A. Liliana-medina-almazan, Etude expérimentale et numérique de l'effet du mercure sur le comportement mécanique des aciers 316L et T91, 2008.

P. M. Anderson and J. R. Rice, Dislocation emission from cracks in crystals or along crystal interfaces, Scripta Metallurgica, vol.20, issue.11, pp.1467-1472, 1986.
DOI : 10.1016/0036-9748(86)90377-7

B. S. Bokstein, L. M. Klinger, and I. V. Apikhtina, Liquid grooving at grain boundaries, Materials Science and Engineering: A, vol.203, issue.1-2, pp.373-376, 1995.
DOI : 10.1016/0921-5093(95)09830-5

D. Chatain, E. Rabkin, J. Derenne, and J. Bernardini, Role of the solid/liquid interface faceting in rapid penetration of a liquid phase along grain boundaries, Acta Materialia, vol.49, issue.7, pp.1123-1128, 2001.
DOI : 10.1016/S1359-6454(01)00039-8

G. Duscher, M. F. Chisholm, U. Alber, and M. Rühle, Bismuth-induced embrittlement of copper grain boundaries, Nature Materials, vol.441, issue.9, pp.621-626, 2004.
DOI : 10.1103/PhysRevB.54.11169

W. T. Geng, A. J. Freeman, R. Wu, and G. B. Olson, Effect of Mo and Pd on the grain-boundary cohesion of Fe, Physical Review B, vol.62, issue.10, p.6208, 2000.
DOI : 10.1103/PhysRevB.62.6208

W. T. Geng, A. J. Freeman, R. Wu, C. B. Gellerand, and J. E. Raynolds, nickel grain boundary, Physical Review B, vol.60, issue.10, p.7149, 1999.
DOI : 10.1103/PhysRevB.60.7149

P. Gordon and H. An, The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals, Metallurgical Transactions A, vol.1, issue.5, pp.457-472, 1982.
DOI : 10.1007/BF02643354

R. Haydock, The mobility of bonds at metal surfaces (heterogeneous catalysis), Journal of Physics C: Solid State Physics, vol.14, issue.26, pp.3807-3816, 1981.
DOI : 10.1088/0022-3719/14/26/016

S. Hemery, T. Auger, J. L. Courouau, and F. Balbaud-celerier, Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel, Corrosion Science, vol.76, pp.441-452, 2013.
DOI : 10.1016/j.corsci.2013.07.018

J. K. Heuer, P. R. Okamoto, N. Q. Lam, and J. F. Stubbins, Disorder-induced melting in nickel: implication to intergranular sulfur embrittlement, Journal of Nuclear Materials, vol.301, issue.2-3, p.129, 2002.
DOI : 10.1016/S0022-3115(02)00707-9

R. C. Hugo and R. G. Hoagland, In-Situ TEM Observation of Aluminum Embrittlement by Liquid Gallium, Scripta Materialia, vol.38, issue.3, pp.523-529, 1998.
DOI : 10.1016/S1359-6462(97)00464-8

R. C. Hugo and R. G. Hoagland, Gallium penetration of aluminum: in-situ TEM observations at the penetration front, Scripta Materialia, vol.41, issue.12, pp.1341-1346, 1999.
DOI : 10.1016/S1359-6462(99)00293-6

E. E. Glickman and J. Lepinoux, Multiscale Phenomena in Plasticity, 2000.

B. Joseph, F. Barbier, and M. Aucouturier, Embrittlement of copper by liquid bismuth, Scripta Materialia, vol.40, issue.8, pp.893-897, 1999.
DOI : 10.1016/S1359-6462(99)00030-5

B. Joseph, F. Barbier, G. Dagoury, and M. Aucouturier, Rapid penetration of liquid Bi along Cu grain boundaries, Scripta Materialia, vol.39, issue.6, pp.775-781, 1998.
DOI : 10.1016/S1359-6462(98)00230-9

B. Joseph, M. Picat, and F. Barbier, Liquid metal embrittlement: A state-of-the-art appraisal, The European Physical Journal Applied Physics, vol.5, issue.1, pp.19-31, 1999.
DOI : 10.1051/epjap:1999108

B. Joseph, Fragilisation du cuivre par le bismuth liquide : Etude cinétique et mécanisme, 1998.

A. Legris, G. Nicaise, J. Vogt, and J. Foct, Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal., Journal of Nuclear Materials, vol.301, issue.1, pp.70-76, 2002.
DOI : 10.1016/S0022-3115(01)00730-9

W. Losch, A new model of grain boundary failure in temper embrittled steel, Acta Metallurgica, vol.27, issue.12, pp.1885-1892, 1979.
DOI : 10.1016/0001-6160(79)90079-8

