[. Bibliographie, J. Abdalla, M. Hea-an, C. Bellare, and . Namprempre, From identification to signatures via the Fiat-Shamir transform : Minimizing assumptions for security and forward-security, Advances in Cryptology-EUROCRYPT 2002, pp.418-433, 2002.

[. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , STOC '97, pp.284-293, 1997.
DOI : 10.1145/258533.258604

]. M. Ajt96 and . Ajtai, Generating hard instances of lattice problems (extended abstract), Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC '96, pp.99-108, 1996.

M. Ajtai, The shortest vector problem in ? 2 is NP-hard for randomized reductions, Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp.10-19, 1998.

M. Ajtai, Generating Hard Instances of the Short Basis Problem, Automata, Languages and Programming, pp.1-9, 1999.
DOI : 10.1007/3-540-48523-6_1

S. Ambb-+-13-]-carlos-aguilar-melchor, X. Bettaieb, L. Boyen, P. Fousse, and . Gaborit, Adapting Lyubashevsky's signature schemes to the ring signature setting, Progress in Cryptology?AFRICACRYPT 2013, pp.1-25, 2013.

[. Abe, M. Ohkubo, and K. Suzuki, 1-out-of-n Signatures from a Variety of Keys, Advances in Cryptology-ASIACRYPT 2002, pp.639-645, 2002.
DOI : 10.1007/3-540-36178-2_26

J. Alwen and C. Peikert, Generating shorter bases for hard random lattices Minimum disclosure proofs of knowledge, Theory of Computing Systems, pp.535-553156, 1988.

[. Brakerski and Y. T. Kalai, A framework for efficient signatures, ring signatures and identity based encryption in the standard model, IACR Cryptology ePrint Archive, p.86, 2010.

A. Bender, J. Katz, and R. Morselli, Ring signatures : Stronger definitions, and constructions without random oracles, Proceedings of TCC 2006, pp.60-79
DOI : 10.2139/ssrn.1156505

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. [. Bellare and . Neven, Multi-signatures in the plain public-Key model and a general forking lemma, Proceedings of the 13th ACM conference on Computer and communications security , CCS '06, pp.390-399, 2006.
DOI : 10.1145/1180405.1180453

[. Boyen, Mesh Signatures, Advances in Cryptology -EURO- CRYPT 2007, 26th Annual International Conference on the Theory and Applications of Cryptographic Techniques Proceedings, pp.210-227, 2007.
DOI : 10.1007/978-3-540-72540-4_12

[. Boyen, Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure Short Signatures and More, Public Key Cryptography?PKC, pp.499-517, 2010.
DOI : 10.1007/978-3-642-13013-7_29

[. Bellare and A. Palacio, GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks, Advances in Cryptology-CRYPTO 2002, pp.162-177, 2002.
DOI : 10.1007/3-540-45708-9_11

[. Bellare and P. Rogaway, Random oracles are practical, Proceedings of the 1st ACM conference on Computer and communications security , CCS '93, pp.62-73, 1993.
DOI : 10.1145/168588.168596

. Bresson, Protocoles Cryptographiques pour l'Authentification et l'Anonymat dans les Groupes, 2002.

[. Blömer and J. Seifert, On the complexity of computing short linearly independent vectors and short bases in a lattice, Proceedings of the thirty-first annual ACM symposium on Theory of computing , STOC '99, pp.711-720, 1999.
DOI : 10.1145/301250.301441

S. Bettaieb and J. Schrek, Improved Lattice-Based Threshold Ring Signature Scheme, Post-Quantum Cryptography, pp.34-51, 2013.
DOI : 10.1007/978-3-642-38616-9_3

URL : https://hal.archives-ouvertes.fr/hal-00913630

J. Bresson, M. Stern, and . Szydlo, Threshold Ring Signatures and Applications to Ad-hoc Groups, Advances in Cryptology-Crypto 2002, pp.465-480, 2002.
DOI : 10.1007/3-540-45708-9_30

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Cash, D. Hofheinz, and E. Kiltz, How to delegate a lattice basis, IACR Cryptology ePrint Archive, p.351, 2009.

[. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, Bonsai trees, or how to delegate a lattice basis, Advances in Cryptology? EUROCRYPT 2010, pp.523-552, 2010.

[. Cayrel, R. Lindner, M. Rückert, and R. Silva, Improved zero-knowledge identification with lattices, Provable Security, pp.1-17, 2010.

[. Cayrel, R. Lindner, M. Rückert, and R. Silva, A Lattice-Based Threshold Ring Signature Scheme, Progress in Cryptology?LATINCRYPT 2010, pp.255-272, 2010.
DOI : 10.1007/978-3-642-14712-8_16

[. Cai and A. Nerurkar, An improved worst-case to averagecase connection for lattice problems, In ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE Citeseer, vol.38, pp.468-479, 1997.

