Étude par simulation moléculaire de la flexibilité des matériaux nanoporeux : propriétés structurales, mécaniques et thermodynamiques.

Aurelie Monteil

▶ To cite this version:

HAL Id: tel-01124009
https://tel.archives-ouvertes.fr/tel-01124009

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Étude par simulation moléculaire de la flexibilité des matériaux nanoporeux : propriétés structurales, mécaniques et thermodynamiques

présentée par

Aurélie Ortiz

pour obtenir le grade de
Docteur de l’Université Pierre et Marie Curie

Composition du jury :

Pr. Lydéric Bocquet (rapporteur)
Dr. Anne Boutin (directrice de thèse)
Dr. François-Xavier Coudert (directeur de thèse)
Pr. Isabelle Demachy (rapporteur)
Dr. Guillaume Ferlat
Pr. Alain Fuchs
Dr. Caroline Mellot-Draznieks
Dr. Matthieu Vandamme
Sommaire abrégé

Introduction générale

1 Les Metal-Organic Frameworks : une nouvelle classe de matériaux nanoporeux
 1.1 Les matériaux poreux .. 3
 1.2 Les zéolithes ... 5
 1.3 Les MOFs : matériaux hybrides organiques-inorganiques 6

2 Méthodes de simulation
 2.1 La simulation moléculaire .. 26
 2.2 La méthode de Monte-Carlo ... 30
 2.3 La dynamique moléculaire ... 40
 2.4 Les potentiels d’interactions .. 42
 2.5 La théorie de la fonctionnelle de la densité (DFT) 48
 2.6 La dynamique moléculaire \textit{ab initio} 52

3 Propriétés mécaniques des \textit{Soft Porous Crystals}
 3.1 De la mécanique des matériaux aux constantes élastiques des MOFs 56
 3.2 État de l’art ... 62
 3.3 La signature élastique de la flexibilité structurale 65
 3.4 Prédiction de la flexibilité structurale 76
 3.5 Au-delà du domaine élastique .. 84
 3.6 Conclusion ... 93

4 Stabilité mécanique : amorphisation et polymorphisme des MOFs
 4.1 L’amorphisation des ZIFs ... 96
 4.2 Comportement sous pression des \textit{Zinc Alkyl Gates (ZAG)} 108
 4.3 Polymorphisme du cyanure de zinc Zn(CN)_2 118
 4.4 Conclusion ... 134

5 Influence de la topologie et de la fonctionnalisation sur les propriétés d’adsorption d’eau
 5.1 Les MOFs et l’eau .. 136
 5.2 Les ZIFs étudiées .. 145
 5.3 Détails techniques .. 148
 5.4 Les ZIFs hydrophobes .. 151
 5.5 Les ZIFs hydrophiles ... 154
 5.6 Effet de la géométrie .. 157
 5.7 Nature de la phase adsorbée à saturation 162
 5.8 Généralisation et comparaison avec d’autres matériaux 162
 5.9 Conclusion ... 164
6 Comportement en température et en présence d’eau de la MIL-53(Ga) 167
 6.1 Les matériaux de la famille MIL-53 et l’eau 168
 6.2 Les phases métastables de la MIL-53(Ga) 168
 6.3 Stabilité relative des phases ... 171
 6.4 Diagramme de phase en présence d’eau de la MIL-53(Ga) 174
 6.5 Conclusion ... 177

Conclusion générale 179

Liste de publications 183

Références 185
Sommaire détaillé

Introduction générale

1 Les Metal-Organic Frameworks : une nouvelle classe de matériaux nanoporeux
 1.1 Les matériaux poreux
 1.2 Les zéolithes
 1.3 Les MOFs : matériaux hybrides organiques-inorganiques
 1.3.1 Une grande diversité structurale
 1.3.2 Les ZIFs : Zeolitic Imidazolate Frameworks
 1.3.3 La flexibilité structurale
 1.3.4 Des propriétés aux applications industrielles

2 Méthodes de simulation
 2.1 La simulation moléculaire
 2.1.1 La physique statistique : du microscopique au macroscopique
 2.1.2 L’échantillonnage de l’espace des phases
 2.1.3 La description des interactions intermoléculaires du système
 Approche quantique
 Approche classique
 2.1.4 Les conditions aux limites périodiques
 2.2 La méthode de Monte-Carlo
 2.2.1 L’algorithme de Metropolis
 2.2.2 Application aux différents ensembles statistiques
 L’ensemble canonique
 L’ensemble grand-canonique
 2.2.3 Les mouvements Monte-Carlo
 Les mouvements simples
 Les mouvements biaisés
 2.2.4 Thermodynamique d’adsorption
 Les isothermes d’adsorption
 Simulation Monte-Carlo et isothermes d’adsorption
 Enthalpie et chaleur isostérique d’adsorption
 2.3 La dynamique moléculaire
2.3.1 L'algorithme de Verlet ... 40
2.3.2 Dynamique moléculaire dans l’ensemble isostress \((N, \sigma, T)\) 41
 Thermostat de Berendsen ... 41
 Barostat de Berendsen .. 42
2.4 Les potentiels d’interactions ... 42
 2.4.1 Les interactions intramoléculaires 43
 2.4.2 Les interactions intermoléculaires 43
 2.4.3 Méthodes de sommation 44
 Interactions à courte portée .. 45
 Interactions à longue portée et sommation d’Ewald 46
2.5 La théorie de la fonctionnelle de la densité (DFT) 48
 2.5.1 L’équation de Schrödinger 48
 2.5.2 L’approche de Kohn-Sham 49
 Les fonctionnelles d’échange-corrélation 50
 2.5.3 Les bases atomiques et d’ondes planes 50
 2.5.4 Les pseudopotentiels .. 51
2.6 La dynamique moléculaire \textit{ab initio} 52

3 Propriétés mécaniques des \textit{Soft Porous Crystals} 55
 3.1 De la mécanique des matériaux aux constantes élastiques des MOFs 56
 3.1.1 La mécanique des matériaux 56
 La loi de Hooke généralisée ... 57
 Signification physique des constantes élastiques 58
 3.1.2 La méthodologie de calculs 58
 Calcul des constantes élastiques 58
 Calcul et représentation des modules élastiques 59
 3.1.3 Détails techniques ... 60
 Calcul quantiques .. 60
 Calculs premiers principes .. 61
 3.2 État de l’art .. 62
 3.3 La signature élastique de la flexibilité structurale 65
 3.3.1 Les matériaux étudiés .. 65
 Les matériaux de la famille MIL-53 65
 La DMOF-1 .. 66
 3.3.2 Les constantes élastiques 66
 3.3.3 Le module de Young ... 67
 3.3.4 Le module de cisaillement 71
 3.3.5 La compressibilité linéaire 72
 3.3.6 Ratio de Poisson ... 74
 3.3.7 Module d’élasticité isostatique 74
 3.4 Prédiction de la flexibilité structurale 76
 3.4.1 MIL-122(In) ... 77
 3.4.2 MIL-140A .. 79
 3.4.3 Critère simple : analyse des valeurs propres de la matrice élastique . 84
 3.5 Au-delà du domaine élastique 84
 3.5.1 CAU-13 .. 85
 3.5.2 NOTT-300 ... 89
 3.6 Conclusion .. 93
Introduction générale

Les matériaux nanoporeux présentent des cavités de taille nanométrique ce qui engendre une grande surface spécifique. Ils sont largement utilisés pour diverses applications notamment dans les domaines des technologies de séparation, purification et stockage de fluides et de la catalyse. Les zéolithes constituent la classe de matériaux poreux la plus utilisée à l'échelle industrielle et principalement dans l'industrie pétrolière et pétrochimique. Depuis le début des années 2000, une nouvelle classe de matériaux cristallins nanoporeux hybrides organiques–inorganiques, Metal-Organic Frameworks ou MOFs, suscite un grand intérêt de la communauté scientifique. La grande diversité structurale (taille et géométrie des pores) combinée à la variété des propriétés physico-chimiques de ces nouveaux matériaux (fonctionnalisation de la surface interne...) offre de nombreuses possibilités d’applications très prometteuses. Contrairement aux matériaux zéolithiques dont la structure cristalline relativement rigide est formée à partir de liaisons Si–O fortes, les MOFs présentent un réseau basé sur des liaisons fortes (liaisons covalentes des ligands organiques) et des liaisons plus faibles (liaisons de coordination, liaisons hydrogène...). Les MOFs possèdent ainsi une flexibilité structurale intrinsèque liée à leur nature chimique. La dynamique de leur structure peut être soit locale soit étendue à l’ensemble du matériau. Les Soft Porous Crystals (SPCs) regroupent les matériaux hybrides organiques–inorganiques présentant une extraordinaire flexibilité structurale de grande amplitude en réponse à des stimuli externes tels que la température, la pression, ou l’adsorption.

Les propriétés physico-chimiques très variées des MOFs laissent entrevoir de nombreuses applications notamment pour la séparation gazeuse ou la catalyse. Néanmoins, l’utilisation à l’échelle industrielle de ces matériaux aux propriétés fascinantes reste limitée par le manque de connaissances que l’on a notamment sur leur stabilité et leur vieillissement en conditions réelles d’utilisation. Ceci est en contraste avec les zéolithes, qui sont d’une exceptionnelle stabilité chimique, mécanique et hydrothermale de par leur nature inorganique et la force de leurs liaisons interatomiques. Des études ont effectivement reporté la faible stabilité en température et en présence d’eau, même à l’état de traces, de certaines MOFs. Bien qu’aujourd’hui, leurs propriétés d’adsorption de molécules d’intérêt industriel ou environnemental (méthane, dioxyde de carbone ou dihydrogène) aient été largement étudiées dans la littérature, il reste de nombreux domaines à explorer pour aller vers une compréhension complète des relations liant les propriétés d’adsorption, la stabilité chimique, mécanique et hydrothermale et les propriétés structurales (topologie, géométrie de la porosité, ...) de ces nouveaux matériaux hybrides hybrides.

Le projet de recherche de ma thèse qui porte sur l’étude par simulation moléculaire des propriétés structurales, mécaniques et thermodynamiques des MOFs flexibles s’inscrit dans ce contexte. Ces travaux ont été réalisés dans le cadre du projet blanc ANR “Soft-Crystab” dont le but est de caractériser la stabilité mécanique et hydrothermale des solides poreux flexibles (SPCs). En effet, la flexibilité structurale des Soft Porous Crystals offre de nouveaux champs d’application très prometteurs mais peut poser des problèmes de stabilité à long terme. Ce projet vise donc
à comprendre et prédire l’évolution, la dégradation et la régénération des propriétés spécifiques liées à la flexibilité de ces matériaux, lorsqu’ils sont soumis à des contraintes mécaniques et hydrothermales. Mes travaux de thèse ont été réalisés en étroite collaboration avec le Laboratoire de Matériaux à Porosité Contrôlée de l’Université de Haute-Alsace qui a synthétisé les matériaux et le Laboratoire Interdisciplinaire de Bourgogne de l’Université de Bourgogne qui a mené les expériences d’adsorption et l’étude expérimentale de la stabilité mécanique et hydrothermale des matériaux étudiés.

Les méthodes de simulation moléculaire actuelles ne permettent pas de décrire convenablement les *Soft Porous Crystals* dont la structure présente une flexibilité qui peut entraîner des changements de volume importants (≈ 40%). D’où la nécessité de développer de nouveaux outils théoriques spécifiquement adaptés à la description de ces matériaux flexibles. Généralement, les approches théoriques utilisées pour étudier les SPCs tiennent compte, de manière indirecte, de la nature flexible de ces matériaux. Néanmoins, il existe quelques exemples de méthodes de simulation qui considèrent de manière explicite la flexibilité structurale des *Soft Porous Crystals* développées notamment par Maurin *et coll.* (simulations hybrides dynamique moléculaire/Monte-Carlo) et par Miyahara *et coll.* (calculs d’énergie libre). L’équipe a récemment développé, dans le cadre de la thèse de David Bousquet, une méthodologie de calcul basée sur l’algorithme de Wang-Landau pour décrire les transitions structurales des SPCs induites par l’adsorption. À l’heure actuelle, les méthodes de dynamique moléculaire “premiers principes” à pression constante de matériaux hybrides flexibles restent trop coûteuses en temps de calculs. Dans le cadre de ma thèse, j’ai étudié les *Soft Porous Crystals* à partir de calculs quantiques (DFT, et dynamique moléculaire *ab initio*) et de méthodes de simulation classique (dynamique moléculaire et méthode Monte-Carlo).

Ce manuscrit est organisé en six chapitres. Le premier présente de manière générale les matériaux poreux et plus spécifiquement les *Metal-Organic Frameworks* qui constituent le sujet d’étude de ces travaux de thèse. Je présenterai les principales caractéristiques de ces matériaux à l’origine de leur exceptionnelle variété structurale, ainsi que leurs applications potentielles. Le deuxième chapitre sera consacré aux méthodes de simulation moléculaire. J’introduirai les principes de base de la simulation moléculaire et détaillerai les méthodes que j’ai utilisées au cours de ma thèse : la méthode Monte-Carlo, la dynamique moléculaire classique ainsi que la théorie de la fonctionnelle de la densité (DFT) et la dynamique moléculaire “premiers principes”. Dans le troisième chapitre, je rappellerai brièvement les concepts de base de la mécanique des matériaux. Puis, je présenterai les résultats de l’étude que nous avons menée sur les propriétés mécaniques des *Soft Porous Crystals*, qui a conduit à l’identification de la signature élastique de la flexibilité des MOFs. La deuxième partie de ce chapitre sera consacrée à la prédiction de la flexibilité de matériaux hybrides organiques-inorganiques. Le quatrième chapitre traitera de la stabilité mécanique des MOFs et notamment de l’étude et de la rationalisation du phénomène d’amorphisation et du polymorphisme induit par la pression, la température ou l’adsorption observés pour certains matériaux. Dans le cinquième chapitre, je me suis particulièrement intéressée aux propriétés hydrophiles et hydrophobes des matériaux de la famille des *Zinc Imidazoltate Frameworks* (ZIFs) en fonction de leur structure (topologie, géométrie des pores) et de la nature de leur surface interne (fonctionnalisation). Le dernier chapitre de ce manuscrit sera consacré à la présentation de mes résultats sur la rationalisation du comportement en présence d’eau de deux matériaux de la famille MIL-53. Enfin, je donnerai les conclusions générales de mon travail de thèse et en dégagerai les perspectives.
Chapitre 1

Les Metal-Organic Frameworks : une nouvelle classe de matériaux nanoporeux

1.1 Les matériaux poreux

Les matériaux poreux désignent des matériaux présentant une porosité structurale, leurs structures tridimensionnelles laissant apparaître de nombreuses cavités appelées pores. Les réseaux poreux ainsi formés peuvent être de nature très différente avec une porosité plus ou moins homogène et régulière. L’existence de cette porosité offre à ces matériaux une grande surface spécifique définie comme la surface interne accessible par unité de masse du matériau. Cette grande surface spécifique confère aux matériaux poreux des propriétés d’adsorption et de catalyse très intéressantes. Leurs applications industrielles sont très nombreuses, notamment dans le domaine de la catalyse hétérogène et des technologies de séparation, purification et stockage de gaz d’intérêt industriel. Par exemple, les zéolithes sont très largement utilisées dans l’industrie pétrolière notamment pour le craquage catalytique du pétrole afin d’obtenir des hydrocarbures plus légers, et comme tamis moléculaire pour la séparation des alcanes linéaires et ramifiés. Elles sont également utilisées comme agents déshydratants du gaz naturel ou pour le piégeage et le stockage des ions radioactifs tels que le césium et le strontium, ou d’ions lourds (Pb, Hg,...).

La classification de l’IUPAC distingue les matériaux poreux en trois catégories en fonction de la taille de leurs pores [1] :

- les solides microporeux, dont le diamètre des pores est inférieur à 2 nm
- les solides mésoporeux, dont le diamètre des pores est compris entre 2 et 50 nm
- les solides macroporeux, dont le diamètre des pores est supérieur à 50 nm

On regroupe sous le nom de matériaux nanoporeux, les matériaux microporeux et mésoporeux dont la taille de pores est inférieure à 50 nm. La figure 1.1 présente un exemple des trois types de matériaux poreux.

Les matériaux poreux peuvent également être classés en fonction de leur régularité structurale (figure 1.2). On distingue alors :

- les matériaux cristallins, tels que les zéolithes et les MOFs, présentant à l’échelle atomique
1.1 — Les matériaux poreux

Figure 1.1 : Images par microscopie électronique de trois matériaux poreux présentant une taille de pores différentes : a) matériau microporeux, b) matériau mésoporeux, c) matériau macroporeux.

Figure 1.2 : Exemples de trois matériaux poreux ayant un réseau poreux de nature très différente. À gauche un matériau cristallin : une zéolithé [2], au milieu un matériau régulier : une argile (la montmorillonite) [3], à droite un matériau amorphe : un type de verre Vycor [4].

— les matériaux poreux réguliers, comme les argiles ou les nanotubes de carbone, dont le réseau poreux est bien défini mais ne présente pas de régularité cristalline.
— les matériaux poreux amorphes qui sont considérés comme des liquides qui ne coulent pas. En effet, ces matériaux présentent une structure atomique désordonnée à longue distance comme les liquides, mais qui comme les solides reste figée et garde sa forme. Ils ne présentent pas de périodicité cristalline, de forme irrégulière et la distribution de taille de leurs pores est assez large. Parmi les matériaux amorphes on peut citer l’exemple du verre de silice et d’une multitude d’autres matériaux d’origine très variée tels que les charbons actifs, le verre Vycor et les aérogels.

On peut également distinguer les matériaux poreux en fonction de leur composition chimique, en deux grandes catégories : les matériaux organiques et les matériaux inorganiques. La première catégorie regroupe entre autres les systèmes à base de carbone, notamment les polymères tels que les COFs ou Covalent Organic Frameworks. Dans la classe des matériaux nanoporeux inorganiques, qui est historiquement la plus étendue, on trouvera entre autres les matériaux de type oxyde (à base de silice, titane ou zircone), les composés binaires tels que les sulfures ou les aluminophosphates (AlPO₄).

Depuis quelques années se développent des matériaux hybrides organo-minéraux tels que les organo-siliciques qui possèdent des structures et des fonctionnalités très variées. Une nouvelle classe de matériaux nanoporeux a également émergé : les matériaux hybrides organiques-inorganiques aussi appelés MOFs (Metal-Organic Frameworks). Ces matériaux constituent le
1.2 — Les zéolithes

On doit le nom zéolithe (du grec *zeo* : bouillir et *lithos* : pierre) à la curiosité du minéralogiste suédois Baron Crönstedt.[5] En 1756, afin d’étudier la stabilité en température d’un minéral naturel, la stilbite, il chauffa le matériau et observa que, vers 150 °C, la pierre se couvrait de bulles comme si elle se mettait à bouillir. Il baptisa alors cette famille de matériaux les zéolithes. Dans les décennies suivantes, une vingtaine de zéolithes naturelles furent découvertes. Il fallut néanmoins attendre environ un siècle pour que des applications prometteuses de ces matériaux se développent tirant ainsi avantage des propriétés très particulières de ces matériaux (structure poreuse et grande surface spécifique). En 1862, le chimiste Henry Sainte-Claire Deville prépara pour la première fois un homologue synthétique des zéolithes naturelles, la levinyte, ouvrant ainsi la voie à la synthèse de nouvelles zéolithes n’existant pas à l’état naturel. Aujourd’hui, on dénombre 206 types de structures zéolithiques dont 62 sont d’origine naturelle et 144 sont purement artificielles.

Figure 1.3 : Représentation schématique de l’assemblage des unités tétraédriques qui constituent le réseau poreux et cristallin des zéolithes, et trois images de matériaux zéolithiques naturels.

Composition et structure

Les zéolithes sont des aluminosilicates poreux cristallins (sous-groupe des tectosilicates) appartenant à la famille des matériaux nanoporeux. La nature cristalline de leur structure offre à ces matériaux une porosité de forme et de taille très homogène. Leur structure est constituée d’un assemblage régulier et tridimensionnel de tétraèdres SiO₄ ou AlO₄ reliés entre eux par leurs sommets comme représenté sur la figure 1.3. Le réseau poreux ainsi formé présente en fonction de l’arrangement dans l’espace des unités tétraédriques, des cavités poreuses de forme
et de taille très différentes d’une zéolithe à l’autre. Il en résulte une grande variété structu-
rale et topologique de ces matériaux dont le diamètre de pores varie de quelques nanomètres à
quelques angströms. Les pores peuvent par exemple être cylindriques, sphériques ou parallèles,
et indépendants ou connectés entre eux par des fenêtres. L’International Zeolite Association
attribue à chacune de ces différentes structures zéolithiques un code à trois lettres comme MFI,
FAU ou LTA. La figure 1.4 présente deux types de structure cristalline parmi les plus étudiées,
là zéolithe A (LTA) et la faujasite (FAU).

La topologie définit une famille de zéolithes, au sein de laquelle la composition chimique peut
varier. La composition générale d’une zéolithe est de type \(\text{M}_{x/m}\text{Al}_{x}\text{Si}_{1-x}\text{O}_2 \). Pour une struc-
ture donnée, le nombre d’atomes de silicium et d’aluminium, caractérisé par le rapport Si/Al,
ainsi que la nature des cations \(M^{m+} \) présents dans les pores peuvent varier. Le rapport Si/Al
peut varier entre 1 (autant d’aluminium que de silicium) et l’infini pour lequel la zéolithe de
formule chimique \(\text{SiO}_2 \) est dite purement silicique. Chaque introduction d’un atome d’alumi-
nium, de degré d’oxydation +III, conduit à l’apparition d’un défaut de charge négative qui est
compensé par la présence de cations dits extra-charpentes assurant la neutralité du matériau.
Ces cations mobiles sont généralement des cations monoatomiques, le plus répandu étant le
Na\(^+\), mais on peut également trouver K\(^+\), Ba\(^{2+}\), Ca\(^{2+}\), etc. La présence de ces cations dans
la structure contribue aux remarquables propriétés d’adsorption et de catalyse de ces maté-
riaux. La grande versatilité de ces matériaux nanoporeux offre un large panel d’applications.
Chaque application tire parti d’une caractéristique spécifique des zéolithes. Dans l’industrie, on
les utilise notamment comme échangeurs d’ions (cations extra-charpentes), catalyseur (grande
surface spécifique), pièges moléculaires et tamis moléculaires (taille de la porosité et propriétés
physico-chimiques variables).

1.3 Les MOFs : matériaux hybrides organiques-inorganiques

Les matériaux hybrides organiques-inorganiques poreux, Metal–Organic Frameworks, consti-
tuent une classe relativement récente de matériaux nanoporeux cristallins. Les travaux pion-
niers sur ces matériaux ont été menés par Robson et al. dans les années 90.[6, 7] L’utilisation
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

comme une classe à part entière au début des années 2000. Le groupe de Omar Yaghi synthétisa, en 1999, une MOF de taille de pore très importante appelée MOF-5, suscitant ainsi la curiosité de toute la communauté scientifique travaillant sur les matériaux poreux (figure 1.5).[8] Depuis lors, le nombre de publications portant sur la synthèse, la caractérisation et l'étude des matériaux hybrides organiques-inorganiques connaît une croissance exponentielle. On dénombre aujourd'hui plus de 1000 publications par an sur le domaine, témoignant du fort engouement de la communauté pour ces nouveaux matériaux.[9]

Figure 1.5 : Réprésentation de la structure de la MOF-5. La sphère jaune (diamètre de 18,5 Å) représente la volume de la cavité poreuse. En bleu sont représentés les tétraèdres métalliques de zinc, en rouge les atomes d’oxygène et en gris les atomes de carbone.

Les matériaux de cette famille sont constitués de centres métalliques interconnectés par des ligands organiques de manière à former des structures cristallines nano- ou mésoporeuses (figure 1.5).[10] La synthèse de ces matériaux peut se faire dans des conditions de chimie douce par voie hydrothermale ou solvothermale (dans des solvants tels que les alcools, le diéthylformamide, ou la pyridine par exemple). Les paramètres de contrôle de la réaction sont le pH (souvent acide), la concentration de sels métalliques et de ligands organiques, et la température (de l’ambiante jusqu’à plus de 200 °C). En raison de la présence d’une partie organique, ces nouveaux matériaux poreux perdent en stabilité thermique (jusqu’à 400 °C) par rapport aux matériaux purement inorganiques, tels que les zéolithes qui sont typiquement stables jusqu’à 1000 °C. Néanmoins cette perte en stabilité est largement compensée par les nouvelles possibilités offertes par ces matériaux hybrides. En effet, la versatilité de la chimie de coordination métal–ligand, combinée à la richesse de la chimie organique offre une grande variété chimique et structurale à ces matériaux. Comparés aux matériaux classiquement utilisés dans l’industrie, tels que les zéolithes ou les charbons actifs, l’atout majeur des MOFs réside dans leur grande diversité qui ouvre de nouveaux champs d’application très prometteurs pour ces matériaux émergents. Le but ultime est de faire de la synthèse à façon (rational design) des MOFs, et d’être capable de proposer et synthétiser un matériau répondant à un "cahier des charges physico-chimique" : telle chimie, telle taille de pore, etc. De plus, contrairement aux zéolithes qui possèdent une structure cristalline rigide, certaines MOFs regroupées sous l’appellation de Soft Porous Crystals (SPC) [11] présentent une extraordinaire flexibilité structurale en réponse à des stimuli physico-chimiques externes.[12, 13] Au cours de ma thèse je me suis particulièrement intéressée à cette catégorie de MOFs, c’est pourquoi je consacrerais dans la suite de ce chapitre une partie à ces matériaux flexibles.
1.3.1 Une grande diversité structurale

De par leur nature et leur mode de synthèse, les MOFs présentent une grande variété de structures. En effet, ces matériaux hybrides sont constitués de centres métalliques, constituant les nœuds du réseau cristallin, auto-assemblés par des molécules organiques chélatantes, typiquement des ligands bi-, tri-, ou tétradentates tels que les carboxylates, les amines ou les phosphonates. Contrairement aux matériaux poreux purement inorganiques comme les zéolithes, les MOFs peuvent être synthétisés à partir d’une large gamme d’espèces métalliques. Généralement, les clusters inorganiques sont formés par des cations de métaux de transition (Zn$^{2+}$, Cu$^{2+}$, Cr$^{3+}$...). Ainsi, en fonction du métal utilisé et de son degré d’oxydation le nombre de coordination peut varier de deux à sept conduisant à la formation de complexes métalliques de géométrie très différente qui peut être linéaire, tétraédrique, octaédrique ou encore pyramidale à base carrée notamment. Les lanthanides sont également utilisés car ils offrent une coordinence plus élevée que les métaux de transition permettant la formation de complexes de coordination où le cation lanthanide est entouré de sept à dix atomes donneurs.

![Ligands organiques fréquemment utilisés pour la synthèse des MOFs](image)

Figure 1.6 : Ligands organiques fréquemment utilisés pour la synthèse des MOFs. Image adaptée de la ref [14].

![Figure 1.7](image)

Figure 1.7 : Les différents modes de coordination des ligands à terminaison carboxylate : bidentate (à gauche), pontant (les deux du milieu) et monodentate (à droite). Image issue de la référence [15].

Les molécules organiques utilisées comme ligands contribuent également, de par leur mode de coordination et leur nature chimique, à la grande richesse structurale des MOFs. Généralement, les ligands utilisés pour la synthèse des MOFs sont des polycarboxylates ou des molécules polyazotés (figure 1.6). Les atomes d’oxygène de terminaison (atomes donneurs) du groupement carboxylate peuvent se coordonner à un cation métallique de différentes manières représentées...
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

Figure 1.8 : Exemples de deux MOFs constituées d’un cluster d’oxyde de zinc de même de géométrie de coordination. a) Structure de la MOF-5, formée avec un ligand carboxylate linéaire. b) Structure de la MOF-177 formée un ligand carboxylate trigonal. Image issue de la référence [16]

sur la figure 1.7, conduisant ainsi pour un même couple métal/ligand à la formation de matériaux de structures très variées. Par exemple, le ligand organique 1,4-benzènedicarboxylate peut se coordonner de manière pontante ou bidentate au cation métallique Zn$^{2+}$ conduisant ainsi à la formation de deux MOFs différentes, respectivement la MOF-2 [17] et la MOF-5. Il est également possible d’obtenir, à partir d’un même cluster inorganique et de deux ligands organiques de nature différente, des matériaux de structures cristallines (taille de pores et géométrie) et de propriétés d’adsorption très différentes comme illustré par la MOF-5 et la MOF-177 (figure 1.8) [18, 16]. Ainsi, en exploitant la grande richesse de la chimie organique associée à la versatilité de la chimie de coordination, une infinité de structures peut être imaginée, la seule limite étant la stabilité thermodynamique des phases obtenues.

Le concept d’unité secondaire (Secondary Building Units ou SBU) permet de rationaliser les structures des MOFs [15, 20, 21, 22, 23, 24] Chacune des unités secondaires répertoriées fait référence à la forme géométrique définie par les points d’accroche entre les clusters métalliques et les ligands organiques. Actuellement, on distingue dans la littérature 131 unités secondaires de géométrie plus ou moins complexe. La figure 1.9 présente quelques unités secondaires inorganiques parmi les plus répandues. Par exemple les unités secondaires de la MOF-5 sont les briques Zn$_4$O(CO$_2$)$_6$ contenant quatre tétraèdres ZnO$_4$ centrés sur l’atome de zinc partageant un sommet (atome d’oxygène), et six groupements carboxylates définissant ainsi des SBUs octaédriques. [25, 20] Ces SBUs octaédriques sont liées entre elles par des ligands benzéniques pour former une structure cristalline cubique d’une grande porosité et stabilité en l’absence des molécules adsorbées dans les pores (figure 1.10). Cette approche basée sur le concept de SBUs a non seulement permis de rationaliser les topologies des MOFs mais aussi d’orienter la synthèse de ces matériaux. En effet, dans la plupart des cas l’identification des conditions de synthèse conduisant à la formation d’une unité secondaire inorganique de géométrie spécifique permet de contrôler et de moduler la structure et les propriétés de la MOF formée par
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

Figure 1.9 : Exemples d’unités secondaires inorganiques. En bleu sont représentés les polyèdres des cations métalliques, en noir les atomes de carbone, en rouge les atomes d’oxygène, en vert les atomes d’azote, et en jaune les atomes de soufre. Image issue de la référence [19].

Figure 1.10 : La structure cubique de la MOF-5 formée par des unités secondaires octaédriques. Image construite à partir des éléments de la référence [15].

réaction d’auto-assemblage avec une unité organique donnée. Il est alors possible de prédire la structure et les propriétés d’adsorption par exemple des matériaux formés par combinaison de différentes SBU’s inorganiques et de connecteurs organiques de forme variée. Une méthode numérique suivant l’approche combinatoire a été récemment développée par Snurr et coll. [26] Elle permet de générer informatiquement un grand nombre de MOFs à partir d’une bibliothèque répertoriant l’ensemble des unités moléculaires connues. Les propriétés physico-chimiques de ces MOFs hypothétiques sont ensuite étudiées par simulation moléculaire afin de prédire celle qui sera la meilleure candidate pour une application spécifique. Cette méthode a notamment permis d’identifier une MOF, la NOTT-107, possédant une capacité d’adsorption du méthane importante. En 2002, à partir de la MOF-5 une famille de 16 MOFs isoréticulaires (isoréticulaires MOFs, IRMOFs) possédant la même structure de réseau et dont la taille de pores et les propriétés varient en fonction du ligand organique utilisé a été développée par Yaghi et coll. [27] La figure 1.11 présente les structures de cette première famille de MOFs isoréticulaires. Les IRMOFs-1 à -7 diffèrent par la fonctionnalisation du ligand benzénique utilisé tandis que pour les IRMOF-8 à -16 c’est la taille de pore des matériaux qui a été modulée par l’utilisation de ligands organiques de longueurs différentes. Cette famille de MOFs isoréticulaires illustre bien les deux principaux facteurs à l’origine de l’exceptionnelle variété structurale des MOFs qui sont la fonctionnalisation et le contrôle de la taille des pores.
Figure 1.11 : Structure des IRMOFs-n (n=1-8, 10,12,14 et 16). Les IRMOFs (n=9,11,13 et 15) possédant un réseau interpénétré n’ont pas été représentées. Les polyèdres métalliques de zinc sont représentés en bleu, les atomes de carbone en noir, les atomes d’oxygène en rouge, le brome en vert (IRMOF-2) et les groupements amino en bleu (IRMOF-3). La sphère jaune représente le volume poreux de chaque structure. Image issue de la référence [27].
La fonctionnalisation

Il est également possible de synthétiser des MOFs chirales pour des applications de catalyse énantiosélective. La voie de synthèse la plus directe et la plus fiable consiste à utiliser des ligands organiques chiraux. La POST-1, première MOF homochirale, a été synthétisée en 2000 à partir d’un ligand organique chiral dérivé de l’acide tartrique.[40, 41] Plus rarement, l’arrangement tridimensionnel dans l’espace d’unités secondaires achirales peut conduire pour des raisons de symétrie à un matériau chiral.

À présent, le grand challenge réside dans la synthèse de matériaux plus complexes, les multivariate MOFs (MTV-MOFs), fonctionnalisés par différents groupements organiques. Un seul matériau pourrait alors posséder plusieurs propriétés physico-chimiques différentes. On pourrait également envisager le développement d’un matériau "compartmenté" au sein duquel les différentes étapes d’une réaction seraient réalisées séparément ou en synergie. En 2010, 18 MTV-MOF-5 ont été synthétisées.[42] La structure cristalline de ces MTV-MOF-5 reste ordonnée, mais la répartition des groupements fonctionnels est quant à elle désordonnée. Une de ces structures contient huit fonctionnalisations différentes dans une seule phase. L’agencement complexe de ces groupements fonctionnels conduit à des propriétés insoupçonnées. Par exemple, un membre de cette série possède une sélectivité vis-à-vis du CO₂ par rapport au CO, quatre fois supérieure à celle de la MOF-5 d’origine.
La taille de pores

La possibilité de moduler la taille des pores des MOFs est un grand avantage par rapport aux matériaux poreux classiques. En effet, une large gamme de matériaux de taille de pore variable allant de quelques angströms, réseau poreux proche de celui des zéolithes, à plusieurs dizaines d’angströms (mésoporeux à petits pores) peut être obtenue. Ces matériaux hybrides permettent alors de combler le vide existant entre les matériaux zéolithiques et les matériaux mésoporeux offrant ainsi de nouvelles opportunités d’applications comme par exemple les transformations catalytiques de grosses molécules (polyaromatiques, glycérides ...) ou bien l’encapsulation de systèmes moléculaires de grande taille tels que les protéines, principes actifs ou nano-particules, ou encore d’augmenter la capacité de stockage de gaz. Un nouveau champ de recherche portant sur la modulation et le contrôle de la taille des pores des MOFs a donc naturellement émergé.

La première intuition du chimiste fut d’utiliser des ligands organiques de longueurs de chaîne différentes de manière à obtenir des matériaux de nature chimique et de structure proches mais de taille de pore variable. La famille des IRMOFs présentée précédemment est la plus connue et la première publiée (figure 1.11). Cette série de MOFs isoréticulaires est constituée de matériaux microporeux et mésoporeux dont la taille de pores varie de 4 Å à 19 Å (diamètre accessible = diamètre maximal de la molécule qui peut diffuser dans les pores). On peut également citer l’exemple de la mesoMOF-1 qui possède un réseau non-interpenéré et une grande porosité avec une distribution de taille de pore homogène de 39 Å.[43] Néanmoins, la grande difficulté de cette stratégie réside dans la synthèse de matériaux stables et de porosité importante. En effet, l’utilisation de ligand de grande taille entraîne souvent la formation de matériaux possédant un réseau interpenéré (faible porosité) ou de porosité non permanente (instable sous activation).

Figure 1.12 : Structure de la MIL-100(Cr) et de la MIL-101(Cr). La brique inorganique constituée d’octaèdres de chrome et les ligands organiques (1,3,5-BTC pour la MIL-100 et 1,4-BDC pour la MIL-101), les "supertétraèdres" formés, les deux mésopores de la MIL-100 et de la MIL-101 et la topologie du réseau ainsi formé.[44]

Les solides possédant une porosité hiérarchique, micropores et mésopores, sont également très intéressants en vue d’améliorer les processus catalytiques souvent limités par la diffusion des molécules dans les sites actifs. En effet, l’accès au site actif (situé dans les micropores) peut alors
se faire via les mésopores, permettant ainsi de réduire le temps de diffusion tout en gardant les effet du confinement et la sélectivité des sites actifs. Une démarche expérimentale combinée à la simulation moléculaire (prédiction de structure cristalline) a permis d’isoler deux matériaux remarquables qui sont la MIL-100(Cr) et la MIL-101(Cr).[45, 46, 47, 48] Ces matériaux constituent deux exemples de solides hybrides présentant une porosité dite hiérarchique en raison de la présence de deux types de pores de dimension différente (figure 1.12). Les unités secondaires inorganiques constituées par des octaèdres métalliques de chrome liés entre eux par les ligands organiques forment des micropores appelés "supertétraèdres" (8.7 Å pour la MIL-101 et 6.6 Å pour la MIL-100). Ces supertétraèdres s’auto-assemblent pour former un réseau poreux de topologie MTN par analogie avec les zéolithes et constitué de deux types de mésopores. La taille des mésopores varie respectivement pour la MIL-100(Cr) et la MIL-101(Cr) de 25 Å à 29 Å pour les petites cages et de 29 Å à 34 Å pour les grandes cages. Pour donner une idée de la taille de ces pores, la grande cage de la MIL-101(Cr) pourrait accueillir jusqu’à 64 fullerènes. La PCN-53 est un autre exemple de matériau hybride présentant une porosité hiérarchique avec des diamètres de pores variant de 9.5 Å à 22.2 Å.[49] Le lecteur intéressé pourra se reporter à la revue récemment publiée par Cui et coll. sur les récentes avancées dans le domaine des Metal-Organic Frameworks mésoporeuses.[44]

1.3.2 Les ZIFs : Zeolitic Imidazolate Frameworks

Le terme de ZIF, ou Zeolitic Imidazolate Frameworks, désigne une sous-famille de MOFs découverte indépendamment par les équipes de O. Yaghi et X.-M. Chen en 2006.[50, 51] Ces matériaux topologiquement isomorphes aux zéolithes sont composés de métaux de transition divalents de coordinence tétraédrique (M$^{2+}$), typiquement le zinc ou le cobalt, liés entre eux par des ligands imidazolates (Im$^{-}$). La valeur d’équilibre de l’angle M-Im-M de 145° est très proche de celle prise par l’angle Si-O-Si des zéolithes, expliquant ainsi la grande similarité structurale de ces deux classes de matériaux (figure 1.13). Comme la plupart des MOFs, les ZIFs présentent une grande variété structurale : on dénombre aujourd’hui plus de 100 ZIFs de structures et de topologies très variées. La figure 1.14 illustre trois exemples de matériaux de topologies différentes : la ZIF-8, la ZIF-10, et la ZIF-11. La fonctionnalisation des ligands imidazolates permet également la modulation de leurs propriétés physico-chimiques et de leur porosité.[52, 53] De plus, par leur nature chimique et la force de la liaison de coordination Zn-Im, les ZIFs possèdent une exceptionnelle stabilité thermique et chimique.[54] Les applications industrielles des ZIFs sont très prometteuses en raison des leurs remarquables propriétés notamment pour la capture du CO₂[55] et la séparation de fluides.

Figure 1.13 : Analogie entre la coordination des ZIFs et des zéolithes. Image issue de la référence [56].
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

Figure 1.14 : Représentation de la ZIF-8, la ZIF-10 et la ZIF-11. De gauche à droite sont représentés le réseau cristallin des zéolithes de topologies analogues, la structure des ZIFs correspondant à chaque réseau cristallin, la plus grande cage de chaque ZIF et le ligand imidazolate. Les tétraèdres ZnN$_4$ sont représentés en bleu et la sphère jaune indique la taille des pores. Image adaptée de la référence [54].

1.3.3 La flexibilité structurale

En 1998, Kitagawa proposa de classer les matériaux hybrides organiques-inorganiques en trois catégories en fonction de leur comportement vis-à-vis de l’adsorption et de la désorption de molécules (figure 1.15).[57] Les matériaux de la première catégorie possède une porosité dite non permanente dans le sens où lors de la désorption des molécules de solvant présentent dans les pores à l’issue de la synthèse, le matériau s’effondre. La seconde catégorie regroupe des matériaux dont la structure cristalline est assez stable et qui garde la même porosité lors de l’adsorption et de la désorption de molécules. Ces matériaux sont considérés comme essentiellement rigides (analogues des zéolithes) et présentent généralement une bonne stabilité thermique et mécanique. La dernière catégorie est sans doute la plus intéressante puisque les Soft Porous Crystals présentent une structure poreuse flexible (ou "dynamique") qui répond de manière réversible à des stimuli externes tels que la température [58], la pression mécanique [59], l’adsorption de gaz ou de liquides [13, 60], ou la lumière [61].

Par contraste avec les zéolithes dont le réseau cristallin est formé par des liaisons covalentes fortes Si-O et qui par conséquent présentent une flexibilité très limitée, les MOFs présentent une large flexibilité intrinsèque inhérente à leur nature hybride organique-inorganique.[62] En effet, leur structure cristalline est formée à la fois par des liaisons covalentes fortes (liaisons chimiques des ligands organiques) et des liaisons de nature plus faibles (liaisons de coordination, π-stacking, liaisons hydrogène ...) à l’origine de la flexibilité du matériau. Cette variation de la structure cristalline peut se manifester localement ou être étendue à l’ensemble du réseau cristallin. La
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

Figure 1.15 : Les trois catégories de MOFs dans la classification proposée par Kitagawa. Image issue de la référence [11].

Figure 1.16 présente différents modes possibles de flexibilité des MOFs ainsi qu’un exemple de matériau présentant chaque type de flexibilité.

— Un grand nombre de MOFs présentent une flexibilité locale de leur charpente cristalline sans modification notable de la structure. Cette flexibilité est due au degré de liberté de mouvement des ligands organiques, comme par exemple les mouvements de torsion et de flexion de la chaîne carbonée. C’est notamment le cas des ligands dicarboxylates qui entrent dans la composition d’un certain nombre de MOFs. Les ZIFs présentent également une structure dynamique intrinsèque induite par la libre rotation des ligands imidazolates autour de leur position d’équilibre tout en maintenant l’angle métal-imidazolate-métal fixé à une valeur d’environ 145°.[56]

— D’autres matériaux tels que les IRMOFs présentent une contraction homogène de leur volume en réponse à une augmentation de la température, phénomène connu sous le nom de dilatation thermique négative.[63]

Les Soft Porous Crystals présentent quant à eux une extraordinaire flexibilité qui implique non plus des déformations locales mais une modification structurale de grande amplitude sous l’effet d’une contrainte extérieure. [60, 11] Ils regroupent les trois catégories suivantes :

— Pour certains matériaux on observe en présence de certaines molécules de solvant un "gonflement" continu de la structure. Par exemple, le volume des matériaux de la famille MIL-88 peut atteindre jusqu’à 270% du volume initial en présence de lutidine.[64, 65]

— La flexibilité de certaines MOFs peut se manifester sous la forme d’une bi- ou multi-stabilité. On observe alors en réponse à un stimulus externe des transitions structurales entre ces différentes structures métastables du matériau. Certains matériaux présentent un phénomène dit de gate opening, qui implique une transition structurale entre une structure initialement non poreuse, et une structure plus ouverte (poreuse) en présence d’une certaine pression de gaz.[66] Ce type de flexibilité est souvent due aux mouvements des ligands organiques ou au déplacement d’un sous-réseau dans le cas de matériaux présentant un réseau interpénétré.

— Sous l’adsorption de certains gaz dans une gamme limitée de température, les matériaux de la famille MIL-53 présentent quant à eux une double transition structurale caractéris-
tique d’un phénomène de "respiration", le matériau passe alors d’une structure ouverte à une structure fermée puis à nouveau à la structure ouverte initiale.[67] La transition structurale est accompagnée d’une forte diminution du volume du matériau qui peut atteindre jusqu’à 40% en fonction de l’espèce adsorbée.

Figure 1.16 : Principaux modes de flexibilité des MOFs : la rotation des ligands, la dilatation thermique négative, le gonflement de la maille, l’ouverture des pores (gate opening), et la respiration.[62]

1.3.4 Des propriétés aux applications industrielles

Les MOFs constituent une nouvelle classe de matériaux dont les propriétés physico-chimiques exceptionnelles en termes de porosité (volume et surface accessibles, taille et forme de pores), de chimie de surface interne et de flexibilité offrent un large panel d’applications potentielles très prometteur. Certaines MOFs présentent par exemple des propriétés de luminescence très intéressantes permettant d’envisager une application de ces matériaux comme capteurs chimiques. Les MOFs apparaissent comme des matériaux capables de relever les nouveaux défis de l’industrie chimique dans des domaines très variés tels que la séparation, la purification et le stockage de gaz [68], la catalyse [30, 69], ou la médecine [70]. Au vu de ces nombreuses applications potentielles, BASF a récemment commencé la production à l’échelle industrielle de certaines MOFs commercialisées sous le nom de Basolite. Aujourd’hui, les recherches se concentrent sur le développement de procédés efficaces tirant parti des remarquables propriétés des MOFs pour aller vers une utilisation à l’échelle du procédé.

Les MOFs joueront très certainement un rôle important dans l’industrie chimique de demain. Je vous présenterai donc, dans la suite de ce chapitre, les principaux domaines d’application d’avenir des MOFs. Pour ce faire je donnerai des exemples des différentes performances de ces matériaux pour chacune des applications envisagées. L’idée étant d’illustrer le grand potentiel
de ces matériaux pour des applications spécifiques. Cependant, je ne décrirai pas de manière exhaustive l’étendue des applications possibles de ces matériaux, on pourra alors se référer au livre édité récemment par David Farrusseng [71] et aux revues de Müller [72] et de Zhou [73].

Séparation, purification et stockage gazeux

Les procédés de séparation et purification de gaz occupent une place importante dans l’industrie chimique notamment pour la production de gaz de grande pureté utilisés dans les secteurs de la santé et de l’électronique. Le développement de procédés optimisés de séparation et de stockage du CO₂ d’origine anthropique constitue également une préoccupation majeure de l’industrie chimique afin de répondre aux problématiques environnementales actuelles visant à réduire les emissions de gaz à effet de serre contribuant au réchauffement climatique. Il existe pour ce faire de nombreux procédés de séparation gazeuse basés sur la distillation (séparation cryogénique), l’absorption en phase liquide (amines notamment) ou l’adsorption. Si aujourd’hui, les matériaux poreux inorganiques tels que les charbons actifs, les gels de silice ou les zéolithes sont très largement utilisés comme adsorbants dans ces procédés industriels, les MOFs apparaissent comme des matériaux très prometteurs pour leur succéder. En effet, les procédés de séparation par adsorption sont souvent basés sur la différence d’interaction entre les molécules d’adsorbat et le matériau poreux adsorbant, ce sont donc les propriétés physico-chimiques du matériau qui vont déterminer les performances du procédé. Ainsi, les propriétés uniques qu’offrent les MOFs (modulation de la taille et de la nature chimique des pores, flexibilité structurale) combinées à leur grande surface spécifique en font des candidates idéales pour la séparation, la purification et le stockage de gaz.

Tout d’abord, les MOFs peuvent être utilisées pour purifier des mélanges gazeux. Dans ce cas, le gaz à purifier est en quantité majoritaire, le matériau adsorbant doit être sélectif et stable en présence des différentes impuretés présentent dans le mélange telles que l’eau ou les composés soufrés. Les matériaux de la famille des MILs (Matériaux de l’Institut Lavoisier) tels que la MIL-53(Al), la MIL-47(V), la MIL-100(Cr) et la MIL-101(Cr) se sont montrés être assez stables sous l’adsorption de sulfure d’hydrogène (H₂S), principal polluant présent dans le gaz naturel.[74] La présence de centres métalliques sous-coordinés entraîne également la séparation et la purification de certains fluides. Par exemple, l’élimination des traces de polluants (quelques ppm) tels que les amines, l’ammoniac ou les sulfures peut se faire par chimisorption. La HKUST-1 (ou Cu₃(btc)₂) s’est révélée être un matériau très efficace pour éliminer les molécules soufrées présentes dans le gaz naturel tels que le tetrahydrothiophène (THT) ou le tiophène, grâce à la formation d’une liaison de coordination Cu-S.[75] La capacité d’adsorption de ce matériau est de 70 g de THT par litre de matériau ce qui est nettement supérieur à celle des charbons actifs classiquement utilisés dans l’industrie (0.5 g de THT par litre de Noritcarbon de type RB4 et 6.5 g de THT par litre de CarboTech de type C38/4).

Il existe trois grandes stratégies pour réduire l’impact environnemental des usines chimiques dans lequel les MOFs pourraient intervenir (figure 1.17) :

— Capture en post-combustion, le CO₂ peut être récupéré par séparation du mélange gazeux issu de la combustion qui est essentiellement constitué de CO₂ et N₂.

— Capture en pré-combustion, qui implique la séparation du CO₂ du gaz de synthèse (syn gas), mélange de CO₂ et de H₂, formé par la gazéification du combustible (charbon). Le H₂ peut ensuite être utilisé pour produire de l’électricité.
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

Figure 1.17 : Représentation des trois procédés de séparation suivants : post-combustion, pré-combustion et oxycombustion. Entre parenthèses sont précisés les différents mélanges à séparer au cours du procédé ainsi que les conditions de pression.[68]

— L’oxycombustion dans laquelle la combustion du combustible (charbon, gaz naturel) se fait en présence de dioxygène pur. Ce procédé nécessite en amont la séparation du O$_2$ et du N$_2$ de l’air.

Chacun des trois procédés implique la séparation d’un mélange de gaz différent et nécessite donc le développement d’un matériau adsorbant spécifiquement optimisé. Actuellement, le captage du CO$_2$ se fait par un procédé qui consiste à utiliser un solvant aminé en solution aqueuse, le monoéthanolamine, qui possède une forte affinité pour le CO$_2$ et permet alors sa séparation des autres composés présents dans la fumée de combustion. La principale limitation de ce procédé est liée à la forte liaison C-N formée par la réaction de substitution nucléophile entre le CO$_2$ et l’amine, qui entraîne un coût élevé pour la régénération du solvant (chauffage de la solution). Une technologie basée sur l’utilisation de matériaux poreux, adsorbant de manière réversible les molécules de CO$_2$, serait donc plus économique. Les scientifiques ont rapidement pris conscience du fort potentiel de cette approche et se sont alors concentrés sur le développement de matériaux efficaces pour la capture du CO$_2$. Beaucoup de travaux de recherche portent sur la modulation des propriétés d’adsorption des MOFs afin d’augmenter leur affinité vis-à-vis d’une molécule cible. Le matériau idéal aurait en effet une grande sélectivité et capacité d’adsorption combinée à un faible coût énergétique pour la régénération. Dans le cas du CO$_2$, les performances d’un matériau peuvent être améliorées par l’ajout d’un groupement aminé. On peut alors citer l’exemple de l’IRMOF-3 ou de la NH$_2$-MIL-53(Al).[76, 37] Un exemple de matériau hybride très prometteur pour la capture et le stockage du CO$_2$ est la MOF-177 en raison
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques
de son exceptionnelle capacité d’adsorption du gaz.[76] Comparée aux matériaux de référence, la zéolithe 13X et le charbon actif MAXSORB, la MOF-177 adsorbe environ 2 fois plus de gaz à température ambiante et à une pression égale à 35 bar. De plus, une bouteille contenant de la MOF-177 a une capacité de stockage de CO\textsubscript{2} 9 fois supérieure à celle d’une bouteille vide (figure 1.18).

![Figure 1.18 : Comparaison des isothermes d’adsorption du CO\textsubscript{2} à température ambiante de la MOF-177, la zéolithe 13X, le charbon actif MAXSORB, et une bouteille de gaz sous pression (figure issue de la référence [76]).](image)

Certaines MOFs ont récemment été étudiées en détail pour la capture du CO\textsubscript{2} en post-combustion via un procédé TSA (Temperature Swing Adsorption) et en pré-combustion via un procédé PSA (Pressure Swing Adsorption).[77, 78] La MIL-100(Cr) et la MIL-101(Cr) qui possèdent une surface spécifique très importante respectivement de 1900 et de 4230 m2/g, sont très intéressantes notamment pour des applications de stockage de gaz. Par exemple, la capacité d’adsorption du CO\textsubscript{2} de ces deux matériaux est de plus de 40% en poids à température ambiante et pour une pression de 50 bar. Ces deux systèmes sont très prometteurs pour la capture du CO\textsubscript{2} en post-combustion car ils présentent une grande stabilité chimique et thermique. En effet, ils sont stables à l’eau et peuvent être chauffés jusqu’à 300 °C sans dégradation de la charpente du matériau.[68, 79] Cependant, à l’heure actuelle, la plus grande limitation à l’utilisation de ces matériaux hybrides dans des procédés de séparation gazeuse en post-combustion (facilement adaptables aux implantations existantes) réside dans les faibles performances d’adsorption à basse pression. La séparation de petites molécules de diamètres cinétiques différents peut également se faire par exclusion stérique. Par exemple, la MIL-96 peut être utilisée pour la séparation de mélange de gaz d’intérêt industriel tel que CO\textsubscript{2}/CH\textsubscript{4} : à température ambiante elle adsorbe préférentiellement le CO\textsubscript{2} par rapport au CH\textsubscript{4}. En effet, les molécules de CH\textsubscript{4} possédant un diamètre cinétique trop grand comparé à la taille des pores de la MOF ne sont pas adsorbées.[80]

Un autre enjeu environnemental est la mise au point d’une technologie capable de stocker efficacement le dihydrogène dans le cadre du développement de nouvelles sources d’énergie renouvelables pour des applications dans le monde automobile par exemple. Historiquement, les méthodes de stockage de l’hydrogène sont basées sur la liquéfaction et la compression mais
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques

ces approches impliquent d’important problèmes de sécurité et un coût élevé. Récemment, une stratégie alternative basée sur le stockage par adsorption de l’hydrogène dans des matériaux hybrides s’est révélée être très prometteuse. En effet, le mode de stockage serait alors basé sur un phénomène de physisorption qui implique un faible coût énergétique pour la libération de l’hydrogène stocké. Ainsi, une simple réduction de pression contrôlée par une valve permettrait la désorption des molécules de dihydrogène en quelques secondes. Certaines MOFs présentent des capacités de stockage de H$_2$ très intéressantes comme illustrées par la figure 1.19. La MOF-177 et de l’IRMOF-20 possèdent une capacité d’adsorption à 77 K et haute pression respectivement de 7.5% massique et de 6.7% massique. À plus faible pression, la MOF-74 et l’IRMOF-11 sont plus compétitives avec une capacité d’adsorption respectivement de 2.3% massique et 3.5% massique.[81] Cependant, avant d’envisager la commercialisation de cette technologie, il est nécessaire d’optimiser les performances de ces matériaux à température ambiante.

