P. Agrawal, O. Benjelloun, A. Das-sarma, C. Hayworth, S. Nabar et al., Trio A System for Data Uncertainty and Lineage, Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB '06, pp.1151-1154, 2006.
DOI : 10.1007/978-0-387-09690-2_5

W. David, D. Aha, M. K. Kibler, and . Albert, Instance-based learning algorithms, Machine Learning, pp.37-66, 1991.

]. M. Akdere-2012, U. Akdere, M. Çetintemel, E. Riondato, S. B. Upfal et al., Learning-based Query Performance Modeling and Prediction, 2012 IEEE 28th International Conference on Data Engineering, pp.390-401
DOI : 10.1109/ICDE.2012.64

S. Alani-2006-]-harith-alani, B. O. Harris, and . Neil, Winnowing Ontologies Based on Application Use The Semantic Web: Research and Applications, LNCS, vol.4011, pp.185-199, 2006.

]. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, Describing Linked Datasets -On the Design and Usage of voiD, the " Vocabulary of Interlinked Datasets, Linked Data on the Web Workshop (LDOW09), 18th International World Wide Web Conference (WWW09), 2009.

L. Alexe-2006-]-bogdan-alexe, W. Chiticariu, and . Tan, SPIDER: A Schema mapPIng DEbuggeR, Proceedings of the 32Nd International

G. Antoniou and . Governatori, Proof explanation in the DR-DEVICE system, Proc. of 1st Int'l Conference on Web Reasoning and Rule Systems, pp.249-258, 2007.

R. Lee and . Cailliau, WorldWideWeb: Proposal for a HyperText Project, 1990.

J. Lee, O. Hendler, and . Lassila, The Semantic Web, Scientific American, vol.284, issue.5, pp.34-43, 2001.

]. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya, An annotation management system for relational databases, The VLDB Journal, vol.27, issue.4, pp.373-396, 2005.
DOI : 10.1007/s00778-005-0156-6

]. Y. Cui and J. Widom, Lineage tracing in a data warehousing system, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), pp.683-684, 2000.
DOI : 10.1109/ICDE.2000.839493

]. Cui, J. Widom, and J. L. Wiener, Tracing the lineage of view data in a warehousing environment, ACM Transactions on Database Systems, vol.25, issue.2, pp.179-227, 2000.
DOI : 10.1145/357775.357777

R. Dividino, S. Sizov, S. Staab, and B. Schueler, Querying for provenance, trust, uncertainty and other meta knowledge in RDF???, Web Semantics: Science, Services and Agents on the World Wide Web, pp.204-219, 2009.
DOI : 10.1016/j.websem.2009.07.004

]. D. Doyle-2003, A. Doyle, P. Tsymbal, and . Cunningham, A Review of Explanation and Explanation in Case-Based Reasoning, 2003.

F. Frasincar, R. Geert-jan-houben, P. Vdovjak, and . Barna, RAL: An Algebra for Querying RDF, World Wide Web, vol.7, issue.1, pp.83-109, 2004.
DOI : 10.1023/B:WWWJ.0000015866.43076.06

H. Jerome, J. L. Friedman, R. A. Bentley, and . Finkel, An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Trans. Math. Softw, vol.3, issue.3, pp.209-226, 1977.

A. Wiener, M. Fox, D. Jordan, and . Patterson, Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning, Proceedings of the 2009 IEEE International Conference on Data Engineering, ICDE '09, pp.592-603, 2009.

]. A. Glass, Explanation of Adaptive Systems, 2011.

J. Todd and . Green, Grigoris Karvounarakis and Val Tannen. Provenance Semirings, Proceedings of the Twenty-sixth ACM, 2007.

J. Todd, G. Green, . Karvounarakis, E. Nicholas, O. Taylor et al., ORCHESTRA: Facilitating collaborative data sharing, Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp.1131-1133, 2007.

J. Todd and . Green, Containment of Conjunctive Queries on Annotated Relations, Proceedings of the 12th International Conference on Database Theory, ICDT '09, pp.296-309, 2009.

C. Gupta, A. Mehta, and U. Dayal, PQR: Predicting Query Execution Times for Autonomous Workload Management, 2008 International Conference on Autonomic Computing, pp.13-22, 2008.
DOI : 10.1109/ICAC.2008.12

]. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, 2009.
DOI : 10.1145/1656274.1656278

O. Hartig and R. Heese, The SPARQL Query Graph Model for Query Optimization, Proceedings of the 4th European Conference on The Semantic Web: Research and Applications, ESWC '07, pp.564-578, 2007.
DOI : 10.1007/978-3-540-72667-8_40

]. R. Hasan and F. Gandon, Linking justifications in the collaborative semantic web applications, Proceedings of the 21st international conference companion on World Wide Web, WWW '12 Companion, pp.1083-1090, 2012.
DOI : 10.1145/2187980.2188245

URL : https://hal.archives-ouvertes.fr/hal-00693176

F. Hasan and . Gandon, A Brief Review of Explanation in the Semantic Web, European Conference on Artificial Intelligence, p.2012, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00729037

. Hasan, Generating and Summarizing Explanations for Linked Data The Semantic Web: Trends and Challenges Explaining Missing Answers to SPJUA Queries, Proc. VLDB Endow, pp.185-196, 2010.

