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ABSTRACT

The subject of this thesis is theoretical and numerical analysis of the fracture of

SMAs. First, the size of the martensitic region surrounding the tip of an edge-crack

in a SMA plate is calculated analytically using the transformation function proposed

by Zaki and Moumni (Zaki and Moumni, J. Mech. Phys. Sol, 2007) together with

crack tip asymptotic stress equations. Transformation regions calculated analytically

and computationally are compared to experimental results available in the literature

(Robertson et al., Acta Mater., 2007). Second, fracture parameters such as stress

intensity factors (SIFs), J-integrals, energy release rates, crack tip displacements and

T-stresses are evaluated. The objective at this point is to understand the effect of

phase transformation on fracture behavior of an edge-cracked Nitinol plate under Mode

I loading. In the FE analysis of the edge-cracked plate under Mode I loading, the ZM

model as well as the built-in model (Auricchio et. al., Comp. Meth. Appl. Mech. Eng.,

1997) are used. Third, steady-state crack growth in an SMA plate is analysed. To this

end, Mode I steady-state crack growth in an edge-cracked Nitinol plate is modeled using

a non-local stationary method to implement the ZM model in Abaqus. The effects of

reorientation of martensite near the crack tip, as a result of non-proportional loading, on

fracture toughness is also studied. Finally, phase transformation regions are calculated

analytically around the tip of an SMA specimen under Mode III loading. The analytical

derivations are carried out first using a method proposed by Moumni (Moumni, PhD

Thesis, École Nationale des Ponts et Chaussées, 1995). The method relies on mapping

the equations of the boundary value problem to the so-called “hodograph” plane, which

results in simpler equations that are analytically tractable. The influence of coupling

on the extent of the phase transformation regions and on temperature distribution

within the material is then investigated numerically.
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RÉSUMÉ

L’objectif de cette thèse est l’analyse théorique et numérique de la rupture des

matériaux à mémoire de forme (MMF). Tout d’abord, la taille de la zone martensi-

tique à la pointe d’une fissure dans une plaque en MMF est calculée analytiquement

en utilisant la fonction de transformation proposée par Zaki et Moumni (ZM) (Zaki

et Moumni, J. Mech. Phys. Sol, 2007) ainsi que l’expression asymptotique des con-

traintes. Les régions de transformation calculées analytiquement et numériquement

sont comparées aux résultats expérimentaux disponibles dans la littérature (Robertson

et al. Acta Mater., 2007). Dans un deuxième temps, les paramètres de rupture tels

que les facteurs d’intensité des contraintes (FIC), l’intégrale-J, le taux de restitution

d’énergie et le taux d’ouverture de la fissure sont évalués. L’objectif est de comprendre

l’effet de la transformation de phase sur le comportement à la rupture d’une plaque en

MMF sollicitée en mode I. Troisièmement, la propagation d’une fissure en Mode I dans

une plaque en MMF en régime stationnaire est analysée à l’aide d’une méthode non-

locale. L’algorithme numérique ainsi défini est implémenté dans Abaqus en utilisant le

modèle ZM au moyen d’une UMAT. Ensuite, l’effet de la réorientation de la marten-

site au voisinage de la fissure due au chargement non-proportionnel est étudié. Enfin,

la répartition des contraintes et la zone de transformation de phase sont comparées

aux résultats obtenus dans le cas d’une fissure statique. Tout d’abord, la méthode

analytique développée par Moumni (Moumni, thèse de doctorat, École Nationale des

Ponts et Chaussées, 1995) est revisitée. En utilisant la méthode d’hodographe connue

en mécanique des fluides, le système d’équation aux dérivées partielles non-linéaires

est transformé en un problème aux limites linéaire dans le plan d’hodographe. Par

conséquent, l’effet du couplage thermomécanique sur les zones de transformation ainsi

que l’augmentation de la température à la pointe de la fissure due à la génération de

chaleur latente sont mis en évidence.
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1

1. INTRODUCTION

1.1. Phase Transformation in Shape Memory Alloys

Shape Memory Alloys (SMAs) are smart materials that are capable of recovering

their original shape after severe inelastic deformations when their temperatures are

increased. In 1932, Ölander [4] discovered such a memory effect in AuCd and in 1938,

Greninger and Mooradian [5] discussed shape memory effect (SME) in CuZn alloys. In

1962, William J. Buehler (and Wiley R. C.), from Naval Ordnance Laboratory (NOL),

discovered the shape memory behavior of Nickel Titanium (NiTi) alloy [6, 7], which

upon loading or changing temperature underwent solid–to–solid diffusionless phase

transformation between two phases: parent phase called “austenite”, stable at high

temperature and low stress, and product phase “martensite”, stable at low temperature

and high stress. The alloy was named “Nitinol” (combination of “NiTi” and “NOL”).

As shown in Figures 1.1 and 1.2, when the temperature of the alloy is decreased

below the martensite transformation start temperature (Ms) (from state 1 to 3), un-

der constant stress below orientation start stress σs
det, SMA starts to transform from

austenite to martensite gradually. During this transformation, different variants form

by twining. This mechanism is known as self-accommodation of the crystal struc-

ture. A self-accommodated microstructure means that martensitic variants are ar-

ranged in such a way that no observable deformation takes place. The variants formed

in this self–accommodated microstructure have the same free energy [8]. When the

self-accommodated martensite is heated up to austenite start temperature (As), the

martensite phase transforms back to austenite (from state 3 to 1).

When the specimen is loaded under constant temperature (loading path 3 to

2 in Figure 1.1), variants rearrange themselves through orientation. At this stage,

the microstructure consists predominantly of a single variant and martensite is said

to be “detwinned”. In detwinned martensite, only one of the variants exists and the

formation of this variant depends on thermomechanical loading path. At this stage, if
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Figure 1.1. Stress-temperature diagram for a SMA (NiTi).

the alloy is heated up to a certain temperature, the detwinned martensite transforms

back to austenite and the specimen returns back to its original shape (from state 2 to 1

in Figure 1.1). Almost all the strain induced during martensite orientation is recovered

by heating. This behavior is called the shape memory effect.

When the NiTi specimen is at temperatures higher than the austenite finish tem-

perature (Af), it transforms to martensite and upon unloading the deformation in the

material is recovered. The ability of SMAs to recover inelastic deformation by mechan-

ical unloading is referred to as “superelasticity” or “pseudo-elasticity”. According to

Otsuka and Wayman [9], pseudo-elasticity is an apparent plastic deformation that is

recovered from when the material is unloaded at a constant temperature irrespective

of its origin. In addition, Otsuka and Wayman [9] stated that pseudo-elasticity is a

general term that involves both “superelasticity” and “the rubber-like effect”. Accord-

ing to earlier research [4], “the rubber-like effect” is defined as the transformation that

occurs by the reversible movement of twin boundaries in the martensitic phase [9].
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Throughout this thesis, the term “superelasticity” is used to define stress–induced and

reversible phase transformation between austenite and martensite phases.

In superelasticity, the material should be deformed above Af , but below a cer-

tain temperature called martensite desist temperature (Md) [10], that is the highest

temperature over which stress–induced martensite can no longer form. In superelastic

loading, there is a difference between forward transformation (σMs → σMf ) and back-

ward transformation (σAs → σAf ) stresses. This difference gives rise to a hysteresis loop

(see Figure 1.3). Figure 1.3 shows that during superelastic deformation, SMA starts to

deform linear elastically with an elastic modulus that is equal to that of austenite, EA,

until the stress reaches σMs. When σMs is exceeded, the martensitic transformation

starts and the volume fraction ζ of martensite continues to increase until it reaches 1

when the stress reaches σMf . For higher stress, the material behaves elastically again

until yielding. If the stress is decreased before reaching the yield strength of the mate-

rial, the stress-strain curve follows the same path up to σAs, which is below σMf , and

follows a different path from that of forward transformation as shown in Figure 1.3.
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If unloading continues, the stress-strain curve follows a transformation plateau until

σAf then unloads elastically as austenite as shown in Figure 1.3. At the end of the

transformation significant strains (5 %-6 %) can be recovered.

In Figure 1.1, the path 1–3–2–1 summarizes the shape memory effect and the

path 1–4 represents the superelastic behavior. The explanations given above indicate

that the transformation temperatures, As, Af , Ms, Mf , play an important role in

the characterization of the constitutive behavior of an SMA. These temperatures are

measured using a Differential Scanning Calorimeter (DSC) [11].

In this study, the effect of superelastic phase transformation on fracture of NiTi

is investigated. For this purpose two, internal state variables are used to describe the

superelastic material behavior of Nitinol: the volume fraction of martensite (ζ) that

is induced by mechanical loading and the martensite orientation strain tensor (εoriij ).

It is known that the reversible, pseudo-elastic deformation of SMAs is mainly due to

the orientation of martensite variants. Consequently, the creation of martensite by

thermal loading does not induce any macroscopic strains except thermal strains, in
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the absence of stress. This chapter follows with a comprehensive literature survey on

fracture behavior of SMAs and a review of constitutive models developed for SMAs

which are available in the literature. Then the next section gives a brief overview of

the engineering applications of SMAs and finally, the research objectives of this work

are defined together with an outline of the thesis.

1.2. Fracture Mechanics of SMAs

After the discovery of the unusual thermomechanical properties of NiTi, its use

in engineering applications is increased. In parallel to this development, the number

of studies investigating fracture properties of NiTi started to increase as well. The

motivation for this study is to improve the fundamental understanding of fracture in

SMAs. In the following paragraphs, a summary of studies done by previous researchers

on fracture mechanics and fracture toughness of SMAs are given in a chronological

order.

One of the earliest discussions on the effect of phase transformation on stress

intensity factor (SIF) and toughness is done by McMeeking and Evans [12]. According

to the authors, if a particle undergoes stress-induced martensitic transformation its

toughness increases due to the resulting residual strain field that restricts crack opening.

The increase in toughness is then calculated from crack tip stress intensity change using

Eshelby’s [13] technique.

Stam and van der Giessen [14] investigated the influence of partial or full re-

versibility of stress-induced phase transformation on toughness during crack growth in

zirconium ceramics and SMAs. In their finite elements analyses, they used the model

of Sun and Hwang [15, 16] and simulated crack propagation considering small-scale

transformation around the crack tip. They related crack tip SIF, KTIP , and SIF cor-

responding to the applied Mode I loading, KAPP , by the equation KAPP/KTIP=1-∆

KTIP/KC where KC is the fracture toughness. They considered the material inside the

fully transformed region as linear–elastic martensite and the region between fully trans-

formed martensite and austenite as partially transformed non-linear. They simulated
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the crack growth using a node release technique [17] and allowed the crack to grow

when KAPP = KTIP . Upon crack advance, the transformed material started to evolve

in the wake region and the crack tip is shielded by transformation strain accumulated

there. In addition to that, the authors investigated the influence of reversible phase

transformation during crack growth and stated that not all the toughness increase due

to phase transformation is lost during crack growth by means of reverse transforma-

tion. An important finding of this work was that the increase in toughness was higher

in SMAs compared to zirconium ceramics.

In 1998, Birman [18] studied Mode I fracture of an SMA plate using the con-

stitutive model of Tanaka [19] and crack tip asymptotic stress equations of LEMF to

calculate the size of the phase transformation region and the effect of phase transfor-

mation on SIF. He found that the effect of phase transformation on the stress intensity

factor is relatively small and concluded that the magnitude of the stress intensity factor

can be evaluated using the properties of austenite only.

McKelvey and Ritchie [20] investigated experimentally, the effect of stress-induced

martensite on resistance to crack growth in SMAs under dynamic loading in 1999. They

showed that the fatigue crack growth resistance of NiTi is lowest compared to other

biomedical implant alloys.

Simha [21] studied the fracture toughness of zirconium ceramics. According to

Simha, the toughening of the material is mainly caused by the energy stored by the

transformed inclusions in the wake of a propagating crack. He proposed to evaluate

the steady-state toughening in zirconium ceramics by determining the difference in

J-integrals at far field and at crack tip. He stated that his model can be applied to

pseudo-elastic crack propagation in polycrystalline shape memory alloys.

The effect of phase transformation on the toughening in SMAs has been studied

analytically and numerically by several other researchers. Yi and Gao [22] studied the

fracture toughening mechanisms in SMAs as a result of stress-induced phase transfor-

mation under Mode I loading. In their analysis, they used Eshelby’s method[13], weight
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functions and Sun and Hwang’s [15] constitutive model to investigate the transforma-

tion region around static and steadily advancing cracks. They defined the change

in toughness with an approach similar to Stam and van der Giessen [14], using ∆

KTIP=K∞ - KTIP , K∞ being the far field SIF. They determined the boundary of the

transformation region by taking the average value for K, K = ( K∞ + KTIP ) / 2,

as calculated by Evans [23]. They stated that martensite transformation reduces the

crack tip SIF and increases fracture toughness. Moreover, their results also showed

that KTIP decreased when the temperature is increased. They indicated that a sharp

decrease in crack tip SIF can be obtained by using a material for which the difference

in elastic stiffness between austenite and martensite is significant.

Not all the researchers have agreed on the conclusion that fracture toughness

increases by phase transformation: some of the researchers put forward the claim that

due to negative volume change during phase transformation, toughness of the material

reduces. Yan et al. [24] studied quasi-statically growing crack using FEA to see the

effect of stress-induced martensite transformation on fracture behavior of superelastic

SMAs and compared their results to those obtained in the case of phase transforma-

tion in zirconium ceramics. They defined crack tip SIF as KTIP = KAPP + KTRANS.

Once the transformation region is identified, they calculated KTRANS using the equa-

tion given by Hutchinson [25] and McMeeking and Evans [12]. In their FEA, they

used the node release technique assuming that the crack growth occurs under given

KAPP without knowing the toughness of the material, KC . In their calculations, they

discovered that there is a volume contraction during austenite to martensite transfor-

mation. They stated that negative volumetric strain increases the effective SIF near an

advancing crack tip and reduces the toughness. They assumed a partial reverse trans-

formation in the wake region and stated that the effect of reverse transformation in

the wake region is negligible. The results they obtained showed that volume-expanding

phase transformation may increase toughness but reverse transformation in the wake

can reduce this effect in a considerable amount.

In a following study in 2003, Yan et al. [26] studied the effect of plasticity on stress-

induced transformation. They modified the constitutive model of Auricchio et al. [3]
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and Lubliner and Auricchio [27], using Drucker–Prager yield function and considered

the effect of plasticity and volume change during transformation. The authors showed

that a fully martensite region can be observed around the crack tip, meaning that the

influence of hydrostatic stress does not inhibit phase transformation completely.

After the discovery of the superior characteristics of ferromagnetic SMAs (FS-

MAs), work on fracture mechanism of those alloys is attracting increasing interest

from the scientific community. Xiong et al. [28] studied thermally induced fracture in

Ni–Mn–Ga, NiTi and Cu–Al–Ni single crystal. The results of their X–Ray diffraction

experiments showed that the existence of twinned variants are the main driving force

of the crack network leading to fracture. This study is mainly important to see the

difference of fracture behavior between single crystal and polycrystal SMAs.

In NiTi, martensite forms around the crack tip at the early stages of loading

and the geometry of the crack tip plays an important role in evolution of the marten-

site phase. For this reason, different notch shapes are studied to see the effect of

notch geometry on toughness. Wang [29] investigated the effect of notch geometry on

phase transformation and fracture toughness using NiTi compact tension (CT) spec-

imens with different notch geometries under mode I loading. He defined NiTi as an

elastic–plastic material by digitizing stress–strain data in Abaqus. He calculated phase

transformation, and plastically deformed region boundaries under Mode I loading. He

determined that changing the notch shape from blunt to acute increases stresses, and

changes crack propagation from unstable to stable state. His results indicated that

the size of the martensitic region around the tip of a sharp cracked and acute notched

specimens are similar in shape but smaller than those of blunt notched specimens. As

expected, around tip of sharply cracked specimen the plastic zone is observed at low

stress levels. On the other hand, for bluntly notched specimens, higher load is neces-

sary to form the same size of the plastic zone. Using a similar approach, Wang [30]

studied the effects of phase transformation on fracture toughness in an SMA CT speci-

men under Mode I loading, and stated that the notch tip is blunted by transformation

strain which causes the release of notch tip stresses as a result fracture toughness in-

creases. In another study, Wang [31] calculated stress distribution around the tip of an
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edge-cracked NiTi plate under Mode I loading and also of a linear elastic material with

identical material properties with NiTi in the martensite phase. He used the stress–

strain relation for NiTi given by McKelvey and Ritchie [20] and for the untransformed

martensite he used the same curve without the transformation plateau. He digitized the

two curves and used as an input to Abaqus. He found that martensite transformation

increases the load needed to produce plastic deformation at the notch tip and decreases

the maximum normal stress and plastic strain near the tip. He concluded that when the

applied load increases, first partially and then fully martensitic zones develop around

the crack tip, and afterwards a plastic deformation follows inside the fully martensitic

zone. The plastic deformation tends to increase the resistance to crack nucleation and

propagation in fully transformed martensite region which then increases the fracture

toughness. He demonstrated that martensite transformation suspends crack nucleation

and propagation at the tip, resulting in a 47 % increase in fracture toughness.

Standard tests for NiTi [11, 32, 33] have been used by some researchers to measure

the material properties of SMA. The fracture toughness of SMAs is studied using

standard experiments developed for commercial metals by some researchers. In 2008,

Wang et al. [34] obtained the fracture toughness by performing experiments on CT

specimens pre-cracked under fatigue load. They calculated the fracture toughness of

the specimen to be as 39.4 MPa. Their observations showed that, a region in the

proximity of crack tip is partly transformed to martensite during fatigue pre-crack

process. They showed that there is always a small area around the crack tip that

is fully transformed to martensite if the crack growth is fast. They concluded that

the shape of the martensite transformation region resembles to plastic transformation

region and can be modeled using methods similar to those of incremental plasticity.

Robertson et al. [35] used a more advanced method, X-ray diffraction to obtain the

strain field around the tip of an edge–cracked thin NiTi specimen under Mode I loading.

They showed that the redistribution of stress field because of phase transformation

reduces stresses near the crack tip and increases the fracture resistance.

Daly et al. [36] used digital image correlation (DIC) to calculate the strain fields
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in an edge-cracked thin NiTi sheet under Mode I loading, they calculated SIF using

LEFM and obtained an empirical expression between the extent of the transformation

region and KI . They stated that a relatively high value of fracture toughness (KC) for

NiTi indicates a contribution of phase transformation to toughening of the alloy.

Gollerthan et al. [37] performed displacement controlled experiments using NiTi

CT specimen and measured applied far–field load, P , to calculate the critical stress

intensity factor using the empirical relation, K = P
B
√
W
f(a/W ), where B, W and

f(a/W ) are obtained from experiments given by the standards [38]. They used the

calculated SIF and Irwin’s plasticity corrected equation to estimate the length of the

phase transformation zone along crack tip. Results confirmed that the length they

calculated qualitatively agreed with the experimental observations.

Xiong and Liu [39] studied thermally induced fracture in Ni–Mn–Ga, NiTi, and

Cu–Al–Ni and they proposed an analytical solution to calculate SIF increase around

the crack tip. They used Irwin’s correction together with the transformation func-

tion proposed by Tanaka and Sato [40] to find the extent of plastic region and phase

boundaries analytically. They extended the work of Birman [18] considering stress

redistribution as a result of phase transformation. They calculated that the volume

change during martensitic transformation is composition dependent and can be either

positive or negative. They found that stress redistribution occurs around the crack

tip, which leads to an increase in crack tip SIF and a decrease in fracture toughness.

According to their results, the effect of transformation region on SIF around the crack

tip is a function of temperature and it is independent of crack size.

Freed and Banks-Sills [41] presented a FEA on transformation toughening be-

havior of a slowly propagating crack in an SMA plate under Mode I loading assuming

small-scale transformation region around crack tip. To find the transformation re-

gion around the crack tip, they used the transformation surface equation proposed by

Panoskaltsis et al. [42] and crack tip asymptotic stress equations. The transformation

zones that they determined near the crack tip were similar to the shape of the plastic

zone in plastically deformed materials. Furthermore, they used a cohesive zone model
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to simulate crack growth using finite elements. They claimed that the choice of cohesive

strength has a great influence on toughening behavior. They observed an increase in

critical steady–state SIF due to phase transformation and mismatch between austenite

and martensite elastic moduli. Their results lend support to the claim that reversible

phase transformation reduces the amount of toughening in the alloy.

Overall, the studies summarized thus far highlight the need for accurate determi-

nation of the phase transformation region around the crack tip to investigate fracture

parameters. Lexcellent and Thiebaud [43] presented an analytical approach using the

constitutive model of Raniecki and Lexcellent [44], also used in Lexcellent and Blanc’s

[45] paper, together with asymptotic crack tip stress equations to determine the trans-

formation region around the crack tip under Mode I loading. Using an equation similar

to the one proposed by Freed and Banks-Sills [41], they calculated an average value

of SIF, (Kapp
I +Ktip

I )/2, where Kapp
I is the applied SIF and Ktip

I is the SIF governing

the region near crack tip. Their results showed a big difference with the experimen-

tal results of Robertson et al. [35]. Falvo et al. [46] used both σy = KI/
√
2πr and

Irwin’s plasticity corrected formula to predict the extent of the stress-induced marten-

sitic transformation. They compared their analytical results with FEA results, and

showed that using Irwin’s correction yields results closer to FEA results. Ma [47] pro-

posed an analytical approach using Green’s function to find the effect of martensitic

and ferro–elastic transformation on fracture toughness in a semi-infinite crack under

plane stress. His formulation, indicating the changes in stress intensity factor because

of phase transformation, was in agreement with the result obtained by McMeeking and

Evans [12].

Falvo et al. [46] studied the evolution of stress-induced martensitic transformation

in front of the crack tip in a NiTi alloy. They used both σy = KI/
√
2πr and σy =

KIeff/
√

2π(r − ry) to predict the extent of transformation region along the crack in a

NiTi under plane stress. They compared their prediction to results they obtained using

MARC and showed that results closer to experimental measurements are obtained

when Irwin’s plasticity corrected formula is used. Their model could not estimate

the effective crack length when crack growth occurs. They stated that the martensite
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volume fraction can be estimated from the distributions of the equivalent plastic strain.

They concluded that the extent of transformation start region decreases rapidly with

increasing temperature but the extent of fully martensitic region is nearly constant. In

a very similar way to their previous work [46], Maletta and Furgiuele [48] proposed an

analytical method, which is in agreement with the performed FEA to predict the extent

of phase transformation region using Irwin’s corrected formulation in combination with

KI = σ∞√
πα in an infinite NiTi plate having a central crack under Mode I loading. In

the following study, Maletta and Young [49] extended the previous work [48] to plane

strain conditions and compared their results to experimental results of Gollerthan et al.

[50]. They observed that experimentally calculated phase transformation length was

between the lengths they calculated for plane stress and strain. Their FE results

showed that increasing transformation strain and decreasing plateau stress increases

the size of the transformation region. In a later study, Maletta and Furgiuele [51]

calculated the extent of phase transformation region using their previous approach [48]

and two different SIFs: one for austenitic region and another one for the transformed

martensitic region near the crack tip. They calculated that the martensitic or crack

tip SIF is always smaller than the LEFM predictions. Their analyses showed that the

mismatch between austenite and martensite elastic moduli causes toughening at the

crack tip.

