J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X? ray crystal structure of the Fe?only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, issue.5395, pp.2821853-1858, 1998.

. Desulfovibrio-desulfuricans-iron-hydrogenase, The structure shows unusual coordination to an active site Fe binuclear center, Structure, vol.7, issue.199 11, pp.13-23, 1999.

. Pickett, A di?iron dithiolate possessing structural elements of the carbonyl/cyanide sub?site of the H?centre of Fe-only hydrogenase, Chem. Commun, issue.22, pp.2285-2286, 1999.

W. Lubitz, H. Ogata, O. Rüdiger, and E. Reijerse, Hydrogenases, Chemical Reviews, vol.114, issue.8, pp.4081-4148, 2014.
DOI : 10.1021/cr4005814

URL : https://hal.archives-ouvertes.fr/hal-00869039

H. Reihlen, A. Gruhl, and G. Hessling, The photochemical and oxidative decomposition of carbonylene

X. M. Liu, S. K. Ibrahim, C. Tard, and C. J. Pickett, Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds, Coordination Chemistry Reviews, vol.249, issue.15-16, pp.15-161641, 2005.
DOI : 10.1016/j.ccr.2005.04.009

. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energ. Environ. Sci, vol.6, issue.11, pp.1983-2002, 2013.

T. D. Stack and R. H. Holm, Subsite-specific functionalization of the [4Fe-4S]2+ analog of iron-sulfur protein clusters, Journal of the American Chemical Society, vol.109, issue.8, pp.2546-2547, 1987.
DOI : 10.1021/ja00242a067

C. Tard, X. M. Liu, S. K. Ibrahim, M. Bruschi, L. De-gioia et al., Synthesis of the H-cluster framework of iron-only hydrogenase, Nature, vol.100, issue.7026, pp.610-613, 2005.
DOI : 10.1039/dt9940002181

D. E. Schwab, C. Tard, E. Brecht, J. W. Peters, C. J. Pickett et al., On the electronic structure of the hydrogenase H-cluster, Chemical Communications, vol.33, issue.239, pp.3696-3698, 2006.
DOI : 10.1039/b604994j

C. Tard, X. M. Liu, D. L. Hughes, and C. J. Pickett, A novel {Fe I ?Fe II ?Fe II ?Fe I } iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution

M. H. Cheah, C. Tard, S. J. Borg, X. M. Liu, S. K. Ibrahim et al., Modeling [Fe???Fe] Hydrogenase:?? Evidence for Bridging Carbonyl and Distal Iron Coordination Vacancy in an Electrocatalytically Competent Proton Reduction by an Iron Thiolate Assembly That Operates through Fe(0)???Fe(II) Levels, Journal of the American Chemical Society, vol.129, issue.36
DOI : 10.1021/ja071331f

P. C. Soc and . Ford, Photochemical and photophysical studies of tetranuclear copper(I ) halide clusters: An overview, Coord. Chem. Rev, vol.12994, issue.132, pp.11085-11092129, 1994.

P. C. Ford, E. Cariati, and J. Bourassa, Photoluminescence Properties of Multinuclear Copper(I) Compounds, Chemical Reviews, vol.99, issue.12, pp.3625-3648, 1999.
DOI : 10.1021/cr960109i

S. Perruchas, C. Tard, X. F. Le-goff, A. Fargues, A. Garcia et al., Thermochromic Luminescence of Copper Iodide Clusters: The Case of Phosphine Ligands, Inorganic Chemistry, vol.50, issue.21, pp.10682-10692, 2011.
DOI : 10.1021/ic201128a

URL : https://hal.archives-ouvertes.fr/hal-00694168

M. Vitale, C. K. Ryu, W. E. Palke, and P. C. Ford, Ab initio studies of the copper(I) tetramers Cu4X4L4 (X = I, Br, Cl). Effects of cluster structure and of halide on photophysical properties, Inorganic Chemistry, vol.33, issue.3, pp.561-566, 1994.
DOI : 10.1021/ic00081a026

C. Tard, S. Perruchas, S. Maron, X. F. Le-goff, F. Guillen et al., Thermochromic Luminescence of Sol???Gel Films Based on Copper Iodide Clusters, Chemistry of Materials, vol.20, issue.22, pp.7010-7016, 2008.
DOI : 10.1021/cm801780g

