when ||g|| drops below the value 0.02.

44 Chapter 2. Weight Optimization in Consensus Protocols

0 1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Communication Complexity of Local Algorithms
 (RGG n=100 r=0.1517)

Number of consensus rounds

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 p

e
r

lin
k

MD (y=30+1674.12x)

LD (y=2+1290.24x)

TM p=2 (y=66.22+1184.12x)

TM p=4 (y=1388.28+1014.16x)

Figure 2.4: Communication overhead of local algorithms.

will improve its own weight according to (2.30) and use the current weight values
to perform the averaging (2.1). We refer to this algorithm as the joint consensus–
optimization (JCO) procedure. Weights can be initially set according to one of the
other existing algorithms like LD or MD. The convergence time of JCO depends
also on the choice of the stepsize, that is chosen to be γ(k) = 1

p(1+k) .

The simulations show that our weight selection algorithm outperforms the other
algorithms also in this case. In particular, Fig. 2.5 shows the convergence time for
various weight selection criteria on ER and RGG graphs. For each of the network
topology selected, we averaged the data in the simulation over 100 generated graphs,
and for each of these graphs we averaged the convergence time of the different
algorithms over 20 random initial conditions (the initial conditions were the same
for all algorithms). Notice that running at the same time the optimization with
consensus gave good results in comparison to LD, MD, and even OC algorithms.
We also notice, that the initial selection of the weights does not seem to have an
important role for the TM-JCO approach. In fact, despite the LD weight matrix
leads itself a significantly faster convergence than the MD weight matrix, initializing
the TM method with the LD weight matrix or with the MD weight matrix leads
only to minor differences (compare the results for TM-JCO-LD and TM-JCO-MD),
suggesting that the weight optimization algorithm moves fast away from the initial
condition.

2.6.6 Topology versus Weight Optimization

We turn our attention in this section to the effect of the topology on the performance.
The main optimization problem (2.6) considers a fixed topology and optimizes the
weights on top of this topology where simple algorithms do not provide any guaran-

2.6. Performance Evaluation 45

Pr=0.04 Pr=0.06 Pr=0.08 Pr=0.10
0

50

100

150

Probability of two nodes at random to be neighbors Pr

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

ti
ll

n
o
rm

a
liz

e
d
 e

rr
o
r

d
ro

p
s
 b

e
lo

w
 0

.1
%

)
ER n=100

MD
OC
LD
TM p=2
TM p=4
TM−JCO−MD p=4
TM−JCO−LD p=4

r=0.1357 r=0.1517 r=0.1858 r=0.2146
0

100

200

300

400

500

600

700

800

900

Different Connectivity Radii r

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

ti
ll

n
o
rm

a
liz

e
d
 e

rr
o
r

d
ro

p
s
 b

e
lo

w
 0

.1
%

)

RGG n=100

MD
OC
LD
TM p=2
TM p=4
TM−JCO−MD p=4
TM−JCO−LD p=4

Figure 2.5: Convergence time of different weight selection algorithms on ER and
RGG graphs. TM-JCO-LD p = 4 is the joint consensus-optimization algorithm
initialized with the LD algorithm’s weight matrix and the same for TM-JCO-MD
p = 4 but initialized with the MD algorithm’s one.

46 Chapter 2. Weight Optimization in Consensus Protocols

RGG n = 50 ER n = 50

r = 0.25 r = 0.3 Pr = 0.08 Pr = 0.12

µ(GW(FDLA)) 0.9390 0.8668 0.8511 0.7241
µ(G2W(LD)) 0.9070 0.8058 0.8328 0.7144

Ring Grid Enron
n = 50 n = 100 n = 36 n = 64

µ(GW(FDLA)) 0.9921 0.9980 0.9210 0.9210 0.8287
µ(G2W(LD)) 0.9843 0.9961 0.8523 0.9155 0.8208

Table 2.2: The effect of Graph Density versus Weight Optimization on the speed
of convergence of consensus protocols. The table shows the comparison on different
graph topologies between the speed of convergence of: (1) the simple weight selec-
tion algorithm (LD) on the graph G2 quantified by µ(G2W(LD)) and (2) the best
weight selection algorithm (FDLA) on the graph G quantified by µ(GW(FDLA)).

tee on the speed of convergence, and more sophisticated ones are resource consuming
because they select the weights solving complex optimization problems. In this part
we evaluate if simple changes to the network topology may speed up the conver-
gence of consensus protocols more than complex weight optimization techniques. In
particular we compare the performance of the average consensus protocol in the two
following scenarios. In the first scenario, the topology is unchanged and weights
are selected according to commonly used algorithms, including those that guaran-
tee faster convergence to consensus. In the second scenario, the simplest weights
selection algorithms are used, but direct links to 2-hop away nodes are added to
the original graph G, then shrinking by 2 the network diameter. We denote by G2

(the square graph) this denser graph. Practically speaking this topological change
does not require to really add new links: it can be obtained by forwarding nodes’
local variables 2-hops away, so that a generic node i is aware of all the nodes’ beliefs
in the extended neighborhood NG2

i = ∪j∈{Ni,i}Nj . In what follows we are going
to consider this way to operate. It has also the advantage to allow us to quantify
the cost of the topological change in terms of an increase of communication over-
head. The comparison is carried on for different graph topologies: rings, square
Grids, random graphs (Erdos-Renyi with link existence probability Pr), Random
Geometric graphs (with connectivity radius r), and real world network topologies as
Enron internal email exchange network [SA04]. For convenience, let A be a weight
selection algorithm for the average consensus protocol,7 we denote by GW(A) the
weight matrix generated by A on the graph G. In order to evaluate the effect of
weight selection algorithms and of topology on convergence speed, we are going to
compare µ(GW(A)), where A is the optimal weight selection algorithm (that solves
problem (2.6)) or one of its approximations, and µ

(

G2W(B)

)
, where B is a simpler

weight selection algorithm.

7A can be any one of the following weight selection algorithms presented earlier: MD, LD, OC,

TM p = 2, or FDLA.

2.6. Performance Evaluation 47

We first compare the performance (the asymptotic speed of convergence) of the
consensus protocol on the denser graph G2 when weights are selected according to
the LD algorithm with the performance on the original graph G when the optimal
weight selection algorithm FDLA is used. Results in Table 2.2 show that on all
the topologies considered µ(G2W(LD)) < µ(GW(FDLA)) and then µ(G2W(LD)) <

µ(GW(A)) for any algorithm A. Then the higher graph density provides a more
significant improvement than the optimal choice of links weights.

We now evaluate the communication overhead of the two approaches in terms of
the number of messages sent. Equation (2.1) requires that nodes at each iteration
k to use the local variables of their neighbors (node i uses xj(k) for all j ∈ NG

i).
Therefore, each node must receive at every iteration these values and the total
number of messages M sent in the system will be M = 2 × m where m is the
number of links in the graph. On G2, Ni in equation (2.1) is replaced by NG2

i . As
we mentioned above, it is possible to mimic the consensus protocol on G2 using
only the links in G. In this case the operation requires 2 steps. First each node
broadcasts its belief to its neighbors in Ni. Then, each node sends another broadcast
message to its neighbors in Ni with all the beliefs that it has collected during the
first step. In this way every node gets to know the beliefs of all the nodes in NG2

i .
The total number of messages is then twice as larger than in the first scenario.8 For
this reason, we decided to compare the speed of convergence in the two scenarios
when the number of messages being equal. This corresponds to consider that the
consensus protocol on G performs two weighted linear iterations according to (2.1)
for each linear iteration on G2. Another possible way to interpret this comparison
is that if the duration of an iteration is determined by the time needed to transmit
one message on a link, then a consensus protocol iteration on G2 requires twice
as much time than one on G. It is easy to evaluate the speed of convergence
of the “accelerated” consensus protocol that performs two linear iterations every
time unit. In fact it can be checked that this corresponds to use as weight matrix
(GW(A))

2 [BGPS06]. Then, the asymptotic speed of convergence is determined

by µ(GW
2
(A)). Note that the following equation holds: µ(GW 2

(A)) =
(
µ(GW(A))

)2
.

Simulation results in Table 2.3 show that µ(G2W(A)) < µ(GW
2
(A)) for any algorithm

A introduced in the previous sections. Then the denser topology leads to faster
convergence speed even when the number of messages is equivalent. For this reasons,
simple weight selection algorithms as LD on G2 can still outperform more complex
ones like TM − 2 or OC (the results from Table 2.3 show that µ(G2W(LD)) <

µ(GW
2
(TM−2)) and µ(G2W(LD)) < µ(GW

2
(OC)) on most of the topologies) and also

achieve in some cases results very similar to FDLA (e.g., on the grid).

The nutshell of the simulations on these graphs is given by two main interesting
results. The first result is that simple weight selection algorithms can achieve sig-

8 We observe here that the messages sent in the second step have usually a larger data payload

than those sent in the first step, because they carry many belief values. Here we assume that the

number of messages is an adequate metric to evaluate the performance, as for example is the case

if the packet header is much larger than the data payload for this application.

48 Chapter 2. Weight Optimization in Consensus Protocols

RGG n = 50 ER n = 50

r = 0.25 r = 0.3 Pr = 0.08 Pr = 0.12

µ(GW
2
(MD)) 0.9665 0.9274 0.9036 0.8327

µ(G2W(MD)) 0.9319 0.8577 0.8967 0.7923
µ(GW

2
(LD)) 0.9493 0.8951 0.8591 0.7572

µ(G2W(LD)) 0.9070 0.8058 0.8328 0.7144
µ(GW

2
(OC)) 0.9378 0.8677 0.8363 0.7276

µ(G2W(OC)) 0.8761 0.7543 0.8177 0.6650
µ(GW

2
(TM−2)) 0.9419 0.8800 0.8334 0.6749

µ(G2W(TM−2)) 0.8900 0.7565 0.7078 0.4590
µ(GW

2
(FDLA)) 0.8817 0.7513 0.7244 0.5243

µ(G2W(FDLA)) 0.7591 0.5478 0.5219 0.3098

Ring Grid Enron
n = 50 n = 100 n = 36 n = 64

µ(GW
2
(MD)) 0.9894 0.9974 0.8957 0.9401 0.9761

µ(G2W(MD)) 0.9843 0.9961 0.8730 0.9240 0.9057
µ(GW

2
(LD)) 0.9894 0.9974 0.8876 0.9364 0.9726

µ(G2W(LD)) 0.9843 0.9961 0.8523 0.9155 0.8208
µ(GW

2
(OC)) 0.9843 0.9960 0.8662 0.9239 0.9534

µ(G2W(OC)) 0.9751 0.9937 0.7919 0.8776 0.8277
µ(GW

2
(TM−2)) 0.9894 0.9974 0.8857 0.9359 0.9143

µ(G2W(TM−2)) 0.9843 0.9961 0.8403 0.9119 0.5568
µ(GW

2
(FDLA)) 0.9843 0.9960 0.8482 0.9126 0.6868

µ(G2W(FDLA)) 0.9691 0.9922 0.7241 0.8343 -

Table 2.3: The 2-hop averaging topology optimization in G can be done by send-
ing 2-hop messages. Every averaging iteration in this case (having speed governed
by µ(G2W(A))) consumes as many messages as two iterations of normal averag-
ing on G (the speed of two iteration averaging is governed by µ(GW

2
(A))). Since

µ(G2W(A)) < µ(GW
2
(A)) for any weight selection algorithm A and any network, the

2-hop averaging can have a significant faster convergence speed than standard av-
eraging while sending the same number of messages.

2.7. Stability and Misbehaving Nodes 49

nificantly faster convergence on the denser graph G2 than any weight optimization
technique on the original graph G. This improvement comes at the cost of an in-
crease of communication overhead in the network. Our second (less expected) result
is that, for a given weight selection algorithm, the convergence is faster on G2 than
on G even when the number of messages is equal. Because of this, simpler weight
selection algorithms on G2 can achieve performance similar to more complex ones on
G. These results suggest that topological optimization can have a more important
role than weight optimization techniques to speed up information propagation.

2.7 Stability and Misbehaving Nodes

In this section we first explain how the convergence of the consensus protocol can
be guaranteed also for “small” p values (see the remark in section 2.3) and then we
discuss how to deal with some forms of nodes’ misbehavior.

2.7.1 Guaranteeing Convergence of Trace Minimization

The conditions (2.3)-(2.5) guarantee that the consensus protocol converges to the
correct average independently from the initial estimates. In this section, for the
sake of conciseness, we call a weight matrix that satisfies these set of conditions
a convergent matrix. A convergent matrix is then any matrix that guarantees the
convergence of average consensus protocols. We showed in Proposition 2 that for
p large enough, the solution W(p) of (2.10) is a convergent matrix. However, for
“small” p values, it may happen that µ(W(p)) ≥ 1 (the other conditions are intrinsi-
cally satisfied) and then the consensus protocol does not converge for all the possible
initial conditions. We observe that if all the link weights and the self weights in W(p)

are strictly positive then W(p) is a convergent matrix. In fact from Perron-Frobenius
theorem for nonnegative matrices [Sen06] it follows that a stochastic weight matrix
W for a strongly connected graph where wij > 0 if and only if (i, j) ∈ E satisfies
(2.5) (i.e., µ(W) < 1). Then, the matrix may not be convergent only if one of the
weights is negative. Still in such a case nodes can calculate in a distributed way a
convergent weight matrix that is “close” to the matrix W(p). In this section we show
how it is possible and then we discuss a practical approach to guarantee convergence
while not sacrificing the speed of convergence of W(p) (when it converges).

We obtain a convergent matrix from W(p) in two steps. First, we project W(p) on
a suitable set of matrices that satisfy conditions (2.3) and (2.5), but not necessarily
(2.4), then we generate a symmetric convergent matrix from the projection. Let
Ŵ = W(p) be the matrix to project, the solution of the following projection is
guaranteed to satisfy (2.3) and (2.5):

argmin
W

||W − Ŵ ||2F

subject to W1 = 1,

W ∈ C′G,

(2.41)

50 Chapter 2. Weight Optimization in Consensus Protocols

where C′G is the set of non-negative matrices such that wij ≥ δ > 0 if (i, j) ∈ E,
wij = 0 if (i, j) /∈ E, and ||.||F is the Frobenius matrix norm. The constant δ > 0 is
a parameter that is required to guarantee that the feasible set is closed.

Now, we show how it is possible to project a matrix Ŵ according to (2.41) in a
distributed way. We observe that this approach is feasible because we do not require
the projected matrix to be symmetric (and then satisfy (2.4)). The key element for
the distributed projection is that the Frobenius norm is separable in terms of the
variables Wi (the di × 1 vector of weights selected by node i for its neighbors), so
that problem (2.41) is equivalent to:

argmin
W1,...,Wn

n∑

i=1

r(Wi)

subject to WT
i 1di ≤ 1 ∀i,

Wi ≥ δ > 0 ∀i,

(2.42)

where 1di is the di × 1 vector of all ones, and r(Wi) is defined as follows:

r(Wi) = (wii − ŵii)
2 +

∑

j∈Ni

(wij − ŵij)
2 (2.43)

= (Wi − Ŵi)
T (Wi − Ŵi) +

(

(Wi − Ŵi)
T1di

)2
(2.44)

= (Wi − Ŵi)
T
(
Idi + 1di1

T
di

)
(Wi − Ŵi), (2.45)

where Idi is di-identity matrix. Since the variables in (2.42) are separable in
W1, . . . ,Wn, then each node i can find the global solution for its projected vec-
tor W

(proj)
i by locally minimizing the function r(Wi) subject to its constraints.

Once the weight vectors W
(proj)
i are obtained, the projection of W(p) on the set

C′G is uniquely identified. We denote it W (proj). We can then obtain a convergent
weight matrix W (conv) by modifying W (proj) as follows. For every link l ∼ (i, j), we
set:

w
(conv)
l = min

{(

W
(proj)
i

)

α(j)
,
(

W
(proj)
j

)

α(i)

}

,

where α(j) (similarly α(i)) is the index of the node j (similarly i) in the correspond-
ing vector. Then we calculate the convergent weight matrix:

W (conv) = I −Q× diag(w(conv))×QT .

While the matrix W (conv) is convergent, its speed of convergence may be slower
than the matrix W(p), assuming this converges too. Then the algorithm described
above should be ideally limited to the cases where W(p) is known to not be conver-
gent. Unfortunately in many network scenarios this may not be known a priori. We
discuss a possible practical approach in such cases. Nodes first compute W(p). If all
the link-weights and self-weights are positive then the matrix W(p) can be used in
the consensus protocol without any risk. If one node has calculated a non-positive

2.7. Stability and Misbehaving Nodes 51

weight, then it can invoke the procedure described above to calculate W (conv). Nodes
can then run the consensus protocol using only the matrix W (conv) at the price of a
slower convergence or they can run the two consensus protocols in parallel averaging
the initial values both with W (conv) and W(p). If the estimates obtained using W(p)

appear to be converging to the same value of the estimates obtained using W (conv),
then the matrix W(p) is likely to be convergent and the corresponding estimates
should be closer to the actual average.9

2.7.2 Networks with Misbehaving Nodes

The convergence of the average consensus relies on all the nodes correctly performing
the algorithm. If one node transmits an incorrect value, the estimates of all the
nodes can be affected. In this section we address this particular misbehavior. In
particular, let xi(k) be the estimate of node i at iteration k, if xi(k) ̸= wii(k −
1)xi(k−1)+

∑

j∈Ni
wij(k−1)xj(k−1), then we call i a misbehaving node. Stubborn

nodes are a special class of misbehaving nodes that keep sending the same estimate
at every iteration (i.e., a node i is a stubborn node when at every iteration k we
have xi(k) = xi(k − 1) ̸= wii(k − 1)xi(k − 1) +

∑

j∈Ni
wij(k − 1)xj(k − 1)). The

authors of [ACFO11] and [BABJ12] showed that networks with stubborn nodes fail
to converge to consensus. In [BABJ12], they proposed a robust average consensus
algorithm that can be applied on networks having one stubborn node and converges
to consensus. To the best of our knowledge, dealing with multiple stubborn nodes
is still an open issue. It turns out that with a minor modification of our JCO
algorithm, the nodes can detect an unbounded number of misbehaving nodes under
the following assumptions:

• Assumption 1: There is no collusion between misbehaving nodes (every
node, even a misbehaving one, that detects a misbehaving neighbor declares
it).

• Assumption 2: At each iteration a misbehaving node sends the same (po-
tentially wrong) estimate to all its neighbors.

The second assumption can be automatically satisfied in the case of a broadcast
medium.

In the JCO procedure in section 2.6.5, nodes perform one weight optimization
step and one average consensus step at every iteration. Consider an iteration k,
weight optimization requires nodes to receive the weight vectors used by their neigh-
bors (in particular, node i will receive W

(k−1)
j from every neighbor j ∈ Ni), and the

averaging protocol requires them to receive their neighbors estimates (in particular,
node i will receive xj(k) from every neighbor j ∈ Ni). We also require that nodes
send the estimates of their neighbors, e.g., node i will receive together with the vec-
tor W

(k−1)
j another vector Xj(k − 1) from every neighbor j ∈ Ni where Xj(k − 1)

9 Note that if µ(W(p)) > 1 the estimates calculated using W(p) diverge in general, then it should

be easy to detect that the two consensus protocols are not converging to the same value.

52 Chapter 2. Weight Optimization in Consensus Protocols

is the vector of the estimates of the neighbors of node j. With such additional
information, the following simple algorithm allows nodes to detect a misbehaving
neighbor:

Misbehaving Neighbor Detection Algorithm - Node i

{xj(k),Xj(k − 1),W
(k−1)
j }: the message received from a neighbor j at

iteration k
α(i): index of a node i in the corresponding vector
for all j ∈ Ni

C = wjj(k − 1)xj(k − 1) +XT
j (k − 1)W

(k−1)
j

if (xj(k) ̸= C) or
(

xi(k − 1) ̸= (Xj(k − 1))α(i)

)

or

(

wij(k − 1) ̸=
(

W
(k−1)
j

)

α(i)

)

Declare j as misbehaving node.
end if

end for

The first condition (xj(k) ̸= wjj(k−1)xj(k−1)+XT
j (k−1)W

(k−1)
j) corresponds

to the definition of a misbehaving node and allows neighbors to detect a node sending
a wrong estimate. The second and third conditions (xi(k− 1) ̸= (Xj(k − 1))α(i)) or

(wij(k−1) ̸=
(

W
(k−1)
j

)

α(i)
) detect if node j is modifying the content of any element

in the vectors Xj(k − 1) and W
(k−1)
j before sending them to its neighbors. More

precisely, because of Assumption 2, if a node changes any element in the previously
mentioned vectors, then this message will reach all neighbors including the neighbors
concerned by this modification. These neighbors will remark this modification by
checking the second and the third conditions, and, due to Assumption 1, they will
declare the node as misbehaving.

Once a node is declared a misbehaving node, the others can ignore it by simply
assigning a null weight to its links in the following iterations.

2.8 More on Schatten p-Norm and its Relation to Ma-

chine Learning

The Schatten p-norm is often considered in machine learning for the regularization
problem in applications such as multi-task learning [AMPY07], collaborative filter-
ing [SRJ05] and multi-class classification [AFSU07] because it has some favorable
properties (being orthogonally invariant for example). Up to our knowledge, an ex-
act line search Newton’s method has not yet been proposed for constrained Schatten
p-norm problems in machine learning but they are usually solved by first order gra-
dient methods. In this section, we develop Newton’s method for the general norm
optimization problem and we show that the weight selection by Schatten p-norm
proposed in this chapter can be considered a special case of this section’s more

2.8. More on Schatten p-Norm and its Relation to Machine Learning53

general problem. The optimization problem we are interested in is the following:

minimize
X

||X||σp

subject to ϕ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(2.46)

where ||X||σp is the Schatten p-norm of the matrix X which is the L-p norm of

its singular values, i.e., ||X||σp = (
∑

i σ
p
i)

1/p, and ϕ(X) is a linear function of the
elements of X. For p = 1, the norm is known as the nuclear norm, while for p =∞
it is the spectral norm; for both values of p, problem (2.46) can be formulated
as a semi-definite programming and solved using standard interior-point methods
[FHB01, XB04]. The authors in [AMP10] refer to problem (2.46) as the minimal

norm interpolation problem.
In this section, we show that for an even integer p in problem (2.46), we can

easily calculate explicitly both the gradient and the Hessian by exploiting the special
structure of the objective function, constraints linearity, and by carefully rewriting
the Schatten norm problem by stacking the columns of the matrix to form a long
vector. While we still need to invert the Hessian numerically, this matrix has lower
dimension than the typical KKT matrix used in Newton’s methods for solving such
constrained problems.

We use the same notation for the Hessian and gradient presented in Section 2.4,
i.e., for the scalar function of a vector, f : Rm → R, the gradient of the function
f(x) with respect to the vector x ∈ Rm is denoted by ∇xf ∈ Rm and its Hessian
is denoted by the matrix ∇2

xf ∈ Rm,m whose elements are given by the following
equations:

(∇xf)l ,
∂f

∂xl
, and

(
∇2

xf
)

l,k
,

∂2f

∂xl∂xk
.

For a scalar function of a matrix, h : Rn1,n2 → R, the gradient of the function h(X)

with respect to the vector vect(X) ∈ Rn1n2,1 is denoted by ∇Xh ∈ Rn1n2,1 and its
Hessian is denoted by the matrix ∇2

Xh ∈ Rn1n2,n1n2 whose elements are given by
the equations:

∇Xh(ij) ,
∂h

∂xij
, and ∇2

Xh(ij)(st) ,
∂2h

∂xij∂xst
.

As ϕ(X) in (2.46) is a linear function of the elements of X, then it can be written
also as:

ϕ(X) = A vect(X),

where A ∈ Rc,n1n2 and c is the number of constraints. We suppose that the problem
admits always a solution X∗. Since we are interested in applying Newton’s method
to solve equation (2.46), the objective function should be twice differentiable. Not
all the norms satisfy this property, we limit then our study to the case where p is
an even integer because in this case we show that the problem (2.46) is equivalent
to a smooth optimization problem. Let p = 2q, raising the objective function to

54 Chapter 2. Weight Optimization in Consensus Protocols

the power p will not change the solution set, so we can equivalently consider the
objective function:

h(X) = ||X||pσp = Tr
((
XXT

)q
)

.

Since we only have linear constraints (A vect(X) = y), by taking only the linearly
independent equations, and using Gaussian elimination to have a full row rank
matrix, we can rewrite the constraints as follows:

[
Ir B

]
P vect(X) = ŷ,

where Ir is the r-identity matrix, r is the rank of the matrix A (the number of
linearly independent equations), B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation
matrix of the variables, and ŷ ∈ Rr is a vector. We arrive at the conclusion that
the original problem (2.46) is equivalent to:

minimize
X

h(X) = Tr
((
XXT

)q
)

subject to
[
Ir B

]
P vect(X) = ŷ.

(2.47)

Before applying Newton’s method to (2.47), we can further reduce the problem
to an unconstrained minimization problem. By considering the equality constraints,
we can form a mapping from X ∈ Rn1,n2 to the vector x ∈ Rn1n2−r as follows:

x =
[
0n1n2−r,r In1n2−r

]
P vect(X), (2.48)

and X can be obtained from x and ŷ as

X = vect−1

(

P−1

[
ŷ −Bx

x

])

, (2.49)

where vect−1 : Rn1n2 → Rn1,n2 is the inverse function of vect(), i.e.,
vect−1(vect(X)) = X. The unconstrained minimization problem is then:

minimize
x

f(x), (2.50)

where f(x) = Tr
((
XXT

)q)
and X is by (2.49).

All three problems (2.46), (2.47), and (2.50) are convex and are equivalent to
each other. We apply Newton’s method to (2.50) to find the optimal vector x∗

and then deduce the solution of the original problem X∗. The main difficulty in
most Newton’s methods is the calculation of the gradient and the Hessian. In many
applications, the Hessian is not known and for this reason gradient methods are
applied rather than the faster Newton’s methods. However, also in this case, we
show that by exploring the special structure of the function h(X), we can calculate
explicitly both ∇xf and ∇2

xf . To this purpose, we first calculate the gradient
and Hessian of h(X), and then use the linearity of the constraints. Using matrix
calculus [Ber05, ORG12], and similarly to the derivation of equation (2.24), closed
form expressions for the gradient and Hessian of h(X) are given by the following
Lemma:

2.8. More on Schatten p-Norm and its Relation to Machine Learning55

Lemma 4. Let h(X) = Tr
((
XXT

)q)
where X ∈ Rn1,n2 , then the gradient of h is

given by,

∇Xh(ij) = 2q
((
XXT

)q−1
X
)

i,j
, (2.51)

and the Hessian,

∇2
Xh(ij)(st) = 2q

q−2
∑

k=0

((
XXT

)k
X
)

i,t

((
XXT

)q−2−k
X
)

s,j

+ 2q

q−1
∑

k=0

((
XXT

)k
)

i,s

((
XTX

)q−1−k
)

t,j
. (2.52)

We can now apply the chain rule to calculate the gradient and Hessian of f(x),
taking into account the mapping from x to X in (2.49).

For the gradient ∇xf , it holds for l = 1, . . . , n1n2 − r:

(∇xf)l =
∂f

∂xl
=
∑

i,j

∇Xh(ij)
∂xij
∂xl

, (2.53)

where all the partial derivatives ∂xij

∂xl
are constant values because (2.49) is a linear

transformation. Applying the chain rule for the Hessian and considering directly

that all the second order derivatives like ∂2xij

∂xl∂xk
are null (again because the mapping

(2.49) is a linear transformation), we obtain that for l, k = 1, . . . , n1n2 − r:

(
∇2

xf
)

l,k
=

∂2f

∂xl∂xk
=
∑

i,j,s,t

∇2
Xh(ij)(st)

∂xij
∂xl

∂xst
∂xk

. (2.54)

Since f(x) is a convex function, then the calculated matrix ∇2
xf is semi-definite

positive. We can add to the diagonals a small positive value γ to guarantee the
existence of the inverse without affecting the convergence. The calculated Hessian
is a square matrix having dimensions d by d where d = n1n2 − r may be large
for some applications, and at every iteration of the Newton’s method, we need to
calculate the inverse of the Hessian. Efficient algorithms for inverting large matrices
are largely discussed in the literature (see [IK94] for example) and are not detailed
here. Nevertheless, the given matrix has lower dimension than the typical KKT
matrix10 used in Newton’s method [BV04]:

[
∇2

Xh AT

A 0

]

, (2.55)

where A is considered here to be a full row rank matrix, so the KKT matrix is a
square matrix of dimensions dKKT by dKKT where dKKT = n1n2 + r.

Once we know the gradient ∇xf and the Hessian ∇2
xf , we just apply the New-

ton’s method to find the solution x∗ and then obtain the solution of the original

10Note that the sparsity of the matrix to invert is preserved by the proposed method, i.e., if the

KKT matrix is sparse due to the sparsity of A and ∇2
Xh, then ∇2

x
f is also sparse.

56 Chapter 2. Weight Optimization in Consensus Protocols

problem X∗. In fact, the weight selection optimization (2.10) proposed in this
chapter is just a special case of the problem discussed in this section. Due to the
constraint that the matrix is symmetric in (2.10), we can write the objective func-
tion as h(W) = Tr

((
WW T

)q)
. Moreover, we can see that all constraints are linear

equalities. Therefore, the technique derived here applies to the more specific case.

2.9 Conclusion

We have proposed in this chapter an approximated solution for the Fastest Dis-
tributed Linear Averaging (FDLA) problem by minimizing the Schatten p-norm of
the weight matrix. Our approximated algorithm converges to the solution of the
FDLA problem as p approaches ∞, and in comparison to it has the advantage to
be suitable for a distributed implementation. We gave first a centralized implemen-
tation using Newton’s method, and then we gave a totally distributed projection
sub-gradient algorithm for our proposed problem. Moreover, extensive simulations
on random and real networks show that the algorithm outperforms other common
distributed algorithms for weight selection. We also addressed the issue of topolog-
ical optimization and we compared that to the weight optimization. Finally, the
issue of stubborn nodes was discussed where an appropriate algorithm to counter
these malicious behaviors was proposed. We concluded this chapter by extending
our approach for Schatten norm minimization to more general problems which can
be of interest for machine learning applications.

Chapter 3

Consensus in the Presence of an

Adversary

Contents
3.1 Problem Formulation . 58

3.2 Optimal Weight Selection on Undirected Graphs 59

3.2.1 Existence of a Solution . 60

3.2.2 Necessary Conditions . 61

3.2.3 Locally Optimal Solution . 62

3.2.4 Closed-Form Solution for the One-Stage Problem 63

3.3 Network with Adversary in Discrete Time 64

3.3.1 The max-min Solution . 65

3.3.2 The min-max Solution . 65

3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies 66

3.4 Simulations . 67

3.4.1 Optimal Control . 67

3.4.2 Adversarial Intervention . 69

3.5 Conclusion . 69

As we have seen so far, in consensus algorithms, nodes execute update rules
to reach consensus based on neighbor to neighbor weighted average linear itera-
tions. As in any protocol, some parameters (e.g., the weights) can be tuned faster
convergence. For instance, [XB04] formulates a semi-definite program (SDP) for a
fixed weight selection algorithm to achieve fast convergence of consensus protocols
independent of initial nodes’ values, and we proposed a distributed implementation
for an approximation of the SDP in Chapter 2. Another approach is to design
time-varying weights, for example [KG09, HJOV14] study finite-time consensus by
arbitrary time-varying weights chosen at the time of design using matrix factoriza-
tion techniques. Reference [SM12] considers dynamic weights for least mean square
design in correlated or uncorrelated initial node values.