In a recent work, Baxevanis and Lagoudas [52] calculated J-integral, crack tip

opening displacements (CTODs), and size of the martensite transformation region

around the tip of a center-cracked infinite SMA plate under Mode I loading. To calcu-

late SIF, they used Dugdale’s [53] assumption, Kext+Kint = 0, where Kext = σ∞
√
πa1,

σ∞ is the remote stress and Kint is the SIF generated by internal stress distribution.

They estimated the total inelastic strain as presented by Rice [54]

εin22 = δ/b, (1.1)

In Eq. 1.4, εin22 is the inelastic strain (addition of plastic strain and transformation

strain), δ is the COD, and b is the thickness of the plate. They formulated the internal

stress distribution around the crack tip in terms of the extents of fully martensitic
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region IM , transformation IT , and plastic region Ipl, using a power-law form of stress

to define stress distribution in the fully martensite region σm(x1) defined as

σm(x1) =M
1

(x1 − a)ρ
+N , (1.2)

where

M =
(Ipl + IM)ρ
(

Ipl+IM
Ipl

)ρ

− 1
(σY − σT ) , (1.3)

N =
σT

(

Ipl+IM
Ipl

)ρ

− σY
(

Ipl+IM
Ipl

)ρ

− 1
. (1.4)

σT and σY are transformation and yield stresses respectively. They obtained that when

the stress level is above yield stress, phase transformation region size increases with

increasing maximum transformation strain, and the existence of phase transformation

decreases the size of the plastic zone. In a subsequent work, Baxevanis et al. [55] cal-

culated the size and shape of the martensitic transformation region and J-integral near

an edge-crack using the constitutive model of Lagoudas et al. [56]. Their numerical

simulation shows that around the crack tip, J-integral is path dependent and the dif-

ference between Jtip and far field applied J (J∞) is smaller than the difference obtained

in elastic–plastic materials. Which is also shown in earlier work of Simsek [57], Alkan

[58], Yurtoglu [59] and Altan [60].

In view of the above discussion, it is concluded that in recent years a substantial

effort has been devoted to the study of fracture properties of SMAs. But to date there is

no consensus about the effect of phase transformation on fracture of SMAs. Researchers

proposed different methods to determine the phase transformation region around the

crack tip, to calculate crack tip SIF and to determine the crack growth resistance in

SMAs. Discussions arose on former studies and methodologies that are used. They

are taken into consideration while defining the objectives of this dissertation in the

following chapters.
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1.3. Review of Constitutive Models of SMAs

The references presented so far provide the evidence that to study the shape

memory and superelasticity effects, an accurate measure of transformation region is

required. Therefore, a sound constitutive model has to be used. In this section, a brief

summary of existing constitutive models that are used in former studies are given.

Then, the constitutive model used in this study is presented in detail.

In literature, most of the constitutive models for SMAs are derived using either

macro–scale or micro–scale approaches. Macroscale models are commonly established

using energy considerations or phase diagrams.

The concept of free energy is first mentioned by Carnot [61]. later Herman von

Helmholtz defined “free energy” as: Φ = U − Ts, where U is the internal energy, and

s is the entropy. Free energy represents the amount of energy “free” for work under

the given thermodynamic state. In most continuum models, the thermodynamic forces

related to state variables (temperature, stress and strain) and internal state variables

(martensite fraction, orientation strain, etc.) are defined using either Helmholtz [62–

75] or Gibbs [15, 16, 44, 56, 76–84] free energies. Gibbs free energy is used when

the model is going to be validated by a stress controlled experiment, but if it is a

strain controlled experiment Helmholtz free energy is used to derive the constitutive

relations. Determining thermodynamic forces and how they relate to the state variables

are the main objectives. In the thermodynamic framework for constitutive modeling,

thermodynamic forces are obtained through partial derivatives of free energy functions

with respect to corresponding state variables.

Similar to continuum models in micro-scale models the free energy function is ob-

tained for the representative volume element (RVE) and integrated over whole material

point. Since the shape memory effect is observed as a result of twinning of martensite,

the very first attempts to define the constitutive behavior are related to the crystallo-

graphic theory of martensite [85]. Wechsler et al. [86] represented a phenomenological

theory to define the crystallographic behavior of martensite and to explain the forma-
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tion of martensite and the interface between austenite and martensite. It is difficult to

identify material parameters in micro-models that depend on twinning kinetics. Energy

wells and energy minimization theories are used to define the formation of martensite

[87]. In addition to these methodologies, there are only a few work on modeling of

SMAs [88–90] at atomistic level.

Researchers developed different constitutive models using different state vari-

ables, where the main concern was to describe the phase transition characteristics of

SMA such as: martensite volume fraction, reorientation of martensite and the energy

dissipation during phase change. In most of the continuum models, the evolution of

state variables is governed by transformation functions analogous to yield surfaces in

plasticity theory.

1-D models, derived from free energy theories, have been the starting point during

the development of constitutive models [62–65, 91–96]. One such model is proposed by

Falk and Konopka [97] where they used a polynomial free energy potential to define

pseudo-elasticity and SME. Achenbach [98] used potential energy well theory to de-

termine the phase transformation probabilistically. The empirical equation developed

by Koistinen and Marburger [99] for pure iron-carbon alloys and plain carbon steels is

used by earlier researchers to calculate the extent of the transformation region.

Patoor et al. [100] proposed a model for polycrystalline Cu-based shape memory

alloys that exhibit dissymmetry between tension and compression. The model devel-

oped by Gall and Sehitoglu [101] was based on Patoor et al.’s model [102] and that

was the first model to include texture measurements coupled with a micro-mechanical

model to predict dissymmetry between tension and compression.

In the last decade, 3-D constitutive model development for SMAs that considers

thermal behavior and uses free energy approaches have attracted much attention from

researchers [2, 66, 77, 84, 97, 103–109, 109–113]. One such model is proposed by Boyd

and Lagoudas [77] which uses the volume fraction of martensite as internal variable.

In their constitutive model, they proposed a polynomial transformation function that
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relates transformation strain to martensite fraction which is analogous to flow rule in

plasticity. Auricchio et al. [3] and Lubliner and Auricchio [27] worked on isothermal

pseudo-elasticity and introduced the Drucker-Prager-type transformation function [27].

Their finite elements results showed good agreement with experimental measurements.

Tanaka and Iwasaki [114], Tanaka and Al. [115] and Tanaka and Nagaki [116] inves-

tigated pseudo-elasticity and shape memory effect from a thermomechanical point of

view, and set up thermomechanical constitutive equations along with the phase trans-

formation kinetics based on an exponential hardening rule. Liang and Rogers [70]

developed a multi dimensional constitutive model for SMAs that is based on both

micro and macro mechanics approaches and assuming a cosine type transformation

function. As a case study they calculated the stress distribution in an SMA rod under

torsion to show the applicability of their model multi-dimensionally.

To characterize the material properties and to implement a constitutive behavior

into Abaqus, a user defined material subroutine (UMAT) is needed. In this study,

the constitutive model of Zaki and Moumni [2] is implemented in Abaqus based on a

return mapping algorithm. In stress intensity factor analysis, for comparison purposes

the built-in Abaqus model following the Auricchio-Taylor-Lubliner constitutive model

is used as well.

Zaki–Moumni (ZM) model is developed according to the concept of generalized

standard materials with internal constraints [117–119]. In ZM model, thermomechan-

ical coupling due to the latent heat generation during phase change is taken into ac-

count [120, 121]. Extension of ZM model to the cyclic SMA behavior is considered

by Zaki and Moumni [122]. The development of the model is achieved by including

tension—compression asymmetry [123] and improved by including plastic deformation

of martensite [124]. A key limitation of most of the models in the literature is that

they do not address the martensitic variant reorientation. In ZM model, together with

martensite fraction orientation strain is taken as a state variable.

State variables are the quantities that characterize the state of the system, e.g.

consider a gas in a cylinder, state variables are given by the pressure P , the volume
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V and the temperature T , on the other hand, heat and mechanical work are not state

functions and they are defined to express all the thermodynamic characteristic of the

material [125]. State function only depends on the state of the system and not on

the manner in which this state is achieved. In vast majority of constitutive models

summarized so far, the common idea is to use martensite volume fraction as the main

internal state variable. The common idea of these models is to choose austenite as the

parent phase and martensite is defined as product phase.

In ZM model the Helmholtz free energy is used as a thermodynamic potential

and it is formulated as:

Ψ(εAij, ε
M
ij , T, ζ, ε

ori
ij ) = (1− ζ)

[

1

2
εAijE

A
ijklε

A
kl

]

+ ζ

[

1

2

(

εMij − εoriij

)

EM
ijkl

(

εMkl − εorikl

)

+ C(T )

]

+ Γ
ζ2

2
+
ζ

2
[αζ + β(1− ζ)]

2

3
εoriij ε

ori
ij . (1.5)

In the equation above T , ζ and εoriij represent respectively temperature, martensite

volume fraction, and orientation strain–tensor. εMij and εAij are local strain tensors of

martensite and austenite phases. β controls the level of orientation of martensite vari-

ants created during forward phase change, Γ is responsible for orientation-independent

interaction between martensite variants, the term starting with α is analogous to the

linear kinematic hardening of a elasto–plastic material and controls the slope of the

stress strain curve corresponding to martensite orientation. EM
ijkl and E

A
ijkl are the elas-

ticity tensors of martensite and austenite phases respectively. C(T ) is phase change

heat density as shown below:

C(T ) = ξ(T − Af) + κ, (1.6)

where ξ and κ are material parameters and Af is the austenite finish temperature under
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zero stress. ξ is written as follows:

ξ =
∂Ψ

∂T∂ζ
. (1.7)

The details of these parameters and identification methods are represented in Zaki and

Moumni [2].

The physical constraints on the state variables are accounted for by the ZM model

using the theory of Lagrange multipliers. Reuss scheme is used to relate the total strain

εij in an RVE to the local strains in austenite and martensite as below:

εij = (1− ζ)εAij + ζεMij , (1.8)

the internal state variable ζ should be bounded in the interval [0, 1], therefore:

ζ > 0 and (1− ζ) > 0, (1.9)

and the equivalent orientation strain has a maximum value ε0

ε0ori −
√

2

3
εoriij ε

ori
ij > 0. (1.10)

As it is explained in Zaki and Moumni [2] the constraints defined in Eqs. 1.8,1.9

and 1.10 are used to build the following constrains potential Ψc [118]:

Ψc = −λij [(1− ζ)εAij + ζεMij − εij ]−
(

ε0ori −
√

2

3
εoriij ε

ori
ij

)

− ν1ζ − ν2(1− z). (1.11)
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Where the Lagrange multipliers λ, µ, ν1, ν2 and µ obey the following conditions:

ν1 > 0, ν1ζ = 0, ν2 > 0, ν2(1− z) = 0 and µ > 0, µ

(

ε0 −
√

2

3
εoriεori

)

= 0.

(1.12)

The Lagrangian is obtained as the sum of the two potentials defined in Eqs. 1.5

and 1.11 to derive state equations:

L = (1− ζ)

[

1

2
εAijE

A
ijklε

A
kl

]

+ ζ

[

1

2

(

εMij − εoriij

)

EM
ijkl

(

εMkl − εorikl

)

+ C(T )

]

+ Γ
ζ2

2
+
ζ

2
[αζ + β(1− ζ)]

2

3
εoriij ε

ori
ij

− λij[(1− ζ)εAij + ζεMij − εij]−
(

ε0ori −
√

2

3
εoriij ε

ori
ij

)

− ν1ζ − ν2(1− z). (1.13)

Az and Atr being the only non-zero thermodynamic forces, the following state

equations are derived from the Lagrangian (Eq. 1.13):

L,εij = σij ⇒ λij − σij = 0, (1.14)

−L,εAij
= 0 ⇒ (1− ζ)[εAklE

A
ijkl − λij ] = 0, (1.15)

−L,εMij
= 0 ⇒ ζ [EM

ijkl(ε
M
kl − εorikl )− λij] = 0, (1.16)

−L,ζ = Aζ ⇒ Aζ =
1

2
[εAijE

A
ijklεkl − (εMkl − εorikl )E

M
ijkl(ε

M
ij − εoriij )] (1.17)

− C(T )− Γζ −
[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

− λij(ε
A
ij − εMij ),

L,εoriij
= Aori ⇒ Aori = ζ

[

EM
ijkl(ε

M
kl − εorikl )−

2

3
[αζ + β(1− ζ)εoriij ]

]

(1.18)

− 2µ

3

εoriij
√

2
3
εoriij ε

ori
ij

,

−L,λij
= 0 ⇒ (1− ζ)εAij + ζεMij − εij = 0. (1.19)
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The state equations written above (Eqs. 1.14, 1.15, 1.16, 1.17, 1.18, and 1.19)

yields the following stress–strain relation:

σij = S−1
ijkl :

(

εkl − ζεorikl

)

, (1.20)

in which Sijkl is the compliance tensor defined as:

Sijkl = (1− ζ)SM
ijkl + ζSA

ijkl, (1.21)

where SA
ijkl and SM

ijkl are the compliance tensors of austenite and martensite phases

respectively.

According to the theory of generalized standard materials with internal con-

straints represented by Halphen and Nguyen [117] the thermodynamic forces that are

related to the internal state variables ζ and εoriij are sub-gradients of a pseudo-potential.

The pseudo-potential of dissipation defined by Zaki and Moumni [2] is given as follows:

D(ζ̇ , ε̇oriij ) = [a(1− ζ) + bζ]|ζ̇|+ ζ2Y

√

2

3
ε̇oriij ε̇

ori
ij . (1.22)

According to the definition, the constants a, b and Y are positive and material

specific constants. As it is stated by Halphen and Nguyen [117], dissipation function

should be non-negative, convex with respect to the fluxes of dissipative variables, lower

semi-continuous and equal to zero when the fluxes are zero. According to the definition

Az is the sub–gradient of the convex function D, Az ∈ ∂żD, Aori ∈ ∂ ˙εoriij

D. In other

inequality form:

D(ζ, ζ̇, ε̇oriij )−D(ζ, 0, ε̇oriij ) ≥ Aζ(ζ̇ − 0), (1.23)

D(ζ, ζ̇, ε̇oriij )−D(ζ, ζ̇, 0) ≥ Aori(ε̇
ori
ij − 0). (1.24)
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it follows from Eqs. 1.22 and 1.24 that the forward transformation function (ζ̇ ≥ 0),

F f
ζ = E ′σ

2
e

3
+

1

2

(

1

3
E ′ + ν ′

)

σ2
ii − C(T ) + σijε

ori
ij

−(Γ + b)ζ − a(1− ζ)−
[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

≤ 0, (1.25)

and reverse transformation function (ζ̇ ≤ 0) is equal to:

F r
ζ = −E ′σ

2
e

3
− 1

2

(

1

3
E ′ + ν ′

)

σ2
ii + C(T )− σijε

ori
ij

+(Γ− b)ζ − a(1− ζ) +

[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

≤ 0, (1.26)

where σe is the von Mises stress, σe =
√

3
2
σd
ijσ

d
ij , σij is the Cauchy stress tensor, and

σd
ij is the deviatoric part of σij . E

′

and ν
′

are given below:

E ′ =
(1 + ν)(EA − EM)

EAEM

, ν ′ =
ν(EM − EA)

EMEA

, (1.27)

where EM and EA are the elastic moduli of austenite and martensite; ν is Poisson’s

ratio of the material (νA = νM = ν). a and b are defined as:

a =
1

2

[(

1

EM
− 1

EM

)

σ2
Ms − σ2

Af

2
+ (σMs − σAf )ε

ori
0

]

, (1.28)

b =
1

2

[(

1

EM

− 1

EM

)

σ2
Mf − σ2

As

2
+ (σMf − σAs)ε

ori
0

]

, (1.29)

where σMs, σMf , σAs and σAf are martensite start, martensite finish, austenite start

and austenite finish stresses respectively. In the case of forward transformation, terms

a and b define the stresses at the beginning and end of the martensite transformation.

εori0 is the equivalent transformation strain that can be obtained from uniaxial tensile

experiment (see Figure 1.3).

In ZM model the forward phase transformation (from austenite to martensite)
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occurs when the transformation function Fζ [2] is equal to zero. In proportional loading,

it is assumed that the martensite variants are already oriented. In other words at the

corresponding temperature orientation finish stress is lower than the critical stress

for forward phase change and therefore austenite crystals are transformed into single

variant martensite that are oriented parallel to loading direction. By assuming that

the material is already oriented, the direction of orientation strain is parallel to the

stress deviator since the Lagrange multiplier µ is zero [2].

In SMAs, an equivalent transformation strain, εori0 can be defined as:

√

2

3
εoriij ε

ori
ij = εori0 , (1.30)

εori can be calculated as follows, [126]:

εoriij =
3

2
εori0

Sij

σe
when σe 6= 0. (1.31)

1.4. Industrial Applications of Shape Memory Alloys

The discovery of SMAs having high transformation temperatures (e.g. TiPd, TiPt

and TiAu), improved fatigue life and damping behavior [127], high strain recovery and

corrosion resistance (e.g. NiTi and NiTiCu), and ferromagnetic characteristics (e.g.

Ni–Mn–Ga) widened the use of these materials in the various fields of industry. Their

remarkable properties make them attractive for engineers, scientists, and designers

who have been attempting to utilize them in the applications where the smart material

behavior is required.

In the early years of their discovery, SMAs are mostly used in aerospace and med-

ical applications. One of the first industrial applications was pipe coupling in military

aircraft [128]. In aerospace industry, SMAs are generally used where there is a need

for dynamic property optimization of aircraft structural panels. This optimisation is

accomplished through changing elastic stiffness via phase transformation. In addition,
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active flexible smart wings and solar panels are designed using SMAs as well. Cou-

pling devices and fasteners are one of the most common industrial applications that

use shape memory properties SMAs. SME is used for example in pipe fitting: the

expanded coupling is shrunk by cooling for easy insertion at the joint location in the

pipe assembly. As it heats to service temperature, the SMA coupling expands and

joins the pipes.

Among all the medical applications that SMAs are used for, including self-

expanding Nitinol stents, implant material in orthopedics, active endoscope heads [129],

guide wires, root canal surgery drills, aterial septal occlusion devices, artificial bone

implants, spinal vertebrae spacers, steerable catheters, blood filters, Nitinol is more

commonly used in orthodontic braces. Unlike more conventional metals, retensioning

is not needed for Nitinol wires that are used as dental braces. The ability of superelastic

NiTi to deform in large amounts without any plastic deformation is a great potential

for them to be utilized in critical medical applications. The self-expanding stents are

used for revascularization of occluded blood vessels, they are manufactured slightly

larger than the vessel, compressed and placed inside a tube, then released in the vessel

at the problematic site. NiTi stents expand over twice of their compressed diameter.

After their self expansion they apply a low outward force to the wall of the vessel.

Moreover, NiTi stents are corrosion resistant and biocompatible.

In advanced industry, SMAs are utilized in areas such as energy production,

electronic devices, automotive engineering, safety products design, and robotics. Their

popularity is growing nowadays especially due to the improvements in mobile and

wearable technologies. In the last few years, there has been a growing interest in their

usage in civil structures. The unique properties of SMAs enable them to be used

as actuators, passive energy dissipators and dampers to control civil structures [130].

In civil engineering, they are used in the design of seismic protection devices [131].

Besides their usage in critical applications, they are also used in everyday products

such as eyeglass frames, golf clubs, rice cookers, safety devices and sensors, mobile

phone parts, automobile parts, coffee machines and headphones [132]. To improve the

service life of parts made of SMAs, it is required to optimize their material parameters.
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The importance of optimization of their material parameters is increasing in parallel

to the spread of their use in different fields of the industry.

Due to their superior characteristics, the application field of SMAs are growing

very rapidly in areas where the there is a need of large elastic deformations, high tem-

perature changes and combination of thermomechanical and magnetic forces. Therefore

many researches are interested in analyzing the fatigue and fracture behavior of SMAs

1.5. Research Objectives

SMAs are used in safety-critical applications, promoting the need for better un-

derstanding of their failure mechanism. Despite significant advancement in experi-

mental, analytical and numerical techniques used in characterizing and simulating the

behavior of SMAs, there are several issues on fracture properties to be clarified. One

question still unanswered is whether the phase transformation increases toughness of

SMAs or not. Majority of the researchers saying that phase transformation increases

toughness of SMAs and reduces crack tip SIF, on the contrary some researches claims

that SIF decreases due to negative volume change during phase transformation Be-

sides that, still the fracture parameters measured experimentally are not correlated

adequately with the analytical and numerical models to show clearly the effect of

phase transformation on fracture parameters of superelastic SMAs.

To investigate the fracture of SMAs, the questions listed above, which outline the

research objectives of this thesis, are discussed in a certain order to ensure the integrity

of this study.

I. How to determine the transformation region around the crack tip in SMA in

agreement with the experimental measurements available in the literature?

II. What is the effect of phase transformation on toughness? How to calculate SIF

and other fracture mechanics parameters of SMAs accurately?

III. What is the effect of phase transformation and orientation of martensite during

steady-state crack growth? How to evaluate phase transformation region using
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stationary movement method?

IV. What is the effect of the thermomechanical coupling which is due to the latent

heat release in an SMA plate under Mode III loading?

1.6. Outline of the Thesis

In the introduction chapter, a detailed literature survey about the studies on

fracture mechanics parameters and fracture toughness of SMAs are summarized in

a chronological order. The reasons behind the necessity to investigate the fracture

mechanics parameters of SMAs are discussed. The main problem statements that

underlines the objective of this dissertation are represented. The remainder of the

thesis is organized in four main chapters.

In Chapter II, the size of the martensitic region surrounding the tip of an edge-

crack in a SMA plate is calculated analytically using the transformation function pro-

posed by [2] together with crack tip asymptotic stress equations. The transforma-

tion region is also calculated with FE by implementing ZM model in Abaqus through

UMAT. Transformation regions calculated analytically and computationally are com-

pared to experimental results available in the literature [35].

The next chapter is devoted to evaluation of fracture parameters like SIFs, J-

integrals, energy release rates, CTODs and T-stresses. The objective is to understand

the effect of phase transformation on fracture behavior of an edge-cracked Nitinol

plate under Mode I loading. In the FE analysis of the edge-cracked plate under mode

I loading, Abaqus is used with both ZM model, written through UMAT and built-in

SMA model based on Auricchio’s model. J-integrals are found to be contour dependent

as a result of non-homogeneity around crack tip, therefore SIFs are directly calculated

from strain energy release rate and compared to the SIFs calculated using asymptotic

near-tip opening displacement field equation.

In Chapter IV, steady-state crack growth in an SMA plate is analyzed. In this

chapter, Mode I steady-state crack growth in an edge-cracked Nitinol plate is modeled
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using a non-local stationary method. The model is implemented in Abaqus using ZM

model by means of UMAT to determine transformation zones around the crack tip.

steady-state crack growth is first simulated without considering reverse transformation

to calculate the effect of transformation on stress distribution in the wake region, then

reverse transformation is taken into account. The effect of reorientation of martensite

near the crack tip as a result of non-proportional loading is also studied. The stress

distribution and the phase transformation region are compared to results obtained for

the case of a static crack.

