
�>���G �A�/�, �i�2�H�@�y�R�R�k�d�k�j�N

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�R�k�d�k�j�N

�a�m�#�K�B�i�i�2�/ �Q�M �d �J���` �k�y�R�8

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�P�T�i�B�K�B�x���i�B�Q�M�- �+�Q�M�i�`�Q�H�- ���M�/ �;���K�2 �i�?�2�Q�`�2�i�B�+���H �T�`�Q�#�H�2�K�b �B�M
�+�Q�M�b�2�M�b�m�b �T�`�Q�i�Q�+�Q�H�b

�J���?�K�Q�m�/ �1�H �*�?���K�B�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J���?�K�Q�m�/ �1�H �*�?���K�B�2�X �P�T�i�B�K�B�x���i�B�Q�M�- �+�Q�M�i�`�Q�H�- ���M�/ �;���K�2 �i�?�2�Q�`�2�i�B�+���H �T�`�Q�#�H�2�K�b �B�M �+�Q�M�b�2�M�b�m�b �T�`�Q�i�Q�@
�+�Q�H�b�X �P�i�?�2�` �(�+�b�X�P�>�)�X �l�M�B�p�2�`�b�B�i�û �L�B�+�2 �a�Q�T�?�B�� ���M�i�B�T�Q�H�B�b�- �k�y�R�9�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�9�L�A�*�1�9�y�N�9���X ���i�2�H�@
�y�R�R�k�d�k�j�N��

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS
ÉCOLE DOCTORALE DES SCIENCES ET TECHNOLOGIES DE

L'INFORMATION ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

Docteur en Sciences
de l'Université de Nice - Sophia Antipolis

Mention : Informatique

Defended by

MahmoudEL CHAMIE

Optimization, Control, and Game
Theoretical Problems in Consensus

Protocols
MAESTRO Team

(INRIA)
Advisors:

Konstantin Avrachenkov INRIA Sophia Antipolis (France)
Giovanni Neglia INRIA Sophia Antipolis (France)

Defended on21 November, 2014

Jury:

Président: Walid Dabbous - INRIA Sophia Antipolis (France)
Rapporteurs: PascalBianchi - Télécom ParisTech (France)

Mikael Johansson - KTH Royal Institute of
Technology (Sweden)

Examinateurs: Vivek Shripad Borkar - Indian Institute of Technology
Bombay (India)

Daniel Figueiredo - Federal University of
Rio de Janeiro (Brazil)

SandroZampieri - University of Padova (Italy)

Acknowledgements

This thesis has been accomplished with the help and support of a number ofpeo-
ple that I would like to thank and acknowledge. I would like to express my deep
gratitude to Dr. Giovanni Neglia, my PhD advisor, for guiding me through this pe-
riod. His professional way in work by countless advice, feedback during discussions,
and detailed review of our research reports guided my research. I would also like
to thank my co-advisor Dr. Konstantin Avrachenkov for the discussions during our
meetings. My deep appreciation and thanks go to professor Tamer Ba³ar for hosting
me 4 months in his team and treating me as one of his students at the University
of Illinois at Urbana Champaign (UIUC).

I would also like to acknowledge the permanents in Maestro team (Philippe,
Sara, Alain, and Eitan) for repeatedly providing their feedback onmy work. Special
thanks to Laurie (our team assistant) for helping us in �lling t he mission orders,
going through all the administrative procedures, and helping mepersonally in french
during my �rst year with the team. Thanks to Farah and Ali for reviewin g the french
translation of the introduction. I would like to acknowledge the committee members
for spending their time in evaluating my work (special thanks to the reviewers of
the manuscript, professor Pascal Bianchi and professor Mikael Johansson, for their
detailed and rigorous review of the thesis). I would also like to thank Dr. Walid
Dabbous for being the president of the jury and for supporting myUbinet masters
application (the �rst step that made this PhD possible).

Due to some people, INRIA has been a pleasant working environment andJuan
les Pins has been a nice place to stay. I would like to thank Chadi for the co�ee
break chats we used to have. I would also like to extend my appreciation to my
friends Alvinice and Khoa, I used to enjoy our weekly �Friday Ubinet lunch�. Special
thanks to my Juan les Pins neighbors: Ali, Rawad, and Salim for spending good
moments together and �nding good times away from work. I would also like to
express my deep and sincere gratitude to Dana for her continuous and unlimited
support all the time, during both health and sickness. To my family, you are my
unwavering support and in spite of the distance, your prayers andencouragement
guided me throughout all my life and made me what I am today and what I will be
in the future.

Mahmoud El Chamie
10 November 2014

Sophia Antipolis, France

Optimization, Control, and Game Theoretical Problems
in Consensus Protocols

Abstract: Consensus protocols have gained a lot of interest in the recent years. In
this thesis, we study optimization, control, and game theoreticalproblems arising
in consensus protocols.

First, we study optimization techniques for weight selection problems to increase
the speed of convergence of discrete-time consensus protocols on networks. We
propose to select the weights by applying an approximation algorithm: minimizing
the Schatten p-norm of the weight matrix. We characterize the approximation error
and we show that the proposed algorithm has the advantage thatit can be either
solved in a distributed way using a simple projected gradient methodor solved by
Newton's method and achieve faster convergence.

Then we propose a game theoretical framework for an adversary that canadd
noise to the weights used by averaging protocols to drive the system away from
consensus. We give the optimal strategies for the game players (the adversary and
the network designer) and we show that a saddle-point equilibriumexists in mixed
strategies.

We also analyze the performance of distributed averaging algorithms where the
information exchanged between neighboring agents is subject to deterministic uni-
form quantization (e.g., when real values sent by nodes to their neighbors are trun-
cated). Using Lyapunov stability analysis, we characterize the convergence proper-
ties of the resulting nonlinear quantized system.

Consensus algorithms require that nodes exchange messages persistently to reach
asymptotically consensus. The problem of termination of consensus protocols turns
out to be challenging in the distributed setting. We propose a distributed algorithm
for asymptotic termination of the consensus protocols. The algorithm reduces com-
munication overhead while still guaranteeing convergence to consensus.

Finally, we propose a score metric that evaluates the quality of clusters such
that the faster the random walk mixes in the cluster and the slower it escapes, the
higher is the score. A local clustering algorithm based on this metricis proposed.

Keywords: Consensus Protocols; Distributed Averaging; Distributed Opti-
mization; Multi-agent Systems; Game Theory; Adversarial Intervention; Quantiza-
tion; Clustering.

Optimisation, Contrôle et Théorie des Jeux
dans les Protocoles de Consensus

Résumé :
Les protocoles de consensus ont gagné beaucoup d'intérêt ces dernières années.

Dans cette thèse, nous étudions les problèmes d'optimisation, de contrôle, et de
théorie de jeu qui se posent dans ces protocoles.

Tout d'abord, nous étudions les techniques d'optimisation pourdes problèmes
de sélection de poids permettant ainsi d'augmenter la vitesse de convergence de
protocoles de consensus dans les réseaux. Nous proposons de sélectionner les poids en
appliquant un algorithme d'approximation: minimisation d e la normep de Schatten
de la matrice de poids. Nous caractérisons l'erreur induite par cetteapproximation
et nous montrons que l'algorithme proposé a l'avantage qu'ilpeut être soit résolu
de façon distribuée en utilisant une méthode de gradient projeté simple ou résolu
par la méthode de Newton et avec une convergence plus rapide.

Ensuite, nous proposons un cadre conceptuel d'analyse des jeux d'adversaire qui
peut ajouter du bruit aux poids utilisés par l'algorithme de consensus de moyenne
a�n d'éloigner le système de consensus. Nous donnons les stratégies optimales pour
les joueurs (l'adversaire et le concepteur du réseau) dans ce jeu et nous montrons
qu'un point-selle (saddle-point equilibrium) existe en stratégies mixtes.

Nous analysons également la performance des algorithmes de consensusde
moyenne où les informations échangées entre les agents voisins sont soumises à la
quanti�cation uniforme déterministe (les valeurs réelles envoyées parles n÷uds de
leurs voisins sont tronquées). En utilisant la notion de stabilité au sens de Lyapunov,
nous caractérisons les propriétés de convergence du système quanti�é non linéaire
résultant.

Le problème de la terminaison des protocoles de consensus s'avère di�cile dans
le cadre distribué. Nous proposons un algorithme distribué pour la terminaison des
protocoles de consensus. L'algorithme réduit la charge de communication tout en
garantissant la convergence vers un consensus. En�n, nous proposons une mesure
de similarité qui évalue la qualité d'un regroupement (clustering) des n÷uds dans
un réseau. Un algorithme local de clustering basé sur cette métrique est donné.

Mots clés : Consensus de Moyenne; Calcul Distribué; Optimisation Dis-
tribuée; Systèmes Multi-Agents; Théorie des Jeux; Quanti�cation; Regroupement.

Contents

1 Introduction 1
1.1 Background . 4

1.1.1 The Network Model . 4
1.1.2 Average Consensus. 6
1.1.3 Convergence Conditions. 7
1.1.4 Fastest Consensus. 8

1.2 Contributions . 10
1.2.1 Weight Optimization in Consensus Protocols 10
1.2.2 Adversarial Intervention . 11
1.2.3 Quantized Communication. 12
1.2.4 Reducing Communication Overhead 12
1.2.5 Detecting Communities . 12
1.2.6 Open Research Direction. 13

2 Weight Optimization in Consensus Protocols 15
2.1 Optimization Problem . 16
2.2 Related Work . 17
2.3 Schatten Norm Minimization . 20
2.4 Newton's Method for Schatten Norm Minimization 24

2.4.1 Preliminaries . 25
2.4.2 The Unconstrained Minimization 26
2.4.3 Gradient and Hessian . 26
2.4.4 Newton's Direction � w . 28
2.4.5 Line Search . 28
2.4.6 The Algorithm . 29
2.4.7 Closed Form Solution forp = 2 29

2.5 A Distributed Algorithm for Schatten Norm Minimization 31
2.5.1 Locally Computed Gradient 33
2.5.2 Choice of Stepsize and Projection set. 33
2.5.3 Complexity of the Algorithm 36

2.6 Performance Evaluation . 37
2.6.1 Newton versus Gradient methods for Schattenp-Norm Mini-

mization . 38
2.6.2 Comparison of the Schatten Norm Solution with the Optimal

Solution . 40
2.6.3 Other Distributed Approaches: Asymptotic Convergence Rate 40
2.6.4 Communication Overhead for Local Algorithms 42
2.6.5 Joint Consensus-Optimization (JCO) Procedure. 43
2.6.6 Topology versus Weight Optimization 44

vi Contents

2.7 Stability and Misbehaving Nodes . 49
2.7.1 Guaranteeing Convergence of Trace Minimization. 49
2.7.2 Networks with Misbehaving Nodes 51

2.8 More on Schattenp-Norm and its Relation to Machine Learning . . . 52
2.9 Conclusion. 56

3 Consensus in the Presence of an Adversary 57
3.1 Problem Formulation . 58
3.2 Optimal Weight Selection on Undirected Graphs 59

3.2.1 Existence of a Solution. 60
3.2.2 Necessary Conditions. 61
3.2.3 Locally Optimal Solution . 62
3.2.4 Closed-Form Solution for the One-Stage Problem. 63

3.3 Network with Adversary in Discrete Time 64
3.3.1 The max-min Solution . 65
3.3.2 The min-max Solution . 65
3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies 66

3.4 Simulations . 67
3.4.1 Optimal Control . 67
3.4.2 Adversarial Intervention . 69

3.5 Conclusion. 69

4 Quantized Communication in Consensus Protocols 71
4.1 Literature Review . 72
4.2 System Equation . 73
4.3 Quantized Communication. 73
4.4 Problem Formulation . 75
4.5 Design and Analysis of the System. 76

4.5.1 Cyclic Example . 77
4.5.2 Weight Assumption . 78
4.5.3 Cyclic States . 79
4.5.4 Lyapunov Stability . 81
4.5.5 Proof of Main Result . 89

4.6 Discussion. 95
4.6.1 Design of Weights with Arbitrarily Small Error 96

4.7 Simulations . 97
4.7.1 Simple Network. 99
4.7.2 Random Graphs . 99

4.8 Conclusion. 100

5 Reducing Communication Overhead 103
5.1 System equation . 104
5.2 Related Work . 104
5.3 Motivation . 105

Contents vii

5.4 Our Approach . 107
5.4.1 A Centralized Algorithm . 107
5.4.2 Decentralized Environment 110
5.4.3 Message Reducing Algorithm. 112
5.4.4 Convergence Study. 115
5.4.5 Simulations . 118

5.5 Conclusion. 122

6 Graph Clustering by Random Walks 123
6.1 Related Work . 124
6.2 Notation . 124
6.3 The Random Walk Fitness Measure 125
6.4 Clustering Algorithm . 127

6.4.1 Bounds onf � . 127
6.4.2 Local Search Clustering Algorithm 128

6.5 Numerical Examples . 131
6.6 Conclusion. 136

7 Conclusion and Perspectives 139

A Open Research Direction: Averaging on Networks with Dynamic
Nodes 141
A.1 Introduction . 141
A.2 Model . 142
A.3 Simple Network Topologies . 143

A.3.1 Complete Graph . 143
A.3.2 Directed Tree . 144

A.4 Conclusion. 144

B Présentation des Travaux de Thèse en Francais 145
B.1 Introduction . 145

B.1.1 Optimisation et Contrôle Distribué 147
B.1.2 Monitoring Environnemental 147
B.1.3 Système Multi-agents . 148

B.2 Les Contributions de la Thèse. 148
B.2.1 Sélection de Poids dans les Protocoles de Consensus. 149
B.2.2 Un Adversaire dans les Protocoles de Consensus. 149
B.2.3 Conception et Analyse d'Algorithmes Distribués de Moyen-

nage avec Valeurs Échangées Discrétisées. 150
B.2.4 La Réduction de Charge de Communication dans les Proto-

coles de Consensus. 150
B.2.5 Regroupement . 151

B.3 Conclusion. 151

Bibliography 153

viii Contents

Frequently Used Terms and Notation

Symbol Description Dimension
- Vectors are usually denoted by small bold letters (e.g.,x ; w ; : : :) -
- Matrices are usually denoted by capital letters (e.g.,X; W; : : :) -
G network of nodes and links -
V set of nodes/vertices jV j = n
E set of links/edges jE j = m
I n identity matrix n � n
1n vector of all ones n � 1
D degree diagonal matrix n � n
A adjacency matrix of a graph n � n
Q incidence matrix of a graph n � m
L Laplacian matrix L = D � A = QQT n � n
l � (i; j) link labeled l incident to nodes i and j -
k usually a discrete time index integer
x(k) state vector of the system at iteration k n � 1
W weight matrix (of the typical dynamics x(k + 1) = W x(k)) n � n
w vector of weights on links m � 1
diag(v) diagonal matrix having the elements of then � 1 vector v n � n
CG set of real matrices followingG (having 0 at position (i; j) if (i; j) =2 E) n � n
� i i -th largest eigenvalue (� 1 � � 2 � : : :) scalar
� eigenvalues diagonal matrix� ii = � i n � n
� i i -th largest singular value (� 1 � � 2 � : : :) scalar
� second largest eigenvalue in magnitude ofW scalar
� (X) spectral radius of matrix X scalar
Tr (X) trace of the matrix X scalar
jjX jj �p Schatten p-norm of a matrix X (jjX jj �p = (

P
i � p

i)1=p) scalar
O(:) Big-O notation (asymptotic notation) -
PS(:) Projection on a setS � Rm Rm ! Rm

Chapter 1

Introduction

Contents
1.1 Background . 4

1.1.1 The Network Model . 4

1.1.2 Average Consensus. 6

1.1.3 Convergence Conditions. 7

1.1.4 Fastest Consensus. 8

1.2 Contributions . 10

1.2.1 Weight Optimization in Consensus Protocols 10

1.2.2 Adversarial Intervention . 11

1.2.3 Quantized Communication 12

1.2.4 Reducing Communication Overhead 12

1.2.5 Detecting Communities . 12

1.2.6 Open Research Direction . 13

Who did not wonder how well interconnected we, human beings, are, not just with
each other, but with the networked environment surrounding us. Mostof the net-
works we face today are highly interconnected. The internet (connecting its users),
the web (connecting its pages), communication networks, wireless sensornetworks,
smart grids, and more recently social networks are just few examples of intercon-
nected environments. The interesting common feature to these networks isthat
they can be composed of many small subsystems taking local decisions (based only
on neighboring interaction rules). These local decisions can have crucial impact on
the entire network. For example, a virus spreading from an infected computer can
lead to a serious damage in the network, and a video sharing by a wellconnected
user in a social network can make the video go viral touching a largeportion of the
population.

In general, a network is formed of nodes (or agents) and communicationlinks
that allow these nodes to share information and resources. An agentin this thesis
is a state machine (possibly an in�nite state one) programmed to run algorithms
according to well de�ned dynamics of interactions. These dynamics change the

2 Chapter 1. Introduction

states of agents (and thus the state of the system), and depending on local decisions
these states can converge or not. The local decisions that cause the states of agents
to converge to a common state are calledconsensus protocols. In this thesis we only
consider discrete-time systems, but the rationale for the algorithms studied can be
extended to continuous time systems as well.

Consensus protocols can be applied in various and broad network settings (as the
ones mentioned earlier) where interactions between neighbors are possible. In fact,
these protocols lie at the intersection of di�erent research �elds as systems theory,
computational models, and graph theory. Systems theory is the trans-disciplinary
study of the abstract organization of phenomena without being speci�c to an exact
type of objects, to their exact properties, or to the qualitative description of their
interaction rules in the underlying environment. This abstraction in consensus pro-
tocols is given by modeling the network by a graph of vertices (the agents) connected
by edges (if they communicate), and then running consensus algorithmson the top
of that.

As in any protocol, some parameters can be tuned in the consensus algorithm.
Therefore optimizing the choice of these parameters leads to a better performance in
terms of energy savings, speed of convergence, or robustness of the systemto noise.
In addition to optimization, controlling the states of the agents is very important. In
some cases, bad choice of the parameters can cause the divergence of the states and
destabilization of the system. In fact, designing local interactionrules for agents
that provide some global guarantees is one of the main goals of the distributed
optimization and control community when the agents are strategic participants.
Game theory is a natural tool for analyzing these protocols and designing their
interaction strategies for reaching a stabilizing state having some global optimization
properties.

In this thesis, we investigate optimization problems concerned with discrete-
time consensus protocols on networks, such as parameter tuning to increase speed
of convergence, distributed implementation of global optimization problems, and
minimization of the communication overhead (Chapters 2 and 5). We also propose
a game theoretical framework to take into account an adversary in thenetwork
trying to disrupt the communication channel (Chapter 3). We design and analyze
consensus algorithms in the presence of communication constraints as quantization
(Chapter 4). We address the problem of detecting communities (clusters)in a
network by proposing a novel scoring metric based on the speed of convergence of
consensus protocols and the random walk spectral gap properties (Chapter 6).

The main motivation for this thesis is the following three applications where
consensus protocols are a fundamental block in their design:

� Distributed optimization and control,

� Environmental monitoring in wireless sensor networks,

� Multi-agents coordination.

3

Thus the contribution of this thesis is to add knowledge to the research on consensus
protocols in general and to these applications in particular.

Distributed Optimization and Control

There has been recently a signi�cant amount of research on distributed optimization
in networks. New faster techniques [WOJ13, GJS11] have been proposed for the
traditional dual decomposition approach for separable problems that is well known
in the network community since Kelly's seminal work on TCP [KMT98]. Other
work in [NO09, JKJJ08] combines a consensus protocol, that is used to distribute the
computations among the agents, and a subgradient method for the minimization of a
local objective. A di�erent approach relies on some intelligent randomexploration of
the possible solution space, e.g., using genetic algorithms [ANC+ 10] or the annealed
Gibbs sampler [KBC + 07]. In fact, distributed optimization by consensus protocols
in the control community goes back to the 80's due to the work of D.P. Bertsekas
and J. N. Tsitsiklis on decentralized decision making and parallel computing [BT89].

Consensus problems have also a close relationship with the PageRankalgorithm
used by Google search engine to rank the web pages of the search results[BP98].
Since the number of websites so far is more than 1 billion,1 the PageRank requires the
calculation of an eigenvector corresponding to the largest eigenvalue of extremely
large but sparse matrix. Therefore, the use of global information is not feasible
in this case, and distributed and parallel implementations are mandatory [LM06,
ALNO07]. A possible way is by running consensus-like algorithms [IT10, ANP07].
The PageRank problem has recently been of the interest of the systems and control
community [IT14].

In networks, algorithms for e�cient routing and e�cient use of resour ces are
proposed to save energy and speed up the processing. For small networks, it is pos-
sible for a central unit to be aware of all the components of the network and decide
how to optimally use a resource on a global view basis. As networksexpand, the
central unit needs to handle a larger amount of data, and centralized optimization
may become unfeasible especially when the network is dynamic [BFH13]. In fact,
the optimal con�guration needs to be computed whenever a link fails or there is
any change in the network. Moreover, nodes may have some processingcapabilities
that are not used in the centralized optimization. With these points in mind, it
becomes more convenient to perform distributed optimization relying on local com-
putation at each node and local information exchange between neighbors [Joh08].
Such distributed approach is intrinsically able to adapt to local network changes.

Environmental Monitoring in Wireless Sensor Networks

Emerging technologies as robotics, multi-vehicle cooperation control, and environ-
mental monitoring have a driving need for wireless sensor networks. In these net-
works, a group of sensors communicates in an ad-hoc manner to accomplish the

1www.internetlivestats.com

4 Chapter 1. Introduction

tasks they are deployed to do.
Environmental monitoring requires that sensors measure temperature, pressure,

pollution, etc. in their area of deployment. These measurements can be noisy and if,
for example, the noise is additive, zero mean, and Gaussian, then each temperature
sensor can have a di�erent noisy measurement of the nominal temperature. It is well
known that a good �lter of the Gaussian noise (achieving the maximum likelihood)
is the mean �lter. Therefore, averaging the values of the initial measurements can
give a more accurate estimation, this is known assensor fusion. Sensor fusion can be
obtained by decentralized communication between sensors by consensus protocols.
In fact, sensor fusion is the motivation provided by Boydet al. for their well known
paper on gossiping consensus protocols [BGPS06].

Some computational models are also motivated by wireless sensor consensus
applications. The proposed model, thepopulation protocols, was �rst introduced
in [AAD + 04] as a model for distributed (computational capable) agents interacting
locally to infer some global information about the group. This model is motivated
by sensors attached to birds in a �ock with the goal to check some global properties
relying only on local interactions, like determining whether more than 5% of the
population has elevated temperature.

Multi-agents Coordination

Consensus protocols �nd their way also in multi-agents coordination problems
[OSFM07]. The agents in such networks also use the wireless sensor technology
to communicate. A group of robots moving in parallel for example should agree
on the direction of motion and the speed to avoid collision. In formation control
problems, with a leaderless approach, robots only communicate on a neighbor to
neighbor basis to collectively accomplish a global task [JLM03, BA98] (like obstacle
avoidance or trajectory following while maintaining connectivity [JE07]). The main
di�culty for the consensus protocols in this category of problems does not origi-
nate from the large number of robots, but rather from the switching topology and
connectivity issues.

1.1 Background

1.1.1 The Network Model

Consider a network of n nodes that can exchange messages between each other
through communication links. The network of nodes can be modeled as a graph
G = (V; E) where V is the set of vertices, labeled from1 to n, and E is the set
of edges, labeled from1 to m. (i; j) 2 E if nodes i and j are connected and can
communicate (they are neighbors). If link (i; j) has label l , we write l � (i; j).2

2Most of the work in this thesis deals with static graphs, howe ver some of the results can be
naturally extended to include a dynamic graph topology.

1.1. Background 5

Unless otherwise speci�ed, graphs are considered to beconnected and undirected.3

Denote by di the degree of nodei in the graph G.
Any given graph G = (V; E) can be represented and fully characterized using

one of the following matrices: the adjacency matrixA, the incidence matrix Q, or
the Laplacian matrix L . The adjacency matrix A is the symmetric n by n square
matrix whose elements are given as follows,

A ij =

(
1 if (i; j) 2 E;

0 else:
(1.1)

The incidence matrix Q is the n by m matrix where each columnk � (i; j) corre-
sponds to a link and each column has only two nonzero elements,

(
Qik = � 1

Qjk = � Qik ;
(1.2)

The value of Qik can be either+1 or � 1 because the graph is undirected. Finally,
the Laplacian matrix is the symmetric n by n square matrix such that,

L ij =

8
>><

>>:

� 1 if (i; j) 2 E;

di if i = j;

0 else:

(1.3)

These matrices are related by the following formula,

L = D � A = QQT ;

where D is the degree diagonal matrix (D ii = di for all i 2 V). From the given
de�nition we can deduce some properties of the Laplacian, sinceL = QQT , then
it is a positive semi-de�nite matrix having nonnegative eigenvalues. Given that
L1 = 0, where1 is a vector of all ones, and0 is the vector of all zeros, then0 is an
eigenvalue and 1p

n 1 is the corresponding right unit eigenvector. Since the network
is connected, it is well known that the second smallest eigenvalue of the Laplacian
is strictly positive (and is called the algebraic connectivity [Fie73]). These matrices
will appear often in this thesis.

Since most of the results in this thesis are theoretical, simulations and perfor-
mance evaluation are done to support the theoretical �ndings. We mainly relied on
connected random graphs,4 so we give here an overview of these random networks:

� Random Geometric Graphs (RGGs) [Pen03] where n nodes are placed uni-
formly at random on a convex unit area (we considered a unit square area),
and any two nodes are connected by an edge if the distance between them is

3Since the graph is undirected graph, then (i; j) = (j; i) are eventually the same link.
4 In some cases we also did simulations on real networks as Enron company internal email

exchange network [SA04] and the dolphin social network [LSB+ 03], or static networks as grids or
rings.

6 Chapter 1. Introduction

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r=0.1357

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r=0.2146

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r=0.3717

Figure 1.1: RGG with n = 100 nodes and di�erent values of the connectivity radius.

less than the radiusrn =
q

c � log(n)
n , wherec is a constant, see Fig.1.1. The

connectivity of RGG graphs is usually studied as a function of the scalar c
[GK98]. RGGs are well suited to model wireless sensor networks where the
nodes have been deployed randomly on a �eld and the transmission range
of each sensor isrn . When the transmission rangern is small, the network
presents clusters of nodes.

� Erd®s-Rényi (ER) graphs, these graphs have a parameterP for the probability
that a link to exist between any pair of vertices. They are constructed as
follows: starting from an n-nodes-fully-connected graph, every link can be
removed from the graph with probability 1� P and is left there with probability
P.

1.1.2 Average Consensus

The graph G = (V; E) is an abstraction of the network topology connecting com-
municating agents. Each agent (or node) inV can only communicate with its
�neighbors�. Neighbor relations are described as follows: agentj is a neighbor of
agent i if (i; j) is an edge ofG, i.e., (i; j) 2 E . We denote by N i the neighborhood
set of nodei . Every node i in the network has control over a real-valued scalar
quantity x i called an agreement variablewhose value can be updated by the agent
from time to time. Initially each agent i has a real scalar valuex i (0) 2 R. Let

xave =
1
n

X

i 2 V

x i (0);

be the average of initial values of all agreement variables in the network. The
purpose of the average consensus (distributed averaging) problemis to devise an
algorithm for each agent which enables alln agents to asymptotically determine in
a decentralized manner, the average of the initial values of their scalar variables,
i.e.,

lim
k!1

x i (k) = xave: (1.4)

1.1. Background 7

A well studied approach to the problem is for each agent to use a linear iterative
update rule of the form

x i (k + 1) = wii (k)x i (k) +
X

j 2 N i

wij (k)x j (k); 8i 2 V; (1.5)

where k is a discrete time index, andwij (k) are real-valued weights to be designed
(in general they are time varying specially for dynamic networks). Equation (1.5)
can be written in a matrix form as

x(k + 1) = W(k)x(k); (1.6)

where x(k) is the state vector of agreement values whosei -th element is x i (k), and
W (k) is the weight matrix whose ij -th entry equals wij (k). Equation (1.5) is the
general state dynamical equation of consensus protocols that will appear often along
this thesis. Therefore, it is important to understand the conditions on the matrix
W (k) that cause the states to converge (and more speci�cally to converge to the
average consensus given by equation (1.4)). Let us �rst introduce some notation.
We denote by � i the i -th eigenvalue of a matrix. For real and symmetric matrices,
all eigenvalues are real and hence we can order them (� 1 � � 2 � � � � � � n), so � i

is the i -th largest eigenvalue of the matrix. Denote by� (:) the spectral radius of a
matrix, i.e., � = max i j� i j, and by � the largest eigenvalue in module non considering
� 1, i.e., � = max f � 2; � � ng when the eigenvalues are all real.� i is the i -th largest
singular value of a matrix, i.e., � i (X) =

p
� i (X T X). Notice that � 1(X) = jjX jj2

where jj :jj2 is the matrix L 2-induced norm.5

1.1.3 Convergence Conditions

Assume that W (0); W (1); : : : are independent and identically distributed random
matrices, then su�cient conditions for almost sure convergence to consensus starting
from any initial condition are [Bén09]:

1T W (k) = 1T ; for all k; (1.7)

W (k)1 = 1; for all k; (1.8)

� 2(E[W (k)T W (k)]) < 1: (1.9)

As we will be working on static graphs, then it is important to study the
conditions for convergence when the same matrix is applied at all iterations, i.e.,
W (k) = W for all k. In this case, [XB04] provides the following set of necessary
and su�cient conditions that guarantee convergence to consensus starting from any
initial condition:

1T W = 1T ; (1.10)

W 1 = 1; (1.11)

� (W �
1
n

11T) < 1: (1.12)

5A matrix L p -induced norm is de�ned as follows: jjX jj p = max fjj X y jj p : y 2 K n with jj y jj p =
1g, where K is a �eld of real numbers and jj y jj p =

� P
i jyi jp

� 1=p is the usual L p -norm of a vector.

