M. Trömel, W. Hützler, and E. Münch, Anti-glass phases and other lanthanide tellurates with fluorite-related structures, Journal of the Less Common Metals, vol.110, issue.1-2, pp.421-424, 1985.
DOI : 10.1016/0022-5088(85)90352-2

B. Stehlik and L. Balak, The crystal structure of tellurium dioxide, Collection of Czechoslovak Chemical Communications, vol.14, issue.1, pp.6-12, 1948.
DOI : 10.1135/cccc19490595

O. Lindqvist, Refinement of the Structure of alpha-TeO2., Acta Chemica Scandinavica, vol.22, pp.977-82, 1968.
DOI : 10.3891/acta.chem.scand.22-0977

I. P. Kondratyuk, L. A. Murdoyan, Y. V. Pisarevskij, and V. I. Simonov, Precision X-ray structural investigation of acoustooptical ?-TeO 2 single crystals, Kristallografiya, vol.32, pp.609-617, 1987.

P. A. Thomas, The crystal structure and absolute optical chirality of paratellurite, Journal of Physics C: Solid State Physics, vol.2121, issue.25, pp.46110022-3719, 1988.

J. Champarnaud-mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle-mejean et al., Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: ??-TeO2, Journal of Physics and Chemistry of Solids, vol.61, issue.9, pp.1499-1507, 2000.
DOI : 10.1016/S0022-3697(00)00012-3

S. Blanchandin, P. Marchet, P. Thomas, J. C. Champarnaud-mesjard, B. Frit et al., New investigations within the TeO 2 -WO 3 system: phase equilibrium diagram and glass crystallisation, Journal of Materials Science, vol.34, issue.17, pp.4285-429210046672230281004667223028, 1023.
DOI : 10.1023/A:1004667223028

A. Mirgorodsky, T. Merle-méjean, J. Champarnaud, P. Thomas, and B. Frit, Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new ??- and ??-phases, Journal of Physics and Chemistry of Solids, vol.61, issue.4, pp.501-509, 2000.
DOI : 10.1016/S0022-3697(99)00263-2

S. Blanchandin, Etude cristallochimique de quelques phases cristallisées et vitreuses appartenant aux systémes TeO 2 ?WO 3, 2000.

M. Dutreilh-colas, Nouveaux matèriaux pour l'optique non linèaire : Synthése et ètude structurale de quelques phases cristallisées et vitreuses appartenant aux systémes, 2001.

D. Hamani, Cristallochimie de matériaux à base de dioxyde de tellure: vers un modèle structural pour étude des composés vitreux, 2010.

S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-mesjard, and B. Frit, Equilibrium and non-equilibrium phase diagram within the TeO2-rich part of the TeO2-Nb2O5 system, Journal of Materials Chemistry, vol.9, issue.8, pp.1785-1788, 1999.
DOI : 10.1039/a900788a

K. Shioya, T. Komatsu, H. G. Kim, R. Sato, and K. Matusita, Optical properties of transparent glass-ceramics in K2O???Nb2O5???TeO2 glasses, Journal of Non-Crystalline Solids, vol.189, issue.1-2, pp.16-24, 1995.
DOI : 10.1016/0022-3093(95)00227-8

Z. Szaller, L. Pöppl, G. Lovas, and I. Dodony, Study of the Formation of Bi2Te4O11, Journal of Solid State Chemistry, vol.121, issue.2, pp.251-261, 1996.
DOI : 10.1006/jssc.1996.0036

O. Masson, P. Thomas, O. Durand, T. Hansen, J. Champarnaud et al., On the structure of the disordered Bi2Te4O11 phase, Journal of Solid State Chemistry, vol.177, issue.6, pp.2168-2176, 2004.
DOI : 10.1016/j.jssc.2004.03.010

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses, Journal of Non-Crystalline Solids, vol.144, pp.128-144, 1992.
DOI : 10.1016/S0022-3093(05)80393-X

A. Mirgorodsky, M. Colas, M. Smirnov, T. Merle-mejean, R. El-mallawany et al., Structural peculiarities and Raman spectra of TeO2/WO3-based glasses: A fresh look at the problem, Journal of Solid State Chemistry, vol.190, issue.0, pp.45-51, 2012.
DOI : 10.1016/j.jssc.2012.02.011

S. Sakida, S. Hayakawa, and T. Yoko, Part 1. 125Te NMR study of tellurite crystals, Journal of Non-Crystalline Solids, vol.243, issue.1, pp.1-12, 1999.
DOI : 10.1016/S0022-3093(98)00811-4

