?. Si, ne contient ni séparatrice hétérocline ni point d'´ equilibre multiple, alors G est simplement une carte planaire. Plus précisément, grâce aux remarques précédentes, G est nécessairement une carte bipartie

M. Alverez, A. Gasull, and R. Prohens, Topological classification of polynomial complex differential equations with all the critical points of centre type, Journal of Difference Equations and Applications, vol.7, issue.5-6, pp.411-423, 2010.
DOI : 10.1090/S0002-9939-1975-0356138-6

K. Baranski, On realizability of branched coverings of the sphere, Topology and its Applications, vol.116, issue.3, pp.279-291, 2001.
DOI : 10.1016/S0166-8641(00)00094-8

S. Benchekroun and P. Moszkowski, A New Bijection Between Ordered Trees and Legal Bracketings, European Journal of Combinatorics, vol.17, issue.7, pp.605-611, 1996.
DOI : 10.1006/eujc.1996.0051

URL : https://doi.org/10.1006/eujc.1996.0051

G. Boccara, Cycles comme produit de deux permutations de classes donnees, Discrete Mathematics, vol.38, issue.2-3, pp.129-142, 1982.
DOI : 10.1016/0012-365X(82)90282-5

URL : https://doi.org/10.1016/0012-365x(82)90282-5

L. Böttcher, The principal laws of convergence of iterates and their application to analysis, Izv. Kazan. Fiz.-Mat. Obshch, vol.14, pp.155-234, 1904.

M. Bousquet-melou and G. Schaeffer, Enumeration of Planar Constellations, Advances in Applied Mathematics, vol.24, issue.4, pp.337-368, 2000.
DOI : 10.1006/aama.1999.0673

URL : https://hal.archives-ouvertes.fr/inria-00099358

B. Branner and K. Dias, Classification of complex polynomial vector fields in one complex variable, Journal of Difference Equations and Applications, vol.9, issue.5-6, pp.463-517, 2010.
DOI : 10.1016/0022-0396(81)90034-6

L. Brickman and E. Thomas, Conformal equivalence of analytic flows, Journal of Differential Equations, vol.25, issue.3, pp.310-324, 1977.
DOI : 10.1016/0022-0396(77)90047-X

A. Clebsch, Zur Theorie der Riemann'schen Fl???che, Mathematische Annalen, vol.6, issue.2, pp.216-230, 1873.
DOI : 10.1007/BF01443193

M. Creximanno and W. Taylor, Large N phases of chiral QCD2, Nuclear Physics B, vol.437, issue.1, pp.3-24, 1995.
DOI : 10.1016/0550-3213(94)00561-R

C. Davis, 4714, The American Mathematical Monthly, vol.64, issue.9, pp.679-680, 1957.
DOI : 10.2307/2309982

T. Davis, Catalan numbers, 2012.

J. Denès, The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Institute of Mathematics, Hungar Academy Sciences, vol.4, pp.353-355, 1959.

K. Dias, Enumerating combinatorial classes of the complex polynomial vector fields in C. Ergodic Theory and Dynamical Systems, pp.416-440, 2013.

A. Douady and J. Hubbard, ´ Etude dynamique des polynômes complexes, I, II. Publications Mathématiques d'Orsay, 1984.

E. Duchi, D. Poulalhon, and G. Schaeffer, Uniform random sampling of simple branched coverings of the sphere by itself, Proceedings of the Twenty-Fifth Annual ACM-SIAM, pp.294-304, 2014.
DOI : 10.1137/1.9781611973402.21

R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point, American Journal of Mathematics, vol.130, issue.4, pp.979-1032, 2008.
DOI : 10.1353/ajm.0.0009

A. L. Edmonds, R. S. Kulkarni, and R. E. Stong, Realizability of branched coverings of surfaces. Transactions of the, pp.773-790, 1984.