8 Chapter 1. Introduction

Note that with these conditions, � (W � 1
n 11T) = � (W) and � 1(W � 1

n 11T) = � 2(W).
It is well known that for any matrix X , the following holds [Ber05, p. 351]:

� (X) � � 1(X);

where the equality holds if X is a symmetric matrix. Therefore, � (W � 1
n 11T) �

� 2(W) and thus if (1.9) is satis�ed, then so is (1.12), but the inverse is not always
true unlessW is symmetric (W = W T). We also observe that the weights are not
required to be non-negative. Since we will mainly focus on problems where W is
symmetric, then the �rst two conditions are equivalent to each other and equivalent
to the possibility to write the weight matrix as follows:

W = I � Q � diag(w) � QT ; (1.13)

where I is the identity matrix and w 2 Rm is the vector of all the weights on links
wl , l = 1 ; : : : ; m. Equation (1.13) gives an important representation of the weights,
giving a relation between, on one hand, the weights on links inRm and, on the other
hand, the weight matrix in Rn;n . To show the importance of this equation, suppose
we have an optimization problem where the elements of the weight matrix W are the
variables of this problem, then the number of variables isn2. By applying equation
(1.13), then there will be m variables which guarantees complexity savings specially
on sparse graphs wherem = O(n).

1.1.4 Fastest Consensus

The system equation (1.6) for �xed weight matrix has a solution given as follows:

x(k) = W kx(0): (1.14)

The speed of convergence of the system given in (1.14) is governed by how fastW k

converges. For a real symmetric weight matrix,W has real eigenvalues and it is
diagonalizable. We can writeW k using the orthonormal decomposition as follows
[Mey00, p. 517]:

W k =
X

i

� k
i Gi ; (1.15)

where Gi = v i v T
i with v i being the eigenvector corresponding to the eigenvalue� i .

We note that the matrices Gi s have the following properties: Gi is the projector
onto the null-space ofW � � i I along the range ofW � � i I ,

P
i Gi = I and Gi Gj =

0n� n 8i 6= j . Conditions (1.10)-(1.12) imply that 1 is the largest eigenvalue ofW
in module and is simple. Then� 1 = 1 , G1 = 1=n11T and j� i j < 1 for i > 1. From
the above representation ofW k , we can deduce two important facts:

1. First we can check thatW k actually converges, in fact we havelim k!1 x(k) =
lim k!1 W kx(0) = 1

n 11T x(0) = xave1 as expected.

1.1. Background 9

2. Second, the speed of convergence ofW k is governed by the second largest
eigenvalue in module, i.e., on� = max f � 2; � � ng = � (W � G1). For obtaining
the fastest convergence, nodes have to select weights that minimize� , or
equivalently maximize the spectral gap6 of W .

Then the problem of �nding the weight matrix that guarantees the fastest conver-
gence can be formalized as follows:

argmin
W

� (W)

subject to W = W T ;

W1 = 1;

W 2 CG;

(1.16)

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarilywij = 0 if (i; j) 62E .
Problem (1.16) is called in [XB04] the �symmetric FDLA problem.�

The above minimization problem is a convex one and the function� (W) is non-
smooth convex function. It is convex since whenW is a symmetric matrix, we
have � (W) = � (W � G1) = jjW � G1jj2 which is a composition between an a�ne
function and the matrix L-2 norm, and all matrix norms are convex functions. The
function � (W) = � (W � G1) is non-smooth since the spectral radius of a matrix is
not di�erentiable at points where the eigenvalues coalesce [FN95]. The process of
minimization itself in (1.16) tends to make them coalesce at the solution.

Moreover, the weight matrix solution of the optimization problem is not unique.
For example it can be checked that for the network in Fig.1.2, there are in�nite
weight values that can be assigned to the link(2; 3) and solve the optimization
problem (1.16), including w23 = 0 . Additionally, this shows that adding an extra
link in a graph (e.g., link (2; 3) in the Fig. 1.2), does not necessarily reduce the
second largest eigenvalue of the optimal weight matrix.

� � � �

H H HH

1

2

3

4

5

HHHH

����

6

Figure 1.2: Network of 6 nodes.

6 The spectral gap is the di�erence between the largest eigenvalue in module and the second
largest one in module. In this case it is equal to 1 � � .

10 Chapter 1. Introduction

1.2 Contributions

On the basis of the model equation (1.5), we study in this thesis optimization,
control, and game theoretical problems that may arise. In particular, we raise the
following questions:

� Given that the optimal weights to speed up convergence are known (by solving
(1.16) globally), can the nodes in the network eventually infer (or learn)these
weights in a distributed way (without the need of the global knowledge of the
network)?

� Given that the network can be susceptible to attacks from an adversary willing
to drive the system away from consensus, what strategies should be used
by both, the adversary and the network designer, to achieve their opposite
objectives?

� Suppose that communication channels between nodes in the network aresub-
ject to bandwidth constraints, and nodes can only receive/send truncated
values of their neighbors' variables. How does this quantization a�ect the
convergence of the resultingnonlinear system?

� Given that the state variables are converging asymptotically, can the nodes
know when their state variables are close enough to the asymptotic value, and
thus decide to stop executing the algorithm only on the bases on somelocal
knowledge?

� Given that nodes forming well connected groups in the graph have similar
convergence dynamics of their state variables, can we use this observation to
identify these clusters of nodes?

Each chapter in the thesis deals with one of the above questions. Rather than
mentioning here all the previous literature on consensus protocolsas a general topic,
we preferred to give the related works in every chapter speci�c to the problem
studied. Below we list the contribution detailed in the following chapters.

1.2.1 Weight Optimization in Consensus Protocols

As we mentioned in Section1.1.4, the convergence rate of the linear consensus
algorithm is determined by the second largest eigenvalue in module ofthe weight
matrix W. Optimal weights can be calculated by optimizing spectral properties
of the weight matrix as in problem (1.16), which can be solved by semi-de�nite
programming (SDP) as shown by Xiao et al. in [XB04]. The SDP cannot be
implemented by the nodes in the network unless they have the full knowledge of the
network. For this reason we propose to select the weights through anapproximation
algorithm which minimizes the Schatten p-norm of the weight matrix (essentially
minimizing the trace of W p). We characterize the approximation error and we show
that the approximated solution has the advantage that it can be calculated in a

1.2. Contributions 11

distributed way using a simple projected gradient method. We also provide a faster
Newton's method to determine it.

The publications directly related to this contribution are the foll owing:

� [ECNA15] M. El Chamie, G. Neglia, and K. Avrachenkov, �Distributed Weight
Selection in Consensus Protocols by Schatten Norm Minimization�, Toappear
in IEEE Transactions on Automatic Control as Technical Note, Volume 60,
No. 4, April 2015.

� [ECN14] M. El Chamie and G. Neglia, �Newton's Method for Constrained
Norm Minimization and Its Application to Weighted Graph Problems� , In
proceedings of the American Control Conference ACC 2014 (Portland, OR,
United States, June 4-6), pp. 6, June 2014.

Other publications also related to this topic are the following:

� [SECN13] L. Severini, M. El Chamie, and G. Neglia, �Topology versus Link
Strength for Information Dissemination in Networks�, In proceedings of AL-
GOTEL 2013 (Pornic, Loire-Atlantique, France, May 28-31), pp. 4, May 2013.

� [AECN11] K. Avrachenkov, M. El Chamie, and G. Neglia, �A local average
consensus algorithm for wireless sensor networks�, In proceedings of IEEE
International Conference on Distributed Computing in Sensor Sytems and
Workshops DCOSS 2011 (Barcelona, Spain June 27-29), pp. 6, June 2011.

1.2.2 Adversarial Intervention

In this work, we propose a game theoretical framework for an adversary that can
add noise to the weights used by averaging protocols to drive the system away from
consensus. We give the equilibrium strategies for the players (theadversary and
the network designer) in this game and we show that a saddle-pointequilibrium
(SPE) does not exist in pure strategies but it does in mixed strategies. We also
study dynamic optimal weight selection optimal control for consensus protocols.
For the multi-stage case, the solution exists but can rarely be expressed in closed-
form equations. In view of this, we apply optimization techniquesto obtain a locally
(and possibly globally) optimizing feasible control path. For the one-stage case, we
obtain a closed-form solution for the optimal control and provide su�cient conditions
for the existence of a control that makes the system reach consensus in only one
iteration.

The publication related to this contribution is the following:

� [ECB14] M. El Chamie and T. Ba³ar, �Optimal Strategies for Dynamic Weight
Selection in Consensus Protocols in the Presence of an Adversary�, Accepted
to the 53rd IEEE Conference on Decision and Control CDC 2014 (Los Angeles,
California, Dec. 15-17), pp. 6, Dec. 2014.

12 Chapter 1. Introduction

1.2.3 Quantized Communication

We analyze the performance of distributed averaging algorithms where the infor-
mation exchanged between neighboring agents is subject to deterministic uniform
quantization (i.e., real values sent by nodes to their neighbors are truncated). With
such quantization, convergence to the precise average cannot be achieved in general,
but the convergence would be to some value close to it, called quantizedconsensus.
Using Lyapunov stability analysis, we characterize the convergence properties of the
resulting nonlinear quantized system. We show that in �nite time and depending
on initial conditions, the algorithm will either cause all n agents to reach a quan-
tized consensus where the consensus value is the largest quantized valuenot greater
than the average of their initial values, or will lead all n variables to cycle in a
small neighborhood around the average. In the latter case, we identify tight bounds
for the size of the neighborhood and we further show that the errorcan be made
arbitrarily small by adjusting the algorithm's parameters in a distributed manner.

The publication related to this contribution is the following:

� [ECLB14] M. El Chamie, J. Liu, and T. Ba³ar, �Design and Analysis of Dis-
tributed Averaging with Quantized Communication�, Accepted to the 53rd
IEEE Conference on Decision and Control CDC 2014 (Los Angeles, Califor-
nia, Dec. 15-17), pp. 6, Dec. 2014.

1.2.4 Reducing Communication Overhead

Consensus algorithms require that nodes exchange messages persistently to reach
asymptotically consensus. The problem of termination of consensus protocols turns
out to be challenging in the distributed setting. We propose a totally distributed
algorithm for average consensus where nodes send more messages when they have
large di�erences in their estimates, and reduce their message sending rate when
the consensus is almost reached. The convergence of the system is guaranteed to
be within a prede�ned margin � . Tuning the parameter � provides a trade-o�
between consensus precision and communication overhead of the protocol.The
proposed algorithm is robust against nodes changing their initial values and can
also be applied in dynamic networks with faulty links.

The publication related to this contribution is the following:

� [ECNA13] M. El Chamie, G. Neglia, and K. Avrachenkov, �Reducing Commu-
nication Overhead for Average Consensus�, In proceedings of IFIP Networking
2013 (Brooklyn, NY, USA, May 22-24), May 2013.

1.2.5 Detecting Communities

Finally, we study the problem of �nding well connected clusters (of nodes) in a
network. It is well known that the mixing time of a random walk on a network
is related to the speed of convergence of consensus protocols. We proposea score
metric that evaluates the quality of clusters such that the faster the random walk

1.2. Contributions 13

mixes in the cluster and the slower it escapes, the higher is the score. A local
clustering algorithm based on this metric is given.

The publication related to this contribution is the following:

� [AECN14] K. Avrachenkov, M. El Chamie, and G. Neglia, �Graph Clustering
Based on Mixing Time of Random Walks�, In proceedings of the IEEE Inter-
national Conference on Communications ICC 2014 (Sydney, Australia,June
10-14), pp. 6, June 2014.

1.2.6 Open Research Direction

We further introduce in the Appendix, as an open future research direction for
consensus protocols, a novel model for averaging on networks with dynamic nodes.
In dynamic networks, the network topology in the network changeswith time. This
can be due to mobility, link failure, or node failure. Most of thework on consensus in
dynamic network settings consider a �xed number of nodes trying to reach agreement
in the presence of mobility or non-robust links (so only the links are dynamic).
However, little study has been made on networks with dynamic number of nodes.
In this chapter, we study this problem on simple graph topologynetworks (like
complete graphs and trees) and we leave the full model study as a future open
research direction.

This work is due to the following presentation:

� M. El Chamie, G. Neglia, and K. Avrachenkov, "Averaging on Dynamic Net-
works", 10ème Atelier en Evaluation de Performances (Inria, SophiaAntipolis,
11-13 juin), June 2014. (abstract)

Chapter 2

Weight Optimization in Consensus
Protocols

Contents
2.1 Optimization Problem . 16

2.2 Related Work . 17

2.3 Schatten Norm Minimization 20

2.4 Newton's Method for Schatten Norm Minimization 24

2.4.1 Preliminaries . 25

2.4.2 The Unconstrained Minimization 26

2.4.3 Gradient and Hessian . 26

2.4.4 Newton's Direction � w . 28

2.4.5 Line Search . 28

2.4.6 The Algorithm . 29

2.4.7 Closed Form Solution forp = 2 29

2.5 A Distributed Algorithm for Schatten Norm Minimization 31

2.5.1 Locally Computed Gradient 33

2.5.2 Choice of Stepsize and Projection set. 33

2.5.3 Complexity of the Algorithm 36

2.6 Performance Evaluation . 37

2.6.1 Newton versus Gradient methods for Schattenp-Norm Mini-
mization . 38

2.6.2 Comparison of the Schatten Norm Solution with the Optimal
Solution . 40

2.6.3 Other Distributed Approaches: Asymptotic Convergence Rate 40

2.6.4 Communication Overhead for Local Algorithms 42

2.6.5 Joint Consensus-Optimization (JCO) Procedure 43

2.6.6 Topology versus Weight Optimization 44

2.7 Stability and Misbehaving Nodes 49

2.7.1 Guaranteeing Convergence of Trace Minimization. 49

2.7.2 Networks with Misbehaving Nodes 51

2.8 More on Schatten p-Norm and its Relation to Machine
Learning . 52

2.9 Conclusion . 56

16 Chapter 2. Weight Optimization in Consensus Protocols

The speed of convergence of average consensus protocols depends on the weights
selected on links (to neighbors). We address in this chapter how to select the weights
in a given network in order to have a fast convergence speed for these protocols. We
approximate the problem of optimal weight selection by the minimization of the
Schatten p-norm of a matrix with some constraints related to the connectivity of
the underlying network. We �rst provide a methodology for solving the Schatten
p-norm optimization using the Newton's method. We then provide a totally dis-
tributed gradient method to solve the Schatten p-norm optimization problem. By
tuning the parameter p in our proposed distributed minimization, we can simply
trade-o� the quality of the solution (i.e., the speed of convergence) for communi-
cation/computation requirements (in terms of number of messages exchanged and
volume of data processed). The weight optimization iterative procedure can also
run in parallel with the consensus protocol and form a joint consensus�optimization
procedure.

2.1 Optimization Problem

We start by introducing formally the problem studied in this chapter. As mentioned
in the introduction, the network of nodes can be modeled as a graphG = (V; E)
where V is the set of vertices, labeled from1 to n, and E is the set of edges, then
(i; j) 2 E if nodesi and j are connected and can communicate (they are neighbors)
and jE j = m. We label the edges from1 to m. If link (i; j) has label l , we write
l � (i; j). N i is the neighborhood set of nodei . All graphs in this chapter are
considered to beconnectedand undirected. Let x i (0) 2 R be the initial value of the
local variable at nodei . We are interested in computing the average

xave = (1 =n)
nX

i =1

x i (0);

in a decentralized manner with nodes only communicating with their neighbors. The
network is supposed to operate synchronously: when a global clock ticks, all nodes
in the system perform the iteration of the averaging protocol. At iteration k + 1 ,
node i updates its state valuex i as follows:

x i (k + 1) = wii x i (k) +
X

j 2 N i

wij x j (k): (2.1)

As it is commonly assumed, in this chapter we consider that two neighbors select
the same weight for each other, i.e.,wij = wji . The matrix form equation is:

x(k + 1) = W x(k); (2.2)

wherex(k) is the state vector of the system andW is the weight matrix. The main
problem we are considering in this chapter is how a nodei can choose the weightswij

2.2. Related Work 17

for its neighbors so that the state vectorx of the system converges fast to consensus.
As we have seen in the introduction, the necessary and su�cient conditions for the
convergence of the system to average consensus starting from any initial value are
the following:

1T W = 1T ; (2.3)

W 1 = 1; (2.4)

� (W) < 1; (2.5)

where � (W) = � (W � G1) is the second largest eigenvalue ofW in module and
G1 = 1

n 11T . For symmetric weight matrices, the problem of �nding the weight
matrix that guarantees the fastest convergence, also given in the Introduction, can
be formalized as follows:

argmin
W

� (W)

subject to W = W T ;

W1 = 1;

W 2 CG;

(2.6)

where the last constraint on the matrix W derives from the assumption that nodes
can only communicate with their neighbors and then necessarilywij = 0 if (i; j) 62E .
The constraint W = W T in the optimization requires any two neighborsi and j to
choose the same weight on their common linkl � (i; j) i.e., wij = wji = wl . The
condition W 1 = 1 means that at every nodei the sum of all weights on its incident
links plus its self-weight wii must be equal to one. This condition is satis�ed if
nodes choose �rst weights on links, and then adapt consequently their self-weights
wii . Thus all three constraints in (2.6) lead to the possibility to write W as follows:

W = I � Q � diag(w) � QT ; (2.7)

where w 2 Rm is the vector of all the weight links wl , l = 1 ; : : : ; m, and Q is the
incidence matrix of the graph (given in the introduction chapter asone of the three
matrices that characterize the nodes and links in a graph). Problem (2.6) is called
in [XB04] the �symmetric FDLA problem.�

2.2 Related Work

Xiao and Boyd in [XB04] have shown that the symmetric FDLA problem (2.6) can
be formulated as a Semi-De�nite Program (SDP) that can be solved bya centralized
unit using interior point methods. The semi-de�nite program is the following:

minimize
w ; s

s

subject to � sI � I � Q � diag(w) � QT � G1

I � Q � diag(w) � QT � G1 � sI;

(2.8)

18 Chapter 2. Weight Optimization in Consensus Protocols

where s is an auxiliary real optimization variable, A � B if and only if B � A is
positive semi-de�nite, and G1 = 1

n 11T . The output of this program is the optimal
weight vector w 2 Rm such that wl ; l = 1 ; : : : ; m is the weight selected for link l .
The weight matrix can be then deduced fromw using Eq. (2.7).

The limit of such centralized approach to weight selection is shown by the
fact that a popular solver as CVX, matlab software for disciplined convex program-
ming [GB11], can only �nd the solution of (2.8) for networks with at most tens of
thousands of links.

The optimal solution in larger networks can be found iteratively using a central-
ized subgradient method. The authors of [XB04] present a sub-gradient method for
selecting weights on links in a network by minimizing the following unconstrained
problem (whose solution is equivalent to solving problems (2.6) or (2.8)):

argmin
w

r (w) = � (I � Q � diag(w) � QT � G1):

Each link weight is updated according to the following sub-gradient iteration:

w(k+1)
l = w(k)

l �
 (k)g(k)
l =jjg(k) jj ; (2.9)

where w(k)
l is the weight on link l at iteration k, g(k)

l is the l-th component of a
subgradient g(k) of the objective function calculated in w (k) , and
 (k) is the step-
size satisfying the following su�cient conditions for convergence, lim k!1
 (k) =
0 and

P 1
k=1
 (k) = 1 . The components of the sub-gradient can be calculated as

follows:

� if r (w) = � 2(W), then

gl = � (ui � uj)2; if l � (i; j); l = 1 ; : : : ; m;

whereui is the i -th component of a unit eigenvector of the weight matrixW (k)
corresponding to the eigenvalue� 2.

� if r (w) = � � n (W), then

gl = (ui � uj)2; if l � (i; j); l = 1 ; : : : ; m;

where ui is the i -th component of the unit eigenvector of the weight matrix
W (k) corresponding to the eigenvalue� n .

Contrary to the centralized approach for the subgradient method, in a dis-
tributed solution all the nodes in the network contribute to calculate the solution of
the optimization problem. The whole network then bene�ts from nodes' processing
capabilities. However, the subgradient approach given above is not distributed for
di�erent reasons. First, the stepsize used in (2.9) is normalized by jjg(k) jj which
cannot be locally computed by each node. While this problem can probably be
circumvented by a di�erent choice of the stepsize (without loosing the convergence
properties of (2.9)), there are other aspects that make problematic this distributed

2.2. Related Work 19

implementation. In fact this iterative procedure requires at every stepto calculate
� 2(W (k)) and � n (W (k)) , and determine an eigenvector corresponding to one of these
two eigenvalues that is the largest in module. For the solution to be really distributed
also these quantities have to be calculated in a distributed way. This is not an easy
task. There are some distributed iterative techniques [KM04, FGGS09, YFG+ 08]
that converge asymptotically to the correct eigenvalue-eigenvector pair, but then
each step of the optimization procedure requires itself the convergence of an iterative
sub-procedure to calculate the two eigenvalues and the correspondingeigenvectors
with signi�cant computation and communication costs. We remark in particular
that at each step the sub-procedure has to run long enough to guarantee that the
estimations are accurate enough to not jeopardize the convergence of the optimiza-
tion procedure. Deciding when to terminate the sub-procedure at each stepmay
require itself another distributed mechanisms or the use of worst-case bounds on the
errors.

A similar optimization problem but with some additional constra ints is to �nd
the fastest converging algorithm for randomized gossiping, and it has been studied
in [BGPS06]. The authors provide a subgradient method that projects the variables
violating the constraints back onto the feasible set. The projection can be done in a
distributed way and the stepsize sequence can be calculated at each node. Neverthe-
less, the gradient of the cost function depends also in this case on eigenvalues and
eigenvectors of the underlying graph, so its calculation incurs the same problems
exposed above.

Kim et al. in [KGP09] propose a weight selection algorithm using theqth-
order spectral norm minimization (q-SNM). They showed that if a symmetric weight
matrix is considered, then the solution of theq-SNM is equivalent to that of the
symmetric FDLA problem. Nevertheless, their remark is not tailored for symmetric
weight matrix because their algorithm is computationally more expensive than the
SDP. Another global weight optimization to approximate problem (2.6) is given
in [JXM10] where the authors consider a cost function over �nite time horizon
and observe numerically that the more eigenvalues are considered in the objective
function (� 2; � 3; : : :) the faster it is in the transient phase. In conclusion, how to
solve the problem (2.6) in a distributed way is still an open challenge.

Some heuristics for the weight selection problem that guarantee convergence of
the average protocol and attracted some interest in the literature either due to their
distributed nature or to their easy implementation are the following [XBK07, XB04]:

� max degree weights (MD):
wl = 1

�+1 8l = 1 ; : : : ; m;

� local degree (Metropolis) weights (LD):
wl = 1

maxf di ;dj g+1 l � (i; j) 8l = 1 ; 2; : : : ; m;

� optimal constant weights (OC):
wl = 2

� 1 (L)+ � n � 1 (L) 8l = 1 ; : : : ; m;

20 Chapter 2. Weight Optimization in Consensus Protocols

where � = max i f di g is the maximum degree in the network andL is the Laplacian
of the graph. A similar heuristic, called neighborhood algorithm(NA) [AECN11],
was proposed by the author in his master thesis [Cha11]. Each node i sets the
weight of a link (i; j) depending on the similarity between its neighborhood set
and the neighborhood of nodej . NA quanti�es such similarity by resorting to the
Jaccard index de�ned in the set theory.1

2.3 Schatten Norm Minimization

We change the original minimization problem in (2.6) by considering a di�erent cost
function that is a monotonic function of the Schatten norm. The Schatten p-norm
of a matrix W is the L p-norm of its singular values, i.e.,jjW jj �p = (

P
i � p

i)1=p. The
minimization problem we propose is the following one:

argmin
W

h(W) = jjW jjp
�p

subject to W = W T ;

W 1 = 1;

W 2 CG;

(2.10)

where p is an even positive integer. The following result establishes that (2.10) is a
smooth convex optimization problem and also it provides an alternative expression
of the cost function in terms of the trace of W p. For this reason we refer to our
problem also asTrace Minimization (TM).

Proposition 1. For any even positive integer p, the function
h(W) = jjW jjp

�p = Tr (W p) is scalar-valued, smooth, and convex on its feasible
domain whenW is symmetric.

Proof. We have Tr(W p) =
P n

i =1 � p
i . Since W is symmetric, its non-zero singular

values are the absolute values of its non-zero eigenvalues [Mey00]. Given that p is
even, then

P n
i =1 � p

i =
P n

i =1 � p
i . Therefore, Tr(W p) = jjW jjp

�p .
The Schatten norm jjW jj �p is a nonnegative convex function, thenh is convex

because it is the composition of a non-decreasing convex function �thefunction xp

where x is non-negative� and a convex function [BV04, p. 84].
The function is also di�erentiable and we have [Ber05, p. 411]

@
@wij

Tr (W p) = p(W p� 1) j;i : (2.11)

We now illustrate the relation between (2.10) and the optimization (2.6). The
following lemmas will prepare the result:

1For any two sets A, and B , the Jaccard index is: J (A; B) = jA \ B j=jA [B j.

2.3. Schatten Norm Minimization 21

Lemma 1. For any symmetric weight matrix W whose rows (and columns) sum
to 1 and with eigevalues� 1(W) � � 2(W) � � � � � � n (W), there exist two integers
K 1 2 f 1; 2; : : : n � 1g; K 2 2 f 0; 1; 2; : : : n � 1g and a positive constant� < 1 such
that for any even positive integerp we have:

1 + � (W)pK 1 � Tr (W p) � 1 + � (W)p(K 1 + K 2� p); (2.12)

where

� (W) =

(
� (W) = max f � 1(W); � � n (W)g if � (W) > 1;

� (W) = max f � 2(W); � � n (W)g if � (W) � 1:
(2.13)

Proof. Let us consider the matrix W 2 and denote by� 1; � 2; : : : ; � r its distinct eigen-
values ordered by the largest to the smallest and bym1; m2; : : : ; mr their respective
multiplicities. We observe that they are all non-negative and then they are also
di�erent in module. For convenience we consider� s = ms = 0 for s > r . Sincep is
an even positive integer, it can be written asp = 2q where q positive integer. We
can then write:

Tr (W p) =
nX

i =1

� p
i =

rX

i =1

mi �
q
i :

The matrix W 2 has1 as an eigenvalue. Let us denote byj its position in the ordered
sequence of distinct eigenvalues, i.e.,� j = 1 . Then it holds:

Tr (W p) = 1 + (mj � 1) +
X

i 6= j

mi �
q
i :

If � (W) = 1 (i.e., 1 is the largest eigenvalue in module ofW), then 1 is also the
largest eigenvalue ofW 2 (� 1 = 1). If m1 > 1, then it has to be either � 2(W) = 1
(the multiplicity of the eigenvalue 1 for W is larger than 1) or � n (W) = � 1. In
both cases� (W) = � (W) = 1 ,

Tr (W p) = 1 + (m1 � 1) +
X

i> 1

mi �
q
i

and the result holds with K 1 = m1 � 1, K 2 =
P

i> 1 mi and � =
p

� 2. If m1 = 1 ,
then � 2 = � 2

2. We can write:

Tr (W p) = 1 + � q
2

m2 +
X

i> 2

mi

�
� i

� 2

� q
!

and the result holds with K 1 = m2, K 2 =
P

i> 2 mi , and � =
p

� 3=� 2.
If � (W) > 1, then � 1 = � (W)2 > 1 and we can write:

Tr (W p) = 1 + � q
1

0

B
@m1 +

X

i> 1
i 6= j

mi

�
� i

� 1

� q

+ (mj � 1)
�

1
� 1

� q

1

C
A :

Then the result holds with � (W) =
p

� 1 = � (W), K 1 = m1, K 2 =
P

i> 1 mi , and
� =

p
� 2=� 1.

22 Chapter 2. Weight Optimization in Consensus Protocols

Lemma 2. Let us denote byW(p) the solution of the minimization problem(2.10).
If the graph of the network is strongly connected then�

�
W(p)

�
< 1 for p su�ciently

large.

Proof. If the graph is strongly connected then there are multiple ways to assign the
weights such that the convergence conditions (2.3)-(2.5) are satis�ed. In particular
the local degree method described in Section2.2 is one of them. Let us denote by
W(LD) its weight matrix. A consequence of the convergence conditions is that1 is
a simple eigenvalue ofW(LD) , and that all other eigenvalues are strictly less than
one in magnitude [XB04]. It follows that �

�
W(LD)

�
in Lemma 1 is strictly smaller

than one and that limp!1 Tr
�

W p
(LD)

�
= 1 . Then there exists a valuep0 such that

for eachp > p0

Tr
�

W p
(LD)

�
< 2:

Let us consider the minimization problem (2.10) for a value p > p0. W(LD) is a
feasible solution for the problem, then

Tr (W p
(p)) � Tr (W p

(LD)) < 2:

Using this inequality and Lemma 1, we have:

1 + �
�
W(p)

� p � 1 + �
�
W(p)

� p K 1 � Tr (W p
(p)) < 2;

from which the lemma follows immediately.

We are now ready to state our main results in the following two propositions:

Proposition 2. If the graph of the network is strongly connected, then the solu-
tion W(p) of the Schatten Norm minimization problem(2.10) satis�es the consensus
protocol convergence conditions forp su�ciently large, i.e.,

W(p) = W T
(p) ; W(p)1 = 1; and � (W(p)) < 1:

Proof. The solution of problem (2.10), W(p) is necessarily symmetric and its rows
sum to 1. From Lemma 2 it follows that for p su�ciently large �

�
W(p)

�
< 1

then by the de�nition of � (:) it has to be � (W(p)) = 1 and � (W(p)) < 1. Therefore
W(p) satis�es all the three convergence conditions (2.3)-(2.5) and then the consensus
protocol converges.

It is further possible to show that in fact, as p approaches1 , the Schatten
Norm minimization problem (2.10) is equivalent to the minimization problem (2.6)
(i.e., to minimize the second largest eigenvalue� (W)). To show this, we observe
that with respect to the variable weight matrix W, minimizing Tr (W p) is equivalent
to minimizing (Tr (W p) � 1)1=p. From Eq. (2.12), it follows:

� (W)K
1
p
1 � (Tr (W p) � 1)

1
p � � (W)(K 1 + K 2� p)

1
p :

2.3. Schatten Norm Minimization 23

K 1 is bounded between1 and n � 1 and K 2 is bounded between0 and n � 1, and
� < 1,then it holds:

� (W)K
1
p
1 � (Tr (W p) � 1)

1
p � � (W)K

1
p ;

with K = 2(n � 1). For p large enough�
�
W(p)

�
= � (W(p)), then

�
�
�(Tr (W p

(p)) � 1)
1
p � � (W(p))

�
�
� � � (W(p))

�
K

1
p � 1

�
� K

1
p � 1:

Then the di�erence of the two cost functions converges to zero asp approaches
in�nity.