J. C. Mclaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study, Journal of Non-Crystalline Solids, vol.274, issue.1-3, pp.1-8, 2000.
DOI : 10.1016/S0022-3093(00)00199-X

J. C. Mclaughlin, S. L. Tagg, and J. W. Zwanziger, The Structure of Alkali Tellurite Glasses, The Journal of Physical Chemistry B, vol.105, issue.1, pp.67-75, 2001.
DOI : 10.1021/jp0025779

J. W. Zwanziger, J. C. Mclaughlin, and S. L. Tagg, Sodium distribution in sodium tellurite glasses probed with spin-echo NMR, Physical Review B, vol.56, issue.9, pp.5243-5249, 1997.
DOI : 10.1103/PhysRevB.56.5243

U. Hoppe, I. Gugov, H. Bürger, P. Jóvári, and A. Hannon, additions studied by diffraction, Journal of Physics: Condensed Matter, vol.17, issue.15, pp.2365-2386, 2005.
DOI : 10.1088/0953-8984/17/15/009

F. Pietrucci, S. Caravati, and M. Bernasconi, glass properties from first principles, Physical Review B, vol.78, issue.6, p.64203, 2008.
DOI : 10.1103/PhysRevB.78.064203

H. Niida, T. Uchino, J. Jin, S. Kim, T. Fukunaga et al., Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations, The Journal of Chemical Physics, vol.114, issue.1, pp.459-467, 2001.
DOI : 10.1063/1.1328417

T. Uchino and T. Yoko, Ab initio cluster model calculations on the vibrational frequencies of TeO2 glass, Journal of Non-Crystalline Solids, vol.204, issue.3, pp.243-252, 1996.
DOI : 10.1016/S0022-3093(96)00423-1

T. Uchino, S. Kim, T. Yoko, and T. Fukunaga, Medium-Range Structure of TeO2 Glass from Molecular Orbital Calculations, Nippon seramikkusu kyokai gakujutsu ronbunshi, pp.201-205, 1997.
DOI : 10.2109/jcersj.105.201

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, Normal Vibrations of Two Polymorphic forms of TeO2 Crystals and Assignments of Raman Peaks of Pure TeO2 Glass, Nippon seramikkusu kyokai gakujutsu ronbunshi, pp.1435-1440, 1989.
DOI : 10.2109/jcersj.97.1435

W. H. Zachariasen, THE ATOMIC ARRANGEMENT IN GLASS, Journal of the American Chemical Society, vol.54, issue.10, pp.3841-3851, 1932.
DOI : 10.1021/ja01349a006

S. Neov, V. Kozhukharov, I. Gerasimova, K. Krezhov, and B. Sidzhimov, A model for structural recombination in tellurite glasses, Journal of Physics C: Solid State Physics, vol.12, issue.13, p.2475, 1979.
DOI : 10.1088/0022-3719/12/13/012

Y. Himei, A. Osaka, T. Nanba, and Y. Miura, Coordination change of Te atoms in binary tellurite glasses, Journal of Non-Crystalline Solids, vol.177, pp.164-169, 1994.
DOI : 10.1016/0022-3093(94)90526-6

C. Becker, S. Tagg, J. Huffman, and J. Zwanziger, , and Structural Trends in Solid Alkali Tellurites, Inorganic Chemistry, vol.36, issue.24, pp.5559-5564, 1997.
DOI : 10.1021/ic970497m

J. Mclaughlin and J. Zwanziger, Modeling glasses using the reverse Monte Carlo algorithm: addition of nuclear magnetic resonance and expanded coordination number constraints, Journal of Molecular Graphics and Modelling, vol.17, issue.5-6, pp.275-284, 1999.
DOI : 10.1016/S1093-3263(99)00035-2

H. Matsumoto, T. Mabuchi, Y. Shigesato, and I. Yasui, Structure analysis of Zno?TeO 2 glasses by means of neutron diffraction and molecular dynamics

C. M. Freeman and C. R. Catlow, A computer modelling study of defect and dopant states in SnO 2, Journal of Solid State Chemistry, vol.852, issue.1, pp.6-8

D. J. Binks, Computational modelling of zinc oxide and related oxide ceramics, 1994.

M. Sanders, M. Leslie, and C. Catlow, Interatomic potentials for SiO 2, Journal of the Chemical Society, Chemical Communications, issue.19, pp.1271-1273, 1984.