E. Lugscheider and G. Jangg, Zeitschrift Fur Metallkund, p.548, 1971.

J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, and M. P. Harmer, The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement, Science, vol.333, issue.6050, p.1730, 2011.
DOI : 10.1126/science.1208774

S. P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metallurgica, vol.36, issue.10, pp.2639-2661, 1988.
DOI : 10.1016/0001-6160(88)90113-7

R. P. Messmer and C. L. Briant, The role of chemical bonding in grain boundary embrittlement, Acta Metallurgica, vol.30, issue.2, pp.457-467, 1982.
DOI : 10.1016/0001-6160(82)90226-7

L. E. Murr, Interfacial phenomena in metals and alloys, 1975.

M. G. Nicholas and C. F. Old, Liquid metal embrittlement, Journal of Materials Science, vol.60, issue.supplement, pp.1-18, 1979.
DOI : 10.1007/BF01028323

H. Nichols and W. Rostoker, Ductile-brittle transition in alpha brass, Acta Metallurgica, vol.8, issue.12, pp.848-850, 1960.
DOI : 10.1016/0001-6160(60)90151-6

H. Nichols and W. Rostoker, On the mechanism of crack initiation in embrittlement by liquid metals, Acta Metallurgica, vol.9, issue.5, p.504, 1961.
DOI : 10.1016/0001-6160(61)90145-6

E. Rabkin, Coherency strain energy as a driving force for liquid grooving at grain boundaries, Scripta Materialia, vol.39, issue.6, pp.685-690, 1998.
DOI : 10.1016/S1359-6462(98)00229-2

J. R. Rice and J. Wang, Embrittlement of interfaces by solute segregation, Materials Science and Engineering: A, vol.107, pp.23-40, 1989.
DOI : 10.1016/0921-5093(89)90372-9

W. Robertson, Transactions of the Metallurgical Society of AIME, p.1190, 1951.

W. Robertson, Transactions of the Metallurgical Society of AIME, p.1478, 1966.

W. Rostoker, J. M. Mccaughey, and H. Markus, Embrittlement by Liquid Metals, 1960.

R. Schweinfest, A. T. Paxton, and M. W. Finnis, Bismuth embrittlement of copper is an atomic size effect, Nature, vol.40, issue.7020, p.1008, 2004.
DOI : 10.1103/PhysRevB.54.11169

S. Schweizer, C. Elsasser, K. Hummler, and M. Fahnle, calculation of stacking-fault energies in noble metals, Physical Review B, vol.46, issue.21, p.14270, 1992.
DOI : 10.1103/PhysRevB.46.14270

M. M. Shea and N. S. Stoloff, Embrittlement of beta-brass alloys by liquid metals and aqueous ammonia, Materials Science and Engineering, vol.12, issue.5-6, pp.245-253, 1973.
DOI : 10.1016/0025-5416(73)90035-9

N. S. Stoloff, Surface and Interfaces, Sagamore Army Mat. Res. Conf, 1968.

N. S. Stoloff and T. L. Johnston, Crack propagation in a liquid metal environment, Acta Metallurgica, vol.11, issue.4, p.251, 1963.
DOI : 10.1016/0001-6160(63)90180-9

A. P. Sutton and V. Vitek, An atomistic study of tilt grain boundaries with substitutional impurities, Acta Metallurgica, vol.30, issue.11, pp.2011-2033, 1982.
DOI : 10.1016/0001-6160(82)90105-5

N. A. Tiner, Transactions of the Metallurgical Society of AIME, p.261, 1961.

A. R. Westwood and M. H. Kamdar, Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury, Philosophical Magazine, vol.137, issue.89, p.787, 1963.
DOI : 10.1063/1.1698431

K. Wolski and V. Laporte, Grain boundary diffusion and wetting in the analysis of intergranular penetration, Materials Science and Engineering: A, vol.495, issue.1-2, pp.138-146, 2008.
DOI : 10.1016/j.msea.2007.10.107

URL : https://hal.archives-ouvertes.fr/emse-00475598

R. Wu, A. J. Freeman, and G. B. Olson, First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion, Science, vol.265, issue.5170, p.376, 1994.
DOI : 10.1126/science.265.5170.376

R. Wu, A. J. Freeman, and G. B. Olson, Effects of carbon on Fe-grain-boundary cohesion: First-principles determination, Physical Review B, vol.53, issue.11, p.7504, 1996.
DOI : 10.1103/PhysRevB.53.7504

M. Yamaguchi, M. Shiga, and H. Kaburaki, Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System, Science, vol.307, issue.5708, p.393, 2005.
DOI : 10.1126/science.1104624