Proposition 3. The Schatten Norm minimization (2.10) is an approximation for
the original problem (2.6) with a guaranteed error bound,

j� (W(SDP)) � � (W(p))j � � (W(SDP)) � � (p);

where � (p) = (n � 1)1=p � 1 and whereW(SDP) and W(p) are the solutions of (2.6)
and (2.10) respectively.

Proof. Let S be the feasibility set of the problem (2.6) (and (2.10)), we have

� (W) = max f � 2(W); � � n (W)g and let g(W) =
� P

i � 2 � p
i (W)

� 1
p . Since W(SDP)

is a solution of (2.6), then

� (W(SDP)) � � (W); 8W 2 S: (2.14)

Note that the minimization of g(W) is equivalent to the minimization of Tr (W p)
when W 2 S (i.e., argmin

W 2 S
g(W) = argmin

W 2 S
Tr (W p)), then

g(W(p)) � g(W); 8W 2 S: (2.15)

Finally for a vector v 2 Rm all norms are equivalent and in particular jjv jj1 �
jj v jjp � m1=pjj v jj1 for all p � 1. By applying this inequality to the vector whose
elements are then � 1 eigenvalues di�erent from 1 of the matrix W , we can write

� (W) � g(W) � (n � 1)1=p� (W); 8W 2 S: (2.16)

Using these three inequalities we can derive the desired bound:

� (W(SDP))
(2.14)

� � (W(p))
(2.16)

� g(W(p))
(2.15)

� g(W(SDP))
(2.16)

� (n � 1)1=p� (W(SDP));
(2.17)

where the number above the inequalities shows the equation used in deriving the
bound. Therefore � (W(SDP)) � � (W(p)) � (n � 1)1=p� (W(SDP)) and the thesis
follows directly.

24 Chapter 2. Weight Optimization in Consensus Protocols

0.25

0.25
0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

0.25

0.25
0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

i j

0 0 0 0

wij=0

Figure 2.1: For this network the matrix solution of Schatten Norm minimiza-
tion (2.10) with p = 2 does not guarantee convergence of average consensus to
the true average becausewij = 0 which separates the network into two parts, each
of which can converge to a totally di�erent value (but not to the average of initial
values).

Remark: Comparing the results of Schatten Norm minimization (2.10) with the
original problem (2.6), we observe that on some graphs the solution of problem (2.10)
already for p = 2 gives the optimal solution of the main problem (2.6); this is for
example the case for complete graphs.2 However, on some other graphs, it may give
a weight matrix that does not guarantee the convergence of the consensus protocol
to the true average because the second largest eigenvalue can be larger than or equal
to 1 (the other convergence conditions are intrinsically satis�ed). We have built a
toy example, shown in Fig.2.1, where this happens. The solution of (2.10) assigns
weight 0 to the link (i; j); wij = 0 separates the network into two disconnected
subgraphs, so� (W) = 1 in this case. We know by Lemma2 that this problem
cannot occur for p large enough. In particular for the toy example the matrix
solution for p = 4 already guarantees convergence. We discuss how to guarantee
convergence for any value ofp in Section 2.7.

Given that problem (2.10) is smooth and convex, it can be solved by interior
point methods which would be a centralized solution. In the next section we are
going to show a centralized approach using Newton's method, and in Section 2.5 a
distributed algorithm using projected sub-gradients.

2.4 Newton's Method for Schatten Norm Minimization

Solutions of actual optimization problems are rarely expressed in aclosed-form.
More often they are obtained through iterative methods, that can bevery e�ective
in some cases (e.g., when the objective function is convex). Among the iterative ap-

2 This can be easily checked. In fact, for any the matrix that guar antees the convergence of
average consensus protocols it holds� (W) � 0 and Tr (W 2) � 1 (because1 is an eigenvalue ofW).
The matrix Ŵ = 1 =n11T (corresponding to each link having the same weight 1=n) has eigenvalues
1 and 0 with multiplicity 1 and n � 1 respectively. Then � (Ŵ) = 0 and Tr (Ŵ 2) = 1 . It follows
that Ŵ minimizes both the cost function of problem (2.6) and (2.10).

2.4. Newton's Method for Schatten Norm Minimization 25

proaches, gradient methods converge under quite general hypotheses, but they may
su�er from very slow convergence rates as they are coordinate dependent (scaling
the variables in the problem a�ects the convergence speed). The Newton's method
converges locally quadratically fast and is coordinate independent [BV04]. The
drawback of Newton's method is that it requires the knowledge of the Hessian of the
function that may be computationally too expensive to calculate. However, with the
continuous increase of computation power and the existence of e�cient algorithms
for solving linear equations, Newton's method is the object of an increasing interest
[WOEJ12, LSch, ARS12]. In this section, we provide a methodology for solving the
Schatten norm minimization (2.10) using the Newton's method. We also show later
by simulations that it signi�cantly outperforms �rst order meth ods (decent gradient,
Nestrov, etc.) both in terms of convergence speed and in term of robustnessto the
step size selection.

2.4.1 Preliminaries

The de�nitions of the gradient and Hessian of a scalar function varydepending on
the argument of the function. For the scalar function of a vector, f : Rm ! R,
the gradient of the function f (x) with respect to the vector x 2 Rm is denoted by
r x f 2 Rm and its Hessian is denoted by the matrixr 2

x f 2 Rm;m whose elements
are given by the following equations:

(r x f) l ,
@f
@xl

; and
�
r 2

x f
�

l;k ,
@2f

@xl @xk
for l; k = 1 ; : : : ; m:

For a scalar function of amatrix , h : Rm;m ! R, the gradient of the function h(X)
with respect to the vector vect(X) 2 Rm2 ;1 is denoted by r X h 2 Rm2 ;1 and its
Hessian is denoted by the matrixr 2

X h 2 Rm2 ;m 2
whose elements are given by the

equations:

r X h(ij) ,
@h

@xij
; and r 2

X h(ij)(st) ,
@2h

@xij @xst
:

Newton's method is an iterative technique that �nds the roots of a function.
For an unconstrained convex minimization problem, the roots of thegradient of
the function to minimize are the minimizers of the function itself. The Newton's
method is very popular due to its fast speed of convergence. Consider the following
unconstrained minimization problem:

minimize f (w); (2.18)

where f : Rm ! R is strongly convex and twice continuously di�erentiable. We
suppose that the problem has a solutionf � and the solution is obtained at w � ,
i.e., f � = f (w �). Since f is a convex and di�erentiable function, a point w � is
optimal if and only if the gradient of the function vanishes:

r w f (w �) = 0: (2.19)

26 Chapter 2. Weight Optimization in Consensus Protocols

Therefore, solving the m equations of m variables in (2.19) is equivalent to solv-
ing the optimization problem (2.18). The Newton's method (also called damped
Newton's method) is outlined below [BV04]:

Newton's Method Algorithm

Given

A starting point w 2 dom f , a tolerance� > 0.

Repeat

1. Compute Newton's step and decrement:

� w :=
�
r 2

w f (w)
� � 1

r w f (w);

� 2 := r w f (w)T �
r 2

w f (w)
� � 1

r w f (w):

2. Stopping criterion: if � 2=2 � � exit.

3. Line search: use exact or backtracking line search to �ndt.

4. Update:
w := w � t� w :

In the following, we will apply the Newton's method to the Schatten norm min-
imization problem (2.10).

2.4.2 The Unconstrained Minimization

As mentioned earlier, the constrains in (2.10) lead to the possibility to write W
as follows: W = I � Q � diag(w) � QT , where w 2 Rm is the vector of all the
weight links wl , l = 1 ; : : : ; m. It follows that Schatten Norm minimization (2.10) is
equivalent to the following unconstrained problem:

minimize f (w) = Tr
�
(I � Q � diag(w) � QT)p�

: (2.20)

2.4.3 Gradient and Hessian

To apply Newton's method to minimize the function f in (2.20), we have to cal-
culate �rst the gradient r w f and the Hessian matrix r 2

w f . The function f is
a composition of the scalar function h(W) = Tr (W p) and the matrix function
W = I � Qdiag(w)QT :

f (w) = Tr (W p)jW = I n � Qdiag(w)QT :

For the gradient r w f , it holds for l = 1 ; : : : ; m:

(r w f) l =
X

i;j 2 V

r W h(ij)
@wij
@wl

;

2.4. Newton's Method for Schatten Norm Minimization 27

wherer W h(ij) = p(W p� 1) j;i (from (2.11)). Due to the conditions mentioned earlier
(wij = wji = wl for all l � (ij) and wij = 0 if (ij) =2 E and wii = 1 �

P
j 2 N i

wij), if
l � (ab) we have

@wij
@wl

=

8
>>>>>>><

>>>>>>>:

+1 if i = a and j = b

+1 if i = b and j = a

� 1 if i = a and j = a

� 1 if i = b and j = b

0 else.

(2.21)

We can then calculate the gradientr w f 2 Rm . In particular for l � (ab) we have,

(r w f) l = r W h(ab) + r W h(ba) � r W h(aa) � r W h(bb)

= p(W p� 1)b;a + p(W p� 1)a;b � p(W p� 1)a;a � p(W p� 1)b;b: (2.22)

Applying the chain rule for the Hessian and considering directly that all the
second order derivatives like @2wij

@wl @wk
are null because the mapping is a linear trans-

formation, we obtain that for l; k = 1 ; : : : ; m:

�
r 2

w f
�

l;k =
@2f

@wl @wk
=

X

i;j;s;t

r 2
W h(ij)(st)

@wij
@wl

@wst

@wk
: (2.23)

For the calculation of the Hessian off , let us �rst give the expression ofr 2
W h(ij)(st) .

Notice that for any a and b we have @wab
@wst

= � as� tb, where� uv is the Kronecker delta,
i.e., � uv = 1 if u = v, � uv = 0 otherwise. Then the Hessian ofh(W) is given by:

r 2
W h(ij)(st) =

@2Tr (W p)
@wij @wst

=
@

@wst

�
p(W p� 1) j;i

�

= p
@

@wst

X

u1 ;u2 ;:::;u p� 2

wju 1 wu1u2 wu2u3 : : : wup� 2 i

= p
@

@wst

X

u1 ;u2 ;:::;u p� 2

� js � tu 1 wu1u2 wu2u3 : : : wup� 2 i

+ p
@

@wst

X

u1 ;u2 ;:::;u p� 2

wju 1 � u1s� tu 2 wu2u3 : : : wup� 2 i

+ � � � + p
@

@wst

X

u1 ;u2 ;:::;u p� 2

wju 1 wu1u2 wu2u3 : : : � up� 2s� ti

= p
p� 2X

z=0

(W z) j;s (W p� 2� z)t;i : (2.24)

Thus for the calculation of the Hessian off , let l � (ab), k � (cd) be given
links. Only 16 of the m4 terms in Eq. (2.23) (those corresponding toi; j 2 f a; bg

28 Chapter 2. Weight Optimization in Consensus Protocols

and s; t 2 f c; dg) are di�erent from zero because of (2.21). Moreover using the
expression ofr 2

X h(ij)(st) in (2.24) and grouping the terms, we obtain the compact
form:

�
r 2

w f
�

l;k = p
p� 2X

z=0

 (z) (p � 2 � z); (2.25)

where
 (z) = (W z)a;c + (W z)b;d � (W z)a;d � (W z)b;c:

2.4.4 Newton's Direction � w

Let g 2 Rm and H 2 Rm� m such that g = r w f (w) whose elements are given by
equation (2.22) and H = r 2

w f (w) whose elements are given by equation (2.25).
Then the direction � w to update the solution in Newton's method can be obtained
solving the linear systemH � w = g:

2.4.5 Line Search

The Newton's method usesexact line search if at each iteration the stepsize is
selected in order to guarantee the maximum amount of decrease of the function f
in the descent direction, i.e.,t is selected as the global minimizer of the univariate
function � (t):

� (t) = f (w � t� w); t > 0:

Usually exact line search is very di�cult to implement, possible alternatives can
be the pure Newton's method that selects a stepsizet = 1 at every iteration or
the backtracking line searchif t is selected to guarantee some su�cient amount of
decrease in the function� (t). But we bene�t from the convexity of our problem to
derive a procedure which gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that� (t) can be written as follows:

� (t) = f (w � t� w)

= Tr ((I n � Qdiag(w � t� w)QT)p)

= Tr ((I n � Qdiag(w)QT + tQdiag(� w)QT)p)

= Tr ((W + tU)p)

= h(W + tU);

where U = Qdiag(� w)QT is a symmetric matrix. Since (2.10) is a smooth convex
optimization problem, h is also smooth and convex when restricted to any line that
intersects its domain. Then� (t) = h(W + tU) is convex int and applying the chain
rule to the composition of the function h(Y) = Tr (Y p) and Y(t) = W + tU (similarly
to what we have done forf in (2.23)), we can �nd the �rst and second derivative:

� 0(t) =
X

i;j

@h
@yij

uij = p
X

i

(Y p� 1U) i;i = pTr (Y p� 1U);

2.4. Newton's Method for Schatten Norm Minimization 29

� 00(t) =
d� 0(t)

dt
= p � Tr

0

@
p� 2X

q=0

Y p� 2� qUYqU

1

A :

So we can apply a basic Newton's method to �nd the optimalt:

Let t1 = 1 and t0 = 0 , select a tolerance� > 0,
n := 1;
while jtn � tn� 1j > �

tn+1 tn � � 0(tn)
� 00(tn) ;

n := n + 1;
end while

At the end of this procedure, we selectt = tn to be used as the stepsize of
the iteration.

2.4.6 The Algorithm

We summarize the Newton's method used for the trace minimization problem (2.10):

Step 0: Choose a weight matrixW (0) that satis�es the conditions given in (2.10)
(e.g., I n is a feasible starting weight matrix). Choose a precision� and set
k 0.

Step 1: Calculate r w f (k) from equation (2.22) (call this gradient g).

Step 2: Calculate r 2
w f (k) from equation (2.25) (since f is a convex function, we

have r 2
w f (k) is a semi-de�nite positive matrix, let H = r 2

w f (k) +
I m where

 can be chosen to be the machine precision to guarantee thatH is positive
de�nite and thus can have an inverseH � 1).

Step 3: Calculate Newton's direction � w (k) = H � 1g. Stop if jj � w (k) jj � � .

Step 4: Use the exact line search to �nd the stepsizet (k) .

Step 5: Update the weight matrix by the following equation:

W (k+1) = W (k) + t (k)Qdiag(� w (k))QT :

Step 6: Increment iteration k k + 1 . Go to Step 1 .

2.4.7 Closed Form Solution for p = 2

Interestingly, for p = 2 the Newton's method converges in1 iteration. In fact for
p = 2 , the problem (2.10) is the following:

minimize
W

h(W) = Tr (W 2) =
X

i;j

w2
ij

subject to W = W T ; W1n = 1n ; W 2 CG:
(2.26)

30 Chapter 2. Weight Optimization in Consensus Protocols

Theorem 1. Let W(2) be the solution of the optimization problem(2.26), then we
have:

W(2) = I n � Qdiag
�

(I m +
1
2

QT Q) � 11m

�
QT ; (2.27)

whereQ is the incidence matrix of the graphG.

Proof. The optimization function is quadratic in the variables wij , so applying New-
ton's algorithm to minimize the function gives convergence in one iteration indepen-
dent from the initial starting point W (0) . Let W (0) = I n which is a feasible initial
starting point. The gradient g can be calculated according to equation (2.22):

gl = 2 ((I n) i;j + (I n) j;i � (I n) i;i � (I n) j;j)

= 2(0 + 0 � 1 � 1) = � 4 8l = 1 ; : : : ; m;

so in vector form g = � 4 � 1m . To calculate the Hessianr 2
W f , we apply equa-

tion (2.25) for p = 2 , so for any two links l � (ab) and k � (cd), we have
�
r 2

w f
�

l;k = 2 � ((I n)a;c + (I n)b;d � (I n)a;c � (I n)b;d)
2 ;

and thus

�
r 2

w f
�

l;k =

8
>><

>>:

2 � (2)2 if l = k

2 � (1)2 if l and k share a common vertex,

0 else.

(2.28)

In matrix form, we can write the Hessian as follows:

r 2
w f = 2 � (2I m + QT Q);

where Q is the incidence matrix of the graph given earlier (in fact,QT Q � 2I m is
the adjacency matrix of what is called the line graph ofG). Notice that since QT Q
is semi-de�nite positive all the eigenvalues of the Hessian are larger than 2 and then
the Hessian is invertible. The Newton's direction is calculated as follows:

� w = H � 1g = � (I m +
1
2

QT Q) � 11m :

Thus the optimal solution for the problem for p = 2 is:

W(2) = W (0) + Qdiag(� w)QT

= I n � Qdiag
�

(I m +
1
2

QT Q) � 11m

�
QT :

If the graph is D-regular, the previous expression further simpli�es. AD-regular
graph is a graph where every node has the same number of neighbors which is D .
Examples ofD regular graphs are cycles (2-regular) and the complete graph (n � 1-
regular).

2.5. A Distributed Algorithm for Schatten Norm Minimizatio n 31

In fact, the sum of any row in the matrix QT Q is equal to 2D , then 2D is
an eigenvalue that corresponds to the eigenvector1m . Since QT Q is a symmetric
matrix, it has an eigenvalue decomposition form:

QT Q =
X

k

� kvkv T
k ;

where f vkg is an orthonormal set of eigenvectors (without loss of generality, let
v1 = 1p

m 1m). Moreover, (I m + 1
2QT Q) is invertible because it is positive de�nite

and has the same eigenvectors asQT Q. Considering its inverse as a function of
QT Q, we can write:

(I m +
1
2

QT Q) � 1 =
X

k

(1 +
� k

2
) � 1vkv T

k :

Since1m is an eigenvector ofQT Q and therefore of(I m + 1
2QT Q) � 1, it is perpen-

dicular to all the others (v T
k 1m = 0 for all k 6= 1). Hence, it follows that:

(I m +
1
2

QT Q) � 11m = (1 +
� 1

2
) � 1v1(

m
p

m
) =

1
1 + D

1m :

As a result, the solution of the optimization is given by,

W(2) = I n �
1

1 + D
QQT ;

or equivalently as function of w:

wl =
1

1 + D
8l = 1 ; : : : ; m:

Interestingly, the solution of the suggested optimization problem for p = 2 gives the
same matrix on D-regular graphs as other weight selection algorithms for average
consensus as Metropolis weight selection or maximum degree weight selection.

2.5 A Distributed Algorithm for Schatten Norm Mini-
mization

In this section we will show that the optimization problem (2.10) can be solved
in a distributed way using gradient methods. By distributed algorithm we mean
an algorithm where each node only needs to retrieve information froma limited
neighborhood (possibly larger thanN i) in order to calculate the weights on its
incident links.

We have already seen thatW can be written as follows:W = I � Q � diag(w) �
QT , where w 2 Rm is the vector of all the weight links wl , l = 1 ; : : : ; m. It follows
that Schatten Norm minimization (2.10) is equivalent to the following unconstrained
problem:

minimize f (w) = Tr
�
(I � Q � diag(w) � QT)p�

: (2.29)

32 Chapter 2. Weight Optimization in Consensus Protocols

We will give a distributed algorithm to solve the Schatten Norm minimization (2.10)
by applying gradient techniques to problem (2.29). Since the cost function to opti-
mize is smooth and convex as we proved in Proposition1, if the gradient technique
converges to a stationary point, then it converges to the global optimum. The
gradient method uses the simple iteration:

w(k+1)
l = w(k)

l �
 (k)g(k)
l 8l = 1 ; : : : ; m ;

where
 (k) is the stepsize at iterationk and g(k)
l is the l-th component of the gradient

g(k) of the function f (w). At every iteration k, starting from a feasible solution for
link weights, w(k)

l , we calculate the gradientg(k)
l for every link, and then we obtain

a new weight valuew(k+1)
l .

There are di�erent conditions on the function f (:) and on the stepsize sequence
that can guarantee convergence. A distributed computational model foroptimizing
a sum of non-smooth convex functions is proposed in [NO09, LO11] and its conver-
gence is proved for bounded (sub)gradients for di�erent network dynamics. For a
similar objective function, the authors in [JKJJ08] study the convergence of a pro-
jected (sub)-gradient method with constant stepsize. For unbounded gradients, the
algorithm in [Pol87, Section 5.3.2, p. 140] guarantees global convergence but requires
a centralized calculation of the stepsize sequence. Because the objective function
in (2.29) has unbounded gradient, our distributed implementation combinesideas
from unbounded gradients methods and the projecting methods usingtheorems
from [BNO03]. In particular, we will add a further constraint to (2.29), looking for
a solution in a compact setX , and we will consider the following projected gradient
method:

w (k+1) = PX

�
w (k) �
 (k)g(k)

�
;

where PX () is the projection on the set X . We can show that by a particular
choice ofX and
 (k) the method converges to the solution of the original problem.
Moreover, all the calculations can be performed in a distributed way on the basis of
local knowledge. In particular, we will show that:

� nodes incident to l are able to calculateg(k)
l using only information they can

retrieve from their (possibly extended) neighborhood;

� the stepsize sequence
 (k) is determined a priori and then nodes do not need
to evaluate the function f or any other global quantity to calculate it;

� the projection on setX can be performed component-wise, and locally at each
node;

� the global convergence of the projected gradient method is guaranteed.

We will start by gl and show that it only depends on information local to nodesi
and j incident to the link l � (i; j), then we will discuss the choice of the stepsize

 (k) and of the projection setX .

2.5. A Distributed Algorithm for Schatten Norm Minimizatio n 33

2.5.1 Locally Computed Gradient

The gradient gl of the function f (w) for l � (i; j) can be calculated following
equation (2.22):

gl =
@f(w)

@wl

= p
� �

W p� 1�
ji +

�
W p� 1�

ij �
�
W p� 1�

ii �
�
W p� 1�

jj

�
: (2.30)

It is well know from graph theory that if we consider W to be the adjacency
matrix of a weighted graph G, then (W s) ij is a function of the weights on the edges
of the i � j walks (i.e., the walks from i to j) of length exactly s (in particular
if A is the adjacency matrix of an unweighted graph, then(As) ij is the number
of distinct i � j s -walks [Wes00]). Since for a givenp the gradient gl , l � (i; j),
depends on thef ii; jj; ij; ji g terms of the matrix W p� 1, gl can be calculated locally
by using only the weights of links and nodes at mostp2 hops away from i or j .3

Practically speaking, at each step, nodesi and j need to contact all the nodes up to
p=2 hops away in order to retrieve the current values of the weights on thelinks of
these nodes and the values of weights on the nodes themselves. For example, when
p = 2 , then the minimization is the same as the minimization of the Frobenius norm
of W since Tr(W 2) =

P
i;j w2

ij = jjW jj2
F , and the gradient gl can be calculated as

gl = 2 � (2Wij � Wii � Wjj) which depends only on the weights of the vertices incident
to that link and the weight of the link itself. More details about the operations to
carry and their cost in Section2.5.3.

An advantage of our approach is that it provides a trade-o� betweenlocality and
optimality. In fact, the larger the parameter p, the better the solution of problem
(2.10) approximates the solution of problem (2.6), but at the same time the larger
is the neighborhood from which each node needs to retrieve the information. When
p = 2 , gl where l � (i; j) only depends on the weights of subgraph induced by the
two nodesi and j . For p = 4 , the gradient gl depends only on the weights found on
the subgraph induced by the set of verticesN i [N j , then it is su�cient that nodes
i and j exchange the weights of all their incident links.

2.5.2 Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for any initial condition) has been
proved under a variety of di�erent hypotheses on the function f to minimize and
on the step size sequence
 (k) . In many cases the step size has to be adaptively
selected on the basis of the value of the function or of the module ofits gradient at
the current estimate, but this cannot be done in a distributed way for the function
f (w). This leads us to look for convergence results where the step size sequence
can be �xed ahead of time. Moreover the usual conditions, like Lipschitzianity or
boundness of the gradient, are not satis�ed by the functionf (:) over all the feasible

3 If a link or a node is more than p=2 hops away both from node i and node j , then it cannot
belong to a i � j walk of length p.

34 Chapter 2. Weight Optimization in Consensus Protocols

set. For this reason we add another constraint to our original problem (2.29) by
considering that the solution has to belong to a given convex and compact set X .
Before further specifying how we choose the setX , we state our convergence result.

Proposition 4. Given the following problem

minimize f (w) = Tr
�
(I � Q � diag(w) � QT)p�

;

subject to w 2 X (2.31)

where X � Rm is a convex and compact set, if
P

k
 (k) = 1 and
P

k

�

 (k)

� 2
< 1 ,

then the following iterative procedure converges to the minimum of f in X :

w (k+1) = PX

�
w (k) �
 (k)g(k)

�
; (2.32)

where PX (:) is the projection operator on the setX and g(k) is the gradient of f
evaluated inw (k) .

Proof. The function f is continuous on a compact setX , so it has a point of min-
imum. Moreover also the gradientg is continuous and then bounded onX . The
result then follows from Proposition 8:2:6 in [BNO03, pp. 480].

For example,
 (k) = a=(b + k) where a > 0 and b � 0 satis�es the step size
condition in Proposition 4.

While the convergence is guaranteed for any setX convex and compact, we have
two other requirements. First, it should be possible to calculate the projection PX in
a distributed way. Second, the setX should contain the solution of the optimization
problem (2.20). About the �rst issue, we observe that if X is the cartesian product
of real intervals, i.e., if X = [a1; b1] � [a2; b2] � : : : [am ; bm], then we have that the
l-th component of the projection onX of a vector y is simply the projection of the
l-th component of the vector on the interval [al ; bl], i.e.,

[PX (y)] l = P[al ;bl](yl) =

8
>><

>>:

al if yl < a l ;

yl if al � yl � bl ;

bl if bl < y l :

(2.33)

Then in this case Eq. (2.32) can be written component-wise as

w(k+1)
l = P[al ;bl](w

(k)
l �
 (k)g(k)

l):

We have shown in the previous section thatgl can be calculated in a distributed
way, then the iterative procedure can be distributed. About the second issue, we
chooseX so that it includes all the weight matrices with spectral radius at most 1.
The following lemma suggests a possible choice ofX .

Lemma 3. Let W be a real and symmetric matrix where each row (and column)
sums to1, then the following holds,

� (W) = 1 =) max
i;j

jwij j � 1:

2.5. A Distributed Algorithm for Schatten Norm Minimizatio n 35

Proof. SinceW is real and symmetric, then we can writeW as follows

W = S� ST ;

where S is an orthonormal matrix (ST S = SST = I), and � is a diagonal matrix
having � kk = � k and � k is the k-th largest eigenvalue ofW . Let r k and ck be the
rows and columns ofS respectively andr (i)

k be the i -th element of this vector. So,

W =
X

k

� kckcT
k ;

and

jwij j = j
X

k

� kc(i)
k c(j)

k j (2.34)

�
X

k

jc(i)
k jj c(j)

k j (2.35)

=
X

k

jr (k)
i jj r (k)

j j (2.36)

� jj r i jj2jj r j jj2 (2.37)

= 1 : (2.38)

The transition from (2.34) to (2.35) is due to the fact � (W) = 1 , the transition from
(2.36) to (2.37) is due to Cauchy�Schwarz inequality. The transition from (2.37) to
(2.38) is due to the fact that S is an orthonormal matrix.

A consequence of Lemma3 is that if we chooseX = [� 1; 1]m the weight vector
of the matrix solution of problem (2.6) necessarily belongs toX (the weight matrix
satis�es the convergence conditions). The same is true for the solution of prob-
lem (2.20) for p large enough because of Proposition2. The following proposition
summarizes our results.

Proposition 5. If the graph of the network is strongly connected, then the following
distributed algorithm converges to the solution of the Schatten norm minimization
problem for p large enough:

w(k+1)
l = P[� 1;1](w

(k)
l �
 (k)g(k)

l); 8l = 1 ; : : : ; m; (2.39)

where
P

k
 (k) = 1 and
P

k

�

 (k)

� 2
< 1 .

Proof. The set X = [� 1; 1]m , on which the gradient iterate is projected, is a convex
and compact set. From Proposition2, for p su�ciently large we have � (W(p)) < 1
and hence� (W(p)) = 1 . Then by applying Lemma 3, the weight matrix W(p) has
necessarily link weights inX . Therefore, since the solution of the Schatten norm
minimization problem for p large enough lies inX , Proposition 4 ends the proof.

36 Chapter 2. Weight Optimization in Consensus Protocols

Remark : The stepsize
 (k) in Propositions 4 and 5 can be replaced by a constant
stepsize (i.e.,
 (k) =
 for all k) and the convergence results will still hold provided
that
 is small enough (0 <
 < 2=K where K is the Lipschitz constant of the
gradient of f on X , see Theorem1 in [Pol87, p. 207]). The advantage of a constant
stepsize is that it provides better rate of convergence (the convergence canbe with
the rate of geometric progression when the function is strongly convex), but the
nodes should be able to knowK (or at least an upped bound).

2.5.3 Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimization requi res to calculate at
every iteration, the stepsize
 (k) , the gradient g(k)

l for every link, and a projection on
the feasible setX . Its complexity is determined by the calculation of link gradient
gl , while the cost of the other operations is negligible. In what follows, we detail the
computational costs (in terms of number of operations and memory requirements)
and communication costs (in terms of volume of information to transmit) incurred
by each node for the optimization with the two valuesp = 2 and p = 4 .

2.5.3.1 Complexity for p = 2

For p = 2 , Eq. (2.30) reduces togl = 2 � (2Wij � Wii � Wjj). Nodes are aware of their
own weights (Wii) and of the weights of the links they are incident to (Wij), hence
the only missing parameter in the equation is their neighbors self weight (Wjj).
So at every iteration of the subgradient method, nodes must broadcast their self
weight to their neighbors. We can say that the computational complexity for p = 2
is negligible and the communication complexity is1 message carrying a single real
value (wii) per link, per node and per iteration.

2.5.3.2 Complexity for p = 4

For p = 4 , the node must collect information from a larger neighborhood. The
gradient at link l � (i; j) is given by gl = 4

�
(W 3) ij + (W 3) ji � (W 3) ii � (W 3) jj

�
.