B. G. Dick and A. W. Overhauser, Theory of the Dielectric Constants of Alkali Halide Crystals, Physical Review, vol.112, issue.1, pp.90-103, 1958.
DOI : 10.1103/PhysRev.112.90

J. D. Gale, The general utility lattice program v.3.1 users manual

M. C. Wojcik and K. Hermansson, The problem of the detaching shell in the shell model potential for oxides, Chemical Physics Letters, vol.289, issue.1-2, pp.211-218, 1998.
DOI : 10.1016/S0009-2614(98)00434-5

B. Loopstra and K. Goubitz, The structures of four caesium tellurates, Acta Crystallographica Section C Crystal Structure Communications, vol.42, issue.5, pp.520-523, 1986.
DOI : 10.1107/S0108270186095537

J. D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, Journal of the Chemical Society, Faraday Transactions, vol.93, issue.4, pp.629-637, 1997.
DOI : 10.1039/a606455h

Q. Liu, Z. Liu, L. Feng, and H. Tian, First-principles study of structural, elastic, electronic, and optical properties of ??-TeO2, Physica B: Condensed Matter, vol.405, issue.15, pp.3159-3163, 2010.
DOI : 10.1016/j.physb.2010.04.034

M. Born and K. Huang, Dynamical Theory of Crystal Lattices, American Journal of Physics, vol.23, issue.7, 1954.
DOI : 10.1119/1.1934059

J. F. Nye, Physical Properties of Cristals: Their Representation by Tensors and Matrices, 1985.

J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Computers in Physics, vol.7, issue.6, 1992.
DOI : 10.1063/1.4823234

B. J. Alder and T. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, vol.31, issue.2, p.459, 1959.
DOI : 10.1063/1.1730376

B. Alder and T. Wainwright, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics, vol.27, issue.5, pp.1208-1209, 1957.
DOI : 10.1063/1.1743957

A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Physical Review, vol.136, issue.2A, p.405, 1964.
DOI : 10.1103/PhysRev.136.A405

L. Verlet, Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review, vol.165, issue.1, p.201, 1968.
DOI : 10.1103/PhysRev.165.201

P. J. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics, Journal of Physics: Condensed Matter, vol.5, issue.8, p.1031, 1993.
DOI : 10.1088/0953-8984/5/8/006

P. J. Lindan and M. J. Gillan, Shell-model molecular dynamics simulation of superionic conduction in CaF 2, Journal of Physics: Condensed Matter, vol.55, issue.8, pp.10190953-8984, 1993.

S. Adelman and J. Doll, Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids, The Journal of Chemical Physics, vol.64, issue.6, pp.2375-2388, 1976.
DOI : 10.1063/1.432526

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.
DOI : 10.1063/1.439486

D. J. Evans and O. Morriss, Non-Newtonian molecular dynamics, Computer Physics Reports, vol.1, issue.6, pp.297-343, 1984.
DOI : 10.1016/0167-7977(84)90001-7

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, p.3684, 1984.
DOI : 10.1063/1.448118

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, p.1695, 1985.
DOI : 10.1103/PhysRevA.31.1695

P. H. Hünenberger, Thermostat algorithms for molecular dynamics simulations, Advanced Computer Simulation, pp.105-149, 2005.

Y. Andoh, N. Yoshii, K. Fujimoto, K. Mizutani, H. Kojima et al., MODYLAS: A Highly Parallelized General-Purpose Molecular Dynamics Simulation Program for Large-Scale Systems with Long-Range Forces Calculated by Fast Multipole Method (FMM) and Highly Scalable Fine-Grained New Parallel Processing Algorithms, Journal of Chemical Theory and Computation, vol.9, issue.7, 2013.
DOI : 10.1021/ct400203a

M. Born and T. Von-kármán, On fluctuations in spatial grids, Physikalische Zeitschrift, vol.13, pp.297-309, 1912.

H. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2, pp.65-71, 1969.
DOI : 10.1107/S0021889869006558

R. A. Young, The Rietveld method, Crystal research and technology, vol.30, issue.4, 1995.

J. Rodriguez, Fullprof program: Rietveld pattern matching analysis of powder patterns, ILL, 1990.

O. Durand, Propriétés structurales et vibrationnelles des phases désordonnées dans le système TeO 2 -Bi 2 O 3, 2006.

R. Mayet, Propriétés structurales de nanocristaux d'oxydes métalliques: utilisation de la diffusion total des rayon X et des calculs quantiques, 2008.

T. Egami and S. J. Billinge, Underneath the Bragg Peaks, Materials Today, vol.6, issue.6, 2003.
DOI : 10.1016/S1369-7021(03)00635-7

S. J. Billinge and M. Kanatzidis, Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions, Chemical communications, issue.7, pp.749-760, 2004.

D. A. Keen, Atomic structure of disordered materials, NATO ASI Series C: mathematical and physical sciences, pp.371-388, 1999.