Chapter V, concerns the calculation of the phase transformation region analyti-

cally around the tip of an SMA specimen under Mode III loading; at first the analytical

method represented by Moumni [118] in which the material model is built based on

the framework of standard materials with internal constraints [133, 134], is revisited.

Using the hodograph method, the non-linear PDE problem is transformed to a linear

boundary value problem in hodograph plane and phase transformation around the tip

of a crack under Mode III loading is calculated analytically. In this chapter, the ther-

momechanical coupling is added to the solution of the Mode III problem proposed by

Moumni [118]. As a result of the analysis, fully coupled phase transformation region

and the temperature increase due to the latent heat generation is calculated numer-

ically around the crack tip. Finally, the last chapter summarizes the results of this

work from a more general perspective and draws a detailed conclusion on the results

obtained.
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2. EVALUATION OF TRANSFORMATION REGION

AROUND CRACK TIP IN SHAPE MEMORY ALLOYS

A crack in a NiTi plate acts as a stress raiser and leads to phase transformation

from austenite to martensite around crack tip from the very beginning of loading and

it gets larger as the load increases. In this chapter, the size of the martensitic region

surrounding the tip of an edge-crack in a SMA plate is calculated analytically using a

transformation function that governs forward phase transformation together with crack

tip asymptotic stress equations. The transformation region is also calculated with finite

elements using user defined constitutive models. Transformation regions calculated

analytically and computationally are compared to experimental results available in the

literature.

2.1. Introduction

In a solid having a crack, the modes of fracture are classified as: opening mode

(Mode I), inplane sliding mode (Mode II), and anti-plane sliding mode (Mode III).

In Mode I, crack opens by a normal tensile stress perpendicular to the crack plane.

In Mode II inplane shear normal to the crack front and in Mode III anti-plane shear

parallel to the crack are applied. In plane stress, the stress field around the tip of a

linear elastic isotropic material can be calculated using the formulation:

σij =
K√
2πr

fij (θ) (2.1)

For elastic-plastic materials the size of the crack plastic region is estimated using

different approaches. Irwin’s method and Dugdale [53] and Barenblatt’s [136] strip

yield model are two commonly used approaches. According to Irwin, stresses calculated

using asymptotic equations should be redistributed around the crack tip to satisfy the

equilibrium conditions, therefore the plastic zone size must increase. In Irwin’s method



28

the extent of plastic region is calculated using:

rp =
1

π

(

K

σy

)2

(2.2)

where rp is the extent of the plastic region, K is the stress intensity factor and σy is the

yield stress. The strip yield model assumes that the plastic region zone concentrates

in a strip starting from the tip. In this model the superposition of the stresses due to

applied load and crack closure stresses are used to approximate the extent of plastic

region. According to strip yield model in plane stress, rp can be calculated using:

rp =
π

8

(

K

σy

)2

(2.3)

Most of the studies in the literature used these two approaches to estimate the extent

of phase transformation region around the crack tip.

In previous work to investigate the effect of the crack in an edge-cracked Nitinol

plate, FE analysis is used and a few experiments are performed. In recent years, al-

though studies on the extent of martensite region around crack tip have been presented,

accurate comparisons to experimental results are limited. In the following section the

previous work on evaluation of transformation region around crack tip is summarized.

Bulbich [137] determined the nucleation of stress-induced phase transformation at

the crack tip analytically using phase diagram approach and he stated that nucleation

is only possible for slowly propagating cracks. Birman [18] is the first to calculate the

phase transformation region around a center-crack in a SMA plate as a function of

external loading using martensite fraction equation of Tanaka and Sato [40];

ζ = 1− exp
[

bM
(

M0
S − T

)

+ (bM/dM) σeff
]

, (2.4)
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where bM is a material constant defined as:

bM =
ln 0.01

(M0
s −M0

f )
. (2.5)

M0
s and M0

f are martensite start and finish temperatures at zero stress, dm is the slope

of the stress-temperature curves, σSIM
crit = dm(T −M0

s ), and σeff is the von Mises stress.

He used crack tip asymptotic stress equations together with Eq. 2.4 to calculate the

extent of transformation region as given below:

rM = K2
I /
{

2πd2M
(

ln 0.01/bM + T −M0
S

)2
}

, (2.6)

rA = K2
I /
{

2π
[

dM
(

T −M0
S

)]2
}

. (2.7)

Xiong and Liu [39] extended the work of Birman [18] by considering stress redistri-

bution as a result of phase transformation using Irwin’s plasticity corrected formula,

and calculated the extend of transformation region analytically. They obtained the

following equations to calculate fully martensite region as:

rm =
1

2

(

σy
σSIM
crit

)2
(

T −M0
s

T −M0
f

)2

rp +
1

2
rp, (2.8)

and for transformation region they found:

rtr =
1

2

(

1

σSIM
crit

+
1

σ2
y

)

σ2
0a (2.9)

therefore the size of the transformation region when the fully martensitic region is

subtracted can be written as:

rtr − rm =
1

2

σ2
0

d2m

{

1

(T −M0
s )

2
− 1

(T −M0
f )

2

}

a, (2.10)

where a is the crack length and σ0 is the external tensile stress. Using a similar ap-
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proach, Yi and Gao [22] used a phase transformation function given by Sun and Hwang

[15, 16], which they called yield condition of SMAs, to calculate transformation region

around the tip of an edge-crack. They derived the following equation to determine

phase transformation boundaries:

√

r (θ) =
1√
2π

[

K

σc
e (T, ζ)

]

cos
θ

2

(

1 + 3sin2 θ

2

)
1

2

, (2.11)

where g is the equivalent transformation strain,and σc
e (T, ζ) is defined as:

σc
e (T, ζ) =

√
3

g
[(a+ bζ) (T −MS)] . (2.12)

According to their results the shape of phase transformation start (ζ = 0+) and fully

martensite region (ζ = 1) are similar with different radii.

Lexcellent and Blanc [45] presented a yield criterion for Nitinol as:

g(σij) = σvm

(

cos

(

arccos (1− a (1− y))

3

))

− σ0 (2.13)

where y is y = 27
2

det(σd)
(σV M )3

, a is a lattice parameter, r is ratio of the average stress of

each grain, σ0, over average transformation stress. They calculated analytically the

extent of phase transformation zone using the yield function given in Eq. 2.13; which,

however turned out to give a zone roughly six times larger according to a later study

by Robertson et al. [35].

Wang et al. [138] used FE to investigate stress-induced martensite transformation

near the crack tip of a CT NiTi specimen. They found out that fully martensite region

size enlarges and extent of transformation region increases when the tip is transforming

from a mild notch to a sharp crack. They concluded that the shape of the transfor-

mation region in front of the crack tip is similar to the plastic region around the crack

tip of an elastic–plastic material. Wang [29] defined NiTi as an elastic-plastic material,

used uniaxial tensile stress-strain data in Abaqus to determine phase transformation
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and plastically deformed region boundaries under Mode I loading. To find the marten-

site volume fraction contours, they used a simple relation, ζ = Kǫpeq, where K is a

proportionality constant between 1 and 27.4, and ǫpeq is between 0 and 0.0365. The

results of their study showed that with increasing notch acuity from blunt to acute

notch, the sizes of the “fracture process zone” decrease, and the crack propagation

changes from unstable to stable state.

Freed and Banks-Sills [41] used the transformation surface equation proposed by

Panoskaltsis et al. [42], which was like a von Mises type surface, given as FAf
(σ, T ) =

√
3J2 − CA (T − Af), where σ is the Cauchy stress tensor, J2 is the second invariant

of the stress deviator tensor and CA is a material property. Using the transformation

function and crack tip asymptotic stress equations they calculated the transformation

region around crack tip of an edge-crack under Mode I loading. They concluded that

shape of the region that they obtained under Mode I loading resembles to the shape of

the plastic zone in plastically deformed materials, where the size of the transformation

regions are governed by a thermally dependent variable like in plasticity.

Robertson et al. [35] used X-ray diffraction to obtain local strain maps around

the crack tip of an edge-cracked thin Nitinol specimen. They reported a detailed strain

map showing transformed martensite regions and concluded that the transformation

zone shape was consistent with the shape predicted by LEFM.

Daly et al. [36] used DIC on an edge-cracked thin sheet of NiTi under Mode I

loading to obtain strain field around crack tip. They determined the extent of the

transformation along a line ahead of crack tip. Using ǫ22, they obtained an empirical

expression between the extent of transformation region and the applied load. Using the

same approach [139] found an empirical relation between loading parameters and the

extent of phase transformation zones as, rtrans = 0.136
K2

I

2πσ2

0

. Daly [139] used Abaqus

to calculate the phase transformation region around the crack tip under Mode I load-

ing. She studied the effect of material properties like plateau stress and transformation

strain on phase transformation size. Her results showed that when the plateau stresses

increases the extent of region increases but the fully martensite region becomes rela-
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tively smaller, and if the transformation strain increases the same trend is observed.

Gollerthan et al. [37] conducted experiments on a CT specimen under Mode I

loading and observed the deformed region around the crack tip. They adopted the

formulation proposed by Irwin to estimate the length of the phase transformation re-

gion ahead of crack under Mode I loading. They claimed that phase transformation

length they calculated is in agreement qualitatively with their experimental observa-

tion, although this claim was difficult to follow. In a latter study, Gollerthan et al. [50]

obtained phase transformation zone around the crack tip of an edge-cracked NiTi speci-

men using in-situ synchrotron measurements. They observed stress-induced martensite

(up to a volume fraction of 0.4) around the tip with a small plastic region.

Lexcellent and Thiebaud [43] used the yield criterion of Lexcellent and Blanc [45]

together with asymptotic crack tip stress equations to determine the transformation

region around the crack tip under Mode I loading for both plane stress and plane strain.

They determined the shape of the martensite region using the following function:

rf =
1

4π

[

KI

b
(

T −M0
f

)

]2

R(θ)f 2 (yσ (θ)) (2.14)

where R(θ) and yσ(θ) are:

R(θ) = β2 (1 + cos θ) +
3

2
sin2θ, (2.15)

yσ(θ) = 2
√
2βcos3

θ

2

(

9sin2 θ
2
− β2

)

(

β2 (1 + cos θ) + 3
2
sin2θ

)
3

2

. (2.16)

In the equations above Eqs. 2.15 and Eq. 2.16 β = 1 for plane stress and β = (1− 2µ)

for plane strain. yσ(θ) ∈ [−1, 1] when 0 < θ < 2π. Their results show a consider-

able difference with the experimental results of Robertson et al. [35]. In a following

study Lexcellent et al. [140] extended the study of Lexcellent and Thiebaud [43] and

determined the transformation region around the crack tip under Mode II, Mode III
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and mixed-Mode following a similar formulation. Taillebot, Lexcellent, and Vacher

[141] predicted the size of the transformation region around the crack tip of an edge-

cracked NiTi specimen using strain field obtained from DIC. Their experimental results

showed that, the height of the transformation region is almost one third of the height

they calculated using the formulation given by Lexcellent et al. [140].

Falvo et al. [46] used both σy = KI/
√
2πr and σy = KIeff/

√

2π(r − ry) to predict

the extent of transformation line along crack in a NiTi-based SMA under plane stress.

They compared their prediction to results they obtained using MARC and showed that

improved results are obtained when Irwin’s plasticity corrected formula is used. In a

very similar way to their previous work [46], Maletta and Furgiuele [48] used bilinear

stress-strain relation together with Irwin’s plasticity corrected equation to calculate the

extent of martensitic region. The limitation of this model is assuming a constant stress

during transformation. The equations they used to calculate the extent of martensite

and austenite regions are given above (see Eqs. 2.17 and 2.18).

rA = 2r∗−1

π

(

KI

σtr
0 + bM (T − T0)

)2
2(1− ν)2

(2 (1− ν) + (α−1 − 1))
(

2 (1− ν) + ǫLEA

(σtr
o +bM (T−T0))

) ,

(2.17)

rM =
1

2π

(

2 (1− ν)KI

2 (1− ν) (σtr
o + bM (T − T0)) + ǫLEA)

)2

(2.18)

where r∗ is the extent of the region obtained from asymptotic near-tip stress equation,

σtr
0 is plateau stress, bM is a material constant. They showed that their analytical

calculations are in agreement with FE results (MSC MARC). Maletta and Young [49]

extended the model of Maletta and Furgiuele [48], which was limited to plane stress

to determine the length of the phase transformation region along the crack line under

plane strain. The region they calculated for plane strain was smaller than that of plane

stress. They compared their results to experimental results of Gollerthan et al. [50]

and observed that experimentally calculated phase transformation length was between

the length they calculated for plane stress and the one for plane strain.
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Baxevanis et al. [55] implemented the constitutive model of Lagoudas et al. [56]

into Abaqus to determine the size and the shape of the phase transformation region.

They normalized the length parameters using Rξ =
1
3π

K2

I
+ 25

4
K2

II

(σMs)
2 . They also estimated

the size of the transformation region modifying Irwin’s formulation for Mode II [142],

compared the two set of results and claimed that the formulation could be used to

approximate the transformation zone. Their results showed that the effect of trans-

formation hardening on the transformation region shape is similar to the effect of the

hardening on the shape of the plastic region [143], and when the temperature increases,

transformation zone size decreases.

Using a NiTi specimen under mode I loading, Young et al. [144] measured strain

field using synchrotron X-ray diffraction and determined phase transformation region

around crack tip under Mode I loading as was done previously by Gollerthan et al.

[50]. They stated that the extent of the transformation zone calculated using equations

presented by Gollerthan et al. [37] was in agreement with the result of their experiments.

As summarized above, although there are attempts on calculations and measure-

ments of transformation regions around crack tip, accurate and simple calculations that

compare well with experiments are lacking. In this paper, the boundary of martensitic

region around a crack tip is calculated analytically using the transformation function

proposed by Zaki and Moumni [2] together with asymptotic stress equations and also

using finite elements. Then the analytical and computational results obtained are

compared to experimental results presented by Robertson et al. [35].

2.2. Problem Statement and Formulation

The geometry of the edge-cracked thin SMA plate used in this study is shown in

Figure 2.1(a). The plate is loaded in y direction and a superelastic phase transformation

occurs around the crack tip. Forward phase transformation is governed by the following

transformation function, Fζ :
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Figure 2.1. (a) Edge cracked SMA CT specimen B = 0.4 mm (thickness), W = 10.8

mm, a = 5.4 mm, h = 6.4 mm. (b) Uniaxial stress-strain behavior of superelastic

Nitinol.

Fζ =

{

E ′σ
2
e

3
+

1

2

(

1

3
E ′ + ν ′

)

σ2
ii − C(T )

}

+ σijε
ori
ij − (Γ + b)ζ − a(1− ζ)−

[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

, (2.19)

when Fζ = 0, transformation from austenite to martensite occurs. In Eq. 2.19 σe is

the von Mises stress, σe =
√

3
2
SijSij , σij is the Cauchy stress tensor, and Sij is the

deviatoric part of σij . E
′

and ν
′

are given below:

E ′ =
(1 + ν)(EA − EM)

EAEM
, ν ′ =

ν(EM − EA)

EMEA
, (2.20)

where EM and EA are the elastic moduli of austenite and martensite; ν is Poisson’s

ratio of the material (νA = νM = ν), and a and b are defined as

a =
1

2

[(

1

EM
− 1

EA

)

σ2
Ms − σ2

Af

2
+ (σMs − σAf )ε0

]

, (2.21)
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b =
1

2

[(

1

EM
− 1

EA

)

σ2
Mf − σ2

As

2
+ (σMf − σAs)ε0

]

, (2.22)

σMs, σMf , σAs and σAf are martensite start, martensite finish, austenite start and

austenite finish stresses respectively; ε0 is the equivalent transformation strain as shown

in Figure 2.1(b). C(T ) is phase change heat density, a detailed discussion of which is

given in Zaki and Moumni [2]. α controls the slope of the stress-strain curve corre-

sponding to martensite orientation through relation (σrf −σrs)/(ε0), where σrf and σrs

are orientation start and orientation finish stresses. β controls the level of orientation

of martensite variants and is defined as σrf/ε0. εori the strain as a result of orientation

of martensite variants, can be defined as follows [126]:

εoriij =
3

2
εo
Sij

σe
. (2.23)

Stresses σij that are needed in the evaluation of transformation function, are

calculated using asymptotic stress equations given below [145]:

σxx =
KI√
2πr

cos
θ

2

[

1− sin
θ

2
sin

3θ

2

]

+ ..., (2.24)

σyy =
KI√
2πr

cos
θ

2

[

1 + sin
θ

2
sin

3θ

2

]

+ ..., (2.25)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+ ... (2.26)

where KI is the Mode I SIF.

2.3. Evaluation of Stress Intensity Factor

SIFs that are needed in Eqs. 2.24, 2.25 and 2.26 are calculated using asymptotic

near-tip opening displacement, Uy, and fitting to the equation the full displacement
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field obtained from finite elements [146]:

Uy =
KI

2µtip

( r

2π

)
1

2

sin
θ

2

(

3− ν

1 + ν
− cos θ

)

− Tν

2µtip(1 + ν)
rsinθ +

KII

4µtip

( r

2π

)
1

2

(

5ν − 3

1 + ν
cos

θ

2
− cos

3θ

2

)

+ A1r cos θ + u0y, (2.27)

where T is T-stress, A1 and uoy are rigid body rotation and displacement, ν is Poisson’s

ratio, µtip is shear modulus of the crack tip. Using Abaqus, the edge-cracked problem

shown in Figure 2.1(a) is solved for P = 32 N (to compare to results of Robertson

et al. [35]). Assuming symmetry, only the upper half of the plate is modeled with

eight-node biquadratic plane stress quadrilateral elements with reduced integration

points (CPS8R). In the analysis, properties of Nitinol-SE508 from Nitinol Devices and

Components Company (NDC) with austenite finish temperature (Af) of 15
oC are used;

missing parameters are derived from experimental data provided by the study of Pelton

et al. [147].

All three values of KI , KII , and T with A1 and u0y, are obtained simultaneously

through a least squares fit. KII is calculated to be 0.03 MPa
√
m which is small

compared to K1 = 7.3 MPa
√
m. If asymptotic equations with KI alone are used

neglecting KII ; KI is obtained to be 7.35MPa
√
m. Because KII is small in this

study the rest of the calculations are carried out using KI only. Figure 2.2 shows

displacement contour plots around crack tip that are obtained by least squares fit of

FE data to Eq. 2.27 and full field displacement contour plots obtained directly from

FE.

The stress intensity factor is also calculated using the following equation [148]:

K =
P

B
√
W
f(

a

W
), (2.28)

where f( a
W
) is a geometric factor [38] with P = 32N again. KI is obtained to be KI =

7.5 MPa
√
m. As expected KI calculated using Eq. 2.28, where phase transformation
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Figure 2.2. Contours of uy.The crack tip is located at the origin and the coordinates

x and y are normalized by W Dashed lines with values in boxes are FE results, solid

lines are from least squares fit of Eq. 2.27 to FE results.

is not taken into account, is higher than the KI determined using FE. As a result

in subsequent calculations KI = 7.35 MPa
√
m is used in asymptotic equations to

calculate stresses and KII which is very small compared to KI is neglected.

In Figure 2.3 contours of σyy obtained using Eq. 2.25 and contours obtained from

Abaqus are plotted together. Around crack tip, the difference in σyy appears to be

acceptable as shown in detail in Figure 2.3(b).

2.4. Evaluation of Transformation Region

Using asymptotic equations for σij , σe is obtained as follows:

σe =
KI

2
√
πr

[

1 + cos θ +
3

2
sin2 θ

]1/2

, (2.29)

similarly,

σii =
KI

2
√
πr

[1 + cos θ]1/2 , (2.30)
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Figure 2.3. (a) Contour plot of normalized opening stress, σyy

σ0

(σ0 being far field

applied stress), from the full field finite element solution (green lines) and from the

asymptotic field (black lines). Red line represents martensite region ζ = 1 and the

region between red and blue lines is the transformation region 0 < ζ < 1. In both

cases crack tip is located at the origin and only half-plate is shown. (b) close up view

of the stress contours, σyy

σ0
, near the crack tip.

εoriij σij = εo
KI

2
√
πr

√

[

1 + cos θ +
3

2
sin2 θ

]

. (2.31)

If Eqs. 2.29, 2.30 and 2.31 are inserted into Eq. 2.19, with martensite volume

fraction, ζ = 1, and the result is equated to zero, the following equation will be

obtained:

E ′ K2
I

12πrM

[

1 + cos θ +
3

2
sin2 θ

]

+
1

2

(

1

3
E ′ + ν ′

)

KI
2

4πrM
[1 + cosθ]

− C(T ) + εo
KI

2
√
πrM

√

[

1 + cos θ +
3

2
sin2 θ

]

− (Γ + b)−
(

α− β

2

)

ε2o = 0. (2.32)

Eq. 2.32 can then be solved for rM , to obtain the extent of martensitic region
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Figure 2.4. Martensitic region around crack tip.

around crack tip. Figure 2.4 shows martensitic transformation region obtained together

with experimental measurements of Robertson et al. [35].

In Figure 2.5, transformation function Fζ used in this study is plotted using

material properties of NiTi (SE-508) and an average plateau stress (σave) of 370 MPa.

As shown in Figure 2.5 the shape of the transformation function is similar to the von

Mises yield function drawn with respect to principal stresses (σ1 and σ2). When Fζ=0

and Fζ=1 are compared it is observed that the difference between these curves are

smaller on the sides (when σ1 ≈ 0), than the difference on the upper and lower regions.

2.5. Results and Conclusions

As it can be seen from Figure 2.4, the size and the shape of the martensitic region

plotted using Fζ are similar to those presented by Robertson et al. [35]. The yield cri-

terion for Nitinol used by Lexcellent and Blanc [45] however predicts a transformation

zone roughly six times larger than the experimental results of Robertson et al. [35].
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According to Robertson et al. [35] some of the austenite grains may resist trans-

formation as a result of grain orientation (local texture). Figure 2.4, dashed blue line

represents the region of untransformed austenite grains surrounded by martensite as

a result of a local texture. If that region is included as well, results presented in this

paper match even better with the experimental results of Robertson et al. [35].

Because the Eq. 2.32 is given in closed form, the size and the shape of the trans-

formation region around the crack tip can be evaluated for a given loading and material

properties once the stress intensity factor is calculated properly. To show the effect of

the SIF on the transformation region, change in the size of the region with increasing

SIF is given in Figure 2.6.

This chapter began by a literature review about the studies estimating the phase

transformation region around the crack tip; and followed by describing the method used

to calculate the transformation region around the crack under Mode I loading. Finally,

a good correlation between analytical calculations and experimental measurements is

represented. In the next chapter, numerical calculations using ZM model to find the

effect of phase transformation on fracture toughness of SMAs is presented.
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3. INVESTIGATION OF FRACTURE PARAMETERS OF

SHAPE MEMORY ALLOYS UNDER MODE I LOADING

When a cracked NiTi specimen is loaded, stress increases around crack tip, and

phase transformation occurs immediately. Exact closed form calculations of the stress

field around the crack tip and fracture parameters are almost impossible due to the

phase transformation around the crack tip and the non-homogeneous region that is

created.