Figure 1.19 : Isothermes d’adsorption du H$_2$ dans différentes MOFs à 77 K. Les symboles pleins représentent l’adsorption et les symboles vides correspondent à la désorption.[81]

Catalyse hétérogène

La catalyse hétérogène est utilisée dans de nombreux procédés industriels. La sélectivité de ces procédés catalytiques est souvent basée sur la forme et la taille des réactifs d’où l’importance d’utiliser un catalyseur présentant une porosité régulière et uniforme. Les MOFs qui possèdent une régularité cristalline de leur structure apparaissent donc comme des matériaux à fort potentiel. De plus, la plupart des MOFs présentent un volume poreux complètement accessible permettant une bonne diffusion des molécules réactives vers le site catalytique, propriété particulièrement intéressante pour des applications dans le domaine de la catalyse.

Une première approche consiste à utiliser les centres métalliques de la MOF comme site catalytique. Par exemple, la MIL-100(Fe) et la MIL-100(Cr) présentent une activité catalytique très intéressante pour la réaction de benzylation de Friedel-Crafts qui intervient dans la production d’alkylbenzène linéaire (3 millions de tonnes par an). L’activité catalytique de la MIL-100(Fe) surpasse celle des zéolithes HBEA et HY classiquement utilisées.[82] La MOF-69C présente également une sélectivité stérique pour l’alkylation des grosses molécules polycycliques telles que
Le biphenylène.[83] La HKUST-1 peut être activée en enlevant une molécule d’eau apicale pour former un site acide de Lewis très réactif qui permet la catalyse des réactions de cyanosilylation par exemple.[84]

Une autre approche consiste à introduire des groupements fonctionnels d’intérêt catalytaire. Par exemple, la fonction aminée de l’IRMOF-3 et de l’amino-MIL-53 permet de les rendre efficace comme catalyseur basique pour les réactions de condensation de Knoevenagel du benzaldéhyde et du cyanoacétate d’éthyle.[85]

La dernière stratégie consiste à encapsuler des espèces catalytiques telles que les polyoxometalates (POMs) ou des nano-particules métalliques (Au, Pd, Pt,...). Par exemple, l’introduction des polyanions $[\text{H}_3\text{PW}_{12}\text{O}_{40}]^{5-}$ dans la charpente de la Cu$_3$(btc)$_2$ permet de catalyser efficacement la réaction d’hydrolyse des esters (figure 1.20).[86] La Pd/MIL-101 présente une activité catalytique supérieure à celle des catalyseurs actuellement utilisés (Pd/ZnO et Pd/Al$_2$O$_3$) pour la réaction d’hydrogénation en phase gazeuse qui convertit un mélange acétylène/éthylène en éthane.[87] L’activité catalytique de la Au/IRMOF-3 a également été étudiée pour l’hydrogénation du 1,3-butadiène. L’étude a montré que la Au/IRMOF-3 possède une forte sélectivité et un taux de conversion nettement supérieur à celui du catalyseur de référence (Au/TiO$_2$).[88]

Les récents travaux portant sur l’utilisation des MOFs comme catalyseurs ont montré qu’elles possèdent une grande activité catalytique et une grande sélectivité pour de nombreuses réactions d’intérêt industriel. De plus, dans la plupart des cas les catalyseurs à base de MOF peuvent être régénérés sans entraîner ni la modification de son activité catalytique ni la détérioration de sa structure cristalline. La possibilité de moduler non seulement la nature des sites actifs mais aussi la taille et la chiralité des pores des MOFs ouvre des perspectives d’applications très prometteuses dans le domaine de la catalyse hétérogène.

Capteurs chimiques

Les propriétés de luminescence des MOFs peuvent être liées soit à la présence de ligands aromatiques ou fonctionnalisés par un groupement conjugué, soit à la présence de cations lanthanides. Ces propriétés de luminescence combinées à la flexibilité de certaines MOF ouvrent des nouvelles perspectives d’applications très intéressantes. En effet, la transition structurale d’un matériau induite par l’adsorption d’une molécule cible modifierait sensiblement les propriétés d’émission du matériau, et permettrait sa détection. Ces propriétés de luminescence sont particulièrement
1.3 — Les MOFs : matériaux hybrides organiques-inorganiques intéressantes pour la détection d’explosifs. Par exemple, la Zn$_2$(bpdc)$_2$(bpee) est capable de détecter à la fois le 2,4-dinitrotoluène (DNT)(un indicateur volatile du 2,4,6-trinitrotoluène - TNT) et le 2,3-diméthyl-2,3-dinitrobutane (DMNB), molécules entrant dans la composition des explosifs. En effet, cette MOF luminescente adsorbe rapidement (environ 10 secondes) et de manière efficace et réversible ces deux molécules cibles. L’adsorption induit alors un changement des propriétés d’émission de la MOF et permet la détection (figure 1.21).[89] La MOF luminescente [Zn$_2$(oba)$_2$(bpy)$_3$.DMA s’est également révélée être un matériau très efficace pour la détection de molécules explosives et aromatiques par un phénomène de quenching de fluorescence.[90]

![Figure 1.21 : Représentation schématique de la modification des propriétés d’émission optique de la MOF Zn$_2$(bpdc)$_2$(bpee) en présence de molécules d’explosif.][89]

Applications biomédicales

Le développement de nouveaux modes de vectorisation basés sur les MOFs est un domaine de recherche qui a émergé ces dernières années. La grande variété structurale et chimique qu’offre les MOFs permet d’envisager des applications très prometteuses dans le domaine médical.[91, 70, 92] La stabilité en milieu biologique des MOFs varie généralement de quelques heures à quelques semaines, permettant ainsi de réduire l’accumulation dans le corps du patient. De plus, la possibilité de moduler les propriétés chimiques et le caractère hydrophile / hydrophobe du matériau, combinée à la grande capacité de chargement en principe actif, en font des vecteurs thérapeutiques très intéressants. La capacité de chargement et la vitesse de délivrance des molécules cargo dépendent de la porosité de la structure et de l’interaction de celles-ci avec la MOF. Les propriétés de flexibilité des MIL-53(Cr,Fe) se sont révélées très intéressantes pour l’encapsulation et la libération de principe actif tel que l’ibuprofène (figure 1.22 en haut).[93] Les MOFs peuvent également posséder une activité thérapeutique intrinsèque. Le ligand organique peut être une molécule bioactive qui sera relarguée dans l’organisme lors de la dégradation du matériau comme illustré par la bio-MIL-1, MOF bioactive, formée à partir de l’acide nicotinique, principe actif libéré en milieu physiologique (figure 1.22, en bas).[94] Le centre métallique (Gd, Mn, Fe) peut également posséder des propriétés intéressantes notamment pour le diagnostic par imagerie médicale.
Figure 1.22 : Illustration des applications des MOFs comme vecteur thérapeutique. En haut : la MIL-53 et l’ibuprofène. En bas : représentation de la formation de la bio-MIL-1 et de la libération du principe actif dans l’organisme. Image adaptée des références [93] et [92].
Chapitre 2

Méthodes de simulation

La simulation numérique a pris son essor au début des années 50, lorsque les ordinateurs développés pendant la seconde guerre mondiale pour le décryptage de messages codés et la mise au point d’armes nucléaires, furent disponibles pour des applications non militaires. Depuis, l’utilisation de la simulation numérique pour l’étude et la compréhension des phénomènes physiques et chimiques est devenue une discipline de recherche à part entière. La simulation moléculaire constitue une approche complémentaire aux études expérimentales et aux modèles analytiques et théoriques. En effet, les observables macroscopiques mesurées expérimentalement sont, dans de nombreux cas, difficiles à interpréter au niveau microscopique à cause de la complexité des phénomènes mis en jeu. D’autre part, les approches théoriques se basent généralement sur des approximations qui peuvent être fortes rendant parfois le système théorique peu représentatif du système réel. Les prédictions théoriques sont alors difficiles à valider expérimentalement car le système modèle utilisé est trop éloigné de la réalité expérimentale.

D’une manière générale, les simulations numériques peuvent être utilisées en complément des expériences pour l’interprétation des données expérimentales. En effet, elles permettent de découpler l’effet des différents paramètres expérimentaux afin d’étudier et de comprendre l’influence de chacun d’entre eux sur les phénomènes étudiés. D’autre part, elles permettent de valider ou d’affiner un modèle analytique permettant ainsi la rationalisation à l’échelle microscopique des tendances observées expérimentalement. Mais la force de la simulation moléculaire réside sans doute dans sa valeur prédictive des phénomènes physico-chimiques. En effet, les simulations numériques peuvent être utilisées pour faire des prédictions sur des phénomènes qui interviennent dans des conditions inaccessibles expérimentalement. Il est alors possible de réaliser des expériences in silico dans des conditions qui peuvent être extrêmes (température et pression) ou dangereuses, par exemple pour l’étude des réactions intervenant dans les réacteurs nucléaires, ou tout simplement pour étudier des phénomènes ultra-rapides ou très lents difficilement mesurables expérimentalement. De plus, elles donnent une vision microscopique de la matière, permettant l’étude à l’échelle atomique des phénomènes physico-chimiques (par exemple, identification des mécanismes réactionnels).

En outre, les différentes méthodes de simulation numérique offrent plusieurs niveaux de description du système, de l’échelle microscopique à l’échelle mésoscopique voire même macroscopique, permettant ainsi d’aller vers une description multi-échelle du système étudié. Elles permettent également de mesurer un grand nombre d’observables microscopiques, qui peuvent ensuite être reliées aux grandeurs macroscopiques par les lois de la physique statistique.
Dans ce chapitre, je présenterai les différentes méthodes de simulation moléculaire que j’ai utilisées dans mes travaux de thèse : la théorie de la fonctionnelle de la densité (DFT), la dynamique moléculaire \textit{ab initio} de type Born-Oppenheimer, la dynamique moléculaire classique et la méthode Monte-Carlo.

2.1 La simulation moléculaire

La simulation moléculaire regroupe plusieurs méthodes différentes telles que la méthode Monte-Carlo ou la dynamique moléculaire. Néanmoins, pour toutes ces méthodes de simulation, le système étudié est décrit de manière discrète comme un ensemble de particules de taille plus ou moins grande (atome, groupe d’atomes, molécules ou macro-molécules). Les différentes méthodes de simulation se distinguent alors par le niveau de description du système, qui est défini en fonction de la nature des informations recherchées et de la puissance de calcul disponible. D’autre part, toutes les méthodes de simulation moléculaire sont basées sur les concepts et les lois de la physique statistique, qui permettent de relier les grandeurs microscopiques calculées (énergie du système, positions des particules) aux observables macroscopiques. La simulation moléculaire consiste alors à explorer l’espace des phases du système simulé pour en déterminer les propriétés.

2.1.1 La physique statistique : du microscopique au macroscopique

Du point de vue microscopique et à une température suffisamment éloignée du zéro absolu, un fluide ou un solide, peut être considéré comme un système de \textit{N} particules ponctuelles. À un instant donné, chaque particule d’indice \(i \) est caractérisée par sa position \(q_i \) et sa quantité de mouvement \(p_i \). L’espace à \(6N \) dimensions que l’on appelle \textit{espace des phases}, regroupe alors l’ensemble des états microscopiques accessibles au système, chaque point de cet espace caractérisant un microétat du système. La valeur d’une observable \(A \) macroscopique correspondra alors à la moyenne de la grandeur microscopique associée \(a \) sur l’ensemble des microétats \(j \) pondérés par leur probabilité d’occupation appelée \textit{probabilité de Boltzmann} et notée \(P_j \):

\[
\langle A \rangle = \sum_j a_j P_j
\]

(2.1)

La thermodynamique statistique introduite par Gibbs (1902), permet l’étude des systèmes physico-chimiques à travers la définition d’ensembles statistiques. Un ensemble statistique regroupe une infinité de copies d’un même système dans un état microscopique différent. La notion d’ensemble statistique fait alors le lien entre les microétats du système et les observables macroscopiques. Chaque ensemble statistique est défini par des conditions thermodynamiques différentes (\textit{i.e.} conditions expérimentales). L’expression de la probabilité d’occupation d’un microétat du système sera alors différente en fonction de l’ensemble statistique dans lequel on se place pour l’étude du système. L’ensemble canonique \((N, V, T)\) décrit par exemple un système fermé, de volume constant en équilibre avec un thermostat. Dans cet ensemble statistique, la probabilité \(P_j \) de trouver le système dans l’état \(j \) est donnée par l’équation suivante :

\[
P_j = \frac{\exp(-\beta E_j)}{\sum_j \exp(-\beta E_j)} = \frac{\exp(-\beta E_j)}{Q}
\]

(2.2)
2.1 — La simulation moléculaire

où \(\beta = \frac{1}{k_BT} \), \(k_B \) représente la constante de Boltzmann et \(Q \) la fonction de partition du système.

La connaissance de la fonction de partition \(Q \) d’un système permet de prédire toutes les propriétés thermodynamiques de ce système. Cependant, le calcul analytique de la fonction de partition n’est possible que dans le cas de l’étude de système simple. La voie numérique, qui consiste à effectuer des moyennes directes des grandeurs microscopiques dans l’ensemble statistique, permet alors de s’affranchir du calcul explicite de la fonction de partition \(Q \) du système. En effet, à partir d’un ensemble de \(M \) configurations \(C_i \) du système, la valeur moyenne \(\langle A \rangle \) de la grandeur macroscopique \(A \) peut être calculée. Il suffit d’effectuer la moyenne de la grandeur microscopique \(a(C_i) \) sur les différentes configurations représentatives \(M \) du système, générées par l’échantillonnage de l’espace des phases du système :

\[
\langle A \rangle = \frac{1}{M} \sum_{i=1}^{M} a(C_i) \quad (2.3)
\]

En raison de la complexité des systèmes physico-chimiques, étudiés il est impossible de considérer toutes les configurations accessibles du système. Il est donc nécessaire d’engendrer un échantillon représentatif de l’ensemble statistique, qui garantit l’équivalence des équations 2.1 et 2.3.

2.1.2 L’échantillonnage de l’espace des phases

Les méthodes de simulation moléculaire sont basées sur la thermodynamique statistique et permettent de calculer les propriétés, observables physiques, d’un système à partir des données microscopiques sur les différentes particules constituant ce système. En effet, selon les principes de la thermodynamique statistique, la mesure d’une observable macroscopique correspond à la moyenne des valeurs prises par son équivalent microscopique sur un grand nombre d’états du système (comme explicité précédemment). Chaque état du système correspondant à un point particulier de l’espace des phases du système. Le calcul de la valeur d’une observable macroscopique revient donc à échantillonner l’espace des phases du système de manière à déterminer un ensemble discret de points qui soient représentatifs du système sur lequel effectuer les moyennes d’ensemble. Pour s’assurer que cet ensemble de points de l’espace des phases correspond à un échantillon représentatif de l’ensemble statistique considéré, une probabilité d’occurrence (i.e. probabilité de Boltzmann associée à l’ensemble statistique de travail) est affectée à chaque point de l’espace des phases de cet échantillon.

Toute la difficulté de la simulation moléculaire réside donc dans la génération de cet échantillon de l’espace des phases du système, afin qu’il soit suffisamment représentatif pour bien décrire l’espace des phases du système, tout en gardant un temps de calcul raisonnable. En pratique, il existe deux grandes méthodes d’échantillonnage de l’espace des phases d’un système : la dynamique moléculaire et la méthode Monte-Carlo (figure 2.1). La première méthode est la plus intuitive pour générer les configurations d’un système puisqu’elle consiste à suivre l’évolution temporelle des particules de ce système. Dans ce cas, les grandeurs macroscopiques seront calculées à partir de moyennes temporelles effectuées sur l’ensemble de la trajectoire de la dynamique. La méthode Monte-Carlo est quant à elle une méthode stochastique d’exploration de l’espace des configurations * du système. Des moyennes d’ensemble permettront alors de calculer les

* Les quantités de mouvements ne sont pas explicitement prises en compte par la méthode de Monte-Carlo (section 2.2).
valeur des observables macroscopiques du système. D’après l’hypothèse ergodique, la moyenne d’ensemble est identique à la moyenne temporelle. L’algorithme permettant l’échantillonnage de l’espace des phases est donc différent en fonction de la méthode de simulation choisie pour l’étude du système, mais conduit aux mêmes valeurs moyennes des observables macroscopiques.

2.1.3 La description des interactions intermoléculaires du système

La prise en compte des interactions intermoléculaires du système étudié peut être effectuée à un niveau *ab initio* ou classique. Cependant, la description de ces interactions à un niveau classique ne permet pas de rendre compte de la rupture et de la création de liaisons chimiques. Au contraire, les méthodes quantiques qui considèrent explicitement les électrons, sont capables de décrire les réactions chimiques, mais sont en revanche plus coûteuses en temps de calcul. Je décrirai dans la suite brièvement ces deux approches.

Approche quantique

La description quantique des interactions entre les particules d’un système contenant *K* noyaux et *N* électrons fait intervenir l’équation de Schrödinger. Pour une configuration *(Rᵢ)* donnée des noyaux et si le hamiltonien du système ne dépend pas explicitement du temps, l’équation de Schrödinger se simplifie et prend la forme suivante :

\[
\left(-\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \hat{V}_{\text{ext}}(r_{1}, ..., r_{N}) + \sum_{i \neq j} \frac{1}{r_{i} - r_{j}} \right) \psi(r_{1}, ..., r_{N}) = E_{\text{el}} \psi(r_{1}, ..., r_{N}) \quad (2.4)
\]

où l’opérateur \(\hat{V}_{\text{ext}} \) contient le potentiel d’interaction entre les électrons et les noyaux et les potentiels extérieurs (par exemple, un champ électrique ou magnétique extérieur appliqué au
système). Un moyen de résoudre cette équation consiste à décomposer la fonction d’onde poly-électronique $\psi(r_1, ..., r_N)$ dans une base de fonctions mono-électroniques $\{\varphi_i\}$ mettant alors en jeu de nombreuses intégrales du type $\langle \varphi_j | \hat{A} | \varphi_i \rangle$, où \hat{A} est un opérateur quelconque. Si la résolution analytique d’un tel système est impossible et sa résolution numérique difficile du fait du grand nombre de dimensions impliquées, il existe néanmoins trois approches généralement utilisées : les méthodes de Monte-Carlo quantique (QMC), les méthodes de chimie quantiques (Hartree-Fock et post-Hartree-Fock) et la théorie de la fonctionnelle de la densité. Les méthodes de Monte-Carlo quantique sont basées sur des algorithmes stochastiques pour la résolution de l’équation de Schrödinger et le calcul des intégrales poly-électroniques.[95, 96, 97] Les méthodes traditionnelles de chimie quantique reposent quant à elles sur le formalisme des déterminants de Slater. La corrélation électronique est négligée dans la méthode Hartree-Fock mais est réintroduite dans les méthodes dites post-Hartree-Fock telles que la méthode Moller-Plesset (MP2).[98] Je ne donnerai pas plus d’informations sur les méthodes précédentes et invite le lecteur intéressé à se référer au livre de A. Szabo et N. S. Ostlund.[99] La dernière approche, que je présenterai plus en détail dans la suite du chapitre, est basée sur la théorie de la fonctionnelle de la densité (DFT).

Approche classique

La modélisation des interactions intermoléculaires du système étudié peut également se faire en utilisant des potentiels d’interaction analytiques, qui permettent d’approximer l’énergie potentielle U d’interaction entre deux atomes du système sans faire intervenir la structure électronique. Par conséquent, le coût de calcul est beaucoup plus faible que dans le cas des méthodes quantiques, et permet alors l’étude de systèmes de plus grande taille, de l’ordre de plusieurs milliers atomes. Néanmoins, ces méthodes ne permettent pas de décrire des systèmes où la structure électronique varie notablement au cours du phénomène étudié comme dans le cas des réactions chimiques (rupture et formation de liaisons, transfert électronique, variation du degré d’oxydation).

Les potentiels d’interaction utilisés dépendent de la nature du système étudié et de la grandeur que l’on souhaite calculer. Ils sont généralement choisis additifs, leur forme analytique est la somme de différents termes décrivant chaque type d’interaction ($E_{\text{élec}}$ énergie électrostatique, E_{ind} énergie d’induction, E_{disp} énergie de dispersion et $E_{\text{rép}}$ l’énergie de répulsion) :

$$U = U_{\text{élec}} + U_{\text{ind}} + U_{\text{disp}} + U_{\text{rép}}$$

Les paramètres qui interviennent dans ces différents termes d’interaction peuvent être issus de calculs quantiques sur la structure électronique ou être ajustés de manière empirique à partir d’un jeu de propriétés mesurées expérimentalement. La difficulté réside dans l’obtention de paramètres de potentiel qui soient relativement transférables d’un système à un autre. La description du système peut se faire à différents niveaux, on peut ainsi considérer tous les atomes, un centre de force sera alors attribué à chaque atome du système ou bien, attribué un centre de force à un groupement fonctionnel tel que –CH$_3$ ou –CH$_2$ pour se placer à un niveau de description supérieur (dit d’atomes unifiés).

2.1.4 Les conditions aux limites périodiques

En simulation moléculaire, l’étude d’une phase condensée se fait en considérant une boîte de simulation de volume V contenant un nombre fini N de particules. La taille du système décrit
explicitement, de l’ordre de quelques milliers d’atomes, est limitée par la puissance de calcul. En effet, le calcul numérique des interactions intermoléculaires du système varie en N^α, α étant généralement supérieur ou égal à 2 en fonction de la méthode utilisée. L’échantillon numérique ainsi étudié possède un grand nombre de particules en surface de la boîte de simulation, les effets de bords deviennent alors importants et ne peuvent pas être négligés. Un moyen d’éviter les effets de surface ainsi introduits consiste à appliquer des conditions périodiques aux limites. Il s’agit alors de répliquer par translation la boîte de simulation à l’infini dans les trois directions de l’espace comme illustré par la figure 2.2. Une molécule de la boîte de simulation primitive interagira donc avec les autres molécules de la boîte, mais aussi avec les images de ces molécules. Le système périodique infini ainsi obtenu permet également de limiter les effets de taille finie du système sur les grandeurs observables calculées. Cependant, la périodicité introduite n’existe pas expérimentalement et peut, dans certains cas, influencer les résultats des simulations. Dans le cas de l’étude des matériaux poreux et cristallins comme les MOFs, ce modèle périodique permet la prise en compte explicite du réseau et de la porosité du matériau.

![Figure 2.2](image)

Figure 2.2 : Représentation schématique des conditions périodiques aux limites (en deux dimensions). La boîte de simulation (encadrée en bleu) est répliquée dans toutes les directions de l’espace.

En outre, l’utilisation des conditions aux limites périodiques ne pose aucun problème pour le calcul des interactions à courte portée de type Van der Waals. Par contre, pour le calcul des énergies à longue portée comme l’interaction électrostatique, il est nécessaire d’introduire des méthodes spécifiques telles que la sommation d’Ewald pour obtenir une valeur convergée de l’énergie, je reviendrai là-dessus dans la suite.

2.2 La méthode de Monte-Carlo

La méthode de Monte-Carlo consiste à échantillonner de manière aléatoire l’espace des configurations d’un système, afin d’en déterminer un ensemble de configurations représentatives. Chaque configuration est alors générée à partir de la précédente par des mouvements stochastiques et arbitrairement choisis. Les mouvements peuvent être des mouvements de translation
ou de rotation ou bien consister en de grands déplacements, ce qui permet un échantillonnage efficace de toutes les zones de l’espace des phases. Cependant, dans cette approche, seule la partie configurationnelle de l’espace des phases est explorée, le temps n’étant pas une variable explicite, uniquement les propriétés statiques et thermodynamiques du système pourront être calculées. Dans le cadre de ma thèse, j’ai utilisé cette méthode de simulation pour étudier les propriétés d’adsorption des MOFs.

2.2.1 L’algorithme de Metropolis

L’algorithme introduit en 1953 par Metropolis, Rosenbluth et Teller permet de générer un ensemble de configurations \(\{C_i\} \) représentatif du système dans l’ensemble statistique considéré en suivant un processus stochastique Markovien.\(^{[100]} \) La configuration \(C_{i+1} \) dépendra uniquement de la configuration précédente \(C_i \). La probabilité qu’une configuration \(C_{i+1} \) succède à la configuration \(C_i \) est alors déterminée par la loi de probabilité \(\pi(C_i \to C_{i+1}) \). Pour que l’équilibre soit atteint, une condition nécessaire et suffisante est que la chaîne de Markov soit stationnaire, c’est-à-dire que le taux d’apparition d’une configuration et son taux de disparition soit égaux. Cette condition est assurée dans l’algorithme de Metropolis par le principe de microréversibilité selon lequel le taux de passage d’une configuration \(C_i \) à une configuration \(C_{i+1} \) est égal au taux de passage de la configuration \(C_{i+1} \) à \(C_i \) :

\[
\Pi(C_i \to C_{i+1}) = \Pi(C_{i+1} \to C_i)
\] (2.6)

Plus précisément, la génération de l’ensemble des configurations \(\{C_i\} \) par l’algorithme de Metropolis se déroule de la manière suivante :

1. À partir d’une configuration \(C_i \), on génère par transformation aléatoire une configuration d’essai notée \(C_* \). La probabilité de créer cette configuration \(C_* \), \(P_{\text{gén}}(C_i \to C_*) \), dépend du type de transformation effectuée (\(i.e. \) mouvement de translation, de rotation ...).
2. La probabilité que cette configuration d’essai \(C_* \) soit acceptée comme configuration \(C_{i+1} \) est calculée. Cette probabilité est déterminée par la condition de microréversibilité qui implique que :

\[
P_{\text{ens.}}(C_i) P_{\text{gén.}}(C_i \to C_*) P_{\text{acc.}}(C_i \to C_*) = P_{\text{ens.}}(C_*) P_{\text{gén.}}(C_* \to C_i) P_{\text{acc.}}(C_* \to C_i)
\] (2.7)

où \(P_{\text{ens.}}(C_i) \) et \(P_{\text{ens.}}(C_*) \) sont respectivement les probabilités, dans l’ensemble statistique considéré, de trouver le système dans les configurations \(C_i \) et \(C_* \). La probabilité \(P_{\text{acc.}}(C_i \to C_*) \) peut prendre plusieurs formes. Dans l’algorithme de Metropolis, elle est choisie asymétrique de la forme suivante :

\[
P_{\text{acc.}}(C_i \to C_*) = \min \left(1, \frac{P_{\text{ens.}}(C_*) P_{\text{gén.}}(C_* \to C_i)}{P_{\text{ens.}}(C_i) P_{\text{gén.}}(C_i \to C_*)} \right)
\] (2.8)

3. Si la configuration d’essai \(C_* \) est acceptée alors \(C_* \) devient \(C_{i+1} \), sinon \(C_{i+1} \) reste égale à \(C_i \).

2.2.2 Application aux différents ensembles statistiques

Les simulations Monte-Carlo peuvent être effectuées dans différents ensembles statistiques. En effet, selon les conditions thermodynamiques dans lesquelles le système évolue, on choisit un
ensemble statistique particulier. Par exemple, l’ensemble microcanonique \((N, V, E)\) définit un système isolé et fermé de volume constant. Un système fermé à volume constant et en équilibre avec un thermostat sera décrit dans l’ensemble canonique \((N, V, T)\). L’ensemble isobare \((N, P, T)\) sera utilisé pour décir un système fermé en équilibre avec un thermostat et un barosat. L’ensemble grand-canonical \((\mu, V, T)\) est un ensemble dans lequel le système est placé en équilibre avec un réservoir de molécules de potentiel chimique \(\mu\) fixé, à volume et température constants. Un système en équilibre avec un réservoir de molécules de potentiel chimique \(\mu\) donné et un thermostat soumis à une contrainte mécanique extérieure \(\sigma\) sera étudié dans l’ensemble osmotique \((\mu, \sigma, T)\). La figure 2.3 illustre ces différents ensembles statistiques. Dans chacun de ces ensembles statistiques, l’expression de la probabilité de trouver le système étudié dans une configuration \(C\) est différente. Je présenterai dans la suite uniquement les ensembles statistiques que j’ai utilisés dans mon travail de thèse : l’ensemble canonique et l’ensemble grand-canonical.

L’ensemble canonique

L’ensemble canonique \((N, V, T)\) décrit un système fermé dont le volume est constant en équilibre avec un thermostat. Dans cet ensemble, les paramètres de contrôle sont le nombre de molécules \(N\), le volume \(V\), et la température \(T\). La probabilité de Boltzmann de trouver le système dans une configuration \(C\) est donnée par la formule suivante :

\[
P_{NVT}(C) = \frac{1}{Q_{NVT}} \frac{1}{N!} \left(\frac{2\pi m k T}{h^2}\right)^{\frac{3N}{2}} \exp(-\beta U(C)) d^N q \propto \exp(-\beta U(C))
\]

où \(Q_{NVT}\) est la fonction de partition dans l’ensemble canonique et \(U(C)\) est l’énergie potentielle de la configuration \(C\) dans l’hypothèse où toutes les particules ont la même masse \(m\).

La probabilité d’acceptation d’une configuration \(C_s\) dans l’ensemble canonique est de la forme :

\[
P_{\text{acc.}}(C_i \rightarrow C_s) = \min \left(1, \exp(-\beta(U(C_s) - U(C_i))) \times \frac{P_{\text{gén.}}(C_s \rightarrow C_i)}{P_{\text{gén.}}(C_i \rightarrow C_s)}\right)
\]

J’ai utilisé cet ensemble statistique dans les simulations de matériaux avec un nombre constant de molécules d’adsorbat. Par exemple pour calculer l’enthalpie d’adsorption des premières molécules d’eau adsorbées dans les ZIFs, avec \(N = 1\).

L’ensemble grand-canonical

L’ensemble grand-canonical \((\mu, V, T)\) est utilisé pour décir un système à volume constant en équilibre avec un thermostat et un réservoir de particules de potentiel chimique \(\mu\) fixé. Dans cet ensemble, le nombre de molécules \(N\) varie. Les simulations d’adsorption de fluides dans les matériaux poreux rigides sont donc réalisées dans cet ensemble statistique. La probabilité de trouver le système dans une configuration \(C\) s’exprime de la manière suivante :

\[
P_{\mu VT}(C) = \frac{1}{Q_{\mu VT}} \frac{1}{N!} \left(\frac{2\pi m k T}{h^2}\right)^{\frac{3N}{2}} \exp(-\beta U(C) + \beta \mu N) d^N q \propto \exp(-\beta U(C) + \beta \mu N)
\]
2.2 — La méthode de Monte-Carlo

Figure 2.3 : Représentation schématique des différents ensembles statistiques : a) canonique, b) isobare, c) grand-canonique, d) osmotique.
Si la transformation \(C_i \rightarrow C_* \) n’implique pas de variation du nombre de particules \(N \), la probabilité d’acceptation de la configuration \(C_* \) est la même que celle de l’ensemble canonique. Si le nombre de particules \(N \) varie, cela veut dire que la transformation implique une insertion ou une suppression d’une particule du système. Dans ce cas, la probabilité d’acceptation de la transformation \(C_i \rightarrow C_* \) est différente et vaut :

- Dans le cas d’une insertion de particule :
 \[
 P_{\text{acc.}}(C_i \rightarrow C_*) = \min \left(1, \frac{V \exp(\beta \mu)}{(N+1)A^3} \times \exp(-\beta(U(C_*) - U(C_i))) \cdot \frac{P_{\text{gén.}}(C_* \rightarrow C_i)}{P_{\text{gén.}}(C_i \rightarrow C_*)} \right)
 \]

- Dans le cas d’une suppression de particule :
 \[
 P_{\text{acc.}}(C_i \rightarrow C_*) = \min \left(1, \frac{N A^3}{V \exp(\beta \mu)} \times \exp(-\beta(U(C_*) - U(C_i))) \cdot \frac{P_{\text{gén.}}(C_* \rightarrow C_i)}{P_{\text{gén.}}(C_i \rightarrow C_*)} \right)
 \]

Dans mes travaux de thèse, j’ai utilisé les simulations de Monte-Carlo dans l’ensemble grand-canonical (GCMC) pour étudier les propriétés d’adsorption des MOFs et notamment pour calculer les isothermes d’adsorption.

2.2.3 Les mouvements Monte-Carlo

Dans la méthode Monte-Carlo, les nouvelles configurations sont générées à partir d’une configuration donnée par une transformation aléatoire appelée mouvement de Monte-Carlo. Ces mouvements, s’ils sont bien choisis, permettent d’échantillonner efficacement l’espace des phases du système étudié. En effet, ils doivent modifier suffisamment la configuration du système de manière à explorer la totalité de l’espace des configurations du système. Au cours de la simulation, à chaque pas Monte-Carlo, un mouvement sera choisi aléatoirement selon des probabilités définies à l’avance pour permettre un bon échantillonnage de l’espace des configurations du système. On distingue deux types de mouvements : les mouvements simples et les mouvements biaisés. La figure 2.4 illustre les différents mouvements Monte-Carlo.

Les mouvements simples

Parmi ces mouvements, les plus courants sont la translation et la rotation d’une molécule, qui s’appliquent dans tous les ensembles statistiques. Le mouvement de translation implique le déplacement d’une molécule, choisie au hasard, selon un vecteur tiré aléatoirement. La conformation interne de la molécule reste inchangée, seul son centre de gravité est déplacé. Les coordonnées de la nouvelle position \((x’, y’, z’)\) sont définies à partir des anciennes coordonnées \((x, y, z)\) :

\[
x’ = x + \Delta \left(\chi_1 - \frac{1}{2} \right) ; \quad y’ = y + \Delta \left(\chi_2 - \frac{1}{2} \right) ; \quad z’ = z + \Delta \left(\chi_3 - \frac{1}{2} \right)
\]

où \(\chi_i \) sont des nombres réels aléatoirement tirés entre 0 et 1, et \(\Delta \) représente l’amplitude maximale de déplacement. La valeur de \(\Delta \) est ajustée au cours de la simulation pour atteindre un taux d’acceptation d’environ 40%.

— 34 —
De manière similaire, le mouvement de rotation consiste à appliquer aléatoirement une rotation de la molécule. L’orientation de la molécule dans l’espace est alors décrite par les angles d’Euler (φ, θ, ψ) :

$$-\Delta \leq \varphi, \psi \leq \Delta; \quad 0 \leq \theta \leq \Delta \quad (2.15)$$

où Δ représente l’amplitude maximale de rotation. Sa valeur est ajustée au cours de la simulation pour garder une probabilité d’acceptation d’environ 40%.

Pour les mouvements de translation et de rotation, la probabilité de générer la transformation $\mathcal{C}_i \rightarrow \mathcal{C}_*$ est la même que celle de générer la transformation inverse $\mathcal{C}_* \rightarrow \mathcal{C}_i$. Ainsi, la probabilité d’acceptation de la nouvelle configuration est donnée par la formule suivante :

$$P_{\text{acc.}}(\mathcal{C}_i \rightarrow \mathcal{C}_*) = \min (1, \exp(-\beta(U(\mathcal{C}_*) - U(\mathcal{C}_i)))) \quad (2.16)$$

Les simulations Monte-Carlo dans l’ensemble grand-canonique (μ, V, T) autorisent également des mouvements d’insertion et de suppression de molécules. L’insertion permet alors d’insérer aléatoirement une molécule dans la boîte de simulation (i.e transfert d’une molécule depuis le réservoir fictif vers la boîte de simulation). Au contraire, la suppression est le mouvement qui consiste à supprimer aléatoirement une molécule du système. Ces mouvements permettent de faire varier le nombre de molécules du système. Les probabilités d’acceptation ont été présentées précédemment (équations 2.12 et 2.13).
Les mouvements biaisés

Les mouvements Monte-Carlo simples sont des mouvements non biaisés, c'est-à-dire qu'ils permettent de générer la nouvelle configuration de manière purement aléatoire (\(i.e. \mathcal{P}_{\text{gén.}}(\mathcal{C}_i \rightarrow \mathcal{C}_*) = \mathcal{P}_{\text{gén.}}(\mathcal{C}_* \rightarrow \mathcal{C}_i)\)). Un mouvement biaisé consiste à contrôler les mouvements de manière à favoriser les configurations les plus probables, afin d'améliorer l'échantillonnage de l'espace des configurations du système. Les mouvements de biais les plus utilisés sont d'une part les biais de pré-insertion, qui consistent à choisir préalablement la position du centre de gravité de molécule, parmi plusieurs tirées aléatoirement, selon un critère énergétique. Et d'autre part, les mouvements de biais rotationnel qui consistent à tester au préalable plusieurs orientations de la molécule dans le site d'insertion. Ces deux mouvements sont utilisés pour favoriser l'insertion d'une molécule, on tire de manière biaisée une position aléatoire et ensuite on définit l'orientation la plus favorable pour cette nouvelle position.

Des mouvements de saut sont également utilisés pour favoriser le déplacement à grande distance d'une molécule. Il est équivalent à une translation sur une grande distance et permet de faciliter le passage de barrières énergétiques élevées. Ce mouvement consiste alors en la suppression d'une molécule et en la ré-insertion de celle-ci dans une autre position. Dans la phase d'insertion, les biais de pré-insertion et rotationnel sont utilisés.

2.2.4 Thermodynamique d'adsorption

Les propriétés d'adsorption des matériaux poreux jouent un rôle important dans la plupart des applications de ces matériaux. Par exemple, elles déterminent les performances des procédés basés sur l'adsorption et permettent ainsi leur optimisation et leur dimensionnement. Ces propriétés peuvent être mesurées expérimentalement, calculées par simulation ou bien être obtenues en combinant ces deux approches.

Les isothermes d'adsorption

Les isothermes d'adsorption permettent de caractériser un matériau adsorbant, elles donnent en effet des informations sur la surface spécifique et la structure poreuse du matériau. À une température fixée, la quantité de molécules adsorbées \(N_{\text{ads}}\) est mesurée en fonction de la pression de fluide (gaz ou liquide) extérieure \(N_{\text{ads}} = f(P, T)\). Expérimentalement, les isothermes d'adsorption peuvent être mesurées par différentes techniques telles que la gravimétrie ou la volumétrie.

La forme des isothermes d'adsorption des matériaux poreux dépend de la force des interactions avec le fluide et de leur porosité. En effet, selon qu'il s'agisse de micropores, mesopores ou macropores les effets de confinement ne sont pas les mêmes et influencent alors le comportement des isothermes d'adsorption. Si les macropores peuvent être considérés comme des surfaces planes, le phénomène d'adsorption dans les micropores est quant à lui dominé par les interactions entre les molécules de gaz et les parois du pore. L'adsorption dans les micropores dépend non seulement des interactions entre l'adsorbant et le matériau poreux, mais aussi des interactions entre les molécules de fluide elles-mêmes, qui peuvent conduire à un phénomène de condensation capillaire à l'intérieur du pore du matériau pour une pression inférieure à la pression de saturation. La classification établie par l'IUPAC (International Union of Pure and Applied Chemistry) distingue six types d'isothermes d'adsorption présentés sur la figure 2.5.
Figure 2.5 : La classification des isothermes d’adsorption par l’IUPAC.

— L’isotherme de type I est réversible, concave par rapport à la pression relative. La quantité adsorbée N_{ads} atteint un palier (N_{ads}^{max}) lorsque la pression tend vers la pression de saturation ($\frac{P}{P_0} \to 1$). Généralement, les isothermes d’adsorption des matériaux microporeux sont de type I.

— Les isothermes de type II sont caractéristiques des matériaux nonporeux ou macroporeux. Le point d’inflexion appelé point B indique le moment où la monocouche adsorbée est complète. Au-delà de ce point, il y a adsorption par multicouche.

— L’isotherme d’adsorption de type III est réversible et convexe. Il n’y a pas de point d’inflexion, ce qui indique que les interactions attractives adsorbat-adsorbant sont relativement faibles.

— Les isothermes de type IV sont généralement observées lors de l’adsorption dans des matériaux mésoporeux. Elles sont caractérisées par la présence d’une marche et d’une boucle d’hystérèse associées au phénomène de condensation capillaire (phase liquide) à l’intérieur des pores du matériau.

— Les isothermes de type V caractérisent un phénomène de condensation avec une boucle d’hystérèse. Cependant, contrairement au type IV, la première partie de l’isotherme (i.e. avant la condensation) correspond à une adsorption de type III qui indique une interaction relativement faible entre l’adsorbat et le matériel adsorbant.

— L’isotherme de type VI présente plusieurs marches, caractéristiques d’un phénomène d’adsorption par multicouche sur une surface uniforme non poreuse.

Dans le cas des matériaux flexibles, la modification de la structure du matériau induite par l’adsorption influence le phénomène d’adsorption. Les transitions structurelles au cours de l’adsorption se traduisent alors par l’observation d’isothermes présentant des marches et des boucles d’hystérèse. Ces isothermes d’adsorption complexes ne correspondent pas à un type précis d’isotherme de la classification de l’IUPAC.

Simulation Monte-Carlo et isothermes d’adsorption

La méthode de choix pour étudier par simulation moléculaire les propriétés d’adsorption dans un matériau poreux rigide est la simulation Monte-Carlo dans l’ensemble grand canonique (μ, V, T). Dans cet ensemble, le nombre de particules fluctue, on peut ainsi calculer le nombre
2.2 — La méthode de Monte-Carlo

de molécules adsorbées à l’équilibre thermodynamique. À une température donnée, la quantité de molécules adsorbée $\langle N \rangle$ dans un volume donné V est alors calculée en fonction du potentiel chimique μ. Chaque point de l’isotherme simulée correspond alors à une simulation Monte-Carlo dans l’ensemble grand-canonical (GCMC) pour une valeur donnée du potentiel chimique. Cependant, expérimentalement les isothermes d’adsorption sont mesurées en fonction de la pression extérieure de gaz. Ainsi, il est nécessaire d’établir la relation entre le potentiel chimique du gaz et sa pression (en phase bulk) de manière à pouvoir comparer les isothermes expérimentales et celles déterminées par simulation.

En phase gazeuse, le potentiel chimique μ d’un gaz pur est liée à l’activité a de ce gaz ($a = \gamma P / P_0$, où γ est le coefficient d’activité du gaz). Pour un gaz parfait, ou pour un gaz réel dans le domaine de validité de l’approximation du gaz parfait, la relation potentiel chimique – pression s’écrit :

$$\mu = \mu_0 + RT \ln \left(\frac{P}{P_0} \right)$$ (2.17)

où P_0 représente la pression de référence, prise égale à la pression standard (10^5 Pa). Dans le cas d’un mélange de gaz idéal, cette relation reste valable en remplaçant la pression du gaz par la pression partielle de chacun des gaz du mélange. Cependant, l’approximation du gaz parfait ne pouvant s’appliquer qu’à basse pression, on introduit la fugacité f telle que $f = \gamma_i P_i$. À basse pression, on approxime la fugacité à la pression ($\gamma = 1$ pour un gaz parfait). En effet, comme montré sur la figure 2.6, dans cette gamme de pression le potentiel chimique est linéaire en fonction du logarithme de la pression du gaz du réservoir, la phase vapeur du gaz se comporte alors comme un gaz parfait jusqu’à la pression de vapeur saturante. Or, lorsque l’on se place à une pression supérieure à la pression de vapeur saturante le potentiel chimique que l’on impose correspond alors au potentiel chimique d’une phase liquide. La relation potentiel chimique – pression précédente n’est donc plus applicable (figure 2.6). Il faut alors établir une nouvelle relation reliant les deux grandeurs. Il est possible d’établir cette relation à partir de l’évolution du volume molaire (V_m) avec la pression. En effet, ces deux grandeurs sont reliées par la thermodynamique via l’équation suivante :

$$\left(\frac{\partial \mu}{\partial P} \right)_T = V_m(P)$$ (2.18)

D’où,

$$\mu(P) = \mu(P_{\text{ref}}) + \int_{P_{\text{ref}}}^{P} V_m(p) dp$$ (2.19)

Cette relation peut être établie à partir de simulations moléculaires ou de données expérimentales. Dans le cadre de ma thèse, j’ai étudié l’intrusion d’eau en phase liquide dans les ZIFs, pour ce faire j’ai utilisé la relation $\mu(P)$ établie précédemment par simulation moléculaire pour le modèle TIP4P par Nicolas Desbiens (figure 2.6).[101] J’ai également établi cette relation pour le méthanol à partir des valeurs de volume molaire tabulées dans la base de données des fluides du NIST (National Institute of Standards and Technology), dans le cadre de l’étude du Zn(CN)$_2$.

2.2 — La méthode de Monte-Carlo

Figure 2.6 : Relations numériques entre le potentiel chimique μ et la pression P de l’eau pour différents modèles (bleu : MSPCE ; rouge : TIP4P). Les résultats expérimentaux de la base de donnée du NIST sont représentés en noir.

Enthalpie et chaleur isostérique d’adsorption

La chaleur isostérique d’adsorption est la différence entre l’enthalpie molaire de l’adsorbat en phase gaz et l’enthalpie molaire partielle dans la phase adsorbée :

$$ - \Delta H^\circ = H_g - H_s $$

(2.20)

L’enthalpie est définie comme la somme de l’énergie interne U et du produit PV. Pour un gaz parfait le terme PV équivaut à RT, et si l’on néglige le volume moléculaire de la phase adsorbée alors la chaleur isostérique d’adsorption peut être exprimée comme :

$$ - \Delta H^\circ = RT + U_{tot}^g - U_{tot}^s $$

(2.21)

où U_{tot}^g et U_{tot}^s représentent respectivement l’énergie interne totale molaire de l’adsorbat dans le phase gazeuse et adsorbée. Dans les simulations Monte-Carlo dans l’ensemble grand-canonical, cette enthalpie $-\Delta H^\circ$ peut être calculée à partir des dérivées partielles de la valeur moyenne de l’énergie totale et du nombre de molécules adsorbées (dans les deux phases) :

$$ - \Delta H^\circ = RT + \frac{\partial \langle U_{tot}^g \rangle}{\partial \langle N_g \rangle} - \frac{\partial \langle U_{tot}^s \rangle}{\partial \langle N_s \rangle} $$

(2.22)

Dans l’ensemble grand-canonical, la chaleur isostérique d’adsorption Q_{st} peut également être calculée à partir des fluctuations de grandeur microscopiques :

$$ Q_{st} = RT + \frac{\langle U_{tot}^g N \rangle - \langle U_{tot}^g \rangle \langle N \rangle}{\langle N_g^2 \rangle - \langle N_g \rangle^2} - \frac{\langle U_{tot}^s N \rangle - \langle U_{tot}^s \rangle \langle N \rangle}{\langle N_s^2 \rangle - \langle N_s \rangle^2} $$

(2.23)
Si l'on suppose que la phase gazeuse est idéale alors le deuxième terme de l'équation 2.23 est équivalent à l'énergie molaire intramoléculaire des molécules dans la phase gazeuse. De plus, si l'on considère que les degrés de liberté internes des molécules de la phase gazeuse ne sont pas affectés par l'adsorption (valable pour des molécules de petite taille ou relativement rigides) alors l'énergie molaire intramoléculaire de la phase gazeuse est égale à celle de la phase adsorbée. Ainsi, l'expression de la chaleur isostérique d'adsorption devient la suivante :

\[Q_{st} = RT + \frac{\langle U_s^\text{ext} N \rangle - \langle U_s^\text{ext} \rangle \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle^2} \]

où \(U_s^\text{ext} \) représente l'énergie d'interaction intermoléculaire dans la phase adsorbée.

2.3 La dynamique moléculaire

La dynamique moléculaire est une méthode de simulation moléculaire qui permet l'échantillonnage de l'espace des phases du système à partir d'une configuration initiale \((r(t_0), v(t_0))\). L'ensemble des trajectoires est généré au cours du temps par intégration discrète des équations du mouvement de Newton. La grandeur macroscopique \(A\) du système sera alors calculée à partir de la moyenne temporelle au cours d'une simulation infiniment longue de son équivalent microscopique \(a(t)\) :

\[\langle A \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t_0}^{t_0+\tau} a(t)dt = \lim_{\tau \to \infty} \frac{1}{n} \sum_{i=1}^{n} a(t_0 + i \delta t)dt \]

où \(\tau \) et \(t_0 \) représentent respectivement la durée et l'instant initial de la simulation.

Cette méthode permet l'étude des propriétés d'équilibre du système, ainsi que des propriétés dynamiques à partir du calcul des fonctions de corrélation temporelles.

2.3.1 L'algorithme de Verlet

L'algorithme de Verlet permet d'intégrer les équations du mouvement de Newton de manière numérique. Dans un référentiel galiléen, la trajectoire des particules d'un système est régie par les équations du mouvement de Newton :

\[\sum_i F_i^\text{ext} = m_i \frac{\partial v_i}{\partial t} = m_i a_i \]

où \(t \) représente le temps, \(m_i \) la masse de la particule \(i \), et \(F_i^\text{ext} \) les forces extérieures s'exerçant sur la particule \(i \). L'évolution temporelle du système est calculée par intégration numérique de ces équations. Dans la pratique, pour faire cette intégration on définit un pas de temps \(\Delta t \). La position de la particule \(i \) autour du temps \(t \) s'écrit alors sous la forme d'un développement limité :

\[r_i(t + \Delta t) = r_i(t) + v_i(t) \Delta t + \frac{F_i(t)}{2m_i} \Delta t^2 + \frac{\partial^3 r_i}{\partial t^3} \Delta t^3 + O(\Delta t^4) \]

De manière similaire on peut écrire :

— 40 —
2.3 — La dynamique moléculaire

\[r_i(t - \Delta t) = r_i(t) - v_i(t)\Delta t + \frac{F_i(t)}{2m_i} \Delta t^2 - \frac{\partial^3 r_i}{\partial t^3} \frac{\Delta t^3}{3!} + O(\Delta t^4) \] (2.28)

En se limitant au troisième ordre et à partir des équations 2.27 et 2.28 on obtient :

\[r_i(t + \Delta t) + r_i(t - \Delta t) = 2r_i(t) + \frac{F_i(t)}{m_i} \Delta t^2 + O(\Delta t^4) \] (2.29)

On a alors,

\[r_i(t + \Delta t) \approx 2r_i(t) - r_i(t - \Delta t) + \frac{F_i(t)}{m_i} \Delta t^2 \] (2.30)

La nouvelle position est estimée avec une erreur de l’ordre de \(\Delta t^4 \). La vitesse de la particule \(i \) peut ensuite être calculée à partir de la trajectoire :

\[v_i(t) = \frac{r_i(t + \Delta t) - r_i(t - \Delta t)}{2\Delta t} + O(\Delta t^2) \] (2.31)

Le résultat de la simulation dépendra de la valeur du pas de temps \(\Delta t \) qui devra être choisie inférieure au temps caractéristique du phénomène étudié. En pratique, on choisit un pas de temps \(\Delta t \) suffisamment petit pour garantir la stabilité numérique de l’intégration et un temps de calcul suffisamment long pour bien échantillonner l’espace des phases. Typiquement, le pas de calcul \(\Delta t \) est de l’ordre de la femtoseconde et le temps total de la simulation est généralement de quelques nanosecondes. Pour toutes mes simulations de dynamique moléculaire, j’ai utilisé un pas de temps \(\Delta t = 1 \) fs \((10^{-15} \) s\).

2.3.2 Dynamique moléculaire dans l’ensemble isostress \((N, \sigma, T)\)

L’ensemble statistique microcanonique \((N, V, E)\) pour lequel l’énergie totale du système est conservée est l’ensemble d’étude naturel de la dynamique moléculaire classique. Cependant, on s’intéresse généralement à des systèmes plus proches des conditions expérimentales, à température ou pression imposées par l’environnement du système. Il est alors possible d’introduire dans la modélisation un thermostat et un barostat qui permettent de fixer respectivement la température et la pression du système. Plusieurs méthodes de contrôle de la température et de la pression ont été proposées, mais je me limiterai à la présentation du thermostat et du barostat que j’ai utilisés dans ma thèse.

Thermostat de Berendsen

L’algorithme de Berendsen [102] permet d’introduire dans la simulation des échanges d’énergie avec un bain thermostaté extérieur \((T_0)\) de manière à maintenir constante la température du système. Dans cette méthode de faible couplage ("weak coupling"), l’équation du mouvement
est modifiée afin d’introduire une relaxation du premier ordre de la température T vers la température de référence T_0 :

$$\frac{dT(t)}{dt} = \frac{T_0 - T(t)}{\tau_T}$$ \hspace{1cm} (2.32)

À chaque pas de la simulation la vitesse des particules est corrigée pour ajouter ou enlever de l’énergie au système. Le facteur de correction $\lambda(t)$ s’écrit :

$$\lambda(t) = \left[1 + \frac{\Delta t}{\tau_T} \left(\frac{T_0}{T(T)} - 1 \right) \right]^{\frac{1}{2}}$$ \hspace{1cm} (2.33)

La vitesse de relaxation de la température est contrôlée par la constante de temps caractéristique de réponse du thermostat notée τ_T. Ce paramètre sera ajusté en fonction du système, il faudra qu’il soit suffisamment petit (i.e couplage fort) pour maintenir la température moyenne autour de la température de référence T_0, mais suffisamment grand (i.e couplage faible) pour éviter de trop perturber la dynamique du système aux temps courts.