From the equation of gl it seems like the node must be aware of all the weight
matrix in order to calculate the 4 terms in the equation, however thisis not true.
As hinted in the previous section, each of the 4 terms can be calculated only locally
from the weights within 2-hops from i or j . In fact, (W 3) ij depends only on the
weights of links covered by a walk with 3 jumps: starting from i the �rst jump
reaches a neighbor ofi , the second one a neighbor ofj and �nally the third jump
�nishes at j , then we cannot move farther than 2 hops fromi . Then (W 3) ij can be
calculated at nodei as follows: every nodes in N i , sends its weight vectorW s to i ,
whereW s 2 RjN s j is a vector that contains all weights selected by the nodes to its
neighbors, i.e., the weightsf wst ; t 2 Nsg. The same is true for the addend(W 3) ji .
The term (W 3) ii depends on the walks of length 3 starting and �nishing ini , then
node i can calculate it once it knowsW s for eachs in N i . Finally, the calculation
of the term (W 3) jj at node i requires i to know more information about the links

2.6. Performance Evaluation 37

existing among the neighbors of nodej . Instead of the transmission of this detailed
information, we observe that nodej can calculate the value(W 3) jj (as nodei can
calculate (W 3) ii) and then can transmit directly the result of the calculation to node
i . Therefore, the calculation ofgl by node i for every link l incident to i can be done
in three steps:

1. Create the subgraphH i containing the neighbors ofi and the neighbors of its
neighbors by sending (W i) and receiving the weight vectors (W s) from every
neighbor s.

2. Calculate (W 3) ii and broadcast it to the neighbors (and receive(W 3)ss from
every neighbors).

3. Calculate gl .

We evaluate now both the computational and the communication complexity.

� Computation Complexity: Each node i must store the subgraph H i of its
neighborhood. The number of nodes ofH i is nH � � 2 + 1 , the number of
links of H i is mH � � 2 where � is the maximum degree in the network.
Due to sparsity of matrix W , the calculation of the value (W 3) ii requires
O(� 3) multiplication operation without the use of any accelerating technique
in matrix multiplication which �we believe� could further reduce the co st.
So the total cost for calculatinggl is in the worst caseO(� 3). Since we havem
links, the overall complexity would beO(� 3mTconv) whereTconv is the number
of iterations needed for the gradient to converge (i.e., to be smaller than a given
threshold). Notice that the complexity for solving the SDP for (2.6) is of order
O(m3) wherem is the number of links in the network. Therefore, on networks
where � << m , the gradient method could be computationally more e�cient
given that Tconv is not very large.

� Communication Complexity: Two packets are transmitted by each nodeon
each link at steps1 and 2. So the complexity would be two messages per link
per node and per iteration. The �rst message carries at most� values (the
weight vector W i) and the second message carries one real value ((W 3) ii).

2.6 Performance Evaluation

In this section we evaluate the di�erent optimization algorithms (Newton, gradient,
etc.) studied in this chapter. We also evaluate the speed of convergence of con-
sensus protocols when the weight matrixW is selected according to our proposed
Schatten norm minimization. As we have discussed so far, this speedis asymptot-
ically determined by the second largest eigenvalue in module (� (W)), that will be
one of two performance metrics considered here. For the other metric, we de�ne

38 Chapter 2. Weight Optimization in Consensus Protocols

the convergence time to be the number of iterations needed for the error (the dis-
tance between the estimates and the actual average) to become smaller thana given
threshold. More precisely, we de�ne the normalized errore(k) as

e(k) =
jjx(k) � �x jj2

jj x (0) � �x jj2
; (2.40)

where �x = xave1.
Additionally, we carry on simulations to study the e�ect of a topological opti-

mization (by adding two-hops links in the graph) compared to the weight optimiza-
tion on the links. The simulations are done on random graphs (Erdös-Renyi (ER)
graphs and Random Geometric Graphs (RGG)) and on two real networks (the En-
ron company internal email exchange network [SA04] and the dolphin social network
[LSB+ 03]). The random graphs are generated as following :

� For the ER random graphsER(n; P r), we start from n nodes fully connected
graph, and then every link is removed from the graph by a probability 1 � P r
and is left there with a probability P r . We have tested the performance for
di�erent probabilities P r .

� For the RGG random graphs, n nodes are thrown uniformly at random on
a unit square area, and any two nodes within a connectivity radiusr are
connected by a link. We have tested the performance for di�erent values of
the connectivity radius. It is known that for a small connectivity ra dius, nodes
tend to form clusters.

The description of the two real datasets follows:

� The 151 nodes in the Enron dataset correspond to di�erent employees of the
company and an edge in the graph refers to an exchange of emails between
two employees (only internal emails within the company are considered where
at least 3 emails are exchanged between two nodes in this graph).

� The dolphin social network is an undirected social network of frequent asso-
ciations between 62 dolphins in a community living o� Doubtful Sound, New
Zealand.

2.6.1 Newton versus Gradient methods for Schatten p-Norm Min-
imization

We apply the optimization techniques developed in this chapter to solve prob-
lem (2.10) on Erdos Renyi random networks. We compare the number of itera-
tions for convergence of Newton's method with those of �rst order methods like
the Descent Gradient (DG) and the accelerated gradient method (due to Nesterov
[Nes04]) using either backtracking line search (denoted by BT-methods in the �g-
ure) or exact line search (denoted by Exact-methods in the �gure).4 The Descent

4We implemented directly the methods in Matlab.

2.6. Performance Evaluation 39

Tconv ER(n = 100; P r = 0 :07)
(number of iterations) p = 2 p = 4 p = 6 p = 10

Exact-Newton 1 5 5:7 6:1
Pure-Newton 1 9 11:1 13:9

Exact-DG 72:3 230:5 482:7 1500:5
Exact-Nesterov 130:2 422:8 811:3 1971:2

BT-DG or BT-Nesterov > 5000 > 5000 > 5000 > 5000

Table 2.1: Convergence time using di�erent optimization methods for prob-
lem (2.10).

Gradient method follows the same steps of the Newton's algorithm (Section 2.4.6),
but in Step 2, the HessianH is taken as the identity matrix (for Descent Gradient
methodsHDG = I m). The accelerated gradient (Nesterov) is as follows, starting by
w (0) = w (� 1) = 0 2 Rm , the iterations are given by:

y = w (k� 1) +
k � 2
k + 1

(w (k� 1) � w (k� 2));

w (k) = y � t (k) r y f (y);

where t (k) is the stepsize. The Nesterov algorithm usually achieves faster rate of
convergence (asymptotically) with respect to traditional �rst order m ethods. Since
at the optimal value w� the gradient vanishes (i.e.,jjg(k) jj = 0), we consider the
convergence timeTconv to be:

Tconv = min f k : jjg(k) jj < 10� 10g:

Table 2.1 shows the results for the Newton's and the other �rst order methods.
The initial condition for the optimization is given by W (0) = I n which is a feasible
starting point. The values are averaged over100 independent runs for each of the
(n; P r; p) values. The results show that the average convergence time of Newton's
method is shorter than that of the �rst order methods in terms of the number of
iterations. As we can see, when using exact line search, Exact-Nesterov isslower
than Exact-DG method, this can be due to the fact that the Descent Gradient does
not su�er from the zig-zag problem usually caused by poorly conditioned convex
problems. Moreover, using backtracking line search for �rst order methods is not
converging in a reasonable number of iterations because the functionwe are con-
sidering is not Lipschitz continuous whenp > 2 and because of the high precision
stopping condition. Note that, the number of iterations is not the only factor to
take into account, in fact the Newton's method requires at each iteration to invert
the Hessian matrix, while DG has lower computational cost. However,DG is very
sensitive to changing the stepsize, while Newton's method is not. By applying con-
stant or backtracking line search stepsizes to the DG method, the algorithm is not
converging in a reasonable number of iterations while even the simplest Newton's
method (pure Newton that uses a stepsize equals to 1 for all iterations) is converging
in less than 14 iterations for the ER(n = 100; P r = 0 :07) graphs.

40 Chapter 2. Weight Optimization in Consensus Protocols

Pr=0.2 Pr=0.3 Pr=0.4 Pr=0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ER n=20 variable Pr (probability of 2 nodes to be neighbors)

S
ec

on
d

la
rg

es
t e

ig
en

va
lu

e
in

 m
ag

ni
tu

de

of
 th

e
w

ei
gh

t m
at

rix

FDLA
TM p=2
TM p=4
TM p=8
TM p=12
TM p=20

Figure 2.2: Performance comparison between the optimal solution of the FDLA
problem (labeled FDLA) and the approximated solutions obtained solving the Schat-
ten Norm minimization for di�erent values of p (labeled TM).

2.6.2 Comparison of the Schatten Norm Solution with the Opti mal
Solution

We �rst compare �
�
W(p)

�
for the solution W(p) of the Schatten p-norm (or Trace)

minimization problem (2.10) with its minimum value obtained solving the symmetric
FDLA problem (2.6). To this purpose we used theCVXsolver (see Section2.2).
This allows us also to evaluate how well problem (2.10) approximates problem (2.6)
for �nite values of the parameter p. The results in Fig. 2.2 have been averaged
over 100 random graphs with 20 nodes generated according to the Erdos-Renyi
(ER) model, where each link is included with probability P r 2 f 0:2; 0:3; 0:4; 0:5g.
We see from the results that as we solve the trace minimization forlarger p, the
asymptotic convergence speed of our approach converges to the optimalone as
proven in Proposition 2.

2.6.3 Other Distributed Approaches: Asymptotic Convergen ce
Rate

We compare now our algorithm forp = 2 and p = 4 with other distributed weight
selection approaches described in Section2.2.

Fig. 2.3 shows the results on connected Erdös-Renyi (ER) graphs and Random
Geometric Graphs (RGG) with 100 nodes for di�erent values respectively of the
probability P r and of the connectivity radius r . We provide 95% con�dence intervals
by averaging each metric over100 di�erent samples. We see in Fig.2.3 that TM
for p = 2 and p = 4 outperforms other weight selection algorithms on ER by giving
lower � . Similarly on RGG the TM algorithm reaches faster convergence than the
other known algorithms even when the graph is well connected (large connectivity

2.6. Performance Evaluation 41

0.04 0.06 0.08 0.10 0.12 0.14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr

S
ec

on
d

la
rg

es
t e

ig
en

va
lu

e
in

 m
ag

ni
tu

de
of

 th
e

w
ei

gh
t m

at
rix

ER n=100 variable Pr (probability of 2 nodes to be neighbors)

MD
OC
LD
TM p=2
TM p=4

0.1357 0.1517 0.1858 0.2146
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

r

S
ec

on
d

la
rg

es
t e

ig
en

va
lu

e
in

 m
ag

ni
tu

de
of

 th
e

w
ei

gh
t m

at
rix

RGG n=100 variable r (connectivity radius)

MD
OC
LD
TM p=2
TM p=4

Figure 2.3: Performance comparison between Schatten Norm minimization (TM)
for p = 2 and p = 4 with other weight selection algorithms on ER and RGG graphs.

42 Chapter 2. Weight Optimization in Consensus Protocols

radius). However, the larger the degrees of nodes, the higher the complexity of
our algorithm. Interestingly even performing trace minimization for the smallest
value p = 2 nodes are able to achieve faster speed of convergence than a centralized
solution like the OC algorithm.

Apart from random networks, we performed simulations on two realworld net-
works: the Enron company internal email exchange network [SA04] and the dolphin
social network [LSB+ 03]. The table below compares the second largest eigenvalue
� for the di�erent weight selection algorithms on these networks:

MD OC LD TM p=2 TM p=4
Enron � 0.9880 0.9764 0.9862 0.9576 0.9246
Dolphin � 0.9867 0.9749 0.9796 0.9751 0.9712

The results show that for Enron network, our totally distributed proposed al-
gorithm TM for p=4 has the best performance (� = 0 :9246) among the algorithms
considered, followed by TM for p=2 (� = 0 :9576) because they have the smallest
� . On the Dolphin network, again TM for p=4 has the smallest � (� = 0 :9712) but
OC has the second best performance (� = 0 :9749) but TM for p=2 (� = 0 :9751)
has similar performance to OC.

2.6.4 Communication Overhead for Local Algorithms

Until now we evaluated only the asymptotic speed of convergence, independent
from the initial values x i (0), by considering the second largest eigenvalue� (W).
We want to study now the transient performance. For this reason, weconsider
in this subsection a random initial distribution of nodes' values and we study the
performance using the convergence time metric (the number of iterations needed
for the error e(k) given in (2.40) to become smaller than a given threshold), i.e.,
the convergence time is the minimum number of iterations after whiche(k) < 0:001
(note that e(k) is non increasing).

We have shown that the weight matrix with minimum Schatten norm allows
nodes to converge faster than the other heuristics, and then to exchange less mes-
sages, if a mechanism is implemented to stop consensus when estimates areclose
enough to the actual average. At the same time, the Schatten norm minimization
algorithm may require itself a large number of messages to calculatethe weights,
while other local weight selection algorithms, like MD or LD, require a negligible
communication exchange. In order to have a fair comparison, it is important then to
consider on how many �consensus rounds� the additional communication overhead
of our algorithm can be amortized.5 Therefore, the more stable the network, the
more one is ready to invest for the optimization at the beginning of consensus.

The communication overhead of the local algorithms is plotted in Fig. 2.4. For

5For example, the consensus round of the daily average temperature in a network of wireless
environmental monitoring sensors is one day because every day a new averaging consensus algorithm
should be run.

2.6. Performance Evaluation 43

each algorithm we consider the following criteria to de�ne its communication over-
head. First we consider the number of messages that should be exchanged in the
network for the weight optimization algorithm to converge. For example, in our
networking settings (RGG with 100 nodes and connectivity radius0:1517) the ini-
tialization complexity of MD algorithm is 30 messages per link because the maximum
degree can be obtained by running a maximum consensus algorithm that converges
after a number of iterations equal to the diameter (the average diameter for the
graphs was 15 hops), while with LD the nodes only need to send their degrees to
their neighbors. The communication complexity is then only 2 messages per link,
the smallest among the algorithms considered. The trace minimization algorithm
complexity is de�ned by the number of iterations needed for the gradientmethod to
converge, multiplied by the number of messages needed per iteration as mentioned
in the complexity section. In our networking setting, the TM for p = 2 took on
average66:22 messages per link to converge while theTM for p = 4 took 1388:28
messages.6 Notice that OC depends on global values (eigenvalues of the laplacian
of the graph) and is not included here because it is not a local algorithm, i.e., the
weights cannot be calculated with simple iterative local methods.

In addition to the initialization complexity, we add the communi cation complex-
ity for the consensus rounds. We consider that the convergence of the consensus is
reached when the consensus error of Eq. (2.40) drops below 0:1%. The total com-
munication overhead of the local algorithms is plotted in Fig.2.4. The �gure shows
the total number of messages transmitted on a link, considering both those needed
initially to calculate the weights and those needed to determine the average with a
relative error from consensus precision (10� 3). The TM algorithms have high initial
communication overhead (due to the slow convergence of the gradient method for
weight calculation), but then the more the consensus rounds we havethe more the
messages are saved in comparison to the simpler methods. Note that the asymptotic
results are re�ected in the slopes of the lines. As the �gure shows, if the network is
used for more than8 consensus rounds thenTM p = 4 is recommended, whileTM
p = 2 starts outperforming LD and MD already for 2 consensus rounds.

2.6.5 Joint Consensus-Optimization (JCO) Procedure

In the following experiments we address also another practical concern.It may seem
our approach requires to wait for the convergence of the iterative weight selection
algorithm before being able to run the consensus protocol. This maybe unacceptable
in some applications specially if the network is dynamic and the weights need to
be calculated multiple times. In reality, at each slot the output of the distributed
Schatten norm minimization is a new feasible weight matrix, that can be used by the
consensus protocol, and (secondarily) should also have faster convergence properties
than the one at the previous step. It is then possible to interleavethe weight
optimization steps and the consensus averaging ones: at a given sloteach node

6The step size
 k is calculated with values a = 10=p and b = 100, and convergence is obtained
when jjgjj drops below the value 0:02.

44 Chapter 2. Weight Optimization in Consensus Protocols

0 1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Communication Complexity of Local Algorithms
 (RGG n=100 r=0.1517)

Number of consensus rounds

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

lin
k

MD (y=30+1674.12x)
LD (y=2+1290.24x)
TM p=2 (y=66.22+1184.12x)
TM p=4 (y=1388.28+1014.16x)

Figure 2.4: Communication overhead of local algorithms.

will improve its own weight according to (2.30) and use the current weight values
to perform the averaging (2.1). We refer to this algorithm as the joint consensus�
optimization (JCO) procedure. Weights can be initially set according to one of the
other existing algorithms like LD or MD. The convergence time of JCO depends
also on the choice of the stepsize, that is chosen to be
 (k) = 1

p(1+ k) .
The simulations show that our weight selection algorithm outperforms the other

algorithms also in this case. In particular, Fig. 2.5 shows the convergence time for
various weight selection criteria on ER and RGG graphs. For each of thenetwork
topology selected, we averaged the data in the simulation over 100 generated graphs,
and for each of these graphs we averaged the convergence time of the di�erent
algorithms over 20 random initial conditions (the initial conditions were the same
for all algorithms). Notice that running at the same time the optimization with
consensus gave good results in comparison to LD, MD, and even OC algorithms.
We also notice, that the initial selection of the weights does not seem to have an
important role for the TM-JCO approach. In fact, despite the LD weight matrix
leads itself a signi�cantly faster convergence than the MD weight matrix, initializing
the TM method with the LD weight matrix or with the MD weight matrix lea ds
only to minor di�erences (compare the results for TM-JCO-LD and TM-JCO- MD),
suggesting that the weight optimization algorithm moves fast away from the initial
condition.

2.6.6 Topology versus Weight Optimization

We turn our attention in this section to the e�ect of the topology on t he performance.
The main optimization problem (2.6) considers a �xed topology and optimizes the
weights on top of this topology where simple algorithms do not provide any guaran-

2.6. Performance Evaluation 45

Pr=0.04 Pr=0.06 Pr=0.08 Pr=0.10
0

50

100

150

Probability of two nodes at random to be neighbors Pr

C
on

ve
rg

en
ce

 T
im

e
(n

um
be

r
of

 it
er

at
io

ns

til
l n

or
m

al
iz

ed
 e

rr
or

 d
ro

ps
 b

el
ow

 0
.1

%
)

ER n=100

MD
OC
LD
TM p=2
TM p=4
TM-JCO-MD p=4
TM-JCO-LD p=4

r=0.1357 r=0.1517 r=0.1858 r=0.2146
0

100

200

300

400

500

600

700

800

900

Different Connectivity Radii r

C
on

ve
rg

en
ce

 T
im

e
(n

um
be

r
of

 it
er

at
io

ns

til
l n

or
m

al
iz

ed
 e

rr
or

 d
ro

ps
 b

el
ow

 0
.1

%
)

RGG n=100

MD
OC
LD
TM p=2
TM p=4
TM-JCO-MD p=4
TM-JCO-LD p=4

Figure 2.5: Convergence time of di�erent weight selection algorithms on ER and
RGG graphs. TM-JCO-LD p = 4 is the joint consensus-optimization algorithm
initialized with the LD algorithm's weight matrix and the same fo r TM-JCO-MD
p = 4 but initialized with the MD algorithm's one.

46 Chapter 2. Weight Optimization in Consensus Protocols

RGG n = 50 ER n = 50
r = 0 :25 r = 0 :3 P r = 0 :08 P r = 0 :12

� (GW(F DLA)) 0.9390 0.8668 0.8511 0.7241
� (G2 W(LD)) 0.9070 0.8058 0.8328 0.7144

Ring Grid Enron
n = 50 n = 100 n = 36 n = 64

� (GW(F DLA)) 0.9921 0.9980 0.9210 0.9210 0.8287
� (G2 W(LD)) 0.9843 0.9961 0.8523 0.9155 0.8208

Table 2.2: The e�ect of Graph Density versus Weight Optimization on the speed
of convergence of consensus protocols. The table shows the comparison on di�erent
graph topologies between the speed of convergence of:(1) the simple weight selec-
tion algorithm (LD) on the graph G2 quanti�ed by � (G2 W(LD)) and (2) the best
weight selection algorithm (FDLA) on the graph G quanti�ed by � (GW(F DLA)).

tee on the speed of convergence, and more sophisticated ones are resource consuming
because they select the weights solving complex optimization problems.In this part
we evaluate if simple changes to the network topology may speed up the conver-
gence of consensus protocols more than complex weight optimization techniques. In
particular we compare the performance of the average consensus protocol in the two
following scenarios. In the �rst scenario, the topology is unchanged and weights
are selected according to commonly used algorithms, including those that guaran-
tee faster convergence to consensus. In the second scenario, the simplest weights
selection algorithms are used, but direct links to 2-hop away nodes are added to
the original graph G, then shrinking by 2 the network diameter. We denote byG2

(the square graph) this denser graph. Practically speaking this topological change
does not require to really add new links: it can be obtained by forwarding nodes'
local variables 2-hops away, so that a generic nodei is aware of all the nodes' beliefs
in the extended neighborhoodN G2

i = [j 2f N i ;i gN j . In what follows we are going
to consider this way to operate. It has also the advantage to allowus to quantify
the cost of the topological change in terms of an increase of communication over-
head. The comparison is carried on for di�erent graph topologies: rings, square
Grids, random graphs (Erdos-Renyi with link existence probability P r), Random
Geometric graphs (with connectivity radius r), and real world network topologies as
Enron internal email exchange network [SA04]. For convenience, letA be a weight
selection algorithm for the average consensus protocol,7 we denote by GW(A) the
weight matrix generated by A on the graph G. In order to evaluate the e�ect of
weight selection algorithms and of topology on convergence speed, we are going to
compare� (GW(A)), where A is the optimal weight selection algorithm (that solves
problem (2.6)) or one of its approximations, and �

�
G2 W(B)

�
, where B is a simpler

weight selection algorithm.

7A can be any one of the following weight selection algorithms presented earlier: MD, LD, OC,
TM p = 2 , or FDLA.

2.6. Performance Evaluation 47

We �rst compare the performance (the asymptotic speed of convergence) of the
consensus protocol on the denser graphG2 when weights are selected according to
the LD algorithm with the performance on the original graph G when the optimal
weight selection algorithm FDLA is used. Results in Table2.2 show that on all
the topologies considered� (G2 W(LD)) < � (GW(F DLA)) and then � (G2 W(LD)) <
� (GW(A)) for any algorithm A. Then the higher graph density provides a more
signi�cant improvement than the optimal choice of links weights.

We now evaluate the communication overhead of the two approaches interms of
the number of messages sent. Equation (2.1) requires that nodes at each iteration
k to use the local variables of their neighbors (nodei usesx j (k) for all j 2 N G

i).
Therefore, each node must receive at every iteration these values and the total
number of messagesM sent in the system will be M = 2 � m where m is the
number of links in the graph. On G2, N i in equation (2.1) is replaced byN G2

i . As
we mentioned above, it is possible to mimic the consensus protocol on G2 using
only the links in G. In this case the operation requires 2 steps. First each node
broadcasts its belief to its neighbors inN i . Then, each node sends another broadcast
message to its neighbors inN i with all the beliefs that it has collected during the
�rst step. In this way every node gets to know the beliefs of all the nodes in N G2

i .
The total number of messages is then twice as larger than in the �rst scenario.8 For
this reason, we decided to compare the speed of convergence in the two scenarios
when the number of messages being equal. This corresponds to consider thatthe
consensus protocol onG performs two weighted linear iterations according to (2.1)
for each linear iteration on G2. Another possible way to interpret this comparison
is that if the duration of an iteration is determined by the time needed to transmit
one message on a link, then a consensus protocol iteration onG2 requires twice
as much time than one onG. It is easy to evaluate the speed of convergence
of the �accelerated� consensus protocol that performs two linear iterations every
time unit. In fact it can be checked that this corresponds to use as weight matrix
(GW(A))2 [BGPS06]. Then, the asymptotic speed of convergence is determined

by � (GW 2
(A)). Note that the following equation holds: � (GW 2

(A)) =
�
� (GW(A))

� 2.

Simulation results in Table 2.3 show that � (G2 W(A)) < � (GW 2
(A)) for any algorithm

A introduced in the previous sections. Then the denser topology leads to faster
convergence speed even when the number of messages is equivalent. For this reasons,
simple weight selection algorithms as LD onG2 can still outperform more complex
ones like TM � 2 or OC (the results from Table 2.3 show that � (G2 W(LD)) <
� (GW 2

(T M � 2)) and � (G2 W(LD)) < � (GW 2
(OC)) on most of the topologies) and also

achieve in some cases results very similar to FDLA (e.g., on the grid).

The nutshell of the simulations on these graphs is given by two main interesting
results. The �rst result is that simple weight selection algorithms can achieve sig-

8 We observe here that the messages sent in the second step haveusually a larger data payload
than those sent in the �rst step, because they carry many beli ef values. Here we assume that the
number of messages is an adequate metric to evaluate the performance, as for example is the case
if the packet header is much larger than the data payload for th is application.

48 Chapter 2. Weight Optimization in Consensus Protocols

RGG n = 50 ER n = 50
r = 0 :25 r = 0 :3 P r = 0 :08 P r = 0 :12

� (GW 2
(MD)) 0.9665 0.9274 0.9036 0.8327

� (G2 W(MD)) 0.9319 0.8577 0.8967 0.7923
� (GW 2

(LD)) 0.9493 0.8951 0.8591 0.7572
� (G2 W(LD)) 0.9070 0.8058 0.8328 0.7144
� (GW 2

(OC)) 0.9378 0.8677 0.8363 0.7276
� (G2 W(OC)) 0.8761 0.7543 0.8177 0.6650

� (GW 2
(T M � 2)) 0.9419 0.8800 0.8334 0.6749

� (G2 W(T M � 2)) 0.8900 0.7565 0.7078 0.4590
� (GW 2

(F DLA)) 0.8817 0.7513 0.7244 0.5243
� (G2 W(F DLA)) 0.7591 0.5478 0.5219 0.3098

Ring Grid Enron
n = 50 n = 100 n = 36 n = 64

� (GW 2
(MD)) 0.9894 0.9974 0.8957 0.9401 0.9761

� (G2 W(MD)) 0.9843 0.9961 0.8730 0.9240 0.9057
� (GW 2

(LD)) 0.9894 0.9974 0.8876 0.9364 0.9726
� (G2 W(LD)) 0.9843 0.9961 0.8523 0.9155 0.8208
� (GW 2

(OC)) 0.9843 0.9960 0.8662 0.9239 0.9534
� (G2 W(OC)) 0.9751 0.9937 0.7919 0.8776 0.8277

� (GW 2
(T M � 2)) 0.9894 0.9974 0.8857 0.9359 0.9143

� (G2 W(T M � 2)) 0.9843 0.9961 0.8403 0.9119 0.5568
� (GW 2

(F DLA)) 0.9843 0.9960 0.8482 0.9126 0.6868
� (G2 W(F DLA)) 0.9691 0.9922 0.7241 0.8343 -

Table 2.3: The 2-hop averaging topology optimization inG can be done by send-
ing 2-hop messages. Every averaging iteration in this case (havingspeed governed
by � (G2 W(A))) consumes as many messages as two iterations of normal averag-
ing on G (the speed of two iteration averaging is governed by� (GW 2

(A))). Since

� (G2 W(A)) < � (GW 2
(A)) for any weight selection algorithm A and any network, the

2-hop averaging can have a signi�cant faster convergence speed than standard av-
eraging while sending the same number of messages.

2.7. Stability and Misbehaving Nodes 49

ni�cantly faster convergence on the denser graphG2 than any weight optimization
technique on the original graphG. This improvement comes at the cost of an in-
crease of communication overhead in the network. Our second (less expected)result
is that, for a given weight selection algorithm, the convergence is faster on G2 than
on G even when the number of messages is equal. Because of this, simpler weight
selection algorithms onG2 can achieve performance similar to more complex ones on
G. These results suggest that topological optimization can have a more important
role than weight optimization techniques to speed up information propagation.

2.7 Stability and Misbehaving Nodes

In this section we �rst explain how the convergence of the consensus protocol can
be guaranteed also for �small�p values (see the remark in section2.3) and then we
discuss how to deal with some forms of nodes' misbehavior.

2.7.1 Guaranteeing Convergence of Trace Minimization

The conditions (2.3)-(2.5) guarantee that the consensus protocol converges to the
correct average independently from the initial estimates. In this section, for the
sake of conciseness, we call a weight matrix that satis�es these set of conditions
a convergent matrix. A convergent matrix is then any matrix that guarantees the
convergence of average consensus protocols. We showed in Proposition2 that for
p large enough, the solutionW(p) of (2.10) is a convergent matrix. However, for
�small� p values, it may happen that � (W(p)) � 1 (the other conditions are intrinsi-
cally satis�ed) and then the consensus protocol does not converge for all the possible
initial conditions. We observe that if all the link weights and t he self weights inW(p)

are strictly positive then W(p) is a convergent matrix. In fact from Perron-Frobenius
theorem for nonnegative matrices [Sen06] it follows that a stochastic weight matrix
W for a strongly connected graph wherewij > 0 if and only if (i; j) 2 E satis�es
(2.5) (i.e., � (W) < 1). Then, the matrix may not be convergent only if one of the
weights is negative. Still in such a case nodes can calculate in a distributed way a
convergent weight matrix that is �close� to the matrix W(p) . In this section we show
how it is possible and then we discuss a practical approach to guarantee convergence
while not sacri�cing the speed of convergence ofW(p) (when it converges).

We obtain a convergent matrix from W(p) in two steps. First, we project W(p) on
a suitable set of matrices that satisfy conditions (2.3) and (2.5), but not necessarily
(2.4), then we generate a symmetric convergent matrix from the projection. Let
Ŵ = W(p) be the matrix to project, the solution of the following projection is
guaranteed to satisfy (2.3) and (2.5):

argmin
W

jjW � Ŵ jj2
F

subject to W 1 = 1;

W 2 C0
G;

(2.41)

50 Chapter 2. Weight Optimization in Consensus Protocols

where C0
G is the set of non-negative matrices such thatwij � � > 0 if (i; j) 2 E ,

wij = 0 if (i; j) =2 E, and jj :jjF is the Frobenius matrix norm. The constant � > 0 is
a parameter that is required to guarantee that the feasible set is closed.