S. Yukawa and M. J. Sinott, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, pp.338-340, 1959.

L. Zhong, R. Wu, A. J. Freeman, and G. B. Olson, Effects of Mn additions on the P embrittlement of the Fe grain boundary, Physical Review B, vol.55, issue.17, p.11133, 1997.
DOI : 10.1103/PhysRevB.55.11133

D. R. Lide, CRC Handbook of Chemistry and Physics, 2005.

L. J. Norrby, Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks?, Journal of Chemical Education, vol.68, issue.2, p.110, 1991.
DOI : 10.1021/ed068p110

E. Lugscheider and G. Jangg, Zeitschrift Fur Metallkund, p.548, 1971.

T. Lindahl, A. Pilotti, and S. Westman, Rhombohedrally Distorted Gamma Phases in the Copper-Mercury and Chromium-Aluminium Systems., Acta Chemica Scandinavica, vol.22, p.748, 1968.
DOI : 10.3891/acta.chem.scand.22-0748

T. Lindahl and S. Westman, The Structure of the Rhombohedral Gamma Brass Like Phase in the Copper-Mercury System., Acta Chemica Scandinavica, vol.23, p.1181, 1969.
DOI : 10.3891/acta.chem.scand.23-1181

L. Zabdyr and C. Guminski, The Bi-Hg (bismuth-mercury) system, Journal of Phase Equilibria, vol.1, issue.84, p.230, 1996.
DOI : 10.1007/BF02648492

H. Okamoto, Binary alloy phase diagrams, Materials Park, 1990.

M. Lu, C. Lee, and F. Changi, Fracture toughness of acrylonitrile-butadiene-styrene byJ-integral methods, Polymer Engineering and Science, vol.28, issue.18, p.1433, 1995.
DOI : 10.1002/pen.760351803

V. Randle, Y. Hu, and M. Coleman, Grain boundary reorientation in copper, Journal of Materials Science, vol.47, issue.11, pp.3782-3791, 2008.
DOI : 10.1007/s10853-007-2128-2

M. A. Tschopp and D. L. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Philosophical Magazine, vol.53, issue.25, pp.3871-3892, 2007.
DOI : 10.1016/j.actamat.2006.10.041

V. Randle, ???Special??? boundaries and grain boundary plane engineering, Scripta Materialia, vol.54, issue.6, pp.1011-1015, 2006.
DOI : 10.1016/j.scriptamat.2005.11.050

C. A. Schuh, M. Kumar, and W. E. King, Analysis of grain boundary networks and their evolution during grain boundary engineering, Acta Materialia, vol.51, issue.3, pp.687-700, 2003.
DOI : 10.1016/S1359-6454(02)00447-0

T. Watanabe, Grain boundary engineering: historical perspective and future prospects, Journal of Materials Science, vol.38, issue.Spec. Issue, pp.4095-4115, 2011.
DOI : 10.1007/s10853-011-5393-z

S. Saito, K. Kikuchi, D. Hamaguchi, M. Tezuka, M. Miyagi et al., Corrosion???erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop, Journal of Nuclear Materials, vol.431, issue.1-3, pp.91-96, 2012.
DOI : 10.1016/j.jnucmat.2011.11.040

M. Michiuchi, H. Kokawa, Z. J. Wang, Y. S. Sato, and K. Sakai, Twin-induced grain boundary engineering for 316 austenitic stainless steel, Acta Materialia, vol.54, issue.19, pp.5179-5184, 2006.
DOI : 10.1016/j.actamat.2006.06.030

U. Krupp, Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing, Journal of Materials Science, vol.348, issue.11, pp.3908-3916, 2008.
DOI : 10.1007/s10853-007-2363-6

W. M. Kane and C. J. Mcmahon-jr, Part II. Effects of grain-boundary structure on the path of cracking in polycrystals, Materials Science and Engineering: A, vol.507, issue.1-2, pp.61-65, 2009.
DOI : 10.1016/j.msea.2008.07.015

W. Sigle, G. Richter, M. Rühle, and S. Schmidt, Applied Phyics Letters, p.121911, 2006.

V. Randle and M. Coleman, A study of low-strain and medium-strain grain boundary engineering, Acta Materialia, vol.57, issue.11, pp.3410-3421, 2009.
DOI : 10.1016/j.actamat.2009.04.002

G. Owen and V. Randle, On the role of iterative processing in grain boundary engineering, Scripta Materialia, vol.55, issue.10, pp.959-962, 2006.
DOI : 10.1016/j.scriptamat.2006.04.049