Barostat de Berendsen

Le barostat de Berendsen est également une méthode de faible couplage qui permet d’imposer au système une contrainte mécanique extérieure, assimilée à la pression extérieure. Dans ce cas, la contrainte est généralement isotrope mais il est également possible d’imposer des contraintes non isotropes. Le principe de cet algorithme est le même que celui du thermostat de Berendsen, sauf que cette fois-ci ce sont les paramètres de maille de la boîte de simulation et les positions atomiques que l’on corrige. Un terme supplémentaire est ajouté à l’équation du mouvement de Newton pour obtenir une relaxation de la pression au premier ordre vers la valeur de référence P_0 :

$$\frac{dP(t)}{dt} = \frac{P_0 - P(t)}{\tau_B}$$ \hspace{1cm} (2.34)

où τ_B représente la constante de temps caractéristique de relaxation du barostat. Comme la pression à température constante est reliée au volume par la compressibilité isotherme κ_T, le couplage s’effectue par correction des positions des particules et de la taille de la boîte de simulation. Dans le cas d’un système isotrope et d’une boîte cubique le facteur correcteur $\mu(t)$ s’écrit :

$$\mu(t) = 1 - \frac{\kappa_T \Delta t}{3 \tau_P} (P_0 - P(t))$$ \hspace{1cm} (2.35)

Les résultats de dynamique moléculaire que je présenterai dans ce manuscrit ont été obtenus à partir de simulations dans l’ensemble isostress (N, σ, T), dans lequel les fluctuations anisotropes de la maille du système sont autorisées.

2.4 Les potentiels d’interactions

Dans les simulations classiques, les interactions entre les constituants du système sont décrites de manière empirique à l’aide de potentiels d’interaction classiques (i.e la nature quantique des
électrons n’est pas prise en compte). L’énergie potentielle \(U \) d’un système est alors composée de deux contributions :

\[
U = U_{\text{ext}} + U_{\text{int}}
\]

L’énergie intermoléculaire, \(U_{\text{ext}} \), décrit les interactions entre deux particules distinctes du système (atomes, molécules). Tandis que l’énergie intramoléculaire, \(U_{\text{int}} \), décrit les interactions qui interviennent au sein même d’une molécule du système. Je décrirai dans les deux paragraphes suivants les différents termes qui interviennent dans la description de ces interactions.

2.4.1 Les interactions intramoléculaires

Dès lors que l’on étudie des molécules flexibles telles que les alcanes ou les polymères, il est nécessaire de prendre en compte leurs degrés de liberté internes. Cette description est assurée par un potentiel d’interaction intramoléculaire qui est généralement composé de trois termes :

— L’énergie d’elongation (stretching energy) qui caractérise la vibration de la longueur de la liaison covalente entre deux atomes voisins.
— L’énergie de pliage (bending energy) qui rend compte de la vibration de l’angle \(\theta \) défini par trois atomes consécutifs.
— L’énergie de torsion qui est associée au mouvement de torsion autour d’une liaison covalente. L’angle dièdre \(\varphi \) entre quatre atomes successifs intervient dans la description de cette interaction.

2.4.2 Les interactions intermoléculaires

L’énergie d’interaction entre les constituants d’un système traité de manière classique est issue de la théorie des perturbations et se décompose en trois termes qui caractérisent le comportement à longue distance :

— Un terme du premier ordre qui correspond à l’énergie électrostatique
— Deux termes du deuxième ordre, l’un correspondant à la l’énergie d’induction et l’autre à l’énergie de dispersion

À ces trois termes, on ajoute un terme de répulsion à courte distance qui provient du principe d’exclusion de Pauli.

L’interaction électrostatique est un terme additif à deux corps, qui permet de rendre compte des interactions charge ponctuelle-charge ponctuelle, charge ponctuelle-dipôle, dipôle-dipôle, charge ponctuelle-quadrupôle, ... Le potentiel électrostatique créé par une molécule peut être modélisé par un ensemble de charges partielles \(q_i \) placées sur les atomes de la molécule. Ces charges peuvent être issues de calculs ab initio ou ajustées sur certaines données expérimentales. L’énergie électrostatique s’écrit alors :

\[
U_{\text{élec}}(r) = \sum_i \sum_{j>i} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}
\]

où \(r_{ij} \) représente la distance entre les charges \(q_i \) et \(q_j \) placées sur les atomes \(i \) et \(j \). \(\varepsilon_0 \) est la permittivité diélectrique du vide.
L'énergie d'induction (ou énergie de polarisation) décrit la polarisation du nuage électronique d'une molécule dans le champ électrique créé par les autres constituants du système.

L'énergie de dispersion qui correspond aux fluctuations simultanées des distributions de charges des molécules s'écrit sous la forme d'un développement limité :

\[U_{\text{disp}}(r) = -\frac{C_6}{r^6} + \frac{C_8}{r^8} + \frac{C_{10}}{r^{10}} + \ldots \]

(2.38)
dont les \(C_i \) sont les coefficients. Cette interaction est toujours attractive donc le terme \(C_6 \) est toujours positif. Dans la pratique, on utilise un potentiel de la forme \(U_{\text{disp}} = -\frac{C_6}{r^6} \).

La dernière contribution à l'énergie potentielle est le terme répulsif qui permet de prendre en compte la répulsion entre les nuages électroniques de deux molécules à courte distance. Il est néanmoins difficile de proposer une forme analytique car ce potentiel ne peut pas être exprimé par un développement limité. Cependant, comme l'énergie répulsive présente une grande variation à courte portée, la forme analytique exacte utilisée pour la décrire n'a donc pas beaucoup d'importance.

Généralement, les termes de dispersion et de répulsion sont regroupés en un seul et décrits par le potentiel de Lennard-Jones ou de Buckingham :

\[U_{\text{LJ}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \]

(2.39)
\[U_{\text{Buck}} = \alpha \exp(-\beta r) - \gamma r^{-6} \]

(2.40)

Le choix des paramètres \(\sigma \) et \(\epsilon \) (ou \(\alpha, \beta, \gamma \)) qui interviennent dans ces formes analytiques est délicat. Généralement ces paramètres sont ajustés sur un jeu de données expérimentales. Le but est de définir des paramètres qui soient suffisamment précis pour décrire un système donné mais aussi nécessairement transférables à d'autres systèmes dans des conditions thermodynamiques différentes.

Pour décrire les interactions entre deux types d'atome (groupe d'atome ou molécule) différents \(i \) et \(j \), des "règles de mélange" sont utilisées. Elles dépendent du potentiel choisi et pour le potentiel de Lennard-Jones (que j'ai utilisé au cours de ma thèse) la plus courante est la règle de combinaison de Lorentz-Berthelot :

\[
\begin{align*}
\sigma_{ij} &= \frac{\sigma_{ii} + \sigma_{jj}}{2} \\
\epsilon_{ij} &= \sqrt{\epsilon_{ii} \epsilon_{jj}}
\end{align*}
\]

(2.41)

2.4.3 Méthodes de sommation

En simulation numérique, l'étude d'un système repose sur le calcul de son énergie potentielle et des forces exercées sur les constituants dans le cas de la dynamique moléculaire. Pour décrire les interactions intermoléculaires, nous utilisons des potentiels classiques (semi-empirique), additifs...
et de paires. L’énergie potentielle du système peut alors s’exprimer comme une double somme sur ses constituants :

\[E = \sum_{\alpha} \sum_{\beta > \alpha} V_{\alpha\beta}(R_\alpha - R_\beta) + \frac{1}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} V_{\alpha\beta}(R_\alpha - R_\beta) \]

(2.42)

Généralement, on utilise des conditions aux limites périodiques afin de s’affranchir des effets de bords. Dans ce cas, il faut également prendre en compte l’interaction de chaque particule de la boîte de simulation avec toutes les images périodiques. L’équation précédente s’écrit alors :

\[E = \frac{1}{2} \sum_n \sum_{\alpha} \sum_{\beta \neq \alpha \text{ si } n=0} V_{\alpha\beta}(R_\alpha - R_\beta + n) \]

(2.43)

où \(n \) est un vecteur de translation entre la boîte de simulation et l’une de ses images.

Si l’on considère une boîte de simulation cubique et de taille \(L \), on a \(n = (n_x L, n_y L, n_z L) \) avec \((n_x, n_y, n_z) \in \mathbb{Z}^3 \). La vitesse de convergence de la somme infinie sur \(n \) dépend de la forme analytique du potentiel choisi. La plupart des potentiels classiques utilisés sont isotropes et ont une dépendance à longue distance de la forme \(V(r) \sim r^{-m} \). On distingue alors les potentiels à courte portée \((m > 3) \) et ceux à longue portée \((m \leq 3) \).

Interactions à courte portée

Pour les potentiels à courte portée tels que le potentiel de Lennard-Jones, la série de l’équation 2.43 converge rapidement, un rayon de coupure \(r_c \) peut être introduit afin de limiter cette somme aux termes pour lesquels \(\|R_\alpha - R_\beta + n\| \leq r_c \). Les termes successifs correspondants à des valeurs de \(n \) non nulles, seront alors négligés. La valeur moyenne de l’erreur introduite par cette approximation s’exprime en utilisant la fonction de distribution radiale \(g_{\alpha\beta}(r) \) sous la forme :

\[\langle \Delta E \rangle = 2\pi \frac{N_\alpha N_\beta}{V} \int_{r_c}^{\infty} dr \ r^2 g_{\alpha\beta}(r) V_{\alpha\beta}(r) \]

(2.44)

En faisant l’hypothèse que \(g_{\alpha\beta}(r) \) tend vers 1 à très longue distance, on peut introduire un terme correctif pour l’énergie tronquée. Il s’écrit alors :

\[E_{\alpha\beta}^{\text{corr.}} = 2\pi \frac{N_\alpha N_\beta}{V} \int_{r_c}^{\infty} dr \ r^2 V_{\alpha\beta}(r) \]

(2.45)

Pour le potentiel de Lennard-Jones, ce terme de correction s’exprime de la manière suivante :

\[E_{\alpha\beta}^{\text{LJ, corr.}} = 8\pi \frac{N_\alpha N_\beta}{V} \varepsilon_{\alpha\beta} \sigma_{\alpha\beta}^3 \left[\frac{1}{9} \left(\frac{\sigma_{\alpha\beta}}{r_c} \right)^9 - \frac{1}{3} \left(\frac{\sigma_{\alpha\beta}}{r_c} \right)^3 \right] \]

(2.46)
Interactions à longue portée et sommation d’Ewald

La description des interactions électrostatiques entre deux charges ponctuelles se fait généralement à l’aide de potentiels à longue portée de type $V(r) \sim r^{-1}$. L’énergie électrostatique du système s’exprime alors de la manière suivante :

$$E_{\text{él.}} = \frac{1}{8\pi\varepsilon_0} \sum_n \sum_\alpha \sum_\beta \frac{q_\alpha q_\beta}{\|\mathbf{R}_\alpha - \mathbf{R}_\beta + \mathbf{n}\|} \quad (2.47)$$

Dans le cas où le système étudié est globalement neutre ($\sum q_\alpha = 0$), cette somme est semi-convergente. En effet, l’énergie électrostatique converge lentement vers une valeur finie par compensation des termes positifs et négatifs en fonction de l’ordre dans lequel sont effectuées les sommations.

L’ordre de sommation le plus naturel est d’effectuer la sommation sur les différentes images (la somme sur n) par ordre de distance croissante avec la boîte de simulation (i.e. à $\|\mathbf{n}\|$ croissant). Cependant, la somme converge trop lentement pour que son évaluation directe soit possible. Parmi les nombreuses méthodes existantes pour contourner ce problème, dans mes travaux de thèse j’ai utilisé la méthode de sommation d’Ewald que je décrirai brièvement dans la suite.

Cette méthode est introduite dans les années 1920 par Madelung et Ewald [103, 104] et formalisée au début des années 1980 par de Leeuw et Heyes [105, 106]. Le principe de la méthode d’Ewald consiste à remplacer la série de l’équation 2.47, qui converge très lentement, par la somme de deux termes plus simples à calculer, qui convergent rapidement. Concrètement, la densité de charge de la boîte de simulation va être réexprimée comme la somme de deux densités : la densité directe $\rho_{\text{direct}}(r)$ qui prend en compte les charges ponctuelles écrantées par des gaussiennes sphériques et la densité réciproque $\rho_{\text{réc.}}(r)$ qui exprime les fonctions gaussiennes sphériques seules. La figure 2.7 présente de manière claire et schématique cette transformation.

Ensuite, les potentiels électrostatiques $\Phi_{\text{direct}}(r)$ et $\Phi_{\text{réc.}}(r)$ créés par chacune de ces distributions de charges peuvent être calculés à partir de l’équation de Poisson. Le potentiel électrostatique total du système s’exprime alors de la manière suivante :

$$\Psi(r) = \Phi_{\text{direct}}(r) + \Phi_{\text{réc.}}(r)$$

et l’énergie électrostatique totale du système s’écrit alors :

$$E_{\text{él.}} = \frac{1}{2} \sum_\alpha q_\alpha (\Phi_{\text{direct}}(\mathbf{R}_\alpha) + \Phi_{\text{réc.}}(\mathbf{R}_\alpha) - E_{\text{self}}) \quad (2.48)$$

où E_{self}, appelé self-term, est un terme correctif qui est introduit pour supprimer l’interaction de chaque charge ponctuelle avec sa propre gaussienne d’écrantage. En considérant de manière explicite les potentiels, l’expression de l’énergie électrostatique de l’équation 2.48 devient :
2.4 — Les potentiels d’interactions

\[\rho(r) \]

\[= \]

\[\rho_{direct}(r) + \rho_{réciproque}(r) \]

Figure 2.7 : Schéma à une dimension expliquant la transformation apportée par la méthode d’Ewald. La distribution spatiale de charge \(\rho(r) \) du système réel correspond à trois charges ponctuelles. Elle est séparée en deux termes : \(\rho_{direct}(r) \) et \(\rho_{réciproque}(r) \) correspondant respectivement aux charges ponctuelles écrantées par des gaussiennes et aux gaussiennes d’écrantage.

\[
E_{él} = \sum_n \sum_\alpha \sum_\beta^* q_\alpha q_\beta \frac{\text{erfc} (\alpha_e \|R_\alpha - R_\beta + n\|)}{8\pi \varepsilon_0 \|R_\alpha - R_\beta + n\|} \\
+ \frac{2\pi}{V} \sum_{k \neq 0} \sum_\alpha \sum_\beta q_\alpha q_\beta \frac{\exp \left(-\frac{k^2}{4\alpha_e^2} \right)}{4\pi \varepsilon_0} e^{ik \cdot (R_\alpha - R_\beta)} \\
- \sum_\alpha 2\alpha_e q_\alpha^2 \sqrt{\frac{\pi}{\alpha_e^2}} \frac{1}{2} \sum_\alpha \sum_\beta' q_\alpha q_\beta' \frac{\text{erf} (\alpha_e \|R_\alpha - R_\beta\|)}{4\pi \varepsilon_0 \|R_\alpha - R_\beta\|}
\]

(2.49)

où \(k \) est un vecteur du réseau réciproque.

La somme \(\sum^* \) porte sur tous les atomes \(\beta \) qui appartiennent à la même molécule que l’atome \(\alpha \), alors que la somme \(\sum^\prime \) porte au contraire sur tous les atomes \(\beta \) n’appartenant pas à la même molécule que l’atome \(\alpha \).

Dans la pratique, on introduit un rayon de coupure \(r_c \) car la somme dans l’espace réel converge rapidement. De la même manière, la somme dans l’espace réciproque converge plus rapidement lorsque \(\|k\| \) augmente, et elle est restreinte à \(\|k\| \leq k_{\text{max}} \). Le choix des paramètres d’Ewald, \(\alpha_e \), \(r_c \) et \(k_{\text{max}} \), détermine la précision et l’efficacité de la méthode de sommation. Généralement, \(r_c \) est choisi de telle sorte qu’il soit légèrement plus petit que la moitié du côté de la boîte de simulation (boîte de simulation cubique). La valeur de \(\alpha_e \) est alors imposée de manière à ce que la somme dans l’espace direct soit convergée. Enfin, \(k_{\text{max}} \) est choisi pour assurer la convergence du terme réciproque.
2.5 La théorie de la fonctionnelle de la densité (DFT)

2.5.1 L’équation de Schrödinger

Un système chimique moléculaire composé de \(\mathcal{N} \) électrons et de \(\mathcal{N}_n \) noyaux, peut être décrit, dans l’approximation de Born-Oppenheimer, par une fonction d’onde polyélectronique \(\Psi(r) \) obéissant à l’équation de Schrödinger suivante exprimée dans le système d’unités atomiques :

\[
\mathcal{H}_{\text{el}} \Psi(r) = \left(-\sum_i \frac{1}{2} \nabla^2 r_i - \sum_{k,i} \frac{Z_k}{|\mathbf{R}_k - \mathbf{r}_i|} + \sum_{i<j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(r)
\]

où le terme \(V_{\text{ext}}(r) \) décrit l’interaction entre les électrons et les noyaux (il peut également inclure un autre champ extérieur). Les termes \(|\mathbf{R}_k - \mathbf{r}_i| \) et \(|\mathbf{r}_i - \mathbf{r}_j| \) représentent respectivement la distance entre l’électron \(i \) et le noyau \(k \) et la distance entre les électrons \(i \) et \(j \).

L’électron appartenant à la famille des fermions, il obéit au principe d’exclusion de Pauli et par conséquent la fonction d’onde doit être antisymétrique. Le formalisme de Slater permet d’introduire cette antisymétrie en exprimant la fonction d’onde polyélectronique \(\Psi(r) \) comme le déterminant de fonctions d’onde monoélectroniques \(\varphi_i(r_i) \) orthogonales entre elles :

\[
\Psi(r) = \frac{1}{\sqrt{\mathcal{N}!}} \begin{vmatrix} \varphi_1(r_1) & \cdots & \varphi_N(r_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(r_N) & \cdots & \varphi_N(r_N) \end{vmatrix}
\]

La résolution analytique de ce système à \(\mathcal{N} \) corps est impossible. Cependant il existe de nombreuses méthodes basées sur la fonction d’onde ou la densité électronique pour en approcher la solution. Les méthodes Hartree-Fock et post-Hartree-Fock par exemple sont des méthodes itératives (\emph{i.e.} auto-cohérente) basées sur le principe variationnel et une approximation de champ moyen.

La théorie de la fonctionnelle de la densité (DFT) proposée en 1964 par Hohenberg et Kohn \[107\], introduit la densité électronique \(\rho(r) \) comme grandeur fondamentale à place de la fonction d’onde \(\Psi(r_1, \ldots, r_N) \). La méthode DFT inclut naturellement la corrélation électronique et est bien moins coûteuse en temps de calcul que les autres méthodes quantiques, permettant l’étude de système de plus grande taille. La densité électronique en un point de l’espace \(r \) s’écrit alors :

\[
\rho(r) = N \int \ldots \int d^3r_2 \ldots d^3r_N |\Psi(r_1, \ldots, r_N)|^2
\]

où \(N \) est le nombre total d’électrons. Dans le cas d’un état fondamental non dégénéré, Hohenberg et Kohn ont démontré l’unicité du potentiel externe \(V_{\text{ext}}(r) \) pour une densité électronique donnée du système. La densité électronique \(\rho_0(r) \) décrit alors entièrement le système et détermine le nombre \(\mathcal{N} \) d’électron \((\mathcal{N} = \int d^3r \rho(r)) \). Ils démontrèrent également que le principe variationnel peut être appliqué à la densité électronique. La fonction d’onde étant une fonction de la densité \(\rho \), l’énergie cinétique, le potentiel externe et le potentiel d’interaction électron-électron peuvent être décrits comme une fonctionnelle de la densité électronique de son état fondamentale.
L’énergie totale du système $E[\rho]$ dans son état fondamental s’écrit sous la forme :

$$E[\rho] = \left\langle \Psi[\rho] \left| -\sum_i \frac{1}{2} \nabla_{\mathbf{r}_i}^2 + V_{\text{ext}}[\rho] + \sum_{i<j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right| \Psi[\rho] \right\rangle$$

$$= \langle \Psi[\rho] | T + V_{\text{ext}}[\rho] + V_{\text{el}} \Psi[\rho] \rangle$$ \hspace{1cm} (2.53)

où T et V_{el} représentent respectivement l’opérateur énergie cinétique et le potentiel d’interaction entre les électrons.

D’après le principe variationnel, l’énergie totale du système vaut, pour toute densité électronique du système $\rho(\mathbf{r})$:

$$E_0 = E[\rho_0] \leq E_{\text{ext}}[\rho_0] [\rho] = \langle \Psi[\rho] | T + V_{\text{ext}}[\rho_0] + V_{\text{el}} \Psi[\rho] \rangle$$ \hspace{1cm} (2.54)

où le terme $E_{\text{ext}}[\rho_0] [\rho]$ correspond à l’énergie totale associée à une densité $\rho(\mathbf{r})$ dans le champ créé par la densité ρ_0, $V_{\text{ext}}[\rho_0]$. La minimisation de ce terme permet alors de calculer la densité électronique de l’état fondamental du système. L’équation 2.54 peut également être écrite sous la forme :

$$E_0 = E[\rho_0] \leq E_{\text{ext}}[\rho_0] [\rho] = \langle \Psi[\rho] | V_{\text{ext}}[\rho_0] \Psi[\rho] \rangle + \langle \Psi[\rho] | T + V_{\text{el}} \Psi[\rho] \rangle$$

$$= \int d^3 \mathbf{r} V_{\text{ext}}(\mathbf{r}) \rho(\mathbf{r}) + F[\rho]$$ \hspace{1cm} (2.55)

Par conséquent, la connaissance de la fonctionnelle universelle notée $F[\rho]$ et de la densité électronique du système permet de calculer par minimisation, l’énergie fondamentale du système soumis au potentiel externe $V_{\text{ext}}(\mathbf{r})$. Si le premier terme de l’équation 2.55 est facile à calculer, le deuxième est beaucoup plus complexe puisque la forme explicite de la fonctionnelle universelle est inconnue.

2.5.2 L’approche de Kohn-Sham

La résolution de l’équation de Schrödinger à partir de la densité électronique du système nécessite de pouvoir approximer la fonctionnelle $F[\rho]$. L’approche proposée par Kohn et Sham en 1965 [108] introduit un système fictif qui met en jeu N électrons non-interagissants entre eux et placés dans un potentiel V_s. Cette approche repose sur le postulat que la densité électronique de ce système fictif est la même que celle du système réel ρ_0. La fonctionnelle universelle $F[\rho]$ s’écrit :

$$F[\rho] = T_s[\rho] + J[\rho] + E_{\text{xc}}[\rho]$$ \hspace{1cm} (2.56)

où les termes $T_s[\rho]$ et $J[\rho]$ représentent respectivement l’énergie cinétique des électrons du système fictif et l’énergie classique d’interaction coulombienne. Le terme $E_{\text{xc}}[\rho]$ nommé énergie d’échange-corrélation prend en compte les effets multiélectroniques et s’écrit :

$$E_{\text{xc}}[\rho] = F[\rho] - J[\rho] - T_s[\rho] = E[\rho] - \langle \Psi[\rho] | V_{\text{ext}}[\rho_0] \Psi[\rho] \rangle - J[\rho] - T_s[\rho]$$ \hspace{1cm} (2.57)

La forme explicite de l’énergie d’échange-corrélation n’est pas connue et dans la pratique des formes approchées sont utilisées. Dans l’hypothèse où la fonctionnelle d’échange-corrélation est
2.5 — La théorie de la fonctionnelle de la densité (DFT)

connue, la densité électronique ρ_0 peut alors être calculée en minimisant l’énergie $E_{V_{\text{ext}}[\rho_0]}[\rho]$ (la densité électronique doit être normalisée). Cette approche consiste à résoudre le système d’équations différentielles dites de Kohn-Sham de la forme suivante :

$$\left(-\frac{1}{2} \nabla^2 + V_{\text{ext}}(r) + \frac{\delta J[\rho](r)}{\delta \rho(r)} + \frac{\delta E_{\text{xc}}[\rho](r)}{\delta \rho(r)} \right) \varphi_i = \varepsilon_i \varphi_i$$ (2.58)

où φ_i sont les fonctions d’onde mono-électroniques issues de l’approximation des combinaisons linéaires d’orbitales atomiques. Les équations de Kohn-Sham ne sont pas linéaires, car les potentiels d’interaction $J[\rho]$ et $E_{\text{xc}}[\rho]$ dépendent de ces fonctions d’ondes φ_i uniquement via la densité ρ. Elles sont donc généralement résolues de manière itérative.

Les fonctionnelles d’échange-corrélation

Comme mentionné dans le paragraphe précédent, l’utilisation de la DFT nécessite l’utilisation d’une forme approchée de la fonctionnelle d’échange-corrélation. L’expression la plus simple et la première introduite est donnée par une approximation purement locale, appelée Local Density Approximation (LDA) [97, 109]. Cette approximation consiste à considérer la densité électronique comme un gaz uniforme, l’énergie d’échange-corrélation $E_{\text{xc}}^{\text{LDA}}[\rho]$ s’exprime alors de la manière suivante :

$$E_{\text{xc}}^{\text{LDA}}[\rho] = \int d^3r \rho(r) \varepsilon_{\text{xc}}[\rho(r)]$$ (2.59)

avec $\varepsilon_{\text{xc}}[\rho(r)]$, l’énergie d’échange-corrélation par électron.

Si la fonctionnelle LDA est relativement bien adaptée pour l’étude de molécules isolées, elle présente des faiblesses dans la description des systèmes en phase condensée. Pour répondre à ce problème, des fonctionnelles à correction de gradient ont été développées. Ces fonctionnelles dites Generalized Gradient Approximation (ou GGA), prennent en compte le gradient de la densité électronique dans l’expression de l’énergie d’échange-corrélation :

$$E_{\text{xc}}[\rho] = \int d^3r \rho(r) \varepsilon_{\text{xc}}^{\text{GGA}}(\rho(r), \nabla \rho(r))$$ (2.60)

Afin d’améliorer la description de l’énergie d’échange-corrélation, les fonctionnelles dites hybrides ont été introduites. Ces fonctionnelles résultent de la combinaison entre l’énergie d’échange Hartree-Fock et des fonctionnelles LDA ou GGA. En effet, les calculs de type Hartree-Fock traitant correctement l’énergie d’échange, celle-ci peut être combinée de manière empirique avec des fonctionnelles de la densité LDA ou GGA. Cette méthode se base sur la connexion adiabatique, qui fait le lien entre le système réel et le système fictif introduit dans l’approche de Khon-Sham, a été proposée par Becke en 1993.[110] La plus connue de ces fonctionnelles hybrides est la fonctionnelle B3LYP. [111] J’ai utilisé cette fonctionnelle hybride dans mes travaux de thèse.

2.5.3 Les bases atomiques et d’ondes planes

La résolution numérique des équations de Khon-Sham (équation 2.58), nécessite de décire les fonctions d’onde mono-électroniques φ_i comme des combinaisons linéaires de fonctions de base f_{ν} :

$$\varphi_i(r; \mathbf{R}) = \sum_{\nu} c_{i\nu}(\mathbf{R}) f_{\nu}(r; \mathbf{R})$$ (2.61)
Généralement, ces fonctions de base f_ν sont choisies centrées sur chacun des atomes du système et définissent alors ce que l’on appelle une base atomique. Elles sont composées de deux parties :

— Une partie radiale de type orbitale de Slater ($f(r) \propto f'(\theta, \varphi) \exp[-\zeta r]$) ou gaussienne ($f(r) \propto f'(\theta, \varphi) \exp[-\alpha r^2]$).
— Une partie angulaire sous la forme d’une harmonique sphérique ($f(\theta, \varphi) = Y^m_m(\theta, \varphi)$).

Ces fonctions de base atomique sont particulièrement adaptées pour décrire les orbitales de valence mais décrivent moins bien les électrons délocalisés. L’inconvénient majeur de ces fonctions de base réside dans leur dépendance à la position des noyaux. En effet, au cours d’une dynamique moléculaire elles sont déplacées en même temps que les noyaux et engendrent l’introduction de termes supplémentaires dans le calcul des forces que l’on appelle forces de Pulay.[112] Un moyen de contourner cette limitation est l’utilisation de base fixe (i.e. indépendante de la position des noyaux). Un des choix possibles pour une base fixe, décrivant correctement les états électroniques délocalisés, est celui d’une base d’ondes planes.

Les fonctions d’ondes planes sont définies de la manière suivante pour une boîte de simulation périodique de volume V :

$$ f_k(r) = \frac{1}{\sqrt{V}} \exp(i \mathbf{k} \cdot \mathbf{r}) $$

où \mathbf{k} est un vecteur de l’espace réciproque associé à la boîte de simulation.

Les ondes planes forment alors une base uniformément répartie dans tout l’espace et décrivent de la même manière tout le système. Cependant, dans le cas de l’étude de systèmes de grande taille ou de densité faible, l’utilisation d’ondes planes devient beaucoup plus coûteuse en temps de calcul que les bases atomiques. La qualité de la base d’ondes planes dépend uniquement de l’énergie de coupure E_{cutoff} qui définit l’énergie maximale des ondes planes utilisées et qui vaut :

$$ \frac{||\mathbf{k}||^2}{2} \leq E_{\text{cutoff}} $$

Le choix de la valeur de l’énergie de coupure dépendra du système étudié et des atomes mis en jeu.

2.5.4 Les pseudopotentiels

Les méthodes basées sur l’utilisation de pseudopotentiels permettent de s’affranchir des électrons de cœur, et de ne traiter de manière explicite que les électrons de valence. Les orbitales de cœur sont alors remplacées par un potentiel analytique effectif qui agit sur les électrons de valence. Cela permet de réduire de façon significative le temps de calcul sans pour autant perdre d’informations sur le système puisque les électrons de cœur ne sont pas directement impliqués dans les liaisons chimiques et les interactions intermoléculaires.

De plus, l’utilisation d’une base d’ondes planes pour la description de la structure électronique du système nécessite l’introduction de pseudopotentiels afin de réduire la valeur de l’énergie de coupure. Les effets relativistes peuvent également être introduits dans le pseudopotentiel, ce qui permet de bien décrire les atomes de la quatrième et cinquième ligne de la classification périodique avec des méthodes non-relativistes.
2.6 La dynamique moléculaire \textit{ab initio}

La dynamique moléculaire \textit{ab initio} est une méthode de simulation qui couple une description quantique du système (typiquement la DFT) et une dynamique. La description du système est basée sur les équations de la mécanique quantique et ne fait pas intervenir de potentiel classique. Au cours d’une simulation de dynamique \textit{ab initio}, les forces s’exerçant sur les atomes sont obtenues à partir d’un calcul de la structure électronique. On parle aussi de calcul "premiers principes". Il existe plusieurs méthodes de dynamique moléculaire \textit{ab initio} mais je me limiterai ici à la présentation de la dynamique moléculaire de type Born-Oppenheimer.

En mécanique quantique non relativiste, un système constitué de N_n noyaux, de masse M_j, de numéro atomique Z_j et de position \mathbf{R}_j avec $1 \leq j \leq K$, et de N électrons de masse m_e en position \mathbf{r}_i où $1 \leq i \leq N$ est entièrement décrit par sa fonction d’onde $\Psi(\mathbf{R}, \mathbf{r}, t)$, régie par l’équation de Schrödinger dépendante du temps :

$$i \frac{\partial}{\partial t} \Psi(\mathbf{R}, \mathbf{r}, t) = \hat{H} \Psi(\mathbf{R}, \mathbf{r}, t) \quad (2.64)$$

où \hat{H} est l’opérateur hamiltonien, qui s’écrit dans le système d’unité atomique de la manière suivante :

$$\hat{H} = -\sum_j \frac{1}{2M_j} \nabla^2_{\mathbf{R}_j} - \sum_i \frac{1}{2} \nabla^2_{\mathbf{r}_i} + \sum_{j<k} \frac{Z_j Z_k}{|\mathbf{R}_j - \mathbf{R}_k|} - \sum_{j,l} \frac{Z_j}{|\mathbf{R}_j - \mathbf{r}_l|} + \sum_{i<l} \frac{1}{|\mathbf{r}_i - \mathbf{r}_l|} \quad (2.65)$$

Le hamiltonien ne dépendant pas explicitement du temps, l’équation de Schrödinger peut donc s’écritre sous la forme suivante :

$$\hat{H} \Psi(\mathbf{R}, \mathbf{r}) = E \Psi(\mathbf{R}, \mathbf{r}) \quad (2.66)$$

avec :

$$\Psi(\mathbf{R}, \mathbf{r}, t) = e^{-iEt} \Psi(\mathbf{R}, \mathbf{r}) \quad (2.67)$$

Une des manières possibles de résoudre l’équation 2.66 dans son état fondamental se base sur l’approximation de Born-Oppenheimer.[113] La masse des électrons étant beaucoup plus faible que celle des noyaux, le mouvement des électrons sera alors beaucoup plus rapide que celui des noyaux. Cette approximation consiste à considérer que les électrons s’adaptent instantanément au mouvement des noyaux qui occupent les positions \mathbf{R}. Dans cette approche, les électrons seront alors décrits par une fonction d’onde $\Psi_{\text{el}}(\mathbf{r}; \mathbf{R})$ et les noyaux par une fonction d’onde nucléaire $\Psi_{\text{nuc}}(\mathbf{R})$. Le mouvement des électrons dans le champ créé par les noyaux figés est décrit par l’équation suivante :

$$\hat{H}_{\text{el}} \Psi_{\text{el}}(\mathbf{r}; \mathbf{R}) = E_{\text{el}}(\mathbf{R}) \Psi_{\text{el}}(\mathbf{r}; \mathbf{R}) \quad (2.68)$$

où le hamiltonien vaut

$$\hat{H}_{\text{el}} = -\sum_i \frac{1}{2} \nabla^2_{\mathbf{r}_i} - \sum_{j,i} \frac{Z_j}{|\mathbf{R}_j - \mathbf{r}_i|} + \sum_{i<l} \frac{1}{|\mathbf{r}_i - \mathbf{r}_l|}$$

L’évolution des noyaux dans le champ créé par les électrons est décrit par l’équation suivante :

$$\hat{H}_{\text{nuc}} \Psi_{\text{nuc}}(\mathbf{R}) = E(\mathbf{R}) \Psi_{\text{nuc}}(\mathbf{R}) \quad (2.69)$$
où

\[\hat{H}_{\text{nuc}} = -\sum_j \frac{1}{2M_j} \nabla^2_{R_j} + \sum_{j<k} \frac{Z_j Z_k}{|R_j - R_k|} + E_{\text{el}}(R) \]

En raison de leur masse, le mouvement des noyaux peut être traité de manière classique. Dans ce cas, l’équation 2.69 se simplifie et prend la forme de l’équation classique du mouvement d’un système de \(N_n \) particules évoluant sur une surface d’énergie potentielle :

\[V_{\text{BO}}(R) = \sum_{j<k} \frac{Z_j Z_k}{|R_j - R_k|} + E_{\text{el}}(R) \quad (2.70) \]

La dynamique de type Born-Oppenheimer consiste donc à effectuer une dynamique moléculaire classique des noyaux sur une surface d’énergie potentielle \(V_{\text{BO}}(R) \) évaluée localement à chaque pas de temps. À chaque temps \(t \), la position des noyaux \(R(t) \) est calculée et l’énergie électronique \(E_{\text{el}}(R) \) et la force \(\mathbf{F}_{\text{el}}(R) \) (\(\mathbf{F}_{\text{el}}(R) = -\nabla_R E_{\text{el}} \)) peuvent être évaluées. Ensuite, l’intégration des équations du mouvement permet de déterminer les positions \(R(t + \delta t) \) (\(\delta t \) est généralement de l’ordre de la femtoseconde). Une des limitations de la dynamique Born-Oppenheimer résulte de la nécessité de calculer à chaque pas de temps le fonction d’onde, ce qui implique un temps de calcul important.
Chapitre 3

Propriétés mécaniques des *Soft Porous Crystals*

Depuis ces dernières années, les MOFs ont suscité un grand engouement de la communauté scientifique en raison de leur grande diversité structurale et de la possibilité de moduler leurs propriétés physico-chimiques. Plus récemment, une nouvelle catégorie de MOFs a émergé : les *Soft Porous Crystals* (SPCs) [11], présentant une grande flexibilité structurale en réponse à de nombreux stimuli physico-chimiques. Certains de ces matériaux présentent notamment des transitions structurales induites par l’adsorption de gaz. Ces nouveaux matériaux poreux flexibles ont été proposés pour un grand nombre d’applications industrielles dans les domaines de la séparation gazeuse, de la catalyse ou encore de la vectorisation thérapeutique (chapitre 1). Cependant si l’on dénombre plus de 1000 publications par an sur le domaine, il existe très peu d’études s’intéressant à la stabilité mécanique [114] ou hydrothermale [115] des MOFs, bien que cruciales pour envisager des applications à l’échelle industrielle. L’étude présentée dans ce chapitre s’inscrit dans ce contexte, en lien avec les travaux récents de l’équipe qui a proposé que la pression mécanique externe exercée sur la charpente du matériau joue un rôle important dans l’observation des transitions structurales des SPCs.[59, 116, 117]

Figure 3.1 : Représentation de la transition structurale de la MIL-53(Al)-lp (*large pore*) vers la phase np (*narrow pore*) qui peut être induite par la pression mécanique ou l’adsorption.[118]

Les caractérisations expérimentales montrent que les transitions structurales des MOFs présentent systématiquement de larges hystérèses. Des expériences de diffraction des rayons X in
situ ont mis en évidence qu’au cours des transitions, les deux phases du matériau coexistent et que leur proportion évolue continûment. En collaboration avec Alexander Neimark, l’équipe a développé un modèle donnant une vision plus mécanique des transitions structurales des SPCs, qui jusqu’alors étaient traitées principalement avec des considérations structurales, énergétiques ou thermodynamiques. Cette approche repose sur l’hypothèse que les contraintes mécaniques créées par l’adsorption au sein du matériau constituent la grandeur clef qui détermine l’occurrence des transitions structurales. Ce modèle introduit naturellement une dissymétrie conduisant à l’existence de boucles d’hystérèse autour de chaque transition.

Tout d’abord, je me suis intéressée au comportement de ces matériaux dans leur domaine élastique afin de mettre en évidence le lien entre la flexibilité structurale de ces matériaux (existence de transitions structurales) et leur flexibilité dans le régime élastique. Ensuite, j’ai développé et utilisé une méthodologie, basée sur des calculs quantiques et la dynamique moléculaire "premiers principes", pour prédire et caractériser la flexibilité de certaines MOFs présentant une structure de type treillis (*wine-rack*). Mais avant de présenter ces résultats, je reviendrais brièvement sur les concepts de base de la mécanique des matériaux.

Les travaux de thèse décrits dans ce chapitre ont donné lieu à trois publications.[119, 120, 121]

3.1 De la mécanique des matériaux aux constantes élastiques des MOFs

3.1.1 La mécanique des matériaux

La mécanique des matériaux permet d’étudier le comportement d’un matériau lorsqu’il est soumis à une contrainte mécanique extérieure (en anglais stress, et généralement noté \(\sigma \)). Sous l’effet de cette contrainte, le matériau peut réagir de différentes manières. Généralement on observe une modification de la taille et de la forme du solide. On distingue deux types de déformation du solide en fonction de l’intensité de la force extérieure exercée sur le matériau. Dans le domaine élastique du matériau les déformations sont réversibles, le matériau retrouve son état initial lorsque la sollicitation mécanique s’arrête. Au-delà du domaine élastique, le matériau va se déformer plastiquement, de manière irréversible jusqu’à la rupture (figure 3.2).

![Figure 3.2 : Courbe schématique contrainte vs déformation d’un matériau.](image)
La loi de Hooke généralisée

Dans le régime linéaire (i.e. à la limite des faibles déformations), le comportement élastique d’un matériau est déterminé par la loi de Hooke tensorielle reliant le tenseur des contraintes σ_{ij} et le tenseur des déformations ε_{ij} à travers le tenseur des constantes élastiques de 2e ordre (stiffness tensor) C ou le tenseur des compliances élastiques de 2e ordre (compliance tensor) S, tous deux de rang 4 :

$$\sigma_{ij} = \sum_{kl} C_{ijkl} \varepsilon_{kl} \quad (3.1)$$
$$\varepsilon_{ij} = \sum_{kl} S_{ijkl} \sigma_{kl} \quad (3.2)$$

où les indices $\{i, j, k, l\}$ vont de 1 à 3. Le tenseur élastique C est alors composé de 81 constantes élastiques notées C_{ijkl} (i.e coefficients du tenseur). La symétrie des tenseurs ε et σ, de rang 2, impose de manière générale des symétries sur les indices, permettant de réduire à 21 le nombre de coefficients élastiques indépendants nécessaires à la description d’un solide totalement anisotrope. On introduit la notation de Voigt afin de simplifier l’écriture des tenseurs. Dans cette représentation, à chaque couple d’indices (i, j) est associé un indice k ($k = 1, 2, ..., 6$) selon la correspondance suivante : $11 \rightarrow 1$, $22 \rightarrow 2$, $33 \rightarrow 3$, $23 \rightarrow 4$, $13 \rightarrow 5$, $12 \rightarrow 6$. On peut alors exprimer le tenseur élastique sous la forme d’une matrice symétrique 6×6 composée de 21 constantes élastiques indépendantes C_{ij}. Dans la notation de Voigt, les tenseurs des contraintes σ et des déformations ε s’expriment alors sous la forme de vecteurs de longueur 6. La symétrie des matériaux cristallins, tels que les MOFs, permet également de réduire le nombre de constantes élastiques indépendantes du tenseur élastique. Par exemple, le comportement élastique d’un matériau de symétrie monoclinique sera décrit par 13 constantes élastiques, alors que seulement 9 constantes élastiques seront nécessaires pour décrire le comportement mécanique dans le domaine élastique d’un matériau de symétrie orthorhombique, et 3 dans le cas des groupes d’espace cubiques :

$$C_{\text{mono}} = \begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{15} \\
C_{12} & C_{22} & C_{23} & C_{25} \\
C_{13} & C_{23} & C_{33} & C_{35} \\
C_{15} & C_{25} & C_{35} & C_{44}
\end{pmatrix} \quad (3.3)$$

$$C_{\text{ortho}} = \begin{pmatrix}
C_{11} & C_{12} & C_{13} \\
C_{12} & C_{22} & C_{23} \\
C_{13} & C_{23} & C_{33}
\end{pmatrix} \quad (3.4)$$

$$C_{\text{cubique}} = \begin{pmatrix}
C_{11} & C_{12} & C_{12} \\
C_{12} & C_{11} & C_{12} \\
C_{12} & C_{12} & C_{11}
\end{pmatrix} \quad (3.5)$$
Signification physique des constantes élastiques

Les propriétés mécaniques du matériau, dans le domaine élastique, sont intégralement décrites par le tenseur des constantes élastiques défini précédemment. On peut également l'exprimer sous la forme de plusieurs grandeurs 'dérivées', dont l'interprétation physique est plus directe que le tenseur lui-même. La figure 3.3 présente de manière schématique les différentes propriétés mécaniques d'un matériau :

— Le module de Young caractérise la déformation du matériau dans la direction d'application d'une contrainte mécanique uniaxiale.
— La compressibilité linéaire définit la déformation du matériau dans une direction donnée, sous l'application d'une compression isostatique.
— Le module de cisaillement caractérise la déformation du matériau sous l'effet d'une contrainte de cisaillement.
— Le ratio de Poisson définit quant à lui la déformation du matériau dans une direction perpendiculaire à la direction selon laquelle une contrainte uniaxiale est appliquée.

Figure 3.3 : Représentation schématique des propriétés mécaniques d'un matériau. Les flèches rouges représentent les directions des contraintes exercées sur le matériau et les flèches vertes la direction dans laquelle est mesurée la déformation du matériau.

3.1.2 La méthodologie de calculs

Calcul des constantes élastiques

Au cours de ma thèse, j'ai utilisé des méthodes de chimie quantique afin de déterminer les constantes élastiques des différentes MOFs étudiées. Il existe deux approches différentes pour le calcul des constantes élastiques à partir de calculs ab initio. La première méthode, introduite par Nielsen et Martin [122, 123] en 1983, consiste à résoudre dans le cas général un système de six équations linéaires (six composantes du stress) à 21 variables (i.e. constantes élastiques). Ce jeu d'équations est construit à partir du tenseur de stress calculé pour chaque déformation. Cette méthode directe a notamment été utilisée pour la prédiction des constantes élastiques des matériaux céramiques par Yao et al.[124] Dans notre approche, le calcul des constantes élastiques repose sur le développement de Taylor au second ordre de l'énergie totale du système en fonction de la déformation \(\varepsilon \):

\[
C_{ij} = \frac{1}{V} \left(\frac{\partial^2 E}{\partial \varepsilon_i \partial \varepsilon_j} \right)
\]

(3.6)

Nous avons utilisé le code CRYSTAL09 [125, 126] dans lequel est implémenté le calcul des tenseurs élastiques.[127] La procédure de calcul est la suivante :
1. La première étape consiste en la relaxation de la géométrie du système. La position des atomes et les paramètres de maille du matériau sont optimisés. La structure d’énergie minimale ainsi obtenue sert de référence ($\varepsilon = 0$).

2. La symétrie de la structure cristalline est ensuite analysée afin de déterminer les modes de déformation indépendants ε_i ($i = 1...6$) compatibles avec la symétrie du matériau.

3. Pour chaque mode de déformation ε_i, $2n$ structures déformées sont créées pour différentes amplitudes de déformation $\varepsilon_k = k\delta\varepsilon_i$, avec $-n \leq k \leq n$. Ensuite, pour chaque structure déformée, l’énergie du système est minimisée en relaxant seulement la position des atomes de la maille. Les dérivées premières $\left(\frac{\partial E}{\partial \varepsilon_j}\right)$ sont obtenues en chaque point de manière analytique (figure 3.4).

4. Pour chaque mode de déformation ε_i, la donnée des $\left(\frac{\partial E}{\partial \varepsilon_j}\right)_{\varepsilon_k = k\delta\varepsilon_i}$ vs k permet par différences finies de calculer les dérivées secondes, c’est-à-dire les constantes C_{ij}.

5. Chaque mode de déformation ε_i permet le calcul d’une ligne de la matrice élastique C, ainsi à partir de tous les modes de déformation du matériau, la matrice élastique peut être reconstruite. La symétrie de la matrice obtenue permet de valider (ou non) le calcul mixte analytique/numérique des dérivées secondes.

Figure 3.4 : Représentation de la courbe d’énergie en fonction de la déformation $\delta\varepsilon_i$ (en rouge : courbe ajustée).

Calcul et représentation des modules élastiques

À partir de la matrice élastique C, les modules élastiques qui caractérisent le comportement du matériau sont calculés. La première étape consiste en la vérification des conditions de stabilité de Born. La matrice élastique C doit être définie positive i.e. ses valeurs propres doivent être strictement positives.[128] Par exemple, dans le cas des systèmes de symétrie cubique, cela implique :

$$C_{44} > 0 ; \quad C_{11} - C_{12} > 0 ; \quad C_{11} + 2C_{12} > 0$$

(3.7)

Ensuite, nous calculons la matrice des compliances élastiques S qui est l’inverse de la matrice élastique C. À partir de cette matrice, nous pouvons calculer les modules élastiques.
La variation des modules élastiques en fonction des directions peut être représentée par une surface tridimensionnelle. On définit alors deux vecteurs unitaires perpendiculaires entre eux \(\textbf{u} \) et \(\textbf{v} \) tels que :

\[
\textbf{u} = \begin{pmatrix}
\sin \theta \cos \varphi \\
\sin \theta \sin \varphi \\
\cos \theta
\end{pmatrix}, \quad \text{et} \quad \textbf{v} = \begin{pmatrix}
\cos \theta \cos \varphi \cos \chi - \sin \theta \sin \chi \\
\cos \theta \sin \varphi \cos \chi + \cos \theta \sin \chi \\
- \sin \theta \cos \chi
\end{pmatrix}
\]

avec \(0 \leq \theta \leq \pi, \, 0 \leq \varphi \leq 2\pi \) et \(0 \leq \chi \leq 2\pi \).

En appliquant la formule de rotation du tenseur \(\textbf{S} \), on peut exprimer, dans la convention de sommation d'Einstein, le module de Young selon la direction \(\textbf{u} \), \(E(\textbf{u}) \) de la manière suivante :

\[
E(\textbf{u}) = \frac{1}{u_iu_ju_ku_l S_{ijkl}}
\]

De manière similaire, la compressibilité linéaire \(\beta(\textbf{u}) \) s'exprime sous la forme :

\[
\beta(\textbf{u}) = u_iu_j S_{ijkl}
\]

La compressibilité linéaire \(\beta(\textbf{u}) \) caractérise alors la compression du matériau selon la direction \(\textbf{u} \), en réponse à une compression isostatique.

Le module de cisaillement \(G(\textbf{u}, \textbf{v}) \) qui caractérise la déformation du matériau lors de l’application d’une contrainte de cisaillement selon le vecteur \(\textbf{u} \) dans le plan normal à \(\textbf{v} \) est donné par la formule suivante :

\[
G(\textbf{u}, \textbf{v}) = (u_iu_ju_ku_l S_{ijkl})^{-1}
\]

Enfin le ratio de Poisson \(\nu(\textbf{u}, \textbf{v}) \) qui caractérise la déformation du matériau selon la direction \(\textbf{v} \) en réponse à l’application d’une contrainte uniaxiale selon le vecteur \(\textbf{u} \) est défini par l'expression suivante :

\[
\nu(\textbf{u}, \textbf{v}) = - \frac{u_iu_ju_ku_l S_{ijkl}}{u_iu_ju_ku_l S_{ijkl}}
\]

Le module de Young et la compressibilité linéaire, \(E(\textbf{u}) \) et \(\beta(\textbf{u}) \), qui ne dépendent que d’une direction de l’espace, peuvent être représentés par des surfaces 3D. Le module de cisaillement et le ratio de Poisson dépendent de deux directions, \(\textbf{u} \) et \(\textbf{v} \), ce qui rend difficile leur représentation graphique. Un moyen de simplifier leur représentation est de considérer pour chaque \(\theta \) et \(\varphi \), le minimum et le maximum de la valeur. Par exemple pour le module de cisaillement on représentera :

\[
G_{\min}(\theta, \varphi) = \min_{\chi} G(\theta, \varphi, \chi) \quad \text{et} \quad G_{\max}(\theta, \varphi) = \max_{\chi} G(\theta, \varphi, \chi)
\]

3.1.3 Détails techniques

Calculs quantiques

Le calcul des constantes élastiques des différentes MOFs étudiées a été effectué avec le code CRYSTAL09 qui se base sur la théorie de la fonctionnelle de la densité (DFT) en bases atomiques localisées. Les calculs quantiques ont été réalisés sur une maille élémentaire du matériau en

Afin de calculer les constantes élastiques des matériaux, la structure de départ doit être convergée avec des critères de convergence stricts de manière à s’approcher le plus possible de la structure d’énergie minimale. Le critère de convergence du déplacement de carré moyen a été fixé à 0.0005 et celui des gradients à 0.0003. L’amplitude de déformation δ utilisée pour le calcul des constantes élastiques est δ = 0.005 (0.5 %), et le nombre de points (2n + 1) pour chaque mode de déformation vaut 5. Des calculs sous pression isostatique ont également été effectués avec le code CRYSTAL09. La symétrie des structures obtenues a ensuite été systématiquement vérifiée avec le code PLATON. [135]

Dans le cas de la NOTT-300, la symétrie du matériau a été réduite du groupe tétragonal (I4₁22) vers un groupe orthorhombique (I2₁2₁2₁) pour être en bon accord avec la nature de la déformation de cisaillement imposée. Les calculs quantiques ont été effectués à l’IDRIS sur les machines vargas et ada et nous avons utilisé pour chaque calcul quantique 32 à 64 processeurs sur une durée qui varie de 100 h à 500 h en fonction du matériau.

Calculs premiers principes

En complément des calculs "statiques" décrits ci-dessus, nous avons effectué des calculs de dynamique moléculaire "premiers principes" (FPMD) de la NOTT-300 avec le code CP2K [136]. Ce programme se base sur la formulation de Kohn-Sham de la fonctionnelle de la densité comme implémenté dans le module QUICKSTEP [137] : les orbitales de Kohn-Sham sont développées comme des bases atomiques gaussiennes et la densité électronique est développée sur une base auxiliaire d’ondes planes. Nous avons effectué des simulations à pression constante ce qui nécessite une grande précision dans l’évaluation des forces atomiques afin de faire converger la contrainte mécanique exercée sur la charpente du matériau, comme démontré au sein de l’équipe par les travaux de Volker Haigis. [138] Nous avons donc utilisé des bases TZV2P pour tous les atomes (Al, O, C, H) et une valeur de cut-off relativement élevée de 600 Ry pour l’énergie. Les interactions entre les noyaux ioniques et les électrons de valence sont décrites par les pseudo-potentiels GTH [139]. La fonctionnelle d’échange-corrélation utilisée est PBE [140]. Nous avons également utilisé une correction empirique de l’énergie de dispersion de type Grimme (D2). [130]

Une seule maille de la NOTT-300 a été simulée en raison de la taille de ce système. La déformation de la structure du matériau a été étudiée à partir de simulations FPMD dans l’ensemble (N, σ, T) pour lequel tous les paramètres de maille sont autorisés à évoluer au cours du temps (la symétrie du système n’est donc pas fixée). Le pas de temps pour l’intégration des équations de Newton utilisé est de 0.5 fs. Le matériau a été deutéré. Le thermostat CSVR [141] a été utilisé avec une constante de temps de 0.1 ps. La constante de temps du barostat utilisé est de 0.2 ps de manière à pouvoir imposer différentes valeurs de la pression isostatique (0 MPa, 500
MPa, 700 MPa et 1 GPa). Pour toutes ces simulations, le temps total de simulation est 6 ps.