Further, networks can be susceptible to attacks from adversaries willing to drive
the system away from consensus. There are different types of adversaries that can
harm the network. For example compromised strategic nodes (like faulty nodes
or stubborn ones [ACFO11, BABJ12]) can harm the state of the network. Other

58 Chapter 3. Consensus in the Presence of an Adversary

types of strategic intervention include adversaries that cut communication links or
insert noise signals in the agents’ interaction protocol [KTB13]. Yet another type of
adversaries inject false data (collected by nodes) into the system, which bypass bad-
data detection mechanisms. False data injections are known as stealth attacks and
are widely studied for the security of state estimation in electric power networks
[VD14, LNR09]. In order to mitigate the effect of an adversary, security proce-
dures should be taken into account in the design of optimal strategies in consensus
protocols.

Our present work in this chapter shares with this set of references the same ob-
jectives of designing time-varying weights for faster consensus and studying optimal
strategies for networks that are vulnerable to attacks. In the first part we study
time-varying weights for consensus protocols within the framework of an optimal
control formulation. We apply optimization techniques to obtain a locally (and pos-
sibly globally) optimizing feasible control path and provide necessary and sufficient
conditions for the existence of a control that makes the system reach consensus in
only one iteration. The difference with previous related work is that in this chapter
we consider the initial values in our dynamic weight design. In the second part we
study adversaries that can compromise these weights. We propose a game theo-
retical framework for an adversary that can add noise to the weights to drive the
system away from consensus. We derive the optimal strategies using a saddle-point
equilibrium (SPE) solution in mixed strategies for both players (the adversary and
the network designer) in the resulting game.

The contribution of the chapter is as follows:

• We formulate, using optimal control, the problem of finding optimal weights
for discrete time consensus given the information on initial conditions, and
provide necessary conditions using the maximum principle for optimal design.

• Using gradient methods, we solve the weight optimization problem and provide
a locally (and possibly globally) optimizing solution. We also give sufficient
conditions for an optimal control to drive the system to consensus in only one
stage (one iteration consensus).

• We give a game theoretical approach to model an adversary that can perturb
the weights in the network. We provide the optimal strategies given by the
saddle-point equilibrium of the network in mixed strategies.

3.1 Problem Formulation

In this chapter, we turn our attention to time-varying weights in consensus protocols.
The system equation is then given in matrix form as follows,

x(k + 1) =W (k)x(k), (3.1)

where W (k) is the weight matrix at iteration k.

3.2. Optimal Weight Selection on Undirected Graphs 59

Under some conditions on the weights W (k), the values at the nodes are guar-
anteed to converge asymptotically to the average

lim
k→∞

x(k) = x̄,

where x̄ = xave1 and xave = 1
n

∑n
i=1 xi(0). We have seen that one such set of

conditions is given in [XB04] with fixed weights (i.e., W (k) =W ∀k):

1TW = 1T , W1 = 1, ρ(W − 1

n
11T) < 1,

where 1 is the vector of all ones, and ρ(.) is the largest eigenvalue in magnitude of
a matrix. By the first condition, the average in the network is conserved, namely

1Tx(k) = 1Tx(0) = nxave ∀k, (3.2)

the second ensures stability, and the last condition guarantees contraction on the
weight matrix. At any iteration k, we define the squared error Lk from consensus
as follows:

Lk =
∑

i∈V
(xi(k)− xave)2

= (x(k)− x̄)T (x(k)− x̄),

= yT
k yk, (3.3)

where yk = x(k)− x̄.
In this chapter, we design time-varying weight matrices W (k) such that consen-

sus forms in the least number of iterations (achieving faster convergence) under the
criterion of minimum squared error. Our work differs from the earlier work in the
literature in that we design the weights depending on the initial values, i.e.,

W (k) =W (k,x(0)).

3.2 Optimal Weight Selection on Undirected Graphs

Toward the goal stated above, since we are dealing with an undirected graph, we
consider the following properties for the weight matrix for all k:

W (k) =W (k)T and W (k)1 = 1. (3.4)

Therefore, equation (3.2) is satisfied for all k and the average is conserved. Moreover,
we can consider a vector uk ∈ Rm as the control variable that represents the weights
on the undirected links (each link s ∼ (ij) is given a control u(k)s). At stage k, the
network designer will select a control uk. In particular, due to equation (3.4) we
can write the weight matrix as a function of the control vector as follows:

W (k) = In −Qdiag(uk)Q
T . (3.5)

60 Chapter 3. Consensus in the Presence of an Adversary

For any iteration k, the square error Lk metric measures the distance of the
system from the average. Since the goal is to reach faster the consensus fast, cost is
assigned only to the last stage. The optimal control problem of this chapter is then
given as follows:

argmin
u0,...,uN−1

LN

subject to

yk+1 = yk −Qdiag(uk)Q
Tyk, for k = 0, . . . , N − 1,

(3.6)

where N is the number of stages in this optimization. Let us first show that an
optimal control (u∗

k, k = 0, . . . , N − 1) that solves the optimization problem (3.6)
exists.

3.2.1 Existence of a Solution

The cost function of the optimization problem is given by

LN = yT
NyN

= x(N)Tx(N)− 2x̄Tx(N) + x̄T x̄

= x(N)Tx(N)− 2xave1
Tx(N) + nx2ave

= JN − nx2ave,

where JN = x(N)Tx(N). Then minimizing LN = yT
NyN is equivalent to minimizing

the function JN = x(N)Tx(N) because the term nx2ave depends only on the initial
values. Let us define the product matrix U(k1:k2) as follows:

U(k1:k2) =

W (k1)W (k1 + 1) . . .W (k2) if k1 < k2

W (k1)W (k1 − 1) . . .W (k2) if k1 > k2

W (k1) if k1 = k2.

To show that an optimal control (u∗
k, k = 0, . . . , N − 1) exists, we write the opti-

mization as an unconstrained one:

argmin
u0,...,uN−1

f(u0, . . . ,uN−1) (3.7)

where

f(u0, . . . ,uN−1) = JN = x(N)Tx(N)

= x(0)TUT
(N−1,0)U(N−1,0)x(0). (3.8)

Since the elements of the matrix U(N−1,0) are linear in the control variables,
and UT

(N−1,0)U(N−1,0) is a positive semi-definite matrix, f(.) is a quadratic func-
tion and bounded from below, and hence there exists at least one control
(u∗

k, k = 0, . . . , N − 1) that globally minimizes f .

3.2. Optimal Weight Selection on Undirected Graphs 61

3.2.2 Necessary Conditions

To find necessary conditions for the optimal control, we apply the maximum prin-
ciple [LVS12, p. 24] to problem (3.6). For k = 0, . . . , N − 1, the system equation,
performance index, and Hamiltonian are given as:

• System equation:
yk+1 = yk −Qdiag(uk)Q

Tyk, (3.9)

• Performance index:
LN = yT

NyN ,

• Hamiltonian:
Hk = λTk+1

(
yk −Qdiag(uk)Q

Tyk

)
, (3.10)

where λk+1 is the costate variable corresponding to iteration k.

Then, the costate equation and the associated boundary condition are:

• Costate equation:

λk =
∂Hk

∂yk
=
(
In −Qdiag(uk)Q

T
)
λk+1, (3.11)

• Boundary condition:
λN = yN . (3.12)

Any optimal control should minimize the Hamiltonian [LVS12]. Since the Hamil-
tonian is linear in the unconstrained control variables, if any coefficient of a control
variable in (3.10) is nonzero, the optimal control would be unbounded. But an op-
timal control exists as we have already shown, so all the coefficients of the control
variables in (3.10) are necessarily equal to zero, i.e.,

∂Hk

∂uk
=
(
QTyk

)
⊙
(
QTλk+1

)
= 0, for k = 0, . . . , N − 1, (3.13)

where ⊙ is the element-wise product of the vectors and 0 is the vector of all zeros.
Equation (3.13) provides necessary conditions for a controller to minimize (3.8).

These necessary conditions can be further simplified giving a simple network in-
terpretation if we consider one stage (N = 1). In fact, using the boundary condition
(3.12), the necessary conditions in equation (3.13) for N = 1 reduce to

(
QTy0

)
⊙
(
QTy1

)
= 0,

i.e., for any link (ij) ∈ E we have

(xi(0)− xj(0))(xi(1)− xj(1)) = 0. (3.14)

Let H = (V,E′) be a sub-graph of G defined on the same set of vertices, V , and
with links E′ ⊆ E such that (ij) ∈ E′ if (ij) ∈ E and xi(0) − xj(0) ̸= 0. Then we
have the following:

62 Chapter 3. Consensus in the Presence of an Adversary

Proposition 6. If H = (V,E′) is connected, then any optimal control u∗ drives the

system to consensus in one iteration, i.e.,

x̄ =
(
In −Qdiag(u∗)QT

)
x(0).

Proof. Due to Eq. (3.14), we have xi(1) = xj(1) ∀(ij) ∈ E′. If H is connected, then
there is a path in E′ between any two vertices, and thus xi(1) = xj(1) ∀i, j ∈ V .
Using also the fact that the average is conserved (due to equation (3.2)), we get
xi(1) = xave ∀i ∈ V .

3.2.3 Locally Optimal Solution

In the general case, the optimization problem (3.7) is computationally hard because
the function f(u0, . . . ,uN−1) is not convex (it is convex in the variables of each
stage, uk, but not jointly convex). We therefore turn our attention to locally optimal
solutions, and to obtain such a solution we apply the gradient method to (3.8).

Proposition 7. Let f(u0, . . . ,uN−1) be given by (3.8). Then, for k = 0, . . . , N − 1,

the gradient g
(k)
l of the function f(.) with respect to its variables u

(k)
l where u

(k)
l is

the l-th element of the vector uk corresponding to link (ij) (l ∼ (ij)) at stage k, is

given as follows:

g
(k)
l =

∂f

∂u
(k)
l

= 2[(AkW (k)Bk)ij + (AkW (k)Bk)ji

− (AkW (k)Bk)ii − (AkW (k)Bk)jj], (3.15)

where Ak and Bk are as follows:

Ak =

{

UT
(N−1:k+1)U(N−1:k+1) if N − 1 ≥ k + 1,

In if N − 1 < k + 1,

Bk =

{(
U(k−1:0)x(0)

) (
U(k−1:0)x(0)

)T
if k − 1 ≥ 0,

x(0)x(0)T if k − 1 < 0.

(3.16)

Proof. By using the commutative property of the trace operator (i.e., Tr(XY) =

Tr(Y X) for any conformable matrices X and Y), f(.) can be written for any k =

0, . . . , N − 1 as follows:

f(u0, . . . ,uN−1) = x(0)TUT
(N−1,0)U(N−1,0)x(0)

= Tr
(
W (k)TAkW (k)Bk

)
, (3.17)

where Ak and Bk are given by (3.16) and are independent of the variables of stage k
(i.e., ∂(Ak)st

∂u
(k)
l

= ∂(Bk)st

∂u
(k)
l

= 0 ∀s, t ∈ V , and k = 0, . . . , N − 1). From matrix calculus,

3.2. Optimal Weight Selection on Undirected Graphs 63

if h(W) = Tr(W TAWB), then ∂h
∂wij

= 2 (AWB)ij , and sinceW = In−Qdiag(u)QT ,

for any ul such that l ∼ (ij) we have

∂wst

∂ul
=

+1 if s = i and t = j

+1 if s = j and t = i

−1 if s = i and t = i

−1 if s = j and t = j

0 else.

(3.18)

Thus,

∂h

∂ul
=
∑

s,t

(
∂h

∂wst

)
∂wst

∂ul
= 2

∑

s,t

(AWB)st
∂wst

∂ul

= 2 [(AWB)ij + (AWB)ji − (AWB)ii − (AWB)jj] . (3.19)

We can apply equation (3.19) to every stage separately and this ends the proof.

Let us stack up all the elements u(k)l in one vector w, and also stack up all the

elements g(k)l in one vector g.

Proposition 8. Consider the following gradient iterative procedure

w(t+1) = w(t) − γtg(t),

where γt =
1

(1+t)||g|| is the stepsize and w(0) = 0. Then the elements u
(k)
l of the vector

w converge to a locally minimizing solution of the optimization problem (3.6).

Proof. The given procedure is a standard (sub-)gradient method for optimization
and the convergence has been widely studied under the diminishing step-size rule:
limt→∞ γt = 0 and

∑∞
t=1 γt =∞ (see [Sho85]).

Remark: The function f(.) can have multiple local minima, and the gradient
method converges to one of them. But simulations show that in some situations any
local minimum is in fact a global one. This is the case when we start with initial
values where only one node i has a nonzero estimate xi(0) = 1, and all other nodes
have an initial value 0. If d is the largest distance (in terms of the number of hops)
from node i to a node j having xj(0) = 0, then we know that any optimal control
needs at least d stages to drive the system to consensus because node j needs at least
d iterations to change its value 0. By simulations, the gradient given in Proposition
8 for N = d stages yields weights that lead to consensus (as we will see later in
Section 3.4) and hence the solution turns out to be optimal (global minimum).

3.2.4 Closed-Form Solution for the One-Stage Problem

Consider now the case N = 1, that is with only one stage. Then the control would
be a single vector u where each component is the weight for the corresponding edge.
The optimization problem in this case is convex:

64 Chapter 3. Consensus in the Presence of an Adversary

uS = argmin
u

f(u), (3.20)

where uS is the solution set (possibly an infinite set) and

f(u) = x(0)T (In −Qdiag(u)QT)(In −Qdiag(u)QT)x(0)

= ||x(0)−Qdiag(u)QTx(0)||2

= ||x(0)−Qdiag(QTx(0))u||2

= ||Du− b||2,

where
D = Qdiag(QTx(0)), and b = x(0). (3.21)

The problem is then reduced to a least squares approximation problem, where
any element in the solution set uS satisfies what is known as the normal equations:

DTDu = DTb, ∀u ∈ uS .

Moreover, uS is not empty, with at least one solution û,

û = D+b,

where D+ is the pseudo inverse of D that can be obtained using the singular value
decomposition of D. If DTD is a positive definite matrix, then D+ = (DTD)−1DT

and û is the unique solution to the least squares problem. We denote by S the
minimum value of the function f(u):

S = f(û)

= ||(DD+ − I)b||2. (3.22)

3.3 Network with Adversary in Discrete Time

Suppose that there is an adversary that can add noise onto the weights of the links.
The adversary’s objective is to drive the system away from consensus. Considering
only one stage optimization (N = 1), the state equation would become

x(1) =W (u,v)x(0)

= (In −Qdiag(u+ v)QT)x(0), (3.23)

where W (u,v) is the weight matrix that depends on the control u ∈ U1 = Rm and
the noise of the adversary v ∈ U2 = {y; y ∈ Rm, ||y|| ≤ C}, where C is a given
positive constant and can be seen as the power constraint of the adversary (the
larger C the more powerful is the adversary). The cost function is

J(u,v) = x(1)Tx(1)

= ||(In −Qdiag(u+ v)QT)x(0)||2

= ||D(u+ v)− b||2, (3.24)

3.3. Network with Adversary in Discrete Time 65

where D and b are given by (3.21). The adversary (v) is the maximizer of J(u,v)
while the network designer (u) is the minimizer in this zero-sum two-person game.

Definition 1. A pair (u∗ ∈ U1,v
∗ ∈ U2) is a saddle-point in pure strategies of

J(u,v) if the following holds:

J(u∗,v) ≤ J(u∗,v∗) ≤ J(u,v∗), for all (u ∈ U1,v ∈ U2).

The lower value V and the upper value V of the game are defined by

V = sup
v∈U2

inf
u∈U1

J(u,v) , and V = inf
u∈U1

sup
v∈U2

J(u,v).

Since the strategy spaces are decoupled, V ≤ V . If furthermore V = V , then the
common value is called the value of the game. Existence of a saddle-point guarantees
existence of the value [BO99]. As J is a quadratic function of u, and J(u,v) ≥ 0

for all (u ∈ U1,v ∈ U2), then for any given v ∈ U2, J attains a minimum on U1

[Hil08]. Moreover, since U2 is compact, and J is a continuous function on its domain
of definition, for any given u ∈ U1, J attains a maximum on U2 by the Weierstrass
Theorem. Therefore, we can replace infu∈U1 by minu∈U1 and supv∈U2

by maxv∈U2

in the definitions of the upper and lower values. In the sequel, we will show that
actually the game does not have a value, and hence does not have a saddle-point
(in pure strategies). It however has a saddle-point in mixed strategies (shortly to
be defined).

3.3.1 The max-min Solution

In the max-min solution, the network designer has access to the strategy played by
the adversary.

argmin
u

J(u,v) = argmin
u
||D(u+ v)− b||2

= D+b− v.

Then we have,

max
v

min
u
J(u,v) = max

v
J(D+b− v,v)

= max
v

S

= S, (3.25)

where S is the value of the one player optimization problem, given by (3.22) and is
independent of v.

3.3.2 The min-max Solution

In the min-max solution, the adversary has access to the strategy of the controller.
The cost function J can be written as:

J(u,v) = ||D(u+ v)− b||2

= bTb+ uTDTDu− 2bTDu+ vTDTDv + 2vT
(
DTDu−DTb

)
.

66 Chapter 3. Consensus in the Presence of an Adversary

Consider the following strategy v1 by the adversary:
{

v1 ∈ R(DTD) ∩ U2 if DTDu−DTb = 0

v1 = C (DTDu−DTb)
||DTDu−DTb|| otherwise,

(3.26)

where R(DTD) is the range of the matrix DTD. Therefore we have,

min
u

max
v

J(u,v) ≥ min
u
J(u,v1)

= min
u

(

vT
1D

TDv1 + 2vT
1

(
DTDu−DTb

)

︸ ︷︷ ︸

>0

+ bTb+ uTDTDu− 2bTDu

)

> min
u

(
bTb+ uTDTDu− 2bTDu

)

= S.

Hence,
max
v

min
u
J(u,v) < min

u
max
v

J(u,v), (3.27)

which means that there is no saddle-point in pure strategies.

3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies

Since an SPE does not exist in pure strategies, we allow players to randomize their
actions through mixed strategies. A mixed strategy for the network designer is a
probability distribution µ on U1, and we denote the space of all such probability
distributions by M1. Similarly, a mixed strategy for the adversary is a probability
distribution ν on U2, and the space of all such probability distributions is denoted
by M2. The average cost corresponding to a pair (µ ∈M1, ν ∈M2) is given by

J̄(µ, ν) =

∫

U1×U2

J(u,v)dµ(u)dν(v).

Definition 2. A pair (µ∗ ∈ M1, ν
∗ ∈ M2) is a saddle-point equilibrium in mixed

strategies if the following holds:

J̄(µ∗, ν) ≤ J̄(µ∗, ν∗) ≤ J̄(µ, ν∗), for all (µ ∈M1, ν ∈M2).

Proposition 9. Consider the following strategies:

µ∗(u) : u = D+b with probability 1, (3.28)

and

ν∗(v) :

{

v = Cp with probability 1/2

v = −Cp with probability 1/2,
(3.29)

where p is any unit eigenvector of the matrix DTD corresponding to the largest

eigenvalue λmax(D
TD). Then the pair (µ∗, ν∗) is an SPE in mixed strategies.

3.4. Simulations 67

Proof. Let us recall the cost function:

J(u,v) = bTb+ uTDTDu− 2bTDu

+ vTDTDv + 2vT
(
DTDu−DTb

)

= ||Du− b||2 + vTDTDv + 2vT
(
DTDu−DTb

)
.

Then the average cost under the given pair of strategies is,

J̄(µ∗, ν∗) = ||DD+b− b||2 + (Cp)TDTD(Cp)× (1/2)

+ (−Cp)TDTD(−Cp)× (1/2)

= S + C2λmax. (3.30)

But we have,

J̄(µ∗, ν) = ||DD+b− b||2 +
∫

U2

νTDTDν dν(v)

≤ S + max
v,||v||≤C

vTDTDv

= S + C2λmax

= J̄(µ∗, ν∗), (3.31)

and

J̄(µ, ν∗) = C2λmax +

∫

U1

||Dµ− b||2 dµ(u)

≥ C2λmax +min
u
||Du− b||2

= S + C2λmax

= J̄(µ∗, ν∗). (3.32)

Since we have for any pair (µ ∈M1, ν ∈M2),

J̄(µ∗, ν) ≤ J̄(µ∗, ν∗) ≤ J̄(µ, ν∗),

then (µ∗, ν∗) is a saddle-point equilibrium.

Remark: The saddle-point is not unique, as any (µ, ν) where µ is a point
distribution in the set uS of (3.20) (or any distribution on this set due to the
interchangeability property of saddle-points [BO99]), and ν as in (3.29) where p is
any eigenvector corresponding to λmax(D

TD) (or any distribution on these vectors)
is also a saddle-point. However, if D is full column rank, and λmax has geometric
multiplicity of 1, then the saddle-point is unique.

3.4 Simulations

3.4.1 Optimal Control

We illustrate the results obtained on a numerical example. Given the sample network
of Fig. 3.1 and the initial values, we are interested in selecting the controls on links,

68 Chapter 3. Consensus in the Presence of an Adversary

Figure 3.1: Network with 4 communicating nodes. xi(0) is the initial value of node
i, and uij is the control value (or weight) of link (ij).

k = 0 k = 1

x(0) u∗
0 x(1) u∗

1

1

0

0

0

0.8665

0

0

0.1335

0.8665

0

0

0.2201

0.6051

0

J0 = x(0)Tx(0) = 1 J1 = 0.7686

k = 2 k = 3

x(2) u∗
2 x(3)

0.2949

0.1808

0.5243

0

0.3934

0.0708

0.4768

0.25

0.25

0.25

0.25

J2 = 0.3945 J3 = 0.25

Table 3.1: Optimal control results for the network in Fig. 3.1.

uk = (u
(k)
12 , u

(k)
23 , u

(k)
34)

T , so that the system reaches consensus. We limit the number
of stages to N = 3 because in that case the diameter is equal to three and an optimal
control that drives the system to consensus exists. The optimization problem (3.6)
reduces to:

argmin
u0,u1,u2

J3

subject to

x(k + 1) = (I4 −Qdiag(uk)Q
T)x(k), for k = 0, 1, 2,

where I4 is the 4× 4 identity matrix, and the incidence matrix Q is given by:

Q =

1 0 0

−1 1 0

0 −1 1

0 0 −1

.

Table 3.1 shows the optimal control (u∗
k, k = 0, 1, 2) for the given network. The

control is obtained by the gradient descent iterative procedure of Proposition 8 where
the initial starting point of the gradient was selected 0 on all links of the three stages.
The results indicate that with only three iterations, the system reaches consensus.
To compare with other weight selection algorithms, we apply the algorithm given in

3.5. Conclusion 69

[XB04] obtained for a related semi-definite program (SDP). That algorithm finds a
fixed set of weights for all iterations that guarantee fastest convergence independent
of initial values (worst-case analysis). For the network example in Fig. 3.1, the SDP
assigns a value 0.5 to all weights for all iterations, and the resulting state vector
after three iterations is xSDP (3) = (0.375, 0.375, 0.125, 0.125)T , which has a cost of
J3 = 0.3125 (thus higher cost than our time-varying weights) and needs an infinite
number of iterations to converge. It is worth mentioning that the SDP weights
are designed for worst-case node initial values, and thus have the advantage that
they guarantee convergence starting from any initial values. However, the optimal
control in this chapter is designed for a given starting value, and thus if the initial
node values change, the control values must be readjusted.

3.4.2 Adversarial Intervention

In this subsection, we study the effect of an adversary disrupting the communication
on networks with connected random geometric graphs (RGGs) topology where n
nodes are thrown uniformly at random on a unit square, and any two nodes within
a connectivity radius r are connected by a link (the simulations are done with r =
√

0.6× log(n)
n given that the graph is connected). RGGs are generally used as models

for wireless sensor networks, and disruption of communication can be accomplished
by insertion of high intensity signals on communication links. The additive white
noise can also be considered as an adversarial input in our settings. We compare
the results on different RGGs with different sizes (number of nodes n) for n ∈
{20, 40, 60, 80, 100}. Fig. 3.2 depicts the different costs on the resulting network
with and without the presence of the adversary, averaged over 150 independent
runs. We consider only one-stage games where the initial cost function is given by
J0 = x(0)Tx(0). For any node i, the initial node value xi(0) is selected at random
uniformly within the interval [0, 1]. We assume that the adversary power constraint
is ||v|| ≤ 1 (i.e., C = 1). We see from Fig. 3.2 that the network without an adversary
achieves the least cost J1. An adversary selecting uniformly random strategy from
the n-dimensional unit sphere does not substantially affect the cost; however, an
adversary with the same power constraint playing the strategy of the saddle-point
equilibrium (equation (3.29)) achieves significantly higher cost than the uniform
random adversary (even larger cost than J0 for graphs of n = 20 and n = 40 nodes).

3.5 Conclusion

In this chapter, we have studied a finite-horizon discrete-time optimal control prob-
lem for a network designer to achieve faster consensus given the network structure
and the initial node values. The optimal control is obtained using gradient meth-
ods. We have also provided sufficient conditions for reaching consensus in one stage.
Moreover, we have studied the saddle-point equilibrium (SPE) of the consensus
problem in the presence of an adversary, and found that an SPE does not exist in

70 Chapter 3. Consensus in the Presence of an Adversary

20 40 60 80 100

5

10

15

20

25

30

35

Number of nodes n in the RGG topology

C
o
st

F
u
n
c
ti
o
n
J
=

x
T
x

Init ial Cost J0

Without Adversary J1

Saddle Point J1(µ
∗, ν ∗)

Uniform Random Adversary J1

Figure 3.2: The cost function due to different adversary settings: absence of adver-
sary, uniform random adversary that adds a random noise to the control values, and
saddle-point adversary that randomizes its strategy in accordance with the saddle-
point equilibrium.

pure strategies. Nevertheless, an SPE exists in mixed strategies, where the adver-
sary selects the noise using a randomized strategy, whereas the network designer’s
strategy is still pure.

Chapter 4

Quantized Communication in

Consensus Protocols

Contents
4.1 Literature Review . 72

4.2 System Equation . 73

4.3 Quantized Communication . 73

4.4 Problem Formulation . 75

4.5 Design and Analysis of the System 76

4.5.1 Cyclic Example . 77

4.5.2 Weight Assumption . 78

4.5.3 Cyclic States . 79

4.5.4 Lyapunov Stability . 81

4.5.5 Proof of Main Result . 89

4.6 Discussion . 95

4.6.1 Design of Weights with Arbitrarily Small Error 96

4.7 Simulations . 97

4.7.1 Simple Network . 99

4.7.2 Random Graphs . 99

4.8 Conclusion . 100

Most existing algorithms (as well as the ones we’ve seen so far) for precise
distributed averaging require that agents are able to send and receive real val-
ues with infinite precision. However, a realistic network can only allow mes-
sages with limited length to be transmitted between agents due to constraints
on the capacity of communication links. With such a constraint, when a real
value is sent from an agent to its neighbors, this value will be truncated and
only a quantized version will be received by the neighbors. With such quanti-
zation, the precise average cannot be achieved (except in particular cases), but
some value close to it can be achieved, called quantized consensus. A number
of papers have studied this quantized consensus problem and various probabilistic

quantization strategies have been proposed to cause all the agents in a network to
reach a quantized consensus with probability one (or at least with high probability)

72 Chapter 4. Quantized Communication in Consensus Protocols

[Sch64, AB10, ACR07, BTV09, BTV11, LM12, KM10, KBS07, EB13]. Notwith-
standing this, the problem of how to design and analyze deterministic quantization
effects remains open [FCFZ09, CYRC13].

In this chapter, we thoroughly analyze the performance of distributed averaging
algorithms where the information exchange between neighboring agents is subject
to a deterministic uniform quantization. We show that in finite time, the algorithm
will either cause all agents to reach a quantized consensus where the consensus value
is the largest integer not greater than the average of their initial values, or will lead
all agents’ variables to cycle in a small neighborhood around the average, depending
on initial conditions. In the latter case, we give tight error bounds for the size of the
neighborhood and it is further shown that the error can be made arbitrarily small
by adjusting the algorithm’s parameters in a distributed manner, at a cost of slower
convergence.

4.1 Literature Review

Most of the related works for distributed averaging with quantized communication
use either a deterministic algorithm (as our approach in this chapter) or a proba-
bilistic one.

There are only a few publications which study deterministic algorithms for
quantized consensus. In [LFXZ11] the distributed averaging problem with quan-
tized communication is formulated as a feedback control design problem for cod-
ing/decoding schemes; the paper characterizes the amount of information needed to
be sent for the agents to reach a consensus and shows that with an appropriate scal-
ing function and some carefully chosen control gain, the proposed protocol can solve
the distributed averaging problem, but some spectral properties of the Laplacian
matrix of the underlying fixed undirected graph have to be known in advance. More
sophisticated coding/decoding schemes were proposed in [LX11] for time-varying
undirected graphs and in [ZZ13] for time-varying directed graphs, all requiring care-
fully chosen parameters. Recently a novel dynamic quantizer has been proposed in
[TKPF13] based on dynamic quantization intervals for coding of the exchanged mes-
sages in wireless sensor networks leading to asymptotic convergence to consensus.
In [CM09] a biologically inspired algorithm was proposed which makes all agents
reach some consensus with arbitrary precision, but at the cost of not preserving
the desired average. Control performance of logarithmic quantizers was studied in
[CFSZ08] and quantization effects were considered in [NOOT09]. A deterministic
algorithm of the same form as in this chapter has been only partially analyzed in
[FCFZ09] where the authors have approximated the system by a probabilistic model
and left the design of the weights as an open problem.

Over the past decade quite a few probabilistic quantized consensus algorithms
have been proposed. The probabilistic quantizer in [ACR07] ensures almost sure
consensus at a common but random quantization level for fixed (strongly connected)
directed graphs; although the expectation of the consensus value equals the desired

4.2. System Equation 73

average, the deviation of the consensus value from the desired average is not tightly
bounded. An alternative algorithm which gets around this limitation was proposed
in [KM10]; the algorithm adds dither to the agents’ variables before quantization
and the mean square error can be made arbitrarily small by tuning the parame-
ters. The probabilistic algorithm in [BTV09, BTV11], called “interval consensus
gossip”, causes all agents to reach a consensus in finite time almost surely on the
interval in which the average lies, for time-varying (jointly connected) undirected
graphs. Stochastic quantized gossip algorithms were introduced in [LM12, ZM11]
and shown to work properly. The effects of quantized communication on the stan-
dard randomized gossip algorithm [BGPS06] were analyzed in [CFFZ10]. An alter-
native approach to analyze the quantization effect was introduced in [Sch64, AB10]
which model the effect as noise following certain probability.