F. Frey, Diffuse scattering from disordered crystals, Acta Crystallographica Section B Structural Science, vol.51, issue.4, pp.592-603, 1995.
DOI : 10.1107/S0108768195002722

O. Masson and P. Thomas, Exact and explicit expression of the atomic pair distribution function as obtained from X-ray total scattering experiments, Journal of Applied Crystallography, vol.25, issue.2, pp.461-465, 2013.
DOI : 10.1107/S0021889812051357

URL : https://hal.archives-ouvertes.fr/hal-00809022

C. V. Raman, A new radiation, Indian Journal of physics, vol.2, pp.387-398, 1928.

L. Mandelstam and G. Landsberg, Eine neue Erscheinung bei der Lichtzerstreuung in Kristallen, Naturwissenschaften, vol.16, pp.557-558, 1928.

F. A. Cotton, Chemical applications of group theory, 2008.

A. Oufkir, A. Ramdani, P. Marchet, P. Thomas, J. C. Champaranaud-mesjard et al., Equilibrium an non-equilibrium phase diagram within the TeO 2 -rich part of the TeO 2 -PbO system, Ann. Chim. Sci. Mat, issue.25, pp.259-262, 2000.

S. Kim, T. Yoko, and S. Sakka, Nonlinear Optical Properties of TeO2-Based Glasses: La2O3-TeO2 Binary Glasses, Journal of the American Ceramic Society, vol.2, issue.4, pp.865-869, 1993.
DOI : 10.1111/j.1151-2916.1993.tb05307.x

A. Berthereau, Y. Le-luyer, R. Olazcuaga, G. L. Flem, M. Couzi et al., Nonlinear optical properties of some tellurium (IV) oxide glasses, Materials Research Bulletin, vol.29, issue.9, pp.933-941, 1994.
DOI : 10.1016/0025-5408(94)90053-1

F. Folger, Die Kristallstruktur von Li2TeO3, Zeitschrift f???r anorganische und allgemeine Chemie, vol.102, issue.2, pp.103-110, 1975.
DOI : 10.1002/zaac.19754110203

L. Andersen, V. Langer, A. Stromberg, and D. Stromberg, ??? an experimental and theoretical study, Acta Crystallographica Section B Structural Science, vol.45, issue.4, pp.344-348, 1989.
DOI : 10.1107/S0108768189004684

R. Masse, J. Guitel, and I. Tordjman, Preparation chimioue et structure cristalline des tellurites de sodium et d'argent: Na2TeO3, Ag2TeO3, Materials Research Bulletin, vol.15, issue.4, pp.431-436, 1980.
DOI : 10.1016/0025-5408(80)90048-3

M. Weil and B. Stoger, from a hydrothermally grown crystal, Acta Crystallographica Section C Crystal Structure Communications, vol.64, issue.9, pp.79-81, 2008.
DOI : 10.1107/S0108270108024827/iz3054Isup2.hkl

M. Kocak, C. Platte, and M. Troemel, Bariumhexaoxoditellurat(IV,VI): Sauerstoffkoordinationszahl f??nf am vierwertigen Tellur, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.35, issue.6, pp.1439-1441, 1979.
DOI : 10.1107/S0567740879006646

S. Tagg, J. Huffman, and J. Zwanziger, Crystal Structure and Sodium Environments in Sodium Tetratellurite, Na2Te4O9, and Sodium Tellurite, Na2TeO3, by X-ray Crystallography and Sodium-23 NMR, Chemistry of Materials, vol.6, issue.10, pp.1884-1889, 1994.
DOI : 10.1021/cm00046a052

W. Klein, J. Curda, E. Peters, and M. Jansen, Neue Silber(I)-oxotellurate(IV/VI), Zeitschrift für anorganische und allgemeine Chemie, pp.13-14, 2005.
DOI : 10.1002/zaac.200500247

N. Barrier, S. Malo, O. Hernandez, M. Hervieu, and B. Raveau, The mixed valent tellurate SrTe3O8: Electronic lone pair effect of Te4+, Journal of Solid State Chemistry, vol.179, issue.11, pp.3484-3488, 2006.
DOI : 10.1016/j.jssc.2006.07.012

F. Daniel, J. Moret, M. Maurin, and E. Philippot, . Pentacoordination du tellure(IV) par les atomes d'oxyg??ne, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.34, issue.6, pp.1782-1786, 1978.
DOI : 10.1107/S0567740878006706

H. Mayer and M. Weil, Synthesis and crystal structure of Te 3 O 3 (PO 4 ) 2 , a compound with 5-fold coordinate tellurium(IV), Synthese und kristallstruktur von Te 3 O 3 (PO 4 ) 2 , einer verbindung mit funffach koordiniertem tellur(IV)], " Zeitschrift fur Anorganische und Allgemeine Chemie, pp.1068-1072, 2003.