3.2 État de l’art

Depuis 2006, seulement quelques études concernant les propriétés mécaniques des matériaux hybrides organiques-inorganiques ont été publiées. La plupart de ces études portent sur la MOF-5, l’une des premières MOF synthétisées, et sur la famille très étudiée des IRMOFs.[142, 143, 144, 145, 146, 147, 148] D’autres études portent sur la HKUST-1 (ou Cu-BTC) [149, 150] et sur les matériaux de la famille des ZIFs.[151] La plupart de ces études sont théoriques car les mesures expérimentales sont difficiles à réaliser.

Le tableau 3.1 répertorie les différentes valeurs des constantes élastiques C_{ij} de la MOF-5 obtenues par simulation moléculaire. Bahr et al. [145] sont les premiers à proposer une étude expérimentale et théorique du comportement mécanique de la MOF-5. Ils ont ainsi estimé, expérimentalement par nanoindentation, la valeur moyenne du module élastique (i.e. module de Young) selon la face (100) du cristal, $E_{(100)} = 7.9$ GPa (en tenant compte de l’anisotropie élastique du cristal cubique). Les valeurs obtenues par calcul DFT du module de Young directionnel sont : $E_{(100)} = 21.6$ GPa et $E_{(111)} = 7.5$ GPa. On observe alors que les valeurs de $E_{(100)}$ calculées par les méthodes quantiques, hormis celle obtenue par Mattesini et al., sont trois fois plus grandes que celle mesurée par nanoindentation. On note que les résultats sont qualitatifs et non quantitatifs, car les mesures expérimentales (méthode macroscopique) et théoriques sont effectuées à différentes échelles. Des études en température ont également été menées pour mettre en évidence l’influence de la température sur les propriétés mécaniques des matériaux de la famille des IRMOFs.[148] Cette étude a montré que le module de Young dépend non seulement de la densité du matériau et de son volume poreux mais aussi de la température (figure 3.5). Plus le matériau est dense et plus la rigidité élastique du matériau est importante. Selon le matériau, on observe que le module élastique diminue de 20% à 30% lorsque la température augmente de 10 à 300 K.

<table>
<thead>
<tr>
<th>Source</th>
<th>Year Published</th>
<th>Computational Method</th>
<th>Details</th>
<th>Temp. (K)</th>
<th>C_{11} (GPa)</th>
<th>C_{12} (GPa)</th>
<th>C_{44} (GPa)</th>
<th>K (GPa)</th>
<th>E_{100} (GPa)</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou and Yildirim</td>
<td>2006</td>
<td>DFT</td>
<td>LDA, USP</td>
<td>0</td>
<td>29.42</td>
<td>12.56</td>
<td>1.16</td>
<td>18.18</td>
<td>21.90</td>
<td>0.30</td>
</tr>
<tr>
<td>Samanta et al.</td>
<td>2006</td>
<td>LDA, PAW</td>
<td>GGA, PAW</td>
<td>29.2</td>
<td>13.1</td>
<td>1.4</td>
<td>18.5</td>
<td>21.1</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Mattesini et al.</td>
<td>2006</td>
<td>LDA, Norm conserving</td>
<td>GGA, PAW</td>
<td>21.52</td>
<td>14.77</td>
<td>7.54</td>
<td>17.02</td>
<td>9.50</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Bahr et al.</td>
<td>2007</td>
<td>LDA, PAW</td>
<td>Average LDA–GGA</td>
<td>27.8</td>
<td>10.6</td>
<td>3.6</td>
<td>16.3</td>
<td>21.9</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Han and Goddard</td>
<td>2007</td>
<td>MD</td>
<td>DREIDING force field</td>
<td>28.2 ± 0.4</td>
<td>11.4 ± 0.8</td>
<td>2.7 ± 1.0</td>
<td>17.0 ± 0.6</td>
<td>21.6</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Greathouse and Allendorf</td>
<td>2008</td>
<td>CVFF force field</td>
<td>300</td>
<td>34.13</td>
<td>7.93</td>
<td>1.36</td>
<td>16.66</td>
<td>31.14</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Tafiosky and Schmid</td>
<td>2009</td>
<td>MM3(2000) force field</td>
<td>0</td>
<td>25.3</td>
<td>8.9</td>
<td>2.3</td>
<td>14.4</td>
<td>20.67</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Year Published</th>
<th>Computational Method</th>
<th>Details</th>
<th>Temp. (K)</th>
<th>C_{11} (GPa)</th>
<th>C_{12} (GPa)</th>
<th>C_{44} (GPa)</th>
<th>K (GPa)</th>
<th>E_{100} (GPa)</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou and Yildirim</td>
<td>2006</td>
<td>DFT</td>
<td>LDA, USP</td>
<td>0</td>
<td>29.42</td>
<td>12.56</td>
<td>1.16</td>
<td>18.18</td>
<td>21.90</td>
<td>0.30</td>
</tr>
<tr>
<td>Samanta et al.</td>
<td>2006</td>
<td>LDA, PAW</td>
<td>GGA, PAW</td>
<td>29.2</td>
<td>13.1</td>
<td>1.4</td>
<td>18.5</td>
<td>21.1</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Mattesini et al.</td>
<td>2006</td>
<td>LDA, Norm conserving</td>
<td>GGA, PAW</td>
<td>21.52</td>
<td>14.77</td>
<td>7.54</td>
<td>17.02</td>
<td>9.50</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Bahr et al.</td>
<td>2007</td>
<td>LDA, PAW</td>
<td>Average LDA–GGA</td>
<td>27.8</td>
<td>10.6</td>
<td>3.6</td>
<td>16.3</td>
<td>21.9</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Han and Goddard</td>
<td>2007</td>
<td>MD</td>
<td>DREIDING force field</td>
<td>28.2 ± 0.4</td>
<td>11.4 ± 0.8</td>
<td>2.7 ± 1.0</td>
<td>17.0 ± 0.6</td>
<td>21.6</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Greathouse and Allendorf</td>
<td>2008</td>
<td>CVFF force field</td>
<td>300</td>
<td>34.13</td>
<td>7.93</td>
<td>1.36</td>
<td>16.66</td>
<td>31.14</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Tafiosky and Schmid</td>
<td>2009</td>
<td>MM3(2000) force field</td>
<td>0</td>
<td>25.3</td>
<td>8.9</td>
<td>2.3</td>
<td>14.4</td>
<td>20.67</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3.1 : Tableau répertoriant les constantes élastiques C_{ij} de la MOF-5 (ou IRMOF-1) calculées par simulation moléculaire (DFT ou dynamique moléculaire). L’axe principal (100) est parallèle à la direction des ligands organiques.[114]

Les ZIFs constituent une classe de matériaux hybrides possédant une grande stabilité thermique et chimique. Tan et al. ont étudié par nanoindentation les propriétés mécaniques de sept matériaux de cette famille (figure 3.6). Ils ont alors montré que leurs propriétés élastiques dépendent fortement de la structure chimique, de la topologie du réseau et de la porosité du matériau.[151] Les matériaux présentant une structure dense sont plus rigides, par exemple le module élastique
3.2 — État de l’art

Figure 3.5 : Évolution en température du module de Young $E_{(100)}$ en fonction de la densité (à gauche) et de la porosité (% SAV, à droite) pour différents matériaux de la famille des IRMOFs (en haut).[114]

Figure 3.6 : Courbes de nanoindentation des ZIFs, et image de la surface indentée de la ZIF-8.[151]

de la ZIF-zni (1.56 g.cm$^{-3}$) est de l’ordre de 8 – 9 GPa alors que celui de la ZIF-8 (0.95 g.cm$^{-3}$) est de 3 – 4 GPa. De plus, la substitution du ligand imidazolate par un groupement de taille importante confère une plus grande rigidité à la ZIF. La première étude complète expérimentale (diffusion de Brillouin) et théorique (calculs DFT) de l’anisotropie des propriétés mécaniques des MOFs a été publiée très récemment en 2012 par Tan et al.[152] On note un bon accord
entre les constantes élastiques mesurées par diffusion de Brillouin (mesure locale) et par des calculs DFT, ce qui nous permet de souligner l’importance de l’échelle de mesure. Cette étude a permis de décrire le comportement élastique de la ZIF-8 ainsi que sa stabilité mécanique. Ils ont ainsi étudié l’anisotropie élastique de la ZIF-8 à partir de l’analyse tensorielle des constantes élastiques \(C_{ij} \), et mis en évidence la faible valeur du module de cisaillement, \(G_{\text{min}} \approx 0.9 \text{ GPa} \).

La figure 3.7 présente une vue d’ensemble des propriétés mécaniques (module élastique \(E \) et dureté \(H \)) des matériaux hybrides organiques-inorganiques par comparaison avec celles des trois grandes catégories de matériaux classiques : les métaux, les céramiques et les polymères. La dureté définit la résistance du matériau à une déformation irréversible (plastique) sous l’application d’une contrainte mécanique. Les matériaux hybrides nanoporeux et denses occupent deux régions distinctes de la carte. La famille des ZIFs se situe à l’interface des matériaux métalliques, purement inorganiques (céramiques) et purement organiques (polymères). Comparées aux matériaux hybrides denses, les ZIFs sont relativement plus flexibles et plus fragiles (i.e faible valeur du module de Young \(E \) et de la dureté \(H \)). Cela peut être attribué à la liaison M-Im-M, ainsi qu’à la porosité de la structure. Les ZIFs possèdent néanmoins une stabilité mécanique plus importante que certaines autres MOFs, ce qui a été attribué dans la littérature à leur proximité structurale avec les zéolithes. Le nouveau domaine défini par les matériaux hybrides (représenté en pointillés sur la figure 3.7) est assez vaste. La possibilité de moduler les propriétés mécaniques des MOFs en fonction de l’application souhaitée, combinée à la grande diversité structurale et chimique de ces matériaux, ouvre des perspectives intéressantes pour
3.3 — La signature élastique de la flexibilité structurale

cette nouvelle classe de matériaux.

Dans la littérature, la seule propriété mécanique des MOFs flexibles (SPCs) reportée est le module d’élasticité isostatique (i.e. bulk modulus) qui rend compte de la résistance mécanique du matériau sous compression isostatique. Il a en effet été estimé pour la MIL-53(Cr) à partir de données expérimentales de porosimétrie au mercure [116] et confirmé par des simulations moléculaires.[153] Il a également été mesuré pour la NH₂-MIL-53(In) par diffraction de rayons X sous compression.[154] Cependant, ces mesures du module d’élasticité isostatique ne permettent pas de caractériser le comportement élastique complet des SPCs car elles ne donnent pas d’informations sur les propriétés mécaniques directionnelles du matériau telles que le module de Young, le module de cisaillement, ou encore le ratio de Poisson.

3.3 La signature élastique de la flexibilité structurale

3.3.1 Les matériaux étudiés

Dans cette étude nous nous sommes intéressés à cinq matériaux hybrides flexibles différents : deux matériaux de la famille MIL-53, la MIL-53(Al)-lp et la MIL-53(Ga)-lp, la MIL-47 et la DMOF-1 (structures carrée et losange). Les propriétés mécaniques de ces matériaux ont ensuite été comparées à celles de deux matériaux hybrides rigides (i.e. ne présentant pas de transitions structurales de large amplitude), la MOF-5 et la ZIF-8 afin d’identifier la signature élastique de la flexibilité de ces Soft Porous Crystals.

Les matériaux de la famille MIL-53

Les matériaux de la famille MIL-53 (MIL = Matériaux de l’Institut Lavoisier) sont formés par des chaînes infinies d’octaèdres AlO₄(OH)₂ interconnectées par des ligands organiques 1,4-benzène-dicarboxylates. Le réseau tridimensionnel ainsi formé est constitué de canaux unidimensionnels en forme de losange.[67] Ces matériaux font partie des Soft Porous Crystals et présentent une structure dynamique en réponse à des stimuli externes. Cette flexibilité se manifeste alors par un phénomène de « respiration », caractérisé par une oscillation entre deux structures métastables du matériau, appelées phase large-pore (lp) et phase narrow-pore (np) présentées sur la figure 3.8.[155, 156] La transition structurale lp → np implique une variation des paramètres de maille de la structure et par conséquent une modification des dimensions des pores du matériau. Le phénomène de respiration des matériaux de la famille MIL-53 a pour la première fois été mis en évidence en réponse à l’adsorption de molécules de gaz.[157] Ensuite, d’autres études ont montré que les stimuli physiques tels que la température et la pression mécanique peuvent également engendrer la transition structurale du matériau (lp → np).[59] Liu et al. ont mis en évidence l’existence d’une transition de phase du matériau sous l’effet de la température et en l’absence de molécules de gaz.[58]

La MIL-47 est un matériau de structure similaire à celle des matériaux de la famille MIL-53, constitué de centres métalliques vanadium formant des chaînes inorganiques VO interconnectées par les mêmes ligands 1,4-benzène-dicarboxylates. Il n’existe pas encore de preuve expérimentale de la respiration du matériau MIL-47 induite par l’adsorption de molécules. Néanmoins, il a récemment été montré que la MIL-47 se contracte (environ 43% en volume) sous compression mécanique (≈ 137 MPa).[158]
Figure 3.8 : Représentation des deux structures métastables de la MIL-53 et du ligand organique (1,4-benzènedicarboxylate). En haut : la phase ouverte, large pore. En bas : la phase fermée dite narrow pore. Les clusters métalliques sont représentés en vert, les atomes d’oxygène et de carbone respectivement en rouge et noir.

La DMOF-1

La DMOF-1 est composée de dimères de zinc interconnectés par des ligands organiques 1,4-benzènedicarboxylates de manière à former des réseaux 2D \([\text{Zn}_2(1,4\text{-bdc})_2]\) reliés entre eux par des ligands 1,4-diazobicyclo[2.2.2]octane (DABCO). La structure tridimensionnelle ainsi formée, que l’on nommera DMOF-1(sq), est constituée de canaux unidimensionnels de section carrée (figure 3.9).[159] Sous l’adsorption de benzèné et d’alcool isopropylique le matériau présente un phénomène de respiration, alors qu’il reste rigide en présence de \(\text{CO}_2\) et d’\(\text{H}_2\).[160] La structure contractée appelée DMOF-1(loz), possède des canaux unidimensionnels en forme de losange.

Figure 3.9 : Représentation des deux structures métastables de la DMOF-1 et du ligand organique DABCO. À gauche : la structure carrée et, à droite : la structure losange.

3.3.2 Les constantes élastiques

Les constantes élastiques calculées à partir de la méthodologie présentée précédemment sont reportées dans le tableau 3.2. Le tableau 3.3 répertorie les paramètres de maille et le volume
3.3 — La signature élastique de la flexibilité structurale

<table>
<thead>
<tr>
<th>C_{ij} (GPa)</th>
<th>MIL-53(Al)</th>
<th>MIL-53(Ga)</th>
<th>MIL-47</th>
<th>DMOF-1 loz</th>
<th>DMOF-1 sq</th>
<th>MOF-5[144]</th>
<th>ZIF-8[152]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>90.85</td>
<td>112.32</td>
<td>40.69</td>
<td>57.15</td>
<td>35.33</td>
<td>21.52</td>
<td>9.52</td>
</tr>
<tr>
<td>C_{22}</td>
<td>65.56</td>
<td>56.66</td>
<td>62.60</td>
<td>35.59</td>
<td>58.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{33}</td>
<td>33.33</td>
<td>18.52</td>
<td>36.15</td>
<td>17.68</td>
<td>58.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{44}</td>
<td>7.24</td>
<td>5.48</td>
<td>50.83</td>
<td>0.62</td>
<td>0.112</td>
<td>7.54</td>
<td>0.97</td>
</tr>
<tr>
<td>C_{55}</td>
<td>39.52</td>
<td>21.71</td>
<td>7.76</td>
<td>16.39</td>
<td>0.444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{66}</td>
<td>8.27</td>
<td>6.64</td>
<td>9.30</td>
<td>0.69</td>
<td>0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{12}</td>
<td>20.41</td>
<td>22.87</td>
<td>12.58</td>
<td>9.85</td>
<td>7.32</td>
<td>14.77</td>
<td>6.86</td>
</tr>
<tr>
<td>C_{13}</td>
<td>54.28</td>
<td>45.35</td>
<td>9.28</td>
<td>31.43</td>
<td>7.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{23}</td>
<td>12.36</td>
<td>10.86</td>
<td>46.98</td>
<td>5.47</td>
<td>11.68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3.2 : Constantes élastiques C_{ij} (notation de Voigt) des MOFs étudiées.

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V ($Å^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>exp</td>
<td>Imma</td>
<td>6.81</td>
<td>16.73</td>
<td>13.04</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>relaxée</td>
<td>Imma</td>
<td>16.48</td>
<td>6.68</td>
<td>13.24</td>
</tr>
<tr>
<td>MIL-47 exp</td>
<td>Imma</td>
<td>17.29</td>
<td>6.73</td>
<td>12.46</td>
<td>90</td>
</tr>
<tr>
<td>MIL-47 relaxée</td>
<td>Imma</td>
<td>17.65</td>
<td>6.84</td>
<td>12.03</td>
<td>90</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>exp</td>
<td>Pnma</td>
<td>6.82</td>
<td>16.14</td>
<td>13.94</td>
</tr>
<tr>
<td>DMOF-1 relaxée</td>
<td>Pnma</td>
<td>6.79</td>
<td>16.05</td>
<td>13.98</td>
<td>90</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>exp</td>
<td>Pnma</td>
<td>9.61</td>
<td>10.93</td>
<td>10.93</td>
</tr>
<tr>
<td>DMOF-1 relaxée</td>
<td>Pnma</td>
<td>9.61</td>
<td>11.04</td>
<td>11.04</td>
<td>90</td>
</tr>
</tbody>
</table>

Tableau 3.3 : Données cristallographiques des structures expérimentales et relaxées par DFT des matériaux de la famille MIL-53 étudiés, de la MIL-47 et des deux phases de la DMOF-1 étudiées.

Des structures expérimentales et minimisées par DFT à partir desquelles nous avons calculé les constantes élastiques des matériaux de la famille MIL-53, de la MIL-47 et des deux structures de DMOF-1. À partir des coefficients C_{ij} de la matrice élastique, nous pouvons calculer les grandeurs physiques qui nous intéressent pour décrire le comportement élastique de ces matériaux. Pour cela, nous avons utilisé le logiciel Mathematica pour faire l’analyse tensorielle, calculer et représenter graphiquement les propriétés mécaniques anisotropes de chacun des matériaux étudiés.

3.3.3 Le module de Young

Dans un premier temps, je me suis intéressée au module de Young $E(u)$ qui représente la déformation du matériau dans la direction d’application d’une contrainte mécanique uniaxiale. Ainsi, plus la valeur du module de Young est grande et plus il est difficile de déformer le matériau dans cette direction. La figure 3.10 présente la dépendance dans les trois directions de l’espace du module de Young de la MIL-53(Al)-lp. Dès la première observation, on note la forte anisotropie de ce module élastique. Le comportement mécanique du matériau est alors différent en fonction des directions d’application de la contrainte mécanique. Les lobes de la figure 3.10 correspondent aux directions selon lesquelles le module de Young prend les valeurs...
3.3 — La signature élastique de la flexibilité structurale

les plus fortes. La première direction de fort module de Young (60.9 GPa), selon \(y \), correspond

Figure 3.10 : À gauche : représentation 3D du module de Young de la MIL-53(Al)-lp (unités en GPa). À droite : schéma de la projection du module de Young sur les plans \(xy \), \(xz \), \(yz \) (une graduation correspond à 10 GPa).

Figure 3.11 : À gauche : représentation schématique de la maille d’une MIL-53, les flèches correspondent aux valeurs minimales (en vert) et maximales (en rouge) du module de Young de la MIL-53(Al)-lp. À droite : structure de la MIL-53(Al)-lp.

à la chaîne inorganique Al(OH). La forte valeur du module de Young indique la rigidité de la chaîne inorganique sous compression. La deuxième direction de rigidité du matériau fait un angle de \(\pm 38° \) avec l’axe \(x \), ce qui correspond à l’angle de demi-ouverture de la phase lp de la MIL-53(Al). Elle correspond donc à la compression du ligand organique constituant la structure de la MOF.

Dans les autres directions, selon les axes cristallographiques \(a \) et \(c \), le module de Young est faible : de l’ordre de quelques gigapascals (figure 3.11). Ces deux directions de faible module de Young correspondent aux deux diagonales du losange qui forment le pore du matériau. On remarque que ces deux directions ne sont pas équivalentes, la direction selon la grande diagonale est plus résistante à la compression que la direction parallèle à la petite diagonale (respectivement \(E_x = 2.4 \) GPa et \(E_z = 0.9 \) GPa). La direction de la grande diagonale du losange est presque alignée avec celle du ligand organique rendant ainsi la compression selon cette direction plus difficile que selon la petite diagonale qui est presque perpendiculaire à la direction du ligand organique, et qui repose principalement sur des interactions de dispersion entre les cycles aromatiques. La flexibilité du matériau, qui se manifeste par un phénomène de
3.3 — La signature élastique de la flexibilité structurale

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Module de Young E_{min} (GPa)</th>
<th>Module de Young E_{max} (GPa)</th>
<th>Anisotropie A_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>0.90</td>
<td>94.7</td>
<td>105</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>0.16</td>
<td>69.7</td>
<td>444</td>
</tr>
<tr>
<td>MIL-47</td>
<td>0.9</td>
<td>96.6</td>
<td>108</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>0.39</td>
<td>46.3</td>
<td>119</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>0.45</td>
<td>55.0</td>
<td>123</td>
</tr>
<tr>
<td>MOF-5</td>
<td>9.5</td>
<td>19.7</td>
<td>2.1</td>
</tr>
<tr>
<td>ZIF-8</td>
<td>2.7</td>
<td>3.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Tableau 3.4 : Valeurs minimales, maximales et anisotropie du module de Young des MOFs étudiées.

La figure 3.12 présente le module de Young directionnel des quatre autres matériaux flexibles étudiés. On observe alors, comme dans le cas de la MIL-53(Al)-lp, une grande anisotropie de leur module de Young. Il existe donc dans la structure de ces matériaux des directions de forte rigidité, de l’ordre de quelques dizaines de gigapascals, ainsi que des directions plus "molles" qui sont à l’origine de la flexibilité de la charpente du matériau. Les directions rigides correspondent aux mouvements de compression des chaînes inorganiques et des ligands organiques qui sont rigides et donc faiblement compressibles. On note notamment la grande ressemblance du module de Young de la MIL-53(Al)-lp et de la MIL-47, qui sont deux matériaux isomorphes mais constitués de centres métalliques différents. Les propriétés mécaniques de ces matériaux sont similaires et sont donc plus liées à la topologie treillis qu’à la nature chimique du matériau. La valeur du module de Young selon la chaîne inorganique est néanmoins différente : $E_y = 60,9$ GPa et $E_x = 38,1$ GPa respectivement pour la MIL-53(Al)-lp et la MIL-47, indiquant que la chaîne Al(OH) est plus rigide que la chaîne VO. Les deux matériaux présentent une rigidité similaire selon les directions des ligands organiques (94,7 et 96,6 GPa), la chimie de coordination n’influence donc pas la résistance à la compression du matériau selon ces directions. Pour comparaison, le module de Young des deux MOFs rigides, la MOF-5 et la ZIF-8, présenté sur la figure 3.12, a été calculé à partir des constantes élastiques publiées dans la littérature.[144, 152] Contrairement aux MOFs flexibles, on observe une très faible anisotropie de ce module, c’est-à-dire que quelle que soit la direction d’application de la contrainte mécanique, le matériau réagit mécaniquement de manière similaire.

Le tableau 3.4 présente les valeurs minimales et maximales ainsi que l’anisotropie du module de Young ($A_E = \frac{E_{\text{max}}}{E_{\text{min}}}$) des MOFs flexibles étudiées et des deux MOFs rigides prises pour comparaison. L’anisotropie du module de Young des MOFs flexibles est très élevée, $A_E = 444$ pour la MIL-53(Ga), alors qu’elle n’est que de l’ordre de l’unité pour les MOFs rigides. De plus, selon les directions "molles" des MOFs flexibles le module de Young prend des valeurs très faibles et inférieures à 1 GPa tandis qu’elles sont comprises entre 1 et 10 GPa pour les MOFs rigides et les zéolithes. L’analyse du module de Young, nous a permis de proposer que la présence de directions de faible module de Young et la forte anisotropie de ce module sont des signatures élastiques caractéristiques de la flexibilité structurale des Soft Porous Crystals.
Figure 3.12 : Représentation 3D du module de Young des MOFs flexibles. En haut : la MIL-47(V) et la MIL-53(Ga) respectivement à gauche et à droite. Au milieu : la DMOF-1(sq) et la DMOF-1(loz) respectivement à gauche et à droite. En bas : la MOF-5 à gauche et la ZIF-8 à droite. Les axes sont gradués en GPa.
3.3 — La signature élastique de la flexibilité structurale

<table>
<thead>
<tr>
<th>module de cisaillement</th>
<th>(G_{\text{min}}) (GPa)</th>
<th>(G_{\text{max}}) (GPa)</th>
<th>(A_G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>0.35</td>
<td>39.5</td>
<td>112</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>0.08</td>
<td>21.7</td>
<td>270</td>
</tr>
<tr>
<td>MIL-47</td>
<td>0.29</td>
<td>50.8</td>
<td>175</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>0.16</td>
<td>16.4</td>
<td>102</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>0.11</td>
<td>18.4</td>
<td>165</td>
</tr>
<tr>
<td>MOF-5</td>
<td>3.4</td>
<td>7.5</td>
<td>2.2</td>
</tr>
<tr>
<td>ZIF-8</td>
<td>0.94</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Tableau 3.5 : Valeurs minimales, maximales et anisotropie du module de cisaillement des MOFs étudiées.

3.3.4 Le module de cisaillement

Ensuite, j’ai analysé le module de cisaillement noté \(G(u,v) \) des MOFs étudiées. La visualisation en 3D est plus difficile que celle du module de Young car il dépend non plus d’un vecteur unitaire mais de deux. J’ai donc caractérisé le module de cisaillement à partir de ses valeurs minimale et maximale (tableau 3.5). On retrouve à nouveau une grande anisotropie de ce module élastique pour les matériaux flexibles (\(A_G = 112 \) pour la MIL-53(Al)-lp) alors que celle des MOFs rigides est beaucoup plus faible (\(A_G = 1.4 \) pour la ZIF-8). La structure flexible des *Soft Porous Crystals* présente donc également des modes de déformation mous par cisaillement. La figure 3.13 présente donc également des modes de déformation mous par cisaillement. La figure 3.13 présente la représentation graphique du module de cisaillement \((G_{\text{min}} \text{ et } G_{\text{max}}) \) de la MIL-53(Al)-lp. Les directions de faible rigidité aux contraintes de cisaillement des matériaux flexibles correspondent aux mouvements selon les ligands organiques et dans le plan perpendiculaire aux canaux (figure 3.14). Ces directions mécaniquement peu résistantes correspondent en effet, aux modes de déformation impliqués dans la respiration de ces matériaux. La présence de directions "molles" ainsi que la grande anisotropie des matériaux flexibles soumis à une contrainte de cisaillement sont donc des signes de la flexibilité structurale.

![Figure 3.13](image1.png)

Figure 3.13 : Représentation 3D du module de cisaillement de la MIL-53(Al)-lp. Les modules de cisaillement minimal et maximal sont respectivement représentés à droite et à gauche. Les axes sont gradués en GPa.

Cette étude du module de cisaillement des matériaux de la famille MIL-53 apporte également une justification supplémentaire du mécanisme de déformation structurale à l’échelle du cristal proposé par Carles Triguero (post-doctorant au sein de l’équipe en collaboration avec Alexander...
3.3 — La signature élastique de la flexibilité structurale

La première étape du mécanisme de déformation à l’origine de la transformation structurale implique la transition d’un plan entier de mailles du monocristal par cisaillement, qui entraîne ensuite le basculement des autres plans cristallins (figure 3.15). La coexistence des deux structures métastables du matériau (np et lp) au sein d’un même cristal et au cours de la transition structurale, notamment induite par l’adsorption, a également été observée par simulation moléculaire.[162] Ce modèle considère que la chaîne inorganique et le ligand organique sont rigides et donc indéformables, et que seul l’angle d’ouverture \(\theta \) du pore varie au cours de la transition structurale. L’étude des tenseurs élastiques des MOFs flexibles, et notamment ceux des matériaux de la famille MIL-53, à travers l’analyse des modules de Young et de cisaillement, a permis de montrer que ce mode de déformation est bien le plus mou du matériau (correspondant à \(G_{\text{min}} \)).

3.3.5 La compressibilité linéaire

La compressibilité linéaire \(\beta \) caractérise la déformation du matériau dans chaque direction de l’espace lors de l’application d’une compression mécanique isotrope. Les valeurs selon les axes cristallographiques de la compressibilité linéaire des MOFs étudiées sont données dans le tableau 3.6. Les représentations 3D de la compressibilité linéaire de la MIL-53(Al)-lp, de la DMOF-1(loz) et de la DMOF-1(sq) sont présentées sur la figure 3.16. Les MOFs rigides ZIF-8 et MOF-5 présentent, en raison de leur symétrie cubique, une compressibilité linéaire positive et isotrope \((\beta_u = \frac{1}{C_{11} + 2C_{12}}) \). Sous l’effet de la contrainte mécanique, le matériau se contracte de manière similaire dans toutes les directions. Contrairement à la plupart des matériaux qui, sous l’effet d’une compression isostatique, se contractent dans toutes les directions, les Soft Porous Crystals présentent une grande anisotropie. La déformation de la structure est alors différente.
3.3 — La signature élastique de la flexibilité structurale

Compressibilité linéaire

<table>
<thead>
<tr>
<th>Matériau</th>
<th>β_x (TPa$^{-1}$)</th>
<th>β_y (TPa$^{-1}$)</th>
<th>β_z (TPa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>-257</td>
<td>11</td>
<td>445</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>-1441</td>
<td>-98</td>
<td>3680</td>
</tr>
<tr>
<td>MIL-47</td>
<td>22</td>
<td>-201</td>
<td>283</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>-623</td>
<td>23</td>
<td>1158</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>23</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>MOF-5</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ZIF-8</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Tableau 3.6 : Compressibilité linéaire des MOFs étudiées.

Figure 3.16 : Représentation tridimensionnelle de la compressibilité linéaire de la MIL-53(Al)-lp (à gauche), DMOF-1-loz (au milieu) et DMOF-1-sq (à droite). Les valeurs positives et négatives sont respectivement représentées en vert et rouge. La longueur des axes des deux figures de gauche est de 1500 TPa$^{-1}$, et pour la figure de droite de 30 TPa$^{-1}$.

selon la direction.

On voit également que la compressibilité linéaire peut prendre des valeurs positives ou négatives selon les axes cristallographiques. La compressibilité linéaire négative (Negative Linear Compressibility, NLC) est une propriété plutôt rare mais recherchée des matériaux pour des applications comme capteurs de pression, actuateurs (switch moléculaires) ou dans le développement de muscles artificiels.[163] De manière indépendante, Ogborn et al. avaient prédit que les matériaux de la famille MIL-53, de par leur structure, devait présenter une compressibilité positive et négative fortement anisotrope.[164] C’est par exemple le cas de la MIL-53(Al)-lp, dont la compressibilité linéaire présente des lobes positifs selon les axes z et y et un lobe négatif selon l’axe x (figure 3.16, à gauche). La pression isostatique exercée sur la structure de la MIL-53(Al)-lp induit une contraction globale du matériau (le volume diminue) avec une expansion selon une direction spécifique. La chaîne inorganique, selon l’axe y, est très peu compressible comme nous l’a révélé l’analyse de son module de Young, ce qui explique la très faible déformation du matériau selon cette direction avec $\beta_y = +11$ TPa$^{-1}$. Le mode de déformation à l’origine du phénomène de respiration du matériau implique une contraction selon l’axe z et donc une valeur positive de la compressibilité linéaire selon cette direction ($\beta_z = +445$ TPa$^{-1}$) et une expansion simultanée selon l’axe x induisant une compressibilité linéaire négative ($\beta_x = -257$ TPa$^{-1}$). Les autres MOFs flexibles étudiées présentent le même comportement, à l’exception de la DMOF-1(sq). Du fait de la symétrie de ce matériau dans le plan perpendiculaire à l’axe du canal, la pression isostatique appliquée sur la structure empêche la respiration du matériau. Il en résulte alors une compressibilité linéaire positive dans toutes les directions avec une lé-
3.3 — La signature élastique de la flexibilité structurale

<table>
<thead>
<tr>
<th>Matériau</th>
<th>ν_{min}</th>
<th>ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>-2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>-6.2</td>
<td>2.9</td>
</tr>
<tr>
<td>MIL-47</td>
<td>-1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>-0.4</td>
<td>3.2</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MOF-5</td>
<td>0.03</td>
<td>0.67</td>
</tr>
<tr>
<td>ZIF-8</td>
<td>0.33</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Tableau 3.7 : Valeurs minimales et maximales du module de Poisson des MOFs étudiées.

gère asymétrie entre l’axe du canal x ($\beta_x = +23$ TPa$^{-1}$) et les directions y et z dans le plan perpendiculaire ($\beta_y = \beta_z = +12$ TPa$^{-1}$).

L’analyse de la compressibilité linéaire nous a permis de montrer que la présence de valeurs négatives (NLC) selon certaines directions est un indicateur élastique de la flexibilité structurale. Néanmoins, pour des raisons de symétrie, certains matériaux, bien que flexibles, ne présentent pas de compressibilité linéaire négative. Les valeurs de compressibilité linéaire négative obtenues pour les matériaux de la famille MIL-53 ($\beta_x = -1441$ TPa$^{-1}$ pour la MIL-53(Ga)-lp) sont plusieurs ordres de grandeur supérieurs à celles observées pour les structures inorganiques denses, où le record actuel est de -75 TPa$^{-1}$ pour $\text{Ag}_3[\text{Co(CN)}_6]$. Depuis les prédictions de notre étude, des travaux expérimentaux ont très récemment confirmé l’existence de la compressibilité linéaire négative des matériaux de la famille MIL-53 : la MIL-53(Al) et une variante fonctionalisée avec un groupe NH$_2$, la NH$_2$-MIL-53(Al).[166]

3.3.6 Ratio de Poisson

Le ratio de Poisson ν caractérise la déformation du matériau dans une direction perpendiculaire à la direction d’application de la contrainte mécanique. Ce module élastique, tout comme le module de cisaillement, est fonction de deux vecteurs unitaires orthogonaux entre eux, u et v.

On s’intéresse alors aux valeurs minimales et maximales de ce module élastique repertoriées dans le tableau 3.7. Le ratio de Poisson des MOFs flexibles prend des valeurs négatives selon certaines directions qui correspondent au mode de déformation impliqué dans le phénomène de respiration du matériau. En effet, lorsque l’on comprime selon l’axe z ($i.e.$ la petite diagonale du losange), la direction perpendiculaire qui correspond alors à l’axe x ($i.e.$ la grande diagonale) s’allonge. Les MOFs rigides considérées présentent quant à elles des valeurs du ratio de Poisson uniquement positives. À travers l’analyse de ce module, on retrouve la signature élastique spécifique de la flexibilité des *Soft Porous Crystals*.

3.3.7 Module d’élasticité isostatique

Le module d’élasticité isostatique (*bulk modulus*) permet de caractériser de manière volumique la résistance mécanique du matériau sous compression isostatique. Expérimentalement, le volume du matériau est mesuré en fonction de la pression mécanique exercée sur le matériau. Ensuite, cette courbe peut être ajustée par une équation d’état (par exemple celle de Birch-Murnaghan) afin de déterminer la valeur du module *bulk* du matériau. Le module d’élasticité isostatique des deux phases de la MIL-53(Cr) a été estimé à partir des résultats de porosimétrie au mercure.[116]
Tableau 3.8 : Valeurs du module bulk de quelques MOFs. \(^a\) valeurs obtenues expérimentalement et \(^b\) valeurs calculées par simulation.

En effet, le mercure étant un fluide non-pénétrant, il exerce une pression hydrostatique sur les particules du matériau. Pour une pression comprise entre 10 MPa et 35 MPa, on observe une compression réversible de la phase lp du matériau dans le domaine élastique. À partir de la pente de la courbe d’intrusion, il est possible d’estimer le module d’élasticité isostatique de la phase lp du matériau noté \(K_{lp}\) :

\[
K = V_0 \frac{\partial P}{\partial V}
\]

Ces mesures présentent néanmoins une grande incertitude, car elles sont menées sur une poudre et non pas sur un cristal unique. Pour la MIL-53(Cr), le module d’élasticité isostatique de la phase lp est de l’ordre de 2 GPa, ce qui est en bon accord avec les valeurs reportées dans la littérature pour d’autres MOFs (tableau 3.8). De la même manière, le module bulk de la phase np, \(K_{np}\), est estimé à 10 GPa, ce qui est plus grand que la phase lp. En effet, cette phase du matériau est moins compressible car plus dense que la phase lp. Par ailleurs, on remarque que d’autres MOFs telles que l’UiO-66 et l’HKUST-1 possèdent un module bulk plus important, de l’ordre de 30 à 40 GPa, comparé à celui des autres MOFs et justifie alors la grande stabilité mécanique de ces matériaux.[167]

À partir des constantes élastiques calculées, le module bulk des MOFs flexibles étudiées peut être déterminé dans l’approximation de Voigt-Reuss-Hill (VRH) pour les matériaux polycristallins. Le schéma de Voigt basé sur la matrice élastique (suppose une déformation uniforme) définit
3.4 — Prédiction de la flexibilité structurale

<table>
<thead>
<tr>
<th>Module Bulk (K)</th>
<th>K_V</th>
<th>K_R</th>
<th>K_{VRH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-53(Al)-lp</td>
<td>40.4</td>
<td>5.0</td>
<td>22.7</td>
</tr>
<tr>
<td>MIL-53(Ga)-lp</td>
<td>38.4</td>
<td>0.5</td>
<td>19.4</td>
</tr>
<tr>
<td>MIL-47</td>
<td>30.8</td>
<td>9.6</td>
<td>20.2</td>
</tr>
<tr>
<td>DMOF-1 loz</td>
<td>22.3</td>
<td>1.8</td>
<td>12.2</td>
</tr>
<tr>
<td>DMOF-1 sq</td>
<td>22.7</td>
<td>21.3</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Tableau 3.9 : Valeurs du module bulk dans l’approximation Voigt-Reuss-Hill des MOFs flexibles étudiées.

la limite supérieure (équation 3.15), alors que le schéma de Reuss basé sur la matrice des compliances (suppose une contrainte uniforme) définit la limite inférieure (équation 3.16). La moyenne de Hill consiste en la moyenne arithmétique des deux valeurs précédentes. Elle est la plus largement utilisée dans ce domaine.

\[
K_V = \frac{A + 2B}{3}, \quad \text{avec} \quad A = \frac{C_{11} + C_{22} + C_{33}}{3} \quad \text{et} \quad B = \frac{C_{23} + C_{13} + C_{12}}{3} \quad (3.15)
\]

\[
K_R = \frac{1}{3a + 6b}, \quad \text{avec} \quad a = \frac{S_{11} + S_{22} + S_{33}}{3} \quad \text{et} \quad b = \frac{S_{23} + S_{13} + S_{12}}{3} \quad (3.16)
\]

Le tableau 3.9 présente les valeurs du module d’élasticité isostatique calculées à partir des constantes élastiques et dans l’approximation Voigt-Reuss-Hill pour les différentes MOFs étudiées. Les Soft Porous Crystals présentant une forte anisotropie élastique, les trois valeurs obtenues pour chacun des matériaux sont très différentes. La valeur du module bulk que nous obtenons pour la MIL-53(Al)-lp, $K_R = 5$ GPa, est du même ordre de grandeur que celle mesurée expérimentalement à partir d’expériences de porosimétrie de mercure effectuée sur la MIL-53(Cr)-lp ($K = 2$ GPa). La valeur obtenue est dans la bonne gamme $1 – 20$ GPa, mais compte tenu de l’anisotropie du matériau, il est difficile d’être plus précis. De plus, nous ne pouvons pas comparer directement ces deux valeurs. D’une part parce que la nature du métal est différente et, d’autre part parce que les expériences sont menées à 300 K alors que nos calculs quantiques sont effectués à 0 K, et comme l’on peut le voir dans le tableau 3.8 le module bulk diminue avec la température.

3.4 Prédiction de la flexibilité structurale

Nous nous sommes ensuite intéressés à deux autres familles de MOFs présentant, comme les matériaux de la famille MIL-53, une structure à motif en treillis (figure 3.17). Nous avons alors choisi la MIL-53(Al), la MIL-122(In) et la MIL-140A pour représenter chacune des trois familles de MOFs considérées. Si la flexibilité structurale des matériaux de la famille MIL-53 a été largement reportée dans la littérature, il n’existe aucune preuve expérimentale concernant la nature flexible de ces deux autres familles de matériaux hybrides. Elles partagent cependant certaines caractéristiques topologiques avec les matériaux de la famille MIL-53, suscitant ainsi notre curiosité. De manière à obtenir des informations sur la flexibilité de ces matériaux qui présentent une topologie structurale similaire, nous avons analysé et comparé leurs propriétés mécaniques à partir du calcul de leurs tenseurs élastiques.
3.4 — Prédiction de la flexibilité structurale

Les matériaux de la famille MIL-122(M) (M=Al, Ga ou In) sont constitués d’octaèdres métalliques MO₄(OH)$_2$ interconnectés, en configuration trans, par des groupements hydroxy formant ainsi des chaînes unidimensionnelles inorganiques infinies (figure 3.18, à droite). Les chaînes inorganiques sont reliées entre elles par des ligands organiques tétradentates 1,4,5,8-naphtalène-tétracarboxylates (figure 3.18, à gauche).[172] Les quatre groupements carboxylates du ligand organique se lient à quatre chaînes inorganiques distinctes et chaque carboxylate se coordine de manière bidentate à deux centres métalliques adjacents appartenant à la même chaîne inorga-}

Figure 3.17 : Représentation schématique des trois familles de MOFs présentant un motif en treillis.

Figure 3.18 : Structure de la MIL-122(In). Les tétraèdres métalliques d’indium sont représentés en bleu, les atomes d’oxygène en rouge, les atomes de carbone en noir. Image issue de la référence [172].

3.4.1 MIL-122(In)

Les matériaux de la famille MIL-122(M) (M=Al, Ga ou In) sont constitués d’octaèdres métalliques MO₄(OH)$_2$ interconnectés, en configuration trans, par des groupements hydroxy formant ainsi des chaînes unidimensionnelles inorganiques infinies (figure 3.18, à droite). Les chaînes inorganiques sont reliées entre elles par des ligands organiques tétradentates 1,4,5,8-naphtalène-tétracarboxylates (figure 3.18, à gauche).[172] Les quatre groupements carboxylates du ligand organique se lient à quatre chaînes inorganiques distinctes et chaque carboxylate se coordine de manière bidentate à deux centres métalliques adjacents appartenant à la même chaîne inorga-
3.4 — Prédiction de la flexibilité structurale

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-122(In) exp</td>
<td>P21/c</td>
<td>9.92</td>
<td>10.19</td>
<td>7.19</td>
<td>92.55</td>
</tr>
<tr>
<td>MIL-122(In) simul</td>
<td>P21/c</td>
<td>9.93</td>
<td>9.89</td>
<td>7.13</td>
<td>93.01</td>
</tr>
</tbody>
</table>

Tableau 3.10 : Données cristallographiques de la structure de la MIL-122(In) expérimentale et relaxée par DFT pour le calcul des constantes élastiques.

Les chaînes inorganiques dans le plan bc (figure 3.18, à droite), il est possible d’envisager une réorientation du ligand organique en présence de molécules adsorbées conduisant à l’ouverture de cet angle vers une valeur proche de 90°. Cependant, aucune transition structurale du matériau n’a été rapportée expérimentalement sous l’effet de la température ou de l’adsorption.[172] Nous nous proposons donc d’étudier les propriétés mécaniques de la MIL-122(In) afin d’apporter des éléments de réponse quant à la flexibilité de ce matériau à partir des propriétés élastiques locales.

Le tableau 3.10 répertorie les paramètres de maille et le volume de la structure expérimentale et de la structure minimisée par DFT à partir de laquelle nous avons calculé les constantes élastiques.

Le tenseur élastique calculé pour la MIL-122(In) est donné ci-dessous :

\[
C_{ij} = \begin{pmatrix}
197.9 & 49.56 & 38.59 & -18.24 \\
54.17 & 20.97 & 6.49 \\
96.35 & -2.40 & -2.94 \\
20.95 & 22.25 & 24.38
\end{pmatrix}
\] \hspace{1cm} (3.17)

Figure 3.19 : Représentation 3D du module de Young de la MIL-122(In). Les axes sont gradués en GPa.

Le module de Young directionnel de la MIL-122(In) est présenté sur la figure 3.19. On remarque l’anisotropie de ce module élastique qui présente deux directions de forte rigidité, une selon l’axe z et l’autre dans le plan xz et, une direction de plus faible résistance selon l’axe y. Cette dernière direction de plus faible rigidité correspond à la compression selon la direction perpendiculaire
3.4 — Prédiction de la flexibilité structurale

<table>
<thead>
<tr>
<th>E_{min} (GPa)</th>
<th>E_{max} (GPa)</th>
<th>A_E</th>
<th>G_{min} (GPa)</th>
<th>G_{max} (GPa)</th>
<th>A_G</th>
<th>β_z (TPa$^{-1}$)</th>
<th>β_y (TPa$^{-1}$)</th>
<th>β_x (TPa$^{-1}$)</th>
<th>ν_{min}</th>
<th>ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.3</td>
<td>160.4</td>
<td>3.8</td>
<td>12.5</td>
<td>48.1</td>
<td>3.8</td>
<td>-1.9</td>
<td>17.5</td>
<td>7.7</td>
<td>-0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Tableau 3.11 : Valeurs minimales, maximales et anisotropie des propriétés mécaniques de la MIL-122(In).

à l’axe du canal unidimensionnel qui implique alors une déformation "en accordéon" de la structure du matériau. Comme dans le cas des matériaux de la famille MIL-53, les directions de forte rigidité correspondent aux directions selon la chaîne inorganique z et selon les ligands organiques naphtalènes (plan xz). Cependant, l’analyse quantitative des valeurs minimales et maximales de ce module de Young présentées dans le tableau 3.11 révèle que la valeur de l’anisotropie de ce module ($A_E = 3.8$) est similaire à celle des MOFs considérées comme rigides, et de deux ordres de grandeur inférieure à celle des matériaux de la famille MIL-53. De plus, la valeur minimale du module de Young est de 42.3 GPa, soit équivalente aux valeurs maximales prises par ce module dans le cas des MOFs flexibles. Cela signifie donc que la direction de plus faible résistance à la compression de ce matériau n’est pas une direction "molle". De même, l’anisotropie du module de cisaillement est faible ($A_G = 3.8$) et la valeur minimale élevée de ce module (12.5 GPa) indique qu’il n’y a pas vraiment de direction de faible résistance aux contraintes de cisaillement.

En conclusion, on remarque que certaines propriétés mécaniques sont clairement liées à la topologie du matériau à motif treillis que l’on retrouve dans les matériaux de la famille MIL-53 : la compressibilité linéaire et le ratio de Poisson prennent des valeurs négatives. On note néanmoins que l’amplitude de variation de ces deux modules élastiques est nettement plus faible que celle des matériaux flexibles, la compressibilité linéaire varie de -1.9 TPa$^{-1}$ à 17.5 TPa$^{-1}$, et le ratio de Poisson de -0.2 à 0.7. On déduit alors de l’analyse des propriétés mécaniques de la MIL-122(In) que ce matériau ne présente pas de structure flexible et ne peut être classé parmi les SPCs. En effet, on ne retrouve pas dans ses propriétés élastiques locales les signatures élastiques caractéristiques de la flexibilité structurale.

3.4.2 MIL-140A

Les matériaux de la famille MIL-140 sont constitués de chaînes inorganiques unidimensionnelles et infinies formées par des dimères de polyèdres d’oxyde de zirconium. La double chaîne inorganique ainsi formée est plus complexe que celle des matériaux de la famille MIL-53. Chaque chaîne inorganique est alors liée à six autres chaînes par des ligands organiques dicarboxylates créant ainsi un matériau dont les pores sont triangulaires (figure 3.20). Le réseau tridimensionnel des matériaux MIL-140 présentent alors un motif treillis similaire à celui des matériaux de la famille MIL-53, mais renforcé par les ligands organiques reliant perpendiculairement les chaînes inorganiques. Le ligand organique dicarboxylate étant rigide, cette topologie ne permet pas, a priori, de suspecter de flexibilité structurale du matériau. Nous avons étudié les propriétés mécaniques de la MIL-140A dont le ligand organique est le 1,4-benzènedicarboxylate comme dans le cas de la MIL-53(Al), de manière à pouvoir comparer les résultats des deux matériaux. Le tableau 3.12 présente les paramètres cristallographiques de la MIL-140A.

La matrice élastique calculée pour ce matériau est donnée ci-dessous :
3.4 — Prédiction de la flexibilité structurale

Figure 3.20 : Structure de la MIL-140A. Les polyèdres métalliques de zirconium sont représentés en vert, les atomes d’oxygène en rouge, les atomes de carbone en noir et les atomes d’hydrogène en blanc.

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-140A exp</td>
<td>C2/c</td>
<td>24.42</td>
<td>11.18</td>
<td>7.80</td>
<td>103.86</td>
</tr>
<tr>
<td>MIL-140A simul</td>
<td>C2/c</td>
<td>24.98</td>
<td>11.24</td>
<td>7.69</td>
<td>104.95</td>
</tr>
</tbody>
</table>

Tableau 3.12 : Données cristallographiques de la structure de la MIL-140A expérimentale et relaxée par DFT pour le calcul des constantes élastiques.

\[
C_{ij} = \begin{pmatrix}
49.56 & 20.59 & 23.82 & -0.90 \\
90.52 & 14.46 & 1.96 & \\
48.04 & -0.11 & 0.69 & 0.75 \\
. & . & 4.01 & 16.69 \\
\end{pmatrix}
\]

La représentation tridimensionnelle du module de Young de la MIL-140A est présentée sur la figure 3.21. On remarque immédiatement la forte anisotropie de ce module élastique. Dans le tableau 3.13, on note qu’il existe une direction faiblement résistante à la compression \((E_{\text{min}} = 2.5 \text{ GPa})\) et une direction de forte rigidité \((E_{\text{max}} = 80.1 \text{ GPa})\). L’anisotropie résultante \((A_E = 31.8)\) est de l’ordre de grandeur de celle des MOFs flexibles étudiées précédemment. On en déduit alors que la MIL-140A présente une certaine flexibilité structurale. Cependant, en regardant plus précisément le module de Young directionnel (figure 3.21), on s’aperçoit que la forme est complètement différente de celle rencontrée dans le cas des MOFs flexibles de topologie treillis (figure 3.10). En effet, dans le plan \(xy\) perpendiculaire à la chaîne inorganique ZrO il n’existe pas de direction "molle" : la valeur minimale prise par le module de Young (dans ce plan) est de 31.3 GPa alors qu’elle est inférieure au gigapascal dans le cas de la MIL-

<table>
<thead>
<tr>
<th>(E_{\text{min}}) (GPa)</th>
<th>(E_{\text{max}}) (GPa)</th>
<th>(A_E) (GPa)</th>
<th>(G_{\text{min}}) (GPa)</th>
<th>(G_{\text{max}}) (GPa)</th>
<th>(A_G)</th>
<th>(\beta_x) (TPa⁻¹)</th>
<th>(\beta_y) (TPa⁻¹)</th>
<th>(\beta_z) (TPa⁻¹)</th>
<th>(\nu_{\text{min}})</th>
<th>(\nu_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>80.1</td>
<td>31.8</td>
<td>0.65</td>
<td>23.4</td>
<td>36.2</td>
<td>11.1</td>
<td>6.4</td>
<td>13.4</td>
<td>−0.7</td>
<td>1.6</td>
</tr>
</tbody>
</table>

3.4 — Prédiction de la flexibilité structurale

Figure 3.21 : En haut : représentation 3D du module de Young de la MIL-140A. En bas : projection du module de Young dans les plans xy, zx, et zy (un trait correspond à 10 GPa).

53(Al) par exemple. La direction qui correspond à la direction de plus faible résistance sous compression ($E_{\text{min}} = 2.5$ GPa) est selon le vecteur cristallographique $(0.05, -0.56, 0.83)$ i.e dans le plan yz. Le mode de déformation implique alors l’expansion selon la direction b et non pas une contraction selon a mais une contraction simultanée de la chaîne inorganique selon c comme illustré par la figure 3.22. La flexibilité structurale de ce matériau implique donc la compressibilité de la double-chaîne inorganique. Ceci est complètement différent du cas des matériaux de la famille MIL-53 où la chaîne inorganique est rigide. En effet, contrairement aux chaînes Al(OH) et VO, la chaîne ZrO contient un motif treillis et est par conséquent flexible (figure 3.23). Le module de cisaillement présente également une forte anisotropie ($A_G = 36.2$ GPa) et une direction de faible résistance aux contraintes de cisaillement ($G_{\text{min}} = 0.65$ GPa) qui implique la déformation de la chaîne inorganique. Ce matériau présente donc une résistance mécanique aux contraintes de cisaillement relativement faible, bien que légèrement plus élevée que celle des matériaux de la famille MIL-53, en raison du plus grand nombre de coordination de son centre métallique. Une étude récente a effectivement montré que l’exceptionnelle stabilité mécanique de la MOF UiO-66(Zr)[167] est liée au nombre de coordination important (12) de son centre métallique qui renforce alors la structure du matériau.[171] En effet, les valeurs minimales du module de Young et du module de cisaillement de ce matériau, respectivement $E_{\text{min}} = 40.5$ GPa et $G_{\text{min}} = 15.3$ GPa, sont très élevées et rendent donc bien compte de la grande stabilité mécanique de l’UiO-66(Zr).[170] Cet exemple me permet également de souligner
3.4 — Prédiction de la flexibilité structurale

Figure 3.22 : Représentation de la déformation uniaxiale de la structure de la MIL-140A selon le vecteur $(0.05, -0.56, 0.83)$. La structure relaxée est à gauche et la structure déformée (+15 %) à droite. En haut : selon l’axe b, les axes a et c sont respectivement horizontal et vertical. En bas : selon l’axe c, les axes a et b sont respectivement horizontal et vertical.