M. Horridge, B. Parsia, and U. Sattler, Laconic and Precise Justifications in OWL, Proc. of the 7th Int'l Conference on the Semantic Web, ISWC '08, pp.323-338, 2008.
DOI : 10.1007/978-3-540-73595-3_6

M. Horridge, B. Parsia, and U. Sattler, Explaining Inconsistencies in OWL Ontologies, Lecture Notes in Computer Science, vol.32, pp.124-137, 2009.
DOI : 10.1016/0004-3702(87)90062-2

T. Huang, A. Chen, J. F. Doan, and . Naughton, On the provenance of non-answers to queries over extracted data, Proceedings of the VLDB Endowment, vol.1, issue.1, 2008.
DOI : 10.14778/1453856.1453936

]. Huang, J. Daniel, K. Abadi, and . Ren, Scalable SPARQL querying of large RDF graphs, Proceedings of the VLDB Endowment, pp.1123-1134, 2011.

]. L. Kagal, I. Jacobi, and A. Khandelwal, Gasping for AIR ? why we need linked rules and justifications on the semantic web, pp.25-37, 2011.

A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler, Debugging unsatisfiable classes in OWL ontologies, Web Semantics: Science, Services and Agents on the World Wide Web, vol.3, issue.4, pp.268-293, 2005.
DOI : 10.1016/j.websem.2005.09.005

A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin, Finding All Justifications of OWL DL Entailments, Lecture Notes in Computer Science, vol.4825, pp.267-280, 2007.
DOI : 10.1007/978-3-540-76298-0_20

L. Kaufman and P. Rousseeuw, Clustering by means of medoids, Statistical Data Analysis based on the L1 Norm, pp.405-416, 1987.

]. J. Kotowski, F. Bry, ]. Lam, D. Sleeman, and J. Z. , A Perfect Match for Reasoning, Explanation and Reason Maintenance: OWL 2 RL and Semantic Wikis Pan and Wamberto Vasconcelos . A Fine-Grained Approach to Resolving Unsatisfiable Ontologies, Proc. of, pp.62-95, 2008.

L. Ning and E. Motta, Evaluations of User-Driven Ontology Summarization, Knowledge Engineering and Management by the Masses, pp.544-553, 2010.

A. K. Lim, D. Dey, and . Avrahami, Why and Why Not Explanations Improve the Intelligibility of Context-aware Intelligent Systems, 2009.

A. Mateen, B. Raza, M. Sher, M. M. Awais, and N. Mustapha, Workload management: a technology perspective with respect to self-* characteristics, Artificial Intelligence Review, vol.18, issue.4, pp.463-489, 2014.
DOI : 10.1007/s10462-012-9320-8

L. Deborah, P. P. Mcguinness, and . Silva, Infrastructure for Web Explanations, LNCS, vol.2870, issue.82, pp.113-129, 2003.

]. D. Mcguinness, P. Pinheiro, and . Silva, Explaining answers from the Semantic Web: the Inference Web approach, Web Semantics: Science, Services and Agents on the World Wide Web, vol.1, issue.4, pp.397-413, 2004.
DOI : 10.1016/j.websem.2004.06.002

]. D. Mcguinness, L. Ding, A. Glass, C. Chang, H. Zeng et al., Explanation Interfaces for the Semantic Web: Issues and Models, 2006.

]. D. Mcguinness, V. Furtado, P. Pinheiro-da-silva, L. Ding, A. Glass et al., Explaining Semantic Web Applications, Semantic Web Engineering in the Knowledge Society, pp.25-37, 2008.

E. White, Advances in Information Retrieval, LNCS, vol.4956, pp.414-421, 2008.

A. Meliou, W. Gatterbauer, F. Katherine, D. Moore, and . Suciu, Why So? or Why No? Functional Causality for Explaining Query Answers, 2009.

T. Meyer, K. Lee, R. Booth, and J. Z. Pan, Finding Maximally Satisfiable Terminologies for the Description Logic ALC, Proceedings of the 21st National Conference on Artificial Intelligence, pp.269-274, 2006.

