G. Darrieus, Turbine having its rotating shaft transverse to the flow of the current, US Patent, vol.1, p.835018, 1931.

M. Islam, D. S. Ting, and A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable and Sustainable Energy Reviews, vol.12, issue.4, pp.1087-1109, 2008.
DOI : 10.1016/j.rser.2006.10.023

F. Balduzzi, A. Bianchini, E. A. Carnevale, L. Ferrari, and S. Magnani, Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building, Applied Energy, vol.97, pp.921-929, 2012.
DOI : 10.1016/j.apenergy.2011.12.008

A. M. Gorlov, Unidirectional helical reaction turbine operable under reversible fluid flow for power systems, US Patent, vol.5, p.451137, 1995.

M. Shiono, K. Suzuki, and S. Kiho, Output characteristics of darrieus water turbine with helical blades for tidal current generations, Proceedings of the Twelfth International Offshore and Polar Engineering Conference, pp.859-864, 2002.

A. N. Gorban, A. M. Gorlov, and V. M. Silantyev, Limits of the Turbine Efficiency for Free Fluid Flow, Journal of Energy Resources Technology, vol.123, issue.4, pp.311-317, 2001.
DOI : 10.1115/1.1414137

B. Kirke and L. Lazauskas, Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch, Renewable Energy, vol.36, issue.3, pp.893-897, 2011.
DOI : 10.1016/j.renene.2010.08.027

J. Achard, D. Imbault, and T. Maitre, Dispositif de maintien d'une turbomachine hydraulique, WO Patent App. PCT, vol.135, 2006.

R. Sheldahl and P. Klimas, Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, 1981.
DOI : 10.2172/6548367

J. Bossard, Caractérisation expérimentale du décrochage dynamique dans les hydroliennes à flux transverse par la technique de vélocimétrie par image de particule (PIV) -Comparaison avec les résultats issus des simulations numériques

W. Mccroskey, The phenomenon of dynamic stall., " tech. rep., DTIC Document, 1981.

T. Lee and P. Gerontakos, Investigation of flow over an oscillating airfoil, Journal of Fluid Mechanics, vol.512, pp.313-341, 2004.
DOI : 10.1017/S0022112004009851

A. Laneville, P. Vittecoq, and J. Côté, Etude expérimentale de l'effet de la turbulence sur le décrochage dynamique, 1985.

J. Zanette, Hydroliennes à flux transverse : contribution a l'analyse de l'interaction fluide-structure, 2010.

A. Laneville and P. Vittecoq, Dynamic Stall: The Case of the Vertical Axis Wind Turbine, Journal of Solar Energy Engineering, vol.108, issue.2, pp.140-145, 1986.
DOI : 10.1115/1.3268081

G. Brochier, P. Fraunie, C. Beguier, and I. Paraschivoiu, Water channel experiments of dynamic stall on darrieus wind turbine blades, J Propuls, 1986.

L. Guittet, Outil de prédimensionnement des hydroliennes darrieus : Aspects expérimental et numérique, drt, 2005.

N. Dellinger, Instrumentation d'un tunnel hydrodynamique pour la caractérisation de turbines à flux transverse, 2011.

V. Aumelas, Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation, 2011.

T. Jaquier, Hydroliennes à flux transverse : développement d'un prototype HARVEST en canal, thèse de doctorat, 2011.

A. Bahaj, A. Molland, J. Chaplin, and W. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable Energy, vol.32, issue.3, pp.407-426, 2007.
DOI : 10.1016/j.renene.2006.01.012

A. Mentxaca, Analyse numérique des hydroliennes à axe vertical munies d'un carénage, 2011.

S. Antheaume, T. Maître, and J. Achard, Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions, Renewable Energy, vol.33, issue.10, pp.2186-2198, 2008.
DOI : 10.1016/j.renene.2007.12.022

]. G. Bibliographie1, P. Brochier, C. Fraunie, I. Beguier, and . Paraschivoiu, Water channel experiments of dynamic stall on darrieus wind turbine blades, J Propuls, 1986.