A. J. Schwartz, W. E. King, and M. Kumar, Influence of processing method on the network of grain boundaries, Scripta Materialia, vol.54, issue.6, p.963, 2006.
DOI : 10.1016/j.scriptamat.2005.11.052

C. Kim, Y. Hu, G. S. Rohrer, and V. Randle, Five-parameter grain boundary distribution in grain boundary engineered brass, Scripta Materialia, vol.52, issue.7, pp.633-637, 2005.
DOI : 10.1016/j.scriptamat.2004.11.025

D. M. Saylor, B. S. El-dasher, and G. S. Rohrer, Distribution of grain boundaries in aluminum as a function of five macroscopic parameters, Acta Materialia, vol.52, issue.12, p.3649, 2004.
DOI : 10.1016/j.actamat.2004.04.018

V. Randle, A methodology for grain boundary plane assessment by single-section trace analysis, Scripta Materialia, vol.44, issue.12, pp.2789-2794, 2001.
DOI : 10.1016/S1359-6462(01)00975-7

D. G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica, vol.14, issue.11, p.1479, 1966.
DOI : 10.1016/0001-6160(66)90168-4

A. Legris, G. Nicaise, J. Vogt, and J. Foct, Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal., Journal of Nuclear Materials, vol.301, issue.1, pp.70-76, 2002.
DOI : 10.1016/S0022-3115(01)00730-9

A. Liliana-medina-almazan, Etude expérimentale et numérique de l'effet du mercure sur le comportement mécanique des aciers 316L et T91, 2008.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

D. S. Sholl and J. A. Steckel, Density Functional Theory : A Practical Introduction, 2009.

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, issue.7, p.566, 1980.
DOI : 10.1103/PhysRevLett.45.566

L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman et al., Accurate surface and adsorption energies from many-body perturbation theory, Nature Materials, vol.99, issue.9, pp.741-744, 2010.
DOI : 10.1038/nmat2806

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)], Physical Review Letters, vol.78, issue.7, p.1396, 1997.
DOI : 10.1103/PhysRevLett.78.1396

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, vol.100, issue.13, p.136406, 2008.
DOI : 10.1103/PhysRevLett.100.136406

M. De-la-pierre, R. Orlando, L. Maschio, K. Doll, P. Ugliengo et al., Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4, Journal of Computational Chemistry, vol.1, issue.9, pp.1775-1784, 2011.
DOI : 10.1002/jcc.21750

K. Ohno, K. Esfarjani, and Y. Kawazoel, Computational Materials Science : From Ab Initio to Monte Carlo Methods, 1999.
DOI : 10.1007/978-3-642-59859-3

G. Kresse and J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.59, issue.3, p.1758, 1999.
DOI : 10.1103/PhysRevB.59.1758

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, pp.5188-5192, 1976.
DOI : 10.1103/PhysRevB.13.5188

G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. Philipsen, S. Lebègue et al., Assessing the performance of recent density functionals for bulk solids, Physical Review B, vol.79, issue.15, p.155107, 2009.
DOI : 10.1103/PhysRevB.79.155107

P. A. Dowben, Y. J. Kime, C. W. Hutchings, W. Li, and G. Vidali, The energetics of mercury adsorption on Cu(100), Surface Science, vol.230, issue.1-3, pp.113-122, 1990.
DOI : 10.1016/0039-6028(90)90020-9

B. Hammer, L. B. Hansen, and J. K. , Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B, vol.59, issue.11, p.7413, 1999.
DOI : 10.1103/PhysRevB.59.7413

P. P. Singh, Relativistic effects in mercury: Atom, clusters, and bulk, Physical Review B, vol.49, issue.7, p.4954, 1994.
DOI : 10.1103/PhysRevB.49.4954

B. Paulus and K. Rosciszewski, Metallic bonding due to electronic correlations: a quantum chemical ab initio calculation of the cohesive energy of mercury, Chemical Physics Letters, vol.394, issue.1-3, pp.96-100, 2004.
DOI : 10.1016/j.cplett.2004.06.118

J. A. Steckel, Density functional theory study of mercury adsorption on metal surfaces, Physical Review B, vol.77, issue.11, p.115412, 2008.
DOI : 10.1103/PhysRevB.77.115412

O. Schulte and W. B. Holzapfel, Phase diagram for mercury up to 67 GPa and 500 K, Physical Review B, vol.48, issue.18, p.14009, 1993.
DOI : 10.1103/PhysRevB.48.14009

D. R. Lide, Handbook of Chemistry and Physics, 2009.

N. Gaston, B. Paulus, K. Rosciszewski, P. Schwerdtfeger, and H. Stoll, Lattice structure of mercury: Influence of electronic correlation, Physical Review B, vol.74, issue.9, p.94102, 2006.
DOI : 10.1103/PhysRevB.74.094102