The objective of this chapter is to analyse the effect of phase transformation

on fracture parameters of an edge-cracked NiTi plate. For this purpose, Abaqus is

used with both ZM model and built-in Auricchio’s SMA model. Under plane stress

conditions and Mode I loading, SIFs, J-integrals, energy release rates, crack tip opening

displacements, and T-stresses are calculated numerically. The results show that, J-

integrals are contour dependent as a result of non-homogeneous region surrounding the

crack tip. Therefore, energy release rate, G, can not be calculated directly by equating J

to G. Instead, strain energy output is directly used to calculate stress intensity factors.

SIFs are also calculated through a least squares fit of displacements obtained from FE

to asymptotic near-tip displacement field equation. Fracture toughness is discussed

by studying the phase transformation region and the fracture parameters determined

using ZM model and Auricchio’s model.

3.1. Introduction

In SMAs, crack tip stresses induce phase transformation from austenite to marten-

site that affects fracture behavior of the material. Although many researchers dealt

with the constitutive modeling of SMAs to understand their mechanical behavior and

remarkable capabilities, there is still room for discussion of fracture parameters, such

as SIFs, J-integrals, energy release rates, CTOD, and fracture toughness.

One of the first studies determining SIF changes at crack tip in materials un-
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dergoing martensitic transformation was done by McMeeking and Evans [12]. They

combined Eshelby’s technique [13] with weight functions given by Paris et al. [149]

and calculated the magnitude of the SIF change around the crack tip using, ∆KI =

−0.22eTVf
√

w(R̄)/(1 − ν), where eT is the transformation strain, Vf is the volume

fraction of martensite, R̄ is the average radius of the particles undergoing phase trans-

formation, and w(R̄) is the transformation zone width depending on R̄. They concluded

that phase transformation creates a residual strain field around the crack tip that limits

crack opening and therefore increases toughness. In addition to this, they showed that

SIF does not change at the initial transformation zone prior to crack growth, it re-

duces when the transformation zone extends towards to crack surface and its reduction

reaches a maximum level after some crack propagation.

Birman [18] investigated the effect of phase transformation on stress intensity

factor in a center-cracked SMA plate under Mode I loading using the transformation

equation of Tanaka and Sato [40] in combination with crack tip asymptotic stress

equations. He claimed that the effect of phase transformation on SIF was relatively

small and that SIF could be calculated using the properties of austenite when the

external stresses are lower than the yield stress of martensite. He concluded that,

extensive experimental studies are needed to estimate the effect of phase transformation

on the fracture toughness of SMAs.

Simha [21] calculated the transformation toughening for a stationary crack under

Mode I loading in Zirconia–Toughened Ceramics (ZTC). He obtained a relation for

toughening in super critical ZTC by using, Jfar − JT = 2hσ1θt, where h = (1+ν)

4π
√
3

(

K
σ1

)2

and K =
√

JE
(1−ν2)

. His results showed that, the toughness increases due to the energy

stored in the wake region and the energy that goes to phase transformation. ZTC

undergoes a martensitic transformation similar to SMAs, and the developed model can

be used to investigate pseudo-elastic crack propagation in polycrystalline SMAs.

Yi and Gao [22] used the phase transformation function given by Sun and Hwang

[15, 16] together with the asymptotic stress equations of LEMF to estimate the trans-

formation region under Mode I loading. They calculated the SIF around the crack tip
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using Eshelby’s technique [13] and weight functions given by McMeeking and Evans

[12]. They determined the reduction of SIF using; ∆Ktip = E
1−2ν

∫

A

(εth)dA, where A is

the transformation area, εt is the transformation strain, h is the shape function given

by McMeeking and Evans [12]. When the crack advances, the shape of the transforma-

tion zone changes into a new shape with a long transformed wake. Their results showed

that, crack tip SIF decreases drastically when the temperature increases. In addition

to that, they also found out that phase transformation reduces crack tip SIF, increases

toughness, and when the ratio of austenite to martensite Young ’s moduli increases,

toughness increases. In a following study, Yi et al. [150] extended their previous work

[22] to mixed mode loading and they arrived to the same conclusion as McMeeking

and Evans [12] that the phase transformation reduces energy release rate and increases

toughness in SMAs.

Wang [29] investigated the effect of notch geometry on phase transformation and

fracture toughness using NiTi compact tension specimens with different notch geome-

tries under Mode I loading. He defined NiTi’s behaviour as an elastic–plastic material

by digitizing stress–strain data in Abaqus, and showed that unlike the traditional met-

als changing the notch shape from blunt to acute changes the fracture behavior from

brittle to ductile. Using the same approach, Wang [30] studied the effects of phase

transformation on fracture toughness in an SMA CT specimen under Mode I loading,

and stated that the notch tip is blunted by transformation strain that results in the

release of notch tip stresses and increases fracture toughness.

Experimental methods used to measure fracture parameters of standard mate-

rials are implemented to SMAs to understand the change in fracture toughness due

to phase transformation. Using X-ray diffraction, Robertson et al. [35] obtained the

strain field around the tip of an edge-cracked thin NiTi specimen under Mode I load-

ing. Their results showed that, the redistribution of stress field as a result of phase

transformation reduces stresses near the crack tip and increases the fracture resistance.

Daly et al. [36] used DIC to calculate strain fields in an edge-cracked thin NiTi sheet

under Mode I loading. They calculated SIF using LEFM and obtained an empirical

expression between the extent of transformation region and KI . As a result, they cal-
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culated a relatively high value of fracture toughness, KC , for NiTi, which indicates

contribution of phase transformation for the toughening of the alloy. Gollerthan et al.

[37] performed displacement controlled experiments using NiTi CT specimen, mea-

sured applied far field load P and calculated the critical stress intensity factor using

the relation, KC = P
B
√
W
f(a/W ), where B, W and f(a/W ) are given in the standards

[38]. They used KC and Irwin’s plasticity corrected equation to estimate the length

of the phase transformation zone. Their results confirmed that, the calculated phase

transformation length qualitatively agrees with their experimental observation.

Studies conducted till date showed that, to be able to discuss fracture parameters

phase transformation region around the crack tip has to be determined accurately.

Lexcellent and Thiebaud [43] presented an analytical approach using the constitutive

model of Raniecki and Lexcellent [44], also used in Lexcellent and Blanc’s [45] paper,

together with asymptotic crack tip stress equations to determine the transformation

region around the crack tip under Mode I loading. They used an average value of SIF

as it is also proposed by Freed and Banks-Sills [41]; (Kapp
I + Ktip

I )/2, where Kapp
I is

the applied SIF and Ktip
I is the SIF governing the region near crack tip. Their results

showed a big difference with the experimental results of Robertson et al. [35]. Falvo and

Furgiuele et al. [46] used both, σy = KI/
√
2πr and Irwin’s plasticity corrected formula

to predict the extent of the stress-induced martensitic transformation. They compared

their analytical results with FEA results, and showed that using Irwin’s correction

yields results closer to FEA results. A different approach to get an analytical solution

to define phase transformation region is proposed by Ma [47]. He used Green’s function

to find the effect of martensitic and ferro–elastic transformation on fracture toughness

in a semi-infinite crack under plane stress. His formulation, indicating the changes

in stress intensity factor because of phase transformation, was in agreement with the

result obtained by McMeeking and Evans [12]. Maletta and Furgiuele [48] proposed an

analytical method, which is in agreement with the performed FEA to predict the extent

of phase transformation region using Irwin’s corrected formulation in combination with

KI = σ∞√
πα in an infinite NiTi plate having a central crack under Mode I loading. In

the following study, Maletta and Young [49] extended the previous work [48] to plane

strain conditions and compared their results to experimental results of Gollerthan et al.
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[50]. They observed that, experimentally calculated phase transformation length was

in between the lengths they calculated for plane stress and plane strain. In a later

study, Maletta and Furgiuele [51] calculated the extent of phase transformation region

using their previous approach [48] and two different SIFs: one for austenitic region and

another one for the transformed martensitic region near the crack tip. Their results

showed that, martensitic or crack tip SIF was smaller than the LEMF predictions and

the mismatch between austenite and martensite elastic moduli causes toughening at

the crack tip.

Using Dugdale’s method [53], Baxevanis and Lagoudas [52] calculated J-integral,

CTODs, and size of the martensite transformation region around the tip of a center-

cracked infinite SMA plate under Mode I loading. They found that, when the stress

level is above yield stress, phase transformation region size increases with increasing

maximum transformation strain, and the existence of phase transformation region de-

creases the size of the plastic zone. In a following work, Baxevanis et al. [55] calculated

the size and shape of the martensitic transformation region and J-integral near an edge-

crack using the constitutive model of Lagoudas et al. [56]. Their numerical simulation

showed that, around the crack tip, J-integral is path dependent and the difference

between the crack tip, Jtip, and far field applied J-integral, J∞, is smaller than that

difference obtained in elastic–plastic materials.

Main objective of this chapter is to understand the effect of phase transforma-

tion on fracture behavior of a superelastic NiTi. In this chapter, different methods

estimate SIF when compared to other studies. Using finite elements, transformation

region around the crack tip is studied, strain energy is calculated and fracture me-

chanics properties, such as J-integrals, energy release rates, stress intensity factors,

crack face opening displacements (CFODs), and CTODs, are discussed to understand

the effect of phase transformation on fracture behavior in a superelastic NiTi plate.

In the first section, problem geometry and constitutive model used in FE analysis is

presented, then phase transformation regions and J-integrals are calculated around the

crack tip using two different material models. In the next part, the results of fracture

parameter analyses are presented. Finally fracture toughness is discussed, and results
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are tabulated.

3.2. Problem Statement and FEA

A rectangular plate with an edge crack situated along its x-axis is subjected to

Mode I loading as shown in Figure 3.1(a). Finite element is used to solve the problem.

Using symmetry, only the upper half of the plate is modeled with reduced integration

plane stress elements (CPS8R) (see Figure 3.1(b)). Because the non-linear material

response requires very fine meshes, model is divided into regions with different mesh

sizes (see Figure 3.1(c)). As shown in Figure 3.1(d), around the crack tip a circular

finer mesh is used and the mesh density increased towards the crack tip. At the crack

tip one side of the eight noded CPS8R element collapses to a node at the tip and

midside nodes are located to 1/4 of the element edge length away from the tip.

In the finite element analyses, the ZM [2], and built–in Auricchio–Taylor–Lubliner

models [3] are used through user defined material subroutine (UMAT) in Abaqus. The

stress-strain and stress-temperature curves of superelastic Nitinol indicating the ma-

terial parameters used in Auricchio’s model are plotted in Figure 3.2 and material

properties are given in Table 3.2; where EA is elastic modulus and νA is Poisson’s

ratio of austenite, EM is elastic modulus and νM is Poisson’s ratio of martensite, ε0

is transformation strain, ( δσ
δT
)
L
is rate of change of stress with respect to tempera-

ture during loading, σS
L is the starting stress and σE

L is the ending stress of forward

transformation, T0 is the reference temperature, ( δσ
δT
)
U
is the rate of change of stress

with respect to temperature during unloading, σS
U is the starting stress and σE

U is the

ending stress of reverse transformation. The stress–strain curves of a NiTi specimen

under uniaxial loading obtained using ZM and Auricchio’s model with the the material

properties given in Tables 3.2 and 3.1, are plotted in Figure 3.3. The conversion of ma-

terial parameters from ZM to Auricchio’s model is done with the help of the parameter

identification section represented by Zaki and Moumni [2].

A displacement of u = 0.1 mm, is applied to the edge-cracked rectangular plate

shown in Figure 3.2. The phase transformation regions calculated using the two mate-
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Figure 3.1. (a) Edge-cracked thin SMA plate, (b) Geometry of the 2-D edge-cracked

specimen, (c) Mesh of 2-D edge-cracked specimen, (d) Mesh configuration close to the

crack tip (H = 100 mm, W = 100 mm and a = 20 mm).

rial models are compared in Figures 3.4 and 3.5. The comparison of the results shows

that the phase transformation start regions (ζ = 0+) are close, on the other hand, the

martensite region (ζ = 1), calculated using ZM model, is smaller.

When the crack length is increased, stresses around the crack tip increases and

transformation region around the tip enlarges in the direction of crack growth. In
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Figure 3.2. (a) Stress-strain graph, (b) stress-temperature graph of Nitinol [1].

Table 3.1. Material parameters used in ZM model [2].

EA 61500 MPa

EM 24000 MPa

a 6.8920 MPa

b 6.9091 MPa

Γ 4.6556 MPa

α 2750 MPa

β 5500 MPa

Y 110 MPa

C(T ) 15.634 MPa

ε0 4 %

ν 0.3

Figure 3.6, ζ values along the crack growth direction, starting from the crack tip are

plotted using two different crack lengths (a/W = 0.2 and a/W = 0.4), and it is observed

that Auricchio’s model calculates higher ζ at any distance away from the crack tip.

Figure 3.6 shows that, when the crack length is increased, stresses around the crack

tip increase and transformation region around the tip enlarges in the direction of crack
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Table 3.2. Material parameters used in Auricchio’s model [3].

EA 61500 MPa

EM 24000 MPa

νA = νM 0.3

( δσ
δT
)
L
= ( δσ

δT
)
U

5.71 MPa/K

σS
L 570 MPa

σE
L 575 MPa

σS
U 305 MPa

σE
U 300 MPa

ε0 4 %

T0 70 C
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Figure 3.3. Stress-strain relation simulated in Abaqus using both ZM and Auricchio

Models.

growth with an increase in ζ .
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(a) (b)

Figure 3.4. (a) Phase transformation regions, ζ = 0+, (b) Full martensite region,

ζ = 1, (a/W = 0.40).

(a) Auricchio’s model (b) ZM model

Figure 3.5. Transformation region, red (ζ = 1), green (0 < ζ < 1) and J-Integral

contours (white and gray), (a/W = 0.40).

In Figure 3.7 σyy contours calculated around the crack tip are compared. Higher

stresses are obtained when ZM model is used, which predicts a smaller martensite

region. In Figure 3.8, σyy/σT
curves calculated along a radial path in the transformation

region using ZM model and Auricchio’s model are ploted and compared to those of a

linear elastic homogeneous material having properties identical to austenitic phase of

NiTi. This comparison shows that, phase transformation lowers stresses around the

crack tip. Figure 3.8 also shows that, the shape of the σyy curve plotted for NiTi is

similar to that calculated by Carka and Landis [143] for an elastic–perfectly plastic

material.
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Figure 3.6. Martensite fraction, ζ along the crack tip in positive x direction as shown

in Figure 3.2, u=0.1 mm.

3.3. Fracture Parameters

3.3.1. J-Integral

The J-integral, developed by Rice [151], is a widely used fracture parameter to

calculate the strain energy release rate for linear elastic materials. In linearly elastic

homogeneous materials with a uniform temperature distribution, J-integral is contour

independent and equal to G. Therefore, the energy release rate, G, can be used to de-

termine the stress field. Rice and Rosengren [152] showed that for non-linear materials

(e.g. power- law hardening materials) J-integral can be used to define stress field close

to the crack tip.

In Abaqus the J-integral is calculated by evaluating the following relation com-

putationally:

J =

∫

Γ

wdy −
∫

Γ

Ti
∂ui
∂x

ds, (3.1)
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Figure 3.7. Comparison of σyy contours.

where w is the strain energy density, Ti is the traction vector, ds is the length increment

along the path Γ. In this study, J-integrals are calculated along circular paths using

ZM and Auricchio’s models and results are plotted in Figure 3.9. Results of J-integral

calculation show that the non-homogeneous material zone near the crack tip yields a

contour dependent J-integral that converges to a far field value away from the tip, that

is called J∞ here.

As shown in Figure 3.9, J-integral values decrease and reach a minimum value;

then, the central angle of the J-integral calculation paths passing through full marten-

site region gets smaller and J-integral starts to increase until the end of transformation

region and converges to a constant value denoted as J∞. The shape of the J-integral

curve represented in Figure 3.9 is in agreement with the J-integral results obtained

by Baxevanis et al. [55] for SMA. In Figures 3.10 and 3.11 J-integrals calculated for

different crack lengths normalized by J∞ is shown. When the crack length increases,

the stresses increase and transformation regions enlarge. As a result, as it can be seen

from Figures 3.10 and 3.11, J–integral curves shifts right upon increasing crack length.
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Figure 3.8. Angular variation of the σyy

σT
where σT is the average transformation stress

along a radial path (r = 0.18mm). The crack tip is located at the origin.

(a/W = 0.40 and u = 0.1 mm).

3.3.2. Discussion on Strain Energy Stored

When there is no dissipated energy in the form of heat, the external work done on

an elastic body is stored in the form of strain energy. The total strain energy balance

can be written as:

E = Ue + Up + U tr, (3.2)

where Ue is elastic strain energy, Up is the energy dissipated through plastic defor-

mation and U tr is the energy dissipated in phase transformation. In this study it is

assumed that there is no plastic deformation, i.e., Up = 0.

Abaqus outputs energy terms through following commands; ALLSE gives the

total elastic strain energy; ALLPD is the transformation strain energy; ALLIE is the

total strain energy and ALLIE = ALLSE + ALLPD; ALLKE is the kinetic energy;

ALLWK is the external work; and ETOTAL represents the total energy for the whole

model, ETOTAL = ALLKE + ALLIE − ALLWK. ELSE and ELPD represents
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Figure 3.9. Solid lines are the phase transformation start boundary (ζ = 0+), dotted

lines represents full martensite region (ζ = 1), dashed lines are J-integral curves,

circular gray curves are J-integral calculation contours (a/W = 0.40 and

u = 0.1 mm).

elastic and transformation strain energies respectively, for a single element.

As shown in Figure 3.12, the elastic strain energy is increasing during loading,

whereas the transformation strain energy remains zero until the phase transformation

starts. There is a small-scale phase transformation at the crack tip; as a result the trans-

formation energy is very small compared to elastic strain energy and ALLSE/ALLWK

is very close to 1 (ALLKE=0). ELPD curve remains zero up to, u/uT = 0.4, where

uT = 1 mm represents the displacement at the end of the increment, over this point

ELPD starts to increase together with the start of phase transformation, and finally it

becomes constant when material point is fully transformed into martensite.
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Figure 3.10. J-integrals calculated using Auricchio’s model for different a/W ratios,

u=0.1mm.

Figure 3.11. J-integrals calculated using ZM model for different a/W ratios,

u=0.1mm.

3.3.3. Stress Intensity Factor Calculations Using Strain Energy Release

Rate

As shown in Figure 3.9, J-integral is contour dependent, hence it can not be used

directly in SIF calculations by simply equating J to G. In this section, the energy
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Figure 3.12. Change of ALLSE (dotted line), ALLPD (solid line) and ELPD (dash

line) during loading, (uT = 0.10 mm, a/W = 0.40).

release rate G is calculated directly from the strain energy output of Abaqus using ∆U
∆A

,

and SIFs , are estimated through equation, G = (KG
I
)2/ETip

. The results are plotted

in Figure 3.13(a). Crack tip becomes martensite at early stages of loading and while

calculating G, ET ip is set to elastic modulus of martensite, EM . A similar method is

used by Jin and Batra [153] and Anlas et al. [154] for functionally graded materials.

3.3.4. Stress Intensity Factor Calculations Using Full Displacement Field

and Asymptotic Equations

SIFs are also calculated by fitting the full displacement field obtained from finite

elements to the asymptotic displacement field equation, Uy, given below [146]:

Uy =
KI

2µ

( r

2π

)
1

2

sin
θ

2

(

3− ν

1 + ν
− cosθ

)

− Tν

2µ(1 + ν)
rsinθ

+
KII

4µ

( r

2π

)
1

2

(

5ν − 3

1 + ν
cos

θ

2
− cos

3θ

2

)

+ A1rcosθ + u0y, (3.3)



59

(a) (b)

Figure 3.13. (a) SIF calculated using G vs. u (b) SIF calculated using full field

displacement equation vs. u.

in the equation above, T is T-stress, A1 and uoy are rigid body rotation and displace-

ment respectively, ν is the Poisson’s ratio, µ is the shear modulus of martensite at the

tip, r and θ are the polar coordinates with the origin centred at the crack tip. Least

squares fit of displacement values obtained from finite elements to Eq. 3.3 around the

crack tip is shown in Figure 3.14. SIFs (Kdisp
I ) estimated through least squares fit

are represented in Figure 3.13(b). As shown in Figure 3.15, SIFs calculated using ZM

constitutive model are higher than those obtained using Auricchio’s model. This result

is in agreement with the previous findings, and implies that when the ZM model is

used, less energy is dissipated through phase transformation compared to that of Au-

ricchio’s model. Figure 3.15 shows that, although Kdisp
I and KG

I calculated using the

two material models are not the same, they are close to each other. In Table 3.3 SIFs

KG
I , K

disp
I and K∞

I calculated using J∞ are tabulated. The difference between Kdisp
I

and KG
I given in Table 3.3 show that, when ZM model is used, SIFs predicted using

both methods are close to each other.

The region of asymptotic dominance close to the crack tip stress is quantified by
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the following error e:

e =
‖σFE

ij − σA
ij‖

‖σA
ij‖

, (3.4)
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where σFE
ij are stresses obtained from finite elements analysis using ZM model and σA

ij

are stresses obtained from asymptotic equations. Figure 3.16 represents the contour

plots of e, shows that the stress deviation decreases towards the crack tip and an error

of 25% is maintained in the martensite region.

3.3.5. Calculating the Extent of Transformation Region Using T-Stresses

In this section, least squares fit of displacement field equation (Eq. 3.3) to FEA

results is used to calculate T-stresses. When θ=0, the equivalent stress derived using

asymptotic stress equation considering T -stresses is given by:

σ2
VM = T 2 + T

K√
πrT

+
K2

πrT
, (3.5)
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Table 3.3. Comparison of SIFs obtained from J∞, KG
I , K

disp
I .(Units: K

(MPa.mm1/2), G ≈ ∆U
∆A

and J ( mJ
mm2 ) , A : Auricchio Model, ZM: Zaki Moumni

model.

a/W J∞ K∞
I G ≈ ∆U/∆A KG

I Kdisp
I KG

I -K
disp
I )/KG

I

0.20-A 4,383 324,327 4,445 326,626 320,330 192.8 %

0.20-ZM 4,533 329,838 4,574 331,333 334,477 25.8 %

0.25-A 5,138 351,165 5,192 352,987 341,684 320.2 %

0.25-ZM 5,265 355,481 5,297 356,534 355,108 40.0 %

0.30-A 5,713 370,297 5,755 371,633 358,972 340.6 %

0.30-ZM 5,801 373,136 5,823 373,848 370,984 76.6 %

0.35-A 6,120 383,264 6,152 384,236 373,337 283.7 %

0.35-ZM 6,164 384,621 6,181 385,152 383,507 42.7 %

0.40-A 6,383 391,408 6,394 391,745 388,176 91.1 %

0.40-ZM 6,386 391,487 6,402 391,981 395,806 -97.6 %

where rT is calculated using the following relation:

rT = rvm



1− 1

2

(

T

σT

)2

± T

σT

√

1− 3

4

(

T

σT

)2


 . (3.6)

Kdisp
I is used to calculate the extent of transformation through the following

approaches: von Mises equivalent rvm = 1
2π

(

K
σy

)2

, Irwin’s method rirwin = 1
π

(

K
σy

)2

,

Dugdale’s method rdugdale = 1
8

(

K
σy

)2

, and considering T -stresses in the equivalent

stress equation as it is given in Eq. 3.6. Figure 3.17 shows that as the displacement

load increases rT curve yields results closer to results of FEA performed using ZM

model, rFE.
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Figure 3.17. Comparison of the extent of transformation region r (θ = 0) normalized

by crack length a calculated using different methods.