L. L. Xuan, S. Brasselet, F. Treussart, J. Roch, F. Marquier et al., Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters, Applied Physics Letters, vol.89, issue.12, pp.121118-121113, 2006.
DOI : 10.1063/1.2356375

URL : https://hal.archives-ouvertes.fr/hal-00022891

L. L. Xuan, C. Y. Zhou, A. Slablab, D. Chauvat, C. Tard et al., Nanocrystal for Nonlinear Microscopy, Small, vol.261, issue.9, pp.1332-1336, 2008.
DOI : 10.1002/smll.200701093

P. Wnuk, L. L. Xuan, A. Slablab, C. Tard, S. Perruchas et al., Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses, Optics Express, vol.17, issue.6, pp.4652-4658, 2009.
DOI : 10.1364/OE.17.004652

C. Costentin, M. Robert, and J. Savéant, Concerted Proton???Electron Transfers: Electrochemical and Related Approaches, Accounts of Chemical Research, vol.43, issue.7, pp.1019-1029, 2010.
DOI : 10.1021/ar9002812

C. Costentin, M. Robert, and J. Savéant, Update 1 of: Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer, Chemical Reviews, vol.110, issue.12, pp.1-40, 2010.
DOI : 10.1021/cr100038y

J. Savéant, Electrochemical approach to proton-coupled electron transfers: recent advances, Energy & Environmental Science, vol.125, issue.7, pp.7718-7731, 2012.
DOI : 10.1039/c2ee03241d

S. Hammes-schiffer and A. A. Stuchebrukhov, Theory of Coupled Electron and Proton Transfer Reactions, Chemical Reviews, vol.110, issue.12, pp.6939-6960, 2010.
DOI : 10.1021/cr1001436

C. Costentin, C. Louault, M. Robert, and J. Savéant, The electrochemical approach to concerted proton--electron transfers in the oxidation of phenols in water, Proceedings of the National Academy of Sciences, vol.106, issue.43, pp.18143-18148, 2009.
DOI : 10.1073/pnas.0910065106

C. Costentin, M. Robert, J. Savéant, and A. Teillout, Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: Electrochemistry of [OsII(bpy)2py(OH2)]2+ in water, Proceedings of the National Academy of Sciences, vol.106, issue.29, pp.11829-11836, 2009.
DOI : 10.1073/pnas.0905020106

C. Costentin, D. H. Evans, M. Robert, J. Savéant, and P. S. Singh, Electrochemical Approach to Concerted Proton and Electron Transfers. Reduction of the Water???Superoxide Ion Complex, Journal of the American Chemical Society, vol.127, issue.36, pp.12490-12491, 2005.
DOI : 10.1021/ja053911n

C. Costentin, M. Robert, J. Savéant, and C. Tard, Breaking Bonds with Electrons and Protons. Models and Examples, Accounts of Chemical Research, vol.47, issue.1, pp.271-280, 2014.
DOI : 10.1021/ar4001444

S. Antonello and F. Maran, Intramolecular dissociative electron transfer, Chemical Society Reviews, vol.125, issue.5, pp.418-428, 2005.
DOI : 10.1039/b300085k

B. M. Hoffman, D. Lukoyanov, Z. Yang, D. R. Dean, and L. C. Seefeldt, Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage, Chemical Reviews, vol.114, issue.8, pp.4041-4062, 2014.
DOI : 10.1021/cr400641x

J. Savéant and C. Tard, Proton?coupled electron transfer in azobenzene? hydrazobenzene couples with pending acid?base functions. Hydrogen?bonding and structural effects, J. Am. Chem. Soc, p.34

J. Savéant, Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects, Chemical Reviews, vol.108, issue.7
DOI : 10.1021/cr068079z

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H 2 evolution from MoS 2 nanocatalysts, Science, issue.5834, pp.317100-102, 2007.