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, p.2471, 1985.
DOI : 10.1103/PhysRevLett.55.2471

A. Pasquarello, K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, -electron systems: Liquid copper at 1500 K, Physical Review Letters, vol.69, issue.13, p.1982, 1992.
DOI : 10.1103/PhysRevLett.69.1982

URL : https://hal.archives-ouvertes.fr/hal-00212145

N. Jakse, O. L. Bacq, and A. Pasturel, Short-range order of liquid and undercooled metals: Ab initio molecular dynamics study, Journal of Non-Crystalline Solids, vol.353, issue.32-40, pp.3684-3688, 2007.
DOI : 10.1016/j.jnoncrysol.2007.05.131

C. Woodward, M. Asta, D. R. Trinkle, J. Lill, and S. Angioletti-uberti, simulations of molten Ni alloys, Journal of Applied Physics, vol.107, issue.11, p.113522, 2010.
DOI : 10.1063/1.3437644

G. Kresse and J. Hafner, Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury, Physical Review B, vol.55, issue.12, p.7539, 1997.
DOI : 10.1103/PhysRevB.55.7539

N. F. Mott, The electrical properties of liquid mercury, Philosophical Magazine, vol.24, issue.125, p.989, 1966.
DOI : 10.1080/14786436108243361

K. Tamura and S. Hosokawa, Structural studies of expanded fluid mercury up to the liquid-vapor critical region, Physical Review B, vol.58, issue.14, p.9030, 1998.
DOI : 10.1103/PhysRevB.58.9030

L. Calderin, L. E. Gonzalez, and D. J. Gonzalez, molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature, The Journal of Chemical Physics, vol.130, issue.19, p.194505, 2009.
DOI : 10.1063/1.3137582

W. Jank and J. Hafner, Structural and electronic properties of the liquid polyvalent elements. II. The divalent elements, Physical Review B, vol.42, issue.11, p.6926, 1990.
DOI : 10.1103/PhysRevB.42.6926

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.
DOI : 10.1063/1.447334

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.79, issue.2, pp.255-268, 1984.
DOI : 10.1080/00268978400101201

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, p.1695, 1985.
DOI : 10.1103/PhysRevA.31.1695

G. Kresse and J. Hafner, molecular dynamics for liquid metals, Physical Review B, vol.47, issue.1, p.558, 1993.
DOI : 10.1103/PhysRevB.47.558

L. Energie-de-surface-décro?décro??t-de-? and S. , 20 J.m ?2à?2`?2à ? SV (? = 1) = 1, 38J.m ?2 , soit un gain d'environ 40% par l'adsorption d'une monocouche de mercure. La pente décroissante de l'´ energie de surface en fonction de ? laisse penser que ? SV peut encore diminuer par l'adsorption d'atomes de mercure pour ? > 1 (création d'une seconde couche), Nous n'avons pasétudié pasétudié ces cas de figure

J. Bomont, J. Bretonnet, D. J. Gonzalez, and L. E. Gonzalez, Computer simulation calculations of the free liquid surface of mercury, Physical Review B, vol.79, issue.14, p.144202, 2009.
DOI : 10.1103/PhysRevB.79.144202

S. K. Bose, Electronic structure of liquid mercury, Journal of Physics: Condensed Matter, vol.11, issue.24, p.4597, 1999.
DOI : 10.1088/0953-8984/11/24/303

L. Calderin, L. E. Gonzalez, and D. J. Gonzallez, molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature, The Journal of Chemical Physics, vol.130, issue.19, p.194505, 2009.
DOI : 10.1063/1.3137582

W. A. Curtin, Density-functional theory of the solid-liquid interface, Physical Review Letters, vol.59, issue.11, pp.1228-1231, 1987.
DOI : 10.1103/PhysRevLett.59.1228

R. M. Digilov, Semi-empirical model for prediction of crystal???melt interfacial tension, Surface Science, vol.555, issue.1-3, pp.68-74, 2004.
DOI : 10.1016/j.susc.2004.02.024

S. E. Donnelly, R. C. Birtcher, C. W. Allen, I. Morrison, K. Furuya et al., Ordering in a Fluid Inert Gas Confined by Flat Surfaces, Science, vol.296, issue.5567, pp.507-510, 2002.
DOI : 10.1126/science.1068521

P. A. Dowben, Y. J. Kime, C. W. Hutchings, W. Li, and G. Vidali, The energetics of mercury adsorption on Cu(100), Surface Science, vol.230, issue.1-3, pp.113-122, 1990.
DOI : 10.1016/0039-6028(90)90020-9