3.3.6. Crack Tip Opening Displacement

For an elastic-plastic material the relationship between the crack tip opening

displacement δ and J-integral has been formulated as [155]:

δ = dn
J

σo
, (3.7)

where dn is a material specific parameter independent of crack configuration, σo is

taken as the average transformation stress. As it is represented in Figure 3.18, dn is

calculated using CTODs measured at the intersection of the 450 line drawn from the

crack tip as it is defined by Shih [155], and crack tip J-integrals obtained from FE.

Figure 3.19 shows that dn converges to a constant value when the load increases which

is also observed in the case of elastic–plastic materials [155–157].
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(a) (b)

Figure 3.18. (a) Crack face opening profiles for increasing u. Half of the CTOD is

measured from the intercept of 45o line (dashed line starting from the crack tip) and

the crack profile (b) CTOD values

Figure 3.19. dn values.

3.4. Crack Initiation and Stability of Crack Growth

In a cracked NiTi specimen the crack initiation will occur and propagation starts

when the energy release rate, G, is equal to the fracture resistance, GR at the crack

tip. At this point crack propagates in stable or unstable manner depending on material
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properties, loading, and testing conditions. In a stable crack growth the energy release

rate is constant after it reaches GR, G=GR. In this study under the displacement load

of u = 0.1 crack is assumed to be at the critical state to start to propagate.

Figure 3.20. Effect or transformation strain on crack growth stability.

To check the crack stability and the parameters effecting the stability of crack

growth the criterion, proposed by Woo and Chow [158] is used. Woo and Chow’s

criterion uses the virtual crack extension (VCE) technique presented by Parks [159]

and Hellen [160]. In this method, under fixed displacement, the crack is allowed to

grow by an infinitesimally small amount in two steps. In the first increment the energy

release rate and in the second one the change of energy release rate with respect to

incremental crack length is calculated [158].

1

GR

dGR

dA
≥ 1

G
(
∂G

∂A
)V . (3.8)

In Eq. 3.8 given above, GR is the critical energy release rate value, in a stable crack

growth is constant during crack growth. Therefore the negativity of the term, (∂G
∂A

)V

which is the change of energy release rate under constant displacement, ensures the

stability of the crack growth.
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Figure 3.20, represents the change of the stability criterion with respect to the

change of transformation strain, ǫtr. When u = 0.1 mm and ǫtr = 0.04 (∂G
∂A

)V is

negative, the dissipation of energy during phase transformation provides a stable crack

growth. As shown in Figure 3.20, when ǫtr > 0.038 and u = 0.1 mm, it is possible to

observe a stable crack growth.

3.5. Fracture Toughness

Most of the studies in literature note that phase transformation reduces crack

tip SIF and increases toughness [14, 22, 30, 36, 41, 51, 161–164]. The increase in

toughness is estimated from crack tip SIF change induced by phase transformation.

According to McMeeking and Evans [12], if a particle undergoes a stress- induced

martensitic transformation, then the enhanced toughness is due to residual strain field

that restricts crack opening.

In contrast to these studies, some researchers [28, 165, 166] claim that phase

transformation leads to volume contraction at the crack tip and thus SIF increases

and toughness decreases. Xiong and Liu [39] studied thermally induced fracture in Ni–

Mn–Ga, NiTi, and Cu–Al–Ni and found out that stress redistribution occurs around

the crack tip, which leads to an increase in crack tip SIF and a decrease in fracture

toughness. In addition to these, FE analysis of Yan et al. [24] on quasi-static crack

growth in SMAs showed that volume contraction as a result of phase transformation

reduces the toughness.

In literature authors published different volume contraction values for SMAs;

Holtz et al. [167] measured −0.39% and Jackson [168] reported −0.54%. Robertson

[169] calculated −0.39% change in volume contraction using synchrotron diffraction

data given by Mehta et al. [166]. In Auricchio’s model, the parameter εV , represents

the volumetric strain. In this section to study the effects of change in volumetric strain,

using the model represented in 3.2 and the material properties given in Table 3.2, the

volumetric transformation strain is set to −2% and 2% respectively and SIFs calculated

are tabulated in Table 3.4. The results in Table 3.4 show that, in this finite element
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calculation the volumetric transformation strain has a little effect on results in SIF.

There is a tendency of SIF to increase when the volumetric transformation strain is

negative and a tendency to decrease if it is positive. But still the effect of volumetric

strain is not very clear because the differences between SIF values are very small.

Table 3.4. KG
I , determined Effect of volumetric strain on toughness.

a/W εV = 0 % εV = 2 % εV = −2 %

0.20 326,626 325.891 327.316

0.25 352,987 350.135 353.949

0.30 371,633 370.966 373.400

0.35 384,236 382.125 385.497

0.40 391,745 389.918 393.141

Under Mode I loading, Wang [31] calculated stress distribution around the tip

of an edge-cracked NiTi plate and in a similar linear elastic material with material

properties identical to NiTi in the martensitic phase. He showed that martensite

transformation suspends crack nucleation and propagation at the tip, and increases

toughness. In this section, an edge-cracked NiTi plate and a linear elastic material

with material properties identical to NiTi in the austenitic phase is compared under

Mode I loading using material properties tabulated in Table 3.1. The geometry and

boundary conditions of the plate are given in Figure 3.2 and approximate energy release

rates are calculated using ∆U
∆A

for different crack lengths. SIFs that were calculated for

NiTi previously (KG and Kdisp) are normalized with SIFs of austenite plate (Kaus) and

plotted in Figure 3.15. The SIFs are also tabulated in Table 3.5. The results show that

Kaus is higher than KG and Kdisp. These results provide support for the claim that

phase transformation decreases SIF and therefore increases fracture toughness.

T-stress values are also calculated upon increasing the displacement and plotted

in Figure 3.21. It is known that negative T-stresses increases fracture toughness in

elastic–plastic materials [170, 171], and Eq. 3.6 showed that negative value of T-stresses

increases phase transformation region and therefore this possibly results in an increase
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Table 3.5. Comparison of SIFs calculated using Auricchio and ZM models to the SIFs

of homogeneous plate.

a/W Auricchio’s model ZM Model Austenite

Kdisp
I KG

I Kdisp
I KG

I Kdisp
I KG

I

0.20 326,626 320,330 331,333 334,477 521,016 543,742

0.25 352,987 341,684 356,534 355,108 563,371 589,415

0.30 358.972 371.633 370.984 373.848 598.584 616.010

0.35 384,236 373,337 385,152 383,507 614,106 632,732

0.40 391,745 388,176 391,981 395,806 626,868 640,744

in toughness.

The crack stability analysis showed us that increasing the transformation strain,

increases the stability of the crack growth, and that can be used as parameter to control

the fracture toughness.
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T
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Figure 3.21. T-stresses normalized with the average transformation stress (σT ) vs.

applied displacement u/a (a/W =0.40).

Experimentally, it is easier to measure CTODs than J-integrals, especially when

the crack grows [157]. Hellmann and Schwalbe [172] stated that resistance curve based
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on CTOD gives a better estimate of the critical crack length compared to J-integral

resistance curves. Therefore, for shape memory alloys, it is worth to investigate the

relation between J-integral and CTOD. The crack face opening displacements calcu-

lated using ZM model is compared with that calculated using Auricchio’s model and

plotted in Figure 3.22. As presented in Figure 3.22, CFODs calculated using ZM model

are higher. This result is in agreement with the previous finding given in Figure 3.12,

which shows that less energy is dissipated through phase transformation when the ZM

model is used in the analysis, implying that fracture toughness increases as a result of

phase transformation.

Figure 3.22. Crack face opening profiles for different a/W, u = 0.10 mm. Red curves

represents ZM model and the blue curves are those out of Auricchio’s model

3.6. Summary and Conclusions

In this chapter, to understand the effect of phase transformation on fracture

behavior of NiTi, fracture mechanics properties such as J-integrals, energy release rates,

stress intensity factors, crack opening displacements, and change in fracture toughness

due to phase transformation are discussed. As it was stated in the previous studies



70

[48, 50, 52, 164], in SMAs, fraction of plastic dissipation around crack tip is very small

compared to the energy dissipated through phase transformation. For this reason in

this study, small-scale phase transformation without plastic deformation is taken into

account around the crack tip.

The FE analysis reveals that the extent of the full martensite region calculated

using ZM model is closer to region measured experimentally by Robertson et al. [35].

Auricchio’s model predicts a larger, kidney–shaped full martensite region compared to

ZM model as shown in Figure 3.9.

When ZM model is used in FE analyses, lower phase transformation energy and

smaller phase transformation region are calculated than those of Auricchio’s model.

Energy release rates obtained using Auricchio’s model are lower than those calculated

using ZM model and as a result smaller SIFs are calculated using Auricchio’s model.

Using the SIFs obtained from energy calculations, the size of the martensite zone

is calculated analytically employing square root singular stress equations in the K

dominant zone. SIFs calculated using energy release rates give close results to those

calculated from asymptotic near-tip opening displacement field equations. Therefore

in SMAs, which undergo small-scale transformation around the tip, ∆U
∆A

can be used to

predict SIFs and thus energy release rate can be used as a parameter to interpret the

fracture toughness change in SMAs. The defined stress deviation decreases in the fully

transformed martensitic region, which shows the validity of asymptotic stress equations

in that region. SIFs are calculated using superelastic SMA plate is lower than that for

fully austenite homogeneous plate and this implies that toughness increases via phase

transformation. Comparison of KG and Kdisp values showed that ZM model yields

closer SIF compared to Auricchio’s model.

It is found that negative T-stresses around the crack tip increase the extent of

plastic region that is evaluated using equivalent stress and this gives results closer to

FE results. Figure 3.17 shows that T-stresses should be included in the equations to

determine the extent of phase transformation region accurately.
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In this study, a linear relation is used between CTOD and J-integral similar to the

case of elastic-plastic materials represented by Shih [155]. In addition to this, different

dn values calculated using ZM and Auricchio’s models showed that dn is a specific

material parameter for SMAs and depends on the amount of phase transformation.

When the effect of volumetric transformation strain on toughness was considered,

to get net conclusion was not possible because the FE results obtained indicated that

the volume contraction had a little effect on SIF.

Summing up, comparison of CFOD, CTODs, SIFs, and dissipated energies using

ZM and Auricchio’s models show that SIF decreases due to phase transformation and

increases resistance to crack propagation in SMAs. SIFs can more easily be predicted

using ∆U/∆A for G. K dominance study showed that least squares fit of asymptotic

equations gives reasonable prediction of SIFs. But the results of the extent of trans-

formation region showed that the effect of T-stress should be taken into account in

fracture parameters calculations. Different dn values calculated using the two material

models showed that an accurate determination of phase transformation region around

the crack tip is necessary to obtain a correct relation between CTOD and J-integral.

A good agreement of transformation regions calculated using ZM model and measured

experimentally by Robertson et al. [35] is obtained in chapter 2. Future studies should

involve experiments to verify the methods proposed in this work to find CTOD, SIFs,

and phase transformation region around crack tip in SMAs.



72



73

4. MODELING OF STEADY-STATE CRACK GROWTH

IN SHAPE MEMORY ALLOYS USING A STATIONARY

METHOD

The detailed discussion about the fracture mechanics parameters in shape mem-

ory alloys represented in previous chapter has demonstrated the importance of the

accurate determination of the phase transformation region around the tips of a static

crack in SMAs. When the crack advances, martensite transformation occurs at the tip

and the energy that goes into this transformation results in stable crack growth like in

the case of plastic deformation.

Among the published studies on fracture mechanics properties of ductile materials

and materials undergoing phase transformation, steady-state crack growth is one of the

very frequently investigated subjects. Most of the studies related to crack growth deal

with steady- state growth of a crack in perfectly plastic materials and quasi-static crack

growth in materials undergoing phase transformation. None of these studies uses non-

local stationary methods and they do not take into account reorientation of martensite

phase to analyze steady-state growth of a crack in SMAs.

In literature, steady-state crack growth in elasto-plastic materials with small-scale

yielding at the crack tip has been successfully modeled using stationary methods. In

this work, Mode I steady-state crack growth in an edge-cracked Nitinol plate is modeled

using a non-local stationary method [118]. The Zaki-Moumni constitutive model is

utilized for this purpose. The model is implemented in Abaqus by means of a user-

defined material subroutine to determine transformation zones around the crack tip.

Steady-state crack growth is first simulated without considering reverse transformation

to calculate the effect of transformation on stress distribution in the wake region, then

reverse transformation is taken into account. The effect of reorientation of martensite

near the crack tip as a result of non-proportional loading is also studied. The stress

distribution and the phase transformation region are compared to results obtained for
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the case of a static crack.

4.1. Introduction

In this work, a stationary method is used to analyze steady-state crack growth

in an infinitely long edge-cracked thin plate to see the effect of transformation and

martensite reorientation, considering a non-proportional loading history around crack

tip. In literature, there are studies on steady-state crack growth in elasto-plastic ma-

terials that use non-local stationary methods. One of the first methods developed to

analyze steady-state crack growth is presented by Dean and Hutchinson [173]. They

integrated space-discrete elastic-plastic constitutive equation along the streamlines par-

allel to the crack plane in the plastic zone near crack tip, to calculate stresses during

steady-state growth of a crack under Mode I and Mode III loading. They compared

their numerical results to analytical results obtained by Rice et al. [174] and showed

that they were in good agreement. Stahle [175] wrote a UMAT subroutine based on

the algorithm given by Dean and Hutchinson [173] and used Abaqus to analyze Mode

I steady-state crack growth in elasto-plastic materials. He computed the plastic zone

around the crack tip and compared his results to results of a quasi-static crack growth.

He found that steady-state method is advantageous from a computational point of view

over quasi-static crack growth models that use a node release technique. The method

developed by Dean and Hutchinson [173] was used by researchers studying steady-

state crack growth in elastic-plastic materials joined by a laser weld [176], ferroelastic

materials [177], ferroelectric materials [178, 179], adhesively bonded layers [180, 181]

and rate sensitive materials [182, 183]. Sobotka and Dodds [184] extended the work of

Dean and Hutchinson [173] and implemented the same technique to 3D to study steady

crack growth in a thin elasto-plastic plate with small-scale yielding around the crack

tip. Recently Baxevanis et al. [185] used the method of Dean and Hutchinson [173]

to calculate crack tip energy release rate, Gtip, for a crack growing in steady-state in

a pseudo-elastic SMA specimen under Mode I loading. They found that reverse phase

transformation in the wake region of a growing crack increases toughness.
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Nguyen and Rahimian [186] proposed a steady-state (stationary) method to com-

pute stress and strain distribution around the tip of a steady-state growing crack in an

elastic-perfectly plastic infinite strip under Mode I loading and they stated that using

stationary method gives theoretically more satisfying results when compared to node

release technique. In the study of Nguyen and Rahimian [186], dissipative variables are

updated everywhere in the model without the need to predict the size of inelastic region.

On the other hand, to use the methodology proposed by Dean and Hutchinson [173] in

an inelastic medium, one has to calculate inelastic zone height to construct streamlines

for integration. For this reason method used by Nguyen and Rahimian [186] is more

general and not limited only to solve steady-state crack growth problems but also can

be used for elastic-plastic analysis of structures subjected to repeated loads moving in

steady-state [187, 188] where it is difficult to predict the size of inelastic zone. Lê Minh

et al. [189] extended the stationary method proposed by Nguyen and Rahimian [186]

to analyse fatigue crack propagation and plasticity induced crack closure in a stainless

steel specimen. For shape memory alloys however, except Moumni [118] who modeled

stationary growth in a material undergoing phase transformation without considering

reverse transformation, most studies assume quasi-static growth.

In the wake region of a steadily growing crack reverse transformation occurs and

that may affect toughening due to phase transformation around the crack tip. Stam

and van der Giessen [14] studied the effect of partial or full reversibility of stress-

induced phase transformation around the crack tip on toughness assuming quasi-static

crack growth in SMAs and zirconia ceramics using finite elements with the constitutive

model of Sun et al. [190]. They concluded that phase transformation leads to tough-

ening of the SMA and if the material is showing a superelastic behavior where reverse

transformation occurs upon unloading, the toughness enhancement as a result of phase

transformation is less. Yan et al. [24] studied a quasi-statically growing crack using

finite elements to see the effect of stress-induced martensite transformation on fracture

behavior of superelastic SMAs and compared their results to those obtained in the case

of phase transformation in zirconia ceramics. They assumed a partial reverse transfor-

mation in the wake region and stated that the effect of reverse transformation in the

wake region is negligible. Freed and Banks-Sills [41] presented a finite element study
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on transformation toughening behavior of a slowly propagating crack using a cohesive

zone model in an SMA under Mode I loading and plane strain conditions assuming

small-scale transformation zone around crack tip. They found that reversible phase

transformation reduces the amount of toughening in the alloy. Gollerthan et al. [191]

made measurements during loading and unloading of a NiTi compact tension speci-

men under Mode I loading using infrared thermography and showed that martensite

transformation occurs around crack tip during crack growth and reverse transforma-

tion occurs in crack wake region. Baxevanis et al. [164] studied Mode I quasi-static

crack growth in SMAs under plane strain condition using finite elements considering

only forward transformation and they calculated energy release rate using virtual crack

closure technique. They found out that plastic dissipation is small compared to energy

dissipated due to phase transformation therefore plastic deformation can be neglected

during steady-state crack growth analysis in SMAs. Even though numerical simula-

tions in the study of Stam and van der Giessen [14], Yi and Gao [22], Yan et al. [24],

Freed and Banks-Sills [41] and Baxevanis et al. [164] predict the presence of residual

martensite in the crack wake region, experimental work of Gollerthan et al. [191] and

Robertson et al. [35] shows that as the crack grows, the martensite that has formed

around the tip transforms back to austenite.

When loaded superelastically above orientation finish stress σf , martensite that

forms will be fully oriented. If loading is then increased proportionally, orientation

of martensite will not change. On the other hand, non-proportional loading leads to

the formation of different martensite variants, resulting in a change in the orientation

strain. Some experimental studies show that martensite reorientation is intimately re-

lated to non-proportional loading [192, 193]. To be able to simulate problems involving

non-proportional loading accurately, reorientation of martensite variants is considered

in latest SMA models [e.g. 2, 84, 103, 119–122, 194–199]. Zaki [200, 201] proposed

an efficient numerical method to calculate evolution of orientation strain by introduc-

ing two different set of yield functions and validated his results with experimental

data. In recent studies, micro-level modelling and different phase field theories are

used to investigate reorientation of martensite, variant and dislocation formation in

SMAs [202–205].
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In fracture mechanics it is known that a material point close to crack tip ex-

periences non-proportional loading during crack growth [173, 206, 207]. Yi and Gao

[22] investigated fracture toughening of shape memory alloys using the constitutive

model of Sun and Hwang [15], considering non-proportional loading for forward and

reverse transformation. They obtained an analytical solution for the determination of

the transformation region around cracks advancing in steady-state. In the wake region

they assumed that there was no reverse transformation and they stated that when the

crack advances, the shape of the transformation zone changes with a long transformed

wake. Landis [177] investigated strain reorientation near a propagating crack tip in fer-

roelastic materials that occurs due to non-proportional loading. He stated that when

the crack propagates, the crack tip loads and unloads non-proportionally causing reori-

entation of transformation strain and resulting in increase of external energy necessary

for the crack to grow. Results of X-ray diffraction experiments done by Young et al.

[144] to identify transformation regions, textures and lattice strains in front of a crack

tip show that during crack growth martensite phase with different orientations are

observed in the transformation region near the crack tip. The experimental analysis

done by McKelvey and Ritchie[208] revealed that phase transformation was suppressed

during fatigue crack growth by the hydrostatic state of stress ahead of the crack tip for

plane strain conditions. Whereas, in the case of plane stress, it is observed from the

transmission electron microscopy images taken from the crack tip that pseudo-elastic

martensitic transformation takes place. The main reason of this behavior is stated as

the lack of hydrostatic stress state at crack tip for plane stress condition under fatigue

crack growth.

None of the work above uses a complete non-local stationary method and none of

them considers orientation of martensite variants around the crack tip. In this work,

the dissipative variables are updated everywhere in the model using space-discrete

consistency conditions, and the incremental consistency equations are written in terms

of finite differences as presented by Nguyen and Rahimian [186].

The aim of this work is to study the effect of reorientation on phase transformation

during steady-state crack growth. Crack growing without reverse transformation and



78

static crack are also studied for comparison purposes to see the effect of steady-state

crack growth and reverse transformation on stress distribution and phase transforma-

tion. In the first part of the paper the evolution of transformation and the effect of

reorientation is addressed. In the next part the solution methodology using stationary

approach is represented and phase transformation regions, stresses around the crack

tip, crack face opening displacements and J-integrals are calculated. Finally discussion

on the results comparing four different cases simulated under plane stress and plane

strain conditions is made.

4.2. Problem Statement

Consider a crack in an infinitely long, thin SMA plate of fixed height 2h. The

crack is located at equal distance from the upper and lower borders and is assumed to

grow in steady-state with a speed l along the x-axis as shown in figure 4.1. The plate

is subjected to loading in the vertical direction along the upper and lower borders.

The applied load is assumed to move with the same velocity as the crack tip in the

x direction such that the load is constantly 0 for x < −c and non-zero for x ≥ −c,
where c is some constant finite length. For simplicity, the analytical derivations and

subsequent numerical results are obtained under the assumption of small strains. The

case of finite strain is briefly discussed in the conclusion as a prospect of the present

work.

Because of the applied load, phase transformation from austenite to martensite

occurs at the crack tip. The evolution of the martensite transformation at a material

point can be written as follows:

Dζ

Dt
=
∂ζ

∂t
+ v · ∇ζ, (4.1)

where ζ is martensite volume fraction and v is the velocity of the material point with

respect to coordinate frame attached to crack tip (see figure 4.1).
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Figure 4.1. Crack growth in an infinitely long plate.