Now, we show how it is possible to project a matrixŴ according to (2.41) in a
distributed way. We observe that this approach is feasible because we do not require
the projected matrix to be symmetric (and then satisfy (2.4)). The key element for
the distributed projection is that the Frobenius norm is separable in terms of the
variables W i (the di � 1 vector of weights selected by nodei for its neighbors), so
that problem (2.41) is equivalent to:

argmin
W 1 ;:::;W n

nX

i =1

r (W i)

subject to W T
i 1di � 1 8i;

W i � � > 0 8i;

(2.42)

where 1di is the di � 1 vector of all ones, andr (W i) is de�ned as follows:

r (W i) = (wii � ŵii)2 +
X

j 2 N i

(wij � ŵij)2 (2.43)

= (W i � Ŵ i)T (W i � Ŵ i) +
�

(W i � Ŵ i)T 1di

� 2
(2.44)

= (W i � Ŵ i)T �
I di + 1di 1

T
di

�
(W i � Ŵ i); (2.45)

where I di is di -identity matrix. Since the variables in (2.42) are separable in
W 1; : : : ; W n , then each nodei can �nd the global solution for its projected vec-
tor W (proj)

i by locally minimizing the function r (W i) subject to its constraints.

Once the weight vectorsW (proj)
i are obtained, the projection ofW(p) on the set

C0
G is uniquely identi�ed. We denote it W (proj) . We can then obtain a convergent

weight matrix W (conv) by modifying W (proj) as follows. For every linkl � (i; j), we
set:

w(conv)
l = min

� �
W (proj)

i

�

� (j)
;
�

W (proj)
j

�

� (i)

�
;

where� (j) (similarly � (i)) is the index of the nodej (similarly i) in the correspond-
ing vector. Then we calculate the convergent weight matrix:

W (conv) = I � Q � diag(w (conv)) � QT :

While the matrix W (conv) is convergent, its speed of convergence may be slower
than the matrix W(p) , assuming this converges too. Then the algorithm described
above should be ideally limited to the cases whereW(p) is known to not be conver-
gent. Unfortunately in many network scenarios this may not be knowna priori. We
discuss a possible practical approach in such cases. Nodes �rst compute W(p) . If all
the link-weights and self-weights are positive then the matrixW(p) can be used in
the consensus protocol without any risk. If one node has calculated anon-positive

2.7. Stability and Misbehaving Nodes 51

weight, then it can invoke the procedure described above to calculateW (conv) . Nodes
can then run the consensus protocol using only the matrixW (conv) at the price of a
slower convergence or they can run the two consensus protocols in parallel averaging
the initial values both with W (conv) and W(p) . If the estimates obtained usingW(p)

appear to be converging to the same value of the estimates obtained using W (conv) ,
then the matrix W(p) is likely to be convergent and the corresponding estimates
should be closer to the actual average.9

2.7.2 Networks with Misbehaving Nodes

The convergence of the average consensus relies on all the nodes correctly performing
the algorithm. If one node transmits an incorrect value, the estimates of all the
nodes can be a�ected. In this section we address this particular misbehavior. In
particular, let x i (k) be the estimate of nodei at iteration k, if x i (k) 6= wii (k �
1)x i (k � 1)+

P
j 2 N i

wij (k � 1)x j (k � 1), then we call i a misbehaving node. Stubborn
nodes are a special class of misbehaving nodes that keep sending the same estimate
at every iteration (i.e., a node i is a stubborn node when at every iterationk we
have x i (k) = x i (k � 1) 6= wii (k � 1)x i (k � 1) +

P
j 2 N i

wij (k � 1)x j (k � 1)). The
authors of [ACFO11] and [BABJ12] showed that networks with stubborn nodes fail
to converge to consensus. In [BABJ12], they proposed a robust average consensus
algorithm that can be applied on networks having one stubborn node and converges
to consensus. To the best of our knowledge, dealing with multiple stubborn nodes
is still an open issue. It turns out that with a minor modi�cation o f our JCO
algorithm, the nodes can detect an unbounded number of misbehaving nodes under
the following assumptions:

� Assumption 1: There is no collusion between misbehaving nodes (every
node, even a misbehaving one, that detects a misbehaving neighbor declares
it).

� Assumption 2: At each iteration a misbehaving node sends the same (po-
tentially wrong) estimate to all its neighbors.

The second assumption can be automatically satis�ed in the case of a broadcast
medium.

In the JCO procedure in section2.6.5, nodes perform one weight optimization
step and one average consensus step at every iteration. Consider an iteration k,
weight optimization requires nodes to receive the weight vectors used by their neigh-
bors (in particular, node i will receive W (k� 1)

j from every neighborj 2 N i), and the
averaging protocol requires them to receive their neighbors estimates (in particular,
node i will receive x j (k) from every neighbor j 2 N i). We also require that nodes
send the estimates of their neighbors, e.g., nodei will receive together with the vec-
tor W (k� 1)

j another vector X j (k � 1) from every neighbor j 2 N i where X j (k � 1)

9 Note that if � (W(p)) > 1 the estimates calculated using W(p) diverge in general, then it should
be easy to detect that the two consensus protocols are not converging to the same value.

52 Chapter 2. Weight Optimization in Consensus Protocols

is the vector of the estimates of the neighbors of nodej . With such additional
information, the following simple algorithm allows nodes to detect a misbehaving
neighbor:

Misbehaving Neighbor Detection Algorithm - Node i

f x j (k); X j (k � 1); W (k� 1)
j g: the message received from a neighborj at

iteration k
� (i): index of a nodei in the corresponding vector
for all j 2 N i

C = wjj (k � 1)x j (k � 1) + X T
j (k � 1)W (k� 1)

j

if (x j (k) 6= C) or
�

x i (k � 1) 6= (X j (k � 1)) � (i)

�

or
�

wij (k � 1) 6=
�

W (k� 1)
j

�

� (i)

�

Declare j as misbehaving node.
end if

end for

The �rst condition (x j (k) 6= wjj (k � 1)x j (k � 1)+ X T
j (k � 1)W (k� 1)

j) corresponds
to the de�nition of a misbehaving node and allows neighbors to detecta node sending
a wrong estimate. The second and third conditions (x i (k � 1) 6= (X j (k � 1)) � (i)) or

(wij (k � 1) 6=
�

W (k� 1)
j

�

� (i)
) detect if node j is modifying the content of any element

in the vectors X j (k � 1) and W (k� 1)
j before sending them to its neighbors. More

precisely, because of Assumption 2, if a node changes any element in thepreviously
mentioned vectors, then this message will reach all neighbors including the neighbors
concerned by this modi�cation. These neighbors will remark this modi�cation by
checking the second and the third conditions, and, due to Assumption 1, they will
declare the node as misbehaving.

Once a node is declared a misbehaving node, the others can ignore it by simply
assigning a null weight to its links in the following iterations.

2.8 More on Schatten p-Norm and its Relation to Ma-
chine Learning

The Schatten p-norm is often considered in machine learning for the regularization
problem in applications such as multi-task learning [AMPY07], collaborative �lter-
ing [SRJ05] and multi-class classi�cation [AFSU07] because it has some favorable
properties (being orthogonally invariant for example). Up to our knowledge, an ex-
act line search Newton's method has not yet been proposed for constrainedSchatten
p-norm problems in machine learning but they are usually solved by �rst order gra-
dient methods. In this section, we develop Newton's method for the general norm
optimization problem and we show that the weight selection by Schatten p-norm
proposed in this chapter can be considered a special case of this section's more

2.8. More on Schatten p-Norm and its Relation to Machine Learning53

general problem. The optimization problem we are interested in is the following:

minimize
X

jjX jj �p

subject to � (X) = y ;

X 2 Rn1 ;n2 ; y 2 Rc;

(2.46)

where jjX jj �p is the Schatten p-norm of the matrix X which is the L-p norm of
its singular values, i.e., jjX jj �p = (

P
i � p

i)1=p, and � (X) is a linear function of the
elements ofX . For p = 1 , the norm is known as the nuclear norm, while forp = 1
it is the spectral norm; for both values of p, problem (2.46) can be formulated
as a semi-de�nite programming and solved using standard interior-point methods
[FHB01, XB04]. The authors in [AMP10] refer to problem (2.46) as the minimal
norm interpolation problem.

In this section, we show that for an even integerp in problem (2.46), we can
easily calculate explicitly both the gradient and the Hessian by exploiting the special
structure of the objective function, constraints linearity, and by carefully rewriting
the Schatten norm problem by stacking the columns of the matrix to form a long
vector. While we still need to invert the Hessian numerically, this matrix has lower
dimension than the typical KKT matrix used in Newton's methods for solving such
constrained problems.

We use the same notation for the Hessian and gradient presented in Section 2.4,
i.e., for the scalar function of a vector, f : Rm ! R, the gradient of the function
f (x) with respect to the vector x 2 Rm is denoted by r x f 2 Rm and its Hessian
is denoted by the matrix r 2

x f 2 Rm;m whose elements are given by the following
equations:

(r x f) l ,
@f
@xl

; and
�
r 2

x f
�

l;k ,
@2f

@xl @xk
:

For a scalar function of amatrix , h : Rn1 ;n2 ! R, the gradient of the function h(X)
with respect to the vector vect(X) 2 Rn1n2 ;1 is denoted by r X h 2 Rn1n2 ;1 and its
Hessian is denoted by the matrixr 2

X h 2 Rn1n2 ;n1n2 whose elements are given by
the equations:

r X h(ij) ,
@h

@xij
; and r 2

X h(ij)(st) ,
@2h

@xij @xst
:

As � (X) in (2.46) is a linear function of the elements ofX , then it can be written
also as:

� (X) = A vect(X);

whereA 2 Rc;n1n2 and c is the number of constraints. We suppose that the problem
admits always a solutionX � . Since we are interested in applying Newton's method
to solve equation (2.46), the objective function should be twice di�erentiable. Not
all the norms satisfy this property, we limit then our study to t he case wherep is
an even integer because in this case we show that the problem (2.46) is equivalent
to a smooth optimization problem. Let p = 2q, raising the objective function to

54 Chapter 2. Weight Optimization in Consensus Protocols

the power p will not change the solution set, so we can equivalently consider the
objective function:

h(X) = jjX jjp
�p = Tr

� �
XX T � q

�
:

Since we only have linear constraints (A vect(X) = y), by taking only the linearly
independent equations, and using Gaussian elimination to have a full row rank
matrix, we can rewrite the constraints as follows:

�
I r B

�
P vect(X) = ŷ ;

where I r is the r -identity matrix, r is the rank of the matrix A (the number of
linearly independent equations),B 2 Rr;n 1n2 � r , P is an n1n2 � n1n2 permutation
matrix of the variables, and ŷ 2 Rr is a vector. We arrive at the conclusion that
the original problem (2.46) is equivalent to:

minimize
X

h(X) = Tr
� �

XX T � q
�

subject to
�

I r B
�

P vect(X) = ŷ :
(2.47)

Before applying Newton's method to (2.47), we can further reduce the problem
to an unconstrained minimization problem. By considering the equality constraints,
we can form a mapping fromX 2 Rn1 ;n2 to the vector x 2 Rn1n2 � r as follows:

x =
�

0n1n2 � r;r I n1n2 � r
�

P vect(X); (2.48)

and X can be obtained fromx and ŷ as

X = vect� 1
�

P � 1
�

ŷ � B x
x

��
; (2.49)

where vect� 1 : Rn1n2 ! Rn1 ;n2 is the inverse function of vect() , i.e.,
vect� 1(vect(X)) = X . The unconstrained minimization problem is then:

minimize
x

f (x); (2.50)

where f (x) = Tr
��

XX T
� q�

and X is by (2.49).
All three problems (2.46), (2.47), and (2.50) are convex and are equivalent to

each other. We apply Newton's method to (2.50) to �nd the optimal vector x �

and then deduce the solution of the original problemX � . The main di�culty in
most Newton's methods is the calculation of the gradient and the Hessian. In many
applications, the Hessian is not known and for this reason gradient methods are
applied rather than the faster Newton's methods. However, also in this case, we
show that by exploring the special structure of the functionh(X), we can calculate
explicitly both r x f and r 2

x f . To this purpose, we �rst calculate the gradient
and Hessian ofh(X), and then use the linearity of the constraints. Using matrix
calculus [Ber05, ORG12], and similarly to the derivation of equation (2.24), closed
form expressions for the gradient and Hessian ofh(X) are given by the following
Lemma:

2.8. More on Schatten p-Norm and its Relation to Machine Learning55

Lemma 4. Let h(X) = Tr
��

XX T
� q�

where X 2 Rn1 ;n2 , then the gradient ofh is
given by,

r X h(ij) = 2q
� �

XX T � q� 1
X

�

i;j
; (2.51)

and the Hessian,

r 2
X h(ij)(st) = 2q

q� 2X

k=0

� �
XX T � k

X
�

i;t

� �
XX T � q� 2� k

X
�

s;j

+ 2q
q� 1X

k=0

� �
XX T � k

�

i;s

� �
X T X

� q� 1� k
�

t;j
: (2.52)

We can now apply the chain rule to calculate the gradient and Hessian of f (x),
taking into account the mapping from x to X in (2.49).

For the gradient r x f , it holds for l = 1 ; : : : ; n1n2 � r :

(r x f) l =
@f
@xl

=
X

i;j

r X h(ij)
@xij
@xl

; (2.53)

where all the partial derivatives @xij
@xl

are constant values because (2.49) is a linear
transformation. Applying the chain rule for the Hessian and considering directly
that all the second order derivatives like @2x ij

@xl @xk
are null (again because the mapping

(2.49) is a linear transformation), we obtain that for l; k = 1 ; : : : ; n1n2 � r :

�
r 2

x f
�

l;k =
@2f

@xl @xk
=

X

i;j;s;t

r 2
X h(ij)(st)

@xij
@xl

@xst

@xk
: (2.54)

Since f (x) is a convex function, then the calculated matrix r 2
x f is semi-de�nite

positive. We can add to the diagonals a small positive value
 to guarantee the
existence of the inverse without a�ecting the convergence. The calculated Hessian
is a square matrix having dimensionsd by d where d = n1n2 � r may be large
for some applications, and at every iteration of the Newton's method, we need to
calculate the inverse of the Hessian. E�cient algorithms for inverting large matrices
are largely discussed in the literature (see [IK94] for example) and are not detailed
here. Nevertheless, the given matrix has lower dimension than the typical KKT
matrix 10 used in Newton's method [BV04]:

�
r 2

X h AT

A 0

�
; (2.55)

where A is considered here to be a full row rank matrix, so the KKT matrix is a
square matrix of dimensions dKKT by dKKT where dKKT = n1n2 + r .

Once we know the gradientr x f and the Hessianr 2
x f , we just apply the New-

ton's method to �nd the solution x � and then obtain the solution of the original
10 Note that the sparsity of the matrix to invert is preserved by the proposed method, i.e., if the

KKT matrix is sparse due to the sparsity of A and r 2
X h, then r 2

x f is also sparse.

56 Chapter 2. Weight Optimization in Consensus Protocols

problem X � . In fact, the weight selection optimization (2.10) proposed in this
chapter is just a special case of the problem discussed in this section.Due to the
constraint that the matrix is symmetric in (2.10), we can write the objective func-
tion as h(W) = Tr

��
WW T

� q�
. Moreover, we can see that all constraints are linear

equalities. Therefore, the technique derived here applies to the more speci�c case.

2.9 Conclusion

We have proposed in this chapter an approximated solution for the Fastest Dis-
tributed Linear Averaging (FDLA) problem by minimizing the Schat ten p-norm of
the weight matrix. Our approximated algorithm converges to the solution of the
FDLA problem as p approaches1 , and in comparison to it has the advantage to
be suitable for a distributed implementation. We gave �rst a centralized implemen-
tation using Newton's method, and then we gave a totally distributed projection
sub-gradient algorithm for our proposed problem. Moreover, extensive simulations
on random and real networks show that the algorithm outperformsother common
distributed algorithms for weight selection. We also addressed theissue of topolog-
ical optimization and we compared that to the weight optimization. Finally, the
issue of stubborn nodes was discussed where an appropriate algorithm to counter
these malicious behaviors was proposed. We concluded this chapter byextending
our approach for Schatten norm minimization to more general problems which can
be of interest for machine learning applications.

Chapter 3

Consensus in the Presence of an
Adversary

Contents
3.1 Problem Formulation . 58

3.2 Optimal Weight Selection on Undirected Graphs 59

3.2.1 Existence of a Solution. 60

3.2.2 Necessary Conditions . 61

3.2.3 Locally Optimal Solution . 62

3.2.4 Closed-Form Solution for the One-Stage Problem. 63

3.3 Network with Adversary in Discrete Time 64

3.3.1 The max-min Solution . 65

3.3.2 The min-max Solution . 65

3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies 66

3.4 Simulations . 67

3.4.1 Optimal Control . 67

3.4.2 Adversarial Intervention . 69

3.5 Conclusion . 69

As we have seen so far, in consensus algorithms, nodes execute update rules
to reach consensus based on neighbor to neighbor weighted average linear itera-
tions. As in any protocol, some parameters (e.g., the weights) can be tuned faster
convergence. For instance, [XB04] formulates a semi-de�nite program (SDP) for a
�xed weight selection algorithm to achieve fast convergence of consensus protocols
independent of initial nodes' values, and we proposed a distributedimplementation
for an approximation of the SDP in Chapter 2. Another approach is to design
time-varying weights, for example [KG09, HJOV14] study �nite-time consensus by
arbitrary time-varying weights chosen at the time of design using matrix factoriza-
tion techniques. Reference [SM12] considers dynamic weights for least mean square
design in correlated or uncorrelated initial node values.

Further, networks can be susceptible to attacks from adversaries willing to drive
the system away from consensus. There are di�erent types of adversariesthat can
harm the network. For example compromised strategic nodes (like faulty nodes
or stubborn ones [ACFO11, BABJ12]) can harm the state of the network. Other

58 Chapter 3. Consensus in the Presence of an Adversary

types of strategic intervention include adversaries that cut communication links or
insert noise signals in the agents' interaction protocol [KTB13]. Yet another type of
adversaries inject false data (collected by nodes) into the system, which bypass bad-
data detection mechanisms. False data injections are known as stealth attacks and
are widely studied for the security of state estimation in electric power networks
[VD14, LNR09]. In order to mitigate the e�ect of an adversary, security proce-
dures should be taken into account in the design of optimal strategies in consensus
protocols.

Our present work in this chapter shares with this set of references the same ob-
jectives of designing time-varying weights for faster consensus and studying optimal
strategies for networks that are vulnerable to attacks. In the �rst part we study
time-varying weights for consensus protocols within the frameworkof an optimal
control formulation. We apply optimization techniques to obtain a locally (and pos-
sibly globally) optimizing feasible control path and provide necessary and su�cient
conditions for the existence of a control that makes the system reach consensus in
only one iteration. The di�erence with previous related work is that in this chapter
we consider the initial values in ourdynamic weight design. In the second part we
study adversaries that can compromise these weights. We propose a game theo-
retical framework for an adversary that can add noise to the weightsto drive the
system away from consensus. We derive the optimal strategies usinga saddle-point
equilibrium (SPE) solution in mixed strategies for both players (the adversary and
the network designer) in the resulting game.

The contribution of the chapter is as follows:

� We formulate, using optimal control, the problem of �nding opti mal weights
for discrete time consensus given the information on initial conditions, and
provide necessary conditions using the maximum principle for optimal design.

� Using gradient methods, we solve the weight optimization problemand provide
a locally (and possibly globally) optimizing solution. We also give su�cient
conditions for an optimal control to drive the system to consensusin only one
stage (one iteration consensus).

� We give a game theoretical approach to model an adversary that can perturb
the weights in the network. We provide the optimal strategies given by the
saddle-point equilibrium of the network in mixed strategies.

3.1 Problem Formulation

In this chapter, we turn our attention to time-varying weights in consensus protocols.
The system equation is then given in matrix form as follows,

x(k + 1) = W(k)x(k); (3.1)

where W (k) is the weight matrix at iteration k.

3.2. Optimal Weight Selection on Undirected Graphs 59

Under some conditions on the weightsW (k), the values at the nodes are guar-
anteed to converge asymptotically to the average

lim
k!1

x(k) = �x;

where �x = xave1 and xave = 1
n

P n
i =1 x i (0). We have seen that one such set of

conditions is given in [XB04] with �xed weights (i.e., W(k) = W 8k):

1T W = 1T ; W1 = 1; � (W �
1
n

11T) < 1;

where 1 is the vector of all ones, and� (:) is the largest eigenvalue in magnitude of
a matrix. By the �rst condition, the average in the network is conserved, namely

1T x(k) = 1T x(0) = nxave 8k; (3.2)

the second ensures stability, and the last condition guarantees contraction on the
weight matrix. At any iteration k, we de�ne the squared errorL k from consensus
as follows:

L k =
X

i 2 V

(x i (k) � xave)2

= (x(k) � �x)T (x(k) � �x);

= y T
k yk ; (3.3)

where yk = x(k) � �x .
In this chapter, we design time-varying weight matricesW (k) such that consen-

sus forms in the least number of iterations (achieving faster convergence) under the
criterion of minimum squared error. Our work di�ers from the earlier work in the
literature in that we design the weights depending on the initial values, i.e.,

W (k) = W (k; x(0)) :

3.2 Optimal Weight Selection on Undirected Graphs

Toward the goal stated above, since we are dealing with an undirected graph, we
consider the following properties for the weight matrix for all k:

W(k) = W (k)T and W (k)1 = 1: (3.4)

Therefore, equation (3.2) is satis�ed for all k and the average is conserved. Moreover,
we can consider a vectoruk 2 Rm as the control variable that represents the weights
on the undirected links (each link s � (ij) is given a control u(k)

s). At stage k, the
network designer will select a controluk . In particular, due to equation (3.4) we
can write the weight matrix as a function of the control vector as follows:

W (k) = I n � Qdiag(uk)QT : (3.5)

60 Chapter 3. Consensus in the Presence of an Adversary

For any iteration k, the square error L k metric measures the distance of the
system from the average. Since the goal is to reach faster the consensus fast, cost is
assigned only to the last stage. The optimal control problem of this chapter is then
given as follows:

argmin
u 0 ;:::;u N � 1

L N

subject to

yk+1 = yk � Qdiag(uk)QT yk ; for k = 0 ; : : : ; N � 1;

(3.6)

where N is the number of stages in this optimization. Let us �rst show that an
optimal control (u �

k ; k = 0 ; : : : ; N � 1) that solves the optimization problem (3.6)
exists.

3.2.1 Existence of a Solution

The cost function of the optimization problem is given by

L N = y T
N yN

= x(N)T x(N) � 2�xT x(N) + �xT �x

= x(N)T x(N) � 2xave1T x(N) + nx2
ave

= JN � nx2
ave;

whereJN = x(N)T x(N). Then minimizing L N = y T
N yN is equivalent to minimizing

the function JN = x(N)T x(N) because the termnx2
ave depends only on the initial

values. Let us de�ne the product matrix U(k1 :k2) as follows:

U(k1 :k2) =

8
>><

>>:

W (k1)W (k1 + 1) : : : W(k2) if k1 < k 2

W (k1)W (k1 � 1) : : : W(k2) if k1 > k 2

W (k1) if k1 = k2:

To show that an optimal control (u �
k ; k = 0 ; : : : ; N � 1) exists, we write the opti-

mization as an unconstrained one:

argmin
u 0 ;:::;u N � 1

f (u0; : : : ; uN � 1) (3.7)

where

f (u0; : : : ; uN � 1) = JN = x(N)T x(N)

= x(0)T UT
(N � 1;0)U(N � 1;0)x(0): (3.8)

Since the elements of the matrix U(N � 1;0) are linear in the control variables,
and UT

(N � 1;0)U(N � 1;0) is a positive semi-de�nite matrix, f (:) is a quadratic func-
tion and bounded from below, and hence there exists at least one control
(u �

k ; k = 0 ; : : : ; N � 1) that globally minimizes f .

3.2. Optimal Weight Selection on Undirected Graphs 61

3.2.2 Necessary Conditions

To �nd necessary conditions for the optimal control, we apply the maximum prin-
ciple [LVS12, p. 24] to problem (3.6). For k = 0 ; : : : ; N � 1, the system equation,
performance index, and Hamiltonian are given as:

� System equation:
yk+1 = yk � Qdiag(uk)QT yk ; (3.9)

� Performance index:
L N = y T

N yN ;

� Hamiltonian:
H k = � T

k+1

�
yk � Qdiag(uk)QT yk

�
; (3.10)

where � k+1 is the costate variable corresponding to iterationk.

Then, the costate equation and the associated boundary condition are:

� Costate equation:

� k =
@Hk

@yk
=

�
I n � Qdiag(uk)QT �

� k+1 ; (3.11)

� Boundary condition:
� N = yN : (3.12)

Any optimal control should minimize the Hamiltonian [LVS12]. Since the Hamil-
tonian is linear in the unconstrained control variables, if any coe�cient of a control
variable in (3.10) is nonzero, the optimal control would be unbounded. But an op-
timal control exists as we have already shown, so all the coe�cients ofthe control
variables in (3.10) are necessarily equal to zero, i.e.,

@Hk

@uk
=

�
QT yk

�
�

�
QT � k+1

�
= 0; for k = 0 ; : : : ; N � 1; (3.13)

where � is the element-wise product of the vectors and0 is the vector of all zeros.
Equation (3.13) provides necessary conditions for a controller to minimize (3.8).

These necessary conditions can be further simpli�ed giving a simple network in-
terpretation if we consider one stage (N = 1). In fact, using the boundary condition
(3.12), the necessary conditions in equation (3.13) for N = 1 reduce to

�
QT y0

�
�

�
QT y1

�
= 0;

i.e., for any link (ij) 2 E we have

(x i (0) � x j (0))(x i (1) � x j (1)) = 0 : (3.14)

Let H = (V; E0) be a sub-graph ofG de�ned on the same set of vertices,V , and
with links E 0 � E such that (ij) 2 E 0 if (ij) 2 E and x i (0) � x j (0) 6= 0 . Then we
have the following:

62 Chapter 3. Consensus in the Presence of an Adversary

Proposition 6. If H = (V; E0) is connected, then any optimal controlu � drives the
system to consensus in one iteration, i.e.,

�x =
�
I n � Qdiag(u �)QT �

x (0):

Proof. Due to Eq. (3.14), we havex i (1) = x j (1) 8(ij) 2 E 0. If H is connected, then
there is a path in E 0 between any two vertices, and thusx i (1) = x j (1) 8i; j 2 V .
Using also the fact that the average is conserved (due to equation (3.2)), we get
x i (1) = xave 8i 2 V .

3.2.3 Locally Optimal Solution

In the general case, the optimization problem (3.7) is computationally hard because
the function f (u0; : : : ; uN � 1) is not convex (it is convex in the variables of each
stage,uk , but not jointly convex). We therefore turn our attention to locall y optimal
solutions, and to obtain such a solution we apply the gradientmethod to (3.8).

Proposition 7. Let f (u0; : : : ; uN � 1) be given by(3.8). Then, for k = 0 ; : : : ; N � 1,
the gradient g(k)

l of the function f (:) with respect to its variablesu(k)
l where u(k)

l is
the l-th element of the vectoruk corresponding to link (ij) (l � (ij)) at stage k, is
given as follows:

g(k)
l =

@f

@u(k)
l

= 2[(AkW (k)Bk) ij + (AkW (k)Bk) ji

� (AkW (k)Bk) ii � (AkW (k)Bk) jj]; (3.15)

whereAk and Bk are as follows:

Ak =

(
UT

(N � 1:k+1) U(N � 1:k+1) if N � 1 � k + 1 ;

I n if N � 1 < k + 1 ;

Bk =

(�
U(k� 1:0)x(0)

� �
U(k� 1:0)x(0)

� T if k � 1 � 0;

x(0)x(0)T if k � 1 < 0:

(3.16)

Proof. By using the commutative property of the trace operator (i.e., T r (XY) =
T r (Y X) for any conformable matricesX and Y), f (:) can be written for any k =
0; : : : ; N � 1 as follows:

f (u0; : : : ; uN � 1) = x(0)T UT
(N � 1;0)U(N � 1;0)x(0)

= T r
�
W (k)T AkW (k)Bk

�
; (3.17)

whereAk and Bk are given by (3.16) and are independent of the variables of stagek
(i.e., @(A k)st

@u(k)
l

= @(B k)st

@u(k)
l

= 0 8s; t 2 V ; and k = 0 ; : : : ; N � 1). From matrix calculus,

3.2. Optimal Weight Selection on Undirected Graphs 63

if h(W) = T r (W T AWB), then @h
@wij

= 2 (AWB) ij , and sinceW = I n � Qdiag(u)QT ,
for any ul such that l � (ij) we have

@wst

@ul
=

8
>>>>>>><

>>>>>>>:

+1 if s = i and t = j

+1 if s = j and t = i

� 1 if s = i and t = i

� 1 if s = j and t = j

0 else.

(3.18)

Thus,

@h
@ul

=
X

s;t

�
@h

@wst

�
@wst

@ul
= 2

X

s;t

(AWB)st
@wst

@ul

= 2 [(AWB) ij + (AWB) ji � (AWB) ii � (AWB) jj] : (3.19)

We can apply equation (3.19) to every stage separately and this ends the proof.

Let us stack up all the elementsu(k)
l in one vector w, and also stack up all the

elementsg(k)
l in one vector g.

Proposition 8. Consider the following gradient iterative procedure

w (t+1) = w (t) �
 t g(t) ;

where
 t = 1
(1+ t)jj gjj is the stepsize andw (0) = 0. Then the elementsu(k)

l of the vector
w converge to a locally minimizing solution of the optimization problem (3.6).

Proof. The given procedure is a standard (sub-)gradient method for optimization
and the convergence has been widely studied under the diminishing step-size rule:
lim t !1
 t = 0 and

P 1
t=1
 t = 1 (see [Sho85]).

Remark: The function f (:) can have multiple local minima, and the gradient
method converges to one of them. But simulations show that in some situations any
local minimum is in fact a global one. This is the case when we start withinitial
values where only one nodei has a nonzero estimatex i (0) = 1 , and all other nodes
have an initial value 0. If d is the largest distance (in terms of the number of hops)
from node i to a node j having x j (0) = 0 , then we know that any optimal control
needs at leastd stages to drive the system to consensus because nodej needs at least
d iterations to change its value0. By simulations, the gradient given in Proposition
8 for N = d stages yields weights that lead to consensus (as we will see later in
Section 3.4) and hence the solution turns out to be optimal (global minimum).