M. Erol, N. Marasli, K. Keslioglu, and M. Gündüz, Solid???liquid interfacial energy of bismuth in the Bi???Cd eutectic system, Scripta Materialia, vol.51, issue.2, pp.131-136, 2004.
DOI : 10.1016/j.scriptamat.2004.03.041

L. Felberbaum, Microstructure and Embrittlement od Leaded Copper Alloys, 2005.

P. Geysermans, D. Gorse, and V. Pontikis, Molecular dynamics study of the solid???liquid interface, The Journal of Chemical Physics, vol.113, issue.15, p.6382, 2000.
DOI : 10.1063/1.1290730

E. D. Hondros and M. Mclean, La structure et les propriétés des surfaces solides, p.219, 1970.

K. D. Humfeld, S. Garoff, and P. Wynblatt, Analysis of Pseudopartial and Partial Wetting of Various Substrates by Lead, Langmuir, vol.20, issue.7, pp.2726-2729, 2004.
DOI : 10.1021/la035759d

M. Inui, X. Hong, and K. Tamura, Local structure of expanded fluid mercury using synchrotron radiation: From liquid to dense vapor, Physical Review B, vol.68, issue.9, p.94108, 2003.
DOI : 10.1103/PhysRevB.68.094108

E. Johnson, PHASE OF MATTER: The Elusive Liquid-Solid Interface, Science, vol.296, issue.5567, pp.477-478, 2002.
DOI : 10.1126/science.1070400

D. R. Jones, The measurement of solid-liquid interfacial energies from the shapes of grain-boundary grooves, Philosophical Magazine, vol.76, issue.3, p.569, 1973.
DOI : 10.1080/14786436708221642

D. R. Jones, The free energies of solid-liquid interfaces, Journal of Materials Science, vol.1952, issue.4, pp.1-17, 1974.
DOI : 10.1007/BF00554751

R. Kaplow, S. L. Strong, and B. L. Averbach, Radial Density Functions for Liquid Mercury and Lead, Physical Review, vol.138, issue.5A, p.1336, 1965.
DOI : 10.1103/PhysRev.138.A1336

K. Keslioglu, M. Gündüz, H. Kaya, and E. Cadirli, Solid???liquid interfacial energy in the Al???Ti system, Materials Letters, vol.58, issue.24, pp.3067-3073, 2004.
DOI : 10.1016/j.matlet.2004.05.044

G. Kresse and J. Hafner, Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury, Physical Review B, vol.55, issue.12, p.7539, 1997.
DOI : 10.1103/PhysRevB.55.7539

G. Kresse and J. Hafner, Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury, Physical Review B, vol.55, issue.12, p.7539, 1997.
DOI : 10.1103/PhysRevB.55.7539

G. Lang, Handbook of Chemistry and Physics, 1977.

W. J. Ma, J. R. Banavar, and J. A. Koplik, A molecular dynamics study of freezing in a confined geometry, The Journal of Chemical Physics, vol.97, issue.1, pp.485-493, 1992.
DOI : 10.1063/1.463594

O. M. Magnussen, B. M. Ocko, M. J. Regan, K. Penanen, P. S. Pershan et al., X-Ray Reflectivity Measurements of Surface Layering in Liquid Mercury, Physical Review Letters, vol.74, issue.22, pp.4444-4447, 1995.
DOI : 10.1103/PhysRevLett.74.4444

N. Marash, S. Akbulut, Y. Ocak, K. Keslioglu, U. Böyük et al., Measurement of solid???liquid interfacial energy in the In???Bi eutectic alloy at low melting temperature, Journal of Physics: Condensed Matter, vol.19, issue.50, p.506102, 2007.
DOI : 10.1088/0953-8984/19/50/506102

M. Mclean, Determination of the surface energy of copper as a function of crystallographic orientation and temperature, Acta Metallurgica, vol.19, issue.4, pp.387-393, 1971.
DOI : 10.1016/0001-6160(71)90106-4

J. Neugebauer and M. Scheffler, Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111), Physical Review B, vol.46, issue.24, p.16067, 1992.
DOI : 10.1103/PhysRevB.46.16067

H. Nichols and W. Rostoker, On the mechanism of crack initiation in embrittlement by liquid metals, Acta Metallurgica, vol.9, issue.5, p.504, 1961.
DOI : 10.1016/0001-6160(61)90145-6

M. J. Regan, E. H. Kawamoto, S. Lee, P. S. Pershan, N. Maskil et al., Surface Layering in Liquid Gallium: An X-Ray Reflectivity Study, Physical Review Letters, vol.75, issue.13, pp.2498-2501, 1995.
DOI : 10.1103/PhysRevLett.75.2498