E. Amet, Simulation numérique d'une hydrolienne à axe vertical de type darrieus, 2008.

J. Zanette, Hydroliennes à flux transverse : contribution a l'analyse de l'interaction fluide-structure, 2010.

T. Jaquier, Hydroliennes à flux transverse : développement d'un prototype HARVEST en canal, thèse de doctorat, 2011.

J. Bossard, Caractérisation expérimentale du décrochage dynamique dans les hydroliennes à flux transverse par la technique de vélocimétrie par image de particule (PIV) -Comparaison avec les résultats issus des simulations numériques

A. Mentxaca, Analyse numérique des hydroliennes à axe vertical munies d'un carénage, 2011.

V. Aumelas, Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation, 2011.

F. Archambeau, N. Mehitoua, and M. Sakiz, Code saturne : A finite volume code for turbulent flows, Int. J. Finite Volumes, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

S. Rolfo, J. Uribe, and D. Laurence, LES and Hybrid RANS/LES of Turbulent Flow in Fuel Rod Bundle Arranged with a Triangular Array, Direct and Large-Eddy Simulation VII, pp.409-414, 2010.
DOI : 10.1007/978-90-481-3652-0_60

J. C. Uribe, N. Jarrin, R. Prosser, and D. Laurence, Development of a Two-velocities Hybrid RANS-LES Model and its Application to a Trailing Edge Flow, Flow, Turbulence and Combustion, vol.38, issue.8, pp.181-197, 2010.
DOI : 10.1007/s10494-010-9263-6

A. N. Kolmogorov, Equation of turbulent motion of an incompressible fluid, Doklady Akad. Nauk SSSR, 1942.

W. Jones and B. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, vol.15, issue.2, pp.301-314, 1972.
DOI : 10.1016/0017-9310(72)90076-2

D. C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal, vol.26, issue.11, pp.1299-1310, 1988.
DOI : 10.2514/3.10041

F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, vol.32, issue.8, pp.1598-1605, 1993.
DOI : 10.2514/3.12149

P. Durbin, Near-wall turbulence closure modeling without damping functions, Theoretical and Computational Fluid Dynamics, pp.1-13, 1991.

D. Laurence, J. Uribe, and S. Utyuzhnikov, A robust formulation of the v2???f model, Flow, Turbulence and Combustion, vol.390, issue.11, pp.169-185, 2005.
DOI : 10.1007/s10494-005-1974-8

B. Audebert, Code_saturne, mise en place d'un fonctionalité couplage rotor/stator pour la modélisation des pompes, tech. rep., EDF R&D, 2009.

J. Benek, A flexible grid embedding technique with application to the Euler equations, 6th Computational Fluid Dynamics Conference Danvers, 1983.
DOI : 10.2514/6.1983-1944

J. Steger, The chimera method of flow simulation, Workshop on applied CFD, 1991.

Z. Wang, V. Parthasarathy, and N. Hariharan, A fully automated Chimera methodology for multiple moving body problems, International Journal for Numerical Methods in Fluids, vol.31, issue.7, pp.919-938, 2000.
DOI : 10.1002/1097-0363(20000815)33:7<919::AID-FLD944>3.0.CO;2-G

R. Steijl and G. Barakos, Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics, International Journal for Numerical Methods in Fluids, vol.108, issue.5, pp.527-549, 2008.
DOI : 10.1002/fld.1757

E. L. Blades and D. L. Marcum, A sliding interface method for unsteady unstructured flow simulations, International Journal for Numerical Methods in Fluids, vol.17, issue.3, pp.507-529, 2007.
DOI : 10.1002/fld.1296

O. Petit, M. Page, M. Beaudoin, and H. Nilsson, The ercoftac centrifugal pump openfoam case-study, 3rd IAHR International Meeting of the Workgroup of Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, pp.523-532, 2009.