3.2.4 Closed-Form Solution for the One-Stage Problem

Consider now the caseN = 1 , that is with only one stage. Then the control would
be a single vectoru where each component is the weight for the corresponding edge.
The optimization problem in this case is convex:

64 Chapter 3. Consensus in the Presence of an Adversary

uS = argmin
u

f (u); (3.20)

where uS is the solution set (possibly an in�nite set) and

f (u) = x(0)T (I n � Qdiag(u)QT)(I n � Qdiag(u)QT)x(0)

= jjx(0) � Qdiag(u)QT x(0)jj2

= jjx(0) � Qdiag(QT x(0))ujj2

= jjDu � bjj2;

where
D = Qdiag(QT x(0)) , and b = x(0): (3.21)

The problem is then reduced to a least squares approximation problem, where
any element in the solution setuS satis�es what is known as the normal equations:

D T Du = D T b; 8u 2 uS:

Moreover, uS is not empty, with at least one solution û,

û = D + b;

where D + is the pseudo inverse ofD that can be obtained using the singular value
decomposition ofD . If D T D is a positive de�nite matrix, then D + = (D T D) � 1D T

and û is the unique solution to the least squares problem. We denote byS the
minimum value of the function f (u):

S = f (û)

= jj (DD + � I)bjj2: (3.22)

3.3 Network with Adversary in Discrete Time

Suppose that there is an adversary that can add noise onto the weights of the links.
The adversary's objective is to drive the system away from consensus. Considering
only one stage optimization (N = 1), the state equation would become

x(1) = W (u; v)x(0)

= (I n � Qdiag(u + v)QT)x(0); (3.23)

where W (u; v) is the weight matrix that depends on the control u 2 U1 = Rm and
the noise of the adversaryv 2 U2 = f y; y 2 Rm ; jj yjj � Cg, where C is a given
positive constant and can be seen as the power constraint of the adversary (the
larger C the more powerful is the adversary). The cost function is

J (u; v) = x(1)T x(1)

= jj (I n � Qdiag(u + v)QT)x(0)jj2

= jjD (u + v) � bjj2; (3.24)

3.3. Network with Adversary in Discrete Time 65

where D and b are given by (3.21). The adversary (v) is the maximizer of J (u; v)
while the network designer (u) is the minimizer in this zero-sum two-person game.

De�nition 1. A pair (u � 2 U1; v � 2 U2) is a saddle-point in pure strategies of
J (u; v) if the following holds:

J (u � ; v) � J (u � ; v �) � J (u; v �); for all (u 2 U1; v 2 U2):

The lower valueV and the upper valueV of the game are de�ned by

V = sup
v 2 U2

inf
u2 U1

J (u; v) , and V = inf
u2 U1

sup
v 2 U2

J (u; v):

Since the strategy spaces are decoupled,V � V . If furthermore V = V , then the
common value is called thevalueof the game. Existence of a saddle-point guarantees
existence of the value [BO99]. As J is a quadratic function of u, and J (u; v) � 0
for all (u 2 U1; v 2 U2), then for any given v 2 U2, J attains a minimum on U1

[Hil08]. Moreover, sinceU2 is compact, andJ is a continuous function on its domain
of de�nition, for any given u 2 U1, J attains a maximum on U2 by the Weierstrass
Theorem. Therefore, we can replaceinf u2 U1 by minu2 U1 and supv 2 U2

by maxv 2 U2

in the de�nitions of the upper and lower values. In the sequel, we willshow that
actually the game does not have a value, and hence does not have a saddle-point
(in pure strategies). It however has a saddle-point in mixed strategies (shortly to
be de�ned).

3.3.1 The max-min Solution

In the max-min solution, the network designer has access to the strategy played by
the adversary.

argmin
u

J (u; v) = argmin
u

jjD (u + v) � bjj2

= D + b � v :

Then we have,

max
v

min
u

J (u; v) = max
v

J (D + b � v ; v)

= max
v

S

= S; (3.25)

where S is the value of the one player optimization problem, given by (3.22) and is
independent ofv .

3.3.2 The min-max Solution

In the min-max solution, the adversary has access to the strategy of the controller.
The cost function J can be written as:

J (u; v) = jjD (u + v) � bjj2

= bT b + uT D T Du � 2bT Du + v T D T Dv + 2v T �
D T Du � D T b

�
:

66 Chapter 3. Consensus in the Presence of an Adversary

Consider the following strategyv1 by the adversary:
(

v1 2 R (D T D) \ U2 if D T Du � D T b = 0

v1 = C (D T D u� D T b)
jj D T D u� D T b jj otherwise,

(3.26)

where R(D T D) is the range of the matrix D T D. Therefore we have,

min
u

max
v

J (u; v) � min
u

J (u; v1)

= min
u

�
v T

1 D T Dv1 + 2v T
1

�
D T Du � D T b

�

| {z }
> 0

+ bT b + uT D T Du � 2bT Du
�

> min
u

�
bT b + uT D T Du � 2bT Du

�

= S:

Hence,
max

v
min

u
J (u; v) < min

u
max

v
J (u; v); (3.27)

which means that there is no saddle-point in pure strategies.

3.3.3 A Saddle-Point Equilibrium (SPE) in Mixed Strategies

Since an SPE does not exist in pure strategies, we allow players to randomize their
actions through mixed strategies. A mixed strategy for the network designer is a
probability distribution � on U1, and we denote the space of all such probability
distributions by M 1. Similarly, a mixed strategy for the adversary is a probability
distribution � on U2, and the space of all such probability distributions is denoted
by M 2. The average cost corresponding to a pair(� 2 M 1; � 2 M 2) is given by

�J (�; �) =
Z

U1 � U2

J (u; v)d� (u)d� (v):

De�nition 2. A pair (� � 2 M 1; � � 2 M 2) is a saddle-point equilibrium in mixed
strategies if the following holds:

�J (� � ; �) � �J (� � ; � �) � �J (�; � �); for all (� 2 M 1; � 2 M 2):

Proposition 9. Consider the following strategies:

� � (u) : u = D + b with probability 1; (3.28)

and

� � (v) :

(
v = Cp with probability 1/2

v = � Cp with probability 1/2 ;
(3.29)

where p is any unit eigenvector of the matrix D T D corresponding to the largest
eigenvalue� max (D T D). Then the pair (� � ; � �) is an SPE in mixed strategies.

3.4. Simulations 67

Proof. Let us recall the cost function:

J (u; v) = bT b + uT D T Du � 2bT Du

+ v T D T Dv + 2v T �
D T Du � D T b

�

= jjDu � bjj2 + v T D T Dv + 2v T �
D T Du � D T b

�
:

Then the average cost under the given pair of strategies is,

�J (� � ; � �) = jjDD + b � bjj2 + (Cp)T D T D(Cp) � (1=2)

+ (� Cp)T D T D(� Cp) � (1=2)

= S + C2� max : (3.30)

But we have,

�J (� � ; �) = jjDD + b � bjj2 +
Z

U2

� T D T D� d� (v)

� S + max
v ;jj v jj� C

v T D T Dv

= S + C2� max

= �J (� � ; � �); (3.31)

and

�J (�; � �) = C2� max +
Z

U1

jjD� � bjj2 d� (u)

� C2� max + min
u

jjDu � bjj2

= S + C2� max

= �J (� � ; � �): (3.32)

Since we have for any pair(� 2 M 1; � 2 M 2),

�J (� � ; �) � �J (� � ; � �) � �J (�; � �);

then (� � ; � �) is a saddle-point equilibrium.

Remark: The saddle-point is not unique, as any(�; �) where � is a point
distribution in the set uS of (3.20) (or any distribution on this set due to the
interchangeability property of saddle-points [BO99]), and � as in (3.29) where p is
any eigenvector corresponding to� max (D T D) (or any distribution on these vectors)
is also a saddle-point. However, ifD is full column rank, and � max has geometric
multiplicity of 1, then the saddle-point is unique.

3.4 Simulations

3.4.1 Optimal Control

We illustrate the results obtained on a numerical example. Given the sample network
of Fig. 3.1 and the initial values, we are interested in selecting the controls onlinks,

68 Chapter 3. Consensus in the Presence of an Adversary

Figure 3.1: Network with 4 communicating nodes.x i (0) is the initial value of node
i , and uij is the control value (or weight) of link (ij).

k = 0 k = 1
x(0) u �

0 x(1) u �
10

B
B
@

1
0
0
0

1

C
C
A

0

@
0:8665

0
0

1

A

0

B
B
@

0:1335
0:8665

0
0

1

C
C
A

0

@
0:2201
0:6051

0

1

A

J0 = x(0)T x(0) = 1 J1 = 0 :7686
k = 2 k = 3

x(2) u �
2 x(3)

0

B
B
@

0:2949
0:1808
0:5243

0

1

C
C
A

0

@
0:3934
0:0708
0:4768

1

A

0

B
B
@

0:25
0:25
0:25
0:25

1

C
C
A

J2 = 0 :3945 J3 = 0 :25

Table 3.1: Optimal control results for the network in Fig. 3.1.

uk = (u(k)
12 ; u(k)

23 ; u(k)
34)T , so that the system reaches consensus. We limit the number

of stages toN = 3 because in that case the diameter is equal to three and an optimal
control that drives the system to consensus exists. The optimizationproblem (3.6)
reduces to:

argmin
u 0 ;u 1 ;u 2

J3

subject to

x(k + 1) = (I 4 � Qdiag(uk)QT)x(k); for k = 0 ; 1; 2;

where I 4 is the 4 � 4 identity matrix, and the incidence matrix Q is given by:

Q =

0

B
B
@

1 0 0
� 1 1 0
0 � 1 1
0 0 � 1

1

C
C
A :

Table 3.1 shows the optimal control (u �
k ; k = 0 ; 1; 2) for the given network. The

control is obtained by the gradient descent iterative procedure of Proposition 8 where
the initial starting point of the gradient was selected0 on all links of the three stages.
The results indicate that with only three iterations, the system reaches consensus.
To compare with other weight selection algorithms, we apply the algorithm given in

3.5. Conclusion 69

[XB04] obtained for a related semi-de�nite program (SDP). That algorithm �nds a
�xed set of weights for all iterations that guarantee fastest convergence independent
of initial values (worst-case analysis). For the network example in Fig. 3.1, the SDP
assigns a value0:5 to all weights for all iterations, and the resulting state vector
after three iterations is xSDP (3) = (0 :375; 0:375; 0:125; 0:125)T , which has a cost of
J3 = 0 :3125(thus higher cost than our time-varying weights) and needs an in�nite
number of iterations to converge. It is worth mentioning that the SDP weights
are designed for worst-case node initial values, and thus have the advantage that
they guarantee convergence starting from any initial values. However, the optimal
control in this chapter is designed for a given starting value, and thus if the initial
node values change, the control values must be readjusted.

3.4.2 Adversarial Intervention

In this subsection, we study the e�ect of an adversary disrupting the communication
on networks with connected random geometric graphs (RGGs) topology wheren
nodes are thrown uniformly at random on a unit square, and any twonodes within
a connectivity radius r are connected by a link (the simulations are done withr =q

0:6 � log(n)
n given that the graph is connected). RGGs are generally used as models

for wireless sensor networks, and disruption of communication can beaccomplished
by insertion of high intensity signals on communication links. The additive white
noise can also be considered as an adversarial input in our settings. We compare
the results on di�erent RGGs with di�erent sizes (number of nodes n) for n 2
f 20; 40; 60; 80; 100g. Fig. 3.2 depicts the di�erent costs on the resulting network
with and without the presence of the adversary, averaged over 150 independent
runs. We consider only one-stage games where the initial cost function is given by
J0 = x(0)T x(0). For any node i , the initial node value x i (0) is selected at random
uniformly within the interval [0; 1]. We assume that the adversary power constraint
is jjv jj � 1 (i.e., C = 1). We see from Fig.3.2 that the network without an adversary
achieves the least costJ1. An adversary selecting uniformly random strategy from
the n-dimensional unit sphere does not substantially a�ect the cost; however, an
adversary with the same power constraint playing the strategy of the saddle-point
equilibrium (equation (3.29)) achieves signi�cantly higher cost than the uniform
random adversary (even larger cost thanJ0 for graphs ofn = 20 and n = 40 nodes).

3.5 Conclusion

In this chapter, we have studied a �nite-horizon discrete-time optimal control prob-
lem for a network designer to achieve faster consensus given the networkstructure
and the initial node values. The optimal control is obtained using gradient meth-
ods. We have also provided su�cient conditions for reaching consensus in one stage.
Moreover, we have studied the saddle-point equilibrium (SPE) of the consensus
problem in the presence of an adversary, and found that an SPE does not exist in

70 Chapter 3. Consensus in the Presence of an Adversary

20 40 60 80 100

5

10

15

20

25

30

35

Number of nodesn in the RGG topology

C
o

s
t

F
u

n
c

ti
o

n
J

=
x

T
x

I nit ial Cost J 0

Without Adversary J 1

Saddle Point J 1(7 $; 8$)

Uniform Random Adversary J 1

Figure 3.2: The cost function due to di�erent adversary settings: absence of adver-
sary, uniform random adversary that adds a random noise to thecontrol values, and
saddle-point adversary that randomizes its strategy in accordance with the saddle-
point equilibrium.

pure strategies. Nevertheless, an SPE exists in mixed strategies, where the adver-
sary selects the noise using a randomized strategy, whereas the networkdesigner's
strategy is still pure.

Chapter 4

Quantized Communication in
Consensus Protocols

Contents
4.1 Literature Review . 72

4.2 System Equation . 73

4.3 Quantized Communication . 73

4.4 Problem Formulation . 75

4.5 Design and Analysis of the System 76

4.5.1 Cyclic Example . 77

4.5.2 Weight Assumption . 78

4.5.3 Cyclic States . 79

4.5.4 Lyapunov Stability . 81

4.5.5 Proof of Main Result . 89

4.6 Discussion . 95

4.6.1 Design of Weights with Arbitrarily Small Error 96

4.7 Simulations . 97

4.7.1 Simple Network. 99

4.7.2 Random Graphs . 99

4.8 Conclusion . 100

Most existing algorithms (as well as the ones we've seen so far) for precise
distributed averaging require that agents are able to send and receive real val-
ues with in�nite precision. However, a realistic network can only allow mes-
sages with limited length to be transmitted between agents due to constraints
on the capacity of communication links. With such a constraint, when a real
value is sent from an agent to its neighbors, this value will be truncated and
only a quantized version will be received by the neighbors. With such quanti-
zation, the precise average cannot be achieved (except in particular cases), but
some value close to it can be achieved, called quantized consensus. A number
of papers have studied this quantized consensus problem and variousprobabilistic
quantization strategies have been proposed to cause all the agents ina network to
reach a quantized consensus with probability one (or at least with high probability)

72 Chapter 4. Quantized Communication in Consensus Protocols

[Sch64, AB10, ACR07, BTV09, BTV11, LM12, KM10, KBS07, EB13]. Notwith-
standing this, the problem of how to design and analyzedeterministic quantization
e�ects remains open [FCFZ09, CYRC13].

In this chapter, we thoroughly analyze the performance of distributed averaging
algorithms where the information exchange between neighboring agents is subject
to a deterministic uniform quantization. We show that in �nite t ime, the algorithm
will either cause all agents to reach a quantized consensus where the consensus value
is the largest integer not greater than the average of their initial values, or will lead
all agents' variables to cycle in a small neighborhood around the average, depending
on initial conditions. In the latter case, we give tight error bounds for the size of the
neighborhood and it is further shown that the error can be made arbitrarily small
by adjusting the algorithm's parameters in a distributed manner, at a cost of slower
convergence.

4.1 Literature Review

Most of the related works for distributed averaging with quantized communication
use either a deterministic algorithm (as our approach in this chapter) or a proba-
bilistic one.

There are only a few publications which study deterministic algorithms for
quantized consensus. In [LFXZ11] the distributed averaging problem with quan-
tized communication is formulated as a feedback control design problemfor cod-
ing/decoding schemes; the paper characterizes the amount of information needed to
be sent for the agents to reach a consensus and shows that with an appropriate scal-
ing function and some carefully chosen control gain, the proposed protocol can solve
the distributed averaging problem, but some spectral properties ofthe Laplacian
matrix of the underlying �xed undirected graph have to be known in advance. More
sophisticated coding/decoding schemes were proposed in [LX11] for time-varying
undirected graphs and in [ZZ13] for time-varying directed graphs, all requiring care-
fully chosen parameters. Recently a novel dynamic quantizer has been proposed in
[TKPF13] based on dynamic quantization intervals for coding of the exchanged mes-
sages in wireless sensor networks leading to asymptotic convergence to consensus.
In [CM09] a biologically inspired algorithm was proposed which makes all agents
reach some consensus with arbitrary precision, but at the cost of notpreserving
the desired average. Control performance of logarithmic quantizers was studied in
[CFSZ08] and quantization e�ects were considered in [NOOT09]. A deterministic
algorithm of the same form as in this chapter has been only partially analyzed in
[FCFZ09] where the authors have approximated the system by a probabilistic model
and left the design of the weights as an open problem.

Over the past decade quite a few probabilistic quantized consensus algorithms
have been proposed. The probabilistic quantizer in [ACR07] ensures almost sure
consensus at a common but random quantization level for �xed (strongly connected)
directed graphs; although the expectation of the consensus value equals the desired

4.2. System Equation 73

average, the deviation of the consensus value from the desired average is not tightly
bounded. An alternative algorithm which gets around this limitation was proposed
in [KM10]; the algorithm adds dither to the agents' variables before quantization
and the mean square error can be made arbitrarily small by tuningthe parame-
ters. The probabilistic algorithm in [BTV09, BTV11], called �interval consensus
gossip�, causes all agents to reach a consensus in �nite time almostsurely on the
interval in which the average lies, for time-varying (jointly connected) undirected
graphs. Stochastic quantized gossip algorithms were introducedin [LM12, ZM11]
and shown to work properly. The e�ects of quantized communication on thestan-
dard randomized gossip algorithm [BGPS06] were analyzed in [CFFZ10]. An alter-
native approach to analyze the quantization e�ect was introduced in[Sch64, AB10]
which model the e�ect as noise following certain probability.

Another thread of research has studied quantized consensus with the additional
constraint that the value at each node is an integer. The probabilistic algorithm
in [KBS07] causes all agents to reach quantized consensus almost surely for a �xed
(connected) undirected graph; convergence time of the algorithm was studied in
[EB13], with strong bounds on its expected value. In [CI11] a probabilistic algo-
rithm was proposed to solve the quantized consensus problem for �xed(strongly
connected) directed graphs using the idea of �surplus�.

We should note that, in addition, our work in this chapter is also related to the
literature on the problem of load balancing [AAMR93, SS94, GM96].

4.2 System Equation

In this chapter, we will refer to the nodes running the distributed averaging as
agents. As assumed so far, the graphG is connected and does not change over time.
Initially each agent i has a real numberx i (0). Let

xave(k) =
1
n

X

i 2 V

x i (k);

be the average of values of all agreement variables in the network,xave is then simply
xave(0). The approach studied so far in this thesis to the problem is for each agent
to use a linear iterative update rule of the form

x i (k + 1) = wii x i (k) +
X

j 2 N i

wij x j (k); 8i 2 V: (4.1)

4.3 Quantized Communication

In a network where links have constraints on the capacity and have limited band-
width (e.g., digital communication networks), messages cannot havein�nite length.
However, the distributed averaging algorithm requires sending real(in�nite preci-
sion) values through these communication links. Therefore, with digital transmis-
sion, the messages transmitted between neighboring agents will have to be trun-
cated. If the communication bandwidth was limited, the more the truncation of

74 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.1: The network model for the quantized system.

agents' values, the higher would be the deviation of agent's valuefrom the desired
average consensusxave.

To model the e�ect of quantized communication, we assume that the links per-
form a quantization e�ect on the values transmitted between agents. The network
model is given by Fig. 4.1. As we can see from the model, each agenti can have
in�nite bandwidth to store its latest value x i (k) and perform computations. How-
ever, when agenti sends its value at timek through the communication network, its
neighbors will receive a valuêx i (k) which is the quantized value ofx i (k). A quan-
tizer is a function Q : R ! Z that maps a real value to an integer. Quantizers can
be of di�erent forms. We present here some widely used quantizers in the literature
[NFZE07, CFFZ10, NOOT09]:

1. Truncation quantizer Qt which truncates the decimal part of a real number
and keeps the integer part:

Qt (x) = bxc: (4.2)

2. Ceiling quantizer Qc which rounds the value to the nearest upper integer:

Qc(x) = dxe: (4.3)

3. Rounding quantizer Qr which rounds a real number to its nearest integer:

Qr (x) =

(
bxc if x � b xc < 1=2

dxe if x � b xc � 1=2:
(4.4)

4. Probabilistic quantizer Qp de�ned as follows:

Qp(x) =

(
bxc with probability dxe � x

dxe with probability x � b xc:
(4.5)

4.4. Problem Formulation 75

In this chapter we study the e�ect of the deterministic quantizers (Qt (x), Qc(x),
and Qr (x)) on the performance of the distributed averaging algorithms by showing
the distance that the agents' stored values can deviate from the initial averagexave.
The quantizers listed before mapR into Z and have quantization jumps of size 1.
Quantizers having a generic real positive quantization step� can be simply recovered
by a suitable scaling: Q(�) (x) = � Q(x=�) [CFFZ10]. Thus the results in this chapter
cover these generic quantizers as well.

4.4 Problem Formulation

Suppose that all n agents adhere to the same update rule of Eq. (4.1). Then with
a quantizer Q(x), the network equation would be

x i (k + 1) = wii x i (k) +
X

j 2 N i

wij Q(x j (k)) ; 8i 2 V: (4.6)

Simple examples show that this algorithm can cause the system to shift away from
the initial average xave.

Since agents know exactly the e�ect of the quantizer, for the agents not to lose
any information caused by quantization, at each iterationk each agenti can send
out the quantized value Q(x i (k)) (instead of sendingx i (k)) and store in a local
scalar ci (k) the di�erence between the real valuex i (k) and its quantized version,
i.e.,

ci (k) = x i (k) � Q (x i (k)) :

Then, the next iteration update of agent i can be modi�ed to be

x i (k + 1) = wii Q(x i (k)) +
X

j 2 N i

wij Q(x j (k)) + ci (k); 8i 2 V: (4.7)

A major di�erence between this equation and (4.6) is that here no information is
lost; i.e., the total average is being conserved in the network, as wewill show shortly
after. The state equation of the system becomes,

x(k + 1) = WQ (x(k)) + x(k) � Q (x(k)) ; (4.8)

where, with a little abuse of notation, Q (x) = (Q(x1); Q(x2); : : : ; Q(xn))T is the
vector quantization operation. For any W where each column sums to1 (1T W = 1T

where 1 is the vector of all ones), the total sum of alln agreement variables does
not change over time if agents followed the protocol of Eq. (4.8):

1T x(k + 1) = 1T (W Q (x(k)) + 1T x(k) � 1T bx(k)c

= 1T Q (x(k)) + 1T x(k) � 1T Q (x(k))

= 1T x(k)

= 1T x(0)

= nxave; (4.9)

76 Chapter 4. Quantized Communication in Consensus Protocols

Thus the average is also conserved (xave(k) = xave; 8k). Equation (4.8) would
be our model of distributed averaging with deterministic quantized communication
where the quantizer can take the form of the truncationQt , the ceiling Qc, or the
rounding oneQr . It is worth noting that the three quantizers can be related by the
following equations:

Qr (x) = Qt (x + 1=2); (4.10)

Qc(x) = �Q t (� x): (4.11)

Given a model with the ceiling quantizer Qc in (4.8), by taking y(k) = � x(k),
the system evolves as:

y (k + 1) = y(k) + WQt (y (k)) � Q t (y (k))

y (0) = � x(0):

Therefore, by analyzing the above system which has a truncation quantizer Qt ,
we can deduce the performance ofx(k) that satis�es equation (4.8) with a ceiling
quantizer Qc because they are related by a simple equation (y (k) = � x(k)).

Similarly, given a model with the rounding quantizer Qr in (4.8), by taking
y(k) = x(k) + 1

21, the system evolves as:

y (k + 1) = y(k) + WQt (y (k)) � Q t (y (k))

y (0) = x(0) +
1
2

1:

Therefore, by analyzing the above system which has a truncation quantizer Qt , we
can deduce the performance ofx(k) that satis�es equation (4.8) with a rounding
quantizer Qr because they are related by a simple translation equation (y (k) =
x(k) + 1

21). Therefore the e�ects of all these three quantizers are essentially the
same.

With this nontrivial observation in mind, we focus on the analysis of the trun-
cation quantizer only in the rest of this chapter. The results can then be easily
extended to the case of the other two quantizers.

In the sequel we will fully characterize the behavior of system (4.8) and its
convergence properties. But �rst, we have the following de�nition:

De�nition 3. A network of n agents reaches quantized consensus if there is an
iteration k0 such that

Q(x i (k)) = Q(x j (k)) ; 8i; j 2 V; 8k � k0:

4.5 Design and Analysis of the System

In this section, we carry out the analysis of the proposed quantizedsystem equation.
By considering the truncation quantizer Qt in (4.8), the system equation becomes:

x(k + 1) = W bx(k)c + x(k) � b x(k)c: (4.12)

4.5. Design and Analysis of the System 77

Figure 4.2: Network of two nodes where quantized communication does not con-
verge.

This can be written in a distributed way for every i 2 V as follows:

x i (k + 1) = x i (k) +
X

j 2 N i

wji (bx j (k)c � b x i (k)c) ; (4.13)

= x i (k) +
X

j 2 N i

wji L ji (k); (4.14)

where
L ji (k) , bx j (k)c � b x i (k)c = � L ij (k):

The non-linearity of the system due to quantization complicates theanalysis, and
traditional stability analysis of linear systems (such as ergodicity, products of
stochastic matrices, etc.) cannot be applied here as the system mightnot even
converge. As demonstrated in the following subsection.

4.5.1 Cyclic Example

The purpose of the following example is to show that for a �bad� weight matrix
design, the quantized system can cycle very far from the average. Considerthe two-
nodes example of Fig.4.2, suppose thatxa(0) = � , xb(0) = K + � whereK 2 N and
� 2 (0; 1). With these initial values, bxa(0)c = 0 , bxb(0)c = K , and xave = K

2 + � .
The weight matrix for this two-nodes system is assumed to be a doubly stochastic
matrix and is given as follows:

W =
�

w 1 � w
1 � w w

�
;

where w 2 (0; 1). With this weight matrix, (4.9) is satis�ed and the average is
conserved. In [FCFZ09], the authors de�ned the following metric to measure the
performance of the system:

d1 (W; x(0)) = lim sup
k!1

1
p

n
jj �(k)jj ; (4.15)

where�(k) is a vector having the elements� i (k) = x i (k) � xave. So the worst cycle
(according to this metric), given a doubly stochastic weight matrix, would happen
if the nodes toggled their values with every iteration. Let us derive conditions on

78 Chapter 4. Quantized Communication in Consensus Protocols

W for which this could happen. With the quantization, the corresponding system
equations are as follows:

xa(k + 1) = xa(k) + (1 � w) � (bxb(k)c � b xa(k)c) (4.16)

xb(k + 1) = xb(k) + (1 � w) � (bxa(k)c � b xb(k)c) : (4.17)

From the given initial conditions, after one iteration the updated values arexa(1) =
� + (1 � w)K and xb(1) = K + � � (1 � w)K . Therefore, the quantized value
of the nodes' variables will toggle between0 and K if xa(1) 2 [K; K + 1) and
xb(1) 2 [0; 1). By substituting the values of xa(1) and xb(1) we get the following
necessary conditions for such a cycle,

(
wK > maxf� �; � � 1g

wK < minf �; 1 � � g:
(4.18)

The �rst condition is always satis�ed becausewK > 0. Then, a bad design ofW is
to have w < 1

K � minf �; 1 � � g because in this case the nodes can cycle1 with

xa(k) =

(
� if k is even

K + � � wK if k is odd
and xb(k) =

(
K + � if k is even

wK + � if k is odd:
(4.19)

Thus � a(k) = � b(k) = K=2 if k is even, and sod1 (W; x(0)) = K=2. The above
two-node network result can be extended to regular bipartite graphswhere the �rst
set of nodes takes the valuexa(0) and the other set takes the valuexb(0) and all
self-weights are equal tow.2 This would also lead to the following inequality on
d1 (W; x(0)) with the given initial conditions and weight matrix:

d1 (W; x(0)) � K=2:

This shows that a bad design ofW on general graphs can make the cycle arbitrarily
large.

4.5.2 Weight Assumption

The system behavior depends of course on the design of the weight matrix. In
distributed averaging, it is important to consider weights that can be chosen locally,
avoid bad design, and guarantee desired convergence properties. We impose the
following assumption onW which can be satis�ed in a distributed manner.

Assumption 1. The weight matrix in our design has the following properties:
1 In case initial values were not known, since minf �; 1 � � g � 1=2, then, a bad design of W is to

have w < 1
2K because in this case there might be some initial values that cause large cycles.

2 In case of hypercube graphs, [FCFZ09] shows that if the weights in the network have a constant
value 1=(d + 1) where d = log n is the degree of a node in the hypercube graph, then an upper
bound on d1 (W) = sup x (0) d1 (W; x (0)) is the following d1 (W) � log n

2 . Since a hypercube is a
regular bipartite graph, then using our results leads to the following lower bound, d1 (W) � log n

4
(by taking � = 0 :5 and K = (log n)=2 to satisfy (4.18)).

4.5. Design and Analysis of the System 79

� W is a symmetric doubly stochastic matrix:

wij = wji � 0 8i; j 2 V
X

i

wij =
X

j

wij = 1 ;

� Dominant diagonal entries ofW : wii > 1=2 for all i 2 V ,

� Network communication constraint: if (i; j) =2 E, then wij = 0 ,

� For any link (i; j) 2 E we havewij 2 Q+ , where Q+ is the set of rational
numbers in the interval (0; 1).

These are also su�cient conditions for the linear system (4.1) to converge. The
restriction of the weights to the class of rational numbers is justbecause of a technical
reason to prove convergence results.

We now state the main result of this chapter which will be proved in the following
subsections.

Main Convergence Result 1. Consider the quantized system(4.12). Suppose
that Assumption 1 holds. Then for any initial value x(0), there is a �nite time
iteration where either

1. the system reaches quantized consensus, or

2. the nodes' values cycle in a small neighborhood around theaverage, where the
neighborhood can be made arbitrarily small by a decentralized design of the
weights (having trade-o� with the speed of convergence).

To highlight the importance of these results, notice that the Main Conver-
gence Result1 implies there is an iteration k0 such that x i (k) � x j (k) < 1 for
all i; j 2 V for k � k0. This gives a constant upper bound on the metric
d1 (W) = sup x (0) d1 (W; x(0)) independent of initial values, i.e., due to Assump-
tion 1, d1 (W) � 0:5 on any general graph and for any initial conditions.