Under steady-state conditions, equation Eq. 4.1 simplifies to:

ζ̇ = −lζ,x. (4.2)

where ‘,x ’ represents the partial derivative with respect to x. Similarly, the steady-

state evolution of the stress, strain and orientation strain can be written as shown

below:

σ̇ij = −lσij,x, (4.3)

ε̇ij = −lεij,x, (4.4)

ε̇oriij = −lεoriij,x, (4.5)
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εij can be written as the sum of two individual phase strains as follows :

εij = (1− ζ)εAij + ζεMij , (4.6)

where εAij and ε
M
ij are the local strains of austenite and martensite respectively. More-

over, assuming additive decomposition of the total strain εij into an elastic strain εelij

and a transformation strain εtrij ,

εij = εelij + εtrij . (4.7)

Following Zaki and Moumni [2], the transformation strain is written as:

εtrij = ζεoriij . (4.8)

When the martensite transformation start stress σms is higher than the orienta-

tion finish stress σf , σms > σf , austenite transforms directly into oriented martensite

[209], and the stress-strain relation is defined as [2]:

σij = Eijkl

(

εkl − ζεorikl

)

. (4.9)

By evaluating the material derivative of Eq. 4.9, one gets:

σ̇ij = Eijkl

(

ε̇kl − Ṡmnklσmn − ζ̇εorikl − ζε̇orikl

)

(4.10)

where Sijkl is the compliance tensor given by:

Sijkl = (1− ζ)SA

ijkl + ζSM

ijkl , (4.11)

SA

ijkl and S
M

ijkl are the compliance tensors for austenite and martensite respectively.
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Equations (4.2),(4.3),(4.4) and (4.5) can be substituted into equation Eq. 4.10 to

get the change of stress along x:

σij,x = Eijkl

(

εkl,x −
[

(SM

mnkl − SA

mnkl)ζ,x
]

σmn − ζ,xε
ori
kl − ζεorikl,x

)

. (4.12)

The evolution of ζ is obtained by enforcing consistency with the phase transfor-

mation conditions governed by the following loading functions:

Fζ1 =

{

1

3
Elmaσ

2
vm +

1

2

(

1

3
Elma + Pma

)

σii
2 − C(T )

}

+ σijε
ori
ij − (G+ b)ζ − a(1− ζ)−

[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

,

(4.13)

for forward transformation, and

Fζ2 = −
{

1

3
Elmaσ

2
vm

+
1

2

(

1

3
Elma + Pma

)

σii
2 − C(T )

}

− σijε
ori
ij + (G− b)ζ − a(1− ζ) +

[

(α− β)ζ +
β

2

](

2

3
εoriij ε

ori
ij

)

,

(4.14)

for reverse transformation where σVM is the von Mises stress and

ElMA =
1 + ν

EM
− 1 + ν

EA
, PMA =

ν

EA
− ν

EM
, (4.15)

ν being Poisson’s coefficient for the material.

In the equations above, β influences martensite orientation during phase change,

G is responsible for orientation-independent interaction between martensite variants,

α controls the slope of the stress-strain curve corresponding to martensite orientation,

a and b control the width of the hysteresis of stress-strain curve during transformation

and C(T ) is an energy density that depends on temperature [2]. If Fζ1 < 0 and Fζ2 < 0,

no phase change occurs. In the case of forward transformation, Fζ1 = 0 and ˙Fζ1 = 0,

whereas for reverse transformation Fζ2 = 0 and Ḟζ2 = 0.



82

Reorientation is governed by the function:

Fori = XVM − ζY, (4.16)

where XVM is the von Mises equivalent of the thermodynamic force Xij defined as:

Xij = σd
ij −

2

3(ε0)
2
σd
klε

ori
kl ε

ori
ij , (4.17)

where

ε0 =

√

2

3
εoriij ε

ori
ij (4.18)

and σd
ij is the stress deviator. Y is the stress threshold that corresponds to transfor-

mation from self-accommodated martensite to oriented martensite at the beginning of

orientation. When there is no orientation of martensite, Fori < 0 whereas in the case

of orientation, Fori = 0.

εoriij evolves in a direction normal to the tangent to the loading surface defined by

Fori = 0. The normality rule is written as:

ε̇oriij =
3

2
η̇
Xij

XVM
, (4.19)

where η̇ ≥ 0, Fori ≤ 0 and η̇Fori = 0.

At the very early stages of transformation, at a material point near the crack

tip, ζ = 0+ and Fori = 0 therefore Eq. 4.16 requires XVM = 0. From Eq. 4.17,

the orientation of the transformation strain tensor has to be equal to the orientation

of the deviatoric stress tensor. When loading around the crack tip is assumed to

be proportional during phase transformation, the orientation of martensite does not

change (η̇ = 0). For proportional loading, the orientation strain tensor can therefore
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Figure 4.2. Schematical representation of solution methodology.

be written as:

εoriij =
3

2
εo

σd
ij

σVM

. (4.20)

4.3. Solution Methodology

In this work to obtain transformation region and stresses around the tip of the

steadily growing crack represented in figure 4.1, permanent movement method proposed

by Nguyen and Rahimian [186] is employed using FE. In this method, according to an

observer attached to the tip of a crack growing with a constant speed l, martensite

phase contours at time t0 and t0 + ∆t in the neighborhood of the crack tip are the

same and mesh moves in the direction opposite to the crack growth as it is represented

schematically in figure 4.2. In this study, u = 0.055 mm is taken at the boundary

for which full martensitic transformation occurs at the crack tip, and convergence

of the solution algorithm is ensured. The problem is then solved assuming a stable

crack growth. In the works of Yan et al. [24], Budiansky et al. [210] and Nguyen and

Rahimian [186], similarly a stable crack growth assumption is used without checking

any specific KC value.

A finite element model is created as shown in figure 4.3, where only the upper half

of the plate is meshed using symmetry. A rectangular mesh with second order plane
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Figure 4.3. Finite element model.

stress elements and reduced integration points (CPS8R) is used (figure 4.4). Since the

mesh is rectangular, streamlines parallel to x-axis connecting the integration points are

drawn along which gradients are calculated. Figure 4.5 shows the numbering of the

integration points, which increases from left to right and bottom to top. In the UMAT

subroutine written in Fortran a data structure is used to store the data processed at

an integration point.

40 (mm)

2
0
(m

m
)

crack tip

Figure 4.4. Finite element mesh.
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crack growth direction

streamlines

Figure 4.5. Integration point numbering.

The gradient used in Eq. 4.2 is evaluated at integration point n+ 1 as:

ζ,x ≈ ∆ζ

∆x
=

[ζ ]n+1 − [ζ ]n
[x]n+1 − [x]n

, (4.21)

where n is the number of the previous integration point. Similarly,

σij,x ≈ ∆σij
∆x

=
[σij ]n+1 − [σij ]n
[x]n+1 − [x]n

, (4.22)

εij,x ≈
∆εij
∆x

=
[εij]n+1 − [εij ]n
[x]n+1 − [x]n

, (4.23)

εtrij,x ≈
∆εtrij
∆x

=
[εtrij ]n+1 − [εtrij ]n

[x]n+1 − [x]n
. (4.24)

Along a streamline, between integration points n and n + 1, change in the stress σij ,

can be evaluated as follows:

[∆σij ]
k = [Eijkl]

k−1
n+1{[∆εij ]k − ([∆Sijkl]

k[σij ]
k−1
n+1 + [∆ζ ]k[εoriij ]k−1

n+1

+[ζ ]k−1
n+1[∆ε

ori
ij ]k)}, (4.25)
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where

[∆Sijkl]
k = (SM

ijkl − SA

ijkl)[∆ζ ]
k, (4.26)

and k is the consistency iteration number.

The increments ∆ζ and ∆εoriij satisfy the consistency conditions. They are deter-

mined by expanding and solving the equations [Fζ ]
k = 0 and [Fori]

k = 0 at integration

point n + 1 as follows:

[Fζ ]
k−1
n+1 + [Fζ,σij

]k−1

n+1
: [∆σij ]

k + [Fζ,ζ]
k−1
n+1[∆ζ ]

k

+[Fζ,εoriij
]k−1

n+1
: [∆εoriij ]k = 0 (4.27)

and

[Fori]
k−1
n+1 + [Fori,σij

]k−1

n+1
: [∆σij ]

k + [Fori,ζ]
k−1
n+1[∆ζ ]

k

+[Fori,εoriij
]k−1

n+1
: [∆εoriij ]k = 0. (4.28)

For simplicity, the derivatives of the transformation functions in the above equa-

tions are represented as follows:

∂Fζ

∂ζ
= Fζ,ζ,

∂Fζ

∂σij
= Fζ,σij

,
∂Fζ

∂εoriij

= Fζ,εoriij
,
∂Fori

∂ζ
= Fori,ζ,

∂Fori

∂σij
= Fori,σij

,
∂Fori

∂εoriij

= Fori,εoriij
. (4.29)

The normality rule, at integration point n + 1 can be expressed in incremental

form as follows:

[∆εoriij ]k = [∆η]k[Nij ]
k
n+1, (4.30)
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where

[Nij ]
k =

3

2

[Xij ]
k
n+1

[XVM ]kn+1

. (4.31)

∆η and ∆ζ are calculated by solving Eq. 4.27 and Eq. 4.28 together with Eq. 4.25,

Eq. 4.26 and Eq. 4.30 to get:

∆η =
BζCζ −AζCori

AζBori − BζAori
, (4.32)

∆ζ = −Cζ

Aζ

− Aori

Aζ

∆η. (4.33)

where

Aζ = [Fζ,ζ]
k−1
n+1 − [Fζ,σij

]k−1
n+1[Eijkl]

k−1
n+1

{

(SM

mnkl − SA

mnkl)[σmn]
k−1
n+1 + [εorikl ]

k−1
n+1

}

, (4.34)

Aori = [Fζ,εoriij
]k−1
n+1[Nij ]

k
n+1 − [ζ ]k−1

n+1[Fζ,σij
]k−1
n+1[Eijkl]

k−1
n+1[Nkl]

k
n+1, (4.35)

Bζ = [Fori,ζ ]
k−1
n+1 − [Fori,σij

]k−1
n+1[Eijkl]

k−1
n+1

{

(SM

mnkl − SA

mnkl)[σmn]
k−1
n+1 + [εorikl ]

k−1
n+1

}

, (4.36)

Bori = [Fori,εoriij
]k−1
n+1[Nij]

k
n+1 − [ζ ]k−1

n+1[Fori,σij
]k−1
n+1[Eijkl]

k−1
n+1[Nkl]

k
n+1, (4.37)

Cζ = [Fζ ]
k−1
n+1 + [Fζ,σij

]k−1
n+1[Eijkl]

k−1
n+1[∆εkl]

k, (4.38)

Cori = [Fori]
k−1
n+1 + [Fori,σij

]k−1
n+1[Eijkl]

k−1
n+1[∆εkl]

k. (4.39)
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Table 4.1. Material model parameters.

Parameter Value

Ea 61500 MPa

Em 24000 MPa

a 6.89 MPa

b 6.91 MPa

G 4.66 MPa

α 2750 MPa

β 5500 MPa

Y 110 MPa

C(T ) 15.64 MPa

ε0 4 %

ν 0.3

In the case of proportional loading (∆η = 0) , the increment of the martensite

volume fraction becomes;

∆ζ = −Cζ

Aζ
. (4.40)

The solution procedure is summarized as follows:

(i) Calculation starts from the first integration point, n=1 shown in figure 4.5, where

ζ = 0 and η = 0.

(ii) The strain increment is taken from Abaqus and stresses are calculated at n = 1

using Eq. 4.9.

(iii) The trial stress is calculated at the next integration point, n = 2 , from Eq. 4.9

assuming ζ and η are still equal to zero.

(iv) The transformation functions are checked from Eq. 4.13, Eq. 4.14 and Eq. 4.16.

If Fζ1 > 0 and ζ < 1, forward transformation; Fζ2 > 0 and ζ > 0, reverse
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transformation and Fori > 0 orientation occurs. During phase transformation ∆ζ

(from Eq. 4.33) and during orientation ∆η (from Eq. 4.32) is calculated iteratively

until the relevant consistency conditions are satisfied.

(v) Using ∆ζ and ∆η, ζ and εoriij are calculated from Eq. 4.8, Eq. 4.21 and Eq. 4.24.

(vi) The equivalent elasticity tensor Eijkl is updated and the stresses are calculated

again from Eq. 4.9 using the updated values of ζ and εoriij .

(vii) Calculation passes to the next integration point.

(viii) Abaqus checks the force equilibrium when the calculation is complete at all the

integration points.

The above procedure is represented in Algorithm 1. Like in the case of propor-

tional loading, if the orientation of martensite variants does not change (∆η = 0) there

is no need to check the orientation function Fori.

The solution methodology represented above is used to solve the steady-state

crack growth problem represented in figure 4.3. The half-plate is 40 mm wide and

20 mm high and the upper boundary is subjected to a uniform vertical displacement

u = 0.055 mm in the positive y direction. The material parameters used for the simu-

lations are listed in table 4.1. Four different cases under Mode I loading are studied: I)

Reverse transformation from martensite to austenite is not allowed, II) Reverse trans-

formation with reorientation is allowed, III) Reverse transformation is allowed without

martensite reorientation (proportional loading), IV) Static crack. The simulation in

case IV does not use a stationary method, but rather a conventional time discrete in-

cremental approach where the vertical displacement is increased incrementally from 0

to 0.055 mm and the state of the material is updated accordingly considering reverse

transformation without reorientation. For steady-state growth in case II, the evolution

of εoriij is formulated considering non-proportional loading near crack tip.

As a result of the analysis martensite region, stresses around the crack tip and

crack face opening displacements are calculated using four different cases under plane

stress and plane strain conditions and shown in figures 4.6, 4.7 and 4.8.
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Initial Conditions ζ(+∞) = 0, εori(+∞) = 0.

(i) Trial stress

Set : k = 0, ζ0n+1 = ζ0n, [εoriij ]0n+1=[εoriij ]0n

Calculate trial stress [σij ]
0
n+1=[Eijkl]

0
n+1([εijkl]

0
n+1-[ζ ]

0
n+1[ε

ori
ij ]0n+1)

(ii) Check transformation functions : Fζ1, Fζ2, Fori

if Fζ1 > 0 and 1− ζ > 0 then
Forward Transformation

if Fζ2 > 0 and ζ > 0 then
Reverse Transformation

if Fori > 0 then
Orientation

if Forward Transformation only then

[Fζ1]
k
n+1 = 0 gives ∆ζ .

else if Forward Transformation and Orientation then

[Fζ1]
k
n+1 = 0 and [Fori]

k
n+1 = 0 give ∆ζ and ∆η.

else if Reverse Transformation only then

[Fζ2]
k
n+1 = 0 gives ∆ζ .

else if Reverse Transformation and Orientation then

[Fζ2]
k
n+1 = 0 and [Fori]

k
n+1 = 0 give ∆ζ and ∆η.

else if Orientation only then

[Fori]
k
n+1 = 0 gives ∆η.

else
Exit and go to step 6.

(iii) Update [ζ ]kn+1,[ε
ori
ij ]kn+1 and [Eijkl]

k
n+1.

(iv) Calculate stress using :

[σij ]
k
n+1=[Eijkl]

k
n+1([εijkl]

k
n+1-[ζ ]

k
n+1[ε

ori
ij ]kn+1)

(v) Set k=k+1 and go to step (ii).

(vi) Set n = n+ 1 and go to step (i).

(vii) When the calculation finishes at all the integration points Abaqus checks the

force equilibrium.

Algorithm 1: UMAT subroutine.

In this study to calculate J-integrals a similar approach represented by [186] is

used. J-integrals are calculated for cases II and III along the paths starting from the
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(a)

(b)

Figure 4.6. Effect of reorientation and reversible transformation on transformation

region. (a) plane stress (b) plane strain.

crack tip enlarging to untransformed region and ploted in figure 4.9.

4.4. Results and Conclusions

As shown in figure 4.6 under plane stress and plane strain conditions martensite

transformation regions around crack tip in cases I, II and III are smaller than the phase
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Figure 4.7. Effect of reorientation and crack growth on CFOD. (a) plane stress (b)

plane strain.

transformation region obtained in case IV, the static case. In addition, martensite

regions obtained under plane strain conditions are smaller than those calculated under

plane stress condition, which is consistent with earlier work by Lexcellent et al. [140].

As described by McKelvey and Ritchie [208], phase transformation is inhibited in plane

strain by the hydrostatic stress state ahead of a growing crack.
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Figure 4.8. σyy (σyy = 580MPa is the average transformation plateau stress), contour

plots under (a) plane stress (b) plane strain.

Also in case I and II, the height of martensite contours are close near the tip. This

agrees with Yan et al. [24] who note that the reverse transformation in the wake region

has negligible effect on transformation-induced stress intensity factor. In the case where

reverse transformation is not allowed, martensite volume fraction contours in the wake

region are very similar to the case of dilatant martensitic transformation which is also

pointed out by Budiansky et al. [210]; this is different than steady-state growth with

reversible transformation. In case III, the size of the martensite transformation region
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Figure 4.9. J-integrals calculated for cases II and III under plane stress and plane

strain conditions. J∞ is the J integral far from the crack tip where the material is in

austenite phase.

around the crack tip is larger than cases II as a result of the dissipated energy that

goes into the orientation of martensite variants.

CFODs plotted in figure 4.7 shows that static crack opens more under plane

stress and strain conditions. For case III since the transformation region is larger than

cases I and II, the crack opening is higher. As shown in figure 4.7 under plane strain

conditions CFOD is less compared to plane stress condition which is similar to the

result of Nguyen and Rahimian [186] comparing crack openings for plane stress and

plane strain conditions in an elastic-plastic material.

When stresses around the crack tip are computed, in all the cases it is observed

that the static crack yields higher stresses as shown in figure 4.8; the reason for this is

the energy that goes into steady-state crack growth in cases I, II and III. The stresses

obtained in the cases I and II are close, therefore the effect of reverse transformation

on stress distribution around the crack is less than the effect of orientation of strain
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tensor.

In figure 4.9, comparison of J-Integrals between cases II and III showed that

orientation of martensite, which is a dissipative process itself, increases ∆J , J∞-Jtip,

which is a measure of shielding for a growing crack [211, 212]. Under plane strain,

∆ J/J∞ is less than that of plane stress; a similar result is presented by Nguyen and

Rahimian [186] for an elastic-perfectly plastic material.

When stresses around the crack tip, J-integrals and CFODs are considered, it

can be concluded that the reorientation of martensite increases fracture toughness in

SMAs.

The prospects of the present work include accounting for tensile-compressive

asymmetry [123, 213], plastic deformation [124], dynamics [214] and cyclic loading

effects [215, 216], as well as the extension to finite strains. The case of large strains

and finite rotations can be treated to a first approximation considering a hypoelas-

tic framework. Indeed, if the elastic strains are very small compared to the inelastic

strains, the multiplicative decomposition of the deformation gradient into elastic and

inelastic parts can be shown to be equivalent to a standard additive decomposition of

the strain rate into elastic and inelastic parts. The numerical treatment of the consti-

tutive equations in this case is straightforward and very similar to the case of small

strains, with the main difference being the need to account for finite rotations. For

UMAT implementation in Abaqus, the finite rotations can be accounted for incremen-

tally by means of a built-in utility subroutine. The details of this procedure can be

found in [201].
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5. MODELING OF ANTI-PLANE SHEAR CRACK IN

SMAS INCLUDING THERMOMECHANICAL COUPLING

The goal of this chapter is to add the effect of thermo-mechanical coupling to

the analysis of an edge-cracked SMA under Mode-III loading. At first, the constitutive

model represented by Moumni [118] is modified by including latent heat generation and

intrinsic dissipation during phase change. Moumni [118] studied the anti-plane shear

crack problem using hodograph method together with the asymptothic displacement

field equations without considering the effect of latent heat and temperature increase.

Although, the experiments on SMAs showed that the temperature of the alloy

changes considerably during phase transformation [217–221], most of the constitutive

models available in the literature neglected that change due to latent heat generation.

The experiments also showed that, increasing the strain rate increases latent heat gen-

eration and temperature. Churchill et al. [219] and Zhang et al. [220] investigated the

effect of load rate on latent heat generation in an SMA wire and their measurements

showed that increasing the load rate increases the temperature and phase transforma-

tion stresses.

Recently, some constitutive models are developed for SMAs to capture the phe-

nomenon of latent heat generation under mechanical loading. One of the first models

that considers latent heat generation during phase transformation is proposed by Ente-

meyer et al. [222]. Later, Auricchio and Sacco [223], Bouvet et al. [224] and Müller and

Bruhns [225] developed constitutive models for SMAs by taking into account latent

heat generation and intrinsic dissipation because of phase transformation.

In a recent work, Morin et al. [121] extended the ZM model by considering heat

generation due to latent heat generation and intrinsic dissipation during phase change.

They performed numerical simulations of thermomechanically coupled equations for a

NiTi wire under tension and obtained stress-strain and temperature-strain curves under

different load rates. They compared their numerical results to the experimental results
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reported by Shaw and Kyriakides [221] and obtained a good agreement for moderate

strain rates and a qualitative agreement for higher strain rates. They noted that when

the the latent heat effect is not taken into account, the system is nearly isothermal.

In other words, temperature variation within the SMA specimen is more significantly

influenced by latent heat than intrinsic dissipation.

In this chapter, the approach presented by Morin et al. [121] is used together

with small strains and small-scale yielding assumptions in the solution of the thermo-

mechanically coupled problem. In addition to that, it is assumed that at the far field,

where only austenite is present, solution can be predicted using asymptotic stress field

equations. The chapter is organized as follows: in the first section, constitutive model

presented by Moumni [118] is summarized and the problem is defined. Then, the ana-

lytical solution of the Mode-III problem is revisited. In the next part, the constitutive

equation proposed by Moumni [118] is modified to capture latent heat generation dur-

ing phase change. Finally, martensite fraction and temperature contours around the

crack tip are obtained using a thermomechanicaly coupled algorithm and the effect of

strain rate on the size of the phase transformation region is discussed.

5.1. Modeling of Phase Change

Moumni [118] developed a macroscopic model of solid to solid phase change follow-

ing the framework of generalized standard materials with internal constraints [133, 134].

According to his model, free energy density function of a material undergoing phase

transformation, Ψ, can be defined using state variables ǫij , β, α and T , where β and

α are reversible and irreversible internal state variables respectively, and T represents

the temperature. Using these parameters, the free energy density, Ψ of the material is

defined as follows:

Ψ = Ψ (ǫ, β, α, T ) . (5.1)

The state variables defined in the free energy density function Ψ are subjected to the
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following internal constraints:

gm(ǫij , β, α) = 0, where m = 1,M , (5.2)

hm(ǫij , β, α) ≥ 0, where n = 1, N , (5.3)

and the potential of internal constraints is:

Ψc = −λmgm − λnhn with πn ≥ 0 πnhn = 0. (5.4)

In the equation above λm and πn are the Lagrange multipliers. Therefore, the associated

Lagrangian function is L = Ψ+Ψc.

The total free energy of a material undergoing phase change is composed of

the individual free energy contributions and the energy responsible for the interaction

of these phases. In this work the free energy density function of SMAs is defined

using, austenite U(eij), and martensite V (fij) free energies, and the interaction energy

which is denoted as I(ζ). The interaction energy is zero except during phase change,

I(0)=I(1) = 0. Strain energies U(eij) and V (fij) are defined as:

U(eij , ekk) = µ1eijeij +
1

2
Bǫkk, (5.5)

V (fij , fkk) = µ2fijfij +
1

2
Bǫkk + l. (5.6)

In Eqs. 5.5 and 5.6, B is the bulk modulus, µ1 and µ2 are the shear moduli of austenite

and martensite phases, l is the positive constant that represents the free energy level

difference between parent and product phases at initial state, ǫij is the macroscopic

strain, eij and fij are the local strains of austenite and martensite phases, and ζ

represents the martensite fraction.

The model proposed by Moumni [118] is built using a Reuss-type representation
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of the material, and the local strains are expressed using the following equation:

(1− ζ)eij + ζfij − ǫdij = 0, ζ > 0, and 1− ζ > 0, (5.7)

where ǫdij is the deviatoric strain tensor.