C. S. Peskin26, ]. A. Jendoubi, D. Yakoubi, A. Fortin, and C. Tibirna, The immersed boundary method Acta numerica An immersed boundary method for fluid flows around rigid objects, Int. J. Numer. Meth. Engng, vol.11, issue.1, p.3, 2002.

L. E. Silva, A. Silveira-neto, and J. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, vol.189, issue.2, pp.351-370, 2003.
DOI : 10.1016/S0021-9991(03)00214-6

J. Mc-naughton, Turbulence modelling in the near field of an axial flow tidal turbine using Code_Saturne, 2013.

J. M. Naughton, Presentation : Progress in a sliding-mesh method using code_saturne, 2011.

M. M. Zdravkovich, Flow around circular cylinders, 1997.

A. Roshko, Experiments on the flow past a circular cylinder at very high Reynolds number, Journal of Fluid Mechanics, vol.3, issue.03, pp.345-356, 1961.
DOI : 10.1017/S0022112061000950

B. R. Noack, M. König, and H. Eckelmann, Three???dimensional stability analysis of the periodic flow around a circular cylinder, Physics of Fluids A: Fluid Dynamics, vol.5, issue.6, pp.1279-1281, 1993.
DOI : 10.1063/1.858616

P. Stansby and R. Rainey, A CFD STUDY OF THE DYNAMIC RESPONSE OF A ROTATING CYLINDER IN A CURRENT, Journal of Fluids and Structures, vol.15, issue.3-4, pp.3-4, 2001.
DOI : 10.1006/jfls.2000.0357

S. Mittal and B. Kumar, Flow past a rotating cylinder, Journal of Fluid Mechanics, vol.476, issue.4, pp.303-334, 2003.
DOI : 10.1017/S0022112002002938

H. M. Badr, M. Coutanceau, S. C. Dennis, and C. Ménard, Unsteady flow past a rotating circular cylinder at reynolds numbers 103 and 104, Journal of Fluid Mechanics, issue.220, pp.459-484, 1990.

P. T. Tokumaru and P. E. Dimotakis, The lift of a cylinder executing rotary motions in a uniform flow, Journal of Fluid Mechanics, vol.225, issue.-1, pp.1-10, 1993.
DOI : 10.1016/0045-7930(91)90034-F

T. Ito and K. Aoki, Flow characteristics around a rotating cylinder, 9th International Symposium on flow visualization, pp.29-34, 2001.

]. Bibliographie1, S. Georgescu, C. I. Georgescu, N. Cosoiu, and . Alboiu, Efficiency of marine hydropower farms consisting of multiple vertical axis cross-flow turbines, International Journal of Fluid Machinery and Systems, 2011.

P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine, Renewable Energy, vol.66, pp.729-746, 2014.
DOI : 10.1016/j.renene.2013.12.036

T. Stallard, R. Collings, T. Feng, and J. Whelan, Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2060, p.20120159, 1985.
DOI : 10.1098/rspa.2005.1494

A. Bahaj and L. Myers, Shaping array design of marine current energy converters through scaled experimental analysis, Energy, vol.59, pp.83-94, 2013.
DOI : 10.1016/j.energy.2013.07.023

K. Bergey, The Lanchester-Betz limit (energy conversion efficiency factor for windmills), Journal of Energy, vol.3, issue.6, pp.382-384, 1979.
DOI : 10.2514/3.48013

F. W. Lanchester, A CONTRIBUTION TO THE THEORY OF PROPULSION AND THE SCREW PROPELLER, Journal of the American Society for Naval Engineers, vol.27, issue.2, pp.509-510, 1915.
DOI : 10.1111/j.1559-3584.1915.tb00408.x

G. Houlsby, S. Draper, and M. Oldfield, Application of linear momentum actuator disc theory to open channel flow, 2008.

M. O. Hansen, Aerodynamics of wind turbines, Routledge, 2008.

C. Garrett and P. Cummins, The efficiency of a turbine in a tidal channel, Journal of Fluid Mechanics, vol.221, pp.243-251, 2007.
DOI : 10.1017/S0022112007007781