Another thread of research has studied quantized consensus with the additional
constraint that the value at each node is an integer. The probabilistic algorithm
in [KBS07] causes all agents to reach quantized consensus almost surely for a fixed
(connected) undirected graph; convergence time of the algorithm was studied in
[EB13], with strong bounds on its expected value. In [CI11] a probabilistic algo-
rithm was proposed to solve the quantized consensus problem for fixed (strongly
connected) directed graphs using the idea of “surplus”.

We should note that, in addition, our work in this chapter is also related to the
literature on the problem of load balancing [AAMR93, SS94, GM96].

4.2 System Equation

In this chapter, we will refer to the nodes running the distributed averaging as
agents. As assumed so far, the graph G is connected and does not change over time.
Initially each agent i has a real number xi(0). Let

xave(k) =
1

n

∑

i∈V
xi(k),

be the average of values of all agreement variables in the network, xave is then simply
xave(0). The approach studied so far in this thesis to the problem is for each agent
to use a linear iterative update rule of the form

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj(k), ∀i ∈ V. (4.1)

4.3 Quantized Communication

In a network where links have constraints on the capacity and have limited band-
width (e.g., digital communication networks), messages cannot have infinite length.
However, the distributed averaging algorithm requires sending real (infinite preci-
sion) values through these communication links. Therefore, with digital transmis-
sion, the messages transmitted between neighboring agents will have to be trun-
cated. If the communication bandwidth was limited, the more the truncation of

74 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.1: The network model for the quantized system.

agents’ values, the higher would be the deviation of agent’s value from the desired
average consensus xave.

To model the effect of quantized communication, we assume that the links per-
form a quantization effect on the values transmitted between agents. The network
model is given by Fig. 4.1. As we can see from the model, each agent i can have
infinite bandwidth to store its latest value xi(k) and perform computations. How-
ever, when agent i sends its value at time k through the communication network, its
neighbors will receive a value x̂i(k) which is the quantized value of xi(k). A quan-

tizer is a function Q : R → Z that maps a real value to an integer. Quantizers can
be of different forms. We present here some widely used quantizers in the literature
[NFZE07, CFFZ10, NOOT09]:

1. Truncation quantizer Qt which truncates the decimal part of a real number
and keeps the integer part:

Qt(x) = ⌊x⌋. (4.2)

2. Ceiling quantizer Qc which rounds the value to the nearest upper integer:

Qc(x) = ⌈x⌉. (4.3)

3. Rounding quantizer Qr which rounds a real number to its nearest integer:

Qr(x) =

{

⌊x⌋ if x− ⌊x⌋ < 1/2

⌈x⌉ if x− ⌊x⌋ ≥ 1/2.
(4.4)

4. Probabilistic quantizer Qp defined as follows:

Qp(x) =

{

⌊x⌋ with probability ⌈x⌉ − x
⌈x⌉ with probability x− ⌊x⌋.

(4.5)

4.4. Problem Formulation 75

In this chapter we study the effect of the deterministic quantizers (Qt(x), Qc(x),
and Qr(x)) on the performance of the distributed averaging algorithms by showing
the distance that the agents’ stored values can deviate from the initial average xave.
The quantizers listed before map R into Z and have quantization jumps of size 1.
Quantizers having a generic real positive quantization step ϵ can be simply recovered
by a suitable scaling: Q(ϵ)(x) = ϵQ(x/ϵ) [CFFZ10]. Thus the results in this chapter
cover these generic quantizers as well.

4.4 Problem Formulation

Suppose that all n agents adhere to the same update rule of Eq. (4.1). Then with
a quantizer Q(x), the network equation would be

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijQ(xj(k)), ∀i ∈ V. (4.6)

Simple examples show that this algorithm can cause the system to shift away from
the initial average xave.

Since agents know exactly the effect of the quantizer, for the agents not to lose
any information caused by quantization, at each iteration k each agent i can send
out the quantized value Q(xi(k)) (instead of sending xi(k)) and store in a local

scalar ci(k) the difference between the real value xi(k) and its quantized version,
i.e.,

ci(k) = xi(k)−Q(xi(k)).

Then, the next iteration update of agent i can be modified to be

xi(k + 1) = wiiQ(xi(k)) +
∑

j∈Ni

wijQ(xj(k)) + ci(k), ∀i ∈ V. (4.7)

A major difference between this equation and (4.6) is that here no information is
lost; i.e., the total average is being conserved in the network, as we will show shortly
after. The state equation of the system becomes,

x(k + 1) =WQ (x(k)) + x(k)−Q (x(k)) , (4.8)

where, with a little abuse of notation, Q (x) = (Q(x1),Q(x2), . . . ,Q(xn))T is the
vector quantization operation. For any W where each column sums to 1 (1TW = 1T

where 1 is the vector of all ones), the total sum of all n agreement variables does
not change over time if agents followed the protocol of Eq. (4.8):

1Tx(k + 1) = 1T (WQ (x(k)) + 1Tx(k)− 1T ⌊x(k)⌋
= 1TQ (x(k)) + 1Tx(k)− 1TQ (x(k))

= 1Tx(k)

= 1Tx(0)

= nxave, (4.9)

76 Chapter 4. Quantized Communication in Consensus Protocols

Thus the average is also conserved (xave(k) = xave, ∀k). Equation (4.8) would
be our model of distributed averaging with deterministic quantized communication
where the quantizer can take the form of the truncation Qt, the ceiling Qc, or the
rounding one Qr. It is worth noting that the three quantizers can be related by the
following equations:

Qr(x) = Qt(x+ 1/2), (4.10)

Qc(x) = −Qt(−x). (4.11)

Given a model with the ceiling quantizer Qc in (4.8), by taking y(k) = −x(k),
the system evolves as:

y(k + 1) = y(k) +WQt(y(k))−Qt(y(k))

y(0) = −x(0).

Therefore, by analyzing the above system which has a truncation quantizer Qt,
we can deduce the performance of x(k) that satisfies equation (4.8) with a ceiling
quantizer Qc because they are related by a simple equation (y(k) = −x(k)).

Similarly, given a model with the rounding quantizer Qr in (4.8), by taking
y(k) = x(k) + 1

21, the system evolves as:

y(k + 1) = y(k) +WQt(y(k))−Qt(y(k))

y(0) = x(0) +
1

2
1.

Therefore, by analyzing the above system which has a truncation quantizer Qt, we
can deduce the performance of x(k) that satisfies equation (4.8) with a rounding
quantizer Qr because they are related by a simple translation equation (y(k) =

x(k) + 1
21). Therefore the effects of all these three quantizers are essentially the

same.
With this nontrivial observation in mind, we focus on the analysis of the trun-

cation quantizer only in the rest of this chapter. The results can then be easily
extended to the case of the other two quantizers.

In the sequel we will fully characterize the behavior of system (4.8) and its
convergence properties. But first, we have the following definition:

Definition 3. A network of n agents reaches quantized consensus if there is an

iteration k0 such that

Q(xi(k)) = Q(xj(k)), ∀i, j ∈ V, ∀k ≥ k0.

4.5 Design and Analysis of the System

In this section, we carry out the analysis of the proposed quantized system equation.
By considering the truncation quantizer Qt in (4.8), the system equation becomes:

x(k + 1) =W ⌊x(k)⌋+ x(k)− ⌊x(k)⌋. (4.12)

4.5. Design and Analysis of the System 77

Figure 4.2: Network of two nodes where quantized communication does not con-
verge.

This can be written in a distributed way for every i ∈ V as follows:

xi(k + 1) = xi(k) +
∑

j∈Ni

wji (⌊xj(k)⌋ − ⌊xi(k)⌋) , (4.13)

= xi(k) +
∑

j∈Ni

wjiLji(k), (4.14)

where
Lji(k) , ⌊xj(k)⌋ − ⌊xi(k)⌋ = −Lij(k).

The non-linearity of the system due to quantization complicates the analysis, and
traditional stability analysis of linear systems (such as ergodicity, products of
stochastic matrices, etc.) cannot be applied here as the system might not even
converge. As demonstrated in the following subsection.

4.5.1 Cyclic Example

The purpose of the following example is to show that for a “bad” weight matrix
design, the quantized system can cycle very far from the average. Consider the two-
nodes example of Fig. 4.2, suppose that xa(0) = ξ, xb(0) = K+ ξ where K ∈ N and
ξ ∈ (0, 1). With these initial values, ⌊xa(0)⌋ = 0, ⌊xb(0)⌋ = K, and xave = K

2 + ξ.
The weight matrix for this two-nodes system is assumed to be a doubly stochastic
matrix and is given as follows:

W =

(
w 1− w

1− w w

)

,

where w ∈ (0, 1). With this weight matrix, (4.9) is satisfied and the average is
conserved. In [FCFZ09], the authors defined the following metric to measure the
performance of the system:

d∞(W,x(0)) = lim sup
k→∞

1√
n
||∆(k)||, (4.15)

where ∆(k) is a vector having the elements ∆i(k) = xi(k)−xave. So the worst cycle
(according to this metric), given a doubly stochastic weight matrix, would happen
if the nodes toggled their values with every iteration. Let us derive conditions on

78 Chapter 4. Quantized Communication in Consensus Protocols

W for which this could happen. With the quantization, the corresponding system
equations are as follows:

xa(k + 1) = xa(k) + (1− w)× (⌊xb(k)⌋ − ⌊xa(k)⌋) (4.16)

xb(k + 1) = xb(k) + (1− w)× (⌊xa(k)⌋ − ⌊xb(k)⌋) . (4.17)

From the given initial conditions, after one iteration the updated values are xa(1) =
ξ + (1 − w)K and xb(1) = K + ξ − (1 − w)K. Therefore, the quantized value
of the nodes’ variables will toggle between 0 and K if xa(1) ∈ [K,K + 1) and
xb(1) ∈ [0, 1). By substituting the values of xa(1) and xb(1) we get the following
necessary conditions for such a cycle,

{

wK > max{−ξ, ξ − 1}
wK < min{ξ, 1− ξ}.

(4.18)

The first condition is always satisfied because wK > 0. Then, a bad design of W is
to have w < 1

K ×min{ξ, 1− ξ} because in this case the nodes can cycle1 with

xa(k) =

{

ξ if k is even

K + ξ − wK if k is odd
and xb(k) =

{

K + ξ if k is even

wK + ξ if k is odd.
(4.19)

Thus ∆a(k) = ∆b(k) = K/2 if k is even, and so d∞(W,x(0)) = K/2. The above
two-node network result can be extended to regular bipartite graphs where the first
set of nodes takes the value xa(0) and the other set takes the value xb(0) and all
self-weights are equal to w.2 This would also lead to the following inequality on
d∞(W,x(0)) with the given initial conditions and weight matrix:

d∞(W,x(0)) ≥ K/2.

This shows that a bad design of W on general graphs can make the cycle arbitrarily
large.

4.5.2 Weight Assumption

The system behavior depends of course on the design of the weight matrix. In
distributed averaging, it is important to consider weights that can be chosen locally,
avoid bad design, and guarantee desired convergence properties. We impose the
following assumption on W which can be satisfied in a distributed manner.

Assumption 1. The weight matrix in our design has the following properties:

1In case initial values were not known, since min{ξ, 1− ξ} ≤ 1/2, then, a bad design of W is to

have w < 1
2K

because in this case there might be some initial values that cause large cycles.
2In case of hypercube graphs, [FCFZ09] shows that if the weights in the network have a constant

value 1/(d + 1) where d = log n is the degree of a node in the hypercube graph, then an upper

bound on d∞(W) = sup
x(0) d∞(W,x(0)) is the following d∞(W) ≤ logn

2
. Since a hypercube is a

regular bipartite graph, then using our results leads to the following lower bound, d∞(W) ≥ logn
4

(by taking ξ = 0.5 and K = (log n)/2 to satisfy (4.18)).

4.5. Design and Analysis of the System 79

• W is a symmetric doubly stochastic matrix:

wij = wji ≥ 0 ∀i, j ∈ V
∑

i

wij =
∑

j

wij = 1,

• Dominant diagonal entries of W : wii > 1/2 for all i ∈ V ,

• Network communication constraint: if (i, j) /∈ E, then wij = 0,

• For any link (i, j) ∈ E we have wij ∈ Q+, where Q+ is the set of rational

numbers in the interval (0, 1).

These are also sufficient conditions for the linear system (4.1) to converge. The
restriction of the weights to the class of rational numbers is just because of a technical
reason to prove convergence results.

We now state the main result of this chapter which will be proved in the following
subsections.

Main Convergence Result 1. Consider the quantized system (4.12). Suppose

that Assumption 1 holds. Then for any initial value x(0), there is a finite time

iteration where either

1. the system reaches quantized consensus, or

2. the nodes’ values cycle in a small neighborhood around the average, where the

neighborhood can be made arbitrarily small by a decentralized design of the

weights (having trade-off with the speed of convergence).

To highlight the importance of these results, notice that the Main Conver-
gence Result 1 implies there is an iteration k0 such that xi(k) − xj(k) < 1 for
all i, j ∈ V for k ≥ k0. This gives a constant upper bound on the metric
d∞(W) = supx(0) d∞(W,x(0)) independent of initial values, i.e., due to Assump-
tion 1, d∞(W) ≤ 0.5 on any general graph and for any initial conditions.

4.5.3 Cyclic States

We study in this subsection the convergence properties of the system equation (4.12)
under Assumption 1. Let us first show that due to quantized communication, the
states of the agents lie in a discrete set. Since wij ∈ Q+ for any link (i, j), we can
write

wij =
aij
bij
,

where aij and bij are co-prime positive integers. Suppose that Bi is the Least
Common Multiple (LCM) of the integers {bij ; (i, j) ∈ E, j ∈ Ni}. Let ci(k) =

80 Chapter 4. Quantized Communication in Consensus Protocols

xi(k)− ⌊xi(k)⌋; then we have ci(k) ∈ [0, 1). Let us see how ci(k) evolves:

ci(k) = xi(k)− ⌊xi(k)⌋
= xi(k − 1) +

∑

j∈Ni

wij × (⌊xj(k − 1)⌋ − ⌊xi(k − 1)⌋)

− ⌊xi(k)⌋
= ⌊xi(k − 1)⌋+ ci(k − 1)

+
∑

j∈Ni

aij
bij
× (⌊xj(k − 1)⌋ − ⌊xi(k − 1)⌋)− ⌊xi(k)⌋

= ci(k − 1) +
Z(k)

Bi
, (4.20)

where Z(k) ∈ Z is an integer. Then with a simple recursion, we can see that for any
iteration k we have:

ci(k) = ci(0) +
Z̃(k)

Bi
, (4.21)

where Z̃(k) ∈ Z. Since ci(k) ∈ [0, 1), this equation shows that the states of the nodes
are quantized, and the decimal part can have maximum Bi quantization levels.

We now give the following definition,

Definition 4. The quantized system (4.12) is cyclic if there exists a positive integer

P and a finite time k0 such that

x(k + P) = x(k) ∀k ≥ k0,

where P is the cycle period.

Proposition 10. Suppose Assumption 1 holds. Then, the quantized system (4.12),
starting from any initial value x(0), is cyclic.

Proof. Let m(k) and M(k) be defined as follows:

m(k) , min
i∈V
⌊xi(k)⌋, M(k) , max

i∈V
⌊xi(k)⌋. (4.22)

Notice that for any k, we have

xi(k + 1) = xi(k) +
∑

j∈Ni

wjiLji

≤ ci(k) + ⌊xi(k)⌋+

∑

j∈Ni

wji

 (M(k)− ⌊xi(k)⌋)

≤ ci(k) +M(k),

from which it follows that ⌊xi(k + 1)⌋ ≤ M(k), and hence M(k + 1) ≤ M(k). By
a simple recursion we can see that the maximum cannot increase, M(k) ≤ M(0).
Similarly, we have m(k) ≥ m(0).

4.5. Design and Analysis of the System 81

As a result, ⌊xi(k)⌋ ∈ {m(0),m(0)+1, . . . ,M(0)−1,M(0)} is a finite set. Moreover,
from equation (4.21), ci(k) belongs to a finite set that can have at most Bi elements.
Since xi(k) = ⌊xi(k)⌋+ci(k), and each of the elements in the sum belongs to a finite
set, xi(k) belongs to a finite set as well (of maximum cardinality Bi(M(0)−m(0)+

1)). But from equation (4.12), we have x(k + 1) = f (x(k)) where the function
f(.) is a deterministic function of the input state at iteration k, so the system is a
deterministic finite state automata. Since the system is deterministic, it would enter
a cycle if the same state is reached at two different iterations. The total number of
states is upper bounded by D = (B(M(0)−m(0) + 1))n where B = maxiBi, and
the system enters a cycle in finite time T ≤ D because if T > D, then at least one
state is repeated.

4.5.4 Lyapunov Stability

In this subsection, we will study the stability of the above system using a Lyapunov
function. Assumption 1 and Eq. (4.21) imply that there exists a fixed3 strictly
positive constant γ > 0 such that for any i and any iteration k the following hold:

If ci(k) >

∑

j∈Ni

wij

 , then ci(k)−
∑

j∈Ni

wij ≥ 2γ, (4.23)

If c̄i(k) >

∑

j∈Ni

wij

 , then c̄i(k)−
∑

j∈Ni

wij ≥ 2γ, (4.24)

c̄i(k) ≥ 2γ, (4.25)

1

2
−
∑

j∈Ni

wij ≥ 2γ, (4.26)

where c̄i(k) = 1− ci(k). Let γmax be the maximum γ that satisfies equations (4.23)-
(4.26). The results thereafter hold for any γ ∈ (0, γmax].

Remark: Equations (4.23)-(4.25) do not hold for the simple linear model of

(4.1). For example, consider a linear model that does not reach consensus in finite

time, and suppose that xave ∈ Z. Then, since limk→∞ xi(k) = xave, we have that

ci(k) can be as close to 1 as desired, and hence we cannot bound c̄i(k) by a fixed

positive value.

In fact, equations (4.23)-(4.25) show the discrete nature of the quantized system
where ci(k) can only take finite possible values. We will use these equations to
define a closed interval (set) I = [a, b] having the property that if xi(k) ∈ I, then
xi(k) is an interior point in this interval with a distance at least γ far from its
boundaries. Having a fixed distance γ from the boundaries will play an important
role in the stability analysis in what follows because it shows that if a node’s variable
got out of the interval, it must pass at least a distance γ, i.e., suppose that xi(k) ∈ I

3By ‘fixed’ we mean that the value is independent of time and it only depends on initial values

and the network structure.

82 Chapter 4. Quantized Communication in Consensus Protocols

but xi(k + 1) /∈ I, then d(xi(k + 1), I) ≤ |xi(k + 1) − xi(k)| − γ where d(x, I) =

miny∈I |x− y| is the distance of the node’s variable x from the interval I.
Let m(k) and M(k) be defined as in (4.22). Let us define the following set:

Sk = {y ∈ Rn, |yi −m(k)− 1| ≤ αi for all i}, (4.27)

where αi = 1− wii + γ. Note that

αi = 1− wii + γ

=
∑

j∈Ni

wij + γ

≤ 1

2
− γ,

where the last inequality is due to Eq. (4.26), and thus αi ∈ (0, 1/2). The set Sk
depends on the iteration k because the value m does. Since according to the system
(4.12), m(k) cannot decrease and M(k) cannot increase as indicated earlier, then Sk
can only belong to one of the M(0)−m(0) possible compact sets at each iteration
k. Furthermore, if Sk changes to a different compact set due to an increase in m,
it cannot go back to the old one as m cannot decrease. Additionally, if x(k) ∈ Sk,
then it is an interior point of the set Sk and not on the boundary because suppose
|xi(k) −m(k) − 1| = αi, then either ci(k) = αi =

∑

j∈Ni
wij + γ which contradicts

(4.23) or c̄i(k) = αi =
∑

j∈Ni
wij + γ which contradicts (4.24).

Let us define the following candidate Lyapunov function:

V (k) = d(x(k), Sk)

= min
y∈Sk

||y − x(k)||1

= min
y∈Sk

∑

i∈V
|yi − xi(k)| (4.28)

By minimizing along each component of y independently, we get

V (k) =
∑

i

max{|xi(k)−m(k)− 1| − αi, 0}.

Let us determine the change in the proposed candidate Lyapunov function. In
order to understand the evolution of ∇Vk = V (k + 1) − V (k), we group the nodes
depending on their values at iteration k into 6 sets, X1(k), X2(k), X3(k), X4(k),
X5(k), and X6(k) (see Fig. 4.3):

• Node i ∈ X1(k) if m(k) ≤ xi(k) < m(k) + 1− αi,

• Node i ∈ X2(k) if m(k) + 1− αi ≤ xi(k) < m(k) + 1,

• Node i ∈ X3(k) if m(k) + 1 ≤ xi(k) ≤ m(k) + 1 + αi,

• Node i ∈ X4(k) if m(k) + 1 + αi < xi(k) < m(k) + 2,

4.5. Design and Analysis of the System 83

Figure 4.3: Dividing the nodes into sets according to their local values.

• Node i ∈ X5(k) if m(k) + 2 ≤ xi(k) < m(k) + 2 + αi,

• Node i ∈ X6(k) if m(k) + 2 + αi ≤ xi(k).

For simplicity we will drop the index k in the notation of the sets and m(k) when
there is no confusion. To have better insights about these sets, we note that if X6

becomes empty at a given iteration, then the set remains empty, i.e.,

Lemma 5. If X6(k0) = ϕ, then X6(k) = ϕ for all k ≥ k0.

Proof. If a node i /∈ X6(k), then ⌊xi(k)⌋ ∈ {m(k),m(k) + 1,m(k) + 2}. So for any
node i,

xi(k + 1) = xi(k) +
∑

j∈Ni

wijLji

< m(k) + 2 + αi

where the last equality is due to three possibilities,

• if ⌊xi(k)⌋ = m(k)+2, then Lji ≤ 0 for every j ∈ Ni, and xi(k) < m(k)+2+αi

since i ∈ X5 in this case;

• if ⌊xi(k)⌋ = m(k) + 1, then
∑

j∈Ni
wijLji ≤

∑

j∈Ni∩X5
wij ≤ αi, and xi(k) <

m(k) + 2 in this case;

• if ⌊xi(k)⌋ = m(k), then
∑

j∈Ni
wijLji ≤

∑

j∈Ni
wij × 2 ≤ 2αi, and xi(k) <

m(k) + 1 in this case.

Therefore, sincem(k) ≤ m(k+1), then xi(k+1) < m(k+1)+2+αi and i /∈ X6(k+1)

from the definition of the sets and this ends the proof.

84 Chapter 4. Quantized Communication in Consensus Protocols

Note that by a similar reasoning as in Lemma 5, if {X5, X6} got empty, then
it remains empty during all further iterations, and if {X4, X5, X6} got empty it
remains empty too.

With every iteration, nodes can change their sets. Note that any node can jump
in one iteration to a higher set, but the other way around is not always possible.
For example, a node at iteration k in X1 can jump at iteration k + 1 to X6, but no
node outside X1 can get back to it (if the minimum m(k) is not increased) as we
will show next.

Lemma 6. If m(k + 1) = m(k) and i /∈ X1(k), then i /∈ X1(k + 1).

Proof. Let us define Lk
i be the level of node i at iteration k, i.e., Lk

i = ⌊xi(k)⌋−m(k).
Then,

xi(k + 1) = xi(k) +
∑

j∈Ni

wjiLji

≥ ci(k) + ⌊xi(k)⌋+ (
∑

j∈Ni

wji)(m(k)− ⌊xi(k)⌋)

= ci(k) + Lk
i +m(k) + (

∑

j∈Ni

wji)(−Lk
i)

= m(k) + ci(k) + wiiL
k
i

≥ m(k) + 1− αi

≥ m(k + 1) + 1− αi,

and i /∈ X1(k + 1). The inequality before the last one is due to two possibilities,

• if i ∈ X2(k) then Lk
i = 0, and m(k) + ci(k) = xi(k) ≥ m(k) + 1− αi,

• otherwise Lk
i ≥ 1, so m(k) + ci(k) + wiiL

k
i ≥ m(k) + wii ≥ m(k) + 1− αi.

Therefore, due to Lemma 6 the increase V (k) is due to nodes changing to a higher
set. However, any node changing its set to a higher one, should have neighbors in
the higher sets that cause V (k) to decrease by at least the same amount. To make
this a formal argument we give the following lemma:

Lemma 7. Consider the quantized system (4.12). Suppose that Assumption 1 holds.

If m(k + 1) = m(k), we have

∇Vk ≤ 0.

Proof. We define ∇iVk as follows:

∇iVk , max{|xi(k + 1)−m− 1| − αi, 0}
−max{|xi(k)−m− 1| − αi, 0}, (4.29)

4.5. Design and Analysis of the System 85

from which it is evident that ∇Vk =
∑

i∈V ∇iVk. Since only nodes moving from a
set Xs to a higher set Xt where t ≥ max{s, 4} can increase V (k) (we will use the
expression Xs → Xt to denote the transition of a node that belongs to the set Xs at
iteration k to the set Xt at iteration k+ 1), then we can enumerate all the possible
transitions of nodes that can cause V (k) to increase:

1. X1(k)→ Xt(k + 1) , t ≥ 4,

∇iVk = max{|xi(k + 1)−m− 1| − αi, 0} −max{|xi(k)−m− 1| − αi, 0}
= (xi(k + 1)−m− 1− αi)− (1 +m− xi(k)− αi)

= xi(k) +
∑

j∈Ni

wij (⌊xj(k)⌋ − ⌊xi(k)⌋)−m− 1−m− 1 + xi(k)

=
∑

j∈Ni

wijLji − 2(m+ 1− xi(k))

=
∑

j∈Ni

wijLji − 2c̄i(k)

=
∑

j∈Ni

wijLji − 2(αi(k)− αi(k) + c̄i(k))

= (
∑

j∈Ni∩{X3,X4}
wij) + (

∑

j∈Ni∩X5

wij × 2) + (
∑

j∈Ni∩X6

wijLji)

− 2(
∑

j∈Ni

wij + γ + (c̄i(k)− αi))

≤ (
∑

j∈Ni∩X6

wijLji)

︸ ︷︷ ︸

≥0

−4γ. (4.30)

2. X2(k) → Xt(k + 1) , t ≥ 4, and the change in the Lyapunov function due to

86 Chapter 4. Quantized Communication in Consensus Protocols

these nodes is as follows:

∇iVk = max{|xi(k + 1)−m− 1| − αi, 0}
−max{|xi(k)−m− 1| − αi, 0}

= (xi(k + 1)−m− 1− αi)− 0

= xi(k) +
∑

j∈Ni

wijLji −m− 1− αi

=
∑

j∈Ni

wijLji − αi − c̄i(k)

= (
∑

j∈Ni∩{X3,X4}
wij) + (

∑

j∈Ni∩X5

wij × 2)

+ (
∑

j∈Ni∩X6

wijLji)−
∑

j∈Ni

wij − γ − c̄i(k)

≤ (
∑

j∈Ni∩X5

wij)

︸ ︷︷ ︸

≥0

+(
∑

j∈Ni∩X6

wijLji)

︸ ︷︷ ︸

≥0

−2γ. (4.31)

3. X3(k)→ Xt(k + 1) , t ≥ 4, then

∇iVk = xi(k) +
∑

j∈Ni

wijLji −m− 1− αi

=
∑

j∈Ni

wijLji − (αi − ci(k))

= (
∑

j∈Ni∩{X1,X2}
wij × (−1)) + (

∑

j∈Ni∩X5

wij)

+ (
∑

j∈Ni∩X6

wijLji)− (αi − ci(k))

≤ (
∑

j∈Ni∩X5

wij)

︸ ︷︷ ︸

≥0

+(
∑

j∈Ni∩X6

wijLji)

︸ ︷︷ ︸

≥0

−γ. (4.32)

4. X4(k)→ Xt(k + 1) , t ≥ 4, then

∇iVk =
∑

j∈Ni

wijLji

≤

∑

j∈Ni∩X5

wij

︸ ︷︷ ︸

≥0

+

∑

j∈Ni∩X6

wijLji

︸ ︷︷ ︸

≥0

.

4.5. Design and Analysis of the System 87

5. X5(k)→ Xt(k + 1) , t ≥ 5, then

∇iVk =
∑

j∈Ni

wijLji

=

∑

j∈Ni∩X6

wijLji

︸ ︷︷ ︸

≥0

+

∑

j∈Ni,j /∈X6

wijLji

︸ ︷︷ ︸

≤0

.

6. X6(k)→ X6(k + 1), then

∇iVk =
∑

j∈Ni

wijLji

=

∑

j∈Ni∩X̄i
6

wijLji

︸ ︷︷ ︸

≥0

+

∑

j∈Ni,j /∈X̄i
6

wijLji

︸ ︷︷ ︸

≤0

.

where the set X̄i
6 is the set of nodes such that j ∈ X̄i

6 if xj(k) ≥ xi(k).
Notice that the positive component in ∇Vk because of a node s belonging to one

of the presented 6 possibilities is only due to a neighbor p in {X5(k), X6(k)} such
that xp(k) ≥ xs(k). Then p can belong to two possible sets: X5 or X6.

Suppose first that p ∈ X6(k), let A be the increase in ∇sVk, then this increase
is as follows:

A = wpsLps > 0,

but this increase is decreased again in ∇pVk since a node in X6(k) cannot drop
below X4(k + 1), we can write:

∇pVk = max{|xp(k + 1)−m− 1| − αp, 0}
−max{|xp(k)−m− 1| − αp, 0}

= (xp(k + 1)−m− 1− αp)− (xp(k)− 1−m− αp)

= xp(k) +
∑

j∈Np

wjpLjp − xp(k)

= wspLsp
︸ ︷︷ ︸

−A

+
∑

j∈Np−{s}
wjpLjp.

Taking the other case, suppose now p ∈ X5, let B be the increase in ∇sVk of a
node s due to its neighbor p ∈ X5:

B = wsp > 0,

then this increase is decreased again in ∇pVk, but we should consider two cases:

88 Chapter 4. Quantized Communication in Consensus Protocols

• p: X5 → Xm, m ≥ 4, then

∇pVk = wpsLsp
︸ ︷︷ ︸

≤−B

+
∑

j∈Np−{s}
wjpLjp, (4.33)

• p: X5 → X3, then

∇pVk ≤ −1/2
≤ −

∑

j∈Np

wpj

= −wps
︸ ︷︷ ︸

−B

−
∑

j∈Np−{s}
wjp,

and p decreases in the same amount that its neighbor s increased.
Remark: For every positive value that increases V (k), there is a unique corre-

sponding negative value that compensates this increase by decreasing V (k). This is

because for any link l ∼ (i, j) ∈ E, the increase in ∇iVk due to l forces a decrease in

∇jVk due to the same link, and so there is one to one mapping between the increased

values and the decreased ones.

As a result of the discussion we can have the total ∇Vk cannot increase, namely

∇Vk =
∑

i

∇iVk ≤ 0.