P. Cayrel, P. Véron, and S. Alaoui, A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome Decoding Problem, Selected Areas in Cryptography, pp.171-186, 2011.
DOI : 10.1007/s002000050053

D. Chaum and E. Van-heyst, Group Signatures, Advances in Cryptology-EUROCRYPT'91, pp.257-265, 1991.
DOI : 10.1007/3-540-46416-6_22

[. Diffie, E. Martin, and . Hellman, New directions in cryptography . Information Theory, IEEE Transactions on, vol.22, issue.6, pp.644-654, 1976.

A. Dodis, A. Kiayias, V. Nicolosi, A. Shoup, and . Shamir, Anonymous identification in ad hoc groups Zero-knowledge proofs of identity, Advances in Cryptology-EUROCRYPT 2004, pp.609-62677, 1988.

A. Fiat and A. Shamir, How To Prove Yourself: Practical Solutions to Identification and Signature Problems, CRYPTO, pp.186-194, 1986.
DOI : 10.1007/3-540-47721-7_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

U. Feige and A. Shamir, Witness indistinguishable and witness hiding protocols, Proceedings of the twenty-second annual ACM symposium on Theory of computing , STOC '90, pp.416-426, 1990.
DOI : 10.1145/100216.100272

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Gentry, Fully homomorphic encryption using ideal lattices, Proceedings of the 41st annual ACM symposium on Symposium on theory of computing, STOC '09, pp.169-178, 2009.
DOI : 10.1145/1536414.1536440

[. Goldreich, S. Goldwasser, and S. Halevi, Collision-Free Hashing from Lattice Problems, Electronic Colloquium on Computational Complexity (ECCC), pp.236-241, 1996.
DOI : 10.1016/0196-6774(88)90004-1

S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences, vol.28, issue.2, pp.270-299, 1984.
DOI : 10.1016/0022-0000(84)90070-9

URL : http://doi.org/10.1016/0022-0000(84)90070-9

[. Goldwasser, C. Micali, and . Rackoff, The knowledge complexity of interactive proof-systems, Proceedings of the seventeenth annual ACM symposium on Theory of computing, pp.291-304, 1985.

[. Goldwasser, S. Micali, L. Ronald, and . Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks, SIAM Journal on Computing, vol.17, issue.2, pp.281-308, 1988.
DOI : 10.1137/0217017

]. O. Gol07 and . Goldreich, Foundations of Cryptography Basic Tools. Foundations of Cryptography, 2007.

C. [. Gentry, V. Peikert, and . Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, Proceedings of the fourtieth annual ACM symposium on Theory of computing, STOC 08, pp.197-206, 2008.
DOI : 10.1145/1374376.1374407

[. Goldreich, A. Sahai, and S. Vadhan, Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge, Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.399-408, 1998.
DOI : 10.1145/276698.276852

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Håstad, R. Impagliazzo, A. Leonid, M. Levin, and . Luby, A Pseudorandom Generator from any One-way Function, SIAM Journal on Computing, vol.28, issue.4, pp.1364-1396, 1999.
DOI : 10.1137/S0097539793244708

G. [. Herranz and . Sáez, Forking Lemmas for Ring Signature Schemes, Progress in Cryptology-INDOCRYPT 2003, pp.266-279, 2003.
DOI : 10.1007/978-3-540-24582-7_20

R. Kannan, Improved algorithms for integer programming and related lattice problems, Proceedings of the fifteenth annual ACM symposium on Theory of computing , STOC '83, pp.193-206, 1983.
DOI : 10.1145/800061.808749

[. Khot, Hardness of approximating the shortest vector problem in lattices, Proceedings . 45th Annual IEEE Symposium on, pp.126-135, 2004.

A. Kawachi, K. Tanaka, and K. Xagawa, Concurrently Secure Identification Schemes Based on the Worst-Case Hardness of Lattice Problems, Advances in Cryptology-ASIACRYPT 2008, pp.372-389, 2008.
DOI : 10.1007/978-3-540-30144-8_28

K. Arjen, . Lenstra, P. James, M. Hughes, . Augier et al., Ron was wrong, whit is right, IACR Cryptology ePrint Archive, p.64, 2012.

[. Lyubashevsky and D. Micciancio, Generalized Compact Knapsacks Are Collision Resistant, Automata, Languages and Programming, pp.144-155, 2006.
DOI : 10.1007/11787006_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Lyubashevsky, Lattice-Based Identification Schemes Secure Under Active Attacks, Public Key Cryptography?PKC 2008, pp.162-179, 2008.
DOI : 10.1007/978-3-540-78440-1_10

[. Lyubashevsky, Towards practical lattice-based cryptography, 2008.