J. Whelan, J. Graham, and J. Peiro, A free-surface and blockage correction for tidal turbines, Journal of Fluid Mechanics, vol.26, pp.281-291, 2009.
DOI : 10.1016/j.renene.2007.12.022

T. Nishino and R. H. Willden, The efficiency of an array of tidal turbines partially blocking a wide channel, Journal of Fluid Mechanics, vol.708, pp.596-606, 2012.
DOI : 10.1049/iet-rpg.2009.0196

T. Nishino and R. H. Willden, Two-scale dynamics of flow past a partial cross-stream array of tidal turbines, Journal of Fluid Mechanics, vol.461, pp.220-244, 2013.
DOI : 10.1016/j.renene.2012.04.018

R. Vennell, Exceeding the Betz limit with tidal turbines, Renewable Energy, vol.55, pp.277-285, 2013.
DOI : 10.1016/j.renene.2012.12.016

C. Garrett and P. Cummins, The power potential of tidal currents in channels, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.461, issue.2060, pp.2563-2572, 2005.
DOI : 10.1098/rspa.2005.1494

R. Vennell, Estimating the power potential of tidal currents and the impact of power extraction on flow speeds, Renewable Energy, vol.36, issue.12, pp.3558-3565, 2011.
DOI : 10.1016/j.renene.2011.05.011

M. Islam, D. S. Ting, and A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable and Sustainable Energy Reviews, vol.12, issue.4, pp.1087-1109, 2008.
DOI : 10.1016/j.rser.2006.10.023

G. I. Gretton, Hydrodynamic analysis of a vertical axis tidal current turbine, 2009.

I. Paraschivoiu, Double-multiple streamtube model for studying vertical-axis wind turbines, Journal of Propulsion and Power, vol.4, issue.4, pp.370-377, 1988.
DOI : 10.2514/3.23076

S. Antheaume, T. Maître, and J. Achard, Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions, Renewable Energy, vol.33, issue.10, pp.2186-2198, 2008.
DOI : 10.1016/j.renene.2007.12.022

M. Harrison, W. Batten, L. Myers, and A. Bahaj, Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines, IET renewable power generation, pp.613-627, 2010.
DOI : 10.1049/iet-rpg.2009.0193

S. R. Turnock, A. B. Phillips, J. Banks, and R. Nicholls-lee, Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines, Ocean Engineering, vol.38, issue.11-12, pp.1300-1307, 2011.
DOI : 10.1016/j.oceaneng.2011.05.018

R. Malki, A. Williams, T. Croft, M. Togneri, and I. Masters, A coupled blade element momentum ??? Computational fluid dynamics model for evaluating tidal stream turbine performance, Applied Mathematical Modelling, vol.37, issue.5, pp.3006-3020, 2013.
DOI : 10.1016/j.apm.2012.07.025

G. Bai, J. Li, P. Fan, G. A. Li, A. Bahaj et al., Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines Renewable Energy Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable energy, pp.180-186, 2007.

T. Roc, D. C. Conley, and D. Greaves, Methodology for tidal turbine representation in ocean circulation model, Renewable Energy, vol.51, pp.448-464, 2013.
DOI : 10.1016/j.renene.2012.09.039

W. M. Batten, M. Harrison, and A. Bahaj, Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.23, issue.1985, 1985.
DOI : 10.1098/rsta.2012.0293

L. Myers and A. Bahaj, Near wake properties of horizontal axis marine current turbines, Proceedings of the 8th European Wave and Tidal Energy Conference, pp.558-565, 2009.

V. Aumelas, Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation, 2011.

]. A. Bibliographie1, J. Crespo, S. Hernandez, and . Frandsen, Survey of modelling methods for wind turbine wakes and wind farms, Wind energy, vol.2, issue.1, pp.1-24, 1999.