Lemma 7 implies that V (k) is non-increasing with time. We identify some
situations under which V (k) strictly decreases (assuming of course m(k + 1) =

m(k)). Given for example a node i ∈ X1(k) that is connected to a node
j ∈ {X3(k), X4(k), X5(k), X6(k)}, if i jumped to Xt(k + 1), t ≥ 4, then the term
−4γ from equation (4.30) causes strict decrease in V (k), i.e., ∇Vk ≤ −4γ. If
i ∈ Xt(k+1), t < 4, then xi(k+1) = xi(k)+wij(⌊xs(k)⌋−m)+

∑

s∈Ni−j wis(⌊xs(k)⌋−
m) ≥ xi(k) + wij and thus

∇iVk ≤ −min{wij , d(xi(k), [m+ 1− αi,m+ 1 + αi])} ≤ −min{δ, γ},

where d(xi(k), [m + 1 − αi,m + 1 + αi]) is the distance of xi(k) from the set
[m + 1 − αi,m + 1 + αi] and δ = min(i,j)∈E wij > 0. This decrease in ∇iVk causes
∇Vk to decrease by the same quantity. Another situation can arise if, for exam-
ple, a node i ∈ X2(k) is connected to a node j ∈ {X4(k), X5(k), X6(k)}. If i
jumped to Xt(k + 1), t ≥ 4, then the term −2γ from equation (4.31) causes a strict
decrease in V (k), i.e., ∇Vk ≤ −2γ. If i ∈ Xt(k + 1), t < 4 (and so is any neigh-
bor in {X2(k), X3(k)} of j), then xj(k + 1) = xj(k) + wij(⌊xi(k)⌋ − ⌊xj(k)⌋) +
∑

s∈Nj−iwsj(⌊xs(k)⌋ − ⌊xj(k)⌋) ≤ xj(k) − wij +
∑

s∈Nj−iwsj(⌊xs(k)⌋ − ⌊xj(k)⌋)
and thus a term −min{wij , d(xj(k), [m + 1 − αj ,m + 1 + αj])} appears in ∇jVk
which causes ∇Vk ≤ −min{δ, γ}.

4.5. Design and Analysis of the System 89

Based on the discussion so far, we can now present two situations (and a third
situation a bit later) under which V (k) is strictly decreasing. These situations will
play an important role in the proof of the main result.

• Situation 1 (S1) occurs if at iteration k there exists a link in the network
between a node j ∈ {X4 ∪X5 ∪X6} and a node i ∈ {X1 ∪X2}, in this case
we have,

∇Vk ≤ −min{γ, δ}, (4.34)

where δ = min(i,j)∈E wij > 0.

• Situation 2 (S2) occurs if at iteration k there exists any link in the network
between a node j ∈ X5 ∪X6 and a node i ∈ X3, in this case we have,

∇Vk ≤ −min{αi − ci(k), wij}
≤ −min{γ, δ}. (4.35)

4.5.5 Proof of Main Result

To show that V (k) is eventually decreasing, we have to introduce some more nota-
tion. Let

R(k0) = min{k − k0; k > k0,∇Vk ≤ −β},
where β > 0 is a positive constant. Notice that if either S1 or S2 occurs at time
T0 > k0, then R(k0) ≤ T0 − k0 by considering β = min{γ, δ}, i.e., R(k0) is upper
bounded by the minimum time for at least one of the two situations to occur. We will
show that if there exists at least one node in {X4, X5, X6} at k0 and m(k) = m(k0)

for k < R(k0) + k0, then we can have a fixed upper bound on R(k0). If we looked
at the values of the nodes in the network at any iteration k0, we can see that if
k < k0 + R(k0), the network has a special structure: only nodes in {X1, X2, X3}
have links between each other, nodes in X3 can also have links to X4, but not to
{X5, X6}. Nodes in {X5, X6} can only be connected to X4 (see Fig. 4.4). Moreover,
the values of nodes in X3 cannot increase due to the link between X3 and X4. To
see this, let i ∈ X3 and s ∈ X4 where s ∈ Ni. Then we have:

xi(k + 1) = xi(k) + wisLsi +
∑

j∈Ni−{s}
wijLji,

but since ⌊xi(k)⌋ = ⌊xs(k)⌋, we have Lis = 0 and thus xi(k + 1) = xi(k) +
∑

j∈Ni−{s}wijLji, so nodes in X4 do not have any effect on nodes in X3 and the
values of nodes in X3 cannot increase for all k < k0 + R(k0) (we will get back to
this issue later).

To find the number of iterations for a dotted (red) link to appear, we define the
following function for nodes in {X1, X2, X3}:

f(i, k) =

{

1 if i ∈ {X1(k), X2(k)},
0 if i ∈ X3(k),

(4.36)

90 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.4: The solid lines (blue links) identify the network structure at any iteration
k0 ≤ k < k0 + R(k0), while if a dotted link (in red) appears, then V (k) strictly
decreases.

and let Ti(k0, k) be the number of times a node i is in {X1, X2} in the time interval
between k0 and k, i.e.,

Ti(k0, k) =

t=k∑

t=k0

f(i, t).

In fact, we can partition the nodes in {X1, X2, X3} depending on their distance
to nodes in X4. Let ri be the shortest path distance from a node i ∈ {X1, X2, X3}
to the set X4 (i.e., ri = minj∈X4 rij where rij is the number of hops following the
shortest path from i to j). We define the set Du where u = 1, . . . , r and r = maxi ri
as the set of nodes such that i ∈ Du if and only if u = ri. For example, D1 contains
nodes that have direct neighbors in X4, D2 contains the nodes that do not have
direct neighbors in X4 but there is a node in X4 found 2 hops away, and so on.
Moreover, for any node i ∈ Du such that u > 1, we can find at least one neighbor
j ∈ Du−1. Let P (i) be any one of these neighbors, referred to as the parent of i.
It is important to note that any node in Du remains in the set as long as non of
the situation has occurred, i.e., the sets Du for u = 1, . . . , r considered at iteration
k0 do not change their elements for k0 ≤ k < k0 + R(k0). We can now obtain the
following lemma:

Lemma 8. If {X4, X5, X6} ̸= ϕ at an iteration k0, and m(k) = m(k0) for k0 ≤ k <
k0 +R(k0), then for any integer N ∈ N: if

Ti(k0, k) ≥ N ×
(
αP (i)

wiP (i)
+ 1

)

,

then

TP (i)(k0, k) ≥ N.

Proof. The proof is based on the observation we mentioned earlier. For any node
s ∈ X3, its neighbors in X4 do no have any effect on xs(k + 1) and it cannot have
any neighbor in {X5, X6} otherwise one of the situations (S1 or S2) occurs and
contradicts the assumption k < k0 + R(k0). Therefore, the decrease of the node s

4.5. Design and Analysis of the System 91

from X3 to X2 can only be due to its neighbors in {X1, X2}. Let i ∈ {X1, X2} be
a neighbor of node s, then

xs(k + 1) = xs(k) +
∑

j∈Ns

wjsLjs

= xs(k) + wis × (−1) +
∑

j∈Ns∩{X1,X2}−{i}
wjsLjs

≤ xs(k)− wis

= 1 +m+ cs(k)− wis,

and the node s can either drop to X2 or stay in X3 depending on the resulting value
xs(k + 1). And since cs(k) ≤ αs and xs(k + 1) cannot increase if s was in X3 at
iteration k, then we are sure that if i was in {X1, X2} for more than αs

wis
iterations

(i.e., Ti(k0, k) ≥ αs
wis

+1), then s has dropped to X2 at least once (i.e., Ts(k0, k) ≥ 1).
Thus since P (i) ∈ Ni, we have

Ti(k0, k) ≥
(
αP (i)

wiP (i)
+ 1

)

=⇒ TP (i)(k0, k) ≥ 1. (4.37)

If Ti(k0, kN) ≥ N ×
(

αP (i)

wiP (i)
+ 1
)

, then we can find N − 1 iterations,

k1, k2, . . . , kN−1, such that

Ti(kv−1, kv − 1) ≥
(
αP (i)

wiP (i)
+ 1

)

for v = 1, . . . , N.

By (4.37), we have TP (i)(kv−1, kv − 1) ≥ 1. Therefore,

TP (i)(k0, k) =

N−1∑

v=1

TP (i)(kv−1, kv − 1) + TP (i)(kN−1, k)

≥
(

N−1∑

v=1

1

)

+ 1

≥ N,

and the lemma is proved.

Now we show that there is a fixed upper bound on the time for either of the
situations to occur,

Lemma 9. If {X4, X5, X6} ̸= ϕ at an iteration k0, and m(k) = m(k0) for k ≥ k0,

then

R(k0) ≤ n
(

1 +
1

2δ

)n−1

,

where δ = min(i,j)∈E wij is a positive constant (δ > 0).

92 Chapter 4. Quantized Communication in Consensus Protocols

Proof. Notice first that for any iteration k̄ ≥ k0, if Ti(k0, k̄) ≥ 1 where i ∈ D1, then
situation 1 has occurred and R(k0) ≤ k̄ − k0.

Moreover, since m(k) = m(k0) for k ≥ k0, then at every iteration k there is at
least one node in {X1, X2}, leading to

∑

i∈{X1,X2,X3}
Ti(k0, k) ≥ k − k0.

Let k̄ = k0 + n
(
1 + 1

2δ

)n−1
; then we have

∑

i∈{X1,X2,X3}
Ti(k0, k̄) ≥ n

(

1 +
1

2δ

)n−1

,

and there must be a node i ∈ Du in this sum such that

Ti(k0, k̄) ≥
(

1 +
1

2δ

)n−1

.

Without loss of generality, we can suppose 1
2δ ∈ N. So applying Lemma 8, we can

see that

Ti(k0, k̄) ≥
(

1 +
1

2δ

)n−1

≥
(

1 +
αP (i)

wiP (i)

)

×
(

1 +
1

2δ

)n−2

,

=

(

1 +
αP (i)

wiP (i)

)

×N,

where N =
(
1 + 1

2δ

)n−2
, which implies

Tj(k0, k̄) ≥
(

1 +
1

2δ

)n−2

,

where j = P (i) and j ∈ Du−1. Doing this recursively (u − 1 times), we see that
there is a node s ∈ D1 such that,

Ts(k0, k̄) ≥
(

1 +
1

2δ

)n−u

,

but since u ≤ r ≤ n, we have Ts(k0, k̄) ≥ 1 which means situation S1 occurred
because s ∈ D1. Therefore,

R(k0) ≤ k̄ − k0

≤ n
(

1 +
1

2δ

)n−1

,

and the lemma is proved.

4.5. Design and Analysis of the System 93

We also need the following lemma,

Lemma 10. Suppose Assumption 1 holds. Let β = min{γ, δ}, then for the quantized

system (4.12), at any time k0, there is a finite time k1 ≥ k0 such that for k ≥ k1,

either {X4, X5, X6} = ϕ or m(k) > m(k0). Moreover,

k1 ≤ k0 + n

(
V (k0)

β
+ 1

)(
1

2δ
+ 1

)n−1

.

Proof. Let us prove it by contradiction. Suppose that {X4, X5, X6} ̸= ϕ and m(k) =

m(k0) for k ≥ k0. Therefore we can apply Lemma 9 to show that there is an upper
bound R(k0) for situations S1 or S2 to occur. Whenever one of the situations occurs,

we have ∇Vk ≤ −β, otherwise ∇Vk ≤ 0. For k > k0 + n
(
V (k0)

β + 1
) (

1
2δ + 1

)n−1
,

we have that situations S1 or S2 have occurred at least
(
V (k0)

β + 1
)

times; then

V (k) ≤ V (k0)− β ×
(
V (k0)

β
+ 1

)

≤ −β < 0,

which is a contradiction since V (k) ≥ 0 is a Lyapunov function. As a result, there

exists an iteration k1 satisfying k1 ≤ k0 + n
(
V (k0)

β + 1
) (

1
2δ + 1

)n−1
such that for

k ≥ k1, either {X4, X5, X6} = ϕ or m(k) > m(k0).

We are now ready to prove the following propositions,

Proposition 11. Consider the quantized system (4.12). Suppose that Assump-

tion 1 holds. Then for any initial value x(0), there is a finite time iteration where

{X4, X5, X6} = ϕ.

Proof. The value m(k) cannot increase more than M(0) − m(0) number of times
because M(k) is non-increasing. Therefore, applying Lemma 10 for M(0) −m(0)

times, we see that {X4, X5, X6} = ϕ in a finite number of iterations.

Proposition 11 shows that in fact the nodes are restricted in a finite number of
iterations to the sets {X1, X2, X3}. In fact, we can even show a stronger result,
that either X1 or X3 can be nonempty, but not both. This is given in the next
proposition.

Proposition 12. Consider the quantized system (4.12). Suppose that Assumption 1

holds. Then for any initial value x(0), there is a finite time iteration where either

{X3, X4, X5, X6} = ϕ or {X1, X4, X5, X6} = ϕ.

Proof. Due to Proposition 11, we can find a finite time T such that {X4, X5, X6} =
ϕ. Without loss of generality, we consider T = 0. In fact, a third situation that can
strictly decrease V (k) occurs when there is a link between a node in X1 and a node
in X3. Fig. 4.5 shows the network structure. If Situation 3 (S3) occurs and (ij) ∈ E

94 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.5: The solid lines (blue links) identify the network structure at any iteration
k0 ≤ k < k0 + R(k0), while if the dotted link (in red) appears, then V (k) strictly
decreases.

where i ∈ X1 and j ∈ X3, then

∇Vk ≤ −min{c̄i(k)− αi, wij}
≤ −min{γ, δ}. (4.38)

In fact, similar to the reasoning along this subsection, we can bound the number of
iterations for S3 to occur. The bound is exactly the same as the one developed for
the other situations. Instead of repeating the derivations, the proof reads roughly
the same starting from the beginning of Subsection 4.5.5 but by replacing X1, X2,
and X3 by ϕ, replacing X2 by X3, replacing X3 by X2, replacing X4 by X1, and
finally replacing the condition m(k) = m(k0) by X3 ̸= ϕ. Thus, Lemma 10 will read
as follows: Suppose Assumption 1 holds. Let β = min{γ, δ}, then for the quantized
system (4.12), at any time k0, there is a finite time k1 ≥ k0 such that for k ≥ k1,
either X1 = ϕ or X3 = ϕ. This ends the proof.

Proposition 13. Consider the quantized system (4.12). Suppose that Assumption 1

holds and let α = maxi αi. Then for any initial value x(0), there is a finite time

iteration where either

• the values of nodes are cycling in a small neighborhood around the average

such that : {

|xi(k)− xj(k)| ≤ αi + αj for all i, j ∈ V
|xi(k)− xave| ≤ 2α for all i ∈ V,

(4.39)

• or the quantized values have reached consensus, i.e.,

{

⌊xi(k)⌋ = ⌊xj(k)⌋ for all i, j ∈ V
|xi(k)− xave| < 1 for all i ∈ V.

(4.40)

Proof. The two possibilities are consequence of the two possible cases of Proposition
12,

• Case {X1, X4, X5, X6} = ϕ. Then all nodes are in {X2, X3} and by the defini-
tion of the sets we have |xi(k)− xj(k)| ≤ αi +αj for all i, j ∈ V , so nodes are

4.6. Discussion 95

cycling (due to Proposition 10) around m+ 1. Moreover, since the average is
conserved from Eq. (4.9), we have:

|xi(k)− xave| = |xi(k)− xave(k)|
≤ |max

i
xi(k)−min

i
xi(k)|

≤ 2max
i
αi

= 2α,

• Case {X3, X4, X5, X6} = ϕ. Then all nodes are in {X1, X2} and by the defi-
nition of the sets we have reached quantized consensus. Since for any i and j
we have ci(k), cj(k) ∈ [0, 1), then |xi(k)− xj(k)| < 1 and as in the above due
to Eq. (4.9), we have |xi(k)− xave| < 1.

4.6 Discussion

Propositions 10 shows that the uniform quantization on communications given by
the model of this chapter can have a very important cyclic property. Up to our
knowledge, this is the first work in deterministic quantized algorithms that shows
this cyclic effect of nodes’ values and it is also shown by Proposition 13 that the cyclic
values can be control by a simple distributed adjustment of the weights. This can
have an important impact on the design of quantized communication algorithms.4

For example, due to the cyclic effect, nodes can use the history of their values to
reach asymptotic convergence as the following proposition shows:

Corollary 1. Consider the quantized system (4.12). Suppose that Assumption 1

holds. Then for any initial value x(0), if yi(k) is an estimate of the average at node

i following the recursion:

yi(k) =
k

k + 1
yi(k − 1) +

1

k + 1
xi(k), ∀i ∈ V, (4.41)

where yi(0) = xi(0), then yi(k) is converging,

lim
k→∞

yi(k) = y∗i , ∀i ∈ V, (4.42)

having

|y∗i − xave| ≤ 1.

4Pattern generation (as for cyclic systems) plays an important role in the design of many

mechanical and electrical systems [Bro97].

96 Chapter 4. Quantized Communication in Consensus Protocols

Proof. The state equation of yi(k) for a node i is give by

yi(k) =
k

k + 1
yi(k − 1) +

1

k + 1
xi(k) =

1

k + 1

t=k∑

t=0

xi(t)

=
1

k + 1

(
t=Tconv−1∑

t=0

xi(t)

)

+
1

k + 1

(
t=k∑

t=Tconv

xi(t)

)

,

where Tconv is the finite time iteration when the nodes’ values start cycling. As k
approaches infinity, the left part in the sum vanishes while the right part converges
to the average of the values in a cycle, i.e.,

lim
k→∞

yi(k) = y∗i =
1

P

t=Tconv+P−1∑

t=Tconv

xi(t),

where P is the cycle period. Since for k ≥ Tconv we have |xi(k) − xave| ≤ 1 from
Proposition 13, then |y∗i − xave| ≤ 1.

Moreover, since the final behavior of the system depends on the initial values as
shown by Proposition 13, we give here a condition on the initial values for the nodes
to reach quantized consensus in networks:

Corollary 2. Consider the quantized system (4.12). Suppose that Assumption 1

holds. If the initial values x(0) satisfy,

α ≤ xave − ⌊xave⌋ ≤ 1− α, (4.43)

then the network reaches quantized consensus.

Proof. If the system was cyclic, then for any node i ∈ V , we have i ∈ {X1, X2},
so xi(k) ∈ [m + 1 − αi,m + 1 + αi]. This implies that xave(k) ∈ [m + 1 − αi,m +

1 + αi], but since the average is conserved (from equation (4.9)), it also implies
that xave ∈ [m + 1 − αi,m + 1 + αi]. From the latter condition, we see that if
α < xave − ⌊xave⌋ < 1 − α, the system cannot be cyclic, and by Proposition 13, it
must reach quantized consensus.

4.6.1 Design of Weights with Arbitrarily Small Error

If the system has reached quantized consensus, the values of the agents’ agreement
variables become stationary and the deviation of these values from the average is no
larger than 1. In the case when the system does not reach quantized consensus but
becomes cyclic, Proposition 13 shows that the deviation of nodes’ values from the
average is upper bounded by 2α where α = maxi αi. Moreover the deviation can be
made arbitrarily small by adjusting the weights in a distributed manner. Toward
that end, we propose the following modified Metropolis weights:

wij =
1

C (max{di, dj}+ 1)
, ∀(i, j) ∈ E

wii = 1−
∑

j∈Ni

wij , ∀i ∈ V

4.7. Simulations 97

where C is any rational constant such that C ≥ 2. It can be easily checked that
the proposed weights satisfy Assumption 1. Moreover, in addition to its distributed
nature, the choice of C can be used to define the error. Notice that for any i ∈ V ,
we have

wii = 1−
∑

j∈Ni

1

C (max{di, dj}+ 1)

≥ 1− 1

C

∑

j∈Ni

1

di + 1

= 1− 1

C

di
di + 1

= 1− 1

C
+

1

C(di + 1)
,

then 1− wii ≤ 1
C − 1

C(di+1) , so

αi = 1− wii + γ

≤ 1

C
− 1

C(di + 1)
+ γ

Since γ can be chosen arbitrarily from the interval (0, γmax], by considering a small
enough γ the following holds

α ≤ 1

C
.

This shows that given an arbitrary level of precision known to all the agents, the
agents can choose the weights with large enough C in a distributed manner, so that
the neighborhood of the cycle will be close to the average with the given precision.
Notice that if xave ̸= ⌊xave⌋, then for α small enough, the system cannot be cyclic
and only quantized consensus can be reached (Corollary 2). In other words, for
systems starting with different initial values, having a smaller α leads more of these
systems to converge to quantized consensus (and of course if they cycled, they will
cycle in a smaller neighborhood as well due to Proposition 13).

It is worth mentioning that this arbitrarily small neighborhood weight design
has a trade-off with the speed of convergence of quantized consensus protocol (small
error weight design leads to slower convergence).

4.7 Simulations

In this section, we present some simulations to demonstrate the theoretical results
in the previous section. The weights for the simulations satisfy Assumption 1 and
are the modified Metropolis weights with C = 2, i.e.,

wij =
1

2 (max{di, dj}+ 1)
∀(i, j) ∈ E.

98 Chapter 4. Quantized Communication in Consensus Protocols

125 127 129 131 133 135 137 139 141
43.6

43.7

43.8

43.9

44

44.1

44.2

44.3

44.4

44.5

Iteration

L
o

c
a

l
v
a

lu
e

s
 o

f
th

e
 n

o
d

e
s

Cycle Period
 (4 iterations)

Figure 4.6: The nodes’ values are entering into a cycle.

34 35 36 37 38 39 40
33.5

34

34.5

35

35.5

Iteration

L
o

c
a

l
v
a

lu
e

s
 o

f
th

e
 n

o
d

e
s

Convergence Iteration

Figure 4.7: The nodes’ values are converging.

4.7. Simulations 99

4.7.1 Simple Network

Proposition 13 shows that depending on the initial state x(0), the system reaches in
finite time one of the two possibilities: 1) cyclic, 2)quantized consensus. We show
on a network of 10 nodes with initial values selected uniformly at random from the
interval [0, 100] that both of these are possible. Fig. 4.6, shows that after a certain
iteration, the nodes’ values enter into a cycle of period 4 iterations, while Fig. 4.7
shows that starting from different initial values, all the 10 nodes reach quantized
consensus in finite time. Mainly, at iteration 38, all nodes’ values are between 34
and 35; therefore, we have

⌊xi(k)⌋ = 34 ∀i = 1, . . . , 10, ∀k ≥ 38.

4.7.2 Random Graphs

To further simulate our theoretical results, we need to select some network model.
The simulations are done on random graphs: Erdös-Renyi (ER) graphs and Random
Geometric Graphs (RGG), given that they are connected. The random graphs are
generated as follows:

• For the ER random graphs, we start from n nodes fully connected graph,
and then every link is removed from the graph by a probability 1 − P and is
left there with a probability P . We have tested the performance for different
probabilities P given that the graph is connected.

• For the RGG random graphs, n nodes are thrown uniformly at random on
a unit square area, and any two nodes within a connectivity radius R are

connected by a link (the connectivity radius R is selected as R =

√

c× log(n)
n

where c is a constant that is studied by wide literature on RGG for connec-
tivity). We have tested the performance for different connectivity radii given
that the graph is connected. It is known that for a small connectivity radius,
the nodes tend to form clusters.

Since Proposition 13 shows that the system would reach one of the cases in finite
time, let us define Tconv be this time. Notice that if nodes enter the cyclic states
(case 1), the Lyapunov function is null because for all i ∈ V and k ≥ Tconv, we have
xi(k) ∈ [m+ 1− αi,m+ 1 + αi] , so we can write,

V (k) = 0 ∀k ≥ Tconv.

However, if nodes reached quantized convergence (case 2), then the Lyapunov func-
tion is a constant because for all i ∈ V and k ≥ Tconv, we have xi(k) ∈ [m,m+ 1],
so we can write,

V (k) = cte ∀k ≥ Tconv.

100 Chapter 4. Quantized Communication in Consensus Protocols

140 160 180 200 220 240 260

0

50

100

150

200

I te rat ion number

L
y
a
p
u
n
o
v
fu

n
c
ti
o
n
V
(k

)Cyclic System

Quantized Consensus

R (k0)

V (k) = c t e for k ≥ T c onver g enc e

V (k) = 0 for k ≥ T c onver g enc e

Figure 4.8: The system Lyapunov function V (k).

4.7.2.1 Lyapunov Function

Fig. 4.8 shows the Lyapunov functions for the two different cases on an RGG with
100 nodes and R = 0.2146, where each case corresponds to initial values of nodes
selected uniformly at random from the interval [0, 100]. The figure also shows R(k0)
which is the number of iterations after k0 up till V (k) decreases (S1 or S2 occurs).

4.7.2.2 Quantized Consensus

Given that we are considering Metropolis weights with C = 2, then the system
satisfies (4.43) if initial states are such that xave − ⌊xave⌋ = 0.5. We considered
RGG and ER graphs of 100 nodes, where the initial condition is chosen as follows:
the first 99 nodes are given uniformly random initial values from the interval [0, 100],
while the last node is given an initial value such that xave−⌊xave⌋ = 0.5 is satisfied.
Therefore, with these initial values, by applying Corollary 2, the system reaches
quantized consensus in finite time Tconv. Table I shows the mean value over 100
runs of the Tconv for the RGG with different connectivity radii, R1 < R2 < R3 <

R4 < R5, where R ∈ {0.1357, 0.1517, 0.1858, 0.2146, 0.3717}. The results show that
the more the graph is connected, the faster the convergence. These results are also
shown to be true on ER graphs. Table II shows the mean value over 100 runs of
the Tconv for the ER with different probability P , P1 < P2 < P3 < P4, where
P ∈ {0.04, 0.06, 0.08, 0.10}.

4.8 Conclusion

In this chapter, we studied the performance of deterministic distributed averaging
protocols subject to communication quantization. We have shown that depending

4.8. Conclusion 101

RGG n = 100

R1 R2 R3 R4 R5

Tconv 1965.3 1068.9 364.3 233.3 55.9

Table 4.1: Convergence time for Random Geometric Graphs (RGG) with different
connectivity radii (averaged over 100 runs).

ER n = 100

P1 = 0.04 P2 = 0.06 P3 = 0.08 P4 = 0.10

Tconv 161.49 99.38 66.58 43.43

Table 4.2: Convergence time for Erdos Renyi (ER) with different probabilities of
link existence (averaged over 100 runs).

on initial conditions, the system converges in finite time to either a quantized con-
sensus, or the nodes’ values are entering into a cyclic behavior oscillating in a small
neighborhood around the average. The size of this neghborhood can be controlled
by a decentralized design of the weight matrix. We also provided conditions for
which quantized consensus is guaranteed.

Chapter 5

Reducing Communication

Overhead

Contents
5.1 System equation . 104

5.2 Related Work . 104

5.3 Motivation . 105

5.4 Our Approach . 107

5.4.1 A Centralized Algorithm . 107

5.4.2 Decentralized Environment 110

5.4.3 Message Reducing Algorithm 112

5.4.4 Convergence Study . 115

5.4.5 Simulations . 118

5.5 Conclusion . 122

As demonstrated in the Introduction, the asymptotic convergence rate of con-
sensus protocols depends on the selected weights. In Chapter 1 we have proposed
an optimization problem that selects the weights in consensus protocols to achieve
fast asymptotic convergence rates. However, speeding up this rate does not auto-
matically reduce the number of messages that are sent in the network. The reason
is that the convergence is reached only asymptotically, and even if nodes’ estimates
are very close to the average, nodes keep on performing the averaging and sending
messages to their neighbors.

In this chapter, we address this issue. We propose an algorithm that relies only on
limited local information to reduce communication overhead for average consensus.
As the nodes’ estimates approach the true average, nodes exchange messages with
their neighbors less frequently. The algorithm has a nice self-adaptive feature: even
if it has already converged to a stable state and the message exchange rate is very
small, when an exogenous event leads the value at a node to change significantly, the
algorithm detects the change and ramps up its communication rate. The proposed
algorithm provides also a trade-off between the precision of the estimated average
and the number of messages sent in the network by setting one of its parameter.
Being totally decentralized, the message reduction algorithm can also be applied in
a dynamic network with faulty links.

104 Chapter 5. Reducing Communication Overhead

5.1 System equation

The system equation of this chapter at iteration k+1, node i updates its state value
xi:1

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj(k). (5.1)

For a node i to have access to the values of its neighbors’ variables, each node
j ∈ Ni should send the value xj(k) to i before the iteration k + 1 takes place. The
communication overhead due to these messages can be a burden on the network if
the algorithm ran for a long time.

The matrix form equation is:

x(k + 1) =Wx(k). (5.2)

In this chapter, we consider W to be n × n real doubly stochastic matrix having
µ(W) < 1 where µ(W) is the second largest eigenvalue in module of W . We also con-
sider that W is constructed locally (e.g., using the Metropolis weights described in
Chapter 4). With these conditions on W , the convergence to the average consensus
is in general asymptotic:

lim
k→∞

x(k) = xave1. (5.3)

Since average consensus is usually reached only asymptotically in (5.3), the nodes
will always be busy sending messages. Let N(k) be the number of nodes transmitting
at iteration k, so without a termination procedure all nodes are transmitting at
iteration k, N(k) = n independently from the current estimates. In this chapter we
present an algorithm that reduces communication overhead and provides a trade-off
between precision of the consensus and number of messages sent.

5.2 Related Work

Some previous works considered protocols for average consensus protocol to termi-
nate (in finite time) to converge to the exact average or to guaranteed error bounds.
For example, the approach proposed in [SH07] is based on the minimal polyno-

mial of the matrix W . The authors show that a node, by using coefficients of this
polynomial, can calculate the exact average from its own estimate on K consecu-
tive iterations. The drawback is that nodes must have high memory capabilities to
store n × n matrix, and high processing capabilities to calculate the coefficients of
the minimal polynomial by solving a set of n linearly independent equations. An-
other approach for finite time termination is given in [YS07], where the proposed
algorithm does not calculate the exact average, but estimates are guaranteed to be
within a predefined distance from the average. This approach runs three consensus

1At one point in the simulations in this chapter, the topology of the network may change

dynamically. This is taken into account in (5.1) by letting the neighborhood and the weights be

time-dependent (then we have Ni(k) and wij(k)).

5.3. Motivation 105

protocols at the same time: the average consensus which runs continuously and the
maximum and the minimum consensus restarted every U iterations where U is an
upper bound on the diameter of the network. The difference between the maximum
and the minimum consensus provides a stopping criteria for nodes.

Under the assumption of asynchronous iterations, the authors in [DRL11] pro-
posed an algorithm that leads to the termination of average consensus in finite time
with high probability. In their approach, each node has a counter ci that stores the
number of times the difference between the new estimate and the old one was less
than a certain threshold τ . When the counter reaches a certain value, say C, the
node will stop initiating the algorithm. They proved that by a correct choice of
C and τ (depending on some networks’ parameters as the maximum degree in the
network, the number of nodes, and the number of edges) the protocol terminates
with high probability.

A major drawback of these algorithms –beside the memory requirements and
the robustness of the system to changes– is the assumption that each node should
know some global network parameters. This intrinsically contradicts the spirit of
distributed consensus protocols. Designing a decentralized algorithm for average
consensus that terminates in finite time without using any global network informa-
tion (as the diameter of the network or the number of nodes) is still an open problem
for which we prove a strong negative result in the next section.