T. Siritanon, J. Li, J. K. Stalick, R. T. Macaluso, A. W. Sleight et al., : Novel Mixed-Valence Tellurium Oxides with Framework-Deficient Pyrochlore-Related Structure, Inorganic Chemistry, vol.50, issue.17, pp.8494-8501, 2011.
DOI : 10.1021/ic2010375

V. M. Trömel and T. Scheller, Die kristallstruktur von Co 6 Te 5 O 16, Zeitschrift für anorganische und allgemeine Chemie, pp.229-234, 1976.

C. Platte and M. Tromel, Nickelditellurat(IV): Sauerstoffkoordinationszahl F??nf am vierwertigen Tellur, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.37, issue.6, pp.1276-1278, 1981.
DOI : 10.1107/S0567740881005645

S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. Catlow, The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation, Physical Chemistry Chemical Physics, vol.1, issue.10, pp.2535-2542, 1999.
DOI : 10.1039/a901227c

T. S. Bush, J. D. Gale, C. R. Catlow, and P. D. Battle, Self-consistent interatomic potentials for the simulation of binary and ternary oxides, Journal of Materials Chemistry, vol.4, issue.6, pp.831-837, 1994.
DOI : 10.1039/jm9940400831

M. S. Islam, S. Lazure, R. Vannier, G. Nowogrocki, and G. Mairesse, Structural and computational studies of Bi2WO6 based oxygen ion conductors, Journal of Materials Chemistry, vol.8, issue.3, pp.655-660, 1998.
DOI : 10.1039/a707221j

J. Sauer, K. Schröder, and V. Termath, Comparing the Acidities of Microporous Aluminosilicate and Silico-Aluminophosphate Catalysts: A Combined Quantum Mechanics-Interatomic Potential Function Study, Collection of Czechoslovak Chemical Communications, vol.63, issue.9, pp.1394-1408, 1998.
DOI : 10.1135/cccc19981394

I. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B Structural Science, vol.41, issue.4, pp.244-247, 1985.
DOI : 10.1107/S0108768185002063

C. Pirovano, M. Islam, R. Vannier, G. Nowogrocki, and G. Mairesse, Modelling the crystal structures of Aurivillius phases, Solid State Ionics, vol.140, issue.1-2, pp.115-123, 2001.
DOI : 10.1016/S0167-2738(01)00699-3

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-méjean, J. C. Champarnaud-mesjard et al., -based materials, Physical Review B, vol.70, issue.20, p.205121, 2004.
DOI : 10.1103/PhysRevB.70.205121

URL : https://hal.archives-ouvertes.fr/in2p3-00908773

S. J. Mills, A. G. Christy-te, I. Te, V. Te, and I. , ???Cl, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, vol.69, issue.2, pp.145-149, 2013.
DOI : 10.1107/S2052519213004272/so5067sup2.xls

M. Howe, R. Mcgreevy, and P. Zetterström, CORRECT: A correction program for neutron diffraction data, 1996.

L. Pusztai and R. Mcgreevy, MCGR: An inverse method for deriving the pair correlation function from the structure factor, Physica B: Condensed Matter, vol.234, issue.236, pp.357-358, 1997.
DOI : 10.1016/S0921-4526(96)00986-6

S. L. Roux and P. Jund, Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems, Computational Materials Science, vol.49, issue.1, pp.70-83, 2010.
DOI : 10.1016/j.commatsci.2010.04.023

URL : https://hal.archives-ouvertes.fr/hal-00505146

D. S. Franzblau, Computation of ring statistics for network models of solids, Physical Review B, vol.44, issue.10, pp.4925-4930, 1991.
DOI : 10.1103/PhysRevB.44.4925

L. Cormier, D. Ghaleb, D. R. Neuville, J. Delaye, and G. Calas, Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study, Journal of Non-Crystalline Solids, vol.332, issue.1-3, pp.255-270, 2003.
DOI : 10.1016/j.jnoncrysol.2003.09.012

URL : https://hal.archives-ouvertes.fr/hal-00085070

B. T. Willis and A. W. Pryor, Thermal vibrations in crystallography, 1975.

W. Hamilton, On the isotropic temperature factor equivalent to a given anisotropic temperature factor, Acta Crystallographica, vol.12, issue.8, pp.609-610, 1959.
DOI : 10.1107/S0365110X59001773