F. Maganga, G. Germain, J. King, G. Pinon, and E. Rivoalen, Experimental characterisation of flow effects on marine current turbine behaviour and on its wake properties, IET Renewable Power Generation, vol.4, issue.6, pp.498-509, 2010.
DOI : 10.1049/iet-rpg.2009.0205

L. Vermeer, J. N. Sørensen, and A. Crespo, Wind turbine wake aerodynamics, Progress in aerospace sciences, pp.467-510, 2003.
DOI : 10.1016/S0376-0421(03)00078-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6485

B. Sanderse, S. Pijl, and B. Koren, Review of computational fluid dynamics for wind turbine wake aerodynamics, Wind Energy, vol.7, issue.7, pp.799-819, 2011.
DOI : 10.1002/we.458

G. I. Gretton, Hydrodynamic analysis of a vertical axis tidal current turbine, 2009.

M. M. Hand, D. Simms, L. Fingersh, D. Jager, J. Cotrell et al., Unsteady aerodynamics experiment phase V : test configuration and available data campaigns, 2001.
DOI : 10.2172/787980

URL : http://www.osti.gov/scitech/servlets/purl/787980

P. Alfredsson and J. Dahlberg, A preliminary wind tunnel study of windmill wake dispersion in various flow conditions, 1979.

A. Bahaj and L. Myers, Shaping array design of marine current energy converters through scaled experimental analysis, Energy, vol.59, pp.83-94, 2013.
DOI : 10.1016/j.energy.2013.07.023

W. Zhang, C. D. Markfort, and F. Porté, Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer, Experiments in Fluids, vol.387, issue.1, pp.1219-1235, 2012.
DOI : 10.1007/s00348-011-1250-8

L. P. Chamorro, D. R. Troolin, S. Lee, R. Arndt, and F. Sotiropoulos, Threedimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine, Experiments in fluids, vol.54, issue.2, pp.1-12, 2013.

D. Medici and P. Alfredsson, Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding, Wind Energy, vol.27, issue.3, pp.219-236, 2006.
DOI : 10.1002/we.156

G. C. Larsen, H. Madsen-aagaard, F. Bingöl, J. Mann, S. Ott et al., Dynamic wake meandering modeling, 2007.

S. Kang, X. Yang, and F. Sotiropoulos, On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow, Journal of Fluid Mechanics, vol.23, pp.376-403, 2014.
DOI : 10.1002/we.515

D. Medici and P. H. Alfredsson, Wind Turbine Near Wakes and Comparisons to the Wake Behind a Disc, 43rd AIAA Aerospace Sciences Meeting and Exhibit, pp.15593-15604, 2005.
DOI : 10.2514/6.2005-595

D. Medici and P. H. Alfredsson, Measurements behind model wind turbines: further evidence of wake meandering, Wind Energy, vol.576, issue.2, pp.211-217, 2008.
DOI : 10.1002/we.247

P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine, Renewable Energy, vol.66, pp.729-746, 2014.
DOI : 10.1016/j.renene.2013.12.036

P. Mycek, B. Gaurier, G. Germain, G. Pinon, and É. Rivoalen, Numerical and experimental study of the interaction between two marine current turbines, International Journal of Marine Energy, vol.1, 2013.
DOI : 10.1016/j.ijome.2013.05.007

URL : https://hal.archives-ouvertes.fr/hal-00874073

P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines, Renewable Energy, vol.68, pp.876-892, 2014.
DOI : 10.1016/j.renene.2013.12.048

N. Stelzenmuller and A. Aliseda, An experimental investigation into the effect of marine hydrokinetic (mhk) turbine array spacing on turbine efficiency and turbine wake characteristics, Bulletin of the American Physical Society, vol.57, 2012.

J. Mcnaughton, F. Billard, and A. , Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios, Journal of Fluids and Structures, vol.47, pp.124-138, 2014.
DOI : 10.1016/j.jfluidstructs.2013.12.014

I. Afgan, J. Mcnaughton, S. Rolfo, D. Apsley, T. Stallard et al., Turbulent flow and loading on a tidal stream turbine by LES and RANS, International Journal of Heat and Fluid Flow, vol.43, pp.96-108, 2013.
DOI : 10.1016/j.ijheatfluidflow.2013.03.010

A. Bahaj, A. Molland, J. Chaplin, and W. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank Renewable energy The spatial structure of neutral atmospheric surface-layer turbulence, Journal of Fluid Mechanics, vol.32, issue.273, pp.407-426, 1994.