S. A. Rice, D. Guidotti, H. L. Lemberg, W. C. Murphy, and A. N. Bloch, Advances in Chemical Physics XXVII, 1974.

C. Sarpe-tudoran, B. Fricke, J. Anton, and V. Persina, Adsorption of superheavy elements on metal surfaces, The Journal of Chemical Physics, vol.126, issue.17, p.174702, 2007.
DOI : 10.1063/1.2727447

D. S. Sholl and J. A. Steckel, Density Functional Theory : A Practical Introduction, 2009.

J. H. Sikkenk, J. O. Indekeu, J. Van-leeuwen, and E. O. Vossnack, Molecular-dynamics simulation of wetting and drying at solid-fluid interfaces, Physical Review Letters, vol.59, issue.1, pp.98-101, 1987.
DOI : 10.1103/PhysRevLett.59.98

J. A. Steckel, Density functional theory study of mercury adsorption on metal surfaces, Physical Review B, vol.77, issue.11, p.115412, 2008.
DOI : 10.1103/PhysRevB.77.115412

K. Tamura and S. Hosokawa, Structural studies of expanded fluid mercury up to the liquid-vapor critical region, Physical Review B, vol.58, issue.14, p.9030, 1998.
DOI : 10.1103/PhysRevB.58.9030

E. A. Wood, Vocabulary of Surface Crystallography, Journal of Applied Physics, vol.35, issue.4, pp.1306-1312, 1964.
DOI : 10.1063/1.1713610

. Afin-de-remonteràremonter-`-remonterà-la-contrainte, nous devons approcher l'ensemble des points {(E, u)} par une expression analytique de l'´ energie en fonction du déplacement. La contrainte peut ensuitêensuitê etre déduite par dérivation puis normalisation par la section de la cellule

M. A. Tschopp and D. L. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Philosophical Magazine, vol.53, issue.25, pp.3871-3892, 2007.
DOI : 10.1016/j.actamat.2006.10.041

Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, , tight-binding, and embedded-atom calculations, Physical Review B, vol.63, issue.22, p.224106, 2001.
DOI : 10.1103/PhysRevB.63.224106

M. A. Tschopp and D. L. Mcdowell, Structures and energies of ?? 3 asymmetric tilt grain boundaries in copper and aluminium, Philosophical Magazine, vol.1, issue.22, pp.3147-3173, 2007.
DOI : 10.1080/01418610008212086

G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, -body potentials for the noble metals and nickel, Philosophical Magazine A, vol.29, issue.6, p.735, 1987.
DOI : 10.1016/0022-3115(78)90250-7

URL : https://hal.archives-ouvertes.fr/hal-00547109

C. Schmidt, M. W. Finnis, F. Ernst, and V. Vitek, Theoretical and experimental investigations of structures and energies of ?? = 3, [112] tilt grain boundaries in copper, Philosophical Magazine A, vol.6, issue.5, pp.1161-1184, 1998.
DOI : 10.1080/01418619208248003

U. Wolft, M. W. Finnis, F. Ernst, T. Muschik, and H. F. Fischmeister, The influence of grain boundary inclination on the structure and energy of ?? = 3 grain boundaries in copper, Philosophical Magazine A, vol.12, issue.6, pp.991-1016, 1992.
DOI : 10.1051/jphyscol:1990157

L. E. Murr, Interfacial phenomena in metals and alloys, 1975.

S. Hofmann and P. Lejcek, Solute segregation at grain boundaries, Interface Science, vol.307, issue.309, pp.241-267, 1996.
DOI : 10.1007/BF00194704

U. Alber, H. Müllejans, and M. Rühle, Bismuth segregation at copper grain boundaries, Acta Materialia, vol.47, issue.15-16, pp.4047-4060, 1999.
DOI : 10.1016/S1359-6454(99)00265-7

T. Shinoda and T. Nakamura, The effects of applied stress on the intergranular phosphorus segregation in a chromium steel, Acta Metallurgica, vol.29, issue.9, pp.1631-1637, 1981.
DOI : 10.1016/0001-6160(81)90045-6

A. P. Sutton and V. Vitek, An atomistic study of tilt grain boundaries with substitutional impurities, Acta Metallurgica, vol.30, issue.11, pp.2011-2033, 1982.
DOI : 10.1016/0001-6160(82)90105-5

J. R. Rice and J. S. Wang, Embrittlement of interfaces by solute segregation, Materials Science and Engineering: A, vol.107, p.23, 1989.
DOI : 10.1016/0921-5093(89)90372-9