The total free energy density function of the material can therefore be written as

follows:

Ψ = (1− ζ)U(eij) + ζV (fij) + I(ζ). (5.8)

Using Eqs. 5.4, 5.7 and 5.8, the Lagrangian is constructed as:

L = (1− ζ)U + ζV (fij)I(ζ)− λij((1− ζ)eij + ζfij − ǫdij)− λ1(1− ζ)− λ2ζ . (5.9)

State equations derived from the Lagrangian (Eq. 5.9) are given below:

L,ǫdij
=λij = σd

ij , (5.10)

L,ǫkk =Bǫkk = P, (5.11)

L,eij =(1− ζ)(U
′

(eij)− λij) = 0, (5.12)

L,fij =(ζ)(V
′

(fij)− λij) = 0, (5.13)

L,ζ =V − U − λij(fij − eij) + I
′

(ζ) + λ1 − λ2 = 0, (5.14)

L,λij
=(1− ζ)eij + ζfij − ǫdij = 0. (5.15)

where σd
ij is the deviatoric stress, ′ represent the partial derivative, and P is the one

third of the trace of the stress tensor, σii/3. The constraints are:

λ1 ≥ 0 and λ1(1− ζ) = 0, (5.16)

λ2 ≥ 0 and λ2(ζ) = 0. (5.17)

Equations 5.10 – 5.17 are sufficient to determine the unknowns σij , ζ , fij, eij , λij , λ1,
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and λ2 in terms of ǫdij .

When ζ = 0 and the interaction energy term is neglected, I(ζ) = 0, and the

following equations are obtained:

λij = σd
ij , (5.18)

λij = 2µǫdij, (5.19)

P = Bǫkk, (5.20)

eij = ǫdij , (5.21)

λ1 = 0, (5.22)

λ2 = µ2fijfij − µ1ǫ
d
ijǫ

d
ij + l − 2µ1ǫ

d
ij(fij − ǫdij). (5.23)

As stated by Eqs. 5.16 and 5.17 the Lagrange multipliers λ1 ≥ 0 and λ2 ≥ 0. Because

λ1 = 0 (see Eq. 5.22), only the sign of λ2 has to be discussed. Equation 5.23 shows

that λ2 depends on the value of fij . If the minimum of λ2 with respect to the variable

fij is greater than zero, the positivity of λ2 is satisfied. When λ2,fij is set to zero:

λ2,fij = 2µ2fij − 2µ1ǫ
d
ij = 0, (5.24)

f ∗
ij at this minimum point is:

f ∗
ij = ηǫdij , (5.25)

where η = µ1

µ2
. From the second derivative, the following condition is obtained:

λ2,ff = 2µ2 > 0. (5.26)

λ2,ff > 0 provided that this is the minimum point. The value of λ2 at this point is

calculated by inserting Eq. 5.25 into Eq. 5.23

λ∗2 = µ1(1− η)(ǫdijǫ
d
ij) + l. (5.27)
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The positivity of the λ∗2 ensures that the system is physically admissible therefore the

condition below has to be satisfied:

ǫdijǫ
d
ij ≤

l

µ1(η − 1)
= E2. (5.28)

When the same procedure is applied to the cases when; ζ = 1 and 0 < ζ < 1, the

following constitutive equations are obtained:

|ǫdij | ≤ E ⇒



























ζ = 0,

σd
ij = 2µ1ǫ

d
ij ,

P = Bǫkk,

(5.29)

E ≤ |ǫdij | ≤ F ⇒



























ζ =
|ǫdij |−E

F−E
,

σd
ij =

2µ1µ2ǫdij
µ1ζ+(1−ζ)µ2

,

P = Bǫkk,

(5.30)

|ǫdij | ≥ F ⇒



























ζ = 1,

σd
ij = 2µ2ǫ

d
ij ,

P = Bǫkk,

(5.31)

where |ǫdij|, E and F are:

|ǫdij | =
√

ǫdijǫ
d
ij , E =

√

lµ2

µ2
1 − µ1µ2

, F =

√

lµ1

−µ2
2 + µ1µ2

. (5.32)
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5.2. Anti-plane Shear Crack in SMAs

In this section, the phase transformation region around the tip of a crack sub-

jected to anti-plane shear loading is studied using hodograph method. One of the first

works that used the hodograph method to study the stresses around the notch tip

in a work-hardening elastic-plastic material loaded by longitudinal shear was done by

Rice [226]. Later the hodograph method has been used by many researchers [227–236]

to investigate the deformation around the tip of a crack in elastic–plastic or hyper–

elastic materials under Mode-III loading. Using the hodograph method, Amazigo [237]

studied the problem of a semi-infinite body with an edge-crack in an elastic–plastic

material subjected to out of plane shear and calculated crack opening displacements

and J-integral. Silling [238] presented a numerical analysis to determine stress and

strain fields around the crack tip under Mode-III loading in elastic and elastic–plastic

materials using hodograph transformation. He claimed that singular stress fields can

be calculated easily using the hodograph method in which non-linear PDEs are trans-

ferred to linear PDEs. Gao [239] developed a general analytical approach based on

Henky’s deformation theory and von Mises yield criterion to study anti-plane shear

problems and stated that his formulation was more complex compared to the solu-

tions obtained using hodograph transformation. Desindes and Daly [240] calculated

the phase transformation around the crack tip under Mode-III loading by extending

the work of Rice [54, 226] to SMAs. They compared their analytical calculations to the

FE results and concluded that the size of phase transformation region calculated using

FE is underestimated by approximately 50% from the analytical solution. In a recent

work, Long and Hui [241] used the hodograph transformation to determine stress and

displacement fields around tip of a Mode-III crack in a hyper-elastic material.

5.3. Problem Statement

Figure 5.1 shows the cross section ℜ in an infinitely long plane, where z axis is

perpendicular to ℜ plane, semi-infinite crack is located at y = 0 and the origin of the

reference coordinate system is placed at the crack tip. Under Mode-III loading the
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y

semi-infinite crack

xθ

r

(ℜ)

ω = k∞y x2 + y2 → ∞

Figure 5.1. Schematic representation of the coordinate system attached to the crack

tip.

displacements are written as:

u = 0, v = 0, and ω = ω(x, y). (5.33)

In anti-plane loading, when the gradient of displacement vector, ∇ui, is constant the

deformation is named as simple shear. The norm of the displacement gradient field,

| ∇ui |, is the amplitude of simple shear. In this work, the plate shown in Figure 5.1

is subjected to simple shear parallel to the crack front at the far field where the com-

ponents of the displacement vector satisfy the following conditions:

u = 0, v = 0, and ω = k∞y, x2 + y2 → ∞. (5.34)

The stress tensor components except σxz = σzx and σzy = σyz are all zero:

σxx = σyy = σzz = 0, σxy = 0, σxz 6= 0 and σyz 6= 0, (5.35)

The shear strains γxz(= 2ǫxz) and γyz(= 2ǫyz) are:

γxz =
∂ω

∂x
, γyz =

∂ω

∂y
, (5.36)
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therefore the strain tensor is

ǫij = ǫdij =
1

2













0 0 ∂ω
∂x

0 0 ∂ω
∂y

∂ω
∂x

∂ω
∂y

0













. (5.37)

The shear stresses are therefore shown belows:

σxz = µ(ζ)γxz, σyz = µ(ζ)γyz, (5.38)

and the stress tensor is

σij = σd
ij =













0 0 µ(ζ)γxz

0 0 µ(ζ)γyz

µ(ζ)γxz µ(ζ)γyz 0













. (5.39)

At this point for the sake of simplicity, it is required to define the norms of stress,

strain and the displacement gradient ∇ui as follows:

| σij | = (σxjσxj + σyjσyj + σzjσzj)
1/2 , (5.40)

=
√
2(σ2

xz + σ2
yz)

1/2 = τ , (5.41)

for strain tensor,

| ǫij | = (ǫxjǫxj + ǫyjǫyj + ǫzjǫzj)
1/2 (5.42)

(2ǫxzǫxz + 2ǫyzǫyz)
1/2 =

√
2(ǫ2xz + ǫ2yz)

1/2 = k, (5.43)
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the magnitude of displacement gradient is equal to:

| ∇ui | =
[

(

∂ω

∂x

)2

+

(

∂ω

∂y

)2
]1/2

, (5.44)

= 2(ǫ2xz + ǫ2yz)
1/2 , (5.45)

k =
| ∇ui |√

2
, (5.46)

since ǫij = ǫdij and σij = σd
ij :

| ǫij |=| ǫdij |= k, (5.47)

| σij |=| σd
ij |= τ . (5.48)

Eqs. 5.47 ,5.48, are inserted into Eqs. 5.29, 5.30, 5.31 and the following constitutive

relations are determined:

k ≤ E ⇒











ζ = 0,

τ(k) = 2µ1k,

(5.49)

E ≤ k ≤ F ⇒



























ζ =
|ǫdij|−E

F−E
,

τ(k) = 2µ1µ2k
µ1ζ+(1−ζ)µ2

,

P = Bǫkk,

(5.50)

k ≥ F ⇒











ζ = 1,

τ(k) = 2µ2k,

(5.51)

where E and F are:

E =

√

lµ2

µ2
1 − µ1µ2

, F =

√

lµ1

−µ2
2 + µ1µ2

. (5.52)
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In anti-plane loading case, the equilibrium equations are reduced to:

∂σzx
∂z

= 0,
∂σzy
∂z

= 0,
∂σxz
∂x

+
∂σyz
∂y

= 0. (5.53)

Using Eq. 5.39 and the last of the equilibrium equations can written:

∂

∂x

[

µ(ζ)
∂ω

∂x

]

+
∂

∂y

[

µ(ζ)
∂ω

∂y

]

= 0. (5.54)

and in expanded form:

µ(ζ)
∂2ω

∂x2
+
∂µ(ζ)

∂x

∂ω

∂x
+ µ(ζ)

∂2ω

∂y2
+
∂µ(ζ)

∂y

∂ω

∂y
= 0. (5.55)

The boundary conditions represented in Figure 5.1 can be expressed as follows:

∂ω

∂y
(x, y = ±0) = 0 ∀ x < 0. (5.56)

Away from the crack tip it is assumed that there is no phase transformation and the

medium is homogeneously austenite. In that region, the solution is estimated using

the Mode III asymptotic near-tip equations. Then, it is assumed that this solution is

continuously connected to the solution of the problem in the vicinity of the crack tip.

This assumption adds a new condition to the problem through following equations:

ω ≈ KIII

µ1

√

2r

π
sin

(

θ

2

)

, (5.57)

ω,x ≈ − KIII

µ1

√
2πr

sin

(

θ

2

)

, (5.58)

ω,y ≈
KIII

µ1

√
2πr

cos

(

θ

2

)

. (5.59)

where, KIII = µ1k
∞√

πα is the stress intensity factor of a crack with length α where

simple shear with a magnitude k∞ is applied. All the attempts from this point on is

to find w satisfying Eqs. 5.54, 5.56 and 5.57. For this purpose, the hodograph method

is used as represented in the following sections.
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5.4. Hodograph Method

The components of displacement gradient ω,x and ω,y are defined in terms of new

independent variable ξi through hodograph transformation as follows:

(x, y) → (ξ1,ξ2) ξ1 = ω,x(x, y) ξ2 = ω,y(x, y). (5.60)

The coordinates of the physical plane ℜ, x and y, are transformed to hodograph plane

ℜH defined by cartesian coordinates, ξ1 and ξ2. Using the hodograph method the

non-linear differential equation (Eq. 5.55) will be transformed to a linear PDE through

Legendre transformation. Legendre transformation of ω(x, y) to U(ξ1, ξ2) will be as

shown below:

U(ξ1,ξ2) = xω,x(x, y) + yω,y(x, y)− ω(x, y) ∀(x, y) ∈ ℜ. (5.61)

When Eq. 5.60 is inserted into Eq. 5.61,

U(ξ1,ξ2) = xξ1 + yξ2 − ω(x, y) ∀(x, y) ∈ ℜ. (5.62)

The coordinates x and y are then expressed in terms of ξ1 and ξ2 using the derivative

of U with respect to ξi, and Eqs. 5.62 and 5.60,

∂U(ξ1,ξ2)

∂ξ1
= x,

∂U(ξ1,ξ2)

∂ξ2
= y, on ℜH . (5.63)

Substitute Eq. 5.63 in Eq. 5.62, ω(x, y) is written in terms of ξ1 and ξ2 as follows:

ω(x, y) =
∂U(ξ1, ξ2)

∂ξ1
ξ1 +

∂U(ξ1, ξ2)

∂ξ2
ξ2 − U(ξ1, ξ2) on ℜH . (5.64)

To complete the transformation, Eqs. 5.56, 5.57 and 5.59 will be defined in the hodo-

graph plane. Using polar coordinates, R and Φ, in hodograph plane, ξ1 and ξ2 are
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written as:

ξ1 = R cosΦ, ξ2 = R sinΦ. (5.65)

When the asymptotic crack tip equations 5.57 and 5.60, 5.65 are used to define, R and

Φ in terms of r and θ coordinates, the following is obtained:

R =
KIII

µ1

√
2πr

, Φ =
1

2
(π + θ), r → ∞ − π ≤ θ < π . (5.66)

The Eq. 5.66 demonstrates that, the points far away from the origin of ℜ plane trans-

formed to the points close to the origin in hodograph plane, ℜH .

It follows from Eq. 5.50 that ζ is a function of | ǫij | and | ǫij |= |∇ui|/√2, where

| ∇ui |= R, ζ = ζ(R) and µ = µ(R) therefore, the equilibrium equation, Eq. 5.54, can

be written in the hodograph plane as:

∂(µ(R)R cosΦ)

∂x
+
∂(µ(R)R sinΦ)

∂y
= 0, (5.67)

Eq. 5.67 can be expanded as follows:

∂R

∂x

∂

∂R
[µR cos Φ] +

∂R

∂y

∂

∂R
[µR sin Φ] +

∂Φ

∂x

∂

∂Φ
[µR cosΦ] +

∂Φ

∂y

∂

∂Φ
[µR sin Φ] = 0.

(5.68)

Which in a more simplified form becomes

(µR)
′

[

cosΦ
∂R

∂x
+ sinΦ

∂R

∂y

]

+ µR

[

− sin Φ
∂Φ

∂x
+ cos Φ

∂Φ

∂y

]

= 0. (5.69)

”′” denotes the derivative with respect to R.

To solve the Eq. 5.69 the following terms:
∂R

∂x
,
∂R

∂y
,
∂Φ

∂x
, and

∂Φ

∂y
have to be

defined in the hodograph plane. For this purpose
∂Φ

∂ξ1
,
∂Φ

∂ξ2
,
∂R

∂ξ1
, and

∂R

∂ξ2
are written

in terms of polar coordinates R and Φ.
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∂R

∂ξ1
and

∂Φ

∂ξ1
are calculated from 5.65 as:

∂R

∂ξ1
= cosΦ, (5.70)

∂Φ

∂ξ1
=

− sinΦ

R
. (5.71)

Similarly,
∂R

∂ξ2
and

∂Φ

∂ξ2
are

∂R

∂ξ2
= sinΦ, (5.72)

∂Φ

∂ξ2
=

cosΦ

R
. (5.73)

From Eq. 5.63, x is evaluated as:

x =
∂U

∂R

∂R

∂ξ1
+
∂U

∂Φ

∂Φ

∂ξ1
, (5.74)

when the Eqs. 5.70 and 5.71 are inserted into Eq. 5.74:

x =
∂U

∂R
cosΦ− ∂U

∂Φ

sinΦ

R
, (5.75)

Similarly using Eq. 5.63, y is calculated as follows:

y =
∂U

∂R

∂R

∂ξ2
+
∂U

∂Φ

∂Φ

∂ξ2
, (5.76)

then Eqs. 5.72 and 5.73 are substituted into Eq. 5.76 to get y

y =
∂U

∂R
sin Φ +

∂U

∂Φ

cosΦ

R
. (5.77)
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From Eqs. 5.75 and 5.77, dx and dy are determined as follows:

dx =
∂

∂Φ

[

∂U

∂R
cosΦ− ∂U

∂Φ

sin Φ

R

]

dΦ+
∂

∂R

[

∂U

∂R
cosΦ− ∂U

∂Φ

sinΦ

R

]

dR, (5.78)

dy =
∂

∂Φ

[

∂U

∂R
sin Φ +

∂U

∂Φ

cosΦ

R

]

dΦ+
∂

∂R

[

∂U

∂R
sinΦ +

∂U

∂Φ

cos Φ

R

]

dR. (5.79)

dx and dy can be expanded as shown below:

dx =

[

− sinΦ
∂U

∂R
− cosΦ

R

∂U

∂Φ
+ cosΦ

∂2U

∂R∂Φ
− sinΦ

R

∂2U

∂Φ2

]

dΦ (5.80)

+

[

− cos Φ
∂2U

∂R2
+

sin Φ

R2

∂U

∂Φ
− sin Φ

R

∂U2

∂RΦ

]

dR, (5.81)

dy =

[

cosΦ
∂U

∂R
− sinΦ

R

∂U

∂Φ
+ sin Φ

∂2U

∂R∂Φ
+

cos Φ

R

∂2U

∂Φ2

]

dΦ (5.82)

+

[

− sin Φ
∂2U

∂R2
− cosΦ

R2

∂U

∂Φ
+

cosΦ

R

∂U2

∂RΦ

]

dR. (5.83)

Which can be written in a simplified form follows:

dx = αdΦ+ βdR, (5.84)

dy = γdΦ+ δdR, (5.85)

supposing that the Jacobian of the system , ν = αδ − βγ, is non–zero:

∂R

∂x
= −γ

ν
,

∂R

∂y
=
α

ν
,

∂Φ

∂x
=
δ

ν
,

∂Φ

∂y
= −β

ν
(5.86)

where α, β, γ and δ are:

α = −sinΦ∂U
∂R

− cos Φ

R

∂U

∂Φ
+ cosΦ

∂2U

∂R∂Φ
− sin Φ

R

∂2U

∂Φ2
, (5.87)

γ = cosΦ
∂U

∂R
− sinΦ

R

∂U

∂Φ
+ sinΦ

∂2U

∂R∂Φ
+

cosΦ

R

∂2U

∂Φ2
, (5.88)

β = cosΦ
∂2U

∂R2
+

sin Φ

R2

∂U

∂Φ
− sin Φ

R

∂2U

∂R∂Φ
, (5.89)

δ = sinΦ
∂2U

∂R2
− cosΦ

R2

∂U

∂Φ
+

cos Φ

R

∂2U

∂R∂Φ
. (5.90)
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finally the equilibrium equation, Eq. 5.54, reduces to,

(µR)
′

[−γ cosΦ + α sinΦ] + µR [−δ sin Φ− β cosΦ] = 0. (5.91)

When α, β, γ, δ are inserted into Eq. 5.91 the following equation is obtained:

(µ(R)R)
′

[

∂U

∂R
+

1

R

∂U2

∂Φ2

]

+ µ(R)R

[

∂U2

∂R2

]

= 0. (5.92)

Eq. 5.92 is a linear and homogeneous PDE. The boundary conditions that are given in

Eq. 5.56 are translated to hodograph plane as follows:

∂U

∂Φ
= 0 when Φ = 0, Φ = π, ∀R > 0. (5.93)

The asymptotic equations (Eqs. 5.57, 5.58, and 5.59) are inserted into Legendre equa-

tion (Eq. 5.62) and the following equation is obtained for U :

U = x

[

− KIII

µ1

√
2πr

sin

(

θ

2

)]

+ y

[

KIII

µ1

√
2πr

cos

(

θ

2

)]

−
[

KIII

µ1

√

2r

π
sin

(

θ

2

)

]

, (5.94)

then, Eqs. 5.74 and 5.76 are substituted into Eq. 5.94, one gets:

U =

[

∂U

∂R
cosΦ− ∂U

∂Φ

sinΦ

R

] [

− KIII

µ1

√
2πr

sin

(

θ

2

)]

[

+
∂U

∂R
sinΦ +

∂U

∂Φ

cosΦ

R

] [

KIII

µ1

√
2πr

cos

(

θ

2

)]

(5.95)

−
[

KIII

µ1

√

2r

π
sin

(

θ

2

)

]

.

With the help of Eq. 5.66, Eq. 5.95 is simplified into the following:

U =
K2

III

µ2
12πR

cosΦ when R → 0, 0 ≤ Φ ≤ π (5.96)

When Eqs. 5.65, 5.75, and 5.77 are substituted into Eq. 5.62 the following expression
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for U is obtained:

U(ξ1, ξ2) =

[

∂U

∂R
cosΦ− ∂U

∂Φ

sinΦ

R

]

R cosΦ+

[

∂U

∂R
sinΦ +

∂U

∂Φ

cosΦ

R

]

R sin Φ−ω(x, y),

(5.97)

Which in a more simplified form is:

ω(x, y) = R2 ∂

∂R

(

U(ξ1, ξ2)

R

)

. (5.98)

and once U is solved in the hodograph plane, ω can be obtained using Eq. 5.97.

As a result, formulation of the the problem represented by Eqs. 5.54 and 5.56

are obtained now in hodograph plane (Eqs. 5.92 and 5.93). Using the constitutive

equations (Eqs. 5.29, 5.30 and 5.31) together with the equilibrium equation (Eq. 5.92)

the phase transformation regions are determined in physical plane ℜ.

When the boundary conditions is considered, the solution of the Eq. 5.92 is

obtained in the following form:

U(R,Φ) = RI(R)cosΦ. (5.99)

where I(R) is a singular integral to be evaluated.If Eq. 5.99 is inserted back into Eq. 5.92

the following integral equation is obtained:

I(R) =

√
2K2

III

µ1π

∫ ∞

R

dt

τ(t)t2
. (5.100)

Using Eq. 5.75, 5.77, and 5.99, x and y are defined as shown below:

x = I(R) +
R

2
I

′

(R)− R

2
I

′

(R) cos 2Φ, (5.101)

y = −R
2
I

′

(R) sin 2Φ. (5.102)
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When r > 0 and θ ∈ [−π, π], there exists a solution in terms of R(r, θ) and Φ(r, θ),

where R > 0 and −π < Φ < π. Once R and φ are obtained, ω(x, y) can be evaluated

by using the following:

ω(x, y) = R2I
′

(R) cosΦ. (5.103)

Using R = k
√
2, the martensite fraction can be expressed as:

ζ =

R√
2
−E

F − E
. (5.104)

5.5. Solution of the Problem

At first, I(R) is calculated for each part of the constitutive relation namely

k ≤ E,E ≤ k ≤ Fandk ≥ F (see Eqs. 5.49, 5.50 and 5.51) that are defined for

austenitic, martensitic and transformation phases respectively. The displacement ω

and martensite fraction ζ are calculated using Eqs. 5.103 and 5.104 as shown below:

When k ≤ E :

I(R) =
K2

III

µ1π

[

∫

√
2E

R

dt

µ1t3
+

∫

√
2F

√
2E

dt

At2
+

∫ ∞

√
2F

dt

µ2t3

]

(5.105)

=
K2

III

µ1π

[

1

2µ1R2
+
F −E

AFE
+

1

4µ2F 2
+

1

4µ1E2

]

, (5.106)

where A is

A = 2

√

lµ1µ2

µ1 − µ2
, (5.107)
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C2

C1

O1

O
u3

u2

u1

CS2

CS1

Figure 5.2. The domains of validity of the solution.