D. Merki, S. Fierro, H. Vrubel, and X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, Chem. Sci., vol.43, issue.7, pp.1262-1267, 2011.
DOI : 10.1039/C1SC00117E

D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chemical Science, vol.50, issue.8
DOI : 10.1039/c2sc20539d

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long et al., A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation, Science, vol.335, issue.6069, pp.698-702, 2012.
DOI : 10.1126/science.1215868

S. Cobo, J. Heidkamp, P. Jacques, J. Fize, V. Fourmond et al., A Janus cobalt-based catalytic material for electro-splitting of water, Nature Materials, vol.440, issue.9, pp.802-807, 2012.
DOI : 10.1038/nmat3385

URL : https://hal.archives-ouvertes.fr/cea-00960632

Y. Xu, R. Wu, J. Zhang, Y. Shi, and B. Zhang, Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction, Chemical Communications, vol.133, issue.59
DOI : 10.1039/c3cc43107j

R. E. Lewis and . Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc, vol.135, issue.25, pp.9267-9270, 2013.

W. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic et al., Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets, Angewandte Chemie International Edition, vol.113, issue.25, pp.6131-6135, 2012.
DOI : 10.1002/anie.201200699

J. R. Mckone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, Ni???Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution, ACS Catalysis, vol.3, issue.2, pp.166-169, 2012.
DOI : 10.1021/cs300691m

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658

C. , D. Giovanni, W. Wang, S. Nowak, J. Grenèche et al., Bioinspired iron sulfide nanoparticles for cheap and long? lived electrocatalytic molecular hydrogen evolution in neutral water, ACS Catal, vol.4, issue.38, pp.681-687, 2014.

C. Tard and M. Giraud, Iron sulfide based catalyst for electrolytic water reduction into hydrogen gas, p.41, 2013.

F. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria et al., Protein Design: Toward Functional Metalloenzymes, Chemical Reviews, vol.114, issue.7, pp.3495-3578, 2014.
DOI : 10.1021/cr400458x

M. Can, F. A. Armstrong, and S. W. Ragsdale, Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase, Chemical Reviews, vol.114, issue.8
DOI : 10.1021/cr400461p

]. D. Nocera, The Artificial Leaf, Accounts of Chemical Research, vol.45, issue.5
DOI : 10.1021/ar2003013

H. A. Macpherson and C. R. Stoldt, Iron Pyrite Nanocubes: Size and Shape Considerations for Photovoltaic Application, ACS Nano, vol.6, issue.10, pp.8940-8949, 2012.
DOI : 10.1021/nn3029502

Y. Wang, D. Wang, Y. Jiang, H. Chen, C. Chen et al., Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar Cells, Angewandte Chemie International Edition, vol.47, issue.26, pp.6694-6698, 2013.
DOI : 10.1002/anie.201300401

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658

P. V. Kamat, Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design, The Journal of Physical Chemistry Letters, vol.3, issue.5, pp.663-672, 2012.
DOI : 10.1021/jz201629p

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1858, 1998.
DOI : 10.1126/science.282.5395.1853

Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-camps, Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure, vol.7, issue.1, pp.13-23, 1999.
DOI : 10.1016/S0969-2126(99)80005-7

Y. Nicolet, B. J. Lemon, J. C. Fontecilla-camps, and J. W. Peters, A novel FeS cluster in Fe-only hydrogenases, Trends in Biochemical Sciences, vol.25, issue.3, pp.138-143, 2000.
DOI : 10.1016/S0968-0004(99)01536-4

F. A. Armstrong, Hydrogenases: active site puzzles and progress, Current Opinion in Chemical Biology, vol.8, issue.2, pp.133-140, 2004.
DOI : 10.1016/j.cbpa.2004.02.004

D. J. Evans and C. J. Pickett, Chemistry and the hydrogenases, Chemical Society Reviews, vol.32, issue.5, pp.268-275, 2003.
DOI : 10.1039/b201317g

E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg, Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase, Angewandte Chemie International Edition, vol.38, issue.21, pp.3178-3180, 1999.
DOI : 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

L. Cloirec and A. , A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase, Chemical Communications, issue.22, pp.2285-2286, 1999.
DOI : 10.1039/a906391i

M. Razavet, Transient FTIR spectroelectrochemical and stopped-flow detection of a mixed valence {Fe(i)???Fe(ii)} bridging carbonyl intermediate with structural elements and spectroscopic characteristics of the di-iron sub-site of all-iron hydrogenase, Chemical Communications, issue.7, pp.700-701, 2002.
DOI : 10.1039/b111613b

S. J. George, Z. Cui, M. Razavet, and C. J. Pickett, The Di-Iron Subsite of All-Iron Hydrogenase: Mechanism of Cyanation of a Synthetic {2Fe3S}???Carbonyl Assembly, Chemistry - A European Journal, vol.8, issue.17, pp.4037-4046, 2002.
DOI : 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O