Le fait qu’à partir d’un même couple métal/ligand organique (Zr/1,4-benzènedicarboxylate) il est possible d’obtenir deux matériaux, dans notre cas la MIL-140A et l’UiO-66(Zr), dont les propriétés mécaniques sont très différentes.

Le changement de structure de la MIL-140A par rapport aux matériaux de la famille MIL-53 a un impact sur la compressibilité linéaire β qui est alors positive dans toutes les directions de l’espace (tableau 3.13) tandis qu’elle présentait des lobes négatifs dans le cas de matériaux à motif treillis (MIL-53(Al) par exemple). On peut attribuer cette différence au plus grand nombre de coordination de la chaîne inorganique qui est de six dans le cas de la MIL-140A au lieu de quatre pour les matériaux tels que la MIL-53(Al) et la MIL-122(In). Cependant, la MIL-140A présente des directions selon lesquelles le ratio de Poisson est négatif. Ces directions correspondent en effet aux directions “molles” du module de Young et donc à celles impliquées dans le mode de déformation présenté sur la figure 3.22. L’analyse des propriétés mécaniques de la MIL-140A nous a permis de mettre en évidence la flexibilité structurale inattendue de ce matériau. La nature flexible de ce matériau trouve alors son origine dans la flexibilité de la chaîne inorganique qui présente une structure à motif treillis.
Figure 3.23 : Représentation de la chaîne inorganique de la MIL-53(Al) (en haut, la chaîne est selon l’axe b) et de la MIL-140A (en bas, la chaîne est selon l’axe c). Les atomes de Al et de Zr sont respectivement en violet et en vert. Les atomes d’oxygène sont représentés en rouge et en orange (atomes des ligands organiques) et les atomes d’hydrogène sont en blanc.
3.4.3 Critère simple : analyse des valeurs propres de la matrice élastique

L’énergie élastique du système pour une déformation donnée \(\varepsilon \), \(E(\varepsilon) \), s’exprime de la manière suivante :

\[
E(\varepsilon) = \frac{1}{2} \varepsilon : C : \varepsilon = \frac{1}{2} \sum_{ijkl} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl}
\]

(3.19)

Les conditions de stabilité de Born pour le cristal relaxé requièrent que l’énergie soit positive, \(\varepsilon \neq 0 \Rightarrow E(\varepsilon) > 0 \). Cette forme quadratique est définie positive si, et seulement si, les valeurs propres de la matrice élastique \(C \) sont toutes positives. Ainsi, il est possible de définir le mode de déformation le plus mou comme la déformation \(\varepsilon_0 \) qui minimise l’énergie :

\[
\min_{\|\varepsilon\|=1} \left(\sum_{ijkl} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} \right)
\]

(3.20)

Ce mode de déformation est selon le vecteur propre de \(C \) correspondant à la plus faible valeur propre. Ainsi, l’existence de modes de déformation mou impliquant la flexibilité structurale du matériau est corrélée à la présence de valeurs propres faibles. Le vecteur propre associé indique la nature de ce mode de déformation et la direction (composantes normale et de cisaillement). Le tableau 3.14 présente les valeurs propres des différentes MOFs, rigides et flexibles, étudiées. On remarque que toutes les MOFs présentant une flexibilité structurale possèdent une valeur propre de la matrice élastique inférieure à 1 GPa. L’analyse des valeurs propres de la matrice élastique \(C \) d’un matériau est donc un bon critère pour déterminer si ce matériau présente une structure flexible.

3.5 Au-delà du domaine élastique

Jusqu’à présent nous avons uniquement considéré des déformations structurales de faible amplitude de manière à rester dans le régime élastique du matériau. Cependant, la transition structurale des Soft Porous Crystals vers une autre phase du matériau implique des déformations de plus large amplitude (40% en volume) et marque alors la limite du régime élastique linéaire du solide. De plus, Neimark et al. ont mis en évidence que le phénomène de respiration caractéristique des matériaux de la famille MIL-53, induit par l’adsorption de molécules peut être vu comme la réponse mécanique du matériau à la contrainte mécanique exercée par le
fluide adsorbé sur la charpente du matériau.[117] Dans cette partie, nous nous proposons donc d’étudier le comportement mécanique des deux matériaux, la CAU-13 et la NOTT-300, au-delà de leur domaine élastique, en appliquant des contraintes mécaniques (*i.e.* pression mécanique) de grande intensité de manière à prédire et caractériser la nature flexible de leur structure et l’occurrence de transitions structurales. Ces deux MOFs, dont la flexibilité structurale n’a pas encore été démontrée expérimentalement, présentent toutes deux une topologie de type treillis.

3.5.1 CAU-13

La CAU-13 est formée par des chaînes inorganiques Al(OH) reliées entre elles par des ligands organiques *trans*-cyclohexanedicarboxylate.[173] Il existe deux conformations possibles pour le ligand organique comme illustré par la figure 3.24. La structure tridimensionnelle de cette MOF est similaire à celle des matériaux de la famille MIL-53 et présente donc un motif en treillis (figure 3.25). Avant activation, le matériau contient deux molécules d’eau par pore comme les matériaux de la famille MIL-53. De plus, la caractérisation du matériau par adsorption de N\(_2\) à 77 K a mis en évidence la nature microporeuse de la structure. Cependant, aucune preuve expérimentale de la flexibilité structurale de ce matériau n’a été reportée dans la littérature.

![Figure 3.24 : Représentation des deux conformations du ligand organique.](image)

Figure 3.24 : Représentation des deux conformations du ligand organique.

![Figure 3.25 : Représentation de la structure de la CAU-13.](image)

Figure 3.25 : Représentation de la structure de la CAU-13. Les polyèdres métalliques sont représentés en bleu, les atomes d’oxygène en rouge, et ceux d’hydrogène en blanc. Les atomes de carbone du ligand a,a-CDC et e,e-CDC sont respectivement colorés en noir et marron.
3.5 — Au-delà du domaine élastique

<table>
<thead>
<tr>
<th>Symétrie</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α (°)</th>
<th>β (°)</th>
<th>γ (°)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU-13 exp</td>
<td>PT</td>
<td>6.62</td>
<td>9.43</td>
<td>9.46</td>
<td>107.58</td>
<td>107.73</td>
<td>93.21</td>
</tr>
<tr>
<td>CAU-13 simul</td>
<td>PT</td>
<td>6.65</td>
<td>8.55</td>
<td>9.23</td>
<td>102.06</td>
<td>108.79</td>
<td>92.11</td>
</tr>
</tbody>
</table>

Tableau 3.15 : Données cristallographiques de la structure de la CAU-13 expérimentale et relaxée par DFT pour le calcul des constantes élastiques.

<table>
<thead>
<tr>
<th>Eₘᵢᵢₙ</th>
<th>Eₘₐₓ</th>
<th>A_E</th>
<th>Gₘᵢᵢₙ</th>
<th>Gₘₐₓ</th>
<th>A_G</th>
<th>βₓ</th>
<th>βᵧ</th>
<th>βᵢ</th>
<th>νₘᵢᵢₙ</th>
<th>νₘₐₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.23</td>
<td>140.12</td>
<td>5.6</td>
<td>1.98</td>
<td>50.55</td>
<td>25.5</td>
<td>-2.0</td>
<td>162.1</td>
<td>-31.8</td>
<td>-1.48</td>
<td>3.07</td>
</tr>
</tbody>
</table>

Tout d’abord, nous avons étudié les propriétés mécaniques de la CAU-13 déshydratée dans son régime élastique. La structure expérimentale contient des molécules d’eau, avant de relaxer la structure par calculs DFT j’ai retiré ces molécules d’eau. La déshydratation du matériau implique une diminution du volume, ce qui explique la différence entre la valeur du volume de la structure expérimentale (529.08 Å³) et celle de la structure relaxée (482.30 Å³). Une fois la structure relaxée (tableau 3.15), j’ai calculé les constantes élastiques du matériau. La matrice élastique symétrique contient 21 coefficients (structure monoclinique) et elle est donnée ci-dessous :

\[
C = \begin{pmatrix}
103.29 & 13.89 & 23.55 & 4.22 & 1.46 & 0.85 \\
24.93 & 38.57 & 17.49 & 0.50 & 7.31 \\
114.94 & 34.82 & -1.05 & -2.44 \\
32.85 & 3.20 & 0.50 \\
13.20 & 1.61 \\
0.53
\end{pmatrix}
\] (3.21)

Le tableau 3.16 présente les valeurs des modules élastiques de la CAU-13. Je ne présenterai pas en détail l’analyse tensorielle des propriétés mécaniques de ce matériau et les conclusions sur la nature flexible de ce matériau seront basées sur les caractéristiques élastiques communes aux MOFs flexibles identifiées lors de l’étude précédente. On retrouve dans le comportement mécanique de la CAU-13 la signature élastique des Soft Porous Crystals, une forte anisotropie des propriétés mécaniques, notamment du module de cisaillement (A_G = 25.5) et l’existence de modes de déformation mous (i.e. faible valeur du module élastique). Comme pour les matériaux de la famille MIL-53, le mode de déformation le plus mou correspond à une déformation sous l’effet d’une contrainte de cisaillement (Gₘᵢᵢₙ = 2 GPa). La CAU-13 présente également une large compressibilité linéaire négative, qui comme nous l’avons vu est liée à la topologie de type treillis du matériau. Le comportement mécanique de la CAU-13 dans son domaine élastique est donc caractéristique d’un matériau flexible présentant un phénomène de respiration sous l’effet de la pression mécanique ou de l’adsorption.

De manière à renforcer notre prédiction quant à la flexibilité structurale de la CAU-13, nous avons voulu aller au-delà du domaine élastique et décrire le comportement mécanique de ce...
matériaux soumis à une contrainte mécanique de plus large amplitude. Deux stimuli principaux peuvent être utilisés pour induire une telle transition structurale du matériau : la pression mécanique ou l’adsorption. Les simulations d’adsorption dans l’ensemble osmotique par des calculs ab initio étant trop coûteuses et ne disposant pas d’un champ de force adapté à la description de ce matériau, nous avons choisi une méthode alternative. Nous avons alors simulé la contrainte exercée sur la charpente du matériau soumis à une pression mécanique extérieure en appliquant in silico (dans des calculs de type chimie quantique) une pression positive sur le matériau. La contrainte mécanique exercée sur le matériau par l’adsorbat au cours d’un phénomène d’adsorption a été simulée par l’application d’une pression négative (tension) sur la charpente extérieure du matériau (i.e. pression positive exercée à l’intérieur du pore par la molécule adsorbée). Pour chaque valeur de la pression appliquée, la structure d’enthalpie minimale est calculée par DFT. La figure 3.26 présente l’évolution du volume et des paramètres de maille de la CAU-13 dans la gamme de pression allant de -5 GPa à $+2 \text{ GPa}$. On observe alors une marche entre -0.5 et -1 GPa et une boucle d’hystérèse caractéristique d’une transition structurale induite par la pression mécanique assimilée à l’adsorption de molécules. En effet, les transitions structurales des Soft Porous Crystals au cours de l’adsorption se traduisent par l’observation d’isotherme d’adsorption à marche de type V présentant une hystérèse marquée.[174, 175, 176] Cette transition structurale correspond à une augmentation de près de 43% du volume de la maille unitaire, ce qui est du même ordre de grandeur que la MIL-53(Al). La transition structurale implique principalement une elongation selon l’axe cristallographique b et correspond au "redressement" du ligand a,a-CDC entre deux chaînes Al(OH) comme représenté en la figure 3.27. La structure large pore ainsi obtenue sous pression négative (i.e. tension mécanique) est plus symétrique, groupe d’espace $I2/m$, que la structure narrow pore (groupe d’espace $P1$) et possède également un volume de pore plus grand (tableau 3.17). On observe exactement le même phénomène pour la MIL-53(Al), à basse température (inférieure à 200 K) et en l’absence de molécules adsorbées : la phase narrow pore de plus basse symétrie est la plus stable thermodynamiquement.[174]
le cas de l’intrusion) et la pression mécanique (\textit{i.e.} pression hydrostatique). Ainsi, au cours de l’adsorption de gaz dans une gamme de pression raisonnable (quelques bars), la contrainte mécanique exercée sur la charpente du matériau est beaucoup plus importante. Typiquement, les contraintes mécaniques induites par l’adsorption sont de l’ordre de quelques centaines de MPa pour la contraction du matériau, et de l’ordre du GPa pour l’expansion (à saturation du matériau).[177, 178]

![Figure 3.27 : Structure narrow pore de la CAU-13 à \(P = 0 \) GPa (à gauche) et structure large pore de la CAU-13 obtenue sous pression mécanique \(P = -1 \) GPa (à droite). Sous chaque structure, le ligand \(a,a \)-CDB est représenté.]

<table>
<thead>
<tr>
<th></th>
<th>Narrow pore</th>
<th>Large pore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation 0 GPa</td>
<td>6.646 Å</td>
<td>13.442 Å</td>
</tr>
<tr>
<td>Tension isotrope</td>
<td>8.550 Å</td>
<td>6.715 Å</td>
</tr>
<tr>
<td>c</td>
<td>9.226 Å</td>
<td>15.411 Å</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>102.06°</td>
<td>90°</td>
</tr>
<tr>
<td>(\beta)</td>
<td>108.79°</td>
<td>95.98°</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>92.11°</td>
<td>90°</td>
</tr>
<tr>
<td>Groupe d’espace</td>
<td>(P1)</td>
<td>(I2/m)</td>
</tr>
<tr>
<td>Volume de maille</td>
<td>482.3 Å(^3)</td>
<td>1383.5 Å(^3)</td>
</tr>
<tr>
<td>Volume poreux</td>
<td>70.5 Å(^3)</td>
<td>485.2 Å(^3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Narrow pore</th>
<th>Large pore</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70.5 Å(^3)</td>
<td>485.2 Å(^3)</td>
</tr>
</tbody>
</table>

Tableau 3.17 : Paramètres de maille des deux structures de la CAU-13 obtenues par calculs quantiques.

Ces résultats nous permettent donc de prédire que la CAU-13 peut présenter, sous l’effet de la pression mécanique ou de l’adsorption de molécules un phénomène de respiration. Depuis notre étude, la transition structurale de la CAU-13 a été observée expérimentalement sous l’adsorption de molécules de xylènes et présente un volume proche de celui prédit par nos calculs. Cependant, la structure contenant les molécules de xylènes n’a pas encore été complètement résolue, de sorte
qu’une comparaison plus poussée n’est pas, pour l’instant, possible.[179, 180]

3.5.2 NOTT-300

La NOTT-300 est constituée de chaînes inorganiques infinies Al(OH) reliées entre elles par le ligand organique biphenyl-3,3’5,5’-tétracarboxylate (figure 3.28).[181] Le tableau 3.18 présente les données cristallographiques de la NOTT-300. L’octaèdre d’aluminium est formé par six atomes d’oxygène, quatre provenant des ligands tétracarboxylates et deux des groupements pontants cis-μ₂-OH (figure 3.29). La structure tridimensionnelle de la NOTT-300, constituée de canaux unidimensionnels, est similaire à celle des matériaux flexibles de la famille MIL-53. Yang et al. n’ont cependant pas observé de changement structural lors de l’activation du matériau ni sous adsorption et variation de la température.[181] Ils ont alors attribué la rigidité de la structure à la configuration cis des groupements pontants hydroxylation car les matériaux de la famille MIL-53 présentent des groupements hydroxyl en configuration trans.

Figure 3.28 : Représentation du ligand organique de la NOTT-300.

Figure 3.29 : Représentation de la structure de la NOTT-300 (à gauche). Les octaèdres d’aluminium sont représentés en bleu, les atomes d’oxygène en rouge, les atomes d’hydrogène en blanc et les atomes de carbone en noir. À droite : représentation de la chaîne inorganique, les atomes d’oxygène du ligand tétracarboxylate sont représentés en rouge, les atomes d’oxygène du groupement cis-μ₂-OH sont colorés en orange.
Tableau 3.18 : Données cristallographiques de la structure de la NOTT-300 expérimentale et relaxée par DFT pour le calcul des constantes élastiques.

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTT-300 exp</td>
<td>14.82</td>
<td>14.82</td>
<td>11.81</td>
<td>1297.21</td>
</tr>
<tr>
<td>NOTT-300 simul</td>
<td>14.84</td>
<td>14.84</td>
<td>11.88</td>
<td>2616.53</td>
</tr>
</tbody>
</table>

Figure 3.30 : Évolution du volume de la NOTT-300 (en haut) et des paramètres de maille a, b et c en fonction de la contrainte mécanique de cisaillement.

La matrice élastique de la NOTT-300 est donnée ci-dessous :

$$C = \begin{pmatrix}
49.34 & 47.71 & 25.64 \\
. & 49.34 & 25.64 \\
. & . & 133.60 \\
\end{pmatrix} \quad (3.22)$$

Le tableau 3.19 répertorie les propriétés mécaniques du matériau dans son domaine élastique. On remarque que les signes caractéristiques de la flexibilité du matériau sont clairement visibles dans son comportement mécanique. On note en particulier une direction de très faible module de cisaillement, $G_{\text{min}} = 0.8$ GPa, indiquant qu’une transition structurale du matériau peut être observée sous l’effet d’une contrainte de cisaillement dans cette direction. De manière à confirmer l’existence de deux phases du matériau, nous avons soumis le matériau à une contrainte de cisaillement dans la direction $(1 -1 0)$ et étudié la réponse structurale du matériau. L’évolution du volume et des paramètres de maille de la NOTT-300 en fonction de la contrainte mécanique de cisaillement est présentée sur la figure 3.30. On observe une déformation continue et réversible.
Tableau 3.19 : Valeurs minimales, maximales et anisotropie des propriétés mécaniques de la NOTT-300.

<table>
<thead>
<tr>
<th>E\text{min} (GPa)</th>
<th>E\text{max} (GPa)</th>
<th>A_E (GPa)</th>
<th>G\text{min} (GPa)</th>
<th>G\text{max} (GPa)</th>
<th>A_G (TPa^-1)</th>
<th>\beta_x = \beta_y (TPa^-1)</th>
<th>\beta_z (TPa^-1)</th>
<th>\nu\text{min}</th>
<th>\nu\text{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.19</td>
<td>120.06</td>
<td>37.7</td>
<td>0.8</td>
<td>32.55</td>
<td>40.09</td>
<td>9.3</td>
<td>3.9</td>
<td>-1.99</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Tableau 3.20 : Paramètres de maille des deux structures de la NOTT-300 obtenues par calculs quantiques.

<table>
<thead>
<tr>
<th>Narrow pore</th>
<th>Large pore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation</td>
<td>Contrainte de cisaillement</td>
</tr>
<tr>
<td>0 GPa</td>
<td>1 GPa</td>
</tr>
<tr>
<td>Groupe d’espace</td>
<td>I\text{4}_{\text{1}}2\text{2}</td>
</tr>
<tr>
<td>a</td>
<td>14.839 Å</td>
</tr>
<tr>
<td>b</td>
<td>14.839 Å</td>
</tr>
<tr>
<td>c</td>
<td>11.882 Å</td>
</tr>
<tr>
<td>\alpha = \beta = \gamma</td>
<td>90°</td>
</tr>
<tr>
<td>Volume de maille</td>
<td>2616.5 Å³</td>
</tr>
<tr>
<td>Volume poreux</td>
<td>1183.4Å³ (45%)</td>
</tr>
</tbody>
</table>

Figure 3.31 : Représentation de la structure narrow pore de la NOTT-300 obtenue sous contrainte de cisaillement d’une valeur de 1 GPa.

du matériau. Pour des contraintes d’intensité inférieure à 1 GPa, la compression continue du matériau implique une contraction selon l’axe a et une extension simultanée selon l’axe b. Cette déformation correspond en effet au phénomène de respiration du matériau. Par ailleurs, on n’observe pas de déformation de la chaîne inorganique (selon l’axe c), ce qui confirme sa nature peu compressible. Pour une contrainte de cisaillement supérieure à 1 GPa, les paramètres de maille et le volume du matériau se stabilisent vers une structure fermée, dite narrow pore, présentée sur la figure 3.31. Le tableau 3.20 présente les paramètres cristallographiques des deux structures convergées de la NOTT-300. Cette étude nous permet donc de mettre en évidence la flexibilité structurale de la NOTT-300 qui, malgré la différence de connectivité de la chaîne inorganique (cis-\mu_2-OH vs trans-\mu_2-OH), est similaire à celle des matériaux de la famille MIL-53.

Est-ce que cette transition structurale du matériau peut être également induite par une com-
pression isostatique ? Pour répondre à cette question nous avons effectué des calculs de dynamique moléculaire "premiers principes" à 300 K, car les calculs de minimisation par DFT (0 K) ne permettent pas de briser la symétrie quadratique du système sous une contrainte isostatique. Les résultats des simulations de dynamique moléculaire effectuées pour différentes valeurs de pression de 0 à 1 GPa sont présentés sur la figure 3.32. On observe alors une rupture de la symétrie du matériau engendrée par des fluctuations thermiques conduisant alors à une transition structurale spontanée du matériau soumis à une pression isostatique supérieure ou égale à 700 MPa vers une structure narrow pore. Cette transition structurale est réversible : on observe la ré-ouverture du matériau si on relâche la contrainte mécanique extérieure. On remarque par ailleurs que, pour une pression intermédiaire (500 MPa) les fluctuations du volume deviennent de plus en plus grandes, indiquant la nature flexible du matériau et l’approche d’une transition structurale (qui se produirait d’ailleurs peut-être avec un temps de simulation plus long). La NOTT-300 peut donc sous l’effet d’une contrainte mécanique purement isotropique présenter un phénomène de respiration.

![Figure 3.32](image-url)

Figure 3.32 : Évolution du volume de la maille unitaire de la NOTT-300 en fonction du temps de simulation au cours d’une simulation de dynamique moléculaire "premiers principes" à 300 K pour différentes valeurs de pression.

Cependant, la valeur de la compression mécanique nécessaire pour observer la fermeture du matériau, qui est de l’ordre de 500 à 700 MPa, est nettement supérieure à celle observée expérimentalement pour la MIL-53(Cr) et la MIL-47 (respectivement 55 et 137 MPa). Nous avons alors voulu savoir si la contrainte mécanique exercée sur le matériau par des molécules adsorbées dans les pores du matériau pouvait être suffisante pour entraîner la fermeture de la structure (i.e. la respiration du matériau). À partir d’une configuration contenant 11 molécules d’eau (obtenue par simulation Monte-Carlo dans l’ensemble grand canonique) nous avons effectué la relaxation de la position des atomes et des paramètres de maille de la NOTT-300_H2O. Le système converge alors vers une troisième structure intermédiaire (l’angle d’ouverture du pore est de $\theta = 74^\circ$) entre la phase ouverte ($\theta = 90^\circ$) et la phase fermée ($\theta = 54^\circ$). La figure 3.33 présente la structure intermédiaire hydratée de la NOTT-300 ($a = 12.9 \text{ Å}$, $b = 11.8 \text{ Å}$ et $c = 16.6 \text{ Å}$, les angles sont égaux à 90°). Ce comportement a déjà été observé par Llewellyn et al. sur la MIL-53(Fe) qui présente un phénomène de respiration plus complexe que celui de ses analogues, la MIL-53(Al) et la MIL-53(Cr).[182] En effet, la transition depuis la phase anhydre non-poreuse
MIL-53(Fe)$_{vnp}$ vers la phase hydratée MIL-53(Fe)$_{np}$ fait intervenir une phase intermédiaire MIL-53(Fe)$_{int}$. L’existence de cette phase intermédiaire de la NOTT-300 suggère donc que le phénomène de respiration du matériau pourrait être induit par l’adsorption, en plus de la possibilité d’une transition induite par une contrainte mécanique extérieure.

3.6 Conclusion

Cette étude nous a permis de mettre en évidence que la flexibilité structurale des Soft Porous Crystals et l’existence de transitions structurales sont liées aux propriétés élastiques locales des matériaux. Ce travail a notamment permis l’identification d’une signature élastique de la flexibilité structurale des MOFs :

— La forte anisotropie des modules élastiques (module de Young et module de cisaillement) et la présence de directions "molles" de ces modules.

— La présence de compressibilité linéaire négative pour les matériaux de topologie treillis, dans le cas où la symétrie le permet.

Nous avons également prédit la flexibilité inattendue de la MIL-140A à partir de l’analyse de la matrice élastique, et étudié le comportement mécanique de deux MOFs au-delà de leur domaine élastique afin d’obtenir des informations sur la nature flexible de leur structure et l’occurrence de transitions structurales du matériau soumis à une contrainte mécanique. Nous avons alors prédit les structures des phases métastables de ces deux matériaux, la CAU-13 et la NOTT-300. Ce travail a également permis d’apporter une justification à l’échelle microscopique des hypothèses du modèle introduit par l’équipe pour décrire, à l’échelle du cristal, le mécanisme induisant la transition structurale des matériaux de la famille MIL-53. En effet, nous avons mis en évidence que le mode de déformation par contrainte de cisaillement est le plus mou. Ce travail en lien avec les travaux antérieurs de l’équipe constitue un premier pas vers la compréhension et la rationalisation du comportement mécanique de ces matériaux hybrides flexibles.
Chapitre 4

Stabilité mécanique :
amorphisation et polymorphisme
des MOFs

Les Metal-Organic Frameworks constituent une nouvelle "génération" de matériaux nanoporeux dont les applications sont très prometteuses notamment dans le domaine de l’adsorption de gaz. Cependant, des études ont montré que la pression mécanique, l’adsorption ou la température peuvent induire une modification structurale de ces matériaux. Or, le changement dans la géométrie des pores sous l’effet de la pression ou de la température peut entraîner une dégradation des propriétés d’adsorption : capacité d’adsorption et sélectivité. De plus, certains matériaux tels que les ZIFs peuvent présenter sous l’effet de la pression ou de la température une *amorphisation* de leurs structures (*i.e.* perte de l’ordre cristallin à longue distance). Il est néanmoins possible de tirer parti de ces modificationsstructurales. Par exemple, les phases amorphes peuvent être utilisées pour piéger des molécules. Bennett *et al.* ont récemment montré que des molécules de diiode peuvent être adsorbées dans des ZIFs et piégées par meulage du matériau qui conduit à une phase amorphe.[183] Ce phénomène d’amorphisation peut également être mis à profit pour la création de verre fonctionnalisé. De plus, sous l’effet de la pression ou de la température les MOFs peuvent présenter des comportements mécaniques très intéressants. Par exemple, le volume de certaines MOFs telles que la MOF-5 ou la HKUST-1, diminue en chauffant le matériau, phénomène d’expansion thermique négative (*Negative Thermal Expansion*, NTE). D’autres MOFs présentent une compressibilité linéaire négative, sous l’effet de la compression mécanique, une direction cristalline s’étend comme nous l’avons montré dans l’étude précédente. Le *polymorphisme* qui définit la capacité d’un matériau d’exister sous plusieurs phases métastables de différentes topologies, est également une propriété très intéressante. Le polymorphisme des MOFs, appelées *Soft Porous Crystals*, induit notamment par la température, la pression mécanique ou l’adsorption de fluide conduit à des changements structuraux de large amplitude. L’exemple le plus connu de polymorphisme chez les MOFs est sans doute le phénomène de respiration des matériaux de la famille MIL-53.

Dans ce chapitre, nous avons choisi d’étudier la stabilité et le comportement mécanique de trois familles de MOFs différentes. La première partie portera sur l’étude et la rationalisation du phénomène d’amorphisation de la ZIF-8. Puis, nous étudierons le comportement mécanique de deux matériaux de la famille des *Zinc Akyl Gate* sous compression. Enfin, nous nous inté-
resserons au polymorphisme du cyanure de zinc (Zn(CN)$_2$) induit par l’intrusion de fluide qui implique des transitions structurales reconstructives.

4.1 L’amorphisation des ZIFs

Bennett et al. ont étudié la stabilité en température des matériaux Zeolitic Imidazolate Framework. [185, 186] Ils ont alors montré que sous l’effet d’une augmentation de la température certaines ZIFs, Zn(im)$_2$, telles que la ZIF-4 (cag), ZIF-1 (BCT) et ZIF-3 (DFT) s’amorphisent à des températures de l’ordre de 300 °C. Cette transition irréversible entraîne la formation d’une phase amorphe appelée a-ZIF dont la structure est proche de celle des verres de silice. Si l’on continue à chauffer le matériau (T > 400°C) on observe alors une recristallisation de la phase amorphe vers une structure cristalline dense ZIF-zni. Cette structure non poreuse est le polymorph le plus stable thermodynamiquement de la famille des ZIFs.[133] La figure 4.1 représente de manière schématique le comportement de la ZIF-4 sous l’effet de la température. Ils ont également mis en évidence que les ZIFs formées par un ligand imidazolate fonctionalisé telles que la ZIF-8 (Zn(mim)$_2$, SOD), ZIF-9 (Co(bim)$_2$, SOD), ZIF-11 (Zn(bim)$_2$, RHO), et ZIF-14 (Zn(eim)$_2$, ANA) restent stables et ne présentent pas d’amorphisation sous l’effet de la température ni de transition vers la phase dense ZIF-zni.

Moggach et al. ont étudié le comportement de la ZIF-8 sous l’effet d’une compression mécanique.[187] Ils ont mis en évidence l’occurrence d’une transition de phase réversible de la ZIF-8 pour une pression de 1.47 GPa, induite par l’adsorption des molécules de méthanol dans les pores du matériau. La transition est accompagnée d’un changement de structure du matériau, qui garde une symétrie $I43m$: les ligands imidazolates se réorientent entraînant une augmentation du volume poreux (figure 4.2). Chapman et al. [168] ont reporté l’amorphisation irréversible de la ZIF-8 à 0.34 GPa sous pression hydrostatique (fluide non pénétrant). Ils ont également caractérisé partiellement la structure de la phase amorphe de la ZIF-8 obtenue sous pression, qui garde une certaine porosité bien que ses propriétés d’adsorption soient altérées. L’amorphisation de la ZIF-8 a également été observée par meulage (ball milling).[188]

Bennett et al. [189] ont également reporté l’amorphisation induite par compression mécanique de la ZIF-4, qui en fonction de la présence de molécules de solvant dans les pores peut survenir à différentes valeurs de pression hydrostatique. Le matériau vide s’amorphise à très faible pression (à partir de 0.35 GPa) tandis que la présence de molécules à l’intérieur des pores du matériau décale la valeur de la pression d’amorphisation vers les hautes pressions et conduit à la formation d’une phase cristalline intermédiaire monoclinique (ZIF-4-I).

La plupart des études expérimentales s’intéressant au phénomène d’amorphisation sous haute pression ou température des ZIFs ont généralement pour objectif l’identification de la structure des différentes phases amorphes obtenues. Dans la littérature on trouve très peu d’information concernant la nature de la transition structurale et les raisons de son occurrence. Néanmoins, une étude récente a suggéré que l’amorphisation en pression de la ZIF-8 pouvait être liée à
4.1 — L’amorphisation des ZIFs

la faible valeur de son module de cisaillement (≃ 1 GPa).[152] Cependant, expérimentalement l’amorphisation de ce matériau est observé à plus basse pression (P ≃ 0.34 GPa) et sous une compression isotrope (i.e. une contrainte sans composante de cisaillement).[168] Pour mieux comprendre ce phénomène, j’ai étudié l’évolution des propriétés mécaniques de la ZIF-8 en fonction de la pression mécanique externe exercée sur la structure et de la température, à partir de simulations de dynamique moléculaire classique. J’ai également étudié l’influence de l’adsorption de molécules de méthane sur le comportement mécanique de la ZIF-8.

4.1.1 Méthodologie de calcul des constantes élastiques

Dans cette étude nous nous intéressons à l’influence de la température et de la pression sur les propriétés mécaniques des matériaux de la famille des ZIFs. Les calculs décrits dans le chapitre précédent permettent de calculer le tenseur des constantes élastiques des matériaux dans l’approximation harmonique autour de leur structure relaxée, c’est-à-dire à température nulle (0 K) et en l’absence de contrainte extérieure. De manière à pouvoir comparer nos résultats avec des données expérimentales obtenues à température non-nulle, nous avons calculé les constantes élastiques des ZIFs étudiées par dynamique moléculaire classique dans l’ensemble isostress (N, σ, T). Le tenseur des constantes élastique C est alors calculé à partir des fluctuations des vecteurs de base de la maille (strain–fluctuation method) [190, 191] :

\[
\left(\frac{k_B T}{V} \right) C_{ijkl}^{-1} = \langle \varepsilon_{ij} \varepsilon_{kl} \rangle - \langle \varepsilon_{ij} \rangle \langle \varepsilon_{kl} \rangle
\]

(4.1)
où \(\varepsilon \) est la déformation de la maille élémentaire, \(V \) le volume moyen de la maille élémentaire, \(T \) la température et \(k_B \) la constante de Boltzmann.

4.1.2 Détails techniques

Les simulations de dynamique moléculaire dans l’ensemble \((N, \sigma, T)\) ont été effectuées avec le logiciel NAMD (version 2.9).[192] La température est contrôlée en effectuant une dynamique de Langevin pour les atomes lourds (tous sauf les atomes d’hydrogène), avec un coefficient d’amortissement choisi à 10 ps\(^{-1}\). La pression imposée est contrôlée par une méthode dérivée de la méthode de Nosé-Hoover, propre à NAMD, reposant sur l’algorithme de barostat de Martyna et al.[193] et régulant les fluctuations du “piston” fictif par une dynamique de Langevin.[194] La période d’oscillation du piston a été fixée à 0.2 ps, et son temps de relaxation à 0.1 ps. Bien que la contrainte mécanique de compression étudiée soit isotrope, les simulations ont été faites en autorisant une flexibilité totale de la maille. NAMD ne permettant, dans sa version actuelle, que les fluctuations de maille conservant la symétrie initiale, j’ai travaillé avec une version modifiée du code (patch développé par François-Xavier Coudert pour cette étude).

J’ai utilisé pour la dynamique moléculaire un pas de temps de 1 fs, et pour chaque simulation une durée totale de 5 ns. La première nanoseconde de chaque simulation a été considérée comme temps d’équilibration, et les données présentées ci-dessous correspondent à des moyennes sur les 4 ns suivantes. Une étude de convergence des constantes élastiques ainsi obtenues, utilisant comme références des simulations beaucoup plus longues, a montré que l’incertitude statistique est de l’ordre de 0.03 GPa. Les simulations ont été effectuées sur des supermailles \(2 \times 2 \times 2\) des
matériaux, sauf à proximité de la transition structurale (module élastique inférieur à 1 GPa), où une supermaille $3 \times 3 \times 3$ a été utilisée pour limiter les effets de taille finie sur les fluctuations de la maille (qui peuvent être grandes dans ces conditions). Des conditions périodiques aux limites ont été utilisées, avec traitement des interactions électrostatiques à longue portée par la méthode particle mesh Ewald (PME), et un rayon de coupure de 14 Å pour les interactions de type Lennard-Jones.

Le champ de force utilisé pour décrire la ZIF-8 est celui proposé en 2013 par Zhang et al.[195] Ce champ de force a été optimisé spécifiquement par ses auteurs pour décrire les propriétés mécaniques et la flexibilité de la ZIF-8 au cours de l’adsorption. Nous l’avons modifié pour traiter le matériau ZIF-4, qui présente un atome d’hydrogène à la place du groupe méthyl.

4.1.3 Amorphisation sous pression

Dans cette partie, nous nous intéressons à l’amorphisation de la ZIF-8 (figure 4.3) sous pression hydrostatique. La figure 4.4 présente l’évolution du paramètre de maille a, unique car la maille est cubique, de la ZIF-8 en fonction de la pression mécanique à 300 K. La contrainte isotrope que nous appliquons sur la structure du matériau correspond du point de vue expérimental à une compression hydrostatique du matériau par un fluide non-pénétrant. L’analyse des trajectoires de la dynamique moléculaire nous montre que la structure de la ZIF-8 est stable jusqu’à 0.35 GPa. À partir de l’évolution du paramètre de maille, nous avons estimé le module K_{bulk} de la ZIF-8, $K = 8$ GPa, ce qui est en bon accord avec les valeurs déterminées expérimentalement. En effet, Tan et al. ont mesuré par des expériences de diffusion de Brillouin le module K_{bulk} de la ZIF-8 : 7.7 GPa (à 295 K).[152] Chapman et al. ont quant à eux estimé la valeur du module de la ZIF-8 à 6.5 GPa à partir d’expérience sous haute pression.[168] Au-delà de 0.4 GPa on observe l’effondrement de la structure du matériau indiquant l’instabilité de la ZIF-8 sous compression mécanique. La valeur de la pression critique est en très bon accord avec les données expérimentales reportées par Chapman et al. qui ont observé l’amorphisation de la ZIF-8 vers 0.34 GPa sous compression hydrostatique.[168]

Figure 4.3 : Représentation d’une cage sodalite de la ZIF-8 (Zn(mim)_2, topologie SOD) formée par assemblage de centres métalliques Zn$^{2+}$ et du ligand 2-méthylimidazolate. La sphère jaune représente le volume poreux de la cavité.

De manière à déterminer l’origine de l’instabilité structurale du matériau sous l’effet de la pression mécanique, nous avons analysé l’évolution des constantes élastiques de la ZIF-8 en fonction de la pression hydrostatique appliquée (tableau 4.1). La ZIF-8 présentant une symétrie cristalline cubique (effectivement conservée au cours de la simulation), le comportement mécanique du matériau peut être totalement décrit à partir de seulement trois constantes élastiques. La résistance à une compression uniaxiale est décrite par la constante élastique C_{11}, le module C_{12} caractérise la dilatation sous compression et enfin la constante élastique C_{44} décrit le compor-
4.1 — L’amorphisation des ZIFs

Figure 4.4 : Évolution du paramètre de maille a de la ZIF-8 (maille cubique) en fonction de la pression hydrostatique appliquée sur le matériau à 300 K

Tableau 4.1 : Valeurs des constantes élastiques C_{11}, C_{12} et C_{44} de la ZIF-8 en fonction de la pression hydrostatique à 300 K

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>C_{11} (GPa)</th>
<th>C_{12} (GPa)</th>
<th>C_{44} (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>10.959</td>
<td>6.640</td>
<td>5.433</td>
</tr>
<tr>
<td>-0.4</td>
<td>11.017</td>
<td>6.855</td>
<td>4.911</td>
</tr>
<tr>
<td>-0.3</td>
<td>11.007</td>
<td>6.938</td>
<td>4.364</td>
</tr>
<tr>
<td>-0.2</td>
<td>11.132</td>
<td>7.154</td>
<td>3.841</td>
</tr>
<tr>
<td>-0.1</td>
<td>11.206</td>
<td>7.366</td>
<td>3.359</td>
</tr>
<tr>
<td>0</td>
<td>11.208</td>
<td>7.495</td>
<td>2.746</td>
</tr>
<tr>
<td>0.1</td>
<td>11.318</td>
<td>7.716</td>
<td>2.236</td>
</tr>
<tr>
<td>0.2</td>
<td>11.422</td>
<td>7.896</td>
<td>1.687</td>
</tr>
<tr>
<td>0.25</td>
<td>11.412</td>
<td>7.940</td>
<td>1.365</td>
</tr>
<tr>
<td>0.3</td>
<td>11.411</td>
<td>8.056</td>
<td>1.107</td>
</tr>
<tr>
<td>0.35</td>
<td>11.445</td>
<td>8.08</td>
<td>0.803</td>
</tr>
<tr>
<td>0.4</td>
<td>unstable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On remarque que l’évolution des constantes élastiques est très régulière (quasi-linéaire) indiquant que sous l’effet de la pression mécanique le matériau se déforme dans son régime élastique. Le module élastique C_{44} diminue drastiquement lorsque la pression hydrostatique appliquée sur le matériau augmente tandis que les deux autres constantes élastiques varient de manière moins marquée. L’instabilité mécanique de la ZIF-8 entraînant l’amorphisation de sa structure est donc due à une déformation selon un mode de cisaillement. En effet, les conditions de
4.1 — L’amorphisation des ZIFs

La stabilité de Born [128] impose les trois critères suivants pour un cristal de symétrie cubique :

\[C_{11} + 2C_{12} + P \geq 0; \quad C_{11} - C_{12} \geq 2P; \quad C_{44} \geq P \quad (4.2) \]

Or à \(P = 0.4 \) GPa, la troisième condition de Born n’est plus satisfaite et la ZIF-8 devient alors instable mécaniquement. Cette étude des constantes élastiques de la ZIF-8 sous pression mécanique nous permet de conclure que l’amorphisation du matériau est liée à la diminution de la résistance du matériau à la déformation de cisaillement, induite par la pression mécanique exercée sur la structure (shear mode softening). Cette conclusion est en bon accord avec les observations récentes de Tan et al. qui ont montré que le module de cisaillement de la ZIF-8 est relativement faible \(\simeq 1 \) GPa [152]. De plus, l’instabilité mécanique par cisaillement est un mécanisme qui a déjà été reporté dans la littérature pour des matériaux inorganiques denses. Par exemple dans le cas du MgO elle entraîne la transition de la phase de type NaCl vers la structure CsCl sous pression hydrostatique, ou encore la transition stishovite-CaCl\(_2\) du SiO\(_2\) [196]. Ce mécanisme a également été identifié comme étant à l’origine de l’amorphisation en pression de la coesite (polymorphe de la silice SiO\(_2\)) [197]. Il faut noter que si les simulations de dynamique moléculaire classique nous permettent de comprendre le mécanisme à l’origine de l’instabilité mécanique des ZIFs, elles ne donnent cependant pas d’information sur la nature structurale de la phase amorphe obtenue. Par exemple, nous ne pouvons pas expliquer pourquoi la phase amorphe est favorisée par rapport à une structure cristalline dense. En effet, nos simulations ne permettent pas de rendre compte de la rupture et de la reconstruction de liaisons chimiques au cours du processus d’amorphisation. Toutes nos simulations de la ZIF-8 soumise à une pression mécanique élevée conduisent à la formation d’une structure Zn(mim)\(_2\) dense, poreuse et cristalline. Une simulation de dynamique moléculaire ab initio serait donc plus appropriée pour simuler l’amorphisation du matériau mais la simulation...
4.1 — L’amorphisation des ZIFs

d’une super–maille de la ZIF-8 est beaucoup trop coûteuse en temps de calcul à l’heure actuelle.

![Figure 4.6: Représentation de la structure de la ZIF-4 (Zn(im)$_2$) de topologie cag formée par des centres métalliques Zn$^{2+}$ (représentés en vert) et des ligands imidazolates. Les sphères jaunes représentent le volume poreux.](image)

Nous nous sommes également intéressés au comportement mécanique de la ZIF-4 sous pression hydrostatique. La ZIF-4 est formée à partir du ligand imidazolate non-substitué et adopte la topologie cag. Dans des conditions ambiantes, le matériau cristallise dans le groupe de symétrie $Pbca$. Chaque maille élémentaire est composée de 8 nanopores liés entre eux par des fenêtres de taille 2.1 Å (figure 4.6). Expérimentalement il a été montré que le matériau vide s’amorphise à basse pression (≈ 0.35 GPa).[189] La figure 4.7 présente l’évolution des constantes élastiques C_{44}, C_{55} et C_{66} en fonction de la pression hydrostatique appliquée. Les conditions de stabilité aux contraintes de cisaillement d’un système orthorhombique sont les suivantes :

\[
C_{44} > P; \quad C_{55} > P; \quad C_{66} > P
\]

(4.3)

![Figure 4.7: Évolution des constantes élastiques C_{44}, C_{55} et C_{66} de la ZIF-4 en fonction de la pression hydrostatique appliquée sur le matériau à 300 K.](image)

Dans la gamme de pression positive qui correspond à la compression du matériau, on observe une diminution de la valeur des constantes élastiques C_{44} et C_{66}. La limite de stabilité mécanique de la ZIF-4 est atteinte pour une pression de 0.03 GPa. Cette valeur ne correspond pas à la valeur expérimentalement déterminée par Bennett et al. qui est de 0.35 GPa, ce qui peut s’expliquer par le fait que le champ de force que nous avons utilisé pour la simulation est
optimisé pour la ZIF-8. Il faudrait donc réajuster ce champ de force de manière à prendre en compte les différences structurales (liaisons de coordination et angles) entre la ZIF-8 et la ZIF-4 afin d’obtenir des résultats quantitatifs. Néanmoins, sur la base de ces premiers résultats nous pouvons montrer que l’amorphisation de la ZIF-4 sous pression hydrostatique est liée à l’af-faiblissement (softening) de son mode de déformation par cisaillement qui entraîne l’instabilité mécanique et la transition structurale, comme dans le cas de la ZIF-8.

En conclusion, cette étude nous a permis de mettre en évidence que deux matériaux de structure différente de la famille des ZIFs, la ZIF-8 et la ZIF-4, présentent une amorphisation sous compression due à l’instabilité mécanique du matériau par déformation de cisaillement. Nous pouvons alors envisager que ce mécanisme induisant l’amorphisation structurale des ZIFs est un phénomène générique. Nous pouvons également conclure de cette étude que, bien que topologiquement isomorphes aux zéolithes, les ZIFs ne présentent pas la même stabilité mécanique en raison de la plus faible liaison de coordination Zn–imidazolate comparée à la liaison forte Si–O entrant dans la composition des zéolithes. De plus, l’importante porosité des ZIFs les rend plus faiblement résistantes aux contraintes de cisaillement qui induisent à faible pression mécanique l’instabilité mécanique à l’origine de l’amorphisation de la structure.

4.1.4 Influence de l’adsorption

Dans une étude récente, Bennett et al. [189] ont montré que la pression mécanique au-delà de laquelle on observe l’amorphisation de la ZIF-4 ainsi que le module $b\text{ulk}$ du matériau dépendent fortement de la présence de molécules de solvant dans les pores. Plus précisément, le matériau vide est beaucoup plus flexible que le matériau contenant des molécules de solvant. J’ai donc étudié la stabilité mécanique de la ZIF-8 contenant des molécules de méthane dans ses pores. J’ai choisi d’étudier l’influence de la présence de méthane dans les pores du matériau, car c’est une molécule apolaire qui ne présente pas d’affinité particulière pour le matériau. Cela nous permet donc d’étudier de manière générale l’influence de la présence de molécules adsorbées sur les propriétés méca

![Figure 4.8 : Isothermes d’adsorption de méthane dans la ZIF-8 (en rouge) et dans la ZIF-4 (en noir) calculées à 300 K.](image-url)
4.1 — L’amorphisation des ZIFs

tions m’ont permis d’obtenir plusieurs configurations du système avec un nombre de molécules adsorbées qui varie de 0 à 20 molécules par maille et qui serviront de point de départ aux simulations de dynamique moléculaire classique. Le tableau 4.2 présente les valeurs des constantes élastiques \(C_{11}, C_{12} \) et \(C_{44} \) de la ZIF-8 à 300 K en fonction du nombre de molécules de CH\(_4\) adsorbées par maille élémentaire de matériau. L’effet du remplissage de la porosité du matériau sur les constantes élastiques \(C_{11} \) et \(C_{12} \) est faible, alors que l’on observe une forte variation du module élastique \(C_{44} \). La valeur du module de cisaillement de la ZIF-8 augmente avec le remplissage et passe de 2.7 GPa pour le matériau vide à 4.0 GPa pour le matériau contenant 18 molécules de méthane. La meilleure résistance mécanique aux contraintes de cisaillement de la ZIF-8 en présence de molécules adsorbées est directement liée à la densité plus élevée du matériau.[151] En effet, le mouvement de cisaillement du matériau rempli entraîne des collisions répulsives entre les molécules adsorbées ainsi qu’entre les molécules adsorbées et la charpente du matériau, comme il a déjà été observé par Coasne et al. dans le cas des zéolithes.[198]

Tableau 4.2 : Valeurs des constantes élastiques \(C_{11}, C_{12} \) et \(C_{44} \) de la ZIF-8 à 300 K et à \(P = 0 \) GPa pour différents nombres de molécules de méthane adsorbées dans les pores.

<table>
<thead>
<tr>
<th>CH(_4)/unit cell</th>
<th>(C_{11}) (GPa)</th>
<th>(C_{12}) (GPa)</th>
<th>(C_{44}) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.21</td>
<td>7.49</td>
<td>2.75</td>
</tr>
<tr>
<td>3</td>
<td>11.26</td>
<td>7.52</td>
<td>2.89</td>
</tr>
<tr>
<td>6</td>
<td>11.29</td>
<td>7.55</td>
<td>2.96</td>
</tr>
<tr>
<td>11</td>
<td>11.33</td>
<td>7.58</td>
<td>3.18</td>
</tr>
<tr>
<td>18</td>
<td>11.38</td>
<td>7.66</td>
<td>4.00</td>
</tr>
</tbody>
</table>

De plus, la stabilité mécanique de la ZIF-8 contenant 18 molécules de méthane et soumise à une pression hydrostatique est supérieure à celle du matériau vide. La figure 4.9 présente l’évolution des constantes élastiques, exprimées sous la forme de critère de stabilité, de la ZIF-8 en fonction de la pression hydrostatique appliquée. Les critères de stabilité mécanique à la compression \(\lambda = C_{11} - C_{12} - 2P \) et au cisaillement \(\mu = C_{44} - P \) doivent être positifs pour que le système soit mécaniquement stable. Le matériau contenant 18 molécules de méthane est mécanique stable jusqu’à 0.65 GPa \((\mu \rightarrow 0 \) GPa) et à plus haute pression on observe l’effondrement de la structure. L’instabilité mécanique de la ZIF-8 contenant du méthane induisant l’amorphisation du matériau sous pression est due à un mode de déformation par cisaillement comme dans le cas du matériau vide.

4.1.5 Influence de la température

Nous avons également regardé l’influence de la température sur la stabilité mécanique de la ZIF-8. Les constantes élastiques \(C_{11}, C_{12} \) et \(C_{44} \) de la ZIF-8 calculées à 77 K et à 500 K sont respectivement répertoriées dans les tableaux 4.3 et 4.4. La figure 4.10 présente l’évolution des critères de stabilité pour la compression et le cisaillement de la ZIF-8 en fonction de la pression et de la température. On remarque alors que lorsque la température augmente la ZIF-8 est plus stable mécaniquement à la compression. De plus, le module de cisaillement \(C_{44} \) reste plus ou moins constant avec la température. On en déduit donc que la température n’implique pas de diminution de la résistance du matériau aux contraintes de cisaillement responsables de l’amorphisation du matériau. Ceci est en bon accord avec les données expérimentales : en effet, dans la littérature l’amorphisation de la ZIF-8 sous température n’est pas observée.
4.1 — L’amorphisation des ZIFs

Figure 4.9 : Évolution des critères de stabilité mécanique sous compression (en haut) et sous contraintes de cisaillement (en bas) de la ZIF-8 à 300 K vide (en rouge) et contenant 18 molécules de méthane (en orange).

Tableau 4.3 : Valeurs des constantes élastiques \(C_{11}\), \(C_{12}\) et \(C_{44}\) de la ZIF-8 en fonction de la pression hydrostatique à 77 K.

<table>
<thead>
<tr>
<th>(P) (GPa)</th>
<th>(C_{11}) (GPa)</th>
<th>(C_{12}) (GPa)</th>
<th>(C_{44}) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>10.095</td>
<td>6.668</td>
<td>5.571</td>
</tr>
<tr>
<td>-0.4</td>
<td>10.071</td>
<td>6.741</td>
<td>5.095</td>
</tr>
<tr>
<td>-0.3</td>
<td>10.077</td>
<td>6.911</td>
<td>4.530</td>
</tr>
<tr>
<td>-0.2</td>
<td>10.235</td>
<td>7.133</td>
<td>3.997</td>
</tr>
<tr>
<td>-0.1</td>
<td>10.278</td>
<td>7.315</td>
<td>3.447</td>
</tr>
<tr>
<td>0</td>
<td>10.307</td>
<td>7.476</td>
<td>2.927</td>
</tr>
<tr>
<td>0.1</td>
<td>10.432</td>
<td>7.698</td>
<td>2.380</td>
</tr>
<tr>
<td>0.2</td>
<td>10.618</td>
<td>7.982</td>
<td>1.814</td>
</tr>
<tr>
<td>0.3</td>
<td>10.697</td>
<td>8.196</td>
<td>1.293</td>
</tr>
<tr>
<td>0.35</td>
<td>10.758</td>
<td>8.336</td>
<td>0.972</td>
</tr>
<tr>
<td>0.4</td>
<td>\textit{unstable}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1 — L’amorphisation des ZIFs

Tableau 4.4 : Valeurs des constantes élastiques C_{11}, C_{12} et C_{44} de la ZIF-8 en fonction de la pression hydrostatique à 500 K.