T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Inventiones Mathematicae, vol.146, issue.2, pp.297-327, 2001.
DOI : 10.1007/s002220100164

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

D. Foata and J. Riordan, Mappings of acyclic and parking functions, Aequationes Mathematicae, vol.4, issue.1, pp.10-22, 1974.
DOI : 10.1007/BF01834776

A. Garijo, A. Gasull, and X. Jarque, Local and global phase portrait of equation ? z = f (z). Discrete and Continuous Dynamical Systems, pp.309-329, 2007.

S. Gersten, On branched covers of the 2-sphere by the 2-sphere, Proceedings of the, pp.761-766, 1987.

I. Goulden and D. Jackson, The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European Journal of Combinatorics, vol.13, issue.5, pp.257-365, 1992.
DOI : 10.1016/S0195-6698(05)80015-0

I. Goulden and D. Jackson, Trangraphs factorisations into transpositions and holomorphic mappings on the sphere, Proceedings of the American Mathematical Society, vol.125, issue.01, pp.51-69, 1997.
DOI : 10.1090/S0002-9939-97-03880-X

J. Gross and T. Tucker, Topological graph theory, Wiley-Interecience Series in Discrete Mathematics and Optimization, 1987.

A. Grothendieck, Esquisse d'un Programme, 1984.
DOI : 10.1017/CBO9780511758874.003

O. Hájek, Notes on meromorphic dynamical systems I, Czechoslovak Mathematical Journal, vol.91, pp.14-27, 1966.

O. Hájek, Notes on meromorphic dynamical systems II, Czechoslovak Mathematical Journal, vol.91, pp.28-35, 1966.

P. Hall, On Representatives of Subsets, Journal of the London Math. Soc, vol.10, pp.26-30, 1935.

A. Hurwitz, ??ber Riemann???sche Fl??chen mit gegebenen Verzweigungspunkten, Mathematical Annal, vol.103, pp.1-60, 1891.
DOI : 10.1007/978-3-0348-4161-0_21

J. Irving, Minimal Transitive Factorizations of Permutations into Cycles, Journal canadien de math??matiques, vol.61, issue.5, pp.1092-1117, 2009.
DOI : 10.4153/CJM-2009-052-2

URL : https://cms.math.ca/cjm/abstract/pdf/150272.pdf

J. Kiwi, Rational laminations of complex polynomials, Laminations and Foliations in Dynamics, Geometry and Topology, pp.111-154, 2001.
DOI : 10.1090/conm/269/04331

J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proceedings of the London Mathematical Society, vol.91, issue.01, pp.215-248, 2005.
DOI : 10.1112/S0024611505015248

S. Lando, Ramified coverings of the two-dimensional sphere and the intersection theory in spaces of meromorphic functions on algebraic curves, Russian Mathematical Surveys, vol.57, issue.3, pp.463-533, 2002.
DOI : 10.1070/RM2002v057n03ABEH000511

S. Lando and A. Zvonkin, Graphs on surfaces and their applications. Encyclopaedia of Mathematical sciences, 2004.
DOI : 10.1007/978-3-540-38361-1

URL : https://hal.archives-ouvertes.fr/hal-00307202

V. Liskovets, A census of non-isomorphic planar maps Algebraic Methods in Graph Theory, pp.479-494, 1981.

V. A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Mathematics, vol.156, issue.1-3, pp.197-217, 1996.
DOI : 10.1016/0012-365X(94)00347-L

URL : https://doi.org/10.1016/0012-365x(94)00347-l

V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta applicandae mathematicae, issue.52, pp.91-120, 1998.

V. A. Liskovets, Enumerative formulae for unrooted planar maps : a pattern, Electronic journal of combinatorics, vol.11, 2004.