5.3 Motivation

We address the problem of termination of average consensus in this chapter. We will
start by an impossibility result for termination of the average consensus protocol in
finite time without using some network information.

Theorem 2. Given a static network where nodes run the synchronous consensus

protocol described by (5.1) and each node only knows its history of estimates, there

is no deterministic distributed algorithm that can correctly terminate the consensus

with guaranteed error bounds after a finite number of steps for any set of initial

values.

Proof. The proof is conducted by contradiction where we show that there exists
a graph with specific initial state values which fails to terminate with guaranteed
error bounds. Consider a path graph G of three nodes a, b, and c as in Fig. 5.1
where the weight matrix is real and doubly stochastic with 0 ≤ µ(W) < 1 (so we
have waa, wcc > 0). Let xa(0), xb(0), and xc(0) be the initial estimates for the
nodes and consider α = xa(0)+xb(0)+xc(0)

3 , so with the average consensus protocol
using the synchronous iterations in (5.1), all nodes’ estimates will converge to α

asymptotically:
lim
k→∞

xa(k) = lim
k→∞

xb(k) = lim
k→∞

xc(k) = α.

We will prove the theorem by contradiction. Suppose there exists a termination
algorithm for nodes to use only the history of their estimates and terminate the

106 Chapter 5. Reducing Communication Overhead

Figure 5.1: Path graph G with 3 nodes.

Figure 5.2: Extended mirror graph of G with 6 nodes and F = 2 fragments.

average protocol in finite time within guaranteed error bounds. Then if we run
this algorithm on this graph, there exists an iteration K > 0 and η > 0 such that
node a (also true for b and c) decides to terminate at iteration K on the basis of
the history of its estimate: xa(0), xa(1), xa(2), ..., xa(K), and it is guaranteed that
|xa(K)− xave| < η, where xave = α.

We will define the F extended mirror graph of G to be a path with n = 3F nodes
a1, a2, ..., aF , b1, b2, ..., bF , c1, c2, ..., cF , formed by G1, G2, ..., GF (F graphs identical
to G) connected by additional links to form a path, the added links are {cl, cl+1} if
l is odd and {al, al+1} if l is even (e.g. the graph for F = 2 is shown in Fig. 5.2).
Let us assume first that the initial estimates for nodes in the subgraphs G1,...,GF

are identical to the estimates of the nodes in graph G (e.g. for node a we have
xa1(0) = xa2(0) = ... = xaF (0) = xa(0)), the weight matrix for G1,...,GF is also
identical to the weight matrix of G except for nodes incident to the added links, if
{cl, cl+1} is an added link, then wclcl = wcl+1cl+1

= wclcl+1
= wcc

2 and similarly if
{al, al+1} is an added link, then walal = wal+1al+1

= walal+1
= waa

2 . Notice that on
the new generated graph we still have xave = α and also:

xa1(k) = xa2(k) = ... = xaF (k) = xa(k) ∀k ≤ K,

so node a1 applying the termination algorithm on the new graph will decide to
terminate after the same number of iterations K. Consider now a value F > K

and that the initial estimate of node cK+1 is changed to xcK+1(0) = xc(0) + n(2η +

xa1(K) − α) and the new average is now xave = α +
xcK+1

(0)−xc(0)

n . The estimates
at node a1 would not change during the first K steps, then node a1 would again
terminate at step K, but the error bound is no more guaranteed, because |xa1(K)−
xave| = |xa1(K) − α − xcK+1

(0)−xc(0)

n | = 2η > η. This contradicts the fact that a1
terminates with guaranteed error bounds. The proof can be extended to include

5.4. Our Approach 107

any graph G, not just path graphs, by using the same technique of generating
extended mirror graphs of G.

Theorem 1 shows that in general, nodes cannot stop executing the algorithm.
Motivated by this result, we investigate in what follows algorithms where nodes
can refrain from sending messages at every iteration (e.g. when estimates have not
changed significantly during the recent iterations). We will then say that an algo-
rithm terminates when the number of messages sent in the network disappears at
least asymptotically, even if the nodes are still running the algorithm internally, i.e.,

lim
t→∞

∑t
k=1N(k)

t
= 0, (5.4)

where N(k) is the number of nodes transmitting their estimate to their neighbors
at iteration k. In other words, the rate of messages in the network should decrease
as the estimates converge to the average consensus or to a bounded approximation.

5.4 Our Approach

Even if the nodes cannot terminate the algorithm in finite time, we are interested
in reducing communication overhead by considering asymptotic termination of mes-
sages and by decreasing the rate of the messages sent in the network correspondingly
to estimates’ improvement. For example, if nodes’ estimates are widely different,
the messages sent at a given iteration can significantly reduce the error by making
the estimates approach to the real average. However, when the estimates have “al-
most converged”, the improvement from each message in terms of error reduction
can be negligible. Up to our knowledge, this issue was not taken into account in
the related work literature. So from an engineering perspective, it is desirable that
nodes send more messages when they have large differences in their estimates, and
less messages when the estimates have almost converged. In what follows we first
present a centralized algorithm to provide the intuition of our approach and then
we describe a more practical decentralized solution.

5.4.1 A Centralized Algorithm

In this section, we discuss a simple centralized algorithm for termination of average
consensus protocols. We call it a centralized protocol because in this protocol there
are some global variables known to all the nodes in the network, and each node
can send a broadcast signal that triggers an averaging operation (5.1) at all nodes.
Then, if any of the nodes in the network sends this signal, all the nodes will respond
by sending the new estimates to their neighbors according to the averaging equation
(5.2):

x(t+ 1) =Wx(t). (5.5)

On the contrary, if no signal is sent, the nodes will preserve the same estimate:

x(t+ 1) = x(t). (5.6)

108 Chapter 5. Reducing Communication Overhead

If the rate of broadcast signals converges to 0, also the rate of the messages contain-
ing the estimates will converge to 0 and asymptotically no node in the network will
transmit. As above we consider a time-slotted model where t represents a discrete
time iteration.

We now introduce formally the algorithm. Let e(t) and η(t) be the values of
two global variables known to all the nodes at time t, such that e(0) = 0, η(0) = η0
and 0 ≤ e(t) < η(t). As we are going to see, both the values of the two variables
cannot decrease. Let W be the weight matrix of the network satisfying convergence
conditions of average consensus and x(t) be the state vector of the system at iteration
t. We let Lt be a Boolean variable (either true or false) defined at every iteration t
as:

Lt : e(t− 1) + y(t− 1) < η(t− 1), (5.7)

where y(t − 1) = ||Wx(t − 1) − x(t − 1)||∞ and with L0 := False. Then y(t − 1)

stores the estimates change if the linear iterations (5.1) would be executed at step
t and Lt evaluates if the change is negligible (Lt = False) and then no message is
transmitted or not (Lt = True). Different actions are taken on the basis of the Lt

value at timeslot t. We also define the simple point process ψ = {tk : k ≥ 1} to be
the sequence of strictly increasing points

0 < t1 < t2 < ... ,

such that t̂ ∈ ψ if and only if Lt̂ = False. Let K(t) denote the number of points
of the set ψ that falls in the interval]0, t], i.e., K(t) = max{k : tk ≤ t}, with
K(0) := 0. If Lt is false, a broadcast signal is sent in the network and all nodes
will perform an averaging iteration; while if Lt is true, then there is no signal in the
network, and the nodes keep the same estimate as the previous iteration. Network
variables of the centralized algorithm are changed at time t > 0 according to the
equations given in following table:

If Lt is True If Lt is False
K(t) = K(t− 1) K(t) = K(t− 1) + 1

x(t) = x(t− 1) x(t) =Wx(t− 1)

e(t) = e(t− 1) + y(t− 1) e(t) = e(t− 1)

η(t) = η(t− 1) η(t) = η(t− 1) + η0
(K(t−1)+1)2

When t /∈ ψ, we call t a silent iteration because the nodes have the same estimate
as the previous iteration (i.e., xi(t) = xi(t − 1)) and there is no need to exchange
messages of these estimates in the network. On the other hand, when t ∈ ψ, we call t
as a busy iteration because nodes will perform an averaging (i.e., x(t) =Wx(t−1))
and the estimates must be exchanged in the network. Let αk be the number of silent
iterations between tk and tk+1, so we have that αk = tk+1 − tk − 1.2

After introducing this deterministic procedure, we show by the following lemma
that the messages according to this algorithm disappear asymptotically:

2tk − tk−1 is sometimes called the kth interarrival time in the context of point processes.

5.4. Our Approach 109

Proposition 14. For any initial condition x(0), the message rate of the centralized

deterministic algorithm described above disappears asymptotically, i.e.,

lim
t→∞

∑t
k=1N(k)

t
= 0,

where N(k) is the number of nodes transmitting messages at iteration k.

Proof. The number of nodes transmitting at an iteration t depends on the condition
Lt. If t ∈ ψ, then N(t) = n (all nodes are transmitting messages), otherwise
N(t) = 0 (no nodes transmitting messages). Therefore,

t∑

k=1

N(k) =

K(t)
∑

k=1

N(tk) = nK(t),

where K(t) as described earlier is the number of busy iterations until time t. We will
consider two cases depending on the evolution of K(t) as function of t. The simpler
case is when limt→∞K(t) ≤ K < ∞ (the number of busy periods is bounded,
e.g. nodes reach consensus in a finite number of iterations), then since K(t) is
an increasing positive integer sequence, the proposition follows from the following
inequality and t→∞,

0 ≤
∑t

k=1N(k)

t
≤ nK

t
.

We consider now the other case, i.e., limt→∞K(t) = ∞. Notice that for any time
iteration t, we have

K(t)
∑

k=1

(tk − tk−1) ≤ t ≤
K(t)+1
∑

k=1

(tk − tk−1),

or in other words
K(t)−1
∑

k=0

(αk + 1) ≤ t ≤
K(t)
∑

k=0

(αk + 1).

So we have ∑t
k=1N(k)

t
=
nK(t)

t
≤ nK(t)

αK(t)−1 + 1

We will prove now that the right hand side of the inequality goes to 0 as t diverges.
Since limt→∞K(t) = ∞, it is sufficient to prove that limk→∞(αk + 1)/k = ∞. Let
z(k) =Wx(tk)− x(tk), we can see that according to this algorithm,

αk = ⌊η(tk)− e(tk)||z(k)||∞
⌋

≥ η(tk − 1) + η0/k
2 − e(tk − 1)

||z(k)||∞
− 1

≥ η0
k2||z(k)||2

− 1. (5.8)

110 Chapter 5. Reducing Communication Overhead

The last inequality derives from the fact that for any iteration t we have η(t) > e(t),
and that for any vector v, the norm inequality ||v||2 ≥ ||v||∞ holds. Moreover, z(k)
evolves according to the following equation:

z(k) = (W − J)z(k − 1)

= (W − J)kz(0),

where J = 1/n11T , so
||z(k)||2 ≤ C (ρ(W − J))k , (5.9)

where C = ||z(0)||2 and ρ(W − J) = µ(W) ≥ 0 is the spectral radius of the
matrix W − J . We know that 0 < µ < 1 (0 < µ because limt→∞K(t) = ∞ and
µ < 1 because W satisfies the condition of a converging matrix. Putting everything
together, we get finally that:

αk ≥
η0

Ck2µk
− 1, (5.10)

and
αk + 1

k
≥ η0
Ck3µk

,

hence (αk + 1)/k → ∞ as k → ∞. Consequently, the rate of messages sent in the
network vanishes, namely

lim
t→∞

∑t
k=1N(k)

t
= 0.

Three main factors in the above algorithm cause the algorithm to be centralized:
the global scalar e(t), the global scalar η(t), and the broadcast signal. In the follow-
ing sections, we will present a decentralized algorithm inspired by the centralized
one, but all global scalars are changed to local ones, and the nodes are not able to
send a broadcast signal to trigger an iteration.

5.4.2 Decentralized Environment

5.4.2.1 Modified Settings

The analysis of the system becomes more complicated when we deal with the de-
centralized scenario. Each node works independently. We keep the assumption of
synchronous operation, but the decision to transmit or not is local, so a node can be
silent, while its neighbor is not. In this scenario, even the convergence of the system
might not be guaranteed and we see that within an iteration, some nodes will be
transmitting and others will be silent. This can cause instability in the network
because the average of the estimates at every iteration is now not conserved (this
is an important property of the standard consensus protocols that can be easily
checked), and the scalars η(k) and e(k) defined in the previous subsection are now
vectors η(k) and e(k) where ηi(k) and ei(k) are the values corresponding to a node
i and are local to every node. To conserve the average in the decentralized setting,
e(k) must take part in the state equation as we will show in what follows.

5.4. Our Approach 111

5.4.2.2 System Equation

In our approach, we consider a more general framework for average consensus where
we study the convergence of the following equation:

x(k + 1) + e(k + 1) =Wx(k) + e(k). (5.11)

Some work has studied the following equation as a perturbed average consensus
and considered e(k) to be zero mean noise with vanishing variance (see [XBK07,
HDM05]). However, in our model, we consider e as a deterministic part of the state
of the system and not a random variable. We consider sufficient conditions for the
system to converge, and we use these conditions to design an algorithm that can
reduce the number of messages sent in the network.

In the standard consensus algorithms, the state of the system is defined by the
state vector x, but in the modified system, the state equation is defined by the
couple {x, e}. In the following we present a key theorem for the convergence in a
decentralized setting.

Theorem 3. Consider a system governed by the equation (5.11), let F (k) =

F (k,x(k),x(k − 1)) be a matrix that depends on the iteration k and two history

state vectors x(k) and x(k − 1). Suppose that e(k + 1) = e(k)− F (k)x(k) and as-

sume the following conditions on the matrices A(k) =W + F (k) and F (k):

(a) aij(k) ≥ 0 for all i, j, and k, and
∑n

j=1 aij(k) = 1 for all i and k,

(b) Lower bound on positive coefficients: there exists some α > 0 such that if

aij(k) > 0, then aij(k) ≥ α, for all i, j, and k,

(c) Positive diagonal coefficients: aii(k) ≥ α, for all i, k,

(d) Cut-balance: for any i with aij(k) > 0, we have j with aji(k) > 0,

(e) limk→∞ x(k) = x⋆ ⇒ limk→∞ F (k,x(k),x(k − 1))x(k) = 0.

Then limk→∞ x(k) = x′ave1 where x′ave ∈ [minj xj(0),maxj xj(0)]; if furthermore

e(0) = 0 and ei(k) < η for all i and k, then |xave − x′ave| < η.

Proof. Let us first prove that x(k) converges. By substituting the equation of e(k+1)

in (5.11), we obtain:
x(k + 1) = A(k)x(k), (5.12)

where A(k) = W + F (k). From the conditions (a),(b),(c), and (d) on A(k), we
have from [HT11] that x converges, i.e., limk→∞ x(k) = x⋆. Since the system is
converging, then from equation (5.11), we can see that:

x⋆ =Wx⋆ + lim
k→∞

(e(k)− e(k + 1))

=Wx⋆ + lim
k→∞

F (k)x(k)

=Wx⋆.

112 Chapter 5. Reducing Communication Overhead

Therefore, x⋆ is an eigenvector corresponding to the highest eigenvalue (λ1 = 1) of
W . So we can conclude that x⋆ = x′ave1 where x′ave is a scalar (Perron-Frobenius
theorem).

The condition 1TW = 1T on the matrix W in equation (5.2) leads to the preser-
vation of the average in the network, 1Tx(k) = nxave ∀k. This condition is not
necessary satisfied by A(k), so let us prove now that the system preserves the aver-
age xave:

1⊤(x(k + 1) + e(k + 1)) = 1⊤(Wx(k) + e(k)) (5.13)

= 1⊤(x(k) + e(k)). (5.14)

The last equality comes from the fact that W is sum preserving since 1⊤W = 1⊤.
Finally by a simple recursion we have that 1⊤(x(k) + e(k)) = 1⊤x(0) = nxave,

and the average is conserved. Moreover, since |ei(k)| ≤ η for all i and k we have:

|(1/n)1⊤x(k)− xave| ≤ η ∀k. (5.15)

But we just proved that limk→∞ x(k) = x′ave1, so this consensus is within η from
the desired xave:

|x′ave − xave| ≤ η. (5.16)

This ends the proof.

In the decentralized environment, we gave the conditions for the system to con-
verge. In the following section we will design an algorithm that satisfies these
conditions and needs only local communications.

5.4.3 Message Reducing Algorithm

We try to solve the termination problem through a fully decentralized approach.
We consider large-scale networks where nodes have limited resources (in terms of
power, processing, and memory), do not use any global estimate (e.g. diameter
of the network or number of nodes), keep only one iteration history, and can only
communicate with their neighbors. Our goal is to reduce the number of messages
sent while guaranteeing that the protocol converges within a given margin from the
actual average.

The main idea is that a node, say i for example, will compare its new calculated
value with the old one. According to the change in the estimate, i will decide either
to broadcast its new value or not to do so. We divide an iteration into two parts, in
the first part of the iteration, only nodes with significant change in their estimates
are allowed to send messages. However, in the second part of the iteration, only
nodes polled by their neighbors from phase 1 are allowed to send an update.

Before starting the linear iterative equation, nodes will select weights as in the
standard consensus algorithm. The weight matrix considered here must be doubly
stochastic with 0 < α < wii < 1 − α < 1 for some constant α. Each node i in the
network keeps two state values at iteration k:

5.4. Our Approach 113

Algorithm 1: Termination Algorithm -node i- Phase 1
1: {xi(k), ei(k)} are the state values of node i at iteration k,

0 < α < wii < 1− α < 1, counteri = 1 is the counter for the number of
transmissions so far. ηi(1) = η/2 ∈ R, Tk is set of Transmit state. Wk set
corresponding to Wait state. Initially we have Tk =Wk = ∅. Every node i
follows the following algorithm at iteration k.

2: yi(k + 1)← wiixi(k) +
∑

j∈Ni
wijxj(k)

3: di ← yi(k + 1)− xi(k) + ei(k)

4: if |di| < ηi(counteri) then

5: i changes to a Wait state. \ \ i ∈Wk

6: else

7: counteri = counteri + 1

8: ηi(counteri) = ηi(counteri − 1) + ηi(1)/counter
2
i

9: ci ← α
(1−wii)

(

yi(k + 1)− xi(k)
)

10: if |ci| ≤ |ei(k)| then

11: xi(k + 1)← yi(k + 1) + sign(ci.ei(k))ci
12: ei(k + 1)← ei(k)− sign(ci.ei(k))ci
13: else

14: xi(k + 1)← yi(k + 1) + ei(k)

15: ei(k + 1)← 0

16: end if

17: i changes to a Transmit state. \ \ i ∈ Tk
18: Notify the neighbors having maximum and minimum values.
19: end if

20: Go to Phase 2

• xi(k): the estimate of node i used in the iterative equations by the other nodes.

• ei(k): a real value that monitors the shift from the average due to the iterations
where node i did not send a message to its neighbors. It is initially set to zero,
ei(0) = 0.

Each node also keeps its own boundary threshold ηi(k) where ηi(1) = η
2 =

constant ∀i. Note that ηi(k) is increased after every transmission as in the central-
ized case, but the difference here is that it is local to every node.

Each iteration is divided into two phases:
In the first phase, a node i can be in one of the two following states:

• Transmit : The set of nodes corresponding to this state is Tk, where the
subindex k corresponds to the fact that the set can change with every itera-
tion k. The nodes in Tk send their new calculated estimate to their neighbors.
They also poll the nodes having maximum and minimum estimates in their
neighborhood to transmit in phase 2.

114 Chapter 5. Reducing Communication Overhead

Algorithm 2: Termination Algorithm - Phase 2
1: {xi(k), ei(k)} are the state values of node i at iteration k.
2: for all nodes i having Wait state do

3: yi(k + 1)← wiixi(k) +
∑

j∈Ni
wijxj(k)

4: if i received a poll message from any neighbor then

5: zi(k + 1)← (wii +
∑

j∈Ni∩Wk
wij)xi(k) +

∑

j∈Ni∩Tk
wijxj(k)

6: xi(k + 1)← zi(k + 1)

7: ei(k + 1)← yi(k + 1)− zi(k + 1) + ei(k)

8: i changes to a Cut−Balance state. \ \ i ∈ Bk

9: else

10: xi(k + 1)← xi(k)

11: ei(k + 1)← yi(k + 1)− xi(k) + ei(k)

12: i changes to a Silent state. \ \ i ∈ Sk
13: end if

14: end for

15: k + 1← k

• Wait : The set of nodes corresponding to this state is Wk. The node’s decision
will be taken in the second phase of the iteration based on the action of nodes
in the Transmit state (depending if they were polled by any of their neighbors).

In the second part of the iteration, nodes that are in Wk will be classified as follows:

• Silent : The set of nodes corresponding to this state is Sk. These are the
nodes that will remain silent with no message sent from their part in the
network. The nodes in Sk have that non of their neighbors sending them any
poll message.

• Cut-Balance: The set of nodes corresponding to this state is Bk. They are
called Cut − Balance because they insure the cut-balance condition (d) of
Theorem 3. They are the nodes in Wk that have been polled by at least one
neighbor in Tk .

The two phases of the termination protocol implemented at each node are de-
scribed by pseudocode in Algorithm 1 and 2. Nodes in the Tk set (the set of nodes
that are in a Transmit state) will broadcast their estimate to their neighbors at
the end of the first phase, while nodes in Wk set (or Wait state) will postpone their
decision to send or not till the next phase. Nodes that do not receive a message from
their neighbors at a certain iteration, use the last seen estimate from the specified
neighbors (note: absence of messages from a neighbor during an iteration does not

mean the failure of link, it means that the neighbor is broadcasting the same old
estimate as before, so we may differentiate the link failure by a “keep alive” message
sent frequently to maintain connectivity and set of neighbors). The input for the
algorithm are the estimates of the neighbor of i, the weights selected for these neigh-
bors, and the state values {xi(k), ei(k)}. The output of the first phase is the new

5.4. Our Approach 115

state values {xi(k+1), ei(k+1)} for nodes in Tk and the output of the second phase
is the new state values {xi(k + 1), ei(k + 1)} for nodes in Wk. Let us go through
the lines of the algorithm. In phase 1, yi(k + 1) of line 2 is the weighted average of
the estimates received by node i; without the termination protocol this value would
be sent to all its neighbors. The protocol evaluates how much yi(k+1) differs from
the state value xi(k). This difference accumulates in di in line 3. If this shift is less
than a given threshold ηi, the node will wait for next phase to take decision. If the
condition in line 4 is not satisfied, that means the node will send a new value to its
neighbors. Lines 7− 8 concerns the extending of the boundary threshold ηi(k) after
every transmission. Note that by this extension method, we have ηi(k) < η ∀i, k
since

lim
k→∞

ηi(k) = ηi(1)(

∞∑

i=1

1/k2) < ηi(1)× 2 = η.

We introduce in line 9 a new scalar ci used for deciding which portion of ei(k) the
node will send in the network. In lines 11− 12 and 14− 15, the algorithm satisfies
the equation (5.11). Then the new state value xi(k + 1) is sent to the neighbors
and ei(k + 1) is updated accordingly. In Phase 2 of the algorithm (Algorithm 2),
nodes initially in the wait state will decide either to send a cut-balance massage
or to remain silent, the cut balance messages are sent when a node receives a poll
message from any of its neighbors.

5.4.4 Convergence Study

The convergence of the previous algorithm is mainly due to the fact that the pro-
posed algorithm satisfies the conditions of convergence given in 5.4.2.2. In fact,
the algorithm is designed to satisfy all these conditions that guarantee convergence.
Starting with the state equation, we can notice from the Algorithm 1, given what-
ever the condition the nodes face, that the sum of the new generated state values
{xi(k + 1), ei(k + 1)} is as follows:

xi(k + 1) + ei(k + 1) = yi(k + 1) + ei(k),

where yi(k+1) = wiixi(k)+
∑

j∈Ni
wijxj(k). As a result the system equation is the

one studied in section 5.4.2.2 (equation (5.11)). Before going through the different
conditions in the Theorem 3, we should show that according to the algorithm given in
pseudo code, e(k+1) = e(k)−F (k)x(k) for some matrix F (k) such that F (k)1 = 0.
From the algorithm we can write,

ei(k + 1) = ei(k)− vi(k), (5.17)

116 Chapter 5. Reducing Communication Overhead

where vi(k) differs according to the state of the node i, but it only depends on the
estimate of node i and its neighbors:

vi(k) =

± α
(1−wii)

(

yi(k + 1)− xi(k)
)

if i ∈ Tk − (1),

± αγ
(1−wii)

(

yi(k + 1)− xi(k)
)

if i ∈ Tk − (2),

xi(k)− yi(k + 1) if i ∈ Sk,
zi(k + 1)− yi(k + 1) if i ∈ Bk,

(5.18)

where Tk − (1) is the set of nodes subset in Tk where |ci| ≤ |ei(k)|, and Tk − (2)

set of nodes where |ci| > |ei(k)|. In the latter case, ei(k + 1) = 0, but we can
always find γ < 1 such that ei(k + 1) = ei(k) − γ(sign(ci.ei(k)ci) = 0 where ci =

α
(1−wii)

(yi(k + 1)− xi(k)). yi(k + 1) and zi(k + 1) are as indicated in the algorithm
and are a linear combination of the elements of x(k). From the equation of vi(k),
we can also see that it is a linear combination of the elements of x(k), such that the
coefficients sum to 0. A row i in F (k) will be the coefficients of the estimates x(k)

in vi(k), so F (k)1 = 0.
Now we can study the conditions mentioned in the Theorem 3 on the matrix

A(k) =W + F (k).

Lemma 11. A(k) is a stochastic matrix that satisfies conditions (a),(b),and (c) of

Theorem 3.

Proof. First, we can see that A(k)1 = 1 since W1 = 1 and F (k)1 = 0. It remains
to prove that all entries in the matrix A(k) are non negative. We will prove this
by considering each row i of A(k) according to the action taken by node i. We can
distinguish four cases:

1. Node i ∈ Tk - condition 1: |ci| ≤ |ei(k)|
aii = wii − α

1−wii
× (1− wii) = wii − α > 0 since wii > α

and aij = wij +
α

1−wii
× wij ≥ wij > 0 ∀j ∈ Ni.

or
aii = wii +

α
1−wii

× (1− wii) > α since wii > α

and aij = wij − α
1−wii

× wij > 0 ∀j ∈ Ni since α < wii < 1− α.

2. Node i ∈ Tk - condition 2: |ci| > |ei(k)|
since |ci| > |ei(k)|, we can always find positive γ < 1, such that
aii = wii − γα

1−wii
× (1− wii) = wii − γα > 0 since wii > α

and aij = wij +
γα

1−wii
× wij ≥ wij > 0 ∀j ∈ Ni.

or
aii = wii +

γα
(1−wii)

× (1− wii) > α since wii > α

and aij = wij − γα
1−wii

× wij > (1− α
α)wij > 0 ∀j ∈ Ni.

3. Node i ∈ Sk:
then aii = wii + (1− wii) = 1

and aij = 0 ∀j ̸= i.

5.4. Our Approach 117

4. Node i ∈ Bk:
then aii ≥ wii > 0

and aij ∈ {wij , 0} ∀j ̸= i.

Therefore, A(k) is stochastic at every iteration k.

Definition 5. Two matrices, A and B, are said to be equivalent with respect to a

vector v if and only if Av = Bv.

Notice that A(k) satisfies conditions (a),(b), and (c) of Theorem 3, but possibly
not the cut balance condition (d) because for a node i ∈ Tk that transmits, aij(k) >
0 ∀ j ∈ Ni, but it can be that ∃j ∈ Ni such that aji = 0 if j was silent at that
iteration (j ∈ Sk). However, the next lemma shows that there is a matrix B(k)

equivalent to A(k) with respect to x(k) that satisfies all the conditions.

Lemma 12. For all k, there exists a matrix B(k) equivalent to A(k) with respect

to x(k) such that B(k) satisfies the conditions (a),(b),(c), and (d) of Theorem 3.

Proof. Let m(k) = argminj∈Ni
xj(k) and M(k) = argmaxj∈Ni

xj(k), we will proof
the existence of B(k) by modifying A(k) in such a way to preserve the properties
(a) to (c) and to add the new property (d). For simplicity of notation we will drop
k from the variables since this is true for every k. Note first that the condition (d)
is not satisfied in A only for the rows and columns where i belongs to Tk (because
in this case aij > 0 for j ∈ Ni, but aji could be 0 if j is in a silent state Sk). Let ai

denote the row i of A and bi denote the row i of B. Since any node i in Tk must poll
the nodes m and M to transmit in Phase 2, then we are sure that the column i has
at least three non zero elements (aii, ami, and aMi). Let Ci = {j | aji > 0 , i ̸= j},
so we are sure that Ci contains at least two elements m and M . The cut balance
condition requires that the row of i must only have positive values at the index
where the column is positive. We can write that

aix(k) = aiixi(k) +
∑

j∈Ni

aijxj(k)

= aiixi(k) +
∑

j∈Ci

aijxj(k) +
∑

j∈Ni−Ci

aijxj(k)

= aiixi(k) +
∑

j∈Ci

aijxj(k) + hxM (k) + fxm(k), (5.19)

where h =

∑
j∈Ni−Ci

aij(xj−xm)

xM−xm
, f =

∑
j∈Ni−Ci

aij(xM−xj)

xM−xm
. Since h ≥ 0, f ≥ 0 and

f + h =
∑

j∈Ni−Ci
aij , we can define the row vector bi to be:

bi :=

bij = aij if j = i,

bij = aij + f if j = m,

bij = aij + h if j =M,

bij = aij if j ∈ Ci −m−M,

bij = 0 if j ∈ Ni − Ci.

(5.20)

118 Chapter 5. Reducing Communication Overhead

Finally, bix(k) = aix(k) and it satisfies the conditions (a) to (c), so ∀i ∈ Tk, we
replace ai by bi and we get the new matrix B which is equivalent to A with respect
to x(k).

Lemma 13. The message reduction algorithm (Phases 1, 2) satisfies condition (e)

of Theorem 3.

Proof. We will prove it by contradiction. Suppose limk→∞ x(k) = x⋆, but
limk→∞ F (k)x(k) ̸= 0, then there exists a node i such that limk→∞ xi(k) = x⋆i
and limk→∞ yi(k + 1) = wiix

⋆
i +

∑

j∈Ni
wijx

⋆
j = y⋆i , but y⋆i − x⋆i = δ⋆ > 0. From

Algorithm 1, we can see that the node will enter a transmit state infinitely often
(because di increases linearly with δ∗ and it will reach the threshold ηi). Then, the
node i will update its estimate according to the equation

xi(k + 1) = yi(k + 1) +
α

1− wii
(yi(k + 1)− xi(k)).

Letting k →∞ yields
(1 +

α

1− wii
)δ⋆ = 0.

Thus, δ⋆ = 0 which is a contradiction, and the algorithm satisfies condition (e) of
Theorem 3.

The algorithm also provides that |ei(k)| ≤ ηi(k) ∀k, i and ηi(k) < η ∀i, k, as in
the first phase this condition is satisfied by construction, and for the second phase
of the iteration, nodes from Phase 1 can check for worst case analysis and they only
enter into Wait state if they are sure that the condition can be satisfied in the next
phase iteration.