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>C_{11} (GPa)</th>
<th>C_{12} (GPa)</th>
<th>C_{44} (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.728</td>
<td>7.528</td>
<td>2.647</td>
</tr>
<tr>
<td>0.1</td>
<td>11.872</td>
<td>7.746</td>
<td>2.179</td>
</tr>
<tr>
<td>0.2</td>
<td>11.943</td>
<td>7.864</td>
<td>1.675</td>
</tr>
<tr>
<td>0.25</td>
<td>11.897</td>
<td>7.904</td>
<td>1.390</td>
</tr>
<tr>
<td>0.3</td>
<td>11.775</td>
<td>7.889</td>
<td>1.129</td>
</tr>
<tr>
<td>0.35</td>
<td>11.654</td>
<td>7.790</td>
<td>0.883</td>
</tr>
<tr>
<td>0.4</td>
<td>unstable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.10 : Évolution des critères de stabilité mécanique sous compression (en haut) et sous contraintes de cisaillement (en bas) de la ZIF-8 à 300 K vide en fonction de la température. Noir : 77 K, rouge : 300 K et bleu : 500 K.
4.1.6 Stabilité mécanique et thermique des matériaux de la famille des ZIFs

Dans le cadre du stage de M2 de Lila Bouëssel du Bourg, que je co-encadre, nous nous sommes intéressées à la stabilité mécanique et thermique de plusieurs ZIFs à partir de simulations de dynamique moléculaire. Cette étude porte sur des ZIFs déjà synthétisées (coi, nog, ZIF-1, ZIF-3, ZIF-4, ZIF-6 et ZIF-10) mais aussi sur des ZIFs hypothétiques [133] (LTL, FAU, ACO, FER, AST, AFI, ATO, ABW, CAN, ATN) dont la structure est construite à partir de données topologiques des zéolithes puis minimisée par calculs quantiques. Dans un premier temps, nous avons étudié leur comportement mécanique sous l’effet de la température à pression ambiante dans la gamme 77–400 K. Nous avons ainsi distingué trois groupes de matériaux. Le premier regroupe les ZIFs mécaniquement stables dans la gamme de température considérée telles que la AFI, la coi, la FAU, la nog, la ZIF-10, la ZIF-3, la ZIF-4, la ZIF-8, la LTL et la CAN. Le deuxième groupe contient, les matériaux stables à basse température (\(T \leq 150 \) K) tels que la ATN, la FER et la ATO. Puis les matériaux, qui quelle que soit la température, ne sont pas stables dans leur état vide (i.e. en l’absence d’adsorbat dans les pores), la ABW, la AST, la ZIF-1, la ZIF-6, et la ACO. Les matériaux de cette dernière catégorie sont néanmoins stables à température ambiante lorsqu’ils contiennent des molécules de molécules de méthane (utilisées pour modéliser le solvant ou un adsorbat générique) à l’intérieur de leurs pores. Les ZIF-1 et ZIF-6 directement issues de la synthèse ne peuvent donc pas être utilisées pour des applications car elles ne sont pas stables vides. Dans un deuxième temps, nous nous sommes intéressées à la stabilité des différents matériaux étudiés sous compression mécanique et à température ambiante. Cette étude a montré que globalement les ZIFs sont stables jusqu’à 0.5 GPa, ce qui est en bon accord avec les valeurs reportées dans la littérature et l’étude présentée précédemment sur la ZIF-8. Enfin, nous avons étudié la stabilité en pression et en température de trois ZIFs, la CAN, la nog et la ZIF-10. On montre alors que l’augmentation de la température stabilise mécaniquement les ZIFs (i.e. la valeur de la pression seuil au-delà de laquelle la ZIF est instable est plus élevée) comme observé dans le cas de la ZIF-8. L’étude des matériaux zéolithiques topologiquement isomorphes aux ZIFs étudiées est en cours, afin de distinguer l’influence des propriétés structurales sur la stabilité mécanique.
4.2 Comportement sous pression des Zinc Alkyl Gates (ZAG)

Dans cette partie, je présente une étude du comportement sous pression de deux MOFs de la famille des Zinc Alkyl Gate (ZAG). Les matériaux de cette famille sont formés à partir de centres métalliques de zinc et de ligands organiques alkylbiphosphonates. Je me suis particulièrement intéressée à la ZAG-4, Zn(HO$_3$PC$_4$H$_8$PO$_3$H)$_2$H$_2$O, qui est constituée de chaînes inorganiques unidimensionnelles liées entre elles dans une direction par une liaison hydrogène forte avec une des molécules d’eau et l’atome d’hydrogène du groupement phosphonate, et dans l’autre par la chaîne butyle (figure 4.11).[199] La ZAG-4 présente une topologie de type treillis (dans le plan xy) comme les matériaux de la famille MIL-53 à la différence que le ligand organique est flexible et qu’elle est dense (non poreuse) car elle contient des molécules d’eau. Les travaux expérimentaux récents (2013) de Gagnon et al. reportant le comportement particulier de ce matériau sous pression ont été le point de départ de notre étude (figure 4.12).[200] En effet, le matériau présente une compressibilité linéaire négative et positive selon l’axe b en fonction de la pression exercée sur le matériau, et n’a pas pu être expliquée par les auteurs. Nous avons alors étudié les propriétés mécaniques de la ZAG-4 afin de rationaliser son comportement sous pression.

![Figure 4.11 : Structure de la ZAG-4.](image)

À partir de la structure cristallographique expérimentale de la ZAG-4 j’ai effectué dans un premier temps une relaxation de la position atomique et de la maille du matériau par calculs quantiques. Le tableau 4.5 présente les paramètres cristallographiques de la structure expérimentale et de la structure relaxée. On observe un bon accord entre les deux structures. De plus, cela m’a permis de confirmer la position des atomes d’hydrogène (qui n’avait pas pu être déterminée expérimentalement) et notamment la présence d’une molécule d’eau liée par liaison hydrogène au groupement phosphonate. La longueur de cette liaison POH–OH$_2$ dans la structure relaxée est de 1.46 Å (distance H–O).

La figure 4.12 présente l’évolution des paramètres de maille de la ZAG-4 sous pression hydrostatique, mesurée expérimentalement par diffraction de rayons X.[200] Cette compression entraîne une diminution du volume de l’ordre de 27% entre 0 et 7.3 GPa qui correspond à une augmentation de la densité du matériau de 36%. On observe de plus une compressibilité linéaire...
4.2 — Comportement sous pression des Zinc Alkyl Gates (ZAG)

Figure 4.12 : Évolution expérimentale des paramètres de maille de ZAG-4 en fonction de la pression.[200]

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>(a) (Å)</th>
<th>(b) (Å)</th>
<th>(c) (Å)</th>
<th>(\beta) (°)</th>
<th>(V) (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAG-4 exp</td>
<td>18.515</td>
<td>8.291</td>
<td>8.265</td>
<td>113.837</td>
<td>1160.5</td>
</tr>
<tr>
<td>ZAG-4 simul</td>
<td>18.764</td>
<td>8.440</td>
<td>8.173</td>
<td>112.63</td>
<td>1194.7</td>
</tr>
</tbody>
</table>

Tableau 4.5 : Données cristallographiques de la structure expérimentale et relaxée par DFT de la ZAG-4.

négative (NLC) dans la gamme de pression 1.65–2.81 GPa. À la méthodologie établie dans le chapitre précédent, j’ai calculé les constantes élastiques de la ZAG-4 relaxée, dans l’idée de montrer si la compressibilité linéaire négative observée expérimentalement peut être attribuée à une déformation dans le régime élastique comme dans les cas présentés auparavant. La matrice des constantes élastiques est présentée ci-dessous (unités en GPa) :

\[
C = \begin{pmatrix}
79.1 & 16.7 & 6.4 & -25.0 \\
20.6 & 11.5 & -5.7 & \\
24.1 & & -3.6 & 11.5 & -5.8 & \\
& & & 11.4 & 7.9 & \\
& & & & & &
\end{pmatrix}
\]

(4.4)

Le tableau 4.6 répertorie les valeurs des propriétés mécaniques de la ZAG-4 ainsi que l’anisotropie des différents modules élastiques. La figure 4.13 montre les représentations dans les trois directions de l’espace du module de Young (E) et de la compressibilité linéaire (\(\beta\)) de la ZAG-4. On note une anisotropie du module de Young avec des directions de forte rigidité et des directions plus faiblement résistantes à une contrainte de compression uniaxiale. Cependant l’analyse quantitative des valeurs minimales et maximales du module de Young, et du module de cisaillement (G) (tableau 4.6) révèle que la valeur de l’anisotropie de ces deux modules (\(A_E = 12\))
4.2 — Comportement sous pression des Zinc Alkyl Gates (ZAG)

Tableau 4.6 : Valeurs minimales, maximales et anisotropie des propriétés mécaniques de la ZAG-4.

<table>
<thead>
<tr>
<th>E_{min} (GPa)</th>
<th>E_{max} (GPa)</th>
<th>A_E (GPa)</th>
<th>G_{min} (GPa)</th>
<th>G_{max} (GPa)</th>
<th>A_G (TPa$^{-1}$)</th>
<th>β_z (TPa$^{-1}$)</th>
<th>β_y (TPa$^{-1}$)</th>
<th>β_x (TPa$^{-1}$)</th>
<th>ν_{min}</th>
<th>ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>74.12</td>
<td>12.0</td>
<td>3.19</td>
<td>18.03</td>
<td>5.7</td>
<td>37.9</td>
<td>29.3</td>
<td>33.4</td>
<td>0.14</td>
<td>1.33</td>
</tr>
</tbody>
</table>

et $A_G = 5.7$) est comprise entre celle des MOFs rigides (≈ 2) et celle des MOFs flexibles (≈ 100). En effet, la ZAG-4 est une MOF assez flexible localement (réseau à motif treillis) mais très dense. On remarque également sur la figure 4.13 que la compressibilité linéaire prend une valeur négative, $\beta = -18$ TPa$^{-1}$, mais elle est orientée selon une direction différente de l’axe b. De plus, la valeur de la compressibilité linéaire négative est relativement faible comparée à celle observée dans le cas des *Soft Porous Crystals*.

Figure 4.13 : En haut : représentation 3D du module de Young directionnel de la ZAG-4.
En bas : représentation 3D de la compressibilité linéaire de la ZAG-4 (les valeurs positives sont indiquées en vert et les valeurs négatives en rouge).
Les propriétés mécaniques du matériau dans son domaine élastique ne permettent donc pas de rationaliser le comportement observé expérimentalement sous pression (P ≈ 2 GPa). En effet, l’analyse des modules élastiques indique que selon l’axe b la valeur de la compressibilité linéaire est positive, \(\beta = +29 \text{TPa}^{-1} \), alors qu’expérimentalement on observe une expansion selon cette direction (NLC). Afin d’expliquer ce phénomène nous avons réalisé, \textit{in silico}, l’expérience de compression mécanique du matériau. La figure 4.14 présente l’évolution des paramètres de maille pour la ZAG-4 en fonction de la pression mécanique exercée sur la charpente du matériau en minimisant la structure à des valeurs croissantes de pression par des calculs de chimie quantique (0 K). On observe un très bon accord avec les résultats expérimentaux présentés sur la figure 4.12. Nos calculs permettent de confirmer l’évolution non-monotone du paramètre b de la ZAG-4 sous l’effet de la pression. De plus, on remarque que le changement de signe de la pente du paramètre b est corrélat à une diminution brutale du paramètre c qui correspond à une contraction selon la chaîne inorganique entre 3.6 et 3.8 GPa. L’analyse des structures du matériau avant et après la transition qui se produit à 3.6 GPa montre qu’elle est associée à un transfert de proton depuis le groupement phosphonate du ligand organique vers la molécule d’eau pré-

\(\begin{align*}
\text{R} - \text{PO}_3 \text{H} + \text{H}_2\text{O} \rightarrow \text{R} - \text{PO}_3^- + \text{H}_3\text{O}^+ \quad (4.5)
\end{align*}\)

La position de l’ion hydronium est montrée sur la figure 4.15, tandis que l’évolution des distances O–H au cours de la compression du matériau est donnée sur la figure 4.16. La longueur de cette liaison dans l’ion H\(_3\)O\(^+\) isolée vaut 1.05 Å. De plus, la distance d\(_{\text{O-O}}\) entre l’atome d’oxygène du groupement phosphonate et de l’atome d’oxygène de la molécule d’eau vaut 2.5 Å, avant le saut de proton et 2.4 Å après. Le transfert de proton permet donc une réduction de la distance d\(_{\text{O-O}}\) ce qui rend enthalpiquement plus favorable l’état "ionique" à haute pression ; et explique la transition.

J’ai également étudié d’un point de vue énergétique ce transfert de proton en calculant les profils d’énergie en fonction du déplacement du proton. Pour chaque valeur de pression j’ai

Figure 4.14 : Évolution des paramètres de maille de la ZAG-4 en fonction de la pression mécanique exercée sur la structure, calculée par DFT.
4.2 — Comportement sous pression des Zinc Alkyl Gates (ZAG)

Figure 4.15 : Visualisation d’une partie de la structure de la ZAG-4 à 4 GPa et de la molécule d’eau protonée. À gauche : vue selon l’axe \(b \), et à droite : vue selon la chaîne inorganique. Les atomes d’hydrogène de la molécule d’eau sont représentés en blanc et les autres sont omis pour plus de clarté. Les atomes d’oxygène de la structure sont représentés en rouge, celui de la molécule d’eau en orange, les atomes de phosphore en violet, les atomes de zinc

Figure 4.16 : Évolution de la distance entre le proton transféré et le groupement phosphonate (en noir) ou la molécule d’eau (en rouge), en fonction de la pression.

calculé l’évolution de l’enthalpie en fonction de la distance \(PO-H \cdots OH_2 \) que l’on fait varier de 1 Å à 1.5 Å comme représenté sur la figure 4.17. À pression nulle, la barrière d’énergie à franchir pour le transfert de proton est de l’ordre de 25 kJ/mol. Au fur et à mesure que la pression exercée sur le matériau augmente la barrière d’énergie diminue. Pour une pression de 2.2 GPa, les deux structures ont la même énergie et la barrière énergétique pour passer de l’une à l’autre est de 5 kJ/mol (\(\approx 2 \times kT \)). Puis, lorsque que l’on continue d’augmenter la pression mécanique exercée sur le matériau, la structure contenant l’ion hydronium (\(H_3O^+ \)) est favorisée énergétiquement.

Cette étude nous a permis de rationaliser le comportement mécanique particulier de la ZAG-4 sous pression mécanique. Grâce à la modélisation moléculaire nous avons pu expliquer les observations expérimentales à l’échelle moléculaire et mettre en évidence un transfert de proton au cours de la compression. La ZAG-4 est la première MOF reportée dans la littérature qui présente sous l’effet de la pression un transfert de proton au sein de sa structure, ce qui lui confère des propriétés conductrices intéressantes pour des applications. En effet, on peut envisager un
phénomène de conduction du proton au sein du matériau selon la direction c à travers le réseau de liaisons hydrogène du système illustré par la figure 4.18.

Pour poursuivre cette étude je me suis intéressée à l’effet de la longueur de la chaîne alkyle sur le comportement mécanique du matériau. Après contact avec Kevin Gagnon nous avons lancé une collaboration pour étudier la ZAG-6 formée à partir du ligand organique 1,6-hexanébisphosphonate. Les données cristallographiques de la structure expérimentale et de la
4.2 — Comportement sous pression des Zinc Alkyl Gates (ZAG)

<table>
<thead>
<tr>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAG-4 exp</td>
<td>23.186</td>
<td>8.2881</td>
<td>8.2031</td>
<td>120.389</td>
<td>1359.8</td>
</tr>
<tr>
<td>ZAG-4 simul</td>
<td>23.753</td>
<td>8.371</td>
<td>8.180</td>
<td>117.18</td>
<td>1447.0</td>
</tr>
</tbody>
</table>

Tableau 4.7 : Données cristallographiques de la structure expérimentale et relaxée par DFT de la ZAG-6.

Figure 4.19 : En haut : visualisation de la structure de la ZAG-6 à différentes pressions obtenue expérimentalement et relaxée par DFT, et en bas : représentation de la conformation de la chaîne carbonée pour chaque structure. À gauche : à 0 GPa, chaîne non-déformée et à droite : à 5.5 GPa, chaîne déformée sous la pression.

structure obtenue après relaxation de la ZAG-6 sont répertoriées dans le tableau 4.7. Expérimentalement la structure du matériau sous compression a été déterminée à 0 GPa et à 6.9 GPa. Ces mesures ont ainsi mis en évidence un phénomène de torsion (coiling) de la chaîne carbonée comme représenté sur la figure 4.19.

Dans un premier temps, j’ai calculé la matrice des constantes élastiques de la ZAG-6, présentée ci-dessous (en GPa) :

\[
C = \begin{pmatrix}
93.3 & 14.3 & 1.5 & -21.5 \\
15.3 & 7.8 & -4.1 & \\
15.2 & 9.0 & -5.1 & \\
8.0 & 5.8 &
\end{pmatrix}
\]

(4.6)

À partir des constantes élastiques, j’ai calculé les propriétés mécaniques caractéristiques de la ZAG-6. Les valeurs minimales, maximales et l’anisotropie des modules élastiques sont répertoriées dans le tableau 4.8. On remarque que l’anisotropie du module de Young est légèrement plus élevée que celle de la ZAG-4 (19.6 vs 12.0) ce qui est dû à la nature plus flexible de la chaîne carbonée qui est plus longue. De plus la ZAG-6 présente une faible compressibilité linéaire négative, comme la ZAG-4, de l’ordre de −18 TPa⁻¹. La structure relaxée de la ZAG-6 présente donc un comportement mécanique dans le régime élastique similaire à celui de la ZAG-4.
J’ai ensuite étudié l’évolution des paramètres de maille de la ZAG-6 en fonction de la pression mécanique (figure 4.20). On retrouve le même type d’évolution des paramètres de maille que pour la ZAG-4. L’analyse de la structure du matériau aux différentes pressions nous permet d’obtenir plusieurs informations sur le comportement sous pression de ce matériau. Premièrement, on observe une irrégularité dans l’évolution de l’angle β et des paramètres a et c entre 3 et 3.5 GPa. En regardant le détail des structures, elle peut être attribuée à une réorganisation de la molécule d’eau présente dans les pores du matériau. Deuxièmement, la transition visible sur l’évolution du paramètre c entre 5 et 5.5 GPa est induite par un transfert de proton du groupement phosphonate vers la molécule d’eau liée par liaison hydrogène. Cependant, si expérimentalement on observe une torsion de la chaîne carbonée de la ZAG-6 sous compression, la structure simulée obtenue à 5.5 GPa ne présente pas de torsion. De plus, la décompression (relaxation à 0 GPa) de la structure expérimentale obtenue en pression (6.9 GPa) ne conduit pas à la "dé-torsion" de la chaîne carbonée.

Pour étudier le comportement sous pression de ce matériau j’ai donc adopté une approche différente qui consiste à considérer les quatre états structuraux possibles du matériau :
4.2 — Comportement sous pression des Zinc Alkyl Gates (ZAG)

Figure 4.21 : Évolution de l’enthalpie relative des quatre structures possibles de la ZAG-6 en fonction de la pression. L’enthalpie de référence est celle de la structure obtenue expérimentalement à pression ambiante (straight, H₂O).

J’ai alors calculé l’évolution de l’enthalpie de chacune des quatre structures en fonction de la pression (figure 4.21). À pression ambiante (0 GPa), on retrouve bien que la structure la plus stable est celle contenant une molécule d’eau non protonée et une chaîne carbonée droite comme observé expérimentalement. On peut également estimer que le coût énergétique pour déformer la chaîne carbonée à pression ambiante est de l’ordre de 15 kJ/mol. De même, l’énergie à fournir au système pour transférer le proton depuis le groupement phosphonate vers la molécule d’eau est de l’ordre de 25 kJ/mol. Sur la base de ces résultats, nous pouvons conclure que dans des conditions de pression ambiante la molécule d’eau présente dans les pores du matériau est non-protonée (H₂O) et la chaîne carbonée est non-déformée, en accord avec les données expérimentales. Lorsque l’on augmente la pression, on observe que l’enthalpie des structures présentant une chaîne carbonée déformée et celles contenant des molécules d’eau protonées (H₃O⁺) devient plus stable que celle de la structure obtenue à P = 0 GPa. La stabilisation de ces différentes structures est due au fait qu’elles sont plus denses (volume de la maille plus faible). En effet, la déformation de la chaîne carbonée par torsion induit une réduction de la longueur de la chaîne (8.5 Å vs 9.4 Å). De la même manière, comme nous l’avons vu dans le cas de la ZAG-4, le saut de proton entraîne une diminution de la distance entre le groupement phosphonate et la molécule d’eau (2.5 Å vs 2.4 Å). Dans la gamme de pression allant de 2 GPa à 3 GPa, les structures dont la chaîne carbonée est déformée et contenant la molécule sous la forme protonée ou déprotonée sont similaires d’un point de vue énergétique. La précision de notre méthode ne nous permet pas de déterminer laquelle est la plus favorable. De plus, nous n’avons pas accès aux effets entropiques. Puis, au-delà de 3 GPa, c’est la structure présentant
la chaîne carbonée déformée et la molécule d’eau protonée (H$_3$O$^+$) qui est favorisée, là encore en bon accord avec les résultats expérimentaux sur ce matériau. Théoriquement et d’un point de vue purement enthalpique une phase intermédiaire (chaîne organique déformée et molécule d’eau) peut exister dans une gamme de pression restreinte autour de 2 GPa. Néanmoins, son existence dépend également de la cinétique de la transition et des expériences devront être effectuées à cette pression pour confirmer son existence.

En conclusion, l’étude de ces deux matériaux de la famille des Zinc Alkyl Gates nous a permis de mieux comprendre les observations expérimentales et de rationaliser le comportement du matériau sous pression. En effet, nous avons montré que ces deux matériaux présentent une compressibilité linéaire négative (NLC) hors du régime élastique linéaire. Nous avons également mis en évidence la présence d’un transfert de proton induit par la pression à l’origine du comportement particulier de ces matériaux sous compression. Cette étude est la première à reporter un tel phénomène au sein d’une MOF. L’étude de la ZAG-6, nous a également permis de montrer que deux mécanismes sont à l’origine de la flexibilité de ce matériau sous pression : le transfert de proton et la déformation de la chaîne carbonée.
4.3 Polymorphisme du cyanure de zinc \(\text{Zn}(\text{CN})_2 \)

Des travaux expérimentaux récents ont montré l’existence d’une famille entière de polymorphes de cyanure de zinc (\(\text{Zn}(\text{CN})_2 \)).[201, 202] Les phases de \(\text{Zn}(\text{CN})_2 \) sont constituées de tétraèdres métalliques de zinc (\(\text{Zn}^{2+} \)) liés entre eux par leurs sommets par des anions cyanures (\(\text{Zn}–\text{CN}–\text{Zn}’ \)). La structure cristalline de la phase stable en conditions ambiantes est de topologie diamant et constituée de deux réseaux interpénétrés (\(\text{dia}-c \)) (voir figure 4.22). Cette phase non poreuse de \(\text{Zn}(\text{CN})_2 \), appelée phase I, présente néanmoins une certaine flexibilité structurale qui permet l’observation d’une contraction de son volume sous l’effet d’une augmentation de la température (Negative Thermal Expansion, NTE). Lapidus et al. [201] ont récemment découvert que sous l’application d’une pression par un fluide de l’ordre du gigapascal, différents polymorphes poreux du cyanure de zinc sont créés à partir de la phase I non poreuse. De plus, la topologie de ces différents polymorphes poreux dépend de la nature du fluide utilisé pour la compression (figure 4.22). La compression de la phase I en présence d’éthanol, isopropanol ou de fluornérit conduit pour une pression de 1.5 GPa à la formation d’une phase non poreuse de topologie diamant déformée présentant un réseau interpénétré et appelée phase II. En présence d’eau, la compression (\(P = 1.2 \) GPa) de la phase I conduit à une réorganisation complète de la structure du matériau et à la formation d’une phase poreuse de topologie diamant (phase \(\text{dia} \)). Un deuxième polymorph poreux de topologie lonsdaléite (\(\text{lon} \)) est obtenu en présence d’un mélange MEW (méthanol–éthanol–water, 16 : 3 : 1) pour une pression de 1.2 GPa. À plus haute pression (\(P = 1.5 \) GPa), ce polymorphe conduit à la formation d’un troisième polymorphe poreux de topologie pyrite (\(\text{pyr} \)). Ce dernier polymorphpe peut également être obtenu directement à partir de la phase I sous compression (\(P = 1.5 \) GPa) en présence de méthanol.

![Figure 4.22 : Résumé des différentes phases de \(\text{Zn}(\text{CN})_2 \) obtenues expérimentalement sous compression dans différents fluides. Image tirée de la référence [201].](image)

Ces transitions structurales sont assez inattendues puisque généralement la compression d’un matériau conduit à la formation de phases plus denses. Hormis le fait qu’elles ne reposent pas uniquement sur la compression, mais mettent en jeu l’intrusion des fluides dans l’espace poreux créé, ces transitions restent inexpliquées dans la littérature. La rationalisation de ce phénomène de polymorphisme induit par l’intrusion de fluide pourrait être une bonne méthode de modification post-synthétique conduisant à la formation de phases difficilement accessibles par synthèse directe. À partir de calculs quantiques et de simulations de dynamique moléculaire
nous avons étudié le comportement en compression, et les propriétés mécaniques des différents polymorphes de Zn(CN)\(_2\). De plus, un modèle thermodynamique nous a permis de comprendre comment l’intrusion de différents fluides dans la Zn(CN)\(_2\)-I conduit à différents polymorphes.

4.3.1 Détails techniques

Pour la dynamique moléculaire de Zn(CN)\(_2\), j’ai suivi la méthodologie établie par Fang et al.[203, 204] dans une étude de la transition \(I \to II\). Le champ de force utilisé pour décrire les interactions interatomiques est de type “lié” : les molécules de \(CN^-\) sont considérées comme rigides, et des termes d’élongation, de pliage et de torsion sont utilisés pour décrire les interactions avec les cations Zn\(^{2+}\). De plus, les interactions électrostatiques sont prises en compte par la présence de charges partielles sur chacun des atomes. Ce champ de force, développé sur la base de calculs quantiques [204], a été testé par ses auteurs pour vérifier qu’il reproduit bien la dynamique du réseau (notamment la présence d’expansion thermique négative) de la phase ambiante de Zn(CN)\(_2\), et la transition vers une phase désordonnée à haute pression (dont je discuterai ci-après).

Les simulations de dynamique moléculaire ont été faites à l’aide du code DL_POLY Classic.[205] sur une supermaille \(10 \times 10 \times 10\) contenant 10 000 atomes, avec des conditions périodiques aux limites. Elles ont été menées dans l’ensemble iso-stress \((N, \sigma, T)\), à l’aide d’un thermostat/barostat de Nosé-Hoover.[206, 207] Les interactions électrostatiques à longue distance sont prises en compte par la technique de sommation d’Ewald, avec une précision fixée à \(10^{-6}\). Les équations du mouvement sont intégrées avec un pas de temps de 1 fs selon l’algorithme leap frog. Les simulations sont d’une durée de 100 ps, précédées de 20 ps pour l’équilibration. La convergence des paramètres de maille a été vérifiée par comparaison avec une simulation longue de 5 ns.

4.3.2 Propriétés des phases non-poreuses

Dans un premier temps, nous nous sommes intéressés aux phases denses de Zn(CN)\(_2\). Nous avons commencé notre étude par la phase I, Zn(CN)\(_2\)-I, qui est stable dans les conditions ambiantes. À partir de la structure expérimentale obtenue par Goodwin et coll. [202], nous avons effectué une relaxation de la position des atomes et de la maille du matériau. Nous obtenons un bon accord entre la structure expérimentale et la structure relaxée (respectivement \(a = 5.92\) \(\AA\) vs \(a = 5.96\) \(\AA\), et \(V = 207.8\) \(\AA^3\) vs \(V = 211.2\) \(\AA^3\), tableau 4.9). Ensuite, nous avons calculé les constantes élastiques de la Zn(CN)\(_2\)-I. La matrice élastique de ce matériau est présentée ci-dessous (en GPa) :

\[
C = \begin{pmatrix}
50.029 & 45.137 & 45.137 \\
0.50 & 50.029 & 45.137 \\
0.50 & 0.50 & 50.029 \\
6.897 & & \\
& 6.897 & \\
& & 6.897
\end{pmatrix}
\]

(4.7)

Le tableau 4.10 répertorie les valeurs minimales, maximales et l’anisotropie des propriétés mécaniques de la Zn(CN)\(_2\)-I. On note une faible valeur de l’anisotropie des modules de Young et
4.3 — Polymorphisme du cyanure de zinc Zn(CN)₂

Tableau 4.9 : Données cristallographiques des structures Zn(CN)₂-I et Zn(CN)₂-II expérimentales et relaxées par DFT. Les groupes d’espace des structures expérimentales et relaxées sont différents car expérimentalement les structures présentent du désordre et pas celles simulées.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(CN)₂-I exp</td>
<td>Pn̅3m</td>
<td>5.92</td>
<td></td>
<td></td>
<td>90</td>
<td>207.8</td>
</tr>
<tr>
<td>Zn(CN)₂-I simul</td>
<td>P̅43m</td>
<td>5.96</td>
<td></td>
<td></td>
<td>90</td>
<td>211.2</td>
</tr>
<tr>
<td>Zn(CN)₂-II exp (5.36 GPa)</td>
<td>Pbca</td>
<td>12.584</td>
<td>7.052</td>
<td>6.8128</td>
<td>90</td>
<td>604.57</td>
</tr>
<tr>
<td>Zn(CN)₂-II simul (5 GPa)</td>
<td>P2₁/c</td>
<td>6.80</td>
<td>13.25</td>
<td>6.94</td>
<td>90</td>
<td>620.21</td>
</tr>
</tbody>
</table>

Tableau 4.10 : Valeurs minimales, maximales et anisotropie des propriétés mécaniques de la Zn(CN)₂-I.

<table>
<thead>
<tr>
<th>E_{min} (GPa)</th>
<th>E_{max} (GPa)</th>
<th>A_E (GPa)</th>
<th>G_{min} (GPa)</th>
<th>G_{max} (GPa)</th>
<th>A_G (TPa⁻¹)</th>
<th>β_x (TPa⁻¹)</th>
<th>β_y (TPa⁻¹)</th>
<th>β_z (TPa⁻¹)</th>
<th>ν_{min}</th>
<th>ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.21</td>
<td>19.72</td>
<td>2.7</td>
<td>2.44</td>
<td>6.90</td>
<td>2.8</td>
<td>7.13</td>
<td>7.13</td>
<td>7.13</td>
<td>-0.003</td>
<td>0.90</td>
</tr>
</tbody>
</table>

de cisaillement (respectivement 2.7 et 2.8) similaire à celle des MOFs rigides telle que la MOF-5 (A_E = 2.1 et A_G = 2.2). Globalement, le comportement mécanique de cette phase du matériau est proche dans toutes les directions de l’espace.

Ensuite, nous avons étudié la déformation du matériau sous compression mécanique isotope pour mettre en évidence l’existence de la transition de phase I → II. La figure 4.23 présente l’évolution des paramètres de maille de la Zn(CN)₂-I dans le groupe d’espace P̅43m, en fonction de la pression mécanique exercée sur la charpente du matériau. On observe une contraction du matériau de l’ordre de 13% en volume sur la gamme de pression 0 – 10 GPa. Si l’on trace la pression en fonction du volume du matériau, on peut estimer le module d’élasticité isostatique (module bulk) à partir de l’équation d’état de Birch-Murnaghan [208] :

\[P(V) = \frac{3B_0}{2} \left(\left(\frac{V_0}{V} \right)^{\frac{7}{6}} - \left(\frac{V_0}{V} \right)^{\frac{5}{6}} \right) \left(1 + \frac{3}{4} (B'_0 - 4) \left(\left(\frac{V_0}{V} \right)^{\frac{1}{4}} - 1 \right) \right) \]

(4.8)

La valeur du module bulk que nous obtenons est en accord raisonnable avec celle mesurée expérimen
talement à 300 K par Goodwin et coll. (B₀^{calc} = 50.17 GPa vs B₀^{exp} = 36.9 GPa). Cependant, on n’observe pas d’affaiblissement du matériau sous pression mécanique (B'_0 = +4.73) contrairement à ce qui a été montré expérimentalement (B'_0 = −8.6). La valeur négative de B'_0 indique que le module bulk du matériau diminue lorsque la pression augmente. Goodwin et coll. ont récemment montré que ce phénomène se produit au-delà d’une température minimum de l’ordre de 30 K.[204] Or mes simulations sont effectuées à 0 K ce qui justifie le fait que nous n’observons pas l’affaiblissement du matériau sous l’effet de la pression. Cependant, sous l’effet de la pression exercée on n’observe pas de transition structurale de la phase I vers la phase II du matériau. En effet, la transition de la phase I vers la phase II s’accompagne d’une réduction de la symétrie du cristal (P̅43m → P2₁/c) que je n’avais initialement pas prise en compte (calculs dans le groupe P̅43m).

Pour contourner cette limitation, j’ai relaxé sous pression mécanique initialement (5 GPa) la structure de la phase II obtenue expérimentalement et cette phase du matériau n’est pas
Figure 4.23 : Évolution des paramètres de maille de la phase I sous compression.

Figure 4.24 : Évolution des paramètres de maille de la phase II (en haut) et du volume (en bas) sous décompression depuis 5 GPa.
stable à pression ambiante (tableau 4.9). On obtient un bon accord entre la structure relaxée à 5 GPa et celle obtenue expérimentalement à P = 5.36 GPa. Ensuite, à partir de la structure de la Zn(CN)$_2$-II relaxée nous avons diminué la pression exercée sur le matériau de 5 GPa à 0 GPa. L’évolution des paramètres de maille de la Zn(CN)$_2$-II sous décompression est présentée sur la figure 4.24. La courbe est en excellent accord avec les données expérimentales reportées par Chapman et coll. [201] et Goodwin et coll. [202] présentées sur la figure 4.25. On observe une transition de la phase II vers la phase I dans la gamme de pression 0 – 0.5 GPa. On remarque que la compression de la phase I est isotrope alors que celle de la phase II présente un comportement anisotrope et une compressibilité linéaire négative (NLC). En effet, le paramètre a augmente avec la pression tandis que les paramètres b et c se contractent. La transition de phase I \rightarrow II, de type ordre–désordre, est caractérisée par une distorsion de la liaison linéaire Zn-CN-Zn qui entraîne une réorientation des tétraèdres Zn(C/N)$_4$ et conduit à la phase II de topologie diamant déformée comme représentée sur la figure 4.26. Cependant, à température ambiante, la transition de phase est expérimentalement observée à plus haute pression (vers 1.52 GPa) que dans nos calculs. Or, il a été montré par dynamique moléculaire que plus la température est élevée et plus la pression de transition I \rightarrow II est élevée.[203] La valeur de la pression de transition que nous obtenons est en accord raisonnable avec la valeur calculée à basse température par Fang et al. (0.7 GPa à 10 K) par simulations de dynamique moléculaire avec champ de force classique.[203]

![Figure 4.25 : Évolution expérimentale des paramètres de maille du Zn(CN)$_2$ (en haut) et du volume (en bas) sous pression par Chapman et coll. (à gauche) [201] et Goodwin et coll. (à droite) [202].](image)

Afin d’étudier l’influence de la température, nous avons également effectué des simulations de dynamique moléculaire en reprenant le champ de force de Fang et al. La figure 4.27 présente l’évolution du volume de la phase I sous pression mécanique calculée à 300 K ainsi que l’évolution des paramètres de maille de la phase II sous décompression depuis 5 GPa à 300 K. Dans les deux cas, on retrouve une valeur de la pression de transition proche de celle mesurée expériemntalement (respectivement 1.2 GPa et 1.52 GPa). Quelle que soit la méthode de simulation utilisée, calculs DFT ou dynamique moléculaire, la transition I \rightarrow II que nous observons est
Figure 4.26 : Représentation schématique du mode de coordination des tétraèdres Zn(C/N)₄ de la phase Zn(CN)₂-I (en haut), et de la phase Zn(CN)₂-II (au milieu). En bas : représentation de la structure diamant déformée de la Zn(CN)₂-II. Image tirée de la référence [201].

Figure 4.27 : À gauche : évolution du volume de la phase I calculée à 300 K par dynamique moléculaire. À droite : évolution des paramètres de maille de la phase II sous décompression depuis 5 GPa calculée par dynamique moléculaire.

continue, contrairement à la transition mesurée expérimentalement. Nous pouvons attribuer cela à un effet de taille finie : plus la taille du système est petite et plus la transition est continue.

Certains matériaux tels que les oxydes présentent une expansion thermique négative (Negative Thermal Expansion, NTE) qui se manifeste par la contraction du volume du matériau lorsque la température augmente. Cette propriété est assez recherchée car la plupart des matériaux présentent une expansion thermique positive. Généralement, les matériaux formés de polyèdres de coordination reliés entre eux par des liaisons simples métal–oxygène–métal (M–O–M’) telles que la liaison Zr–O–W du ZrW₂O₈, ou oxygène–métal–oxygène (O–M–O’) comme les liaisons O–Cu–O dans Cu₂O, présentent une expansion thermique négative. Le mécanisme qui induit ce phénomène est lié aux déplacements vibrationnels de l’atome central qui entraîne la réduction de la distance séparant les deux atomes de métal ou d’oxygène. Récemment, des études
ont montré que les matériaux de la famille Zn(CN)$_2$ présentent une expansion thermique négative due aux vibrations du groupement CN qui induit le rapprochement des deux atomes de zinc.[209, 210, 211] Je me suis donc intéressée à cette propriété des Zn(CN)$_2$ et j’ai effectué trois simulations de dynamique moléculaire de la Zn(CN)$_2$-I à pression ambiante et à différentes températures (100, 300 et 600 K). Le tableau 4.11 donne les valeurs du volume de maille du matériau pour les trois températures considérées. On note une contraction du matériau sous l’effet de la température qui caractérise le phénomène d’expansion thermique négative (NTE). À partir des valeurs répertoriées dans le tableau 4.11, j’ai calculé le coefficient d’expansion thermique défini de la manière suivante :

$$\alpha_V = \frac{1}{V} \frac{dV}{dT}$$ (4.9)

Dans la gamme de température 100 – 600 K, le coefficient d’expansion thermique de la Zn(CN)$_2$-I calculé par dynamique moléculaire vaut $\alpha_V = -28.3$ M.K$^{-1}$. Collings et al. ont reporté expérimentalement un coefficient d’expansion thermique de $\alpha_V = -50.7$ M.K$^{-1}$ pour cette phase du matériau entre 25 et 325 K.[202] À titre de comparaison, le coefficient d’expansion thermique de la ZrW$_2$O$_8$ est de $\alpha_V = -27.3$ M.K$^{-1}$ [212] tandis que la plupart des matériaux présentent une expansion thermale positive (i.e. augmentation du volume en chauffant) de l’ordre de $\alpha_V = +30$ M.K$^{-1}$[213].

4.3.3 Les phases poreuses

Je me suis ensuite intéressée aux phases poreuses de Zn(CN)$_2$ obtenues expérimentalement par intrusion de fluides par Lapidus et al.[201] J’ai étudié en particulier la phase dia et la phase lon car la structure de la phase pyr présente du désordrestructural (défauts désordonnés) difficile à modéliser par une approche de chimie quantique sur un système de taille finie. L’analyse de la densité électronique expérimentale (diffraction RX) a permis de montrer que les phases de Zn(CN)$_2$ obtenues sont poreuses et contiennent des molécules de fluide à l’intérieur de leurs pores : Zn(CN)$_2$-dia 1H$_2$O et Zn(CN)$_2$-lon 1/2CH$_3$OH. J’ai effectué une optimisation géométrique par calculs DFT des positions atomiques et de la maille des structures vides de la phase dia et de la phase lon (tableau 4.12). Ces calculs mettent en évidence que les deux phases, dia et lon, vides et à pression ambiante sont des structures métastables de Zn(CN)$_2$: elles correspondent à des minima locaux de l’enthalpie.

Les matrices élastiques de chacune des deux phases poreuses de Zn(CN)$_2$ à partir desquelles j’ai calculé leurs propriétés mécaniques sont présentées ci-dessous (en GPa) :

<table>
<thead>
<tr>
<th></th>
<th>100 K</th>
<th>300 K</th>
<th>600 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (Å3)</td>
<td>209.2</td>
<td>207.6</td>
<td>206.2</td>
</tr>
</tbody>
</table>

Tableau 4.11 : Évolution du volume de la structure de la Zn(CN)$_2$-I en fonction de la température (P=0 GPa).

<table>
<thead>
<tr>
<th>α_V</th>
<th>-28.3 M.K$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_V</td>
<td>-50.7 M.K$^{-1}$</td>
</tr>
<tr>
<td>α_V</td>
<td>-27.3 M.K$^{-1}$</td>
</tr>
<tr>
<td>α_V</td>
<td>$+30$ M.K$^{-1}$</td>
</tr>
</tbody>
</table>
4.3 — Polymorphisme du cyanure de zinc Zn(CN)$_2$

<table>
<thead>
<tr>
<th>Phase</th>
<th>Groupe d’espace</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>γ (°)</th>
<th>V (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(CN)$_2$-dia exp</td>
<td>$F\overline{4}3m$</td>
<td>11.26</td>
<td>11.26</td>
<td>11.26</td>
<td>90</td>
<td>1429.23</td>
</tr>
<tr>
<td>Zn(CN)$_2$-dia simul</td>
<td>$F\overline{4}3m$</td>
<td>11.93</td>
<td>11.93</td>
<td>11.93</td>
<td>90</td>
<td>1698.07</td>
</tr>
<tr>
<td>Zn(CN)$_2$-lon exp</td>
<td>$P6_3mc$</td>
<td>8.22</td>
<td>8.22</td>
<td>13.17</td>
<td>120</td>
<td>770.10</td>
</tr>
<tr>
<td>Zn(CN)$_2$-lon simul</td>
<td>$P6_3mc$</td>
<td>8.44</td>
<td>8.44</td>
<td>13.77</td>
<td>120</td>
<td>849.18</td>
</tr>
</tbody>
</table>

Tableau 4.12 : Données cristallographiques des structures Zn(CN)$_2$-dia et Zn(CN)$_2$-lon expérimentales et relaxées par DFT.

<table>
<thead>
<tr>
<th>Phase</th>
<th>E_{min} (GPa)</th>
<th>E_{max} (GPa)</th>
<th>A_E (GPa)</th>
<th>G_{min} (GPa)</th>
<th>G_{max} (GPa)</th>
<th>A_G (TPa$^{-1}$)</th>
<th>$\beta_x = \beta_y$ (TPa$^{-1}$)</th>
<th>β_z (TPa$^{-1}$)</th>
<th>ν_{min}</th>
<th>ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>dia</td>
<td>3.87</td>
<td>10.96</td>
<td>2.83</td>
<td>1.3</td>
<td>3.86</td>
<td>2.94</td>
<td>14.4</td>
<td>14.4</td>
<td>-0.03</td>
<td>0.91</td>
</tr>
<tr>
<td>lon</td>
<td>6.44</td>
<td>10.85</td>
<td>1.68</td>
<td>2.2</td>
<td>3.32</td>
<td>1.5</td>
<td>14.2</td>
<td>14.8</td>
<td>0.37</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Tableau 4.13 : Valeurs minimales, maximales et anisotropie des propriétés mécaniques des structures Zn(CN)$_2$-dia et Zn(CN)$_2$-lon.

$$C_{\text{dia}} = \begin{pmatrix} 24.891 & 22.264 & 22.264 \\ . & 24.891 & 22.264 \\ . & . & 24.891 \end{pmatrix} \begin{pmatrix} . & . & 24.891 \\ . & . & 24.891 \end{pmatrix} 3.856 \begin{pmatrix} . & . & 24.891 \\ . & . & 24.891 \end{pmatrix}$$ (4.10)

$$C_{\text{lon}} = \begin{pmatrix} 26.828 & 22.083 & 20.537 \\ . & 26.828 & 20.537 \\ . & . & 28.098 \end{pmatrix} \begin{pmatrix} 2.150 \\ 2.150 \\ 2.373 \end{pmatrix}$$ (4.11)

Le tableau 4.13 répertorie les valeurs minimales, maximales et l’anisotropie des modules élastiques des phases dia et lon. Globalement, ces deux phases de Zn(CN)$_2$ présentent des propriétés mécaniques similaires et proches de celles de la phase I. Cependant, on note qu’en raison de sa structure interpenetrée, la Zn(CN)$_2$-I est plus résistante aux contraintes de cisaillement et de compression uniaxiale que la phase dia (respectivement $G_{\text{I min}}^{I} = 2.44$ GPa vs $G_{\text{dia min}}^{I} = 1.3$ GPa et $E_{\text{min}}^{I} = 7.21$ GPa vs $E_{\text{min}}^{\text{dia}} = 3.87$ GPa).

La figure 4.28 présente l’évolution du volume des phases dia et lon sous compression mécanique. À basse pression, le comportement des deux phases métastables de Zn(CN)$_2$ sous l’effet de la pression mécanique est très proche et similaire à celui de la phase I en raison de leur proximité structurale. On observe alors une diminution continue du volume de la structure de la phase dia avec la pression mais pas de transition structurale contrairement à la phase lon qui présente une transition structurale, ordre-désordre, induite par la pression mécanique à
P = 2 GPa (figure 4.29). Les paramètres de maille a et b diminuent très légèrement au cours de la compression tandis que le paramètre c s’écroule au-delà de 2 GPa. Cependant, contrairement à la Zn(CN)$_2$-II la phase poreuse lon ne présente pas de phénomène marqué de compressibilité linéaire négative.

La topologie de la phase dia est la même que celle de la phase I, à la seule différence qu’elle est constituée d’un seul réseau non–interpénétré. Elle devrait donc présenter, comme la phase I, une transition structurale ordre–désordre induite par la pression. Si l’on fait l’hypothèse que la structure de la phase dia-II est similaire à la structure d’un réseau de la phase II, nous pouvons construire à partir de la phase II relaxée à 5 GPa, une structure hypothétique de la phase dia-II en supprimant l’un des deux sous-réseaux. J’ai relaxé à pression ambiante cette structure hypothétique qui converge alors vers une structure dia. Puis, j’ai étudié le comportement sous compression de cette nouvelle structure dia de symétrie $Pmn2_1$, symétrie réduite par rapport à la structure dia d’origine (figure 4.30). On remarque alors une transition structurale de type ordre–désordre à $P = 1.6$ GPa conduisant à la formation d’une structure dense.

À partir de l’évolution du volume des phases dia et lon en fonction de la pression nous avons estimé leur module $bulk$ en ajustant la courbe avec l’équation d’état de Birch-Murnaghan (équa-
4.3 — Polymorphisme du cyanure de zinc Zn(CN)_2

Tableau 4.14 : Évolution du volume de la structure de la Zn(CN)_2-dia et de la structure Zn(CN)_2-lon en fonction de la température ($P=0$ GPa).

<table>
<thead>
<tr>
<th>Température</th>
<th>100 K</th>
<th>300 K</th>
<th>600 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume phase dia (Å^3)</td>
<td>1652.0</td>
<td>1638.43</td>
<td>1620.7</td>
</tr>
<tr>
<td>Volume phase lon (Å^3)</td>
<td>826.6</td>
<td>819.9</td>
<td>810.6</td>
</tr>
</tbody>
</table>

Figure 4.30 : Évolution des paramètres de maille de la phase *dia* issue de la relaxation à pression ambiante de la phase *dia*-II *hypothétique* sous compression calculée par DFT.

J’ai également effectué des dynamiques moléculaires à 100 K et 600 K et à pression ambiante de manière à étudier les propriétés thermiques et notamment le phénomène d’expansion thermique négative (NTE). Le tableau 4.14 répertorie les valeurs du volume de maille de la Zn(CN)_2-dia et de la Zn(CN)_2-lon pour les trois températures considérées. On remarque que sous l’effet de la température chacune des deux phases métastables de Zn(CN)_2 se contracte. J’ai alors calculé le coefficient d’expansion thermique de la phase *dia* : $\alpha_{\text{dia}}^V = -38.0$ M.K$^{-1}$, et de la phase *lon* : $\alpha_{\text{lon}}^V = -39.0$ M.K$^{-1}$. Les phases poreuses de Zn(CN)_2 (non–interpénétrées) possèdent un coeficient d’expansion thermique négatif plus élevé que celui de la phase I ($\alpha_{V}^I = -28.27$ M.K$^{-1}$). Ceci est en bon accord avec les résultats expérimentaux de Phillips *et al.* qui ont montré que les structures non-interpénétrées de matériaux analogues, Cd(CN)$_2$, présentent un phénomène d’expansion thermique négative plus important que celui du matériau possédant un réseau interpénétré.[214]
Figure 4.31 : Évolution des paramètres de maille de la phase dia (à gauche) et de la phase ion (à droite) sous compression calculée par dynamique moléculaire à 300 K.
4.3.4 Thermodynamique de l’intrusion de fluide

Dans cette partie on s’intéresse, d’un point de vue thermodynamique, au polymorphisme induit par l’intrusion de fluide observé dans la famille des Zn(CN)$_2$. De manière générale, l’adsorption d’un fluide dans un matériau flexible est décrit dans l’ensemble statistique osmotique. Dans cet ensemble, les paramètres de contrôle sont le nombre de molécules du matériau, N_{host}, le potentiel chimique du fluide μ_{ads}, la contrainte mécanique exercée sur le système σ et la température T. Dans cet ensemble le potentiel thermodynamique Ω_{os} s’écrit de la manière suivante :

$$\Omega_{\text{os}} = U - TS - \mu_{\text{ads}}N_{\text{ads}} + \sigma V$$

où V est le volume de la maille unitaire du matériau et N_{ads} le nombre de molécules de fluide adsorbées.

Dans le cas particulier où le matériau étudié possède un nombre fini de structures métastables, il est possible de se placer dans l’ensemble dit sous-osmotique pour décrire de manière analytique les transitions de phase du matériau au cours de l’adsorption. Dans ce sous-ensemble de l’ensemble osmotique, le nombre de degrés de liberté de la structure du matériau est limité aux conformations correspondant aux structures métastables du matériau.[62, 215] Ainsi, le potentiel thermodynamique de chaque phase i du matériau peut s’exprimer sous la forme suivante [216] :

$$\Omega_{\text{os}}^{(i)}(T, P, \mu) = F_{\text{host}}^{(i)}(T) + \sigma V_i - \int_{0}^{\mu} N_{\text{ads}}^{(i)}(T, \mu) d\mu$$

Cette expression est constituée de trois termes :

— L’énergie libre $F_{\text{host}}^{(i)}$ de la phase i du matériau vide.

— Le terme PV_i qui fait intervenir le volume de maille de la phase i noté V_i et la contrainte mécanique σ. Généralement, la contrainte mécanique σ est assimilée à une pression isotrope, P.

— Un terme qui caractérise l’interaction entre le fluide et le matériau, et qui dépend du potentiel chimique du fluide μ et la quantité adsorbée dans le matériau N_{ads}. Dans une expérience d’intrusion de fluide la potentiel chimique μ est lié à la pression externe du fluide, elle-même égale à la pression mécanique P (si le fluide est isostatique).

Ainsi, la comparaison des potentiels thermodynamiques de chaque phase du matériau permet de déterminer la stabilité relative de ces différentes phases en fonction des conditions thermodynamiques de température et de pression. Cette équation permet également de décrire de manière générale comment l’adsorption influence l’équilibre entre les différentes phases du matériau. Ce cadre thermodynamique [217, 218] développé au sein de l’équipe a notamment permis d’étudier et de rationaliser l’évolution des propriétés d’adsorption des MOFs flexibles, telles que les matériaux de la famille MIL-53, en fonction de la température et de la coadsorption de mélanges de gaz.[174, 175, 219, 176]

Afin de rationaliser le polymorphisme des matériaux de la famille Zn(CN)$_2$ induit par l’intrusion de fluide, nous avons calculé la différence de potentiel thermodynamique osmotique $\Delta \Omega_{\text{os}}$ entre la phase dia et la phase I ($\Delta \Omega_{\text{os}}^{\text{dia/I}}$) et entre la phase lon et la phase I ($\Delta \Omega_{\text{os}}^{\text{lon/I}}$). Je détaille ci-dessous comment les trois termes de l’équation 4.13 ont été calculés.

Énergie libre :
4.3 — Polymorphisme du cyanure de zinc Zn(CN)$_2$

<table>
<thead>
<tr>
<th>Phase du matériau</th>
<th>ΔU (kJ/mol/Zn)</th>
<th>ΔTS (kJ/mol/Zn)</th>
<th>ΔF (kJ/mol/Zn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT dia</td>
<td>+17.22</td>
<td>-2.16</td>
<td>+19.38</td>
</tr>
<tr>
<td>DFT lon</td>
<td>+19.36</td>
<td>+3.61</td>
<td>+15.75</td>
</tr>
<tr>
<td>MD dia</td>
<td>+5.76</td>
<td>-</td>
<td>+7.92</td>
</tr>
<tr>
<td>MD lon</td>
<td>+5.89</td>
<td>-</td>
<td>+2.28</td>
</tr>
</tbody>
</table>

Tableau 4.15 : Contributions énergétiques par rapport à la phase I calculées par calculs quantiques (DFT) et dynamique moléculaire à 300 K (MD).

<table>
<thead>
<tr>
<th>Pression (GPa)</th>
<th>$P\Delta V_{\text{dia/I}}$ (kJ/mol/Zn)</th>
<th>$P\Delta V_{\text{lon/I}}$ (kJ/mol/Zn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>31.4</td>
<td>31.4</td>
</tr>
<tr>
<td>1</td>
<td>61.1</td>
<td>61.1</td>
</tr>
<tr>
<td>1.5</td>
<td>89.4</td>
<td>89.4</td>
</tr>
<tr>
<td>2</td>
<td>116.5</td>
<td>115.4</td>
</tr>
<tr>
<td>2.5</td>
<td>142.7</td>
<td>87.5</td>
</tr>
</tbody>
</table>

Tableau 4.16 : Évolution du terme $P\Delta V$ par rapport à la phase I en fonction de la pression calculés à partir des résultats des calculs quantiques.

Il existe plusieurs manières de calculer l’énergie d’un système, par calculs quantiques ou dynamique moléculaire. Les valeurs d’énergie obtenues par calculs quantiques sans correction de Grimme ne sont pas satisfaisantes car on n’observe pas de grande différence entre les phases poreuses et la phase I qui contient un réseau interpénétré, ce qui n’est pas physique. Or, l’énergie d’interpénétration est principalement due aux interactions de dispersion entre les sous-réseaux d’où l’importance d’inclure la correction de Grimme dans nos calculs. J’ai donc calculé l’énergie $\Delta U_{i/I}$, de chaque phase i poreuse par rapport à la phase I, à partir de calculs quantiques (correction de Grimme). Je l’ai également comparée aux résultats issus de simulations de dynamique moléculaire. La correction de Grimme est connue pour surestimer les valeurs d’énergie, ce qui justifie le fait que les valeurs calculées par calculs quantiques sont supérieures à celles obtenues à partir des simulations de dynamique moléculaire. La valeur d’énergie réaliste est donc sûrement entre les deux valeurs calculées.