4.5.3 Cyclic States

We study in this subsection the convergence properties of the system equation (4.12)
under Assumption 1. Let us �rst show that due to quantized communication, the
states of the agents lie in a discrete set. Sincewij 2 Q+ for any link (i; j), we can
write

wij =
aij

bij
;

where aij and bij are co-prime positive integers. Suppose thatB i is the Least
Common Multiple (LCM) of the integers f bij ; (i; j) 2 E; j 2 N i g. Let ci (k) =

80 Chapter 4. Quantized Communication in Consensus Protocols

x i (k) � b x i (k)c; then we haveci (k) 2 [0; 1). Let us see howci (k) evolves:

ci (k) = x i (k) � b x i (k)c

= x i (k � 1) +
X

j 2 N i

wij � (bx j (k � 1)c � b x i (k � 1)c)

� b x i (k)c

= bx i (k � 1)c + ci (k � 1)

+
X

j 2 N i

aij

bij
� (bx j (k � 1)c � b x i (k � 1)c) � b x i (k)c

= ci (k � 1) +
Z (k)
B i

; (4.20)

whereZ (k) 2 Z is an integer. Then with a simple recursion, we can see that for any
iteration k we have:

ci (k) = ci (0) +
~Z (k)
B i

; (4.21)

where ~Z (k) 2 Z. Sinceci (k) 2 [0; 1), this equation shows that the states of the nodes
are quantized, and the decimal part can have maximumB i quantization levels.

We now give the following de�nition,

De�nition 4. The quantized system(4.12) is cyclic if there exists a positive integer
P and a �nite time k0 such that

x(k + P) = x(k) 8k � k0;

whereP is the cycle period.

Proposition 10. Suppose Assumption1 holds. Then, the quantized system(4.12),
starting from any initial value x(0), is cyclic.

Proof. Let m(k) and M (k) be de�ned as follows:

m(k) , min
i 2 V

bx i (k)c; M (k) , max
i 2 V

bx i (k)c: (4.22)

Notice that for any k, we have

x i (k + 1) = x i (k) +
X

j 2 N i

wji L ji

� ci (k) + bx i (k)c +

0

@
X

j 2 N i

wji

1

A (M (k) � b x i (k)c)

� ci (k) + M (k);

from which it follows that bx i (k + 1) c � M (k), and henceM (k + 1) � M (k). By
a simple recursion we can see that the maximum cannot increase,M (k) � M (0).
Similarly, we have m(k) � m(0).

4.5. Design and Analysis of the System 81

As a result, bx i (k)c 2 f m(0); m(0)+1 ; : : : ; M (0) � 1; M (0)g is a �nite set. Moreover,
from equation (4.21), ci (k) belongs to a �nite set that can have at mostB i elements.
Sincex i (k) = bx i (k)c+ ci (k), and each of the elements in the sum belongs to a �nite
set, x i (k) belongs to a �nite set as well (of maximum cardinality B i (M (0) � m(0) +
1)). But from equation (4.12), we have x(k + 1) = f (x(k)) where the function
f (:) is a deterministic function of the input state at iteration k, so the system is a
deterministic �nite state automata. Since the system is deterministic, it would enter
a cycle if the same state is reached at two di�erent iterations. The total number of
states is upper bounded byD = (B (M (0) � m(0) + 1)) n where B = max i B i , and
the system enters a cycle in �nite time T � D because ifT > D , then at least one
state is repeated.

4.5.4 Lyapunov Stability

In this subsection, we will study the stability of the above system using a Lyapunov
function. Assumption 1 and Eq. (4.21) imply that there exists a �xed 3 strictly
positive constant
 > 0 such that for any i and any iteration k the following hold:

If ci (k) >

0

@
X

j 2 N i

wij

1

A , then ci (k) �
X

j 2 N i

wij � 2
; (4.23)

If �ci (k) >

0

@
X

j 2 N i

wij

1

A , then �ci (k) �
X

j 2 N i

wij � 2
; (4.24)

�ci (k) � 2
; (4.25)
1
2

�
X

j 2 N i

wij � 2
; (4.26)

where �ci (k) = 1 � ci (k). Let
 max be the maximum
 that satis�es equations (4.23)-
(4.26). The results thereafter hold for any
 2 (0;
 max].

Remark: Equations (4.23)-(4.25) do not hold for the simple linear model of
(4.1). For example, consider a linear model that does not reach consensus in �nite
time, and suppose thatxave 2 Z. Then, since lim k!1 x i (k) = xave, we have that
ci (k) can be as close to1 as desired, and hence we cannot bound�ci (k) by a �xed
positive value.

In fact, equations (4.23)-(4.25) show the discrete nature of the quantized system
where ci (k) can only take �nite possible values. We will use these equations to
de�ne a closed interval (set) I = [a; b] having the property that if x i (k) 2 I , then
x i (k) is an interior point in this interval with a distance at least
 far from its
boundaries. Having a �xed distance
 from the boundaries will play an important
role in the stability analysis in what follows because it shows that if a node's variable
got out of the interval, it must pass at least a distance
 , i.e., suppose thatx i (k) 2 I

3By `�xed' we mean that the value is independent of time and it o nly depends on initial values
and the network structure.

82 Chapter 4. Quantized Communication in Consensus Protocols

but x i (k + 1) =2 I , then d(x i (k + 1) ; I) � j x i (k + 1) � x i (k)j �
 where d(x; I) =
miny2 I jx � yj is the distance of the node's variablex from the interval I .

Let m(k) and M (k) be de�ned as in (4.22). Let us de�ne the following set:

Sk = f y 2 Rn ; jyi � m(k) � 1j � � i for all i g; (4.27)

where � i = 1 � wii +
 . Note that

� i = 1 � wii +

=
X

j 2 N i

wij +

�
1
2

�
;

where the last inequality is due to Eq. (4.26), and thus � i 2 (0; 1=2). The set Sk

depends on the iterationk because the valuem does. Since according to the system
(4.12), m(k) cannot decrease andM (k) cannot increase as indicated earlier, thenSk

can only belong to one of theM (0) � m(0) possible compact sets at each iteration
k. Furthermore, if Sk changes to a di�erent compact set due to an increase inm,
it cannot go back to the old one asm cannot decrease. Additionally, if x(k) 2 Sk ,
then it is an interior point of the set Sk and not on the boundary because suppose
jx i (k) � m(k) � 1j = � i , then either ci (k) = � i =

P
j 2 N i

wij +
 which contradicts
(4.23) or �ci (k) = � i =

P
j 2 N i

wij +
 which contradicts (4.24).
Let us de�ne the following candidate Lyapunov function:

V (k) = d(x(k); Sk)

= min
y 2 Sk

jj y � x(k)jj1

= min
y 2 Sk

X

i 2 V

jyi � x i (k)j (4.28)

By minimizing along each component ofy independently, we get

V (k) =
X

i

maxfj x i (k) � m(k) � 1j � � i ; 0g:

Let us determine the change in the proposed candidate Lyapunov function. In
order to understand the evolution of r Vk = V(k + 1) � V (k), we group the nodes
depending on their values at iteration k into 6 sets, X 1(k), X 2(k), X 3(k), X 4(k),
X 5(k), and X 6(k) (see Fig.4.3):

� Node i 2 X 1(k) if m(k) � x i (k) < m (k) + 1 � � i ,

� Node i 2 X 2(k) if m(k) + 1 � � i � x i (k) < m (k) + 1 ,

� Node i 2 X 3(k) if m(k) + 1 � x i (k) � m(k) + 1 + � i ,

� Node i 2 X 4(k) if m(k) + 1 + � i < x i (k) < m (k) + 2 ,

4.5. Design and Analysis of the System 83

Figure 4.3: Dividing the nodes into sets according to their local values.

� Node i 2 X 5(k) if m(k) + 2 � x i (k) < m (k) + 2 + � i ,

� Node i 2 X 6(k) if m(k) + 2 + � i � x i (k).

For simplicity we will drop the index k in the notation of the sets and m(k) when
there is no confusion. To have better insights about these sets, we note that if X 6

becomes empty at a given iteration, then the set remains empty, i.e.,

Lemma 5. If X 6(k0) = � , then X 6(k) = � for all k � k0.

Proof. If a node i =2 X 6(k), then bx i (k)c 2 f m(k); m(k) + 1 ; m(k) + 2 g. So for any
node i ,

x i (k + 1) = x i (k) +
X

j 2 N i

wij L ji

< m (k) + 2 + � i

where the last equality is due to three possibilities,

� if bx i (k)c = m(k)+2 , then L ji � 0 for every j 2 N i , and x i (k) < m (k)+2+ � i

sincei 2 X 5 in this case;

� if bx i (k)c = m(k) + 1 , then
P

j 2 N i
wij L ji �

P
j 2 N i \ X 5

wij � � i , and x i (k) <
m(k) + 2 in this case;

� if bx i (k)c = m(k), then
P

j 2 N i
wij L ji �

P
j 2 N i

wij � 2 � 2� i , and x i (k) <
m(k) + 1 in this case.

Therefore, sincem(k) � m(k+1) , then x i (k+1) < m (k+1)+2+ � i and i =2 X 6(k+1)
from the de�nition of the sets and this ends the proof.

84 Chapter 4. Quantized Communication in Consensus Protocols

Note that by a similar reasoning as in Lemma5, if f X 5; X 6g got empty, then
it remains empty during all further iterations, and if f X 4; X 5; X 6g got empty it
remains empty too.

With every iteration, nodes can change their sets. Note that any nodecan jump
in one iteration to a higher set, but the other way around is not always possible.
For example, a node at iterationk in X 1 can jump at iteration k + 1 to X 6, but no
node outsideX 1 can get back to it (if the minimum m(k) is not increased) as we
will show next.

Lemma 6. If m(k + 1) = m(k) and i =2 X 1(k), then i =2 X 1(k + 1) .

Proof. Let us de�ne L k
i be the level of nodei at iteration k, i.e., L k

i = bx i (k)c� m(k).
Then,

x i (k + 1) = x i (k) +
X

j 2 N i

wji L ji

� ci (k) + bx i (k)c + (
X

j 2 N i

wji)(m(k) � b x i (k)c)

= ci (k) + L k
i + m(k) + (

X

j 2 N i

wji)(� L k
i)

= m(k) + ci (k) + wii L k
i

� m(k) + 1 � � i

� m(k + 1) + 1 � � i ;

and i =2 X 1(k + 1) . The inequality before the last one is due to two possibilities,

� if i 2 X 2(k) then L k
i = 0 , and m(k) + ci (k) = x i (k) � m(k) + 1 � � i ,

� otherwise L k
i � 1, so m(k) + ci (k) + wii L k

i � m(k) + wii � m(k) + 1 � � i .

Therefore, due to Lemma6 the increaseV(k) is due to nodes changing to a higher
set. However, any node changing its set to a higher one, should have neighbors in
the higher sets that causeV(k) to decrease by at least the same amount. To make
this a formal argument we give the following lemma:

Lemma 7. Consider the quantized system(4.12). Suppose that Assumption1 holds.
If m(k + 1) = m(k), we have

r Vk � 0:

Proof. We de�ne r i Vk as follows:

r i Vk , maxfj x i (k + 1) � m � 1j � � i ; 0g

� maxfj x i (k) � m � 1j � � i ; 0g; (4.29)

4.5. Design and Analysis of the System 85

from which it is evident that r Vk =
P

i 2 V r i Vk : Since only nodes moving from a
set X s to a higher set X t where t � maxf s;4g can increaseV(k) (we will use the
expressionX s ! X t to denote the transition of a node that belongs to the setX s at
iteration k to the set X t at iteration k + 1), then we can enumerate all the possible
transitions of nodes that can causeV(k) to increase:

1. X 1(k) ! X t (k + 1) ; t � 4,

r i Vk = max fj x i (k + 1) � m � 1j � � i ; 0g � maxfj x i (k) � m � 1j � � i ; 0g

= (x i (k + 1) � m � 1 � � i) � (1 + m � x i (k) � � i)

= x i (k) +
X

j 2 N i

wij (bx j (k)c � b x i (k)c) � m � 1 � m � 1 + x i (k)

=
X

j 2 N i

wij L ji � 2(m + 1 � x i (k))

=
X

j 2 N i

wij L ji � 2�ci (k)

=
X

j 2 N i

wij L ji � 2(� i (k) � � i (k) + �ci (k))

= (
X

j 2 N i \f X 3 ;X 4g

wij) + (
X

j 2 N i \ X 5

wij � 2) + (
X

j 2 N i \ X 6

wij L ji)

� 2(
X

j 2 N i

wij +
 + (�ci (k) � � i))

� (
X

j 2 N i \ X 6

wij L ji)

| {z }
� 0

� 4
: (4.30)

2. X 2(k) ! X t (k + 1) ; t � 4, and the change in the Lyapunov function due to

86 Chapter 4. Quantized Communication in Consensus Protocols

these nodes is as follows:

r i Vk = max fj x i (k + 1) � m � 1j � � i ; 0g

� maxfj x i (k) � m � 1j � � i ; 0g

= (x i (k + 1) � m � 1 � � i) � 0

= x i (k) +
X

j 2 N i

wij L ji � m � 1 � � i

=
X

j 2 N i

wij L ji � � i � �ci (k)

= (
X

j 2 N i \f X 3 ;X 4g

wij) + (
X

j 2 N i \ X 5

wij � 2)

+ (
X

j 2 N i \ X 6

wij L ji) �
X

j 2 N i

wij �
 � �ci (k)

� (
X

j 2 N i \ X 5

wij)

| {z }
� 0

+ (
X

j 2 N i \ X 6

wij L ji)

| {z }
� 0

� 2
: (4.31)

3. X 3(k) ! X t (k + 1) ; t � 4, then

r i Vk = x i (k) +
X

j 2 N i

wij L ji � m � 1 � � i

=
X

j 2 N i

wij L ji � (� i � ci (k))

= (
X

j 2 N i \f X 1 ;X 2g

wij � (� 1)) + (
X

j 2 N i \ X 5

wij)

+ (
X

j 2 N i \ X 6

wij L ji) � (� i � ci (k))

� (
X

j 2 N i \ X 5

wij)

| {z }
� 0

+ (
X

j 2 N i \ X 6

wij L ji)

| {z }
� 0

�
: (4.32)

4. X 4(k) ! X t (k + 1) ; t � 4, then

r i Vk =
X

j 2 N i

wij L ji

�

0

@
X

j 2 N i \ X 5

wij

1

A

| {z }
� 0

+

0

@
X

j 2 N i \ X 6

wij L ji

1

A

| {z }
� 0

:

4.5. Design and Analysis of the System 87

5. X 5(k) ! X t (k + 1) ; t � 5, then

r i Vk =
X

j 2 N i

wij L ji

=

0

@
X

j 2 N i \ X 6

wij L ji

1

A

| {z }
� 0

+

0

@
X

j 2 N i ;j =2 X 6

wij L ji

1

A

| {z }
� 0

:

6. X 6(k) ! X 6(k + 1) , then

r i Vk =
X

j 2 N i

wij L ji

=

0

@
X

j 2 N i \ �X i
6

wij L ji

1

A

| {z }
� 0

+

0

@
X

j 2 N i ;j =2 �X i
6

wij L ji

1

A

| {z }
� 0

:

where the set �X i
6 is the set of nodes such thatj 2 �X i

6 if x j (k) � x i (k).
Notice that the positive component in r Vk because of a nodes belonging to one

of the presented6 possibilities is only due to a neighborp in f X 5(k); X 6(k)g such
that xp(k) � xs(k). Then p can belong to two possible sets:X 5 or X 6.

Suppose �rst that p 2 X 6(k), let A be the increase inr sVk , then this increase
is as follows:

A = wpsL ps > 0;

but this increase is decreased again inr pVk since a node inX 6(k) cannot drop
below X 4(k + 1) , we can write:

r pVk = max fj xp(k + 1) � m � 1j � � p; 0g

� maxfj xp(k) � m � 1j � � p; 0g

= (xp(k + 1) � m � 1 � � p) � (xp(k) � 1 � m � � p)

= xp(k) +
X

j 2 Np

wjp L jp � xp(k)

= wspL sp| {z }
� A

+
X

j 2 Np �f sg

wjp L jp :

Taking the other case, suppose nowp 2 X 5, let B be the increase inr sVk of a
node s due to its neighbor p 2 X 5:

B = wsp > 0;

then this increase is decreased again inr pVk , but we should consider two cases:

88 Chapter 4. Quantized Communication in Consensus Protocols

� p: X 5 ! X m ; m � 4, then

r pVk = wpsL sp| {z }
�� B

+
X

j 2 Np �f sg

wjp L jp ; (4.33)

� p: X 5 ! X 3, then

r pVk � � 1=2

� �
X

j 2 Np

wpj

= � wps| {z }
� B

�
X

j 2 Np �f sg

wjp ;

and p decreases in the same amount that its neighbors increased.
Remark: For every positive value that increasesV(k), there is a unique corre-

sponding negative value that compensates this increase by decreasingV(k). This is
because for any linkl � (i; j) 2 E , the increase in r i Vk due to l forces a decrease in
r j Vk due to the same link, and so there is one to one mapping betweenthe increased
values and the decreased ones.

As a result of the discussion we can have the totalr Vk cannot increase, namely

r Vk =
X

i

r i Vk � 0:

Lemma 7 implies that V (k) is non-increasing with time. We identify some
situations under which V (k) strictly decreases (assuming of coursem(k + 1) =
m(k)). Given for example a node i 2 X 1(k) that is connected to a node
j 2 f X 3(k); X 4(k); X 5(k); X 6(k)g, if i jumped to X t (k + 1) ; t � 4, then the term
� 4
 from equation (4.30) causes strict decrease inV (k), i.e., r Vk � � 4
 . If
i 2 X t (k+1) ; t < 4, then x i (k+1) = x i (k)+ wij (bxs(k)c� m)+

P
s2 N i � j wis (bxs(k)c�

m) � x i (k) + wij and thus

r i Vk � � minf wij ; d(x i (k); [m + 1 � � i ; m + 1 + � i])g � � minf �;
 g;

where d(x i (k); [m + 1 � � i ; m + 1 + � i]) is the distance of x i (k) from the set
[m + 1 � � i ; m + 1 + � i] and � = min (i;j)2 E wij > 0. This decrease inr i Vk causes
r Vk to decrease by the same quantity. Another situation can arise if, for exam-
ple, a node i 2 X 2(k) is connected to a nodej 2 f X 4(k); X 5(k); X 6(k)g. If i
jumped to X t (k + 1) ; t � 4, then the term � 2
 from equation (4.31) causes a strict
decrease inV (k), i.e., r Vk � � 2
 . If i 2 X t (k + 1) ; t < 4 (and so is any neigh-
bor in f X 2(k); X 3(k)g of j), then x j (k + 1) = x j (k) + wij (bx i (k)c � b x j (k)c) +P

s2 N j � i wsj (bxs(k)c � b x j (k)c) � x j (k) � wij +
P

s2 N j � i wsj (bxs(k)c � b x j (k)c)
and thus a term � minf wij ; d(x j (k); [m + 1 � � j ; m + 1 + � j])g appears in r j Vk

which causesr Vk � � minf �;
 g.

4.5. Design and Analysis of the System 89

Based on the discussion so far, we can now present two situations (and a third
situation a bit later) under which V (k) is strictly decreasing. These situations will
play an important role in the proof of the main result.

� Situation 1 (S1) occurs if at iteration k there exists a link in the network
between a nodej 2 f X 4 [X 5 [X 6g and a nodei 2 f X 1 [X 2g, in this case
we have,

r Vk � � minf
; � g; (4.34)

where � = min (i;j)2 E wij > 0:

� Situation 2 (S2) occurs if at iteration k there exists any link in the network
between a nodej 2 X 5 [X 6 and a nodei 2 X 3, in this case we have,

r Vk � � minf � i � ci (k); wij g

� � minf
; � g: (4.35)

4.5.5 Proof of Main Result

To show that V (k) is eventually decreasing, we have to introduce some more nota-
tion. Let

R(k0) = min f k � k0; k > k 0; r Vk � � � g;

where � > 0 is a positive constant. Notice that if either S1 or S2 occurs at time
T0 > k 0, then R(k0) � T0 � k0 by considering � = min f
; � g, i.e., R(k0) is upper
bounded by the minimum time for at least one of the two situations to occur. We will
show that if there exists at least one node inf X 4; X 5; X 6g at k0 and m(k) = m(k0)
for k < R (k0) + k0, then we can have a �xed upper bound onR(k0). If we looked
at the values of the nodes in the network at any iteration k0, we can see that if
k < k 0 + R(k0), the network has a special structure: only nodes inf X 1; X 2; X 3g
have links between each other, nodes inX 3 can also have links toX 4, but not to
f X 5; X 6g. Nodes inf X 5; X 6g can only be connected toX 4 (see Fig.4.4). Moreover,
the values of nodes inX 3 cannot increase due to the link betweenX 3 and X 4. To
see this, let i 2 X 3 and s 2 X 4 where s 2 N i . Then we have:

x i (k + 1) = x i (k) + wis L si +
X

j 2 N i �f sg

wij L ji ;

but since bx i (k)c = bxs(k)c, we have L is = 0 and thus x i (k + 1) = x i (k) +P
j 2 N i �f sg wij L ji , so nodes inX 4 do not have any e�ect on nodes inX 3 and the

values of nodes inX 3 cannot increase for allk < k 0 + R(k0) (we will get back to
this issue later).

To �nd the number of iterations for a dotted (red) link to appear, we de�ne the
following function for nodes in f X 1; X 2; X 3g:

f (i; k) =

(
1 if i 2 f X 1(k); X 2(k)g;

0 if i 2 X 3(k);
(4.36)

90 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.4: The solid lines (blue links) identify the network structure at any iteration
k0 � k < k 0 + R(k0), while if a dotted link (in red) appears, then V(k) strictly
decreases.

and let Ti (k0; k) be the number of times a nodei is in f X 1; X 2g in the time interval
betweenk0 and k, i.e.,

Ti (k0; k) =
t= kX

t= k0

f (i; t):

In fact, we can partition the nodes in f X 1; X 2; X 3g depending on their distance
to nodes in X 4. Let r i be the shortest path distance from a nodei 2 f X 1; X 2; X 3g
to the set X 4 (i.e., r i = min j 2 X 4 r ij where r ij is the number of hops following the
shortest path from i to j). We de�ne the set Du whereu = 1 ; : : : ; r and r = max i r i

as the set of nodes such thati 2 Du if and only if u = r i . For example,D1 contains
nodes that have direct neighbors inX 4, D2 contains the nodes that do not have
direct neighbors in X 4 but there is a node in X 4 found 2 hops away, and so on.
Moreover, for any nodei 2 Du such that u > 1, we can �nd at least one neighbor
j 2 Du� 1. Let P(i) be any one of these neighbors, referred to as the parent ofi .
It is important to note that any node in Du remains in the set as long as non of
the situation has occurred, i.e., the setsDu for u = 1 ; : : : ; r considered at iteration
k0 do not change their elements fork0 � k < k 0 + R(k0). We can now obtain the
following lemma:

Lemma 8. If f X 4; X 5; X 6g 6= � at an iteration k0, and m(k) = m(k0) for k0 � k <
k0 + R(k0), then for any integer N 2 N: if

Ti (k0; k) � N �
�

� P (i)

wiP (i)
+ 1

�
;

then
TP (i) (k0; k) � N:

Proof. The proof is based on the observation we mentioned earlier. For any node
s 2 X 3, its neighbors in X 4 do no have any e�ect onxs(k + 1) and it cannot have
any neighbor in f X 5; X 6g otherwise one of the situations (S1 or S2) occurs and
contradicts the assumption k < k 0 + R(k0). Therefore, the decrease of the nodes

4.5. Design and Analysis of the System 91

from X 3 to X 2 can only be due to its neighbors inf X 1; X 2g. Let i 2 f X 1; X 2g be
a neighbor of nodes, then

xs(k + 1) = xs(k) +
X

j 2 N s

wjs L js

= xs(k) + wis � (� 1) +
X

j 2 N s \f X 1 ;X 2g�f i g

wjs L js

� xs(k) � wis

= 1 + m + cs(k) � wis ;

and the nodes can either drop to X 2 or stay in X 3 depending on the resulting value
xs(k + 1) . And since cs(k) � � s and xs(k + 1) cannot increase ifs was in X 3 at
iteration k, then we are sure that if i was in f X 1; X 2g for more than � s

wis
iterations

(i.e., Ti (k0; k) � � s
wis

+1), then s has dropped toX 2 at least once (i.e.,Ts(k0; k) � 1).
Thus sinceP(i) 2 N i , we have

Ti (k0; k) �
�

� P (i)

wiP (i)
+ 1

�
=) TP (i) (k0; k) � 1: (4.37)

If Ti (k0; kN) � N �
�

� P (i)

wiP (i)
+ 1

�
, then we can �nd N � 1 iterations,

k1; k2; : : : ; kN � 1, such that

Ti (kv� 1; kv � 1) �
�

� P (i)

wiP (i)
+ 1

�
for v = 1 ; : : : ; N:

By (4.37), we haveTP (i) (kv� 1; kv � 1) � 1. Therefore,

TP (i) (k0; k) =
N � 1X

v=1

TP (i) (kv� 1; kv � 1) + TP (i) (kN � 1; k)

�

N � 1X

v=1

1

!

+ 1

� N;

and the lemma is proved.

Now we show that there is a �xed upper bound on the time for either of the
situations to occur,

Lemma 9. If f X 4; X 5; X 6g 6= � at an iteration k0, and m(k) = m(k0) for k � k0,
then

R(k0) � n
�

1 +
1
2�

� n� 1

;

where � = min (i;j)2 E wij is a positive constant (� > 0).

92 Chapter 4. Quantized Communication in Consensus Protocols

Proof. Notice �rst that for any iteration �k � k0, if Ti (k0; �k) � 1 where i 2 D1, then
situation 1 has occurred andR(k0) � �k � k0.

Moreover, sincem(k) = m(k0) for k � k0, then at every iteration k there is at
least one node inf X 1; X 2g, leading to

X

i 2f X 1 ;X 2 ;X 3g

Ti (k0; k) � k � k0:

Let �k = k0 + n
�
1 + 1

2�

� n� 1; then we have

X

i 2f X 1 ;X 2 ;X 3g

Ti (k0; �k) � n
�

1 +
1
2�

� n� 1

;

and there must be a nodei 2 Du in this sum such that

Ti (k0; �k) �
�

1 +
1
2�

� n� 1

:

Without loss of generality, we can suppose1
2� 2 N. So applying Lemma8, we can

see that

Ti (k0; �k) �
�

1 +
1
2�

� n� 1

�
�

1 +
� P (i)

wiP (i)

�
�

�
1 +

1
2�

� n� 2

;

=
�

1 +
� P (i)

wiP (i)

�
� N;

where N =
�
1 + 1

2�

� n� 2, which implies

Tj (k0; �k) �
�

1 +
1
2�

� n� 2

;

where j = P(i) and j 2 Du� 1. Doing this recursively (u � 1 times), we see that
there is a nodes 2 D1 such that,

Ts(k0; �k) �
�

1 +
1
2�

� n� u

;

but since u � r � n, we have Ts(k0; �k) � 1 which means situation S1 occurred
becauses 2 D1. Therefore,

R(k0) � �k � k0

� n
�

1 +
1
2�

� n� 1

;

and the lemma is proved.

4.5. Design and Analysis of the System 93

We also need the following lemma,

Lemma 10. Suppose Assumption1 holds. Let � = min f
; � g, then for the quantized
system (4.12), at any time k0, there is a �nite time k1 � k0 such that for k � k1,
either f X 4; X 5; X 6g = � or m(k) > m (k0). Moreover,

k1 � k0 + n
�

V (k0)
�

+ 1
� �

1
2�

+ 1
� n� 1

:

Proof. Let us prove it by contradiction. Suppose that f X 4; X 5; X 6g 6= � and m(k) =
m(k0) for k � k0. Therefore we can apply Lemma9 to show that there is an upper
bound R(k0) for situations S1 or S2 to occur. Whenever one of the situations occurs,

we haver Vk � � � , otherwise r Vk � 0. For k > k 0 + n
�

V (k0)
� + 1

� � 1
2� + 1

� n� 1,

we have that situations S1 or S2 have occurred at least
�

V (k0)
� + 1

�
times; then

V(k) � V (k0) � � �
�

V (k0)
�

+ 1
�

� � � < 0;

which is a contradiction sinceV(k) � 0 is a Lyapunov function. As a result, there

exists an iteration k1 satisfying k1 � k0 + n
�

V (k0)
� + 1

� � 1
2� + 1

� n� 1 such that for

k � k1, either f X 4; X 5; X 6g = � or m(k) > m (k0).

We are now ready to prove the following propositions,

Proposition 11. Consider the quantized system(4.12). Suppose that Assump-
tion 1 holds. Then for any initial value x(0), there is a �nite time iteration where
f X 4; X 5; X 6g = � .

Proof. The value m(k) cannot increase more thanM (0) � m(0) number of times
becauseM (k) is non-increasing. Therefore, applying Lemma10 for M (0) � m(0)
times, we see thatf X 4; X 5; X 6g = � in a �nite number of iterations.

Proposition 11 shows that in fact the nodes are restricted in a �nite number of
iterations to the sets f X 1; X 2; X 3g. In fact, we can even show a stronger result,
that either X 1 or X 3 can be nonempty, but not both. This is given in the next
proposition.

Proposition 12. Consider the quantized system(4.12). Suppose that Assumption1
holds. Then for any initial value x(0), there is a �nite time iteration where either
f X 3; X 4; X 5; X 6g = � or f X 1; X 4; X 5; X 6g = � .