Now we are ready to state the main Theorem in this section:

Theorem 4. The nodes applying the message reducing algorithm given in pseu-

docode by Algorithm 1 and 2, have estimates converging to a consensus within a

margin η from xave, i.e., limk→∞ x(k) = x′ave1 and |x′ave − xave| ≤ η.

Proof. The theorem is due to the fact that the Lemmas given in this subsection
show that the algorithm satisfies all the convergence conditions of Theorem 3.

As a result, the convergence of nodes’ estimates of the distributed algorithm for
message reduction is guaranteed. We study in the next section the performance of
this algorithm on random networks, we also address the case of faulty unreliable
links, and we show the stability of the algorithm in the presence of nodes changing
their estimate possibly due to faulty estimates or due to a changing environment.

5.4.5 Simulations

The termination algorithm (the message reduction algorithm) is simulated on two
types of random graphs, the Random Geometric Graphs (RGG) and the Erdos Renyi

5.4. Our Approach 119

(ER) graphs. To measure the distance from the average, we consider the normalized

error metric defined as,

L̄k =
||x(k)− x̄||2
||x(0)− x̄||2

,

where the vector x̄ is x̄ = xave1. For example when log(L̄k) = −3, that means the
error became 0.1% of the initial one. Initially, each node has a uniformly random
value between 0 and 10. On the RGG with 500 nodes and connectivity radius 0.093,
Fig. 5.3 gives a comparison between standard average consensus algorithms and the
termination algorithm proposed in this chapter. The standard algorithm referred
here is the one that uses Eq. (5.1) without applying any attempts to terminate the
protocol. The figure shows the effect of varying the precision η in the termination
algorithm on the number of messages (active nodes per iteration). In the study of
the convergence of the algorithm, we showed that the algorithm converges to at most
η from the true average. As the figure shows, with termination algorithm the error
converges to a value x′ave different from the real average xave, smaller η gives closer
estimate to xave but more messages are sent. In fact, the termination algorithm
passes through three phases: the first phase is the initial start where nodes usually
have large differences in their estimates and they tend to send many messages while
decreasing the error (same start as standard algorithm), the second phase is the
most efficient phase where nodes saves messages while continuing to decrease the
error. The final phase is the stabilizing phase where nodes converge to a value close
to the true average. The start and duration of each phase depends on the value of
η. Similar results were given on ER graphs.

Links in networks (specially wireless networks) can be unreliable. The algorithm
being totally decentralized, and uses only one history estimate can be applied for
the dynamic scenario. The weight matrix is then dynamic and at every iteration k

a different W (k) is considered and constructed locally as following. Before starting
the algorithm we let W (0) be generated locally satisfying convergence conditions as
throughout the chapter. At iteration k, a weight on a link can take two values, the
original weight (wij(k) = wij(0)) if link l ∼ {i, j} is active or wij(k) = 0 if the link
failed. When there are failures of links, some weight is added to the self-weight of
nodes to preserve the double stochastic property of the matrix W (k). In Fig. 5.4, we
consider the RGG of 100 nodes and connectivity radius 0.19 with unreliable links.
η = 0.01 is fixed for both graphs (the graph with the high link failure probability
graph and the low link failure probability one). With high link failure probability,
the network sends less messages because there are less links in the network, but
the speed to consensus is slower than that of the low failure probability. Note that
non of the synchronous termination algorithms given in the related work consider a
dynamic topology.

In some scenarios, we are interested in a rapid detection of a sudden change in
the true average due to the environment change. In the real life, if sensor nodes
are measuring the temperature of a building, and the temperature changed largely
(probably due to a fire in a certain room in the building), fast detection of this
change can be very useful. In Fig. 5.5, we assumed that at certain iterations some

120 Chapter 5. Reducing Communication Overhead

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

500

550

iteration number

N
u

m
b

e
r

o
f

a
c
ti
v
e

 n
o

d
e

s
 p

e
r

it
e

ra
ti
o

n
s
e

n
d

in
g

 m
e

s
s
a

g
e

s

RGG (n=500, connectivity radius 0.093)

Standard Algorithm

Termination Algorithm

η = 10
−2

η = 10
−3

η = 10
−5

η = 0

0 2000 4000 6000 8000 10000
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration number

lo
g

(n
o

rm
a

liz
e

d
 e

rr
o

r)

RGG (n=500, connectivity radius 0.093)

Standard Algorithm

Termination Algorithm

η = 10
−2

η = 10
−3

η = 10
−5

η = 0

Figure 5.3: (a) The number of active nodes at every iteration. (b) The error from
the average at every iteration. This shows the effect of η in the message reduction
algorithm on RGG networks. In standard algorithms, nodes’ estimates converge to
the real average, so the error decreases linearly, but nodes are not aware of how
close they are to consensus, so they are all always active sending messages. With
termination algorithm, nodes converge to a value at most η away from the real
average, different values of η give different precision error. The algorithm gives a
trade-off between precision and number of messages (The standard algorithm is just
a special case of termination algorithm for η = 0).

5.4. Our Approach 121

0 500 1000 1500 2000 2500 3000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration number

lo
g

(n
o

rm
a

liz
e

d
 e

rr
o

r)

Dynamic RGG n=100, connectivity radius r=0.19, link failure probability f

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 s

e
n

t
b

y
 n

o
d

e
s
 p

e
r

it
e

ra
ti
o

n

Low Link Failure Probability f=10%

High Link Failure Probability f=70%

Number of messages per iteration

Error Precision

Figure 5.4: Termination algorithm on a dynamic RGG with different link failure
probabilities. On low link failure probability graphs, the messages are less than that
of the high failure probability, but the convergence speed is slower.

0 1000 2000 3000 4000 5000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
ER (n=1000, average degree 10)

iteration number

lo
g

(n
o

rm
a

liz
e

d
 e

rr
o

r)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

n
u

m
b

e
r

o
f

a
c
ti
v
e

 n
o

d
e

s
 (

s
e

n
d

in
g

 m
e

s
s
a

g
a

e
s
)

Error Precision

Active Nodes

Figure 5.5: Normalized error and number of nodes transmitting on the ER graphs
with 1000 nodes, where every 1000 iterations random 10% of the nodes change their
estimates. The figure shows the self-adaptive feature of the algorithm: when the
algorithm has already converged to a stable state and is communicating little, and
an exogenous event pushes the value in a node away from the current average, the
algorithm detects the change and ramps up its communication intensity.

122 Chapter 5. Reducing Communication Overhead

nodes for a certain reason change their estimates to a completely different one.
We considered an Erdos Renyi graph with 1000 nodes and average degree 10, as an
initial state, nodes estimate takes a value in the interval [0, 10] uniformly at random.
Every 1000 iterations, on average, 10% of the nodes restart there estimate by a new
one in the interval [10, 20] chosen uniformly at random. The figure shows the self-
adaptive feature of the algorithm: when the algorithm has already converged to a
stable state and is communicating little, and an exogenous event pushes the value in
a node away from the current average, the algorithm detects the change and ramps
up its communication intensity and stabilizes again. So the algorithm is able to cope
with the sudden change and the system automatically adapts its behavior. With
every change in the estimates, the network give a burst of messages to stabilize the
network to the new average.

5.5 Conclusion

In this chapter, we give an algorithm to reduce the messages sent in average con-
sensus. The algorithm is totally decentralized and does not depend on any global
variable, it only uses the weights selected to neighbors and one iteration history of
the estimates to decide to send a message or not. We proved that this algorithm is
converging to a consensus at most η from the true average. The algorithm can be
applied on dynamic graphs and is also robust and adaptive to errors caused by a
node suddenly changing its estimate.

Chapter 6

Graph Clustering by Random

Walks

Contents
6.1 Related Work . 124

6.2 Notation . 124

6.3 The Random Walk Fitness Measure 125

6.4 Clustering Algorithm . 127

6.4.1 Bounds on f∗ . 127

6.4.2 Local Search Clustering Algorithm 128

6.5 Numerical Examples . 131

6.6 Conclusion . 136

A community of nodes (or a cluster of nodes) in a network is a group of vertices
that are well connected to each other, but are less connected with the remaining part
of the network. Detecting clusters in networks has many applications. Communities
in social networks are formed by people having common interest. Clusters in the web
graph can group pages with similar topics. E-commerce, classification, computer
vision, bioinformatics, and machine learning are only few areas of application of
network clustering.

Comparing different possible graph clustering outputs and selecting the best
outcome are carried out by introducing a quality metric that serves as an objective
function. There is still no consensus in the literature on which quality metric for
graph clustering is the best one. In this chapter, we introduce a new fitness measure
for evaluating a clustering algorithm based on random walks’ properties. Roughly
speaking, our fitness index is higher the faster a random walk constrained to the
cluster reaches its stationary distribution and the slower it escapes from the cluster
in the unconstrained case. Both effects can be quantified considering the eigen-
values of appropriate matrices. Beside introducing this new metric, we propose a
randomized algorithm for clustering the network accordingly. The algorithm is local

because it relies only on a partial view of the entire network. In particular, if the
graph represents the topology of a network where nodes have computing capabili-
ties, the algorithm can run in parallel at each node without the need of a central
unit. Being local, clusters can be formed in parallel and the computation complexity
is distributed among clusters. The algorithm can also find small clusters that are
more difficult to be detected by the global clustering methods.

124 Chapter 6. Graph Clustering by Random Walks

6.1 Related Work

One of the most used metrics is the modularity [NG04] which gives a score to
the cluster by comparing the number of edges falling inside the clusters with the
number of edges of a random graph having similar characteristic as the original
one. Although the modularity is widely used in applications, it is shown that it
cannot distinguish small clusters having links of order O(

√
m) where m is the total

number of links [FB07]. The silhouette index [TSK05] uses distances between the
nodes presented in the cluster and those outside it, its drawback being its high
computational cost as it requires to compute the shortest path between all node
pairs. Another approach [KVV00] evaluates a clustering score by using the concept
of inter-cluster conductance, but it ignores internal cluster density. Some graph
partitioning algorithms based on PageRank vectors of a graph have been proposed in
[ACL06] to find a cut with a certain conductance in the graph. All these metrics turn
out to be biased toward large communities [AGMZ11]. Many practical algorithms
have been proposed as hierarchical clustering [KM86], Markov clustering [VD08],
bisecting K-means, and spectral clustering [KVV00]. Their drawback is that they
are global clustering methods which require as input the entire graph to calculate
the clustering. Moreover their output is biased toward equal size clusters (so small
communities tend to disappear using these algorithms). A complete survey of fitness
measures and clustering is given in [Sch07].

6.2 Notation

Consistent with the notation along this thesis, G = (V,E) is an undirected un-
weighted connected graph without self-loops, where V = {1, . . . , n} is the set of
vertices and E = {1, . . . ,m} is the set edges. Let dG(i) = |{j ∈ V, (i, j) ∈ E}|
be the degree of a node i in G, DG be a diagonal matrix having on its diagonal
the degree of the nodes in G and let AG be the adjacency matrix of the graph G

where aij = 1 if (i, j) ∈ E, and aij = 0 otherwise. For any set S ⊆ V , let DG(S)

(resp. AG(S)) be the sub-matrix of DG (resp. AG) obtained considering only rows
and columns corresponding to the vertices in S. Let G(S) = (S,E(S)) be the sub-
graph induced by S ⊆ V where E(S) = {(i, j) ∈ E|i, j ∈ S}. Observe that in
general DG(S) ̸= DG(S) because DG(S) contains the degree of nodes in the origi-
nal graph G which are different from their degrees in the induced subgraph G(S).
Conversely, AG(S) = AG(S) as the adjacency matrix is not changed. If P is a sub-
stochastic matrix (a square matrix with nonnegative entries so that every row adds
up to at most 1), let ρ(P) be the largest eigenvalue in module of P . When P is
stochastic, let s(P) = 1−µ(P) ∈ [0, 1] be its spectral gap1 where µ(P) is the second
largest eigenvalue in module of P .

A clustering CG of a graph G is a partition of the vertices such that CG =

{C1, . . . Ck} where C1∪...∪Ck = V and Cu∩Cv = ϕ for all clusters Cu and Cv in CG.

1If P is a scalar, we consider s(P) = 1 by convention.

6.3. The Random Walk Fitness Measure 125

Let C(i) = {Cu ∈ CG; i ∈ Cu} be the cluster that contains node i. Let f : V → R

be a scoring function for the nodes, define a cluster score f(Cu) =
∑

i∈Cu
f(i), and

a clustering algorithm score f(CG) =
∑k

u=1 f(Cu) =
∑n

i=1 f(i).

6.3 The Random Walk Fitness Measure

In this section, we introduce a new scoring function f(.) that can serve as a quality
measure for a clustering algorithm. A good clustering algorithm identifies clusters
that are well connected internally, but weakly connected with the rest of the net-
work. Inspired by this intuitive definition, the function f should have the following
properties:

1. A cluster whose induced subgraph is disconnected should receive the minimum
score.

2. A clique graph clustered as a single cluster should have the highest score among
all clusterings for graphs with the same number of nodes.

3. For a given clustering, adding links within clusters should increase the score
while removing them should only decrease the score.

4. For a given clustering, adding links between different clusters should decrease
the score while removing them should increase the score.

5. Within a cluster, the higher the degree of a node, the more it contributes to
the score.

6. Boundary nodes in a cluster that have links to other clusters have less score
than internal nodes.

Given a graph clustering CG = {C1, ..., Ck}, we define the score of a vertex i ∈ V
is given by

f(i) = αi × sC(i) × ρC(i),

where sC(i) quantifies how fast a random walk on G(C(i)) (and then constrained
to the cluster C(i)) reaches its steady state distribution, ρC(i) corresponds to the
probability that a random walk on the whole graph G that starts inside the cluster
C(i) keeps staying inside the cluster at a following step (see below for a more formal
definition), and finally αi differentiates among different nodes in the same cluster
according to the last two properties. Given this definition of the scoring function,
the score of cluster Cu is:

f(Cu) =

(
∑

i∈Cu

αi

)

sCuρCu .

Below we define formally the different quantities αi, sCu and ρCu and show that f(.)
satisfies the required properties of a good clustering function.

126 Chapter 6. Graph Clustering by Random Walks

First, we define sCu as

sCu , s
(
(DG(Cu) + I)−1(AG(Cu) + I)

)
,

that is the spectral gap of the transition probability matrix of a simple random walk
on the subgraph induced by the cluster nodes Cu adding self-loops [LO81]. This
value ranges between 0 for a disconnected graph and 1 for a fully connected network
(a clique). Given a random walk starting at time 0 from a node in the cluster, the
difference between the probability distribution of the position of the random walker
at time t and its stationary distribution can be bounded by B(1 − sCu)

t, with B

being an appropriate constant. Then the larger sCu , the faster the distribution
converges to its stationary distribution, i.e., the faster the random walk mixes. The
spectral gap of the transition probability matrix is then also a measure of how well
connected the network within a cluster is. The presence of sCu as a multiplicative
factor in the scoring function guarantees that the first two properties are satisfied.
Moreover, due to the interlacing property of eigenvalues [CDH+05], adding more
links between the nodes of the same cluster usually increases the spectral gap while
removing links decreases it, which supports the third property of a good clustering
function.

Second, we define

ρCu , ρ
(
DG(Cu)

−1AG(Cu)
)
.

Given that DG(Cu) considers the degrees of the nodes2 in the original graph G,
P = DG(Cu)

−1AG(Cu) is a substochastic matrix. If we consider the transition
probability matrix of a random walk on the whole graph G, P is the submatrix
obtained by extracting only the rows and the columns corresponding to the nodes
in Cu. Given a random walk on G starting at a node i in Cu, and assuming that P
is a primitive matrix, it is possible to show [DS65] that the conditional probability
distribution given that the random walk does not exit from Cu converges to π ∈
[0, 1]|Cu| (we consider only the probabilities for the nodes in Cu, for all the other
nodes the probability is clearly 0 under the conditioning event), that satisfies the
following equation πTP = πTρ(P). Then ρ(P) can be interpreted as the probability
that at each step the random walker does not exit from Cu, given that it has already
spent a long time in Cu.3 The term ρCu quantifies then the effect of outer links
connecting the cluster Cu to other clusters. Obviously, it ranges between 0 and 1.
It is equal to 1 when there is no link between nodes in Cu and nodes in V \Cu and
then in particular when Cu = V since the graph is connected. It is equal to 0 if
the subgraph G(Cu) has no links. Adding links between clusters can only decrease
ρ while removing them can only increase it. The factor ρCu guarantees that the
fourth property is satisfied.

2 The inverse DG(Cu)
−1 always exists because DG(Cu) is a diagonal matrix having strictly

positive diagonal values (dG(i) ≥ 1 because G is connected).
3 Otherwise if we consider that the random walk initial position in Cu follows the probability

distribution π, ρ(P) is simply the probability that the random walker does not exit from Cu at

each step.

6.4. Clustering Algorithm 127

Finally, αi represents the contribution of a node to the final score depending on
its connectivity to other clusters. To satisfy the last two properties required for the
function f , the value αi is chosen as follows:

αi ,
dini

1 + douti

,

where dini = dG(C(i))(i) is the number of nodes in C(i) connected to i and douti =

dG(i)− dini is the number of nodes in V \C(i) connected to i.

6.4 Clustering Algorithm

The function f presented in the previous section gives a scoring mechanism to
evaluate a clustering algorithm. In particular, the optimal clustering algorithm can
be written as follows:

argmax
CG={C1,...,Ck}

f(CG). (6.1)

Let C∗G be the solution of (6.1) and f∗ = f(C∗G) be its value. The optimal clus-
tering and its value are computationally difficult to find, so we will give first some
bounds on the optimal value f∗ and we will propose a local search clustering algo-
rithm that can be implemented with an acceptable complexity and in a distributed
way.

6.4.1 Bounds on f ∗

Proposition 15. For the clustering optimization problem (6.1), the following

bounds hold for the optimal value f∗:

2×m× sV ≤ f∗ ≤ 2×m, (6.2)

where sV is the spectral gap of the simple random walk on all the graph G (sV =

1− µ
(
(D + I)−1(A+ I)

)
).

Proof. For any clustering CG = {C1, ..., Ck} of the graph G we have,

f(CG) =
∑

i

f(i) =
∑

i

dini
1 + douti

sC(i)ρC(i)

≤
∑

i

dini
1 + douti

≤
∑

i

dini ≤
∑

i

dG(i)

= 2×m,

where m is the number of links in the graph G and the first inequality follows from
both sCu and ρCu being at most equal to one. From this upper bound, it follows
that f(C∗G) ≤ 2×m.

128 Chapter 6. Graph Clustering by Random Walks

The optimal clustering has a value greater than any possible clustering. Taking
the graph as one cluster CG = {V } is a valid clustering of G. Thus, a lower bound
on the optimal value is given as follows:

f∗ ≥ f(CG = {V }) =
∑

i

dini × sV × 1 = 2×m× sV ,

where sV is the spectral gap of the simple random walk on all the graph G (sV =

1− µ
(
(D + I)−1(A+ I)

)
).

We observe that both of the bounds are tight for the fully connected graph (let
us denote it Kn). Indeed nodes in Kn are grouped in a single cluster (CG = V) and
f(V) = 2m since douti = 0 for any vertex i and sV = ρV = 1.

Due to the following proposition, the subgraph induced by a cluster of the opti-
mal clustering is connected as long as it has at least an internal link.

Proposition 16. Let C∗G = {C1, ..., Ck} be an optimal clustering for a graph G,

then for any Cu ∈ C∗G, if the subgraph G(Cu) has at least one link, it is connected.

Proof. We sketch a proof of the proposition by contradiction. Suppose there exists
a graph whose optimal clustering C∗G outputs a cluster Cu such that G(Cu) has at
least one link, but it is disconnected. It follows that f(Cu) = 0 since sCu = 0

for disconnected graphs. However, there is a subset of vertices H ⊂ Cu such that
|H| ≥ 2 and G(H) is connected (because there is at least one link in G(Cu)) and it
holds f(H) > 0. Now if we replace Cu with two clusters H and Cu −H, the new
clustering has a strictly higher value than C∗G (contradiction).

6.4.2 Local Search Clustering Algorithm

The optimal clustering can be computationally costly because calculating the spec-
tral gap of a random walks has complexity O(n3). In this section, we present a
local clustering algorithm that allows the clustering to be done in a distributed way.
The algorithm applies the generic local search approach. Let X be the set of all
possible clusterings of graph G. We define two cluster x and y belonging to X to
be neighbors if and only if they differ only for a single vertex that belongs to two
different clusters in x and in y. A local search algorithm for clustering operates as
follows:

1. Let x be some initial clustering;

2. While there is a neighboring G-clustering y with higher score value (f(y) >
f(x)), set x := y;

3. Return the final (locally optimal) solution x.

The algorithm is an iterative one. In our local clustering algorithm we follow
the above steps but we add some randomness in choosing the neighbor in step two.
In fact, at every iteration, a cluster, say it Cu, is chosen uniformly at random. This

6.4. Clustering Algorithm 129

Algorithm 3: Local Clustering Algorithm
1: G = (V,E) where V = 1...n and E = 1...m.
2: Initial clustering C0G = {C1, ..., Cn} where Ci = {i}.
3: E+

Cu
= {(i, j) ∈ E|i ∈ Cu, j /∈ Cu} is the set of Cu’s outgoing links.

4: for k = 1 : Tstop do

5: CkG = Ck−1
G ;

6: let Cu be a cluster chosen uniformly at random from CkG;
7: let (i, j) be a link chosen uniformly at random from E+

Cu
;

8: let Cv be the cluster containing j (i.e., Cv = C(j));
9: Cu proposes to j to join (if it didn’t yet propose to j after the last change

within Cu occurred) ;
10: if f(Cu) + f(Cv) < f(Cu ∪ {j}) + f(Cv\{j}) then

11: j accepts the proposal;
12: Cu ← Cu ∪ {j};
13: Cv ← Cv\{j};
14: if C(j) = ϕ then

15: Remove Cv from CkG;
16: end if

17: else

18: j rejects the proposal;
19: end if

20: k ← k + 1;
21: If all clusters don’t have any more proposals break;
22: end for

23: return Ck−1
G

random cluster selects one of the outgoing links uniformly at random and proposes
to the endpoint node j in the adjacent cluster, to disconnect from that cluster and
to join Cu. If joining Cu can increase the value of the clustering then j will accept
the proposal, otherwise it will reject it and no change in the clustering will take
place. In particular, a detailed description of the local clustering algorithm is given
in Algorithm 3. The algorithm runs at most for Tstop iterations, but it can easily
changed so that it stops after a given number of consecutive iterations without any
change of the clustering.

Algorithm 3 presents some interesting features. In fact, at every iteration, only
two clusters are involved in the algorithm, while the others are idle. It is then
simple to distribute the algorithm among the different clusters that can work asyn-
chronously and in parallel as follows: at any time an inactive cluster can wake up
and can propose to a node from another inactive cluster to join it, both clusters
will become active until acceptance or rejection of the proposal. Several matching
clusters can be active at the same time and the computations is distributed in a
parallel way. Finally, being that the algorithm randomized, it is possible to run it

130 Chapter 6. Graph Clustering by Random Walks

multiple times and then select the best solution across all the different runs.

Moreover, at every iteration, a cluster can increase by maximum one node. The
complexity of the algorithm originates from calculating the function f which in its
turn depends on the number of nodes in the cluster. So depending on the available
computational power, we can restrict the maximum number of nodes in a cluster.
For example, if the calculation of the spectral gap is affordable for graphs with only
few hundred nodes, then clusters reaching this limit will stop initiating the algorithm
and stop proposing to other nodes to join.

In addition, the local clustering algorithm performs well on clique-like graphs.
The following simple lemma will prepare the result:

Lemma 14. Let g : B → R be a scalar strongly convex function, then for any x

and y such that x, x+ 1, y, y − 1 ∈ B and x ≥ y, we have:

g(x) + g(y) < g(x+ 1) + g(y − 1).

Proof. Let h(x) = g(x+ 1)− g(x), since g is strongly convex, then g′(x) is strictly
increasing, so

x+ 1 > x,

⇒ g′(x+ 1) > g′(x),

⇒ h′(x) > 0, so h(x) is strictly increasing,

and adding that x ≥ y we can write:

x > y − 1,

⇒ h(x) > h(y − 1),

⇒ g(x+ 1)− g(x) > g(y)− g(y − 1),

and the lemma follows.

Proposition 17. The local clustering Algorithm 3 calculates the optimal clustering

for a clique graph Kn in a finite number of iterations almost surely if Tstop is large

enough, i.e., Algorithm 3 on Kn outputs a single cluster CG = {V }.

Proof. First note that the optimal clustering on a clique Kn is C∗G = {V } since
f(CG = {V }) = 2m that is an upper bound on f∗. It remains to prove that the
local algorithm terminates with one cluster of all nodes. Let Cu be any cluster in this
graph, and let nu = |Cu| be its number of vertices, so sCu = 1 since the subgraph
induced by Cu is also a clique, and ρCu = nu−1

n−1 since the matrix DG(Cu)
−1AG(Cu)

has dimensions nu×nu and any of its elements has the value 1
n−1 except the diagonal

6.5. Numerical Examples 131

elements that are equal to 0, therefore

f(Cu) =

(
∑

i∈Cu

dini
1 + douti

)

sCuρCu

=

(
∑

i∈Cu

nu − 1

1 + n− nu

)

× 1× nu − 1

n− 1

=
nu(nu − 1)2

(n− 1)(n− nu + 1)
,

and it depends only on the size of the cluster. Let g(nu) = f(Cu), since g(nu) is
strongly convex in nu when nu ∈ [1, n], then according to the algorithm and due to
Lemma 1, any node j (that belongs to the cluster Cv) receiving a proposal from a
cluster Cu will accept this proposal if |Cu| ≥ |Cv| and will reject otherwise due to
the following equation,

f(Cu ∪ {j}) + f(Cv\{j}) = g(|Cu|+ 1) + g(|Cv| − 1) (6.3)

> g(|Cu|) + g(|Cv|) (6.4)

= f(Cu) + f(Cv). (6.5)

The transition from (6.3) to (6.4) is due to Lemma 1. Therefore, any proposal from
the cluster with largest number of vertices to other nodes is accepted (let Ck

max be the
cluster with maximum number of vertices at iteration k), |Ck

max| cannot decrease
while it can increase by one with a probability larger than 1/n. The algorithm
terminates when |Ck

max| = n, so with probability 1 there is an iteration K such that
all the nodes form a single cluster and the algorithm terminates. It is easy to check
that E(K) ≤ n2.

6.5 Numerical Examples

In this part, we study the performance of our local clustering algorithm. We con-
sider real world networks whose ground truth is known. We apply our algorithm
(we perform multiple independent runs of the Algorithm 3 and select the best lo-
cal maximum) on these networks and compare the algorithm’s results with actual
clustering. The results are shown using the graph visualization platform Gephi
[BHJ09]. We also compare our results with the built-in modularity clustering algo-
rithm [BGLL08] in Gephi. Our first example is the Zachary’s Karate Club [Zac77],
it is a social network of friendships between 34 members of a karate club at a US
university in the 70s. Fig. 6.1 shows the partition of the karate club.

We apply our local clustering algorithm to the karate club network and the
results are given in Fig. 6.2. Starting from 34 different clusters as initial input (every
node is considered a cluster) and based on the connection and the spectral gap of
the clusters, our algorithm identifies 3 clusters (one more than the ground truth).
Moreover the two nodes 31 and 9 are not assigned to the correct cluster. Notice

132 Chapter 6. Graph Clustering by Random Walks

Figure 6.1: The network of social relationship between the members of the Karate
Club. After a split, the members represented by a square belongs to one sub-club
and the members represented by a circle to the other sub-club (the image is taken
from [NG04]).

that this is just a local maximum for the optimization problem. For comparison,
Fig. 6.3 shows the results of clustering using the modularity clustering algorithm,
we see that it identifies even more clusters than our method (4) and node 10 is not
correctly assigned in comparison to the ground truth.

The other example we consider is the network of American College football teams
in Division I during Fall 2000 regular season [GN02]. Division I was made up by 115
teams divided in 12 conferences. A link in the graph corresponds to a game played
between the two teams. Teams in the same conference are more likely to play games
than teams from different conferences. Fig. 6.4 shows the teams grouped according
to the conference they belong to. While most of conferences have good clustering
properties (good connections inside the clusters and week connections among them),
there are some conferences for which this is not true. For conference 1 for example
there is only one game (one link) among its members, and the clubs have played
most of their games against teams in different conferences. In those cases we expect
the clustering algorithm to classify the nodes into different clusters.

We applied our local clustering algorithm to this network. The results are shown
in Fig. 6.5. The local clustering algorithm gives 14 clusters, and we see that the
algorithm was able to find correctly most of the clusters. In particular, the difference
between the ground truth and the spectral gap clustering is as follows: cluster 7 was
divided into two clusters, cluster 12 was also divided into two clusters. Even though
conference 1 is very difficult to identify, our algorithm clustered together the only
two connected nodes and clustered the disconnected nodes into different clusters.
In total there are only 6 nodes that are not well clustered (out of the 115 nodes).4

We also present the results of clustering using the modularity algorithm of
[BGLL08]. This allows us to compare the performance with other clustering al-

4The bad clustered nodes by Algorithm 1 in comparison to the ground truth are: 3 nodes in

cluster 1, 2 nodes in cluster 9, and 1 node in cluster 5 which gives a total of 6 error nodes (without

taken into consideration the split of the clusters 7 and 12).

6.5. Numerical Examples 133

Figure 6.2: Clustering the karate club by applying Algorithm 1.

Figure 6.3: Clustering the karate club by applying modularity algorithm.

134 Chapter 6. Graph Clustering by Random Walks

!"

#"

$"

%"

&"

'"

("

)"

*"

!+"

!!"

!#"

Figure 6.4: The ground truth of the conferences (clusters) in the American College
football network.

6.5. Numerical Examples 135

Figure 6.5: Clustering the American College football network by applying Algorithm
1. Nodes with the same color are classified as one cluster (the algorithm terminates
with 14 clusters, 2 more than the ground truth).

136 Chapter 6. Graph Clustering by Random Walks

Figure 6.6: Clustering the American College football network by applying the mod-
ularity algorithm. Nodes with the same color are classified as one cluster (the
algorithm terminates with 10 clusters).

gorithm and to check if the errors were due to failure of the algorithm or due to the
ground truth graph structure. In the Fig. 6.6, the modularity algorithm classified
the network into only 10 clusters (2 less clusters than the ground truth). Cluster
7 nodes were divided between two already existing clusters. Cluster 1 disappeared.
Note that the same 6 nodes that were miss-classified by our algorithm were also
here miss-classified which suggests that the errors are due to the structure but not
to the algorithm.

6.6 Conclusion

In this chapter we proposed a new clustering metric based on the spectral gap
of a random walk on clusters. We also proposed a randomized local clustering

6.6. Conclusion 137

algorithm that outputs a locally optimal clustering of the graph. The algorithm can
be distributed in a network and clusters are iteratively updated on the basis of local
communication and processing. One of the strengths of our algorithm is its ability
to detect small clusters. The complexity can also be adapted to available processing
capabilities.