]. J. Moore-1988, W. R. Moore, and . Swartout, Explanation in Expert Systems: A Survey Research Report ISI/RR-88-228, Moreau 2013] L. Moreau and P. Missier. PROV-DM: The PROV Data Model. World Wide Web Consortium, W3C Recommendation, p.2013

A. Nandi and H. V. Jagadish, Assisted querying using instantresponse interfaces, Proceedings of the 2007 ACM SIGMOD international conference on Management of data, SIGMOD '07, pp.1156-1158, 2007.

]. Peroni, E. Motta, and . Mathieu-d-'aquin, Identifying Key Concepts in an Ontology, through the Integration of Cognitive Principles with Statistical and Topological Measures The Semantic Web, LNCS, vol.5367, pp.242-256, 2008.

P. Pinheiro-da-silva, D. L. Mcguinness, and R. Fikes, A proof markup language for Semantic Web services, Information Systems, vol.31, issue.4-5, pp.381-395, 2006.
DOI : 10.1016/j.is.2005.02.003

P. Pinheiro-da-silva, D. L. Mcguinness, N. Del-rio, and L. Ding, Inference Web in Action: Lightweight Use of the Proof Markup Language, Proc. of the 7th Int'l Semantic Web Conference, ISWC '08, pp.847-860, 2008.
DOI : 10.1016/j.is.2005.02.003

K. Riesen and H. Bunke, Approximate graph edit distance computation by means of bipartite graph matching, Image and Vision Computing, vol.27, issue.7, pp.950-959, 2009.
DOI : 10.1016/j.imavis.2008.04.004

K. Riesen, S. Emmenegger, and H. Bunke, A Novel Software Toolkit for Graph Edit Distance Computation, Graph-Based Representations in Pattern Recognition, pp.142-151, 2013.
DOI : 10.1007/978-3-642-38221-5_15

S. Schlobach and R. Cornet, Non-standard Reasoning Services for the Debugging of Description Logic Terminologies, Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJ- CAI'03, pp.355-360, 2003.

A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, FedX: Optimization Techniques for Federated Query Processing on Linked Data, Proc. of the 10th International Semantic Web Conference, ISWC 2011, pp.44-76, 2011.
DOI : 10.1007/978-3-642-21064-8_39

K. Shirish, . Shevade, C. Sathiya-keerthi, K. Bhattacharyya, and . Murthy, Improvements to the SMO algorithm for SVM regression, Neural Networks IEEE Transactions on, vol.11, issue.5, pp.1188-1193, 2000.

]. Shinavier, Position paper: Named Graphs in Linked Data, 2010.

]. Steinberger and K. Jezek, Evaluation Measures for Text Summarization, Computing and Informatics, vol.28, issue.137, pp.251-275, 2009.

M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, SPARQL Basic Graph Pattern Optimization Bibliography Using Selectivity Estimation, Proceedings of the 17th International Conference on World Wide Web, WWW '08, pp.595-604, 2008.

S. Stumpf, V. Rajaram, L. Li, M. Burnett, T. Dietterich et al., Toward harnessing user feedback for machine learning, Proceedings of the 12th international conference on Intelligent user interfaces , IUI '07, pp.82-91, 2007.
DOI : 10.1145/1216295.1216316

]. W. Swartout, C. Paris, and J. Moore, Explanations in knowledge systems: design for explainable expert systems, IEEE Expert, vol.6, issue.3, pp.58-64, 1991.
DOI : 10.1109/64.87686

]. N. Tintarev and J. Masthoff, A Survey of Explanations in Recommender Systems, 2007 IEEE 23rd International Conference on Data Engineering Workshop, 2007.
DOI : 10.1109/ICDEW.2007.4401070

T. Nava and J. Masthoff, Evaluating the Effectiveness of Explanations for Recommender Systems, User Modeling and User-Adapted Interaction, vol.22, issue.4-5, pp.399-439, 2012.

Q. Trung, T. , and C. Chan, How to ConQueR Why-not Questions, Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pp.15-26, 2010.

P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. Boncz, Heuristics-based query optimisation for SPARQL, Proceedings of the 15th International Conference on Extending Database Technology, EDBT '12, pp.324-335, 2012.
DOI : 10.1145/2247596.2247635

. Sindice and . Com, Weaving the Open Linked Data, Proceedings of the 6th International The Semantic Web and 2Nd Asian Conference on Asian Semantic Web Conference, ISWC'07/ASWC'07, pp.552-565, 2007.

]. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru et al., Ma: Live Views on the Web of Data, Proceedings of the 19th International Conference on World Wide Web, WWW '10, pp.1301-1304, 2010.

]. Wang and S. E. Madnick, A Polygon Model for Heterogeneous Database Systems: The Source Tagging Perspective, Proceedings of the Sixteenth International Conference on Very Large Databases, pp.519-533, 1990.