J. Luroth, Note ???ber Verzweigungsschnitte und Querschnitte in einer Riemann'schen Fl???che, Mathematische Annalen, vol.4, issue.2, pp.181-184, 1871.
DOI : 10.1007/BF01442591

P. Mani, Automorphismen von polyedrischen Graphen, Mathematische Annalen, vol.1, issue.4, pp.279-303, 1971.
DOI : 10.1007/BF02075357

A. Mednykh, Nonequivalent coverings of Riemann surfaces with a given ramification type, Siberian Mathematical Journal, vol.25, pp.120-142, 1984.

A. Mednykh, Branched coverings of riemann surfaces whose branch orders coincide with the multiplicity, Communications in Algebra, vol.682, issue.5, pp.1517-1533, 1990.
DOI : 10.1016/0012-365X(80)90001-1

J. Milnor, Dynamics in one complex variable, 2006.
DOI : 10.1007/978-3-663-08092-3

P. Moszkowski, A Solution to a Problem of D??nes: a Bijection Between Trees and Factorizations of Cyclic Permutations, European Journal of Combinatorics, vol.10, issue.1, pp.13-16, 1989.
DOI : 10.1016/S0195-6698(89)80028-9

D. Neumann, Classification of continuous flows on 2-manifolds, Proceedings of the American Mathematical Society, vol.48, issue.1, pp.73-81, 1975.
DOI : 10.1090/S0002-9939-1975-0356138-6

A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers and matrix models, I. arXiv :math/0101147, 2001.
DOI : 10.1090/pspum/080.1/2483941

K. M. Pilgrim, Polynomial vector fields, dessins d???enfants, and circle packings, Contemporary Mathematics, vol.396, 2006.
DOI : 10.1090/conm/396/07399

D. Poulalhon, Probì emesénumeratifsemesénumeratifs autour des cartes combinatoires et des factorisations dans le groupe symétrique, 2002.

D. Poulalhon and G. Schaeffer, Factorizations of large cycles in the symmetric group, Discrete Mathematics, vol.254, issue.1-3, pp.433-458, 2002.
DOI : 10.1016/S0012-365X(01)00361-2

G. Schaeffer, Conjugaison d'arbres et cartes combinatoires aléatoires, 1998.

R. Stanley, Enumerative combinatorics, 1997.
DOI : 10.1007/978-1-4615-9763-6

V. Strehl, Minimal transitive products of transpositions : the reconstruction of a proof of Hurwitz, Seminaire Lotharingien de Combinatoire, 1996.

L. Tan, On W. Thurston's planar balanced maps, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01669492

R. Thom, L'??quivalence d'une fonction diff??rentiable et d'un polynome, Topology, vol.3, pp.297-307, 1965.
DOI : 10.1016/0040-9383(65)90079-0

W. Thurston, Degree d invariant laminations

W. Thurston, On combinatorics of iterated rational maps In Complex Dynamics, Families and Friends, pp.3-137, 2009.

J. Tomasini, About branched coverings of the sphere, 2014.

J. Tomasini, Topological enumeration of complex polynomial vector fields. Ergodic Theory and Dynamical Systems, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00844343

W. Tutte, A census of planar triangulations, Journal canadien de math??matiques, vol.14, issue.0, pp.14-21, 1962.
DOI : 10.4153/CJM-1962-002-9

W. Tutte, A census of slicings, Journal canadien de math??matiques, vol.14, issue.0, pp.708-722, 1962.
DOI : 10.4153/CJM-1962-061-1

W. Tutte, A census of planar maps, Journal canadien de math??matiques, vol.15, issue.0, pp.249-271, 1963.
DOI : 10.4153/CJM-1963-029-x

H. Zheng, Realizability of branched coverings of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>S</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math>, Topology and its Applications, vol.153, issue.12, pp.2124-2134, 2006.
DOI : 10.1016/j.topol.2005.08.007

A. Zvonkin, Functional composition is a generalized symmetry, Symmetry : Culture and Science, vol.22, pp.391-426, 2011.

]. D. Zvonkine, Enumeration of ramified coverings of the sphere and 2-dimensional gravity. arXiv :math/0506248, 2005.