Using Eqs. 5.101, 5.102 and 5.105 , R can be written in terms of x and y:

R =

√

√

√

√

√

K2
III

2µ2
1π
(

(x−H)2 + y2
)

1

2

, (5.108)

where

H =
K2

III

µ1π

[

1

A

F −E

AFE
+

1

4µ2F 2
− 1

4µ1E2

]

. (5.109)

Because R <
√
2E, the solution is only valid outside of the region C1 represented

in Figure 5.2, where R is the radius of the circle C1 and equal to
K2

III

4µ2
1E

2π
. The center

of circle C1 is located at point O(H, 0) defined in coordinate system CS1. For the sake

of simplicity, R and Φ are defined relative to a new coordinate system CS2 with the

polar coordinated (r1, θ1), where the origin is transferred to the point O1 as shown

below:



116

R =

√

K2
III

2µ2πr1
, (5.110)

Φ =
π + θ1

2
. (5.111)

The displacement in the first region, u1 and ζ can be found with the help of

Eqs. 5.104 and 5.103:

u1 =
KIII

µ1

√

2r1
π

sin
θ1
2

and ζ = 0. (5.112)

In the transformation region E ≤ k ≤ F , I(R) is calculated as:

I(R) =
K2

III

µ1π

[

1

4µ2F 2
+

√
2

AR
− 1

AF

]

, (5.113)

using Eqs. 5.101, 5.102 and 5.113 R can be written in terms of x and y

R =
K2

III√
2µ1µ2πF

(

x+
K2

III

4µ1µ2πF 2

)

(

x+
K2

III

4µ1µ2πF 2

)2

+ y2
. (5.114)

The results for ζ and u3 are then

ζ =

R√
2
−E

F − E
, (5.115)

u2 =
K2

III√
2µ1µ2πF

√

√

√

√

√

√

1 +
y

√

x+

(

K2
III

4µ1µ2πF 2

)2

+ y2

. (5.116)
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Because
√
2E < R <

√
2F , this solution is valid in the region that lies between circles

C1 and C2 shown in Figure 5.2. The center of circle C1 is on the positive x axis. C1 is

tangent to C2 at the point
(

− K2

III

4µ1µ2πF 2 , 0
)

.

When k ≥ F ,

I(R) =
K2

III

µ1π

[
∫ ∞

R

dt

µ2t3

]

, (5.117)

=
K2

III

µ1π

[

1

2µ2R2

]

. (5.118)

Using Eqs. 5.101, 5.102 and 5.118 R can be written in terms of x and y as follows:

R =

√

√

√

√

√

K2
III

2µ1µ2π (x2 + y2)

1

2

, (5.119)

where

KIII = µ1k
∞√

πa. (5.120)

R is valid only inside the region C2 which is shown in Figure 5.2. R is the radius of

the circle with the origin located at O(0, 0) with a radius of
K2

III

4µ1µ2F 2π
; therefore, the

solution for u and ζ at this region are:

u3 = KIII
µ1

µ2

√

2r1
π

sin
θ2
2

and ζ = 1. (5.121)

5.6. Thermomechanical Coupling

In this section, the model that is summarized in Section 5.3 is improved by

including temperature dependence in free energy density formulation. The heat density

function associated with the phase change, C(T ) (see Figure 5.3), is now defined as
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V

ǫ

C(T )
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U

Figure 5.3. Free energy functions defined for each phase.

given below:

C(T ) = ξ(T − Af) + κ, (5.122)

where ξ and κ are material properties. In this equation κ has a similar role with the

term l. The modified free energy density functions are:

U(eij , ekk) = µ1eijeij +
1

2
Bǫ2kk, (5.123)

V (fij , fkk) = µ2fijfij +
1

2
Bǫ2kk + C(T ). (5.124)

The constraints are given as:

(1− ζ)eij + ζfij − ǫdij = 0, ζ > 0, and 1− ζ > 0. (5.125)

A constant specific heat capacity Cp, that is taken to be the same for austenite

and martensite is added to the free energy density function Ψ as follows:

Ψ = (1− ζ)U(e) + ζV (f) + I(ζ) + ρCp

(

T − T0 − T ln

(

T

T0

))

, (5.126)

where ρ is the density of the alloy and T0 is the reference temperature. The associated
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Lagrangian function can therefore be written as:

L = (1−ζ)U(eij)+ζV (fij)+I(ζ)−λij((1−ζ)eij+ζfij−ǫdij)−λ1(1−ζ)−λ2ζ . (5.127)

When the procedure explained in Section 5.5 is followed the constitutive relations

written below are obtained:

|ǫdij | ≤ E ⇒



























ζ = 0,

σd
ij = 2µ1ǫ

d
ij ,

P = Bǫkk

(5.128)

E ≤ |ǫdij | ≤ F ⇒



























ζ =
|ǫdij |−E

F−E
,

σd
ij =

2µ1µ2ǫdij
µ1ζ+(1−ζ)µ2

,

P = Bǫkk

(5.129)

|ǫdij | ≥ F ⇒



























ζ = 1,

σd
ij = 2µ2ǫ

d
ij ,

P = Bǫkk

(5.130)

where

|ǫdij | =
√

ǫdijǫ
d
ij , E =

√

C(T )µ2

µ2
1 − µ1µ2

, F =

√

C(T )µ1

−µ2
2 + µ1µ2

. (5.131)

Figure 5.4 shows the transformation zones around the crack tip calculated using

the material properties given in Table 5.1 and KIII = 60 MPa
√
m.
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Figure 5.4. Martensite transformation region, thermomechanical coupling is not

included, T0 = 343 K

Table 5.1. Material properties used in the analysis.

EA 61500 MPa

EM 24000 MPa

κ 6.8920 MPa

ξ 0.2914 MPa/oC

Cp 0.440x10−3 J.kg−1.K−1

ρ 6500x106kg.m−3

Af 313 K

k 18W.m−1.K−1

a 6.8920 MPa

b 6.9091 MPa
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5.7. Derivation of Heat Equation

In this work the reorientation of martensite is not included as an internal vari-

able in the definition of the free energy density equation, only the dissipation due to

martensite transformation is taken into account. Using the dissipation equation given

by Zaki and Moumni [2] the pseudo potential of dissipation can be expressed as follows:

D = [a(1− ζ) + bζ ] |ζ̇|. (5.132)

As it is summarised in the introduction chapter, the thermodynamic force related to

phase change Aζ is the sub-gradient of dissipation potential D, Aζ ∈ ∂ζ̇D(ζ, ζ̇), which

is

D(ζ, ζ̇)−D(ζ, 0) ≥ Aζ(ζ̇ − 0). (5.133)

Therefore, the intrinsic dissipation can be written as:

D1 = Aζ ζ̇ ≥ 0. (5.134)

The dissipation potential can be derived using the Clausius-Duhem inequality that is

shown below:

σij ˙ǫij + ρ(T ṡ− ė)− qi
T
T,i ≥ 0, (5.135)

where e is the internal energy density and s is the entropy. The first law of thermody-

namics can be written using the free energy function as follows:

ψ̇ + Ṫ s+ T ṡ = σij ˙ǫij + r − qi,i, (5.136)
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where r represents the amount of heat generated per unit volume per unit time in the

body. Using Eq. 5.136, the intrinsic dissipation part given in Eq. 5.135 is expressed as:

D1 = T ṡ+ qi,i − r, (5.137)

which can be rewritten as substituting ṡ

D1 = −T ∂2L
∂T∂ǫ̇ij

ǫ̇ij − T
∂2L
∂T∂ζ

ζ̇ − T
∂2L
∂T 2

Ṫ + qi,i − r. (5.138)

The heat dissipation term D2 is:

D2 = −qi
T
T,i. (5.139)

When the heat capacity is added to the free energy density equation, the entropy,

which is calculated from s = −∂L/∂T , becomes:

s = ρCpln

(

T

T0

)

− ξζ . (5.140)

The following heat equation is derived using the Eqs. 5.140 5.134 and 5.138 [126]:

ρCpṪ − kT,ii = T
∂C(T )

∂T
ζ̇ + [a(1− ζ) + bζ ] |ζ̇|. (5.141)

In the next section to find the temperature increase around the crack tip during

the phase change, the heat equation that is coupled with the equilibrium equation, will

be solved numerically. The procedure is explained in the following section.

5.8. Numerical Analysis

The heat equation, Eq. 5.141 and the equilibrium equation are coupled. They will

be solved using MATLAB PDE solver, as it is summarized in Figure 5.6. In MATLAB
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the heat equation is given as:

dṪ − cT,ii − aT = f. (5.142)

During numeric solution the coefficients a and f are updated at each node upon evolu-

tion of martensite fraction.

Since the plate is taken to be very large compared to the region of interest, at the

free edges insulated boundary conditions are applied. The geometry of the problem is

shown in Figure 5.5 and the material parameters used are given in Table 5.1. A very

fine mesh with an average length of 0.01 mm is used and the stability of the analysis

is checked using the equation below [242]:

∆t >
ρCp

6k
∆L2

e, (5.143)

where Le is the average length of side of elements. MATLAB function “parabolic” uses

a method called “ method of lines semi–discretization” to reduce parabolic equations

to elliptic equations. The reduced elliptic equations are solved using finite element

method but if the coefficients given in Eq. 5.142 have time dependent data then these

derivatives are calculated by finite difference of the given matrix of coefficients. In the

numerical solution of the reduced elliptical function MATLAB ODE Suite Functions

are used [243]. Using the time step is controlled with an error criterion; the coefficients

are recalculated when the error tolerance is exceeded. To have a constant load rate

during the solution, the time step obeying the condition given in Eq. 5.143 is used and

it is checked at the beginning of each increment.

The solution procedure is initiated with a load increment, ∆k∞, that is applied in

a period of time ∆t, and ∆KIII is calculated using ∆KIII = µ1∆k
∞√

πα. Then using

Eqs. 5.114 and 5.115, R and ζ are evaluated at each integration points. Next, Eq. 5.141

is solved numerically and the temperature increase is obtained. By using the updated

temperatures, C(T ), F (T ) and E(T ) are evaluated using Eqs. 5.122 and 5.131, and

then Eq. 5.115 used once again to find ζ . At this point a tolerance term, ζtol is defined
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H

W

a

To = 343

Figure 5.5. The geometry of the problem and the boundary conditions

(W = 100 mm, H = 100 mm, a = 50 mm).

(see Figure 5.6), if ζtol < 0.005 then the solution passes to the next increment, else it

returns to the solution of heat equation step and FE calculates the new temperature

and then ζ is updated until the tolerance criterion is satisfied. In each iteration, the

equilibrium equation is checked by means of hodograph method. Finally the analysis

ends when KIII = 60 MPa
√
m.

As a result of the numerical calculations, the temperature contours under different

load rates around the crack tip are plotted in Figures 5.8 and 5.9. In addition to that,

the effect of strain rate on the size of the transformation region is shown in Figure 5.7.

5.9. Results and Discussion

In this chapter, the anti plane shear problem is solved and the temperature in-

crease around the tip of a Mode-III crack is investigated. For this purpose, the solution

represented by Moumni [118] is revisited and the hodograph solution is coupled with

the heat equation to calculate latent heat generation and intrinsic dissipation during

phase transformation. As a result, the temperature distribution around the tip of a
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Initial conditions are KIII = 0, T0 = 343K, ζ0 = 0,

k∞ = 0, in the algorithm below the subscripts repre-

sents the step number.

for k = 0 to 2.46× 10−3 do

1) Using given ∆k∞ calculate ∆KIII using ∆KIII =

µ1∆k
∞√

πα.

2) By substituting KIII and material properties

given in Table 5.1 to Eqs. 5.114 and 5.115, R2 and

ζ2 are calculated.

3) From Eq. 5.141, ∆T is evaluated numerically us-

ing parabolic solver and T 3 is obtained.

4) Using T 3, Eqs. 5.122 and 5.131, C(T )4, F (T )4

and E(T )4 are calculated.

5) C(T )4, F (T )4 and E(T )4 and Eq. 5.115 are used

to calculate ζ5.

6)A tolerance term is defined: ζtol=(ζ5 − ζ2)/ζ2

if ζtol < 0.005 then

return to step 3

else

return to for statement and increase the increment

end if

end for

Figure 5.6. Algorithm of thermo-coupling analysis for anti-plane loading.
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Figure 5.7. ζ contours. ζ = 1 is the inner circle, ζ = 0.5 is the middle circle,

ζ = 1× 10−5 represents the outer circle. Colours: cyan: ˙k∞ = 2.56× 10−5 (1/s) , red:

˙k∞ = 1.280× 10−5 (1/s), blue: ˙k∞ = 0.64× 10−5 (1/s), green: ˙k∞ = 0.43× 10−5

(1/s), black: ˙k∞ = 0.32× 10−5 (1/s) and yellow curve is when the latent heat

generation is neglected
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(a) ˙k∞ = 2.56× 10−5s−1 (b) ˙k∞ = 1.280× 10−5s−1

(c) ˙k∞ = 0.64× 10−5s−1 (d) ˙k∞ = 0.43× 10−5s−1

(e) ˙k∞ = 0.32× 10−5s−1

Figure 5.8. Temperature increase due to thermomechanical coupling.

crack under Mode III loading is determined. Contour plot given in Figure 5.8 and the

isotherms in Figure 5.9 show that the temperature increase is highest for the highest

load rate, ˙k∞ = 2.56× 10−5s−1.

As shown in Figure 5.10, when the latent heat is neglected, and only the intrinsic
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Figure 5.9. Isotherms around the crack tip.

dissipation is taken into account the temperature rise is very small. Therefore the effect

of intrinsic dissipation on temperature rise can be neglected. This result is consistent

with the study of Morin [126] where it is observed that the amount of temperature

change due to intrinsic dissipation is very small.
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Figure 5.10. The temperature contour plot where only intrinsic dissipation is taken

into consideration and the latent heat is neglected.

The constitutive model is enhanced by heat density function C(T ), providing that

if the temperature increases, the transformation stresses also increase. The results of

this study show that, when the transformation plateau shifts upwards, the size of the

transformation region reduces. This finding supports the previous studies done by

Daly et al. [244] and Simsek [57]. In both of these work, they investigated the effect

of transformation stresses to size of phase transformation region in a NiTi specimen

under Mode I loading, and concluded that transformation region gets smaller when the

transformation plateau rises.

The difference between the area of the transformation region of the isothermal

case,Siso , and the area of the region where the thermomechanical coupling is consid-

ered, Scp, is calculated for different load rates and results are ploted in Figure 5.11.

As shown in Figure 5.11, at the regions where the latent heat generation is highly

localized (ζ = 0.5), more shrinkage on the transformed area is observed compared to

regions where ζ = 0+. As the load rate increases, the generated latent heat mostly

accumulates in the martensitic region ζ = 1, and increases the transformation temper-

atures in fully martensite region, thus contracting phase transformation region more.

As shown in Figure 5.11, the red curve represents the contraction of the area of fully
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Figure 5.11. The change of the area of transformation region, ∆Str/Scp, where

∆Str = Siso − Scp, versus the applied load ˙k∞.

transformation region, ζ = 1, which is slightly greater than other curves when the load

rate is maximum.

In this study, different than the previous works available in the literature, the

variation of temperature around the tip of a crack subjected to Mode-III loading is

analyzed. The results showed that, temperature around the tip increases when the

load rate increases and the area of transformation region reduces.

To conclude, the results showed that, the latent heat generation affects the size

of phase transformation region and increases the transformation stresses around the

crack tip. In addition to that, it is observed that, the effect of intrinsic dissipation on

thermomechanical behavior is small compared to the effect of latent heat effect. It can

also be concluded that thermomechanical coupling should be considered in numerical

evaluations of fracture parameters of SMAs. This approach could also be useful to in-

vestigate the effect latent heat generation on the toughness of SMAs. More experiments

and calculations will be needed to study the effect of latent heat generation on fracture

toughness. As a future study, the temperature contours obtained in this research can
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be compared to experimental measurements; the model parameters can be calibrated,

and a very good agreement with the model represented here can be obtained.
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6. SUMMARY & CONCLUSION

In this thesis the effect of phase transformation on fracture of SMAs is investi-

gated, the results are summarized as follows:

At first , the size of the martensitic region around the tip of an edge-cracked

SMA plate is calculated analytically using ZM model. A good agreement with the

experimental results of Robertson et al. [35] is obtained. Because the equation proposed

to estimate the martensitic region is given in closed form, the size and the shape of the

transformation region around the crack tip can be evaluated simply by inserting loading

and material properties into the equation once the stress intensity factor is calculated

properly. The next step (Chapter 3) is devoted to the investigation of SIF and other

fracture parameters. In Chapter 3 the non-homogeneity around crack tip and contour

dependent J-integrals are discussed and SIFs are calculated directly using strain energy

output directly. The comparison of SIFs obtained using Auricchio’s and ZM models

showed that the energy dissipated through phase transformation decreases SIF. To

support this conclusion one more comparison between superelastic SMA plate and fully

austenite homogeneous plate is done and the results supported to the claim that phase

transformation increases toughness. As a future work, this claim should be checked

through experiments using NiTi with different transformation stresses. Besides that,

in Chapter 3, in addition to previous studies in the literature, T-stresses are included

in the formulation of the extent of phase transformation and results showed that, T-

stresses should be considered in calculation of the extent of the phase transformation

region. When the T-stresses are taken into account the extent of phase transformation

region is closer to the that obtained using FE. The last topic discussed in this chapter

was the effect of volumetric transformation strain on toughness. Unfortunately to get

an accurate conclusion was impossible because the volume contraction showed a little

effect on SIF.

So far the concern was to analyse the phase transformation region and fracture

parameters for a static crack. In the fourth chapter, the stationary movement method is
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implemented to investigate a steadily moving crack to observe the effect of crack growth

on fracture of SMA. The phase transformation region of the tip of a steadily growing

crack was found to be smaller when compared to that of a static crack. Moreover, for

the growing crack, the martensitic regions determined under plane strain were smaller

than the one obtained for the case of plane stress. This result is consistent with earlier

work of Lexcellent et al. [140] and also with the results of McKelvey and Ritchie [208]

who stated that phase transformation is inhibited in plane strain by means of the

hydrostatic stress state ahead of the crack tip. In the steadily growing crack, in the

cases with and without considering a reverse transformation, the height of volumetric

martensite fraction contours are close near the tip. This result is in good agreement

with Yan et al. [24] who noted that the reverse transformation in the wake region has

negligible effect on transformation-induced stress intensity factor. In the case of phase

transformation without reverse transformation, martensite volume fraction contours at

the wake region were very similar to the case of dilatant martensitic transformation

as was pointed out by Budiansky et al. [210]. In steady-state growth case without

considering the reorientation of martensite, the size of the martensite transformation

region around the crack tip was larger than case where the reorientation of martensite

was taken into account. When stresses around the crack tip are computed, it is observed

that the static crack yields higher stresses compared to all steady-state cases because

of the energy that goes into steady-state crack growth. The stresses obtained for the

steadily moving crack with and without reverse transformation were close. It can be

concluded that the effect of reverse transformation on stress distribution around the

crack is less than the effect of orientation of strain tensor.

In literature only Desindes and Daly [240] investigated the extent of phase trans-

formation regions under anti-plane loading. The originality of the solution represented

in Chapter 5 lies in the fact that, this is the first study that predicted temperature in-

crease around the crack tip in an SMA using the analytical solution obtained from the

hodograph method with numerical solution of the heat equation. The results showed

that a considerable amount of temperature increase is obtained effecting the size of the

transformation region around the crack tip.
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From these discussions above the following conclusions are drawn:

I. In this dissertation the size and the shape of the martensitic region calculated

using ZM model is in a good agreement with the experimental results available

in the literature.

II. The results obtained showed that the size of the phase transformation regions

plays an important role on SIF calculations. The energy dissipated through phase

change enhances the toughness of the SMA.

III. Comparison of CTODs, SIFs, and dissipated energies demonstrated that phase

transformation plays an important role in toughness prediction.

IV. For a steadily growing crack in an SMA plate, when stresses around the crack

tip, J-integrals and CFODs are considered, it is concluded that the reorientation

of martensite increases the fracture toughness. The reorientation of martensite

should be taken into account if the specimen is subjected to non-proportional

loading.

V. The size of phase transformation region changes due to latent heat generation

around the tip of the crack under anti-plane loading therefore this strong ther-

momechanical coupling effect should be taken into account in fracture analysis of

SMAs. Based on this for future studies latent heat generation, especially when

the load rate is high, should be taken into consideration.

The transformation region is calculated numerically and it is in good agreement with

experimental results available in the literature. Using alternative approaches detailed

analyses of fracture parameters of NiTi ate performed. For the first time a non-local

stationary method is used to simulate a steady-state crack growth in an SMA and tem-

perature distribution around the tip of a crack is obtained using a thermomechanically

coupled algorithm.

Further studies of the discussed issues would be of interest. Clearly, further exper-

iments might be needed to validate numerical methods proposed for the determination

of fracture parameters. To quantify the effect of temperature increase around the crack

tip due to latent heat generation high speed thermal camera measurements would be
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very helpful. Several other questions remain to be addressed such as the effect of phase

transformation on fatigue crack propagation. The dissipation through phase transfor-

mation may lead to an arrest of the propagating crack under fatigue loading. For this

reason sub-critical crack growth under fatigue loading in an SMA specimen could be

investigated. Transformation induced crack closure needs an experimental look to the

problem as well.
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T 
ABSTRACT 

      he subject of this thesis is theoretical and numerical analysis             
      of the fracture of SMAs. First, the size of the martensitic  
region surrounding the tip of an edge-crack in a SMA plate is calculated 
analytically using the transformation function proposed by Zaki and 
Moumni (Zaki and Moumni, J. Mech. Phys. Sol, 2007) together with crack 
tip asymptotic stress equations. Then, fracture parameters such as 
stress intensity factors (SIFs), J-integrals, energy release rates, 
crack tip displacements and T-stresses are evaluated. The J-integrals 
are found to be contour dependent as a result of non-homogeneity around 
the crack tip, therefore SIFs are directly calculated from strain energy 
release rate and compared to the SIFs calculated using asymptotic near-
tip opening displacement field equation. Third, steady-state crack 
growth in an SMA plate is analyzed. To this end, Mode I steady-state 
crack growth in an edge-cracked Nitinol plate is modeled using a non-
local stationary method to implement the Zaki-Moumni model in Abaqus. 
Steady-state crack growth is first simulated without considering 
reverse transformation to calculate the effect of transformation on 
stress distribution in the wake region, then reverse transformation is 
taken into account. The effects of reorientation of martensite near the 
crack tip, as a result of non-proportional loading, on fracture 
toughness is also studied. The stress distribution and the phase 
transformation region are compared to results obtained for the case of 
a static crack. Finally, phase transformation regions are calculated 
analytically around the tip of an SMA specimen under Mode III loading. 
The analytical derivations are carried out first using a method proposed 
by Moumni (Ziad Moumni, PhD thesis, École Nationale des Ponts et 
Chaussées, 1995). The method relies on mapping the equations of the 
boundary value problem to the so-called 'hodograph' plane, which results 
in simpler equations that are analytically tractable. The model proposed 
by Moumni is subsequently improved by including latent heat generation 
through thermomechanical coupling. The influence of coupling on the 
extent of the phase transformation regions and on temperature 
distribution within the material is then investigated numerically. 