Chapter 7

Conclusion and Perspectives

In this thesis, optimization, control, and game theoretical problems related to con-
sensus protocols were studied and analyzed.

In Chapter 2, we have proposed an approximated solution for achieving fast
consensus of the distributed linear averaging problem. This solution is obtained
by minimizing the Schatten p-norm of the weight matrix where p is a parameter
in the proposed problem. This solution has the advantage of being suitable for a
distributed implementation with guaranteed error bounds compared to the opti-
mal algorithm. By tuning the parameter p in our proposed minimization, we can
simply trade-off the quality of the solution (i.e., the speed of convergence) for com-
munication/computation requirements (in terms of number of messages exchanged
and volume of data processed). Simulations on random graphs show that it also
outperform other known distributed weight selection techniques even with limited
communication overhead.

As a future work, in this direction, it would be interesting to study this approx-
imation on dynamic graph topology. On these networks, the distributed implemen-
tation of Schatten p-norm minimization can automatically adapt to the changes in
the topology contrary to other globally and centralized solutions optimized for static
graphs. The good performance of Schatten p-norm on graph optimization problems
opens the way to revisiting and applying this norm to other norm minimization
applications in machine learning, resource allocation, network tomography, etc.

In Chapter 3, we have studied a finite-horizon discrete-time optimal control
problem for a network designer to achieve faster consensus given the network struc-
ture and the initial nodes’ values. The optimal control is obtained using gradient
methods. We have also provided sufficient conditions for reaching consensus in one
stage. Moreover, we have studied the saddle-point equilibrium (SPE) of the consen-
sus problem in the presence of an adversary, and found that an SPE does not exist
in pure strategies. If the adversary plays first, then the network designer can adjust
the weights in such a way that the effect of the adversary can be removed. How-
ever, if the network designer plays first, the adversary can affect the optimal value
and would drive the system away from consensus. Nevertheless, an SPE exists in
mixed strategies, where the adversary selects the noise using a randomized strategy,
whereas the network designer’s strategy is still pure.

As future work, distributed implementation of the optimal control would be
an important direction because of the distributed nature of the average consensus
protocols. So far, the adversary has access to initial values; it would be interesting to
remove the dependence of the strategies on the initial values. Moreover, considering

140 Chapter 7. Conclusion and Perspectives

a broader class of adversaries (as malicious and misbehaving nodes, or adversaries
that break links) is also one of our future research directions.

In Chapter 4, we have studied the performance of deterministic distributed av-
eraging protocols subject to communication quantization. We have shown that
quantization due to links can force quantization on the state. Depending on initial
conditions, the system converges in finite time to either a quantized consensus, or
the nodes’ values are entering into a cyclic behavior oscillating around the average.
We have derived tight error bounds for the cycle size.

As future work, it will be interesting to quantify the length of a period of the cycle
of the system. We also plan to extend our results to the cases when the graph may
change over time and the agents may update their variables in an asynchronous
manner. Although cyclic behavior of the system will generally not occur for the
above cases, simulations show that the quantized consensus can still be achieved.
The analysis tools presented in this thesis are promising for these more complicated
and challenging cases.

In Chapter 5, we proposed a locally-based algorithm for reducing the commu-
nication overhead due of the messages between agents running consensus protocols.
We proved that this algorithm is converging to a consensus at most η from the true
average. The algorithm can be applied on dynamic graphs and is also robust and
adaptive to errors caused by a node suddenly changing its estimate.

A new notion, asymptotic termination, was introduced which is a weaker con-
dition than finite time termination. So as future work, it would be interesting to
investigate more this notion specially to domains where finite time termination al-
gorithms do not exist.

In Chapter 6, we proposed a scoring clustering metric based on the random walk’s
properties to evaluate the quality of a cluster on nodes. We also proposed a ran-
domized algorithm that identifies a locally optimal clustering of the graph according
to the metric defined. The algorithm is intrinsically distributed and asynchronous.

As future work, it would be interesting to investigate more the proposed metric
because it shows promising results on small/medium sized networks.

Appendix A

Open Research Direction:

Averaging on Networks with

Dynamic Nodes

Contents
A.1 Introduction . 141

A.2 Model . 142

A.3 Simple Network Topologies 143

A.3.1 Complete Graph . 143

A.3.2 Directed Tree . 144

A.4 Conclusion . 144

A.1 Introduction

The purpose of this appendix chapter is to introduce a novel research direction in
consensus protocols. In dynamic networks, the topology of the nodes in a network
or links connecting these nodes change with time. This can be due to mobility,
link failure, or nodes failure. We are interested in this chapter to study consensus
on dynamic networks. Most of the work on consensus in dynamic network settings
consider a fixed number of nodes that are trying to reach agreement in the presence
of either mobility or non-robust links (so only the links are dynamic) [OSM04]. Av-
erage consensus on these networks is modeled following a random adjacency matrix
An×n(k) where n is the number of nodes and is fixed while the elements of this
matrix are random (being for example i.i.d. at every iteration k). The study of
consensus on that model is reduced to studying the convergence of the backward
product of random matrices. Some papers give sufficient conditions on the weight
matrices at every time iteration that guarantee convergence, others use coefficient
of ergodicity as a tool to show the convergence of their system to consensus [TSJ08].
However, little study has been made on networks with dynamic number of nodes.
In the latter case, the dimensions of the adjacency (and weight) matrices can be
unbounded, and thus the traditional tools for studying the consensus are not appli-
cable. We refer in this report to this type of networks: nodes arrive and leave as in

142
Appendix A. Open Research Direction: Averaging on Networks with

Dynamic Nodes

Figure A.1: The network model.

a queuing system. We would like to study the effect of averaging in these networks,
and to see if the nodes could actually reach consensus.

A.2 Model

Networks with dynamic nodes are characterized by nodes’ arrival and nodes’ de-
parture (see Fig. A.1). Each node arrives with a random value Xk (where k is the
number of arrival and each node is labeled by its arrival number). We suppose that
there is initially a node having a label 0 in the system that does not leave (it arrives
at time t = 0 and does not depart). Let X0, X1, X2, . . . be pairwise independent
random variables following some distribution. Let Ak be the arrival time of node
k and Dk its departure time. At any instance t, nodes within the system are con-
nected to each other by some network topology. Let V (t) be the set of all nodes in
the system at time instant t, i.e., V (t) = {k | Ak ≤ t < Dk}. Let Yk(t) be the value
of node k that changes with time depending on its history of connection with other
nodes, for example it should be clear that Yk(t) has a constant value before arrival
(Yk(t) = Xk for t < Ak) and after departure (Yk(t) = Yk(Dk) for t ≥ Dk) but this
value changes during the time it spends in the system because of interaction with
other nodes. The nodes perform a continuous time averaging:

ẋ(t) = −Ltx(t), (A.1)

where x(t) is the state vector of the nodes present in the system at time t, and
xi(t) = Yγ(i)(t) where γ(i) is the arrival number of the i-th oldest node in the
system (notice that x1(t) = Y0(t) is always true for the node labeled 0 because
it is the oldest node in system and does not depart). Lt is the Laplacian of the
graph at time t, and ẋ(t) = ∂x(t)

∂t . We call this model a consensus queue due
to its similarity to queuing systems. If the inter-arrival and inter-leave times are
exponentially distributed random variables with a FIFO discipline (the nodes first to
come are the first to leave except for node 0), then the system is M/M/1 consensus
queue with arrival rate λa and departure rate λd.

The Laplacian of the graph Lt is used to give a general model for different graph
topologies. As start up results, we will give some simplifications in the next section:

A.3. Simple Network Topologies 143

1) we only consider two graph topologies, the complete graph and the tree, 2) the
averaging is faster than the dynamics of the queue (i.e., equation (A.1) converges
before the arrival or the departure of a new node).

The model described here is interesting because it can be applied to different
and diverse applications. Queuing consensus can be for example a model for human
interactions and their behavior. Consider a system where people arrive at an open
market and products’ prices are not fixed. Each customer has an initial estimation of
the price of the product that varies depending on the interaction process with other
customers in the system. You can also consider this model as a representative of
a wireless sensor network where sensors monitor some environmental measurement
(as temperature or pressure) where nodes can fail according to a Poisson process
and new nodes are added to the network. We are interested then by the average in
the system, mainly by:

Z(t) =
1

N(t)

N(t)
∑

i=1

xi(t), (A.2)

where N(t) = |V (t)| is the number of nodes that are present in the system at time
t and xi(t) are their estimates. We note that Z(t) is not a continuous process
in general because with every arrival (or departure) with an estimate Xk (or Yk)
different from Z(t), the process jumps to a different value.

A.3 Simple Network Topologies

There are two sources of randomness in this model, the first one is the input estimate
X that follows some distribution, and the other one is the queuing system with
random arrivals and departures. In the following sections, we will characterize the
average in the system and the output process by considering several simplifications:

1. Complete Graph: the network is a full mesh network (all nodes in the system
are connected to each others) and once a node enters a system, all nodes will
have the average of nodes presented (instantaneous averaging), i.e., xi(t) =

Z(t) for all i in the system.

2. Directed Tree: nodes arriving can only connect to one node chosen uniformly
at random in the system, and their estimate changes only once till they leave
the network depending on the chosen node’s estimate and it’s distance from
the root.

A.3.1 Complete Graph

Let Zk be the value of Z(t) just after the k-th arrival and before the k+1-th arrival.
Then Zk can be written as a weighted average of the nodes in the network, i.e.,
Zk =

∑k
i=0wiXi, where wi is the weight given to the value of node i and it is a

random variable depending on the stochastic arrivals and departures. It is important
to study these weights to see how the system preserves the history of old values. To

144
Appendix A. Open Research Direction: Averaging on Networks with

Dynamic Nodes

do this we take two extreme cases. The first case of no departures (if λd = 0), then
we have

wi =
1

k + 1
for i = 0, . . . , k. (A.3)

The second case of very fast departures (λd >> λa), then we suppose each node
that arrives, averages with node 0 and then leaves the system, so

wi =

{

(12)
k+1−i for i = 1, . . . , k,

(12)
k for i = 0.

(A.4)

The results are interesting as they show that if the system’s departure rate is fast,
then the weights for old values decrease exponentially, but if the departure is slow
then the weights for old values decrease linearly in k.

A.3.2 Directed Tree

For this topology, we assume that there are no departures from the system. Each
node arrives, connects uniformly at random to one node (we call it its parent) in
the network. Let L be the distance from a newly connected node to the root (node
0). We suppose that each node i arrives at level L, connects to its parent j, and
then averages as follows:

Yi(t) =
1

L
Xi +

L− 1

L
Yj(t) for t ≥ Ai.

Notice that Yi(t) = 1
L

∑

s∈P Xs is a constant for t > Ai where P is the set of nodes
on the path from the root to i. Since L converges to log n in probability as n→∞
[Dev88], we conclude that if X1, X2, . . . are i.i.d random variables of mean µ, then
the value Yi(t) for t > Ai converges in probability to µ as i→∞.

A.4 Conclusion

In this appendix we have presented, as an open problem, a novel model for averaging
in networks with dynamic nodes. As start up results, we studied the average process
in simple network settings: the complete graph and the tree topology. The results for
the complete graph show that if the system’s departure rate is fast, then the weights
for old values decrease exponentially, but if the departure is slow then the weights
for old values decrease linearly in k. It would then be interesting to characterize
the decrease in the average weight of the history as function of the performance
parameter of the queue (i.e., as function of ρ = λa/λd). For directed trees, we have
shown that the value of a new arrival after averaging with its parent in the network
converges in probability to its mean value. It would then be interesting to check if
stronger convergence results hold. Therefore, the study of the general model (e.g.,
the study of the expected value of the average process Z(t) given the initial values)
is an open problem.

Appendix B

Présentation des Travaux de

Thèse en Francais

Contents
B.1 Introduction . 145

B.1.1 Optimisation et Contrôle Distribué 147

B.1.2 Monitoring Environnemental 147

B.1.3 Système Multi-agents . 148

B.2 Les Contributions de la Thèse 148

B.2.1 Sélection de Poids dans les Protocoles de Consensus 149

B.2.2 Un Adversaire dans les Protocoles de Consensus 149

B.2.3 Conception et Analyse d’Algorithmes Distribués de Moyen-
nage avec Valeurs Échangées Discrétisées 150

B.2.4 La Réduction de Charge de Communication dans les Proto-
coles de Consensus . 150

B.2.5 Regroupement . 151

B.3 Conclusion . 151

B.1 Introduction

Depuis bien longtemps nous savons que nous sommes interconnectés, et pas seule-
ment les uns avec les autres, mais aussi avec l’environnement réseau qui nous entoure.
La plupart des réseaux actuels sont fortement interconnectés. L’Internet, le web, les
réseaux de communication, les réseaux de capteurs sans fil, les réseaux intelligents,
et les réseaux sociaux ne sont que quelques exemples d’environnements interconnec-
tés. La caractéristique commune intéressante de ces réseaux est qu’ils peuvent être
composés de nombreux petits sous-systèmes qui prennent les décisions locales (basée
uniquement sur les règles d’interaction voisin). Ces décisions locales peuvent avoir
un impact crucial sur l’ensemble du réseau. Par exemple, un virus qui se répand à
partir d’un ordinateur infecté, peut faire de graves dommages dans le réseau. Un
partage de vidéo par un utilisateur bien connecté aux réseaux sociaux peut faire le
continu multimédia viral et atteint une grande partie de la population.

En général, un réseau est formé de noeuds (ou agents) et des liens de communi-
cation qui permettent à ces nœuds de partager des informations et des ressources.

146 Appendix B. Présentation des Travaux de Thèse en Francais

Dans ce manuscrit on définit un“agent” comme un automate (peut-être une machine
avec un nombre infinis d’états) programmé pour exécuter des algorithmes en fonc-
tion de la dynamique des interactions bien définies. Ces dynamiques changent les
états des agents (et donc l’état du système), et en fonction des décisions locales,
ces états peuvent converger ou pas. Les décisions locales qui causent les états des
agents de converger vers un état commun, sont appelées les protocoles de consensus.
Dans ce travail, nous ne considérons que les systèmes en temps discret, bien que
les algorithmes étudiés peut être utilisé pour étudier les systèmes en temps continu
aussi.

Les protocoles de consensus peuvent être appliqués dans divers contextes de
réseaux (comme ceux mentionnés plus haut) où les interactions entre voisins sont
possibles. En effet, ces protocoles se situent à l’intersection de différents domaines
de recherche comme la théorie des systèmes, des modèles et systèmes de calculs,
et la théorie des graphes. La théorie des systèmes est l’étude transdisciplinaire
de l’organisation abstraite des phénomènes, sans être spécifique à un type précis
d’objets, aux leurs propriétés exactes, ou à la description qualitative de leurs règles
d’interaction dans l’environnement sous-jacent. Cette abstraction dans les proto-
coles de consensus est donnée par la modélisation du réseau par un graphe de som-
mets (les agents) reliés par des liens (s’ils communiquent), puis en exécutant des
algorithmes de consensus au dessus de cela.

Par ailleurs, nous étudions des problèmes d’optimisation concernés par les pro-
tocoles de consensus en temps discret sur les réseaux, comme paramètre de réglage
pour augmenter la vitesse de convergence, la mise en œuvre distribuée de solu-
tions d’optimisation globale, et la réduction de la surcharge de communication
(Chapitres 2 et 5). Nous proposons également un cadre conceptuel d’analyse des
jeux qui prend en compte un adversaire dans le réseau en essayant de perturber le
canal de communication (Chapitre 3). Nous analysons des algorithmes de consensus
en présence de contraintes de communication comme la quantification (Chapitre 4).
Nous abordons le problème des regroupements (clustering) dans un réseau en pro-
posant une mesure de similarité basé sur la vitesse de convergence des protocoles de
consensus et les propriétés de trou spectral des marches aléatoires (Chapitre 6).

Les motivations principales de cette thèse sont les trois applications suivantes
où les protocoles de consensus sont fondamentaux dans leur conception:

• Optimisation et contrôle distribué

• Monitoring environnemental

• Système multi-agents

Ainsi, la contribution de cette thèse est d’enrichir les connaissances dans la recherche
sur les protocoles de consensus en général et à ces applications en particulier.

B.1. Introduction 147

B.1.1 Optimisation et Contrôle Distribué

Il y a un nombre important de recherches sur l’optimisation distribuée dans les
réseaux. De nouvelles techniques rapides [WOJ13, GJS11] ont été proposées pour
la dualisation lagrangienne des problèmes séparables. Celle-ci est bien connue dans
la communauté du réseau depuis le travail séminal de Kelly sur TCP [KMT98].
D’autres travaux dans [NO09, JKJJ08] combinent un protocole de consensus, qui
est utilisé pour distribuer les calculs entre les agents, et une méthode de sous-
gradient pour la minimisation d’un objectif local. Une approche différente repose sur
une exploration aléatoire intelligente de l’espace de solution possible, par exemple,
en utilisant des algorithmes génétiques [ANC+10] ou l’échantillonneur de Gibbs
[KBC+07]. En effet, l’optimisation distribuée par des protocoles de consensus dans
la communauté de contrôle remonte aux années 80 grâce au travail de D. P. Bertsekas
et J. N. Tsitsiklis sur la prise de décision décentralisée et le calcul parallèle [BT89].

Les problèmes de consensus ont aussi une relation étroite avec l’algorithme
PageRank utilisé par le moteur de recherche Google pour classer les pages web pour
les requêtes de recherche [BP98]. Comme le nombre de sites jusqu’à présent est plus
de 1 milliard,1 le PageRank nécessite le calcul d’un vecteur propre correspondant à
la plus grande valeur propre de très grande matrice. Par conséquent, l’utilisation de
l’information globale n’est pas possible dans ce cas, et les implémentations paral-
lèles et distribuées sont obligatoires [LM06, ALNO07]. Une possibilité est d’utiliser
des algorithmes de consensus [IT10, ANP07]. Le problème de PageRank a suscité
récemment l’intérêt de la communauté de contrôle [IT14].

Dans les réseaux, des algorithmes de routage efficaces et une utilisation efficace
des ressources sont proposés pour économiser l’énergie et accélérer le traitement.
Pour les petits réseaux, il est possible pour une unité centrale d’être au courant
de tous les composants du réseau et de décider comment utiliser de façon optimale
une ressource. Pour les grands réseaux, l’unité centrale doit gérer une grande quan-
tité de données, et l’optimisation centralisée peut devenir impossible, en particulier
lorsque le réseau est dynamique [BFH13]. En effet, la configuration optimale doit
être calculée à chaque fois qu’une liaison tombe en panne ou qu’un changement
se produise dans le réseau. En outre, les noeuds peuvent avoir des capacités de
traitement qui ne sont pas utilisées dans l’optimisation centralisée. Par conséquent,
il convient d’effectuer l’optimisation distribuée basée sur le calcul locale à chaque
nœud et sur l’information locale entre les voisins [Joh08]. Cette approche distribuée
est intrinsèquement capable de s’adapter aux changements du réseau local.

B.1.2 Monitoring Environnemental

Les nouvelles technologies comme la robotique, le contrôle du groupe de véhicules
et la surveillance de l’environnement ont besoin de réseaux de capteurs sans fil.
Dans ces réseaux, un groupe de capteurs communique d’une manière ad hoc pour
accomplir les tâches à faire.

1www.internetlivestats.com

148 Appendix B. Présentation des Travaux de Thèse en Francais

En surveillance de l’environnement, des capteurs mesurent la température, la
pression, la pollution, etc. dans leur zone de déploiement. Ces mesures peuvent être
bruyants, et si le bruit est additif, de moyenne nulle et gaussien, chaque capteur
de température peut avoir une mesure différente de la température de consigne. Il
est bien connu qu’un bon filtre de bruit gaussien (pour atteindre le maximum de
vraisemblance) est le filtre de moyenne. Par conséquent, la moyenne des valeurs des
mesures initiales peut donner une estimation plus précise. Ceci est connu comme la

fusion de capteurs. La fusion des capteurs peut être obtenue par la communication
décentralisée entre les capteurs en utilisant des protocoles de consensus. En effet,
la fusion de capteurs est la motivation communiquée par Boyd et al. pour leur
article bien connu sur les protocoles de bavardage (gossiping protocols) en consensus
[BGPS06].

B.1.3 Système Multi-agents

Les protocoles de consensus sont également utilisés dans les problèmes de coordi-
nation multi-agents [OSFM07]. Les agents de ces réseaux utilisent également la
technologie de capteurs sans fil pour communiquer. Un groupe de robots se dé-
plaçant en parallèle par exemple devrait s’accorder sur la direction du mouvement
et de la vitesse pour éviter la collision. La difficulté pour les protocoles de consensus
dans cette catégorie de problèmes n’est pas le grand nombre de robots, mais plutôt
c’est une question de la dynamicité de topologie et de connectivité.

B.2 Les Contributions de la Thèse

Nous étudions dans cette thèse les problèmes d’optimisation, de contrôle, et de
théorie de jeu qui se posent dans les protocoles de consensus. En particulier, nous
soulevons les questions suivantes:

• Les nœuds du réseau peuvent-ils éventuellement déduire (ou apprendre) les
poids optimaux de manière distribuée pour accélérer la convergence des pro-
tocoles de consensus (sans la nécessité de la connaissance globale du réseau)?

• Étant donné que le réseau peut être sensible aux attaques par un adversaire
prêt de conduire le système loin de consensus, quelles stratégies devraient
être utilisées par l’adversaire et le concepteur du réseau pour atteindre leurs
objectifs opposés?

• Supposons que les canaux de communication entre les nœuds du réseau sont
soumis à des contraintes, et les nœuds reçoivent/envoient des valeurs tron-
quées. Comment peut cette quantification influer la convergence du système
non linéaire qui en résulte?

• Étant donné que les variables convergent asymptotiquement, les nœuds
peuvent-ils savoir quand leurs variables d’état sont assez proches de la valeur

B.2. Les Contributions de la Thèse 149

asymptotique, et donc décider d’arrêter l’execution d’algorithme basée unique-
ment sur une connaissance locale?

• Étant donné que les noeuds formant des groupes bien connectés dans le graphe
ont une dynamique de convergence similaires, comment on peut utiliser cette
observation pour déterminer ces groupes de nœuds?

Chaque chapitre de la thèse traite de l’une des questions ci-dessus.

B.2.1 Sélection de Poids dans les Protocoles de Consensus

Nous approchons le problème de la sélection optimale de poids avec un problème de
minimisation de la p-norme de Schatten. Ce dernier est résolu de manière totale-
ment distribuée grâce à une mèthode du gradient. Selon la valeur du paramètre p,
nous pouvons trouver un compromis entre la qualité de la solution (c’est-à-dire la
vitesse de convergence) et les coûts en termes de communication et calcul (nombre
de messages échangés et volume de données traitées). Les résultats des simulations
montrent que notre approche fournit une très bonne performance même avec un
échange d’informations limité. La procédure d’optimisation des poids peut égale-
ment se dérouler simultanement avec le protocole de consensus.

Les publications directement liées à cette contribution sont les suivantes:

• [ECNA15] M. El Chamie, G. Neglia, and K. Avrachenkov, “Distributed Weight
Selection in Consensus Protocols by Schatten Norm Minimization”, To appear
in IEEE Transactions on Automatic Control as Technical Note, Volume 60,
No. 4, April 2015.

• [ECN14] M. El Chamie and G. Neglia, “Newton’s Method for Constrained
Norm Minimization and Its Application to Weighted Graph Problems”, In
proceedings of the American Control Conference ACC 2014 (Portland, OR,
United States, June 4-6), pp. 6, June 2014.

Autres publications également liés à ce sujet sont les suivantes:

• [SECN13] L. Severini, M. El Chamie, and G. Neglia, “Topology versus Link
Strength for Information Dissemination in Networks”, In proceedings of AL-
GOTEL 2013 (Pornic, Loire-Atlantique, France, May 28-31), pp. 4, May 2013.

• [AECN11] K. Avrachenkov, M. El Chamie, and G. Neglia, “A local average
consensus algorithm for wireless sensor networks”, In proceedings of IEEE
International Conference on Distributed Computing in Sensor Sytems and
Workshops DCOSS 2011 (Barcelona, Spain June 27-29), pp. 6, June 2011.

B.2.2 Un Adversaire dans les Protocoles de Consensus

Nous proposons un cadre conceptuel d’analyse des jeux d’adversaire qui peut ajouter
du bruit aux poids utilisés par l’algorithme de consensus de moyenne afin d’éloigner

150 Appendix B. Présentation des Travaux de Thèse en Francais

le système de consensus. Nous donnons les stratégies optimales pour les joueurs
(l’adversaire et le concepteur du réseau) dans ce jeu et nous montrons qu’un point-
selle (saddle-point equilibrium) existe dans les stratégies mixtes.

La publication relative à cette contribution est la suivante:

• [ECB14] M. El Chamie and T. Başar, “Optimal Strategies for Dynamic Weight
Selection in Consensus Protocols in the Presence of an Adversary”, Accepted
to the 53rd IEEE Conference on Decision and Control CDC 2014 (Los Angeles,
California, Dec. 15-17), pp. 6, Dec. 2014.

B.2.3 Conception et Analyse d’Algorithmes Distribués de Moyen-
nage avec Valeurs Échangées Discrétisées

L’objectif de ce travail est d’étudier les performances d’une sous-classe d’algorithmes
déterministes de calcul de la moyenne distribuée, où l’échange d’informations entre
les nœuds voisins est soumis à la quantification uniforme. Avec une telle quantifi-
cation, la moyenne précise ne peut être atteinte (sauf dans des cas exceptionnels),
mais une valeur proche d’elle peut être atteinte. Cette valeur est appelée consensus
quantifié. Nous montrons que, dans un temps fini, soit tous les n agents parviennent
à un consensus quantifié où la valeur de consensus est le plus grand entier qui n’est
pas supérieur à la moyenne de leurs valeurs initiales; ou soit tous les n agents cyclent
dans un petit voisinage autour de la moyenne, en fonction des conditions initiales.
Dans ce dernier cas, il est démontré que le voisinage puisse être rendu arbitrairement
faible en ajustant les paramètres de l’algorithme de manière distribuée.

La publication relative à cette contribution est la suivante:

• [ECLB14] M. El Chamie, J. Liu, and T. Başar, “Design and Analysis of Dis-
tributed Averaging with Quantized Communication”, Accepted to the 53rd
IEEE Conference on Decision and Control CDC 2014 (Los Angeles, Califor-
nia, Dec. 15-17), pp. 6, Dec. 2014.

B.2.4 La Réduction de Charge de Communication dans les Proto-
coles de Consensus

La convergence du consensus de moyenne est asymptotique et la mise en œuvre
d’un protocole de terminaison est difficile lorsque les nœuds ne connaissent pas
l’estimation globale (par exemple, le diamètre du réseau ou le nombre de nœuds).
Nous nous intéressons à la réduction du taux de messages envoyés dans le réseau
quand les estimations deviennent proche du consensus. Nous présentons un algo-
rithme de consensus de moyenne totalement distribué, où les nœuds envoient plus
de messages lorsque la différence entre leurs estimations est grande et moins de
messages lorsque le système est à peu prés convergeant. La convergence du système
est garantie d’être proche de la vraie moyenne et le coût des communications est
fortement réduit.

La publication relative à cette contribution est la suivante:

B.3. Conclusion 151

• [ECNA13] M. El Chamie, G. Neglia, and K. Avrachenkov, “Reducing Commu-
nication Overhead for Average Consensus”, In proceedings of IFIP Networking
2013 (Brooklyn, NY, USA, May 22-24), May 2013.

B.2.5 Regroupement

Nous proposons une mesure de similarité qui évalue la qualité d’un regroupement
(clustering) des nœuds dans un réseau. Un algorithme local de clustering basé sur
cette métrique est proposé.

La publication relative à cette contribution est la suivante:

• [AECN14] K. Avrachenkov, M. El Chamie, and G. Neglia, “Graph Clustering
Based on Mixing Time of Random Walks”, In proceedings of the IEEE Inter-
national Conference on Communications ICC 2014 (Sydney, Australia, June
10-14), pp. 6, June 2014.

B.3 Conclusion

Dans cette thèse, nous avons étudié les problèmes d’optimisation, de contrôle, et de
théorie de jeu qui se posent dans les protocoles de consensus.

D’abord, nous avons étudié les techniques d’optimisation pour des problèmes
de sélection de poids permettant ainsi d’augmenter la vitesse de convergence de
protocoles de consensus dans les réseaux. Nous avons proposé de sélectionner les
poids en appliquant un algorithme d’approximation: minimisation de la norme p
de Schatten de la matrice de poids. Nous avons caractérisé l’erreur induite par
cette approximation et nous avons montré que l’algorithme proposé a l’avantage
qu’il peut être soit résolu de façon distribuée en utilisant une méthode de gradient
projeté simple ou résolu par la méthode de Newton et avec une convergence plus
rapide.

Ensuite, nous avons proposé un cadre conceptuel d’analyse des jeux d’adversaire
qui peut ajouter du bruit aux poids utilisés par l’algorithme de consensus de moyenne
afin d’éloigner le système de consensus. Nous avons donné les stratégies optimales
pour les joueurs (l’adversaire et le concepteur du réseau) dans ce jeu et nous mon-
trons qu’un point-selle (saddle-point equilibrium) existe dans les stratégies mixtes.

Nous avons analysé également la performance des algorithmes de consensus de
moyenne où les informations échangées entre les agents voisins sont soumises à la
quantification uniforme déterministe (les valeurs réelles envoyées par les nœuds de
leurs voisins sont tronquées). En utilisant la notion de stabilité au sens de Lyapunov,
nous avons caractérisé les propriétés de convergence du système quantifié non linéaire
résultant.

Le problème de la terminaison des protocoles de consensus s’avère difficile dans
le cadre distribué. Nous avons proposé un algorithme distribué pour la terminai-
son des protocoles de consensus. L’algorithme réduit la charge de communication
tout en garantissant la convergence vers un consensus. Enfin, nous avons proposé

152 Appendix B. Présentation des Travaux de Thèse en Francais

une mesure de similarité qui évalue la qualité d’un regroupement (clustering) des
nœuds dans un réseau. Un algorithme local de clustering basé sur cette métrique
est proposé.

Bibliography

[AAD+04] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and
René Peralta, Computation in networks of passively mobile finite-state

sensors, Proceedings of the Twenty-third Annual ACM Symposium on
Principles of Distributed Computing (New York, NY, USA), PODC ’04,
ACM, 2004, pp. 290–299. (Cited in page 4.)

[AAMR93] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao, Approximate load bal-

ancing on dynamic and asynchronous networks, Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, 1993, pp. 632–641.
(Cited in page 73.)

[AB10] T.C. Aysal and K.E. Barner, Convergence of consensus models with

stochastic disturbances, IEEE Transactions on Information Theory 56

(2010), no. 8, 4101–4113. (Cited in pages 72 and 73.)

[ACFO11] D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar, Opinion fluctua-

tions and persistent disagreement in social networks, 50th IEEE Confer-
ence on Decision and Control and European Control Conference (CDC-
ECC 2011), Dec. 2011, pp. 2347 –2352. (Cited in pages 51 and 57.)