Y. Wu and F. Porté, Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations, Boundary-Layer Meteorology, vol.41, issue.3, pp.345-366, 2011.
DOI : 10.1007/s10546-010-9569-x

L. P. Chamorro and F. Porté, Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study, Boundary-Layer Meteorology, vol.13, issue.3, pp.515-533, 2010.
DOI : 10.1007/s10546-010-9512-1

C. Sanz, A note on k-? modelling of vegetation canopy air-flows, Boundary-Layer Meteorology, vol.108, issue.1, pp.191-197, 2003.
DOI : 10.1023/A:1023066012766

S. Green and N. Hutchings, Observations of turbulent air flow in three stands of widely spaced Sitka spruce, Agricultural and Forest Meteorology, vol.74, issue.3-4, pp.3-4, 1995.
DOI : 10.1016/0168-1923(94)02191-L

P. M. Rethore, N. N. Sørensen, A. Bechmann, and F. Zahle, Study of the atmospheric wake turbulence of a cfd actuator disc model, 2009.

A. Kasmi and C. Masson, An extended model for turbulent flow through horizontal-axis wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, vol.96, issue.1, pp.103-122, 2008.
DOI : 10.1016/j.jweia.2007.03.007

J. Bossard, Caractérisation expérimentale du décrochage dynamique dans les hydroliennes à flux transverse par la technique de vélocimétrie par image de particule (PIV) -Comparaison avec les résultats issus des simulations numériques

V. Aumelas, Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation, 2011.

T. Maitre, E. Amet, and C. Pellone, Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments, Renewable Energy, vol.51, 2012.
DOI : 10.1016/j.renene.2012.09.030

E. Amet, Simulation numérique d'une hydrolienne à axe vertical de type darrieus, 2008.

M. Khan, G. Bhuyan, M. Iqbal, and J. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Applied Energy, vol.86, issue.10, pp.1823-1835, 2009.
DOI : 10.1016/j.apenergy.2009.02.017

I. G. Bryden and S. J. Couch, ME1???marine energy extraction: tidal resource analysis, Renewable Energy, vol.31, issue.2, pp.133-139, 2006.
DOI : 10.1016/j.renene.2005.08.012

T. Nishino and R. H. Willden, Two-scale dynamics of flow past a partial cross-stream array of tidal turbines, Journal of Fluid Mechanics, vol.461, pp.220-244, 2013.
DOI : 10.1016/j.renene.2012.04.018

L. Myers and A. Bahaj, An experimental investigation simulating flow effects in first generation marine current energy converter arrays, Renewable Energy, vol.37, issue.1, pp.28-36, 2012.
DOI : 10.1016/j.renene.2011.03.043

M. G. Gebreslassie, G. R. Tabor, and M. R. Belmont, Numerical simulation of a new type of cross flow tidal turbine using OpenFOAM ??? Part II: Investigation of turbine-to-turbine interaction, Renewable Energy, vol.50, pp.1005-1013, 2013.
DOI : 10.1016/j.renene.2012.08.064

G. Bai, J. Li, P. Fan, and G. Li, Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines, Renewable Energy, vol.53, pp.180-186, 2013.
DOI : 10.1016/j.renene.2012.10.048

T. Blackmore, W. M. Batten, G. U. M?ller, and A. S. Bahaj, Influence of turbulence on the drag of solid discs and turbine simulators in a water current, Experiments in Fluids, vol.24, issue.2, pp.1-10, 2014.
DOI : 10.1007/s00348-013-1637-9

T. Divett, R. Vennell, and C. Stevens, Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.18, issue.1985, p.20120251, 1985.
DOI : 10.1098/rsta.2012.0251

J. Steger, The chimera method of flow simulation, Workshop on applied CFD, 1991.