R. Wu, A. J. Freeman, and G. B. Olson, Effects of carbon on Fe-grain-boundary cohesion: First-principles determination, Physical Review B, vol.53, issue.11, p.7504, 1996.
DOI : 10.1103/PhysRevB.53.7504

A. Legris, G. Nicaise, J. Vogt, and J. Foct, Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal., Journal of Nuclear Materials, vol.301, issue.1, pp.70-76, 2002.
DOI : 10.1016/S0022-3115(01)00730-9

R. Schweinfest, A. T. Paxton, and M. W. Finnis, Bismuth embrittlement of copper is an atomic size effect, Nature, vol.40, issue.7020, p.1008, 2004.
DOI : 10.1103/PhysRevB.54.11169

C. Peng, Y. Ganesan, Y. Lu, and J. Lou, Size dependent mechanical properties of single crystalline nickel nanowires, Journal of Applied Physics, vol.111, issue.6, p.63524, 2012.
DOI : 10.1063/1.3698625

N. H. Macmillan, The theoretical strength of solids, Journal of Materials Science, vol.7, issue.2, p.239, 1972.
DOI : 10.1007/BF02403513

J. H. Rose, J. R. Smith, J. Guinea, and . Ferrante, Universal features of the equation of state of metals, Physical Review B, vol.29, issue.6, p.2963, 1984.
DOI : 10.1103/PhysRevB.29.2963

R. L. Hayes, M. Ortiz, and E. A. Carter, Universal binding-energy relation for crystals that accounts for surface relaxation, Physical Review B, vol.69, issue.17, p.172104, 2004.
DOI : 10.1103/PhysRevB.69.172104

R. Janisch, N. Ahmed, and A. Hartmaier, tensile tests of Al bulk crystals and grain boundaries: Universality of mechanical behavior, Physical Review B, vol.81, issue.18, p.184108, 2010.
DOI : 10.1103/PhysRevB.81.184108

S. Zhang, O. Y. Kontsevoi, A. J. Freeman, and G. B. Olson, Sodium-induced embrittlement of an aluminum grain boundary, Physical Review B, vol.82, issue.22, p.224107, 2010.
DOI : 10.1103/PhysRevB.82.224107

G. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama et al., Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening, Physical Review B, vol.73, issue.22, p.224115, 2006.
DOI : 10.1103/PhysRevB.73.224115

. La-forme-analytique-de-?-que-nous-avons-définie, D'après l'existence expérimentale de films liquides dans les joints de grains ne conduisant pas instantanémentinstantanément`instantanémentà la rupture du matériau, nous supposerons qu'il existe une valeur ? min telle que si ? < ? min alors ? y (?) = 0. La figure 7.10 est une illustration d'un fond de fissure rempli de métal liquide ToutàToutà fait en pointe de fissure, l'espace est insuffisant pour que le liquide existe et se répartisse en couche Afin que la pression ? agisse, nous supposerons donc qu'il est nécessaire qu'il y ait au moins trois couches atomiques de métal liquide, deux couches adsorbées sur les surfaces du métal solide et unetroisì eme couche présente entre les deux couches adsorbées. Nous avons calculé la valeur de ? min en considérant le rayon atomique des atomes de mercure, R Hg W ig = 1, 6 ? A, ainsi que la distance d'adsorption que nous avons déjà mesurée Finalement, nous obtenons

S. L. Lee and D. J. Unger, A decohesion model of hydrogen assisted cracking, Engineering Fracture Mechanics, vol.31, issue.4, p.647, 1988.
DOI : 10.1016/0013-7944(88)90107-5

J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, vol.35, issue.2, p.379, 1968.
DOI : 10.1115/1.3601206

G. I. Barenblatt, Advances in Applied Mechanics, p.55, 1962.

J. N. Israelachvili, Intermolecular and Surfaces Forces, 2011.

B. Bhushan, J. N. Israelachvili, and U. Landman, Nanotribology: friction, wear and lubrication at the atomic scale, Nature, vol.374, issue.6523, p.607, 1995.
DOI : 10.1038/374607a0

R. G. Horn, J. N. Israelachvili, and E. Perez, Forces due to structure in a thin liquid crystal film, Journal de Physique, vol.42, issue.1, p.39, 1981.
DOI : 10.1051/jphys:0198100420103900

URL : https://hal.archives-ouvertes.fr/jpa-00208990

R. G. Horn and J. N. Israelachvili, Direct measurement of structural forces between two surfaces in a nonpolar liquid, The Journal of Chemical Physics, vol.75, issue.3, p.1400, 1981.
DOI : 10.1063/1.442146

W. Rostoker, J. M. Mccaughey, and H. Markus, Embrittlement by Liquid Metals, 1960.