[ACL06] R. Andersen, Fan Chung, and K. Lang, Local graph partitioning us-

ing pagerank vectors, 47th Annual IEEE Symposium on Foundations
of Computer Science, 2006 (FOCS ’06), 2006, pp. 475–486. (Cited in
page 124.)

[ACR07] T. C. Aysal, M. Coates, and M. Rabbat, Distributed average consen-

sus using probabilistic quantization, Proceedings of the 14th IEEE/SP
Workshop on Statistical Signal Processing, 2007, pp. 640–644. (Cited
in page 72.)

[AECN11] K. Avrachenkov, M. El Chamie, and G. Neglia, A local average consensus

algorithm for wireless sensor networks, 2011 International Conference on
Distributed Computing in Sensor Systems and Workshops (DCOSS),
June 2011, pp. 1–6. (Cited in pages 11, 20 and 149.)

[AECN14] Konstantin Avrachenkov, Mahmoud El Chamie, and Giovanni Neglia,
Graph clustering based on mixing time of random walks, IEEE Inter-
national Conference on Communications ICC 2014 (Sydney, Australia,
June 10-14), Jun 2014, p. 6. (Cited in pages 13 and 151.)

[AFSU07] Yonatan Amit, Michael Fink, Nathan Srebro, and Shimon Ullman, Un-

covering shared structures in multiclass classification, Proceedings of
the 24th international conference on Machine learning (New York, NY,
USA), ICML ’07, ACM, 2007, pp. 17–24. (Cited in page 52.)

154 Bibliography

[AGMZ11] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J.
Zaki, Is there a best quality metric for graph clusters?, Proceedings of
the 2011 ECML PKDD’11 (Berlin, Heidelberg), Springer-Verlag, 2011,
pp. 44–59. (Cited in page 124.)

[ALNO07] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova, Monte

carlo methods in pagerank computation: When one iteration is sufficient,
SIAM Journal on Numerical Analysis 45 (2007), no. 2, 890–904. (Cited
in pages 3 and 147.)

[AMP10] Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pontil, On

spectral learning, J. Mach. Learn. Res. 11 (2010), 935–953. (Cited in
page 53.)

[AMPY07] Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil, and Yim-
ing Ying, A spectral regularization framework for multi-task structure

learning, In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-
vances in Neural Information Processing Systems 20, MIT Press, 2007.
(Cited in page 52.)

[ANC+10] Sara Alouf, Giovanni Neglia, Iacopo Carreras, Daniele Miorandi, and
Álvaro Fialho, Fitting Genetic Algorithms to Distributed On-line Evo-

lution of Network Protocols, Elsevier Computer Networks 54 (2010),
no. 18, 3402–3420. (Cited in pages 3 and 147.)

[ANP07] Konstantin Avrachenkov, Danil Nemirovsky, and Kim Son Pham, A sur-

vey on distributed approaches to graph based reputation measures, Pro-
ceedings of the 2Nd International Conference on Performance Evalua-
tion Methodologies and Tools (ICST, Brussels, Belgium, Belgium), Val-
ueTools ’07, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2007, pp. 82:1–82:9. (Cited in
pages 3 and 147.)

[ARS12] H. Attouch, P. Redont, and B.F. Svaiter, Global convergence of a

closed-loop regularized newton method for solving monotone inclusions in

hilbert spaces, Journal of Optimization Theory and Applications (2012),
1–27 (English). (Cited in page 25.)

[BA98] T. Balch and R.C. Arkin, Behavior-based formation control for multi-

robot teams, IEEE Transactions on Robotics and Automation 14 (1998),
no. 6, 926–939. (Cited in page 4.)

[BABJ12] Walid Ben-Ameur, Pascal Bianchi, and Jérémie Jakubowicz, Robust av-

erage consensus using total variation gossip algorithm, 6th International
Conference on Performance Evaluation Methodologies and Tools (VAL-
UETOOLS 2012), IEEE, Nov. 2012. (Cited in pages 51 and 57.)

Bibliography 155

[Bén09] Florence Bénézit, Distributed average consensus for wireless sensor net-

works, Ph.D. thesis, École Polytechnique Fédérale de Lausanne (EPFL),
November 2009. (Cited in page 7.)

[Ber05] D.S. Bernstein, Matrix mathematics: theory, facts, and formulas,
Princeton University Press, 2005. (Cited in pages 8, 20 and 54.)

[BFH13] P. Bianchi, G. Fort, and W. Hachem, Performance of a distributed

stochastic approximation algorithm, IEEE Transactions on Information
Theory 59 (2013), no. 11, 7405–7418. (Cited in pages 3 and 147.)

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre, Fast unfolding of communities in large networks, Journal
of Statistical Mechanics: Theory and Experiment 2008 (2008), no. 10,
P10008. (Cited in pages 131 and 132.)

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah,
Randomized gossip algorithms, IEEE/ACM Trans. Netw. 14 (2006),
no. SI, 2508–2530. (Cited in pages 4, 19, 47, 73 and 148.)

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy, Gephi: An

open source software for exploring and manipulating networks, Interna-
tional AAAI Conference on Weblogs and Social Media, 2009. (Cited in
page 131.)

[BNO03] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and

Optimization, Athena Scientific, 2003. (Cited in pages 32 and 34.)

[BO99] Tamer Başar and Geert Jan Olsder, Dynamic noncooperative game the-

ory, Classics in Applied Mathematics, Society for Industrial and Applied
Mathematics, 1999. (Cited in pages 65 and 67.)

[BP98] Sergey Brin and Lawrence Page, The anatomy of a large-scale hypertex-

tual web search engine, Comput. Netw. ISDN Syst. 30 (1998), no. 1-7,
107–117. (Cited in pages 3 and 147.)

[Bro97] R. W. Brockett, Cycles that effect change, Motion, Control and Geom-
etry: A Science and Technology Symposium, Washington, D.C., 1997.
National Academy of Sciences Press., 1997. (Cited in page 95.)

[BT89] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and distributed com-

putation: Numerical methods, Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1989. (Cited in pages 3 and 147.)

[BTV09] F. Bénézit, P. Thiran, and M. Vetterli, Interval consensus: from quan-

tized gossip to voting, Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, 2009, pp. 3661–3664. (Cited
in pages 72 and 73.)

156 Bibliography

[BTV11] , The distributed multiple voting problem, IEEE Journal of Se-
lected Topics in Signal Processing 5 (2011), no. 4, 791–804. (Cited in
pages 72 and 73.)

[BV04] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cam-
bridge University Press, March 2004. (Cited in pages 20, 25, 26 and 55.)

[CDH+05] Guantao Chen, George Davis, Frank Hall, Zhongshan Li, Kinnari Patel,
and Michael Stewart, An interlacing result on normalized laplacians,
SIAM J. Discret. Math. 18 (2005), no. 2, 353–361. (Cited in page 126.)

[CFFZ10] R. Carli, P. Frasca, F. Fagnani, and S. Zampieri, Gossip consensus al-

gorithms via quantized communication, Automatica 46 (2010), 70–80.
(Cited in pages 73, 74 and 75.)

[CFSZ08] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, Communication

constraints in coordinated consensus problems, Automatica 44 (2008),
no. 3, 671–684. (Cited in page 72.)

[Cha11] Mahmoud El Chamie, Average Consensus on Large-Scale Networks,
Master’s thesis, University of Nice Sophia Antipolis, France, 2011.
(Cited in page 20.)

[CI11] K. Cai and H. Ishii, Quantized consensus and averaging on gossip di-

graphs, IEEE Transactions on Automatic Control 56 (2011), no. 9,
2087–2100. (Cited in page 73.)

[CM09] A. Censi and R. M. Murray, Real-valued average consensus over noisy

quantized channels, Proceedings of the 2009 American Control Confer-
ence, 2009, pp. 4361–4366. (Cited in page 72.)

[CYRC13] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen, An overview

of recent progress in the study of distributed multi-agent coordination,
IEEE Transactions on Industrial Informatics 9 (2013), no. 1, 427–438.
(Cited in page 72.)

[Dev88] L. Devroye, Applications of the theory of records in the study of random

trees, Acta Inf. 26 (1988), no. 1-2, 123–130. (Cited in page 144.)

[DRL11] Ali Daher, Michael Rabbat, and Vincent K.N. Lau, Local silencing rules

for randomized gossip, 2011 International Conference on Distributed
Computing in Sensor Systems and Workshops (DCOSS), June 2011,
pp. 1–8. (Cited in page 105.)

[DS65] J. N. Darroch and E. Seneta, On quasi-stationary distributions in ab-

sorbing discrete-time finite markov chains, Journal of Applied Probabil-
ity 2 (1965), no. 1, pp. 88–100 (English). (Cited in page 126.)

Bibliography 157

[EB13] S. R. Etesami and Tamer Başar, Convergence time for unbiased quan-

tized consensus, Proceedings of 52nd IEEE Conference on Decision and
Control (IEEE CDC), 2013. (Cited in pages 72 and 73.)

[ECB14] Mahmoud El Chamie and Tamer Başar, Optimal strategies for dynamic

weight selection in consensus protocols in the presence of an adversary,
53rd IEEE Conference on Decision and Control CDC 2014 (Los Angeles,
California, Dec. 15-17), Dec. 2014, p. 6. (Cited in pages 11 and 150.)

[ECLB14] Mahmoud El Chamie, Ji Liu, and Tamer Başar, Design and analysis of

distributed averaging with quantized communication, 53rd IEEE Confer-
ence on Decision and Control CDC 2014 (Los Angeles, California, Dec.
15-17), Dec. 2014, p. 6. (Cited in pages 12 and 150.)

[ECN14] Mahmoud El Chamie and Giovanni Neglia, Newton’s method for con-

strained norm minimization and its application to weighted graph prob-

lems, IEEE American Control Conference ACC 2014 (Portland, OR,
United States, June 4-6), June 2014, p. 6. (Cited in pages 11 and 149.)

[ECNA13] Mahmoud El Chamie, Giovanni Neglia, and Konstantin Avrachenkov,
Reducing communication overhead for average consensus, IFIP Network-
ing 2013 (Brooklyn, NY, USA, May 22-24), May 2013. (Cited in pages 12
and 151.)

[ECNA15] , Distributed Weight Selection in Consensus Protocols by Schat-

ten Norm Minimization, IEEE Transactions on Automatic Control as
Technical Note 60 (2015), no. 4, To appear. (Cited in pages 11 and 149.)

[FB07] Santo Fortunato and M Barthelemy, Resolution limit in community de-

tection, Proceedings of the National Academy of Sciences 104 (2007),
36–41. (Cited in page 124.)

[FCFZ09] Paolo Frasca, Ruggero Carli, Fabio Fagnani, and Sandro Zampieri, Aver-

age consensus on networks with quantized communication, International
Journal of Robust and Nonlinear Control 19 (2009), no. 16, 1787–1816.
(Cited in pages 72, 77 and 78.)

[FGGS09] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, Decentralized

Laplacian eigenvalues estimation for networked multi-agent systems,
Proc. of the 48th IEEE CDC/CCC 2009, Dec. 2009, pp. 2717 –2722.
(Cited in page 19.)

[FHB01] M. Fazel, H. Hindi, and S.P. Boyd, A rank minimization heuristic with

application to minimum order system approximation, Proceedings of the
2001 American Control Conference (ACC), vol. 6, 2001, pp. 4734–4739
vol.6. (Cited in page 53.)

158 Bibliography

[Fie73] Miroslav Fiedler, Algebraic connectivity of graphs, Czechoslovak Math-
ematical Journal 23 (1973), no. 2, 298–305 (eng). (Cited in page 5.)

[FN95] Michael K.H. Fan and Batool Nekooie, On minimizing the largest eigen-

value of a symmetric matrix, Linear Algebra and its Applications 214

(1995), 225–246. (Cited in page 9.)

[GB11] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex

Programming, version 1.21, April 2011. (Cited in page 18.)

[GJS11] E. Ghadimi, M. Johansson, and I. Shames, Accelerated gradient methods

for networked optimization, American Control Conference (ACC 2011),
29 2011-july 1 2011, pp. 1668 –1673. (Cited in pages 3 and 147.)

[GK98] P. Gupta and Kumar, Critical power for asymptotic connectivity in wire-

less networks, In Stochastic Analysis, Control, Optimization and Appli-
cations (1998), 547–566. (Cited in page 6.)

[GM96] B. Ghosha and S. Muthukrishnan, "dynamic load balancing by random

matchings, Journal of Computer and System Sciences 53 (1996), no. 3,
357–370. (Cited in page 73.)

[GN02] M. Girvan and M. E. J. Newman, Community structure in social and

biological networks, Proceedings of the National Academy of Sciences
99 (2002), no. 12, 7821–7826. (Cited in page 132.)

[HDM05] Yuko Hatano, Arindam Das, and Mehran Mesbahi, Agreement in pres-

ence of noise: pseudogradients on random geometric networks, 44th
IEEE CDC-ECC, December 2005. (Cited in page 111.)

[Hil08] T. H. Hildebrandt, Existence of a minimum of a quadratic function,
The American Mathematical Monthly 15 (1908), no. 3, 57–59 (English).
(Cited in page 65.)

[HJOV14] Julien M. Hendrickx, Raphael M. Jungers, Alexander Olshevsky,
and Guillaume Vankeerberghen, Graph diameter, eigenvalues, and

minimum-time consensus, Automatica 50 (2014), no. 2, 635 – 640.
(Cited in page 57.)

[HT11] J.M. Hendrickx and J.N. Tsitsiklis, A new condition for convergence

in continuous-time consensus seeking systems, IEEE 50th CDC-ECC
conference, Dec. 2011, pp. 5070 –5075. (Cited in page 111.)

[IK94] E. Isaacson and H.B. Keller, Analysis of numerical methods, Dover
Books on Mathematics Series, Dover Publ., 1994. (Cited in page 55.)

[IT10] H. Ishii and R. Tempo, Distributed randomized algorithms for the pager-

ank computation, IEEE Transactions on Automatic Control 55 (2010),
no. 9, 1987–2002. (Cited in pages 3 and 147.)

Bibliography 159

[IT14] H. Ishii and R. Tempo, The pagerank problem, multiagent consensus,

and web aggregation: A systems and control viewpoint, IEEE Control
Systems 34 (2014), no. 3, 34–53. (Cited in pages 3 and 147.)

[JE07] Meng Ji and M. Egerstedt, Distributed coordination control of multiagent

systems while preserving connectedness, IEEE Transactions on Robotics
23 (2007), no. 4, 693–703. (Cited in page 4.)

[JKJJ08] B. Johansson, T. Keviczky, M. Johansson, and K.H. Johansson, Subgra-

dient methods and consensus algorithms for solving convex optimization

problems, 47th IEEE Conference on Decision and Control CDC 2008,
Dec 2008, pp. 4185–4190. (Cited in pages 3, 32 and 147.)

[JLM03] A. Jadbabaie, Jie Lin, and A.S. Morse, Coordination of groups of mobile

autonomous agents using nearest neighbor rules, IEEE Transactions on
Automatic Control 48 (2003), no. 6, 988–1001. (Cited in page 4.)

[Joh08] Bjőrn Johansson, On distributed optimization in networked systems,
Ph.D. thesis, Royal Institute of Technology (KTH), December 2008.
(Cited in pages 3 and 147.)

[JXM10] Dusan Jakovetic, J. Xavier, and J.M.F. Moura, Consensus in correlated

random topologies: Weights for finite time horizon, 2010 IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing (ICASSP),
March 2010, pp. 2974–2977. (Cited in page 19.)

[KBC+07] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagian-
naki, and C. Diot, Measurement-Based Self Organization of Interfering

802.11 Wireless Access Networks, 26th IEEE International Conference
on Computer Communications (INFOCOM 2007), 2007, pp. 1451–1459.
(Cited in pages 3 and 147.)

[KBS07] Akshay Kashyap, Tamer Başar, and R. Srikant, Quantized consensus.,
Automatica 43 (2007), no. 7, 1192–1203. (Cited in pages 72 and 73.)

[KG09] Chih-Kai Ko and Xiaojie Gao, On matrix factorization and finite-time

average-consensus, Proceedings of the 48th IEEE Conference on Deci-
sion and Control, held jointly with the 2009 28th Chinese Control Con-
ference (CDC/CCC 2009), Dec 2009, pp. 5798–5803. (Cited in page 57.)

[KGP09] Yoonsoo Kim, Da-Wei Gu, and Ian Postlethwaite, Spectral radius mini-

mization for optimal average consensus and output feedback stabilization,
Automatica 45 (2009), no. 6, 1379 – 1386. (Cited in page 19.)

[KM86] Mirko Krivánek and Jaroslav Morávek, Np-hard problems in

hierarchical-tree clustering, Acta Informatica 23 (1986), no. 3, 311–323.
(Cited in page 124.)

160 Bibliography

[KM04] David Kempe and Frank McSherry, A decentralized algorithm for spec-

tral analysis, Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, ACM, 2004, pp. 561–568. (Cited in page 19.)

[KM10] S. Kar and J. M. F. Moura, Distributed consensus algorithms in sensor

networks: quantized data and random link failures, IEEE Transactions
on Signal Processing 58 (2010), no. 3, 1383–1400. (Cited in pages 72
and 73.)

[KMT98] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate Control for Commu-

nication Networks: Shadow Prices, Proportional Fairness and Stability,
The Journal of the Operational Research Society 49 (1998), no. 3, 237–
252. (Cited in pages 3 and 147.)

[KTB13] Ali Khanafer, B. Touri, and Tamer Başar, Robust distributed averaging

on networks with adversarial intervention, Proceedings of 52nd IEEE
Conference on Decision and Control (IEEE CDC), December 2013.
(Cited in page 58.)

[KVV00] R. Kannan, S. Vempala, and A. Veta, On clusterings-good, bad and

spectral, Proceedings of the 41st Annual Symposium on Foundations of
Computer Science (Washington, DC, USA), FOCS, 2000, p. 367. (Cited
in page 124.)

[LFXZ11] Tao Li, Minyue Fu, Lihua Xie, and Ji-Feng Zhang, Distributed consensus

with limited communication data rate, IEEE Transactions on Automatic
Control 56 (2011), no. 2, 279–292. (Cited in page 72.)

[LM06] Amy N. Langville and Carl D. Meyer, Google’s pagerank and beyond:

The science of search engine rankings, Princeton University Press,
Princeton, NJ, USA, 2006. (Cited in pages 3 and 147.)

[LM12] J. Lavaei and R. M. Murray, Quantized consensus by means of gossip

algorithm, IEEE Transactions on Automatic Control 57 (2012), no. 1,
19–32. (Cited in pages 72 and 73.)

[LNR09] Yao Liu, Peng Ning, and Michael K. Reiter, False data injection at-

tacks against state estimation in electric power grids, Proceedings of
the 16th ACM Conference on Computer and Communications Security
(New York, NY, USA), CCS ’09, ACM, 2009, pp. 21–32. (Cited in
page 58.)

[LO81] H.J. Landau and A.M. Odlyzko, Bounds for eigenvalues of certain

stochastic matrices, Linear Algebra and its App. 38 (1981), no. 0, 5
– 15. (Cited in page 126.)

Bibliography 161

[LO11] Ilan Lobel and Asuman E. Ozdaglar, Distributed Subgradient Methods

for Convex Optimization Over Random Networks, IEEE Transactions
on Automatic Control 56 (2011), no. 6, 1291–1306. (Cited in page 32.)

[LSch] Jia Liu and H.D. Sherali, A distributed newton’s method for joint multi-

hop routing and flow control: Theory and algorithm, Proceedings of
IEEE INFOCOM 2012, March, pp. 2489–2497. (Cited in page 25.)

[LSB+03] David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elis-
abeth Slooten, and Steve M. Dawson, The bottlenose dolphin community

of Doubtful Sound features a large proportion of long-lasting associa-

tions, Behavioral Ecology and Sociobiology 54 (2003), no. 4, 396–405.
(Cited in pages 5, 38 and 42.)

[LVS12] Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos, Optimal con-

trol. 3rd ed., Hoboken, NJ: John Wiley Sons. , 2012. (Cited in page 61.)

[LX11] T. Li and L. Xie, Distributed consensus over digital networks with limited

bandwidth and time-varying topologies, Automatica 47 (2011), no. 9,
2006–2015. (Cited in page 72.)

[Mey00] Carl D. Meyer, Matrix analysis and applied linear algebra, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2000. (Cited
in pages 8 and 20.)

[Nes04] Yurii Nesterov, Introductory lectures on convex optimization : a basic

course, Applied optimization, Kluwer Academic Publ., Boston, Dor-
drecht, London, 2004. (Cited in page 38.)

[NFZE07] G. Nair, F. Fagnani, S. Zampieri, and R. Evans, Feedback control under

data rate constraints: an overview, Proceedings of The IEEE 95 (2007),
108–137. (Cited in page 74.)

[NG04] M. E. J. Newman and M. Girvan, Finding and evaluating commu-

nity structure in networks, Phys. Rev. E 69 (2004), 026113. (Cited
in pages 124 and 132.)

[NO09] A. Nedić and A. Ozdaglar, Distributed Subgradient Methods for Multi-

Agent Optimization, IEEE Transactions on Automatic Control 54

(2009), no. 1, 48–61. (Cited in pages 3, 32 and 147.)

[NOOT09] Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsik-
lis, On distributed averaging algorithms and quantization effects, IEEE
Transactions on Automatic Control 54 (2009), no. 11, 2506–2517. (Cited
in pages 72 and 74.)

[ORG12] PederA. Olsen, StevenJ. Rennie, and Vaibhava Goel, Efficient automatic

differentiation of matrix functions, Recent Advances in Algorithmic Dif-
ferentiation, Lecture Notes in Computational Science and Engineering,

162 Bibliography

vol. 87, Springer Berlin Heidelberg, 2012, pp. 71–81 (English). (Cited
in page 54.)

[OSFM07] R. Olfati-Saber, J.A. Fax, and R.M. Murray, Consensus and cooperation

in networked multi-agent systems, Proceedings of the IEEE 95 (2007),
no. 1, 215–233. (Cited in pages 4 and 148.)

[OSM04] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of

agents with switching topology and time-delays, IEEE Transactions on
Automatic Control 49 (2004), no. 9, 1520–1533. (Cited in page 141.)

[Pen03] Mathew Penrose, Random Geometric Graphs, Oxford University Press,
USA, July 2003. (Cited in page 5.)

[Pol87] B.T. Polyak, Introduction to optimization, Optimization Software, New
York, 1987. (Cited in pages 32 and 36.)

[SA04] J. Shetty and J. Adibi, The Enron email dataset database schema and

brief statistical report, Information sciences institute technical report,
University of Southern California, 2004. (Cited in pages 5, 38, 42
and 46.)

[Sch64] L. Schuchman, Dither signals and their effect on quantization noise,
IEEE Transactions on Communication Technology 12 (1964), no. 4,
162–165. (Cited in pages 72 and 73.)

[Sch07] Satu Elisa Schaeffer, Survey: Graph clustering, Comput. Sci. Rev. 1

(2007), no. 1, 27–64. (Cited in page 124.)

[SECN13] Lorenzo Severini, Mahmoud El Chamie, and Giovanni Neglia, Topology

versus link strengsth for information dissemination in networks, ALGO-
TEL 2013 (Pornic, Loire-Atlantique, France, May 28-31), May 2013,
p. 4. (Cited in pages 11 and 149.)

[Sen06] E. Seneta, Non-negative matrices and markov chains, Springer Series in
Statistics, Springer, 2006. (Cited in page 49.)

[SH07] S. Sundaram and C.N. Hadjicostis, Finite-time distributed consensus

in graphs with time-invariant topologies, American Control Conference
(ACC ’07), July 2007, pp. 711 –716. (Cited in page 104.)

[Sho85] N.Z. Shor, Minimization methods for non-differentiable functions,
Springer Series in Computational Mathematics, Springer, Berlin, 1985.
(Cited in page 63.)

[SM12] V. Schwarz and G. Matz, Mean-square optimal weight design for average

consensus, 2012 IEEE 13th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2012, pp. 374–378.
(Cited in page 57.)

Bibliography 163

[SRJ05] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola, Maximum-

margin matrix factorization, Advances in Neural Information Processing
Systems 17, MIT Press, 2005, pp. 1329–1336. (Cited in page 52.)

[SS94] R. Subramanian and I. D. Scherson, An analysis of diffusive load-

balancing, Proceedings of the 6th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1994, pp. 220–225. (Cited in page 73.)

[TKPF13] D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, Distributed average

consensus with quantization refinement, IEEE Transactions on Signal
Processing 61 (2013), no. 1, 194–205. (Cited in page 72.)

[TSJ08] A Tahbaz-Salehi and A Jadbabaie, A necessary and sufficient condition

for consensus over random networks, IEEE Transactions on Automatic
Control 53 (2008), no. 3, 791–795. (Cited in page 141.)

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to

data mining, (first edition), Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005. (Cited in page 124.)

[VD08] Stijn Van Dongen, Graph clustering via a discrete uncoupling process,
SIAM J. Matrix Anal. Appl. 30 (2008), no. 1, 121–141. (Cited in
page 124.)

[VD14] O. Vukovic and G. Dan, Security of fully distributed power system state

estimation: Detection and mitigation of data integrity attacks, IEEE
Journal on Selected Areas in Communications 32 (2014), no. 7, 1500–
1508. (Cited in page 58.)

[Wes00] Douglas B. West, Introduction to Graph Theory (2nd Edition), Prentice
Hall, August 2000. (Cited in page 33.)

[WOEJ12] Ermin Wei, A. Ozdaglar, A. Eryilmaz, and A. Jadbabaie, A distributed

newton method for dynamic network utility maximization with delivery

contracts, 46th Annual Conference on Information Sciences and Systems
(CISS), 2012, pp. 1–6. (Cited in page 25.)

[WOJ13] Ermin Wei, A. Ozdaglar, and A. Jadbabaie, A distributed newton method

for network utility maximization, I: algorithm, IEEE Transactions on
Automatic Control 58 (2013), no. 9, 2162–2175. (Cited in pages 3
and 147.)

[XB04] Lin Xiao and Stephen Boyd, Fast linear iterations for distributed aver-

aging, Systems and Control Letters 53 (2004), 65–78. (Cited in pages 7,
9, 10, 17, 18, 19, 22, 53, 57, 59 and 69.)

[XBK07] Lin Xiao, Stephen Boyd, and Seung-Jean Kim, Distributed average con-

sensus with least-mean-square deviation, J. Parallel Distrib. Comput. 67

(2007), no. 1, 33–46. (Cited in pages 19 and 111.)

164 Bibliography

[YFG+08] Peng Yang, R.A. Freeman, G.J. Gordon, K.M. Lynch, S.S. Srinivasa,
and R. Sukthankar, Decentralized estimation and control of graph con-

nectivity in mobile sensor networks, American Control Conference (ACC
2008), June 2008, pp. 2678 –2683. (Cited in page 19.)

[YS07] Vikas Yadav and Murti V. Salapaka, Distributed protocol for deter-

mining when averaging consensus is reached, Forty-Fifth Annual Aller-
ton Conference Allerton House, UIUC, Illinois, USA, September 2007.
(Cited in page 104.)

[Zac77] W.W. Zachary, An information flow model for conflict and fission in

small groups, J. of Anthropological Research 33 (1977), 452–473. (Cited
in page 131.)

[ZM11] M. Zhu and S. Martínez, On the convergence time of asynchronous dis-

tributed quantized averaging algorithms, IEEE Transactions on Auto-
matic Control 56 (2011), no. 2, 386–390. (Cited in page 73.)

[ZZ13] Q. Zhang and J. F. Zhang, Quantized data-based distributed consensus

under directed time-varying communication topology, SIAM Journal on
Control and Optimization 51 (2013), no. 1, 332–352. (Cited in page 72.)

	Introduction
	Background
	The Network Model
	Average Consensus
	Convergence Conditions
	Fastest Consensus

	Contributions
	Weight Optimization in Consensus Protocols
	Adversarial Intervention
	Quantized Communication
	Reducing Communication Overhead
	Detecting Communities
	Open Research Direction

	Weight Optimization in Consensus Protocols
	Optimization Problem
	Related Work
	Schatten Norm Minimization
	Newton's Method for Schatten Norm Minimization
	Preliminaries
	The Unconstrained Minimization
	Gradient and Hessian
	Newton's Direction w
	Line Search
	The Algorithm
	Closed Form Solution for p=2

	A Distributed Algorithm for Schatten Norm Minimization
	Locally Computed Gradient
	Choice of Stepsize and Projection set
	Complexity of the Algorithm

	Performance Evaluation
	Newton versus Gradient methods for Schatten p-Norm Minimization
	Comparison of the Schatten Norm Solution with the Optimal Solution
	Other Distributed Approaches: Asymptotic Convergence Rate
	Communication Overhead for Local Algorithms
	Joint Consensus-Optimization (JCO) Procedure
	Topology versus Weight Optimization

	Stability and Misbehaving Nodes
	Guaranteeing Convergence of Trace Minimization
	Networks with Misbehaving Nodes

	More on Schatten p-Norm and its Relation to Machine Learning
	Conclusion

	Consensus in the Presence of an Adversary
	Problem Formulation
	Optimal Weight Selection on Undirected Graphs
	Existence of a Solution
	Necessary Conditions
	Locally Optimal Solution
	Closed-Form Solution for the One-Stage Problem

	Network with Adversary in Discrete Time
	The max-min Solution
	The min-max Solution
	A Saddle-Point Equilibrium (SPE) in Mixed Strategies

	Simulations
	Optimal Control
	Adversarial Intervention

	Conclusion

	Quantized Communication in Consensus Protocols
	Literature Review
	System Equation
	Quantized Communication
	Problem Formulation
	Design and Analysis of the System
	Cyclic Example
	Weight Assumption
	Cyclic States
	Lyapunov Stability
	Proof of Main Result

	Discussion
	Design of Weights with Arbitrarily Small Error

	Simulations
	Simple Network
	Random Graphs

	Conclusion

	Reducing Communication Overhead
	System equation
	Related Work
	Motivation
	Our Approach
	A Centralized Algorithm
	Decentralized Environment
	Message Reducing Algorithm
	Convergence Study
	Simulations

	Conclusion

	Graph Clustering by Random Walks
	Related Work
	Notation
	The Random Walk Fitness Measure
	Clustering Algorithm
	Bounds on f*
	Local Search Clustering Algorithm

	Numerical Examples
	Conclusion

	Conclusion and Perspectives
	Open Research Direction: Averaging on Networks with Dynamic Nodes
	Introduction
	Model
	Simple Network Topologies
	Complete Graph
	Directed Tree

	Conclusion

	Présentation des Travaux de Thèse en Francais
	Introduction
	Optimisation et Contrôle Distribué
	Monitoring Environnemental
	Système Multi-agents

	Les Contributions de la Thèse
	Sélection de Poids dans les Protocoles de Consensus
	Un Adversaire dans les Protocoles de Consensus
	Conception et Analyse d’Algorithmes Distribués de Moyennage avec Valeurs Échangées Discrétisées
	La Réduction de Charge de Communication dans les Protocoles de Consensus
	Regroupement

	Conclusion

	Bibliography