L’énergie libre d’un matériau est très dure à évaluer, et j’ai donc suivi une approximation simple : l’entropie de chaque phase est approximée par l’entropie vibrationnelle obtenue à partir d’un calcul des fréquences de vibration au point Γ. À partir de ces grandeurs, j’ai calculé les différences d’énergie libre $\Delta F_{i/I}$ (tableau 4.15).

Terme de volume :

À partir des calculs quantiques de compression des phases dia et lon, j’ai calculé le terme $P\Delta V$ dans la gamme de pression $0 – 2.5$ GPa (tableau 4.16) pour les deux phases dia et lon du matériau. On remarque que l’évolution du volume des deux phases poreuses est identique jusqu’à la transition (1.5 GPa).

Terme d’adsorption :

Le dernier terme à évaluer est celui qui dépend de l’adsorption. Pour ce faire, j’ai effectué des
4.3 — Polymorphisme du cyanure de zinc Zn(CN)$_2$

Figure 4.32 : Isothermes d’adsorption d’eau (à gauche) et de méthanol (à droite) dans la phase dia et la phase lon calculées par GCMC à 300 K.

<table>
<thead>
<tr>
<th>Phase</th>
<th>N_{ads, H_2O} (molec./Zn)</th>
<th>$P_{int}^{H_2O}$ (MPa)</th>
<th>$N_{ads, MeOH}$ (molec./Zn)</th>
<th>P_{int}^{MeOH} (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dia</td>
<td>5.16</td>
<td>225</td>
<td>1.83</td>
<td>20</td>
</tr>
<tr>
<td>lon</td>
<td>4.94</td>
<td>250</td>
<td>1.79</td>
<td>20</td>
</tr>
</tbody>
</table>

Tableau 4.17 : Valeurs moyennes de la quantité maximale adsorbée et pression d’intrusion de l’eau et du méthanol dans la phase dia et la phase lon à 300 K déterminées par GCMC.

Simulations Monte-Carlo dans l’ensemble grand canonique d’intrusion d’eau et de méthanol à 300 K (figure 4.32). Ces simulations permettent de calculer la valeur moyenne de la quantité de molécules adsorbées dans chacune des deux phases poreuses de Zn(CN)$_2$ et de déterminer la pression d’intrusion (tableau 4.17).

Puis, à partir des données expérimentales (volume molaire en fonction de la pression) tabulées dans la base de données des fluides du NIST, j’ai établi la relation $\mu(P)$ du méthanol et celle de l’eau, qui sont quasi–linéaires dans le domaine qui nous intéresse :

$$\mu_{MeOH} \approx 3.388.10^{-2} \times P \quad et \quad \mu_{H_2O} \approx 1.58.10^{-2} \times P$$ (4.14)

Ainsi le potentiel chimique correspondant à la pression d’intrusion d’eau dans la phase dia est de 3.56 kJ/mol et celui correspondant à l’intrusion de méthanol dans la phase lon est de 0.68 kJ/mol. Le troisième terme de l’équation 4.13 relatif à l’adsorption peut alors être calculé. Les valeurs sont reportées dans le tableau 4.18.

Une fois les trois termes de l’équation 4.13 calculés nous pouvons déterminer la pression d’intrusion d’eau et méthanol à partir de laquelle chacune des deux phases dia et lon est favorisée par rapport à la phase I du matériau. La phase dia de Zn(CN)$_2$ est stabilisée pour une pression d’intrusion d’eau comprise entre 1.5 et 2 GPa, les valeurs respectives du potentiel thermodynamique sont $\Delta \Omega_{os}^{dia/I} = 4.88 \text{ kJ/mol/Zn}$ et $\Delta \Omega_{os}^{dia/I} = -8.82 \text{ kJ/mol/Zn}$. La phase lon est quant à elle favorisée pour une pression d’intrusion de méthanol entre 2 et 2.5 GPa avec respectivement $\Delta \Omega_{os}^{lon/I} = 11.05 \text{ kJ/mol/Zn}$ et $\Delta \Omega_{os}^{lon/I} = -47.15 \text{ kJ/mol/Zn}$. On observe un accord qualitatif avec les données expérimentales de Chapman et coll. [201] qui observe la transition I \rightarrow dia et I \rightarrow lon pour une pression d’intrusion de l’ordre de 1.2 GPa en présence respectivement d’eau et de méthanol.
4.3 — Polymorphisme du cyanure de zinc Zn(CN)\(_2\)

Je me suis également intéressée à la sélectivité entre la phase \(\text{dia}\) et la phase \(\text{lon}\) de manière à rationaliser les observations expérimentales. Ainsi, j’ai calculé la différence de potentiel thermodynamique \(\Delta \Omega_{\text{os}}^{\text{lon/dia}}\) pour l’intrusion d’eau et de méthanol. En présence d’eau, la phase \(\text{dia}\) est favorisée par rapport à la phase \(\text{lon}\) dans la gamme de pression \(0 – 1\) GPa. Et la phase \(\text{lon}\) est stabilisée par rapport à la phase \(\text{dia}\) sous intrusion de MeOH pour une pression supérieure à \(0.5\) GPa. Il existe donc un facteur thermodynamique qui favorise la phase \(\text{dia}\) en présence d’eau et la phase \(\text{lon}\) en présence de MeOH, cependant la gamme de pression n’est pas la même que celle déterminée expérimentalement. Afin d’améliorer nos résultats et de reproduire quantitativement les expériences, il faudrait d’une part simuler l’intrusion d’un mélange MEW plutôt que du méthanol et d’autre part faire des simulations Monte-Carlo dans l’ensemble osmotique.

4.3.5 Imidazolate de cadmium

Dans cette partie, je m’intéresse à un matériau présentant, comme la Zn(CN)\(_2\), une topologie anticuprite (figure 4.33). Ces deux matériaux de nature chimique très différente partagent néanmoins des caractéristiques structurales. En effet, dans la Cd(im)\(_2\) les centres métalliques Cd\(^{2+}\) remplacent les cations Zn\(^{2+}\) et les ligands imidazolates occupent la place des anions CN\(^-\). La phase de Cd(im)\(_2\) stable dans les conditions ambiantes est isomorphe à la phase Zn(CN)\(_2\)-II (stable à haute pression) : la liaison Cd–Im–Cd n’est pas linéaire. On peut donc envisager l’existence d’une phase Cd(im)\(_2\) de structure analogue à celle de la Zn(CN)\(_2\)-I de symétrie plus élevée. La transition structurale I \(\rightarrow\) II de la Zn(CN)\(_2\) étant induite par la pression, l’application d’une pression négative (tension, équivalente à l’adsorption) sur la charpente de la Cd(im)\(_2\) devrait induire une transition structurale vers une phase hypothétique Cd(im)\(_2\)-I. Cependant, expérimentalement cette stratégie n’est pas réalisable car le matériau présente une structure non poreuse (réseau interpenetré). Collings et al. ont cependant mis en évidence l’existence de la transition structurale II \(\rightarrow\) I de la Cd(im)\(_2\) sous l’effet la température.[202]

J’ai étudié le comportement mécanique de la Cd(im)\(_2\) pour voir si comme la Zn(CN)\(_2\), ce matériau présente une transition structurale induite par la pression. J’ai effectué des calculs DFT à partir de la structure hypothétique ordonnée Cd(im)\(_2\)-I proposée par Ines Collings. Dans un premier temps, j’ai relaxé cette structure à \(-2\) GPa qui s’est avérée stable en pression négative. Ensuite j’ai étudié le comportement du matériau dans la gamme de pression \(-2 – 5\) GPa. La figure 4.34 présente l’évolution des paramètres de maille de la Cd(im)\(_2\) sous compression. On observe alors une transition structurale du matériau vers 0 GPa ce qui est en bon accord avec les observations expérimentales puisque la phase Cd(im)\(_2\)-II est stable dans les conditions ambiante.
4.3 — Polymorphisme du cyanure de zinc Zn(CN)$_2$

Figure 4.33 : Représentation schématique de la structure cristalline et de l’environnement de coordination des matériaux présentant une topologie anticuprite : Zn(CN)$_2$-I et Cd(Im)$_2$. Image tirée de la référence [202].

Nos résultats permettent de confirmer l’existence d’une transition structurale ordre–désordre de la Cd(Im)$_2$ induite par la pression. Les deux matériaux Cd(Im)$_2$ et Zn(CN)$_2$, bien que de nature chimique très différente, présentent un comportement mécanique sous compression similaire dû à la topologie commune de leur structure.

Figure 4.34 : Évolution des paramètres de maille de la Cd(Im)$_2$ sous compression calculée par DFT.
4.4 Conclusion

Cette étude de la stabilité mécanique des MOFs, nous a permis de mettre en évidence que le phénomène d’amorphisation de la ZIF-8 observé sous l’effet de la pression est dû à une instabilité mécanique induite par une diminution de la résistance du matériau sous contrainte de cisaillement (*shear mode softening*). En effet, la constante élastique C_{44} diminue sous compression mécanique. De plus, nous avons montré que la température n’influence pas le comportement mécanique de la ZIF-8 ce qui est en bon accord avec les données expérimentales, et que la présence de molécules adsorbées augmente la stabilité mécanique du matériau sous compression.

Nous avons également mis en évidence la présence d’un transfert de proton dans les matériaux de la famille des *Zinc Akyl Gate* induit par la pression mécanique, ce qui a permis d’expliquer les observations expérimentales. Ce travail constitue la première étude reportant l’observation d’un tel phénomène au sein d’une MOF.

Nous avons également confirmé l’existence de phases métastables poreuses de Zn(CN)$_2$. Nous avons alors montré comment l’intrusion de différents fluides peut conduire à l’une ou l’autre des phases de Zn(CN)$_2$. L’étude de la Cd(im)$_2$ a révélé que ce matériau peut également présenter une transition structurale *ordre–désordre* de même nature que celle observée chez les Zn(CN)$_2$ laissant penser que ce phénomène est générique.

En conclusion, cette étude illustre bien la complémentarité entre les expériences et la simulation moléculaire. Les méthodes utilisées dans cette étude constituent une boîte à outils qui pourra permettre d’orienter la synthèse de nouveaux polymorphes de MOFs par la prédiction des conditions favorisant la formation d’une phase métastable particulière (dense ou poreuse), ainsi que leurs conditions de stabilité mécanique.
Chapitre 5

Influence de la topologie et de la fonctionnalisation sur les propriétés d’adsorption d’eau

Dans ce chapitre, je me suis intéressée aux propriétés d’adsorption d’eau des ZIFs, ou Zeolitic Imidazolate Frameworks. Les ZIFs constituent une sous-famille de MOF topologiquement isomorphes aux zéolithes et présentent des propriétés d’adsorption intéressantes. De plus, elles possèdent une stabilité thermique et chimique importante et ont donc naturellement été proposées pour des applications industrielles. Les propriétés d’adsorption de ces matériaux sont directement liées à leurs caractéristiques intrinsèques telles que la structure du matériau (topologie et géométrie) et la nature chimique de la surface interne mais aussi à la présence de molécules pré-adsorbées dans les pores telles que des traces de solvants (i.e. polluants) impactant généralement négativement les capacités d’adsorption. L’une des molécules polluantes les plus fréquemment rencontrées est l’eau car elle est naturellement présente dans l’air humide ambiant. La présence d’eau dans les pores influence d’une part les propriétés d’adsorption mais aussi la stabilité du matériau. L’affinité d’un matériau pour l’eau est donc une donnée importante permettant d’orienter le choix du matériau en fonction de l’application souhaitée. J’ai étudié, par simulation moléculaire, le comportement en présence d’eau de sept matériaux de topologie et de nature chimique différentes afin de rationaliser l’influence de ces paramètres sur les interactions eau-matériau. J’ai alors montré comment la fonctionnalisation du ligand organique permet de moduler l’hydrophobicité de ces matériaux hybrides. La première partie de ce chapitre donne un aperçu des principaux travaux de la communauté sur la stabilité des MOFs en présence d’eau et les propriétés d’adsorption d’eau de ces matériaux. Ensuite, les résultats de ce travail de thèse seront présentés. Et enfin, je mettrai en perspective les résultats obtenus avec des travaux précédents portant sur d’autres matériaux nanoporeux afin d’apporter une vision générale de l’évolution des propriétés d’adsorption d’eau.

Cette étude a conduit à une publication dans Phys. Chem. Chem. Phys. [220]. Une partie de cette étude a été réalisée dans le cadre du stage de L3 d’Alexy Freitas de Jésus, que j’ai encadré (mai-juillet 2013).
5.1 — Les MOFs et l’eau

5.1.1 Stabilité en présence d’eau

L’influence de l’eau sur la morphologie structurale et les propriétés des MOFs est désormais bien documentée dans la littérature.[221, 222] La première étude théorique s’intéressant aux interactions entre les molécules d’eau et la structure de la MOF-5 a été reportée par Greathouse et al. en 2006.[223] Ce travail, basé sur des calculs de dynamique moléculaire, a permis de caractériser l’instabilité du matériau en présence de vapeur d’eau. La figure 5.1 (à gauche) présente l’évolution du paramètre de maille du matériau en fonction du pourcentage en masse d’eau (de 0 à 10%). Pour un faible remplissage en eau (jusqu’à 2.3%) la MOF-5 est stable, bien que l’on observe une modification de sa structure (diminution du paramètre de maille). Au-delà d’une quantité d’eau adsorbée de l’ordre de 3.9%, le matériau s’effondre. L’instabilité de la MOF-5 en présence d’une certaine quantité d’eau (≥ 4%) s’explique par l’attaque des molécules sur les atomes de Zn des clusters métalliques. En effet, comme représenté sur la figure 5.1 (à droite) pour un remplissage en eau supérieur à 2% on observe que certains atomes d’oxygène de l’eau entrent dans la première sphère de coordination des cations métalliques Zn$^{2+}$, entraînant alors la rupture de certaines liaisons Zn-O1 et Zn-O2 de la structure et, par voie de conséquence, la dégradation du matériau.

Low et al. ont étudié la stabilité hydrothermale de certaines MOFs à partir d’une étude couplant des expériences de high throughput et des calculs quantiques.[34] Ce travail suggère que la force de la liaison entre le cluster métallique et le ligand organique pontant est une propriété clé qui détermine l’hydrostabilité des MOFs. La réaction d’hydratation d’une MOF caractérise l’insertion d’une molécule d’eau entre un cation métallique M et un ligand L et peut conduire au déplacement d’un ligand:

$$M - L + H_2O \rightarrow M - (OH_2) \cdots L$$

(5.1)

L’hydrolyse correspond à la réaction de rupture de la liaison $M - L$ qui entraîne la dissociation
de la molécule d’eau. L’anion hydroxyde se lie alors au cation métallique et le proton au ligand organique :

\[M - L + H_2O \rightarrow M - (OH) + LH \] (5.2)

À partir d’une approche quantique qui permet de décrire les ruptures de liaisons et donc la réaction d’hydrolyse, Low et al. ont étudié la stabilité hydrothermale de la MOF-5 ou IRMOF-1, de la MIL-101, -110, -53, HKUST-1, ZIF-8, MOF-74 et MOF-508. Ils ont alors considéré un fragment représentatif de la maille élémentaire de chaque matériau pour garder un coût de calcul raisonnable. Pour chaque matériau, la variation d’énergie liée au déplacement du ligand et à la réaction d’hydrolyse, ainsi que l’énergie d’activation de la réaction, ont été calculées. La figure 5.2 présente les géométries des réactifs, des états de transition et des produits pour les réactions de déplacement des ligands de l’IRMOF-1, de la HKUST-1, de la MIL-101 et de la ZIF-8. On observe alors que dans l’état de transition le mode de coordination du ligand carboxylate change (de \(\eta^2 \) à \(\eta^1 \)), libérant ainsi un site de coordination sur le métal. La molécule d’eau se lie ensuite au centre métallique et forme une liaison hydrogène avec l’atome d’oxygène du ligand carboxylate déplacé.

La carte présentée sur la figure 5.3 donne une vue d’ensemble de la stabilité hydrothermale des MOFs étudiées. La ZIF-8 apparaît comme le matériau présentant la meilleure stabilité hydrothermale (350 °C et 50 % d’humidité) par comparaison aux autres MOFs. La MOF-74 et la MIL-101(Cr) présentent également une bonne stabilité en présence d’eau et à température ambiante. On remarque que l’énergie d’activation de la ZIF-8 est la plus élevée (55 kcal.mol\(^{-1}\)), ce qui est dû au fait que le déplacement d’un des ligands imidazolates nécessite la rupture de la liaison \(M - L \) (coordination de type \(\eta^1 \)). La liaison métal-carboxylate peut au contraire être maintenue pendant la réaction de déplacement du ligand, c’est la cas des autres MOFs qui ont des énergies d’activation plus faibles. Bien que les auteurs trouvent une corrélation qualitative entre l’énergie d’activation du déplacement d’un ligand organique par une molécule d’eau et la stabilité déterminée expérimentalement, cette étude reste limitée car elle part d’un mécanisme présupposé (le déplacement d’un ligand par l’eau). Par ailleurs, cette étude énergétique néglige les effets de température (étude à 0 K) et ne tient pas compte de l’entropie du système. De plus, elle ne considère qu’une seule molécule d’eau et ne permet pas l’étude des étapes précédentes et suivantes du mécanisme d’hydratation.

Outre la fonctionnalité chimique des ligands organiques, d’autres facteurs entrent également en jeu dans la stabilité hydrothermale d’un matériau tels que le mode de coordination et l’état d’oxydation du centre métallique, la taille des pores et l’interpénétration du réseau. Ainsi, un matériau constitué par des centres métalliques de coordination octaédriques sera nettement plus stable qu’un matériau formé par des clusters métalliques tétraédriques, pour des raisons stériques. C’est notamment le cas de la Zn-MOF-74, qui possède une stabilité à l’eau beaucoup plus importante que l’IRMOF-1. De plus, le matériau sera d’autant plus stable à l’eau que la charge du métal (ou la charge globale du cluster métallique) sera élevée.

Plus récemment, une étude de dynamique moléculaire \textit{ab initio} menée au sein de l’équipe en 2012 par Marta De Toni a permis d’élucider le mécanisme d’hydratation responsable de l’instabilité de l’IRMOF-0h en présence d’eau.[33] Le mécanisme d’hydratation de l’IRMOF-0h, présenté sur la figure 5.4, se décompose en deux étapes : une première attaque d’une molécule d’eau sur l’un des cations de zinc qui devient hydraté (état B) et ensuite, en présence d’au moins quatre molécules d’eau, l’ouverture d’un des ligands coordonnés à ce même atome métallique, qui engendre la formation d’un autre état labile (état C). Cette étude a également permis de mettre en évidence un effet collaboratif des molécules adsorbées et par conséquent, la nécessité de prendre en compte plus qu’une seule molécule d’eau pour étudier le phénomène d’hydratation des MOFs. Ces résultats montrent également comment la MOF-5 peut être à la fois hydrophobe et instable.
5.1 — Les MOFs et l’eau

Figure 5.2 : Réaction de déplacement du ligand organique dans l’IRMOF-1, la HKUST-1, la MIL-101 et la ZIF-8. Pour chaque matériau, les trois structures correspondent (de gauche à droite) à l’état initial hydraté, à l’état de transition et au produit. Les carbones sont représentés en gris, les oxygènes en rouge, les hydrogènes en blanc, les zincs en bleu clair, les cuivres en violet, les chromes en vert foncé, les fluors en rose et les azotes en bleu. Cette figure est issue de la référence [34].
5.1 — Les MOFs et l’eau

Figure 5.3 : Carte de stabilité hydrothermale de plusieurs MOFs. L’énergie d’activation du déplacement du ligand par une molécule d’eau est reportée en violet pour chaque matériau.

Figure 5.4 : Représentation schématique du mécanisme d’hydrolyse de l’IRMOF-0h qui se fait en deux étapes. [33]
en présence d’eau. Cependant, les dynamiques moléculaires sont effectuées dans l’ensemble \((N, V, T)\), le matériau est alors contraint de garder son volume constant. Des simulations dans l’ensemble \((N, P, T)\), bien que beaucoup plus coûteuses en temps de calcul, auraient été plus adaptées pour décrire l’effondrement de la structure en présence d’eau. Une méthodologie a très récemment été mise en place par l’équipe pour décrire la flexibilité et le changement de structure des *Soft Porous Crystals* afin de pouvoir décrire la dégradation des matériaux de la famille MIL-53 en présence d’eau et ainsi d’étudier leur stabilité hydrothermale.[138]

5.1.2 L’adsorption d’eau dans les MOFs

Les études d’adsorption d’eau dans les MOFs permettent d’estimer le caractère hydrophobe et donc la stabilité hydrothermale de ces matériaux. Toutefois, avant de vous présenter les quelques études reportées dans la littérature, j’aimerais revenir sur le concept d’*hydrophobicité*. Une surface *hydrophobe* est une surface dont l’interaction avec les molécules d’eau est faiblement attractive comparée à celle qui s’établit entre les molécules d’eau du *bulk*. Par exemple, l’interaction entre une molécule d’eau et une surface de graphite est faible car la molécule d’eau ne peut pas établir de liaisons hydrogène avec les atomes de carbone de la surface. Dans la littérature, beaucoup d’études se sont intéressées au phénomène d’hydratation des cavités hydrophobes tels que les nanotubes de carbone, les cages de fullerènes ou les canaux biologiques.[224, 225, 226, 227, 228] Dans ce paragraphe, je présenterai de manière non-exhaustive les travaux expérimentaux et théoriques publiés dans la littérature, caractérisant les propriétés d’adsorption d’eau des MOFs.

Si l’étude de l’adsorption de gaz tels que le CO\(_2\), le CH\(_4\), le dihydrogène ou les alcanes dans les MOFs est assez largement rapportée dans la littérature, il existe peu d’informations concernant les propriétés d’adsorption d’eau dans ces matériaux. Küsgens *et al.* ont publié en 2009 une étude expérimentale sur l’adsorption d’eau dans cinq MOFs différentes : la HKUST-1, la DUT-4, la ZIF-8, la MIL-100(Fe) et la MIL-101.[229] Les isothermes d’adsorption mesurées à 298 K pour ces matériaux sont présentées sur la figure 5.5. Ils ont également étudié les effets de température et déterminé les chaleurs isostériques d’adsorption. L’isotherme d’adsorption d’eau de la HKUST-1 présente deux marches dans la gamme de pression \(P/P^0 = 0.1 – 0.3\), indiquant qu’il existe deux sites d’adsorption d’eau distincts dans ce matériau. Le phénomène d’adsorption se fait alors en deux étapes. Tout d’abord, l’eau remplit les cavités les plus hydrophiles en se coordonnant aux cations métalliques de cuivre, ensuite les cavités les plus petites de nature hydrophobes se remplissent. On observe une hystérèse étroite due à la formation de liaisons hydrogène entre les molécules d’eau. Toutefois, certaines molécules liées par chimisorption aux cations métalliques Cu\(^{2+}\) ne se désorbent pas à basse pression. Des expériences ont également montré que la structure du matériau s’effondre sous immersion dans l’eau pendant 24 h à 323 K.

La DUT-4 présente un caractère fortement hydrophobe : l’adsorption de l’eau commence seulement autour de \(P/P^0 = 0.4\). Il n’y a pas de sites de coordination métalliques libres car tous les cations d’aluminium sont liés aux atomes d’oxygène de la structure. De plus, les ligands dérivés du naphtalène contribuent à l’hydrophobicité de la surface interne de ce matériau. Comme pour la HKUST-1, à haute pression, la quantité d’eau adsorbée augmente par condensation capillaire. Des expériences de diffraction de rayons X ont également montré que la DUT-4 n’est pas stable au contact de l’eau (cela explique aussi l’allure différente de la branche de désorption qui chute en-dessous de celle d’adsorption).

La MIL-100(Fe) est le seul matériau étudié présentant une porosité hiérarchique (micro pores et mésopores). L’isotherme d’adsorption présente deux marches, respectivement à \(P/P^0 = 0.3\)
et $P/P^0 = 0.4$, et la quantité maximale adsorbée à saturation est atteinte à $P/P^0 = 0.5$. On observe d'abord le remplissage des plus petites cavités (25 Å) puis celui des plus grandes (29 Å). Ce matériau étant synthétisé par voie hydrothermale (i.e. avec l'eau comme solvant) il présente une grande stabilité en présence d'eau.

La MIL-101 présente, comme la MIL-100(Fe), des mésopores, mais de plus grande taille. Par conséquent, l'adsorption se fait à une pression plus élevée (i.e. $P/P^0 = 0.4$), mais en une seule étape. En effet, les deux types de cavités présentent un caractère hydrophobe similaire. La MIL-101 est donc également très stable en présence d'eau.

L'isotherme d'adsorption de la ZIF-8 indique le caractère fortement hydrophobe de ce matériau. En effet, on observe une faible quantité d'eau adsorbée puis un phénomène de condensation pour une pression proche de la saturation (P^0). La ZIF-8 présente donc une grande stabilité chimique en présence d'eau. De plus, aucune modification structurale de la ZIF-8 n'a été observée sous immersion dans l'eau liquide pendant 24 h à 323 K.

La remarquable stabilité hydrothermale de la ZIF-8 a également été reportée par Cousin Saint Remi et al. [230]. Guillaume Ortiz et al. ont étudié les performances énergétiques de la ZIF-8 par des expériences d'intrusion–extrusion d'eau sous pression.[231] Ils ont alors montré que les cycles d'intrusion-extrusion d'eau sont réversibles dans la gamme de pression 15–35 MPa, la ZIF-
5.1 — Les MOFs et l’eau

8 présente un comportement d’amortisseur : il restaure environ 85% de l’énergie emmagasinée et en dissipe 15% (figure 5.6). Zhang et al. ont mené une étude sur l’impact de la nature hydrophobe de la ZIF-8 sur ses capacités de séparation d’un mélange éthanol/eau et ont montré que la ZIF-8 présente une bonne sélectivité d’adsorption vis-à-vis de ce mélange. [232] L’adsorption d’eau dans d’autres matériaux de la famille des ZIFs a également été étudiée, notamment par Lively et al., qui ont montré que comme la ZIF-8, la ZIF-71 présente un caractère hydrophobe et adsorbe de très petites quantités d’eau pour $P < P^0$. [233] Une étude expérimentale d’adsorption d’eau et d’alcool dans la ZIF-8, la ZIF-71 et la ZIF-90 a récemment été publiée par Zhang et al. [234] Ces auteurs ont montré que l’isotherme d’adsorption de la ZIF-90 présente une marche avec une saturation (18 mmol/g) pour $P/P^0 \approx 0.4$ et confirmé le caractère fortement hydrophobe de la ZIF-8 et de la ZIF-71 (figure 5.7).

Figure 5.6 : Courbes d’intrusion–extrusion d’eau dans la ZIF-8.[231]

Figure 5.7 : Isothermes d’adsorption de l’eau à 308 K de la ZIF-8, la ZIF-71 et la ZIF-90.[234]

Biswal et al. ont reporté la synthèse d’une ZIF au cobalt, la CoNIm, de topologie RHO présentant une stabilité à l’eau importante. Les isothermes d’adsorption et de désorption d’eau dans ce matériau sont présentées sur la figure 5.8. [235] La branche d’adsorption est caractéristique d’un matériau hydrophile avec une marche pour $P/P^0 \approx 0.4$. Cependant, bien que des expériences de diffraction des rayons X prouvent la stabilité de la CoNIm en présence d’eau, la branche de désorption est non-réversible avec une quantité d’eau non désorbée à basse pression.
L’adsorption de l’eau dans les ZIFs a également attiré l’attention des théoriciens. Nalaparaju et al. ont publié en 2010 une étude par simulation moléculaire de l’adsorption d’eau dans la ZIF-71 hydrophobe et dans la Na-rho-ZMOF hydrophile (MOF anionique présentant des cations extra–charpentes Na\(^{+}\)).[236] La famille des ZMOFs, synthétisée par Eddaoudi et al., présente des caractéristiques proches de celles des zéolithes.[237] Leur nature anionique et la présence de cations mobiles extra–charpentes leur confèrent des propriétés intéressantes pour de nombreuses applications industrielles telles que le stockage d’hydrogène et les échanges ioniques.[238] Ces matériaux présentent une remarquable stabilité en présence d’eau et de solvants organiques. À basse pression, les molécules d’eau s’adsorbent préférentiellement au niveau des cations Na\(^{+}\), puis à la surface des cavités, puis dans les cages \(\alpha\). Ces résultats confirment le caractère hydrophobe de la ZIF-71 qui présente, selon la classification de l’IUPAC, une isotherme de type V avec une large boucle d’hystérèse (8-25 kPa) en phase liquide et pas d’adsorption notable en phase gaz. Amrouche et al. ont également étudié l’adsorption d’eau dans une série de ZIFs, et à partir de simulation moléculaire et d’une approche QSPR, ils proposent d’utiliser la chaleur d’adsorption et la constante de Henry comme descripteurs pour déterminer la nature hydrophobe ou hydrophile des ZIFs.[239] Néanmoins, cette étude ne couvre que le comportement dans la limite \(P \to 0\) (basse pression).

5.1.3 Hétérogénéité de la surface interne : le cas des zéolithes

Des travaux sur les matériaux hydrophobes ont mis en évidence que toutes les cavités hydrophobes présentent des surfaces hétérogènes (chimiquement, géométriquement ou électroniquement).[240, 241, 242] Une étude menée au sein de l’équipe en 2008 par Fabien Caillez[243] a permis de comprendre l’influence de l’hétérogénéité de la surface interne de la zéolithe silicalite-1 sur ses propriétés d’adsorption d’eau. Il a notamment étudié l’effet du taux de défauts hydrophiles (groupements silanols) introduits à la surface de la zéolithe. L’énergie d’interaction entre une molécule d’eau et la surface interne du matériau ne présentant pas de défauts hydrophiles est de \(-17\) kJ.mol\(^{-1}\) alors qu’elle est de \(-42\) kJ.mol\(^{-1}\) pour deux molécules d’eau dans le bulk. L’introduction de défauts hydrophiles à la surface interne de la silicalite-1 a pour effet d’augmenter son caractère hydrophile : l’interaction eau–zéolithe est donc d’autant plus favorable. Deux types de défauts peuvent être considérés, les défauts forts pour lesquels l’énergie d’interaction eau–zéolithe est supérieure à celle établie entre deux molécules d’eau et au contraire les défauts faibles.
La figure 5.9 présente les isothermes d’adsorption d’eau dans la silicalite-1 contenant des défauts faibles. Les isothermes sont de type V, la zéolithe garde donc son caractère hydrophobe quelle que soit la quantité de défauts hydrophiles introduits. Pour des valeurs faibles du potentiel chimique, il n’y a pas d’adsorption car les interactions entre les molécules d’eau du bulk sont beaucoup plus fortes que celles entre l’eau et la zéolithes. On observe une adsorption soudaine des molécules d’eau dans le matériau qui peut se produire, en fonction de la concentration en défauts, pour des valeurs du potentiel chimique supérieur ou inférieur au potentiel chimique de saturation \(\mu_0 \) (\(P/P_0 = 1 \)). Pour un taux de défauts de 1 à 4 par maille de matériau, la condensation de l’eau se produit au-delà de la pression de saturation de l’eau, comme dans le cas du système sans défauts. Par contre, pour un nombre de défauts de l’ordre de 12 par maille, la condensation intervient en-dessous de la pression de saturation de l’eau. Le mécanisme d’hydratation du matériau présentant des défauts faibles se fait par nucléation homogène comme dans le cas du matériau idéal. La présence des défauts faibles permet de rendre le matériau localement plus attractif et conduit donc à un décalage de la transition de condensation. Le matériau reste néanmoins globalement hydrophobe.

La figure 5.10 présente les isothermes d’adsorption de la silicalite-1 contenant des défauts hydrophiles forts. En fonction de la concentration de ces défauts, l’allure de la courbe est différente, et passe progressivement du type V (pas de défauts) au type IV (1 à 4 défauts). L’isotherme du matériau présentant 12 défauts par maille a une forme très proche du type I. En présence de défauts forts (même en petite quantité) et à basse pression, les molécules d’eau s’adsorbent dans le matériau. La transition vapeur–liquide est d’autant plus nette et à potentiel chimique élevé que le nombre de défauts forts par maille est faible. Dans ce cas, l’interaction eau–zéolithes est plus forte que celle entre les molécules d’eau du bulk. Pour les matériaux contenant 1 à 4 défauts par maille, la nucléation est hétérogène et commence à très basse pression. Les molécules d’eau s’adsorbent d’abord sur la surface des pores au niveau des défauts hydrophiles. Puis, à plus haute pression, des agrégats de molécules d’eau (3 à 4 molécules) se forment autour de celles pré-adsorbées sur les défauts (phénomène de pré-condensation). Ces agrégats de molécules agissent alors comme des germes de condensation et fusionnent entre eux jusqu’à former une
5.2 — Les ZIFs étudiées

Ce travail a porté sur l'étude des propriétés d'adsorption d'eau de sept matériaux de la famille des ZIFs. Certains sont connus expérimentalement et d'autres sont hypothétiques. La première structure étudiée est celle de la ZIF-8, Zn(mim)$_2$ ($mim = 2$-méthylimidazolate) de topologie sodalite (SOD) par analogie avec la nomenclature des zéolithes. La ZIF-8 présente de larges cages sphériques de diamètre 11.6 Å, appelée cage sodalite, séparées par des fenêtres hexagonales (6 ions Zn$^{2+}$) de plus petite ouverture (≈ 3.4 Å). La structure de topologie SOD est représentée sur la figure 5.11. La ZIF-8 est la ZIF la plus étudiée dans la littérature car elle présente de bonnes performances pour la séparation de mélanges gazeux d'intérêt industriel tel que CO$_2$/CH$_4$ et une stabilité thermique, chimique et mécanique importante. De plus, elle est actuellement disponible commercialement et peut facilement être assemblée sous forme de membranes ou de couches minces.

J'ai également étudié la ZIF-90 qui est connue expérimentalement et présente également une topologie SOD. Dans le cas de ce matériau, le ligand imidazolate est fonctionnalisé par un groupement carboxyaldéhyde ($ica = imidazolate-2$-carboxyaldehyde) à la place du groupement méthyle.[244] La SALEM-2, de topologie SOD, est formée par un ligand imidazolate non-substitué.[245] La ZIF-Cl dont le ligand organique est fonctionnalisé par un atome de chlore, phase liquide homogène (remplissage soudain du pore). La surface du matériau devient hétérogène car elle garde son caractère hydrophobe mais certaines zones sont fortement hydrophiles (autour des défauts forts silanols). Le matériau contenant 12 défauts hydrophiles par maille est totalement hydrophile car les défauts sont très proches. Dans ce cas, l'hydratation se fait de manière homogène car l'énergie d'interaction zéolithe–eau est plus forte que celle entre les molécules d'eau du *bulk* (isotherme d'adsorption proche du type I).
Figure 5.11 : En haut : représentation d’une maille élémentaire de la ZIF-8 (à gauche) et de la topologie sodalite (SOD) (à droite). En bas : représentation de la maille élémentaire de la ZIF-65(RHO) (à gauche) et de la topologie RHO (à droite).
5.2 — Les ZIFs étudiées

(cim = 2-chloroimidazolate). [246] La ZIF-7 qui possède une topologie SOD distordue est formée par un ligand benzimidazolate (bim). [247] J’ai également inclus dans l’étude deux structures hypothétiques du matériau Zn(nim)$_2$ (nim = 2-nitroimidazolate). La synthèse d’une variante de ce matériau à base de cobalt, CoNIm, de topologie (RHO) a été reportée par Biswal et al. [235]. Dans leur étude, ils ont mis en évidence la grande hydrostabilité du matériau de topologie (RHO) comparée à celle du matériau de topologie (SOD). J’ai choisi d’étudier le matériau hypothétique à base de zinc, qui n’est pas connu expérimentalement, de manière à pouvoir comparer ses propriétés d’adsorption avec les autres matériaux à base de Zn de la famille de ZIFs considérée. J’appellerai ces deux matériaux : ZIF-65(SOD) et ZIF-65(RHO), par analogie avec le matériau ZIF-NO$_2$(Co) de topologie (SOD) décrit par Banerjee et al. et appelé ZIF-65.[55] Toutes les ZIFs étudiées ont une topologie SOD à l’exception d’une des structures de la ZIF-65 qui présente une topologie RHO. La topologie RHO possède un grand volume poreux et est construite à partir d’un arrangement cubique de cubo-octaèdres tronqués (colorés en orange sur figure 5.11), appelées cage α, liées entre elles par des prismes octogonaux (8 ions Zn$^{2+}$, représentés en vert sur la figure 5.11). Les paramètres de maille de tous les matériaux étudiés sont présentés dans le tableau 5.1.

<table>
<thead>
<tr>
<th>Framework</th>
<th>Linker</th>
<th>Topology</th>
<th>Space group</th>
<th>Unit cell parameters (Å)</th>
<th>Unit cell volume (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF-8</td>
<td></td>
<td>SOD</td>
<td>I$\overline{3}$m</td>
<td>$a = 16.99$</td>
<td>4907.1</td>
</tr>
<tr>
<td>ZIF-7</td>
<td></td>
<td>SOD</td>
<td>R$\overline{3}$</td>
<td>$a = 22.22$</td>
<td>6878.2</td>
</tr>
<tr>
<td>ZIF-90</td>
<td></td>
<td>SOD</td>
<td>I$\overline{3}$m</td>
<td>$a = 17.27$</td>
<td>5152.2</td>
</tr>
<tr>
<td>ZIF-65 (SOD)</td>
<td></td>
<td>SOD</td>
<td>I$\overline{3}$m</td>
<td>$a = 17.27$</td>
<td>5152.2</td>
</tr>
<tr>
<td>ZIF-65 (RHO)</td>
<td></td>
<td>RHO</td>
<td>I$\overline{3}$m</td>
<td>$a = 29.03$</td>
<td>24465.3</td>
</tr>
<tr>
<td>ZIF-Cl</td>
<td></td>
<td>SOD</td>
<td>I$\overline{3}$m</td>
<td>$a = 17.13$</td>
<td>5020.7</td>
</tr>
<tr>
<td>SALEM-2</td>
<td></td>
<td>SOD</td>
<td>I$\overline{3}$m</td>
<td>$a = 17.01$</td>
<td>4925.2</td>
</tr>
</tbody>
</table>

Tableau 5.1 : Composition et paramètres cristallographiques des ZIFs étudiées.

Les structures cristallines expérimentales de la SALEM-2 et de la ZIF-Cl ne sont pas disponibles dans la littérature. Je les ai donc construites à la main à partir de la structure de la ZIF-8. J’ai ensuite effectué une minimisation des positions atomiques et des paramètres de maille de chaque structure par DFT (les détails techniques sont présentés dans le paragraphe section 3.1.3).
5.3 Détails techniques

Les isothermes d’adsorption et de désorption d’eau présentées dans la suite ont été calculées à 300 K, dans une large gamme pression, par la méthode Monte–Carlo (MC). Chaque point de ces isothermes correspond à une simulation MC effectuée dans l’ensemble grand canonique (µ, V, T) qui permet de déterminer le nombre de molécules adsorbées par maille de matériau à potentiel chimique µ et température T fixés. Pour chaque simulation, 100 millions de pas Monte–Carlo sont effectués. Nous avons étudié l’intrusion d’eau dans les ZIFs en utilisant la relation potentiel chimique – pression établie par Nicolas Desbiens et présentée dans le paragraphe section 2.2.4 car, au-delà de la pression de vapeur saturante du fluide, la pression ne peut plus être assimilée à la fugacité du gaz. Pour la simulation, les molécules d’eau et la charpente du matériau sont considérées rigides, ce qui en première approximation est valable même s’il est connu que la ZIF-8 par exemple présente, à des températures cryogéniques, une flexibilité locale de sa structure induite par le mouvement des ligands imidazolates.[248, 249] La molécule d’eau est décrite par le modèle non-polarisable TIP4P [250] et contient un centre de force de Lennard-Jones et trois charges électrostatiques (figure 5.12, et tableau 5.2). Les interactions eau–ZIFs sont décrites par un champ de force classique qui inclut l’énergie de répulsion-dispersion, modélisée par un potentiel de Lennard-Jones 6-12, et l’énergie électrostatique, modélisée par des charges localisées sur chaque atome de la structure de la ZIF. Les paramètres de Lennard-Jones et les charges électrostatiques utilisés sont issus du travail de Amrouche et al. [251] qui a optimisé les paramètres de Lennard-Jones à partir du champ de force transférable (UFF) (tableau 5.4). Les charges électrostatiques ont quant à elles été déterminées sur la base de calculs quantiques (tableau 5.3). La SALEM-2 n’ayant pas été étudiée par Amrouche et al., nous avons approximé la charge de l’atome d’hydrogène par la charge totale du groupement –CH₃ de la ZIF-8. Nous avons ensuite vérifié que la charge électrostatique de cet atome n’influence que très peu les propriétés d’adsorption et les chaleurs d’adsorption, ce qui est cohérent puisque dans ce matériau hydrophobe ce sont les interactions dispersives qui dominent les interactions eau–ZIF.

Figure 5.12 : Représentation du modèle rigide TIP4P utilisé pour décrire la molécule d’H₂O (un centre de force et trois charges partielles).

Les énergies d’interaction H₂O–ZIF ont été pré-calculées en différents points de l’espace et stockées dans des grilles constituées par des cubes de 0.1 Å de côté, de manière à réduire le temps de calcul. Au cours de la simulation, les valeurs de l’énergie d’interaction et de l’énergie électrostatique en un point quelconque du système sont évaluées par interpolation des points les plus proches de la grille correspondante.
5.3 — Détails techniques

Tableau 5.2 : Paramètres du modèle TIP4P de l’eau.

<table>
<thead>
<tr>
<th></th>
<th>$\epsilon (K)$</th>
<th>$\sigma (\text{Å})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>78.03</td>
<td>3.1536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>r_{0-H}</th>
<th>$\angle \text{H-O-H}$</th>
<th>$q (\text{O})$</th>
<th>$q (\text{H})$</th>
<th>$q (\text{M})$</th>
<th>r_{0-M}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9572 Å</td>
<td>104.52°</td>
<td>0</td>
<td>0.52</td>
<td>-1.04</td>
<td>0.15 Å</td>
</tr>
</tbody>
</table>

Tableau 5.3 : Charges électrostatiques ponctuelles utilisées. * charge approximée (voir texte).

<table>
<thead>
<tr>
<th></th>
<th>SALEM-2</th>
<th>ZIF-8</th>
<th>ZIF-Cl</th>
<th>ZIF-90</th>
<th>ZIF-65</th>
<th>ZIF-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>1.10</td>
<td>1.10</td>
<td>0.79</td>
<td>0.85</td>
<td>0.792</td>
<td>Zn</td>
</tr>
<tr>
<td>N</td>
<td>-0.54</td>
<td>-0.54</td>
<td>-0.17</td>
<td>-0.30</td>
<td>-0.12</td>
<td>N</td>
</tr>
<tr>
<td>C$_1$</td>
<td>0.64</td>
<td>0.64</td>
<td>0.47</td>
<td>0.48</td>
<td>0.45</td>
<td>C$_1$</td>
</tr>
<tr>
<td>C$_2$</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.32</td>
<td>-0.20</td>
<td>-0.30</td>
<td>C$_2$</td>
</tr>
<tr>
<td>H</td>
<td>0.144</td>
<td>0.144</td>
<td>0.1725</td>
<td>0.14725</td>
<td>0.172</td>
<td>H</td>
</tr>
<tr>
<td>$-\text{R}$</td>
<td>$-\text{H}$</td>
<td>$-\text{CH}_3$</td>
<td>$-\text{Cl}$</td>
<td>$-\text{HCO}$</td>
<td>$-\text{NO}_2$</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>-0.67</td>
<td>—</td>
<td>0.30</td>
<td>—</td>
<td>C</td>
</tr>
<tr>
<td>O</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-0.52</td>
<td>-0.53</td>
<td>O</td>
</tr>
<tr>
<td>H</td>
<td>-0.238*</td>
<td>0.144</td>
<td>—</td>
<td>-0.03</td>
<td>—</td>
<td>H</td>
</tr>
<tr>
<td>N</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.71</td>
<td>N</td>
</tr>
<tr>
<td>Cl</td>
<td>—</td>
<td>—</td>
<td>-0.23</td>
<td>—</td>
<td>—</td>
<td>Cl</td>
</tr>
<tr>
<td>Atom</td>
<td>ε (K)</td>
<td>σ (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>43.084</td>
<td>2.338</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>23.974</td>
<td>3.997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>20.847</td>
<td>3.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>78.872</td>
<td>3.516</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>36.483</td>
<td>3.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>15.288</td>
<td>2.440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.4 : Paramètres de Lennard-Jones utilisés pour les atomes des ZIFs.
5.4 Les ZIFs hydrophobes

La figure 5.13 présente les isothermes d’adsorption et de désorption de l’eau dans la ZIF-8 à 300 K. Ces isothermes sont de type V et présentent une large boucle d’hystérèse de 15 MPa à 140 MPa. Dans la phase gazeuse, le matériau n’adsorbe pas de molécules d’eau ce qui confirme la nature hydrophobe de la ZIF-8 reportée par Lively et al. [233] Bien au-delà de la pression de saturation de l’eau (3.8 kPa à 300 K), on observe une marche brutale d’intrusion d’eau. La quantité d’eau adsorbée à saturation correspond à 80 molécules par maille (29.1 mmol/g), ce qui est en très bon accord avec les données expérimentales d’intrusion d’eau publiées par Guillaume Ortiz et al. [231] (27.8 mmol/g). On observe également un bon accord pour les pressions d’intrusion et en particulier pour la branche de désorption autour de 20 MPa. Cependant, la largeur de la boucle d’hystérèse obtenue par simulation Monte-Carlo ne peut pas être directement comparée avec celle mesurée expérimentalement par Guillaume Ortiz et al. car elles ne rendent pas compte du même phénomène physique. Bien que dans les deux cas, le phénomène d’hystérèse soit dû à la métastabilité de la phase vide et de la phase remplie du matériau dans cette gamme de pression, il dépend de facteurs différents. Expérimentalement, cette hystérèse est liée à la cinétique d’adsorption et dépend alors des paramètres de mesure expérimentaux (temps d’acquisition, incrément de pression, ...) tandis que dans le cas des simulations GCMC elle dépendra essentiellement de la convergence du calcul et donc du nombre de pas effectués et des mouvements Monte-Carlo et biais choisis.

Nous avons déterminé la chaleur isostérique d’adsorption à partir des fluctuations de l’énergie intermoléculaire et du nombre de molécules adsorbées (figure 5.13, courbe en rouge). Nous avons également calculé l’enthalpie d’adsorption de la première molécule adsorbée dans la ZIF-8 qui est de l’ordre de 15.5 kJ/mol, ce qui est nettement plus faible que l’enthalpie de vaporisation de l’eau (44 kJ/mol pour le modèle TIP4P à 300 K). L’analyse de ces deux grandeurs énergétiques nous permet de justifier la nature hydrophobe de la ZIF-8. Après l’intrusion d’eau dans la structure du matériau, pour P > 140 MPa, la chaleur isostérique d’adsorption est de l’ordre de ≃ 52 kJ/mol, indiquant que la phase adsorbée est dense et que les interactions entre les

Figure 5.13 : Isothermes d’adsorption (symboles blancs) et de désorption (symboles noir) de l’intrusion d’eau dans la ZIF-8 à 300 K. La courbe rouge représente les chaleurs isostériques d’adsorption et la flèche bleue indique l’enthalpie de vaporisation de l’eau bulk à 300 K.
molécules d’eau adsorbées sont fortes. Nous avons alors caractérisé la structure de l’eau adsorbée à saturation (P = 250 MPa) dans les pores de la ZIF-8 en calculant les fonctions de distribution radiale des paires O-O et O-H (figure 5.14). On observe un ordre à courte distance similaire à celui de l’eau liquide \textit{bulk}, avec la présence d’un premier pic O-O à une distance de 2.8 Å qui correspond à la distance entre les atomes d’oxygène des deux molécules d’eau impliquées dans la liaison hydrogène. Cependant, contrairement à l’eau liquide, il n’y a pas d’ordre à longue distance (pas de second pic) en raison des effets de volume exclu du matériau,[252] La fonction de distribution radiale de paire O-H présente, tout comme celle de l’eau liquide, deux pics distincts à d \approx 1.9 Å et d \approx 3.2 Å, caractéristiques de la présence de liaisons hydrogène. La structure de l’eau confinée dans les pores de la ZIF-8 est donc similaire à celle de l’eau liquide du \textit{bulk}.

Ensuite, nous nous sommes intéressés à l’influence de la fonctionnalisation du ligand imidazolate sur les propriétés d’adsorption du matériau. Nous avons alors considéré deux ZIFs isomorphes à la ZIF-8, la SALEM-2 et la ZIF-Cl, qui sont respectivement constituées par le ligand imidazolate
et le 2-chloroimidazolate. Les isothermes d’adsorption et de désorption d’eau à 300 K de ces deux matériaux sont présentées sur la figure 5.15. La fonctionnalisation modifie faiblement les propriétés d’adsorption de l’eau de ces deux matériaux qui restent de nature hydrophobe. En effet, les isothermes de type V présentent une large boucle d’hystérèse et sont très similaires à celles de la ZIF-8. On peut néanmoins noter que la boucle d’hystérèse de la ZIF-Cl (35-100 MPa) est moins large que celle de la ZIF-8 et de la SALEM-2. De plus l’évolution de la chaleur isostérique de ces deux matériaux est caractéristique d’un matériau hydrophobe, au-delà de la pression d’intrusion l’interaction entre les molécules d’eau adsorbées devient plus forte que celle entre les molécules d’eau du bulk. L’encombrement stérique du groupement méthyle et du chlore étant comparable, la quantité maximale adsorbée à saturation dans la ZIF-Cl (\(\approx 78\) molec/u.c., 24.2 mmol/g) est proche de celle adsorbée dans la ZIF-8 (80 molec/u.c., 29.1 mmol/g). À saturation, la SALEM-2 adsorbe une quantité d’eau plus importante (\(\approx 90\) molec/u.c., 37.6 mmol/g) que la ZIF-8 et la ZIF-Cl. Cette observation est en bon accord avec les résultats reportés par Karagiaridi et al. qui ont montré que la SALEM-2 peut accommoder de plus grosses molécules que la ZIF-8.[245] En effet, contrairement aux deux autres ZIFs hydrophobes considérées, qui présentent seulement un site d’adsorption (fenêtre hexagonale), la SALEM-2 possède un site d’adsorption supplémentaire au centre des fenêtres carrées (4 ions Zn\(^{2+}\)). Ce volume est rendu accessible en raison de la petite taille de l’atome d’hydrogène, comparé aux groupements –CH\(_3\) et –Cl.
5.5 Les ZIFs hydrophiles

Dans un deuxième temps, nous nous sommes intéressés aux ZIFs fonctionnalisées par des groupes chimiques hydrophiles : la ZIF-65(RHO) et la ZIF-90. La figure 5.16 présente les isothermes d’adsorption et de désorption d’eau dans la ZIF-65(RHO) calculées à 300 K. Contrairement aux isothermes des matériaux hydrophobes, la ZIF-65(RHO) adsorbe des molécules d’eau en phase gazeuse et à basse pression (P < 4 kPa). À la pression de saturation (P0), on observe une marche brutale avec une boucle d’hystérèse qui correspond à l’intrusion d’eau dans les pores hydrophobes du matériau. On retrouve donc un comportement avec des points communs aux résultats expérimentaux présentés sur la figure 5.8, bien qu’expérimenteralement la désorption du matériau ne soit pas complète. Si l’on regarde plus en détail l’isotherme d’adsorption, la première partie (à basse pression) est de type I (forme "Langmuir"), indiquant une affinité des molécules d’eau pour le matériau supérieure à l’interaction eau–eau (adsorption favorable en phase gaz). Cela correspond à l’adsorption de molécules d’eau dans les doubles prismes octogonaux qui relient les cages α, comme illustré par la figure 5.17 qui présente la densité d’eau adsorbée à 3.5 kPa. La marche d’intrusion observée vers 4 kPa correspond à l’adsorption des molécules d’eau dans les grandes cages sphériques α de la structure. La quantité maximale d’eau adsorbée à saturation est de l’ordre de 450 molec/u.c., du fait de la grande porosité du matériau de topologie (RHO) et notamment des grandes cages α. Cependant, lorsque l’on exprime cette quantité par rapport à la masse d’adsorbant, elle est de l’ordre de 31 mmol/g, ce qui est similaire à la quantité maximale adsorbée par la ZIF-8 (29.1 mmol/g). La chaleur d’adsorption des premières molécules d’eau est d’environ 75 kJ/mol, l’interaction entre les molécules d’eau adsorbée est largement supérieure à celle des molécules du bulk et justifie le caractère hydrophile du matériau. Néanmoins, la chaleur d’adsorption diminue drastiquement lorsque la quantité de molécules adsorbée augmente et se stabilise autour d’une valeur proche de celle de l’enthalpie de vaporisation de l’eau bulk. Ces résultats montrent que la ZIF-65(RHO) présente un caractère amphiphile avec certains sites de la surface interne hydrophiles et d’autres hydrophobes. À basse pression, les molécules d’eau s’adsorbent au niveau des sites hydrophiles du matériau (figure 5.17). Ensuite, à plus haute pression, on observe un remplissage continu entre les sites d’adsorption hydrophiles (i.e. saturation du matériau), dans un comportement classique pour des pores chimiquement hétérogènes.[253]

Nous avons également étudié l’adsorption d’eau dans la ZIF-90 (ligand imidazolate-2-carboxyaldéhyde, topologie SOD) : la figure 5.18 présente les isothermes d’adsorption et de désorption d’eau dans ce matériau. L’adsorption d’eau en phase gazeuse de la ZIF-90 est caractérisée par deux régimes successifs, comme dans le cas de la ZIF-65(RHO). La chaleur isostérique d’adsorption des premières molécules d’eau est de l’ordre de 65 kJ/mol, plus faible que pour la ZIF-65(RHO) mais plus élevée que l’enthalpie de vaporisation de l’eau bulk. La valeur de la chaleur d’adsorption des autres molécules d’eau adsorbées se stabilise autour de 55 kJ/mol, alors que pour la ZIF-65(RHO), elle se stabilise autour de 45 kJ/mol. La quantité d’eau maximale adsorbée à saturation correspond à 80 molec/u.c., soit 26.1 mmol/g, ce qui est comparable aux valeurs obtenues dans le cas de la ZIF-8 et de ces variantes hydrophobes. Ces résultats nous permettent de conclure que la ZIF-90 est un matériau fortement hydrophile du fait de la grande affinité des molécules d’eau pour les groupements aldéhydes. Ces résultats sont en bon accord avec l’étude menée par Amrouche et al. [254] sur l’adsorption du CO2 dans les ZIFs qui a montré que l’affinité du CO2 pour ces matériaux est essentiellement liée à la présence de groupements fonctionnels polaires sur la surface interne du matériau (moment dipolaire du ligand imidazolate). En effet, l’eau étant une molécule polaire elle a une forte affinité pour les groupements aldéhydes du ligand de la ZIF-90. Les deux marches de l’isotherme correspondent donc à l’adsorption des premières molécules d’eau autour des sites aldéhydes puis au remplissage...
Figure 5.16 : Isothermes d’adsorption (symboles blancs) et de désorption (symboles noir) de l’intrusion d’eau dans la ZIF-65(RHO) à 300 K. La courbe rouge représente les chaleurs isostériques d’adsorption et la flèche bleue indique l’enthalpie de vaporisation de l’eau bulk à 300 K.