Proof. Due to Proposition 11, we can �nd a �nite time T such that f X 4; X 5; X 6g =
� . Without loss of generality, we considerT = 0 . In fact, a third situation that can
strictly decreaseV(k) occurs when there is a link between a node inX 1 and a node
in X 3. Fig. 4.5 shows the network structure. If Situation 3 (S3) occurs and(ij) 2 E

94 Chapter 4. Quantized Communication in Consensus Protocols

Figure 4.5: The solid lines (blue links) identify the network structure at any iteration
k0 � k < k 0 + R(k0), while if the dotted link (in red) appears, then V(k) strictly
decreases.

where i 2 X 1 and j 2 X 3, then

r Vk � � minf �ci (k) � � i ; wij g

� � minf
; � g: (4.38)

In fact, similar to the reasoning along this subsection, we can bound the number of
iterations for S3 to occur. The bound is exactly the same as the one developed for
the other situations. Instead of repeating the derivations, the proof reads roughly
the same starting from the beginning of Subsection4.5.5 but by replacing X 1, X 2,
and X 3 by � , replacing X 2 by X 3, replacing X 3 by X 2, replacing X 4 by X 1, and
�nally replacing the condition m(k) = m(k0) by X 3 6= � . Thus, Lemma 10 will read
as follows: Suppose Assumption1 holds. Let � = min f
; � g, then for the quantized
system (4.12), at any time k0, there is a �nite time k1 � k0 such that for k � k1,
either X 1 = � or X 3 = � . This ends the proof.

Proposition 13. Consider the quantized system(4.12). Suppose that Assumption1
holds and let � = max i � i . Then for any initial value x(0), there is a �nite time
iteration where either

� the values of nodes are cycling in a small neighborhood around the average
such that : (

jx i (k) � x j (k)j � � i + � j for all i; j 2 V

jx i (k) � xavej � 2� for all i 2 V;
(4.39)

� or the quantized values have reached consensus, i.e.,

(
bx i (k)c = bx j (k)c for all i; j 2 V

jx i (k) � xavej < 1 for all i 2 V:
(4.40)

Proof. The two possibilities are consequence of the two possible cases of Proposition
12,

� Casef X 1; X 4; X 5; X 6g = � . Then all nodes are inf X 2; X 3g and by the de�ni-
tion of the sets we havejx i (k) � x j (k)j � � i + � j for all i; j 2 V , so nodes are

4.6. Discussion 95

cycling (due to Proposition 10) around m + 1 . Moreover, since the average is
conserved from Eq. (4.9), we have:

jx i (k) � xavej = jx i (k) � xave(k)j

� j max
i

x i (k) � min
i

x i (k)j

� 2 max
i

� i

= 2 �;

� Casef X 3; X 4; X 5; X 6g = � . Then all nodes are inf X 1; X 2g and by the de�-
nition of the sets we have reached quantized consensus. Since for anyi and j
we haveci (k); cj (k) 2 [0; 1), then jx i (k) � x j (k)j < 1 and as in the above due
to Eq. (4.9), we havejx i (k) � xavej < 1.

4.6 Discussion

Propositions 10 shows that the uniform quantization on communications given by
the model of this chapter can have a very important cyclic property. Up to our
knowledge, this is the �rst work in deterministic quantized algorit hms that shows
this cyclic e�ect of nodes' values and it is also shown by Proposition13that the cyclic
values can be control by a simple distributed adjustment of the weights. This can
have an important impact on the design of quantized communication algorithms.4

For example, due to the cyclic e�ect, nodes can use the history of their values to
reach asymptotic convergence as the following proposition shows:

Corollary 1. Consider the quantized system(4.12). Suppose that Assumption1
holds. Then for any initial value x(0), if yi (k) is an estimate of the average at node
i following the recursion:

yi (k) =
k

k + 1
yi (k � 1) +

1
k + 1

x i (k); 8i 2 V; (4.41)

whereyi (0) = x i (0), then yi (k) is converging,

lim
k!1

yi (k) = y�
i ; 8i 2 V; (4.42)

having

jy�
i � xavej � 1:

4Pattern generation (as for cyclic systems) plays an importan t role in the design of many
mechanical and electrical systems [Bro97].

96 Chapter 4. Quantized Communication in Consensus Protocols

Proof. The state equation ofyi (k) for a nodei is give by

yi (k) =
k

k + 1
yi (k � 1) +

1
k + 1

x i (k) =
1

k + 1

t= kX

t=0

x i (t)

=
1

k + 1

t= Tconv � 1X

t=0

x i (t)

!

+
1

k + 1

t= kX

t= Tconv

x i (t)

!

;

where Tconv is the �nite time iteration when the nodes' values start cycling. As k
approaches in�nity, the left part in the sum vanishes while the right part converges
to the average of the values in a cycle, i.e.,

lim
k!1

yi (k) = y�
i =

1
P

t= Tconv + P � 1X

t= Tconv

x i (t);

where P is the cycle period. Since fork � Tconv we havejx i (k) � xavej � 1 from
Proposition 13, then jy�

i � xavej � 1.

Moreover, since the �nal behavior of the system depends on the initial values as
shown by Proposition13, we give here a condition on the initial values for the nodes
to reach quantized consensus in networks:

Corollary 2. Consider the quantized system(4.12). Suppose that Assumption1
holds. If the initial values x(0) satisfy,

� � xave � b xavec � 1 � �; (4.43)

then the network reaches quantized consensus.

Proof. If the system was cyclic, then for any nodei 2 V , we have i 2 f X 1; X 2g,
so x i (k) 2 [m + 1 � � i ; m + 1 + � i]. This implies that xave(k) 2 [m + 1 � � i ; m +
1 + � i], but since the average is conserved (from equation (4.9)), it also implies
that xave 2 [m + 1 � � i ; m + 1 + � i]. From the latter condition, we see that if
� < x ave � b xavec < 1 � � , the system cannot be cyclic, and by Proposition13, it
must reach quantized consensus.

4.6.1 Design of Weights with Arbitrarily Small Error

If the system has reached quantized consensus, the values of the agents' agreement
variables become stationary and the deviation of these values fromthe average is no
larger than 1. In the case when the system does not reach quantized consensus but
becomes cyclic, Proposition13 shows that the deviation of nodes' values from the
average is upper bounded by2� where � = max i � i . Moreover the deviation can be
made arbitrarily small by adjusting the weights in a distribu ted manner. Toward
that end, we propose the following modi�ed Metropolis weights:

wij =
1

C (maxf di ; dj g + 1)
; 8(i; j) 2 E

wii = 1 �
X

j 2 N i

wij ; 8i 2 V

4.7. Simulations 97

where C is any rational constant such that C � 2. It can be easily checked that
the proposed weights satisfy Assumption1. Moreover, in addition to its distributed
nature, the choice ofC can be used to de�ne the error. Notice that for anyi 2 V ,
we have

wii = 1 �
X

j 2 N i

1
C (maxf di ; dj g + 1)

� 1 �
1
C

X

j 2 N i

1
di + 1

= 1 �
1
C

di

di + 1

= 1 �
1
C

+
1

C(di + 1)
;

then 1 � wii � 1
C � 1

C(di +1) , so

� i = 1 � wii +

�
1
C

�
1

C(di + 1)
+

Since
 can be chosen arbitrarily from the interval (0;
 max], by considering a small
enough
 the following holds

� �
1
C

:

This shows that given an arbitrary level of precision known to all the agents, the
agents can choose the weights with large enoughC in a distributed manner, so that
the neighborhood of the cycle will be close to the average with the given precision.
Notice that if xave 6= bxavec, then for � small enough, the system cannot be cyclic
and only quantized consensus can be reached (Corollary2). In other words, for
systems starting with di�erent initial values, having a smaller � leads more of these
systems to converge to quantized consensus (and of course if they cycled, they will
cycle in a smaller neighborhood as well due to Proposition13).

It is worth mentioning that this arbitrarily small neighborho od weight design
has a trade-o� with the speed of convergence of quantized consensus protocol (small
error weight design leads to slower convergence).

4.7 Simulations

In this section, we present some simulations to demonstrate the theoretical results
in the previous section. The weights for the simulations satisfy Assumption 1 and
are the modi�ed Metropolis weights with C = 2 , i.e.,

wij =
1

2 (maxf di ; dj g + 1)
8(i; j) 2 E:

98 Chapter 4. Quantized Communication in Consensus Protocols

125 127 129 131 133 135 137 139 141
43.6

43.7

43.8

43.9

44

44.1

44.2

44.3

44.4

44.5

Iteration

Lo
ca

l v
al

ue
s

of
 th

e
no

de
s

Cycle Period
 (4 iterations)

Figure 4.6: The nodes' values are entering into a cycle.

34 35 36 37 38 39 40
33.5

34

34.5

35

35.5

Iteration

Lo
ca

l v
al

ue
s

of
 th

e
no

de
s

Convergence Iteration

Figure 4.7: The nodes' values are converging.

4.7. Simulations 99

4.7.1 Simple Network

Proposition 13 shows that depending on the initial statex(0), the system reaches in
�nite time one of the two possibilities: 1) cyclic, 2)quantized consensus. We show
on a network of 10 nodes with initial values selected uniformly at random from the
interval [0; 100] that both of these are possible. Fig.4.6, shows that after a certain
iteration, the nodes' values enter into a cycle of period 4 iterations,while Fig. 4.7
shows that starting from di�erent initial values, all the 10 nodes reach quantized
consensus in �nite time. Mainly, at iteration 38, all nodes' valuesare between 34
and 35; therefore, we have

bx i (k)c = 34 8i = 1 ; : : : ; 10; 8k � 38:

4.7.2 Random Graphs

To further simulate our theoretical results, we need to select some network model.
The simulations are done on random graphs: Erdös-Renyi (ER) graphs and Random
Geometric Graphs (RGG), given that they are connected. The random graphs are
generated as follows:

� For the ER random graphs, we start from n nodes fully connected graph,
and then every link is removed from the graph by a probability1 � P and is
left there with a probability P. We have tested the performance for di�erent
probabilities P given that the graph is connected.

� For the RGG random graphs, n nodes are thrown uniformly at random on
a unit square area, and any two nodes within a connectivity radiusR are

connected by a link (the connectivity radius R is selected asR =
q

c � log(n)
n

where c is a constant that is studied by wide literature on RGG for connec-
tivity). We have tested the performance for di�erent connectivity rad ii given
that the graph is connected. It is known that for a small connectivity radius,
the nodes tend to form clusters.

Since Proposition13 shows that the system would reach one of the cases in �nite
time, let us de�ne Tconv be this time. Notice that if nodes enter the cyclic states
(case 1), the Lyapunov function is null because for alli 2 V and k � Tconv , we have
x i (k) 2 [m + 1 � � i ; m + 1 + � i] , so we can write,

V (k) = 0 8k � Tconv :

However, if nodes reached quantized convergence (case 2), then the Lyapunov func-
tion is a constant because for alli 2 V and k � Tconv , we havex i (k) 2 [m; m + 1] ,
so we can write,

V (k) = cte 8k � Tconv :

100 Chapter 4. Quantized Communication in Consensus Protocols

140 160 180 200 220 240 260

0

50

100

150

200

I te rat ion number

L
y

a
p

u
n

o
v

fu
n

c
ti

o
n

V
(k

)Cyclic System
Quantized Consensus

R (k 0)

V (k) = c te for k 6 T c onver g enc e

V (k) = 0 for k 6 T c onver g enc e

Figure 4.8: The system Lyapunov functionV (k).

4.7.2.1 Lyapunov Function

Fig. 4.8 shows the Lyapunov functions for the two di�erent cases on an RGG with
100 nodes andR = 0 :2146, where each case corresponds to initial values of nodes
selected uniformly at random from the interval [0; 100]. The �gure also showsR(k0)
which is the number of iterations after k0 up till V (k) decreases (S1 or S2 occurs).

4.7.2.2 Quantized Consensus

Given that we are considering Metropolis weights withC = 2 , then the system
satis�es (4.43) if initial states are such that xave � b xavec = 0 :5. We considered
RGG and ER graphs of 100 nodes, where the initial condition is chosen as follows:
the �rst 99 nodes are given uniformly random initial values from the interval [0; 100],
while the last node is given an initial value such thatxave � b xavec = 0 :5 is satis�ed.
Therefore, with these initial values, by applying Corollary 2, the system reaches
quantized consensus in �nite time Tconv . Table I shows the mean value over 100
runs of the Tconv for the RGG with di�erent connectivity radii, R1 < R 2 < R 3 <
R4 < R 5, where R 2 f 0:1357; 0:1517; 0:1858; 0:2146; 0:3717g. The results show that
the more the graph is connected, the faster the convergence. These results are also
shown to be true on ER graphs. Table II shows the mean value over 100runs of
the Tconv for the ER with di�erent probability P , P1 < P 2 < P 3 < P 4, where
P 2 f 0:04; 0:06; 0:08; 0:10g.

4.8 Conclusion

In this chapter, we studied the performance of deterministic distributed averaging
protocols subject to communication quantization. We have shown that depending

4.8. Conclusion 101

RGG n = 100
R1 R2 R3 R4 R5

Tconv 1965.3 1068.9 364.3 233.3 55.9

Table 4.1: Convergence time for Random Geometric Graphs (RGG) with di�erent
connectivity radii (averaged over 100 runs).

ER n = 100
P1 = 0 :04 P2 = 0 :06 P3 = 0 :08 P4 = 0 :10

Tconv 161.49 99.38 66.58 43.43

Table 4.2: Convergence time for Erdos Renyi (ER) with di�erent probabilities of
link existence (averaged over 100 runs).

on initial conditions, the system converges in �nite time to either a quantized con-
sensus, or the nodes' values are entering into a cyclic behavior oscillating in a small
neighborhood around the average. The size of this neghborhood can becontrolled
by a decentralized design of the weight matrix. We also provided conditions for
which quantized consensus is guaranteed.

Chapter 5

Reducing Communication
Overhead

Contents
5.1 System equation . 104

5.2 Related Work . 104

5.3 Motivation . 105

5.4 Our Approach . 107

5.4.1 A Centralized Algorithm . 107

5.4.2 Decentralized Environment 110

5.4.3 Message Reducing Algorithm. 112

5.4.4 Convergence Study. 115

5.4.5 Simulations . 118

5.5 Conclusion . 122

As demonstrated in the Introduction, the asymptotic convergence rate of con-
sensus protocols depends on the selected weights. In Chapter 1 we have proposed
an optimization problem that selects the weights in consensus protocols to achieve
fast asymptotic convergence rates. However, speeding up this rate doesnot auto-
matically reduce the number of messages that are sent in the network. The reason
is that the convergence is reached only asymptotically, and even if nodes' estimates
are very close to the average, nodes keep on performing the averaging and sending
messages to their neighbors.

In this chapter, we address this issue. We propose an algorithm that relies only on
limited local information to reduce communication overhead for average consensus.
As the nodes' estimates approach the true average, nodes exchange messages with
their neighbors less frequently. The algorithm has a nice self-adaptive feature: even
if it has already converged to a stable state and the message exchange rate is very
small, when an exogenous event leads the value at a node to change signi�cantly, the
algorithm detects the change and ramps up its communication rate. The proposed
algorithm provides also a trade-o� between the precision of the estimated average
and the number of messages sent in the network by setting one of its parameter.
Being totally decentralized, the message reduction algorithm can also be applied in
a dynamic network with faulty links.

104 Chapter 5. Reducing Communication Overhead

5.1 System equation

The system equation of this chapter at iterationk +1 , nodei updates its state value
x i :1

x i (k + 1) = wii x i (k) +
X

j 2 N i

wij x j (k): (5.1)

For a node i to have access to the values of its neighbors' variables, each node
j 2 N i should send the valuex j (k) to i before the iteration k + 1 takes place. The
communication overhead due to these messages can be a burden on the network if
the algorithm ran for a long time.

The matrix form equation is:

x(k + 1) = W x(k): (5.2)

In this chapter, we considerW to be n � n real doubly stochastic matrix having
� (W) < 1 where� (W) is the second largest eigenvalue in module ofW . We also con-
sider that W is constructed locally (e.g., using the Metropolis weights described in
Chapter 4). With these conditions on W , the convergence to the average consensus
is in general asymptotic:

lim
k!1

x(k) = xave1: (5.3)

Since average consensus is usually reached only asymptotically in (5.3), the nodes
will always be busy sending messages. LetN (k) be the number of nodes transmitting
at iteration k, so without a termination procedure all nodes are transmitting at
iteration k, N (k) = n independently from the current estimates. In this chapter we
present an algorithm that reduces communication overhead and providesa trade-o�
between precision of the consensus and number of messages sent.

5.2 Related Work

Some previous works considered protocols for average consensus protocol to termi-
nate (in �nite time) to converge to the exact average or to guaranteed error bounds.
For example, the approach proposed in [SH07] is based on theminimal polyno-
mial of the matrix W . The authors show that a node, by using coe�cients of this
polynomial, can calculate the exact average from its own estimate onK consecu-
tive iterations. The drawback is that nodes must have high memory capabilities to
store n � n matrix, and high processing capabilities to calculate the coe�cients of
the minimal polynomial by solving a set of n linearly independent equations. An-
other approach for �nite time termination is given in [YS07], where the proposed
algorithm does not calculate the exact average, but estimates are guaranteed to be
within a prede�ned distance from the average. This approach runs threeconsensus

1At one point in the simulations in this chapter, the topology of the network may change
dynamically. This is taken into account in (5.1) by letting the neighborhood and the weights be
time-dependent (then we have N i (k) and wij (k)).

5.3. Motivation 105

protocols at the same time: the average consensus which runs continuously and the
maximum and the minimum consensus restarted everyU iterations where U is an
upper bound on the diameter of the network. The di�erence between the maximum
and the minimum consensus provides a stopping criteria for nodes.

Under the assumption of asynchronous iterations, the authorsin [DRL11] pro-
posed an algorithm that leads to the termination of average consensus in �nite time
with high probability. In their approach, each node has a counterci that stores the
number of times the di�erence between the new estimate and the old one wasless
than a certain threshold � . When the counter reaches a certain value, sayC, the
node will stop initiating the algorithm. They proved that by a corr ect choice of
C and � (depending on some networks' parameters as the maximum degree in the
network, the number of nodes, and the number of edges) the protocol terminates
with high probability.

A major drawback of these algorithms �beside the memory requirements and
the robustness of the system to changes� is the assumption that each node should
know some global network parameters. This intrinsically contradicts the spirit of
distributed consensus protocols. Designing a decentralized algorithm for average
consensus that terminates in �nite time without using any global network informa-
tion (as the diameter of the network or the number of nodes) is stillan open problem
for which we prove a strong negative result in the next section.

5.3 Motivation

We address the problem of termination of average consensus in this chapter. We will
start by an impossibility result for termination of the average consensus protocol in
�nite time without using some network information.

Theorem 2. Given a static network where nodes run the synchronous consensus
protocol described by(5.1) and each node only knows its history of estimates, there
is no deterministic distributed algorithm that can correctly terminate the consensus
with guaranteed error bounds after a �nite number of steps forany set of initial
values.

Proof. The proof is conducted by contradiction where we show that there exists
a graph with speci�c initial state values which fails to terminate wi th guaranteed
error bounds. Consider a path graphG of three nodesa, b, and c as in Fig. 5.1
where the weight matrix is real and doubly stochastic with 0 � � (W) < 1 (so we
have waa; wcc > 0). Let xa(0), xb(0), and xc(0) be the initial estimates for the
nodes and consider� = xa (0)+ xb(0)+ xc (0)

3 , so with the average consensus protocol
using the synchronous iterations in (5.1), all nodes' estimates will converge to�
asymptotically:

lim
k!1

xa(k) = lim
k!1

xb(k) = lim
k!1

xc(k) = �:

We will prove the theorem by contradiction. Suppose there exists a termination
algorithm for nodes to use only the history of their estimates andterminate the

106 Chapter 5. Reducing Communication Overhead

Figure 5.1: Path graph G with 3 nodes.

Figure 5.2: Extended mirror graph ofG with 6 nodes andF = 2 fragments.

average protocol in �nite time within guaranteed error bounds. Then if we run
this algorithm on this graph, there exists an iteration K > 0 and � > 0 such that
node a (also true for b and c) decides to terminate at iteration K on the basis of
the history of its estimate: xa(0); xa(1); xa(2); :::; xa(K), and it is guaranteed that
jxa(K) � xavej < � , where xave = � .

We will de�ne the F extended mirror graph ofG to be a path with n = 3F nodes
a1; a2; :::; aF ; b1; b2; :::; bF ; c1; c2; :::; cF , formed by G1; G2; :::; GF (F graphs identical
to G) connected by additional links to form a path, the added links aref cl ; cl+1 g if
l is odd and f al ; al+1 g if l is even (e.g. the graph forF = 2 is shown in Fig. 5.2).
Let us assume �rst that the initial estimates for nodes in the subgraphs G1,...,GF

are identical to the estimates of the nodes in graphG (e.g. for node a we have
xa1 (0) = xa2 (0) = ::: = xaF (0) = xa(0)), the weight matrix for G1,...,GF is also
identical to the weight matrix of G except for nodes incident to the added links, if
f cl ; cl+1 g is an added link, then wcl cl = wcl +1 cl +1 = wcl cl +1 = wcc

2 and similarly if
f al ; al+1 g is an added link, then wal al = wal +1 al +1 = wal al +1 = waa

2 . Notice that on
the new generated graph we still havexave = � and also:

xa1 (k) = xa2 (k) = ::: = xaF (k) = xa(k) 8k � K;

so nodea1 applying the termination algorithm on the new graph will decide to
terminate after the same number of iterationsK . Consider now a valueF > K
and that the initial estimate of node cK +1 is changed toxcK +1 (0) = xc(0) + n(2� +

xa1 (K) � �) and the new average is nowxave = � +
xcK +1 (0) � xc (0)

n . The estimates
at node a1 would not change during the �rst K steps, then nodea1 would again
terminate at step K , but the error bound is no more guaranteed, becausejxa1 (K) �

xavej = jxa1 (K) � � �
xcK +1 (0) � xc (0)

n j = 2 � > � . This contradicts the fact that a1

terminates with guaranteed error bounds. The proof can be extended to include

5.4. Our Approach 107

any graph G, not just path graphs, by using the same technique of generating
extended mirror graphs ofG.

Theorem 1 shows that in general, nodes cannot stop executing the algorithm.
Motivated by this result, we investigate in what follows algorithms where nodes
can refrain from sending messages at every iteration (e.g. when estimates have not
changed signi�cantly during the recent iterations). We will then say that an algo-
rithm terminates when the number of messages sent in the network disappears at
least asymptotically, even if the nodes are still running the algorithm internally, i.e.,

lim
t !1

P t
k=1 N (k)

t
= 0 ; (5.4)

where N (k) is the number of nodes transmitting their estimate to their neighbors
at iteration k. In other words, the rate of messages in the network should decrease
as the estimates converge to the average consensus or to a bounded approximation.

5.4 Our Approach

Even if the nodes cannot terminate the algorithm in �nite time, we are interested
in reducing communication overhead by considering asymptotic termination of mes-
sages and by decreasing the rate of the messages sent in the network correspondingly
to estimates' improvement. For example, if nodes' estimates are widely di�erent,
the messages sent at a given iteration can signi�cantly reduce the errorby making
the estimates approach to the real average. However, when the estimates have �al-
most converged�, the improvement from each message in terms of error reduction
can be negligible. Up to our knowledge, this issue was not taken into account in
the related work literature. So from an engineering perspective, it is desirable that
nodes send more messages when they have large di�erences in their estimates,and
less messages when the estimates have almost converged. In what follows we�rst
present a centralized algorithm to provide the intuition of our approach and then
we describe a more practical decentralized solution.

5.4.1 A Centralized Algorithm

In this section, we discuss a simple centralized algorithm for termination of average
consensus protocols. We call it a centralized protocol because in this protocol there
are some global variables known to all the nodes in the network, and each node
can send a broadcast signal that triggers an averaging operation (5.1) at all nodes.
Then, if any of the nodes in the network sends this signal, all the nodes will respond
by sending the new estimates to their neighbors according to the averaging equation
(5.2):

x(t + 1) = W x(t): (5.5)

On the contrary, if no signal is sent, the nodes will preserve the same estimate:

x(t + 1) = x(t): (5.6)

108 Chapter 5. Reducing Communication Overhead

If the rate of broadcast signals converges to0, also the rate of the messages contain-
ing the estimates will converge to0 and asymptotically no node in the network will
transmit. As above we consider a time-slotted model wheret represents a discrete
time iteration.

We now introduce formally the algorithm. Let e(t) and � (t) be the values of
two global variables known to all the nodes at timet, such that e(0) = 0 , � (0) = � 0

and 0 � e(t) < � (t). As we are going to see, both the values of the two variables
cannot decrease. LetW be the weight matrix of the network satisfying convergence
conditions of average consensus andx(t) be the state vector of the system at iteration
t. We let L t be a Boolean variable (either true or false) de�ned at every iterationt
as:

L t : e(t � 1) + y(t � 1) < � (t � 1); (5.7)

where y(t � 1) = jjW x(t � 1) � x(t � 1)jj1 and with L 0 := F alse. Then y(t � 1)
stores the estimates change if the linear iterations (5.1) would be executed at step
t and L t evaluates if the change is negligible (L t = False) and then no message is
transmitted or not (L t = True). Di�erent actions are taken on the basis of theL t

value at timeslot t. We also de�ne the simple point process = f tk : k � 1g to be
the sequence of strictly increasing points

0 < t 1 < t 2 < ::: ;

such that t̂ 2 if and only if L t̂ = False. Let K (t) denote the number of points
of the set that falls in the interval]0; t], i.e., K (t) = max f k : tk � tg, with
K (0) := 0 . If L t is false, a broadcast signal is sent in the network and all nodes
will perform an averaging iteration; while if L t is true, then there is no signal in the
network, and the nodes keep the same estimate as the previous iteration. Network
variables of the centralized algorithm are changed at timet > 0 according to the
equations given in following table:

If L t is T rue If L t is F alse
K (t) = K (t � 1) K (t) = K (t � 1) + 1
x(t) = x(t � 1) x(t) = W x(t � 1)
e(t) = e(t � 1) + y(t � 1) e(t) = e(t � 1)
� (t) = � (t � 1) � (t) = � (t � 1) + � 0

(K (t � 1)+1) 2

When t =2 , we call t a silent iteration because the nodes have the same estimate
as the previous iteration (i.e., x i (t) = x i (t � 1)) and there is no need to exchange
messages of these estimates in the network. On the other hand, whent 2 , we call t
as a busy iteration because nodes will perform an averaging (i.e.,x(t) = W x(t � 1))
and the estimates must be exchanged in the network. Let� k be the number of silent
iterations betweentk and tk+1 , so we have that� k = tk+1 � tk � 1.2

After introducing this deterministic procedure, we show by the following lemma
that the messages according to this algorithm disappear asymptotically:

2 tk � tk � 1 is sometimes called thek th interarrival time in the context of point processes.

5.4. Our Approach 109

Proposition 14. For any initial condition x(0), the message rate of the centralized
deterministic algorithm described above disappears asymptotically, i.e.,

lim
t !1

P t
k=1 N (k)

t
= 0 ;

whereN (k) is the number of nodes transmitting messages at iterationk.

Proof. The number of nodes transmitting at an iteration t depends on the condition
L t . If t 2 , then N (t) = n (all nodes are transmitting messages), otherwise
N (t) = 0 (no nodes transmitting messages). Therefore,

tX

k=1

N (k) =
K (t)X

k=1

N (tk) = nK (t);

whereK (t) as described earlier is the number of busy iterations until timet. We will
consider two cases depending on the evolution ofK (t) as function of t. The simpler
case is whenlim t !1 K (t) � K < 1 (the number of busy periods is bounded,
e.g. nodes reach consensus in a �nite number of iterations), then sinceK (t) is
an increasing positive integer sequence, the proposition follows from the following
inequality and t ! 1 ,

0 �
P t

k=1 N (k)
t

�
nK

t
:

We consider now the other case, i.e.,lim t !1 K (t) = 1 . Notice that for any time
iteration t, we have

K (t)X

k=1

(tk � tk� 1) � t �
K (t)+1X

k=1

(tk � tk� 1);

or in other words
K (t)� 1X

k=0

(� k + 1) � t �
K (t)X

k=0

(� k + 1) :

So we have P t
k=1 N (k)

t
=

nK (t)
t

�
nK (t)

� K (t)� 1 + 1

We will prove now that the right hand side of the inequality goes to 0 as t diverges.
Sincelim t !1 K (t) = 1 , it is su�cient to prove that lim k!1 (� k + 1) =k = 1 . Let
z(k) = W x(tk) � x(tk), we can see that according to this algorithm,

� k = b
� (tk) � e(tk)

jjz(k)jj1
c

�
� (tk � 1) + � 0=k2 � e(tk � 1)

jjz(k)jj1
� 1

�
� 0

k2jj z(k)jj2
� 1: (5.8)

110 Chapter 5. Reducing Communication Overhead

The last inequality derives from the fact that for any iteration t we have� (t) > e(t),
and that for any vector v , the norm inequality jjv jj2 � jj v jj1 holds. Moreover,z(k)
evolves according to the following equation:

z(k) = (W � J)z(k � 1)

= (W � J)kz(0);

where J = 1=n11T , so
jjz(k)jj2 � C (� (W � J)) k ; (5.9)

where C = jjz(0)jj2 and � (W � J) = � (W) � 0 is the spectral radius of the
matrix W � J . We know that 0 < � < 1 (0 < � becauselim t !1 K (t) = 1 and
� < 1 becauseW satis�es the condition of a converging matrix. Putting everything
together, we get �nally that:

� k �
� 0

Ck2� k � 1; (5.10)

and
� k + 1

k
�

� 0

Ck3� k ;

hence(� k + 1) =k ! 1 as k ! 1 . Consequently, the rate of messages sent in the
network vanishes, namely

lim
t !1

P t
k=1 N (k)

t
= 0 :

Three main factors in the above algorithm cause the algorithm to be centralized:
the global scalare(t), the global scalar� (t), and the broadcast signal. In the follow-
ing sections, we will present a decentralized algorithm inspired by the centralized
one, but all global scalars are changed to local ones, and the nodes are not able to
send a broadcast signal to trigger an iteration.

5.4.2 Decentralized Environment

5.4.2.1 Modi�ed Settings

The analysis of the system becomes more complicated when we deal with the de-
centralized scenario. Each node works independently. We keep the assumption of
synchronous operation, but the decision to transmit or not is local, so a node can be
silent, while its neighbor is not. In this scenario, even the convergenceof the system
might not be guaranteed and we see that within an iteration, some nodes will be
transmitting and others will be silent. This can cause instability in the network
because the average of the estimates at every iteration is now not conserved (this
is an important property of the standard consensus protocols that can be easily
checked), and the scalars� (k) and e(k) de�ned in the previous subsection are now
vectors � (k) and e(k) where � i (k) and ei (k) are the values corresponding to a node
i and are local to every node. To conserve the average in the decentralized setting,
e(k) must take part in the state equation as we will show in what follows.

	Introduction