[. Lyubashevsky, Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures, Advances in Cryptology? ASIACRYPT 2009, pp.598-616, 2009.
DOI : 10.1007/978-3-642-10366-7_35

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Lyubashevsky, Lattice Signatures without Trapdoors, Advances in Cryptology?EUROCRYPT 2012, pp.738-755, 2012.
DOI : 10.1007/978-3-642-29011-4_43

URL : https://hal.archives-ouvertes.fr/hal-00864308

D. Micciancio and S. Goldwasser, Complexity of lattice problems : a cryptographic perspective, 2002.
DOI : 10.1007/978-1-4615-0897-7

D. Micciancio, Almost Perfect Lattices, the Covering Radius Problem, and Applications to Ajtai's Connection Factor, SIAM Journal on Computing, vol.34, issue.1, pp.118-169, 2004.
DOI : 10.1137/S0097539703433511

D. Micciancio and C. Peikert, Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller, Advances in Cryptology?EUROCRYPT 2012, pp.700-718, 2012.
DOI : 10.1007/978-3-642-29011-4_41

D. Micciancio and C. Peikert, Hardness of SIS and LWE with Small Parameters, Advances in Cryptology?CRYPTO 2013, pp.21-39, 2013.
DOI : 10.1007/978-3-642-40041-4_2

D. Micciancio and O. Regev, Worst???Case to Average???Case Reductions Based on Gaussian Measures, SIAM Journal on Computing, vol.37, issue.1, pp.267-302, 2007.
DOI : 10.1137/S0097539705447360

D. Micciancio, P. Salil, and . Vadhan, Statistical Zero-Knowledge Proofs with Efficient Provers: Lattice Problems and More, Advances in Cryptology-CRYPTO 2003, pp.282-298, 2003.
DOI : 10.1007/978-3-540-45146-4_17

D. Micciancio and P. Voulgaris, A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations, Proceedings of the 42nd ACM symposium on Theory of computing, pp.351-358, 2010.

D. Micciancio and P. Voulgaris, Faster exponential time algorithms for the shortest vector problem, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1468-1480, 2010.
DOI : 10.1137/1.9781611973075.119

J. Alfred, . Menezes, C. Paul, . Van-oorschot, A. Scott et al., Handbook of applied cryptography, 1996.

[. Peikert, Bonsai Trees (or, arboriculture in Lattice-Based Cryptography ). IACR Cryptology ePrint Archive, p.359, 2009.

[. Pointcheval, A New Identification Scheme Based on the Perceptrons Problem, Advances in Cryptology-EUROCRYPT'95, pp.319-328, 1995.
DOI : 10.1007/3-540-49264-X_26

C. Peikert and B. Waters, Lossy Trapdoor Functions and Their Applications, SIAM Journal on Computing, vol.40, issue.6, pp.1803-1844, 2011.
DOI : 10.1137/080733954

O. Regev, Lecture notes on lattices in computer science, 2004.

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM (JACM), vol.56, issue.6, p.34, 2009.

M. Rückert and M. Schneider, Estimating the Security of Lattice-based Cryptosystems, IACR Cryptology ePrint Archive, p.137, 2010.

L. Ronald, A. Rivest, L. Shamir, and . Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.21, issue.2, pp.120-126, 1978.

L. Ronald, A. Rivest, Y. Shamir, and . Tauman, How to leak a secret, Advances in Cryptology-ASIACRYPT 2001, pp.552-565, 2001.

[. Rückert, Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures from Lattices without Random Oracles, Post-Quantum Cryptography, pp.182-200, 2010.
DOI : 10.1007/978-3-642-12929-2_14

W. Peter and . Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM journal on computing, vol.26, issue.5, pp.1484-1509, 1997.

[. Sakumoto, T. Shirai, and H. Hiwatari, Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials, Advances in Cryptology?CRYPTO 2011, pp.706-723, 2011.
DOI : 10.1007/978-3-642-22792-9_40

[. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Efficient Public Key Encryption Based on Ideal Lattices, Advances in Cryptology?ASIACRYPT 2009, pp.617-635, 2009.
DOI : 10.1007/978-3-642-10366-7_36

[. Shacham and B. Waters, Efficient Ring Signatures Without Random Oracles, Public Key Cryptography?PKC 2007, pp.166-180, 2007.
DOI : 10.1007/978-3-540-71677-8_12

J. Wang and B. Sun, Ring Signature Schemes from Lattice Basis Delegation, Proceedings of the 13th international conference on Information and communications security, pp.15-28, 2011.
DOI : 10.1007/978-3-642-13190-5_28

[. Xagawa, Cryptography with Lattices, 2010.