Figure 5.17 : Représentation de la densité des molécules d’eau adsorbée (en jaune) dans les pores de la ZIF-65(RHO) à 3.5 kPa (sur la branche d’adsorption).
Figure 5.18 : Isothermes d’adsorption (symboles blancs) et de désorption (symboles noir) de l’intrusion d’eau dans la ZIF-90 à 300 K. La courbe rouge représente les chaleurs isostériques d’adsorption et la flèche bleue indique l’enthalpie de vaporisation de l’eau bulk à 300 K.

Figure 5.19 : Fonctions de distributions radiales des molécules d’eau adsorbées dans la ZIF-90 à 0.2 kPa.

Nous avons ensuite caractérisé la nature de la phase adsorbée près des sites fortement hydrophiles (groupements aldéhydes) à partir des quatre fonctions de distribution radiale de l’eau adsorbée à 0.2 kPa (figure 5.19). Les pics des fonction de paires $O_{\text{aldehyde}}-H_{\text{water}}$ et $O_{\text{aldehyde}}-O_{\text{water}}$, respectivement à une distance de 1.6 Å et de 2.5 Å, indiquent clairement la formation d’une liaison hydrogène entre l’atome d’hydrogène de la molécule d’eau et l’atome d’oxygène du groupement aldéhyde de la ZIF. L’intensité élevée de ces deux pics rend compte de l’établissement d’une liaison hydrogène forte entre les molécules d’eau et le site hydrophile du matériau ainsi que de la structuration des molécules adsorbées qui forment un réseau de liaison hydrogène. De plus, la différence entre ces deux pics est de 0.9 Å, ce qui correspond à la distance de la liaison entre un atome d’hydrogène et l’atome d’oxygène de la molécule d’eau ($d_{O_{\text{water}}-H_{\text{water}}} = 1.0$ Å), reflétant une orientation préférentielle de la molécule d’eau. L’établissement d’une forte liaison hydrogène entre la molécule d’eau et le groupement aldéhyde du ligand, ainsi que la présence
de l’atome d’hydrogène de l’aldéhyde crée un site d’adsorption très favorable pour les molécules d’eau, d’où le caractère fortement hydrophile du matériau.

5.6 Effet de la géométrie

Dans cette partie, nous nous intéressons à l’influence de la géométrie des pores sur les propriétés d’adsorption d’eau des ZIFs hydrophes et hydrophiles étudiées précédemment. Dans un premier temps, je discuterai de l’effet de la topologie (RHO ou SOD) sur les propriétés de la ZIF-65. Les isothermes d’adsorption et de désorption d’eau de la ZIF-65(SOD) calculées à 300 K sont présentées sur la figure 5.20. La nature hydrophile de ce matériau est clairement visible dans l’allure des isothermes et dans l’évolution de la chaleur d’adsorption. Contrairement à la ZIF-65(RHO), l’isotherme d’adsorption d’eau en phase gazeuse de la ZIF-65(SOD) présente deux marches. À basse pression (P < 2.5 kPa), l’isotherme d’adsorption est de type I est la quantité maximale adsorbée est de l’ordre de 6 molec/u.c. (2.2 mmol/g). Ce premier palier correspond à l’adsorption d’une molécule d’eau dans chacune des fenêtres carrées de la cage sodalite du matériau, comme représenté sur la figure 5.21. Ce site d’adsorption est favorable pour la molécule d’eau car il y a deux groupements –NO₂ qui pointent vers l’intérieur du pore et entrent en interaction avec cette molécule d’eau adsorbée. La transition à 2.5 kPa, qui présente une petite boucle d’hystérésis (0.5 kPa), correspond au remplissage de la cage sodalite. La quantité maximale d’eau adsorbée est de l’ordre de 80 molec/u.c. (29.6 mmol/g), comme dans le cas des autres matériaux de topologie SOD.

Puis, nous avons étudié les propriétés d’adsorption de la ZIF-7, qui comme la ZIF-8, est constituée de ligands organiques purement aromatiques et présente une topologie SOD. Les isothermes d’adsorption et de désorption d’eau de la ZIF-7 présentent une allure totalement différente de celles de la ZIF-8. En effet, les chaleurs isostériques d’adsorption ainsi que les isothermes (figure 5.22) sont caractéristiques d’un matériau hydrophile alors que la ZIF-8, qui présente la

![Figure 5.20](image-url)
mêmes topologies et les mêmes natures chimiques similaires sont des matériaux hydrophobes. De manière à comprendre le comportement très différent de ces deux matériaux en présence d'eau, nous avons analysé leur structure. Nous avons alors mis en évidence que la ZIF-7, bien que de topologie (SOD) comme la ZIF-8, présente une distorsion de sa géométrie par rapport aux cages sodaliens idéales avec deux types de fenêtres hexagonales différentes, comme illustré par la figure 5.23. On compte alors six fenêtres hexagonales "déformées" par maille et deux fenêtres hexagonales "idéales" par maille. Dans une étude récente, Aguado et al. [247] ont également mis en évidence que les propriétés d'adsorption du CO$_2$ de la ZIF-7 et de la ZIF-8 sont très différentes.

La quantité maximale adsorbée en phase gazeuse ($P = P_{sat}$) dans la ZIF-7 est de 12 molec/u.c. (2.2 mmol/g) et correspond à l'adsorption de deux molécules d'eau dans les fenêtres hexagonales "déformées". Ces sites d'adsorption du matériau sont hydrophiles car leur taille permet de maximiser l'interaction entre les deux molécules d'eau adsorbées ainsi que les interactions dispersives avec les cycles aromatiques voisins (figure 5.24). À plus haute pression, les sites hydrophiles de la ZIF-7 peuvent contenir jusqu'à 4 molécules d'eau qui s'arrangent suivant une configuration planaire comme représenté sur la figure 5.25. Les fenêtres hexagonales "idéales" sont quant à elles hydrophobes et ne se remplissent qu'à très haute pression d'eau liquide, entre 200 et 800 MPa. Ces sites fortement hydrophobes (comme ceux de la ZIF-8) peuvent accueillir jusqu'à 4 molécules selon un arrangement tétraédrique (figure 5.25). L'interaction entre les molécules d'eau adsorbées présentes dans ces sites et le matériau est faible.

Nous avons également calculé le moment dipolaire du ligand organique de la ZIF-7 afin de s'assurer que les différences dans les propriétés d'adsorption observées sont bien dues à la géométrie et non pas au changement de polarité du ligand organique. Le tableau 5.5 présente la valeur du moment dipolaire de chaque ligand organique. On remarque que le moment dipolaire du ligand benzène-imidazolate (bim) de la ZIF-7 de l'ordre de 1.38 D est proche de celui du ligand méthyle-imidazolate (mim, 1.25 D) de la ZIF-8, et nettement plus faible que celui des ligands organiques des autres ZIFs hydrophiles (2.87 D pour la ZIF-90 et 3.12 D pour la ZIF-65). Ainsi, le comportement spécifique de la ZIF-7 en présence d'eau est bien lié à la géométrie particulière de sa structure. La ZIF-7 présente donc, en raison de sa structure, deux sites d'adsorption de nature différente vis-à-vis de l'eau, et présente donc un caractère **amphiphile** intrinsèquement lié à sa géométrie (et non à sa composition chimique, comme la ZIF-65(RHO)).

Figure 5.21 : Représentation du site d'adsorption des molécules d'eau dans les fenêtres carrées de la ZIF-65(SOD).
Figure 5.22 : Isothermes d’adsorption (symboles blancs) et de désorption (symboles noir) de l’intrusion d’eau dans la ZIF-7 à 300 K. La courbe rouge représente les chaleurs isostériques d’adsorption et la flèche bleue indique l’enthalpie de vaporisation de l’eau bulk à 300 K.

Tableau 5.5 : Valeurs du moment dipolaire de chaque ligand organique entrant dans la composition des différentes ZIFs étudiées.

<table>
<thead>
<tr>
<th></th>
<th>bim (ZIF-7)</th>
<th>mim (ZIF-8)</th>
<th>ica (ZIF-90)</th>
<th>nim (ZIF-65)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.38 D</td>
<td>1.25 D</td>
<td>2.87 D</td>
<td>3.12 D</td>
</tr>
</tbody>
</table>
5.6 — Effet de la géométrie

Figure 5.23 : Représentation schématique des deux pores de géométrie différente de la ZIF-7 : la fenêtre hexagonale "idéale" à gauche et la fenêtre hexagonale "déformée" à droite. Les sphères jaunes représentent le volume poreux de chaque cavité.

Figure 5.24 : Représentation schématique des sites d’adsorption hydrophiles (fenêtres hexagonales "déformées") de la ZIF-7 à basse pression (P = 1 kPa).
Figure 5.25 : Les deux sites d’adsorption de la ZIF-7 à très haute pression (P = 800 MPa). Deux arrangements différents des molécules d’eau dans chacun des sites : plan dans les sites hydrophiles et tétraèdrique dans les sites hydrophobes.
5.7 Nature de la phase adsorbée à saturation

Enfin, nous avons caractérisé la nature de la phase adsorbée dans les pores à saturation des différentes ZIFs étudiées. Pour chaque matériau, nous avons calculé la fonction de distribution radiale de paire O–O de l’eau (figure 5.26). On observe alors que la nature de la phase d’eau adsorbée est quasiment identique quel que soit le matériau considéré, à l’exception de la ZIF-7. Dans le cas de la ZIF-7, le premier pic situé à 2.8 Å est plus intense que les autres, ce qui indique une structuration plus importante à courte portée des molécules d’eau adsorbées. En effet, les molécules d’eau s’adsorbent dans deux sites distincts, les fenêtres hexagonales "déformées" et "idéales", ce qui explique qu’on ne retrouve pas la structuration de l’eau bulk. De plus, on observe des oscillations autour de 6.5 Å et 8.5 Å, qui correspondent à la distance entre les différents sites d’adsorption voisins du matériau. Dans les autres ZIFs, la structure de l’eau adsorbée en phase liquide est similaire à celle de l’eau bulk à courte distance. On en conclut alors qu’il n’y a pas d’effet marqué de la géométrie des pores sur la structure de l’eau liquide adsorbée en raison de la taille de pore importante de ces matériaux comparée par exemple à celle des zéolithes de l’eau bulk (0.6 g.cm$^{-3}$).

Figure 5.26 : Fonctions de distribution radiale de paire O–O des molécules d’eau adsorbées à 250 MPa dans la ZIF-8, ZIF-7, ZIF-90, ZIF-65(SOD) et ZIF-65(RHO), ZIF-Cl et SALEM-2.

5.8 Généralisation et comparaison avec d’autres matériaux

Pour conclure, il me semble intéressant, dans l’idée de fournir une vision générale de l’influence de la fonctionnalisation et de la géométrie sur les propriétés d’adsorption de l’eau des matériaux poreux, de comparer nos résultats avec ceux obtenus lors d’études similaires menées au sein de l’équipe sur d’autres systèmes nanoporeux de surface interne hétérogène. Dans le cadre du post-doctorat de Selvarengan Paranthaman, l’étude des propriétés d’adsorption d’eau dans une
série de MOFs à base d'aluminium a permis de rationaliser l'influence de la taille des pores et de la fonctionnalisation du ligand organique sur l'hydrophobicité du matériau.[256] Cette série a été générée à partir de la MOF Al(OH)(1,4-naphtalénedicarboxylate) en fonctionnalisant progressivement la surface interne par des groupements méthyles (2, 4 et 8 groupes par maille) comme illustré par la figure 5.27. Les isothermes d'adsorption obtenues sont présentées sur la figure 5.28. On observe que la fonctionnalisation du matériau a un impact sur l'allure de la courbe. L'introduction de groupements –CH₃ diminue la quantité maximale adsorbée, décale la pression de la transition vers les hautes pressions, diminue la largeur de l'hystérèse et rend la marche de l'isotherme plus "arrondie". La variation des propriétés d'adsorption peut s'expliquer simplement en terme de volume poreux, de nature chimique de la surface interne et de taille des pores. En effet, la présence des 8 groupements –CH₃ réduit le volume poreux de la cavité, ce qui explique que la quantité maximale adsorbée à saturation diminue avec la méthylation. De plus, cela réduit l'accessibilité de l'eau à la chaîne inorganique Al(OH), ce qui entraîne la diminution des interactions eau–MOF à l'origine du décalage de la pression de transition. L'évolution de la forme de l'isotherme et la disparition de l'hystérèse sont dues à un changement de la nature des transitions qui deviennent continues.

Dans la famille des ZIFs que nous avons étudiée, le matériau parent est la SALEM-2 c'est-à-dire la structure Zn(im)$_2$, de topologie SOD. La SALEM-2 est un matériau purement hydrophobe dont l'isotherme d'adsorption d'eau est de type V et présente une transition avec une boucle d'hystérèse caractéristique d'une transition vapeur–liquide du premier ordre entre la structure vide du matériau et la structure remplie d'eau. Ce comportement en présence d'eau est similaire à celui des zéolithes hydrophobes (purement silicique), présentant une taille de pores du même ordre de grandeur (relativement grand pour des matériaux zéolithiques). [257] La fonctionnalisation du matériau avec des groupements hydrophobes (ou neutres) tels que le –CH₃ ou le –Cl, entraîne une faible modification des interactions eau–MOF et du volume poreux. Par conséquent, on observe que les isothermes et les pressions d' intrusion sont similaires, le matériau conserve son caractère hydrophobe. Par contre, si l'on introduit un groupement polaire tel que le –NO$_₂$ comme dans le cas de la ZIF-65(SOD), les interactions eau–MOF au voisinage des groupements –NO$_₂$ sont plus favorables ($\Delta H_{ads} = 52.5$ kJ/mol), mais globalement le matériau reste hydrophobe. En effet, à basse pression, on observe une faible adsorption au niveau des sites hydrophiles (–NO$_₂$). Cette fonctionnalisation réduit donc le caractère hydrophobe du matériau puisque l'adsorption se fait en phase gazeuse. Cependant, la transition reste abrupte et présente
une boucle d’hystérèse. Ce comportement a déjà été observé dans le cas de zéolithes présentant une surface interne hétérogène (présence de groupements silanols), comme je l’ai présenté dans la section 5.1.3. Ce nouveau site d’adsorption est alors appelé défaut faible, car il crée un site d’adsorption hydrophile conduisant au décalage de la transition vers les plus basses pressions mais le matériau conserve son caractère hydrophobe. Dans cette étude nous avons également mis en évidence le comportement défini comme défaut fort par Caillez et al. de certaines ZIFs. Ainsi, lorsque l’on fonctionnalise le matériau avec un groupement très hydrophile tel que –COH dans le cas de la ZIF-90, les interactions eau–MOF deviennent tellement favorables comparées à celles des molécules d’eau du bulk ($\Delta H_{\text{ads}} = 80 \text{ kJ/mol}$ vs. $\Delta H_{\text{vap}} = 44 \text{ kJ/mol}$) que la nature de la transition change complètement : le matériau devient hydrophile avec une isotherme d’adsorption de type I. Les matériaux de la famille des ZIFs se comportent donc de la même manière que les autres matériaux nanoporeux telles que les zéolithes, ce qui permet de rationaliser l’impact sur les propriétés d’adsorption de la fonctionnalisation de la surface interne du matériau.

5.9 Conclusion

Cette étude nous a permis de mettre en évidence que la topologie, la géométrie et la fonctionnalisation des ZIFs influencent grandement leurs propriétés d’adsorption d’eau. Le choix du ligand permet alors de moduler les interactions eau–ZIF et donc les propriétés d’hydrophobité/hydrophilie de ces matériaux. En particulier, à partir d’un matériau initialement hydrophobe (SALEM-2 ou ZIF-8), il est possible d’obtenir une série de matériaux de nature hydrophile croissante. Ce changement de comportement du matériau en présence d’eau est clairement visible sur les isothermes d’adsorption :

— Pour le matériau purement hydrophobe, l’adsorption se fait en phase liquide (intrusion d’eau) sous la forme d’une transition brutale du premier ordre entre la phase vide du matériau et la phase remplie d’eau avec une hystérèse.
Pour le matériau globalement hydrophobe avec un site hydrophile, l’isotherme d’adsorption présente une faible adsorption en phase gaz, mais la transition vers le matériau complètement rempli reste brutale avec une boucle d’hystérèse.

Pour le matériau fortement hydrophile, on observe une isotherme d’adsorption en phase gaz de type I, indiquant la forte affinité des molécules d’eau pour le matériau.

En conclusion, on retrouve le même comportement que pour les zéolithes hydrophobes étudiées par Caillez et al. [257] dans lesquelles un défaut hydrophile plus ou moins fort est introduit. Notre étude en lien avec les travaux précédemment cités, nous permet de mieux comprendre les propriétés d’adsorption d’eau de ces nouveaux matériaux hybrides et de rationaliser l’influence de la fonctionnalisation et du changement de la structure du matériau sur les propriétés d’adsorption.
Chapitre 6

Comportement en température et en présence d’eau de la MIL-53(Ga)

6.1 — Les matériaux de la famille MIL-53 et l’eau

Les matériaux de la famille MIL-53 et l’eau

Dans ce chapitre, je présenterai brièvement les travaux de la littérature portant sur le comportement des matériaux de la famille MIL-53 en présence d’eau. Puis je détaillerai les résultats de l’étude que j’ai menée pour répondre à la problématique du projet. Enfin je présenterai les résultats expérimentaux et théoriques obtenus par les collaborateurs du projet qui, combinés à mes travaux, ont conduit à la compréhension et à la rationalisation du comportement de la MIL-53(Ga) en présence d’eau. Ces travaux ont fait l’objet de deux publications dans *J. Phys. Chem. C.* [258, 259]

6.1 Les matériaux de la famille MIL-53 et l’eau

6.2 Les phases métastables de la MIL-53(Ga)

Dans cette partie, nous nous intéressons à deux structures de la famille MIL-53 : la MIL-53(Ga) et la MIL-53-Ga(OH,F). Comme les matériaux de la famille MIL-53, ces deux matériaux sont constitués de chaînes infinies d’octaèdres GaO₆(OH)₂ liés entre eux par des ligands organiques 1,4-benzènedicarboxylates. La structure cristalline tridimensionnelle est formée par des canaux unidimensionnels en forme de losange. Des analyses RMN ¹⁹F ont montré que la MIL-53-Ga(OH,F) contient une quantité massique de fluor de 0.7% , ce qui correspond à un ratio F/OH de 1/9 (i.e un groupement hydroxyde pontant sur dix est remplacé par un ion fluorure pontant). Cependant, les deux matériaux présentent une structure hydratée de symétrie différente : la MIL-53(Ga)-np-H₂O cristallise dans le groupe d’espace P2₁/c et la MIL-53-Ga(OH,F)-np-H₂O dans le groupe d’espace Cc (tableau 6.1). Par comparaison avec la MIL-53-Ga(OH,F)-np-H₂O,
la MIL-53(Ga)-np-H₂O présente une maille de taille double et possède deux types de canaux (notés A et B) comme illustré par la figure 6.1. En effet, l’orientation des cycles benzéniques par rapport au plan des ligands organiques varie en fonction du matériau, et l’angle formé par les cycles aromatiques voisins prend différentes valeurs. Dans le cas de la MIL-53-Ga(OH,F)-np-H₂O, il est de l’ordre de 35.3° alors que pour la MIL-53(Ga)-np-H₂O il dépend de la nature du canal ; pour les pores de type A il prend deux valeurs distinctes, 24.4° et 41.4°, et pour ceux de type B il vaut 31.3°. Les différences observées entre les deux phases hydratées des deux matériaux peuvent être attribuées à la présence des atomes de fluor (0.7 wt %) et/ou aux conditions de synthèse différentes. De plus, la quantité d’eau adsorbée dans la MIL-53-Ga(OH,F)-np-H₂O dans son état directement issu de la synthèse (as synthesized) est légèrement plus faible que celle présente dans la MIL-53(Ga)-np-H₂O (respectivement 0.83 et 1 molécule par maille), cette différence peut être due au caractère plus hydrophobe du matériau fluoré ou aux différences dans les conditions de synthèse.

Figure 6.1 : Représentation de la structure cristallographique de la MIL-53-Ga(OH,F)-np-H₂O (à gauche) et de la MIL-53(Ga)-np-H₂O (à droite).

<table>
<thead>
<tr>
<th>material</th>
<th>original name in italics</th>
<th>unit cell volume (Å³)</th>
<th>space group</th>
<th>unit cell parameters (Å and °)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga-MIL-53 _lp</td>
<td>Ga-MIL-53(Ga)_lp pyridine containing pyridine</td>
<td>1449.2</td>
<td>Imma</td>
<td>a = 17.29, b = 6.73, c = 12.46</td>
</tr>
<tr>
<td>Ga-MIL-53 _lp MIL-53(Ga)_ht high temperature</td>
<td>1479.7</td>
<td>Imma</td>
<td>a = 6.72, b = 16.68, c = 13.21</td>
<td></td>
</tr>
<tr>
<td>Ga(OH,F)-MIL-53 _lp phase p_2 (high temperature activation; room-temperature measurement)</td>
<td>1502.7</td>
<td>Imma</td>
<td>a = 6.75, b = 16.68, c = 13.35</td>
<td></td>
</tr>
<tr>
<td>Ga-MIL-53 np empty</td>
<td>MIL-53(Ga)_ht</td>
<td>886.3</td>
<td>C2/c</td>
<td>a = 19.83, b = 6.86, c = 6.71, β = 103.88</td>
</tr>
<tr>
<td>Ga-MIL-53 np H₂O</td>
<td>MIL-53(Ga) (H₂O)</td>
<td>1938.8 (≈ 2 × 969.4)</td>
<td>P2₁/c</td>
<td>a = 19.71, b = 15.16, c = 6.68, β = 103.79</td>
</tr>
<tr>
<td>Ga(OH,F)-MIL-53 np empty</td>
<td>phase p_1</td>
<td>895.9</td>
<td>Cc</td>
<td>a = 19.77, b = 6.97, c = 6.70, β = 103.95</td>
</tr>
<tr>
<td>Ga(OH,F)-MIL-53 np H₂O</td>
<td>phase h</td>
<td>973.4</td>
<td>Cc</td>
<td>a = 19.66, b = 7.64, c = 6.67, β = 103.88</td>
</tr>
<tr>
<td>Al-MIL-53 np H₂O</td>
<td>MIL-53(Al) _lt</td>
<td>946.7</td>
<td>Cc</td>
<td>a = 19.51, b = 7.61, c = 6.58, β = 104.24</td>
</tr>
</tbody>
</table>

Afin de mieux comprendre les différences entre les matériaux de la famille MIL-53, j’ai effectué des calculs quantiques d’optimisation géométrique des différentes structures observées expérimentalement. La méthodologie adoptée est la même que celle utilisée dans le chapitre 3 et présentée dans la section 3.1.3.

Dans un premier temps, nous nous sommes intéressés aux phases large pore. Les structures large
pore vides (i.e. sans adsorbats) n’ayant pas été résolues expérimentalement, nous avons choisi comme point de départ le matériau reporté par Vougo-Zanda et al. [273]. Ensuite, nous avons enlevé les molécules de pyridine présentes dans les pores de ce matériau et ajouté les atomes d’hydrogène. La symétrie de la structure obtenue est Imma, ce qui en bon accord avec les spectres de diffraction de rayons X de la MIL-53(Ga) vide à haute température (MIL-53(Ga)_ht).[274] Les paramètres de maille et le volume de la structure relaxée sont en bon accord avec la structure expérimentale reportée par Volkmer et al. (volume de maille élémentaire : 1452.7 Å³ vs 1479.7 Å³, les paramètres de maille sont donnés dans le tableau 6.2).[274]

<table>
<thead>
<tr>
<th>material</th>
<th>unit cell volume (Å³)</th>
<th>space group</th>
<th>unit cell parameters (Å and °)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga-MIL-53_lp</td>
<td>starting from Ga-MIL-53_lp containing pyridine</td>
<td>1452.7</td>
<td>Imma a = 17.65, b = 6.84, c = 12.03</td>
</tr>
<tr>
<td>Ga-MIL-53_np_empty</td>
<td>starting from Ga-MIL-53_empty dehydrated from Ga-MIL-53_H₂O</td>
<td>899.0</td>
<td>C2/c a = 21.61, b = 7.03, c = 6.68, β = 117.57</td>
</tr>
<tr>
<td>Ga(OH,F)-MIL-53_H₂O</td>
<td>starting from Ga(OH,F)-MIL-53_H₂O</td>
<td>987.9</td>
<td>Cc a = 21.62, b = 7.02, c = 6.67, β = 117.58</td>
</tr>
</tbody>
</table>

Tableau 6.2 : Paramètres cristallographiques des structures cristallines relaxées par calculs quantiques.

Dans un deuxième temps, nous avons étudié la structure narrow pore vide (i.e. sans adsorbant), appelée MIL-53-Ga(OH,F)-np-empty. À partir de la structure expérimentale, MIL-53(Ga)-np-empty, reportée par Volkmer et al., nous avons relaxé les positions atomiques et la maille du matériau dans le groupe d’espace C2/c. * La structure converge est proche de celle obtenue expérimentalement (tableaux 6.1 et 6.2). On note une faible augmentation du volume de maille élémentaire de 886.3 Å³ à 899.0 Å³. Une analyse géométrique du volume poreux accessible de la structure relaxée a montré que cette phase narrow pore vide n’est pas poreuse pour une molécule sonde de la taille d’une molécule d’eau (diamètre cinétique de 2.4 Å) : le diamètre maximal de la molécule qui peut entrer dans les pores du matériau est de 2.2 Å. Pour confirmer ce résultat, nous avons effectué des simulations Monte-Carlo dans l’ensemble grand canonique d’adsorption d’eau dans cette structure à 300 K. En phase gaz, dans la gamme de pression 0 – 3.5 kPa, on n’observe pas d’adsorption d’eau, ce qui confirme que la porosité de cette phase du matériau n’est pas accessible aux molécules d’eau.

Ensuite, nous nous sommes intéressés aux phases narrow pore hydratées, MIL-53-Ga(OH,F)-np-H₂O et MIL-53-Ga-np-H₂O, dont les structures ont été reportées expérimentalement à partir d’expériences de diffraction de rayons X. Tout d’abord, nous avons relaxé la structure hydratée expérimentale MIL-53-Ga(OH,F)-np-H₂O (groupe d’espace Cc) on observe alors une faible contraction de la maille du matériau (de 973.4 à 948.6 Å³). Ensuite, nous avons enlevé les molécules d’eau présentes dans les pores afin d’étudier la stabilité intrinsèque de cette phase du matériau. La structure déshydratée converge spontanément vers une structure plus dense que la structure hydratée, et très proche de la structure MIL-53-Ga(OH,F)-np-empty (respectivement 897.9 et 899.0 Å³). Nos résultats montrent que la phase narrow pore hydratée (MIL-53-Ga(OH,F)-np-H₂O) n’est pas une structure stable en l’absence des molécules d’eau puisque la déshydratation du matériau conduit à la formation de la structure MIL-53-Ga(OH,F)-np-empty.

Nous avons mené la même étude sur la phase hydratée MIL-53-Ga-np, reportée par le groupe de Gérard Férey. Comme discuté précédemment, la structure de ce matériau est légèrement différente de celle de la MIL-53-Ga(OH,F)-np-H₂O, puisqu’elle est contient une double–maille

* Dans nos calculs quantiques nous avons considéré des structures sans atomes de fluor car des calculs préliminaires ont montré qu’il n’avait pas de grande différence.
6.3 Stabilité relative des phases : origine de la différence entre la MIL-53(Al) et la MIL-53(Ga)

Dans cette partie, nous nous intéressons à l’équilibre entre les phases narrow pore et large pore du matériau MIL-53(Ga), et plus particulièrement à l’origine microscopique de la différence observée avec la MIL-53(Al). En effet, pour les deux matériaux vides (i.e. en l’absence de solvant ou d’adsorbat) il a été montré que la transition structurale lp–np peut être induite par la température. De plus, la phase narrow pore est toujours la plus stable thermodynamiquement à basse température, tandis que la phase large pore est stabilisée à haute température. À des températures intermédiaires, au cours de la transition structurale, il y a coexistence des deux phases du matériau. Expérimentalement, la transition structurale de la MIL-53(Al) induite par la température se produit dans la gamme 150–325 K. Sur la base des données expérimentales d’adsorption de Xe, CO₂ et CH₄ et à partir d’un modèle thermodynamique développé par l’équipe, la température de transition à l’équilibre thermodynamique, T₀, de la MIL-53(Al) a été estimée à 200 K. Cette température correspond à la température d’équilibre lp/np pour laquelle les deux phases du matériau ont même énergie libre en l’absence d’adsorbat. La connaissance de T₀ est importante pour comprendre et rationaliser le phénomène de respiration du matériau. En effet, la donnée de T₀ est un paramètre clef pour l’établissement des diagrammes de phase en présence de différents adsorbats.

Pour la MIL-53(Ga), la température de transition d’équilibre T₀ n’était pas connue au début de cette étude. Cependant, les travaux expérimentaux de diffraction de rayons X en chauffant et d’infrarouge à transformée de Fourier in situ (IRFT), réalisés par l’équipe de Dijon, ont permis de définir une gamme de température dans laquelle la transition se produit : 450–520 K. Ces résultats montrent que la phase stable à température ambiante et sans adsorbat de la MIL-53(Ga) est la phase narrow pore tandis que dans les mêmes conditions la phase large pore de la MIL-53(Ga) est la plus stable. À partir de calculs de chimie quantique, je me suis intéressée aux structures des deux phases vides de chacun des deux matériaux afin de rationaliser leurs
6.3 — Stabilité relative des phases

comportements en température (T_0(MIL-53(Ga)) > T_0(MIL-53(Al))). J’ai calculé les différentes contributions énergétiques et entropique (dans l’approximation harmonique) : l’énergie de point-zéro (E_0) et l’entropie vibrationnelle (S_{vib}) qui sont calculées à partir d’un calcul des fréquences de vibration, l’énergie électronique (E_{el}) et l’énergie de dispersion (E_{disp}). Les résultats obtenus sont reportés dans le tableau 6.3, sous la forme de différences d’énergie et d’entropie entre les structures lp et np pour chaque matériau.

<table>
<thead>
<tr>
<th>Δ (lp – np)</th>
<th>ΔE_{tot} (kJ/mol)</th>
<th>ΔE_{el} (kJ/mol)</th>
<th>ΔE_{disp} (kJ/mol)</th>
<th>ΔE_0 (kJ/mol)</th>
<th>ΔS_{vib} (J mol$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MIL-53</td>
<td>35.7</td>
<td>−65.8</td>
<td>101.3</td>
<td>0.25</td>
<td>36.9</td>
</tr>
<tr>
<td>Ga-MIL-53</td>
<td>39.6</td>
<td>−53.3</td>
<td>94.5</td>
<td>−1.61</td>
<td>33.8</td>
</tr>
</tbody>
</table>

Tableau 6.3 : Différences d’énergie et d’entropie entre la phase lp et np de la MIL-53(Al) et MIL-53(Ga) obtenues par calculs quantiques.

Ces résultats confirment pour la MIL-53(Al) et la MIL-53(Ga) ce qui a été démontré par Walker et al. [131] pour la MIL-53(Al) :
— la phase narrow pore est énergétiquement favorisée, en lien avec les observations expéri-mentales qui montrent que la phase np est la plus stable à basse température.
— Cette stabilisation est due aux interactions dispersives. Un phénomène similaire a été récemment observé dans des dimères d’alcènes de grande taille.[275]
On remarque également que le terme entropique stabilise la phase large pore, ce qui justifie que cette phase soit favorisée à haute température.

Nous allons maintenant comparer termes par termes les deux matériaux :
— La contribution de l’entropie vibrationnelle de la MIL-53(Al) et de la MIL-53(Ga) est assez similaire (respectivement 36.9 et 33.8 kJ.mol$^{-1}$ K$^{-1}$). La petite différence tend à diminuer la stabilisation entropique de la phase large pore de la MIL-53(Ga) avec la température et donc à augmenter la température de transition d’équilibre, T_0, de la MIL-53(Ga).
— Le terme énergétique montre que la phase narrow pore de la MIL-53(Ga) est plus stabilisée que celle de la MIL-53(Al) comparées à leurs phases large pore respectives ($ΔE_{tot} = 39.6$ vs 35.7 kJ/mol). Cette stabilisation ($ΔΔE ≈ 4$ kJ/mol) explique également pourquoi la température d’équilibre lp=np, T_0, de la MIL-53(Ga) est supérieure à celle de la MIL-53(Al). En effet, la transition np → lp nécessite une température plus élevée pour compenser la différence d’énergie entre les deux phases du matériau.
— L’énergie totale, E_{tot}, est essentiellement la somme de deux termes qui affectent de manière différente la stabilisation énergétique. Le terme dominant est l’énergie électronique (DFT), $ΔΔE_{el} = 12.5$ kJ/mol, la différence d’énergie de dispersion est plus faible ($ΔΔE_{disp} = −6.8$ kJ/mol). La structure narrow pore vide à basse température de la MIL-53(Al) est plus dense que celle de la MIL-53(Ga) ($V = 886.9$ Å3 [58] vs $V = 895.9$ Å3), elle est donc plus stabilisée par l’énergie de dispersion.
Afin de mieux comprendre la différence observée dans l’énergie électronique, j’ai effectué des calculs sur des clusters moléculaires carboxylate–M$_2$(OH)–carboxylate (avec M = Al ou Ga) formés à partir des phases narrow pore de chaque matériau. De manière à créer des clusters neutres et maintenir la coordination des centres métalliques, j’ai substitué les atomes d’oxygène des carboxylates manquants par des ions F$^-$. J’ai également considéré le ligand monocarboxylate à la place du dicarboxylate. Le cluster moléculaire à base d’aluminium est représenté sur la figure 6.2.
On remarque que l’octaèdre de coordination des centres métalliques est déformé dans la phase narrow pore. La première étape de notre étude a consisté en la relaxation des positions atomiques des atomes de fluor ajoutés, sans relaxer le reste du cluster. Ensuite, nous avons effectué une relaxation complète des deux clusters moléculaires (tous les atomes sont libres de bouger). Au cours de la relaxation, on observe que les ligands organiques relaxent et se réorientent de manière à ce que le centre métallique retrouve une coordination octaédrique quasi-parfaite (figure 6.2). À partir de cette relaxation, il est possible de calculer la pénalité énergétique induite par la déformation de l’octaèdre de coordination du centre métallique dans le cas des phases narrow pore. Elle est de 97.3 kJ/mol pour l’aluminium et de 87.8 kJ/mol pour le gallium. Ces résultats nous permettent de conclure que la déformation de la sphère de coordination du gallium est plus facile énergétiquement, comparée à celle de l’aluminium, ce qui augmente la stabilité de la phase np. Ainsi, les orbitales plus diffuses du gallium expliquent pourquoi la phase narrow pore de la MIL-53(Ga) est stabilisée à température ambiante tandis que la phase large pore de la MIL-53(Al) est favorisée dans les mêmes conditions. De plus, le fait que la sphère de coordination du gallium puisse se déformer plus facilement que celle de l’aluminium, induit une flexibilité structurale plus importante du matériau MIL-53(Ga). En effet, dans le chapitre 3 nous avons calculé les propriétés mécaniques des phases large pore des deux matériaux. Les valeurs minimales des modules de Young et de cisaillement que nous avons obtenues sont respectivement pour la MIL-53(Al)-lp de 0.90 GPa et de 0.35 GPa, et pour la MIL-53(Ga)-lp de 0.16 GPa et de 0.08 GPa. La MIL-53(Ga)-lp est donc plus faiblement résistante aux contraintes de compression mécanique et de cisaillement que la MIL-53(Al)-lp en raison de la plus faible énergie de liaison au niveau de la sphère de coordination du gallium. De plus, la compressibilité linéaire négative de la MIL-53(Ga)-lp est largement plus importante que celle de la MIL-53(Al)-lp, respectivement -1441 GPa et -257 GPa, pour les mêmes raisons.

Cette analyse des contributions énergétiques nous permet également d’estimer théoriquement les températures d’équilibre T_0 des deux matériaux. On trouve alors T_0(Al) = 967 K et T_0(Ga) = 1172 K, si l’ordre des T_0 est correct, T_0(Ga) > T_0(Al), les valeurs obtenues sont bien trop élevées. Nous pouvons attribuer cela à l’approximation que nous avons faite sur le calcul de l’entropie du système. En effet, le calcul à partir des fréquences de vibration surestime très probablement la valeur de l’entropie des phases des matériaux.
6.4 Diagramme de phase en présence d’eau de la MIL-53(Ga)

Parallèlement à mes travaux, l’équipe de Dijon a mesuré les isothermes d’adsorption–désorption d’eau dans la MIL-53(Ga) dans la gamme de température 273 – 373 K, et deux isobares à 1 hPa et 8 hPa (figure 6.3). À partir de ces données expérimentales et du modèle osmotique développé au sein de l’équipe, David Bousquet, dans le cadre de sa thèse, a établi le diagramme de phase température–pression de la MIL-53(Ga) en présence d’eau. Les calculs quantiques de minimisation énergétique présentés à la section 6.2 et les calculs de dynamique moléculaire "premiers principes" réalisés par Volker Haigis ont permis de mieux comprendre le comportement en présence d’eau du matériau MIL-53(Ga). La phase narrow pore stable à température ambiante est non poreuse, en présence d’une très faible quantité d’eau on observe une déformation de la structure (structure intermédiaire, int) qui permet au matériau d’adsorber des molécules d’eau. Vers un remplissage de 0.2 molécules d’eau adsorbées par Ga on observe la transition vers la phase hydratée (np-H$_2$O). La première partie de l’isotherme (figure 6.4) correspond à l’adsorption de surface, puis l’adsorption dans la phase np-empty déformée. La marche verticale correspond à la transition structurale np-int → np-H$_2$O. Ce mécanisme est corroboré par des mesures de diffraction de rayons X in situ, à différents taux de remplissage.

![Diagramme de phase MIL-53(Ga) en présence d’eau](image)

Figure 6.3 : Isothermes d’adsorption – désorption d’eau expérimentales (en haut) et isobares expérimentales (en bas) mesurées à 1 hPa (courbe bleue) et 8 hPa (courbe rouge).

Les paramètres du modèle thermodynamique osmotique ont donc été modifiés pour prendre en compte les deux étapes de la transition structurale. On remarque un très bon accord entre les isothermes mesurées expérimentalement et celles prédites par le modèle (figure 6.4). Le diagramme de phase température–pression de la MIL-53(Ga) en présence d’eau est présenté sur la
Figure 6.4 : Isothermes d’adsorption d’eau dans la MIL-53(Ga) à 298 K (à gauche) et à 323 K (à droite). Les points expérimentaux sont représentés en noir et la courbe calculée par le modèle en rouge.

Les domaines de stabilité de chacune des phases du matériau sont donnés en fonction des conditions thermodynamiques de température et de pression. Le domaine d’existence de la phase intermédiaire, notée int, est en excellent accord avec les données expérimentales. À pression ambiante, les deux phases stables du matériau sont la phase lp pour \(T > T_0 = 450K \) et la phase np-empty pour \(T < T_0 \) (même si cela n’est pas facilement visible sur la figure 6.5 car la pression est en échelle logarithmique).
Figure 6.5 : Diagramme de phase température–pression de l’eau dans la MIL-53(Ga) indiquant le domaine de stabilité de chaque phase du matériau. Les segments rouges correspondent aux transitions déterminées expérimentalement.
6.5 Conclusion

Les calculs quantiques d’optimisation géométrique des différentes structures de la MIL-53(Ga) nous ont permis de montrer que la structure hydratée à basse température n’est pas une phase stable du matériau en l’absence des molécules d’eau. Cette structure hydratée (np-H$_2$O) résulte de la déformation de la phase narrow pore vide du matériau pour accommoder les molécules d’eau, un comportement similaire à celui des matériaux présentant le phénomène dit de gate opening. Les données expérimentales d’adsorption et les calculs quantiques "premiers principes" ont permis de confirmer ce résultat et de mettre en évidence l’existence d’une structure intermédiaire (notée int) entre la phase np-empty et la phase np-H$_2$O. Nous avons également montré que le comportement physico-chimique de la MIL-53-Ga(OH,F) est similaire à celui de la MIL-53(Ga) et présente comme les autres matériaux de la famille MIL-53(M) (M = Al, Cr, Fe ...) seulement deux phases métastables vides. Cependant, l’adsorption de molécules d’eau conduit à la formation de structures intermédiaires de la même manière qu’observé expérimentalement pour la MIL-53(Fe).[182] Cela nous permet donc de mettre en évidence l’influence de la nature du métal sur le comportement du matériau.

À partir de calculs quantiques, nous avons rationalisé la différence observée expérimentalement entre la MIL-53(Ga) et la MIL-53(Al). En effet, les orbitales plus diffuses du gallium facilitent la déformation de sa sphère de coordination. La phase narrow pore est donc la structure stable de la MIL-53(Ga) en conditions ambiantes, tandis que pour les autres matériaux de la famille MIL-53 c’est la phase large pore qui est favorisée.

Le phénomène de respiration du matériau MIL-53(Ga) en présence d’eau a été rationalisé dans une large gamme de température et de pression à travers l’établissement du diagramme de phase température–pression.

Cette étude est un exemple de la complémentarité des approches expérimentales et théoriques, qui ont permis de comprendre et de rationaliser le comportement de la MIL-53(Ga) en présence d’eau. Ce travail est un premier pas vers la compréhension de la stabilité mécanique et hydrothermale de la MIL-53(Ga).
Conclusion générale

Afin de mieux comprendre la très large gamme des comportements observés pour la flexibilité des matériaux hybrides organiques-inorganiques en présence de stimuli physico-chimiques (température, contrainte mécanique, adsorption), j’ai développé au cours de ma thèse une méthodologie complète d’étude de ces matériaux. Combinant différentes méthodes de simulation moléculaire classique et quantique, elle permet une caractérisation fine de la flexibilité des MOFs et une compréhension des mécanismes qui donnent naissance à cette flexibilité à l’échelle moléculaire. J’ai ainsi pu, durant les trois années de ma thèse, développer et valider cette méthodologie par l’étude d’un grand nombre de matériaux de nature chimique et de topologie différentes, voire même utiliser ces outils pour prédire des mécanismes de flexibilité qui n’ont pas (ou n’avaient pas) été expérimentalement observés.

Dans la méthodologie que je propose, la première étape consiste en l’étude des propriétés mécaniques des matériaux dans le régime élastique, c’est-à-dire pour de faibles déformations autour de la structure d’équilibre. Par une étude comparant les propriétés élastiques de cinq structures flexibles (deux matériaux de la famille MIL-53, la MIL-47 et deux structures de la DMOF-1) à celles de deux structures considérées comme rigides (MOF-5 et ZIF-8), j’ai mis en évidence que la flexibilité structurale des MOFs et l’existence de transitions structurales de large amplitude sont liées aux propriétés élastiques locales de ces matériaux. Il existe donc une signature caractéristique, à l’échelle élastique, des Soft Porous Crystals : une large anisotropie de leurs propriétés mécaniques combinée à l’existence de modes de déformation “mous”, notamment en cisaillement (module de cisaillement inférieur au gigapascal dans certaines directions).[119] J’ai proposé, sur cette base, l’utilisation de la plus petite valeur propre du tenseur élastique comme un critère simple de la flexibilité potentielle d’une structure. [120] J’ai enfin testé cette méthodologie de calcul et d’analyse des propriétés mécaniques des MOFs pour étudier deux matériaux dont la flexibilité structurale n’a pas été observée expérimentalement, MIL-122 et MIL-140, qui présentent tous deux une topologie à motif treillis, similaire à celle des matériaux de la famille MIL-53. J’ai pu identifier les caractéristiques élastiques liées à ces propriétés structurales, comme la présence de directions de compressibilité linéaire négative et de ratio de Poisson négatif, et prédire pour le matériau MIL-140A une flexibilité inattendue.

Une deuxième étape de la méthodologie que j’ai mise en place pour l’étude des matériaux nanoporeux flexibles est de caractériser sa réponse à des contraintes mécaniques (pression isotrope, cisaillement, etc.) pour des pressions importantes (entre 100 MPa et 10 GPa), c’est-à-dire hors du régime élastique. Cette étude est menée par des expérience de compression–tension in silico, en observant la réponse du matériau à des contraintes de plus en plus fortes. Elle peut être effectuée à plusieurs niveaux de descriptions : soit par des calculs de chimie quantique (minimisation d’enthalpie pour chaque contrainte), soit par des simulations de dynamique moléculaire “premiers principes” ou basées sur une description classique du matériau (potentiels d’interactions empiriques). Cette méthodologie, plus coûteuse que les calculs de tenseur élastique,
Conclusion

permet néanmoins de caractériser de manière directe les transitions structurales induites par la température ou la pression. Je l’ai utilisée notamment pour étudier deux matériaux de structure treillis, dont la flexibilité n’avait pas été établie : CAU-13 et NOTT-300. Pour NOTT-300, je prédis une transition structurale à assez haute pression mécanique (500–750 MPa), tandis que pour la CAU-13, l’observation d’une transition d’ouverture des pores en tension permet de prédire l’existence d’une transition induite par l’adsorption de grosses molécules ou l’adsorption de gaz simples à haute pression. Cette prédiction a été confirmée par une observation très récente dans le cas de l’adsorption de xylènes.

La suite naturelle de cette étude, en lien avec les problématiques soulevées par l’utilisation de ces matériaux dans les procédés industriels, était d’utiliser nos outils théoriques pour mieux comprendre la stabilité mécanique des MOFs. Une première étude a consisté en la compréhension et la rationalisation du phénomène d’amorphisation sous pression ou température observé chez certains matériaux de la famille des ZIFs. J’ai alors mis en évidence que l’amorphisation de la ZIF-8 reportée expérimentalement sous l’effet de pression est due à une instabilité mécanique du matériau induite par une diminution de la résistance de la structure sous contrainte de cisaillement (shear mode softening). L’analyse du comportement sous compression mécanique de deux matériaux de la famille des ZAG a permis de mettre en exergue l’existence d’un transfert de proton induit par la pression dans une MOF. Ce phénomène est à notre connaissance le premier reporté dans la littérature. Enfin, j’ai apporté une compréhension et une rationalisation du polymorphisme observé chez les matériaux de cyanures de zinc (Zn(CN)$_2$) induit par l’intrusion de fluide. En effet, à partir de considérations thermodynamiques j’ai montré que la stabilisation énergétique liée à l’intrusion de fluide de la structure compense la perte de stabilité du matériau induite par la transition vers le polymorphe possédant une structure poreuse (i.e. moins dense).

Dans un dernier temps, je me suis intéressée à l’influence des propriétés structurales (topologie et géométrie des pores) et de la fonctionnalisation des MOFs sur leurs propriétés d’adsorption de l’eau. En particulier, j’ai étudié les matériaux de la famille des ZIFs et montré par simulation moléculaire comment la topologie et la nature chimique de la surface interne peut permettre de moduler les propriétés hydrophiles/hydrophobes de ces matériaux. Ces observations peut alors permettre d’orienter la synthèse de matériaux en fonction des applications souhaitées.

Ces travaux mettent en lumière la complémentarité des méthodes expérimentales et théoriques et le lien indissociable qui existe entre ces deux approches. En effet, la chimie théorique permet bien souvent de comprendre et de rationaliser à l’échelle microscopique des phénomènes difficilement interprétables expérimentalement. À travers la collaboration avec les partenaires expérimentateurs du projet ANR, nous avons pu rationaliser le comportement de deux matériaux de la famille MIL-53.

Cette thèse s’inscrit pleinement dans les thématiques de recherche de l’équipe qui depuis quelques années, se focalise principalement sur deux axes. Le premier qui consiste en l’étude des propriétés d’adsorption de l’eau des matériaux poreux (historiquement des zéolithes) par simulation moléculaire et de l’influence de l’effet de confinement sur les propriétés structurales, thermodynamiques et électronique de l’eau. Le deuxième porte sur l’étude des propriétés des MOFs et en particulier sur la flexibilité structurale de certains de ces matériaux appelés Soft Porous Crystals. De nouveaux outils théoriques tels que des modèles thermodynamiques analytiques simples permettant d’interpréter les observations expérimentales et de rationaliser le comportement et l’occurrence de transitions structurales induites par les contraintes mécaniques ou l’adsorption de ces matériaux déformables ont été développés au sein de l’équipe ainsi que de nouvelles méthodes de simulation moléculaire notamment dans l’ensemble osmotique. Mes travaux ont notamment permis une compréhension à l’échelle microscopique du comportement
Conclusion

mécanique et de l’existence d’une flexibilité structurale de ces matériaux à l’échelle macroscopique (i.e. transitions structurales). La méthodologie de calculs basée sur plusieurs méthodes de simulation classiques et quantiques mise en place au cours de cette thèse constitue un premier pas vers une description multi-échelle et complète du comportement mécanique des Soft Porous Crystals.

Ces travaux ouvrent un certain nombre de perspectives. Tout d’abord, il faut noter que plusieurs études expérimentales très récentes ont confirmé les prédictions établies par la méthodologie que j’ai développée durant ma thèse : la transition structurale de CAU-13[180], déjà cité plus haut, mais également l’existence de la compressibilité linéaire négative des matériaux de la famille MIL-53[166]. Ces confirmations expérimentales renforcent la validation des méthodes théoriques, et l’une des perspectives de ce travail est de les utiliser plus largement pour la caractérisation des nouveaux systèmes. J’ai pu montrer qu’il existe des modes de flexibilité possible dans des matériaux où ils étaient jusque-là insoupçonnés. Il serait donc intéressant de passer au crible les matériaux poreux proposés dans la littérature récente pour des applications d’adsorption, afin de déterminer si certains d’entre eux présentent une flexibilité latente qui pourrait avoir un impact sur leurs performances. En particulier, il y a actuellement dans la communauté un engouement pour les procédés de génération combinatoire de nouvelles structures nanoporeuses et méso-poreuses, dont les propriétés physico-chimiques (notamment d’adsorption) sont ensuite caractérisées par simulation moléculaire. Il pourrait être utile d’introduire dans cette méthodologie des calculs de propriétés élastiques, rajoutant ainsi un critère qui me semble important dans la sélection et l’optimisation de ces matériaux hypothétiques.

Une deuxième perspective, plus fondamentale, serait d’approfondir le lien entre les transitions induites par l’adsorption et par des contraintes mécaniques. J’ai utilisé, par exemple dans le cas du matériau CAU-13, utilisé ce lien pour modéliser de façon simple l’effet de l’adsorption d’un fluide par une contrainte mécanique de tension, “mimant” la contrainte induite sur le matériau poreux dans certains régimes d’adsorption. Ce phénomène de contrainte mécanique induite par l’adsorption, s’il est bien connu sur le plan empirique, demeure encore mal compris par certains aspects. Par exemple, il serait intéressant de comprendre si les mécanismes moléculaires mis en jeu par les deux types de transition (induite par l’adsorption ou les contraintes mécaniques pures) sont les mêmes, ou si des différences existent. L’étude de cette problématique est en cours de démarrage au sein de l’équipe, et nécessite d’importants moyens de calcul pour décrire explicitement les transitions structurales induites par l’adsorption à l’échelle moléculaire.

Enfin, mes travaux de thèse ont largement aidé à rationaliser le lien entre les caractéristiques géométriques et topologiques des matériaux poreux flexibles et leurs propriétés mécaniques. Il serait intéressant de pousser cette étude plus loin, et de voir dans quelle mesure des matériaux de propriétés chimiques très différentes, mais de topologies similaires, se ressemblent du point de vue de leurs propriétés mécaniques. On peut par exemple penser aux structures zéolithiques (téraèdres connectés par leurs sommets), qui présentent des nombreux équivalents inorganiques (compositions SiO2, AlPO4, etc.) et moléculaires (imidazolates de zinc, de cadmium, etc.). Une étude systématique du comportement en pression et température de ces différents matériaux, leurs tendances communes et leurs différences, permettrait de mieux comprendre les liens topologie–propriétés mécaniques des matériaux nanoporeux et l’influence de la nature chimique sur ceux-ci.
Liste de publications

Publications liées aux travaux de thèse :

Publication antérieure :

Références

Références

Références

— 191 —
Références

Références

Références

— 197 —