F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Benard, and M. M. Rohmer, Bimetallic Carbonyl Thiolates as Functional Models for Fe-Only Hydrogenases, Inorganic Chemistry, vol.41, issue.25, pp.6573-6582, 2002.
DOI : 10.1021/ic025838x

S. Ott, M. Kritikos, B. Akermark, L. C. Sun, and R. Lomoth, A Biomimetic Pathway for Hydrogen Evolution from a Model of the Iron Hydrogenase Active Site, Angewandte Chemie International Edition, vol.43, issue.8, pp.1006-1009, 2004.
DOI : 10.1002/anie.200353190

Z. X. Cao and M. B. Hall, Modeling the Active Sites in Metalloenzymes. 3. Density Functional Calculations on Models for [Fe]-Hydrogenase:?? Structures and Vibrational Frequencies of the Observed Redox Forms and the Reaction Mechanism at the Diiron Active Center, Journal of the American Chemical Society, vol.123, issue.16, pp.3734-3742, 2001.
DOI : 10.1021/ja000116v

Z. P. Liu and P. Hu, A Density Functional Theory Study on the Active Center of Fe-Only Hydrogenase:?? Characterization and Electronic Structure of the Redox States, Journal of the American Chemical Society, vol.124, issue.18, pp.5175-5182, 2002.
DOI : 10.1021/ja0118690

M. Bruschi, P. Fantucci, and L. De-gioia, Subcluster, Inorganic Chemistry, vol.43, issue.12, pp.3733-3741, 2004.
DOI : 10.1021/ic035326y

H. Reihlen, A. Gruhl, and G. Hessling, ??ber den photochemischen und oxydativen Abbau von Carbonylen, Justus Liebig's Annalen der Chemie, vol.54, issue.1, pp.268-287, 1929.
DOI : 10.1002/jlac.19294720113

M. Razavet, All-iron hydrogenase: synthesis, structure and properties of {2Fe3S}-assemblies related to the di-iron sub-site of the H-cluster, pp.586-595, 2003.

T. D. Stack and R. H. Holm, Subsite-specific functionalization of the [4Fe-4S]2+ analog of iron-sulfur protein clusters, Journal of the American Chemical Society, vol.109, issue.8, pp.2546-2547, 1987.
DOI : 10.1021/ja00242a067

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Review B, vol.33, issue.12, pp.8822-8824, 1986.
DOI : 10.1103/PhysRevB.33.8822

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevA.38.3098

A. Schafer, C. Huber, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, The Journal of Chemical Physics, vol.100, issue.8, pp.5829-5835, 1994.
DOI : 10.1063/1.467146

L. S. Wang, C. F. Ding, X. B. Wang, and S. E. Barlow, Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization, Review of Scientific Instruments, vol.70, issue.4, pp.1957-1966, 1999.
DOI : 10.1063/1.1149694

X. Yang, M. Razavet, X. B. Wang, C. J. Pickett, and L. S. Wang, Probing the Electronic Structure of the Di-Iron Subsite of [Fe]-Hydrogenase:?? A Photoelectron Spectroscopic Study of Fe(I)???Fe(I) Model Complexes, The Journal of Physical Chemistry A, vol.107, issue.23, pp.4612-4618, 2003.
DOI : 10.1021/jp034432i

X. B. Wang, Probing the Intrinsic Electronic Structure of the Cubane [4Fe???4S] Cluster:?? Nature's Favorite Cluster for Electron Transfer and Storage, Journal of the American Chemical Society, vol.125, issue.46, pp.14072-14081, 2003.
DOI : 10.1021/ja036831x

X. Zhao, Scrambling and Other H/D Exchange Processes by [Fe]-Hydrogenase Model Complexes, Inorganic Chemistry, vol.41, issue.15, pp.3917-3928, 2002.
DOI : 10.1021/ic020237r

C. Tard, X. Liu, D. L. Hughes, and C. J. Pickett, A novel {Fe I -Fe II -Fe II -Fe I } iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution, Chem. Commun, pp.133-135, 2005.

C. V. Popescu and E. Munck, Electronic Structure of the H Cluster in [Fe]-Hydrogenases, Journal of the American Chemical Society, vol.121, issue.34, pp.7877-7884, 1999.
DOI : 10.1021/ja991243y

C. J. Pickett and K. S. Ryder, Bioinorganic reaction centers on electrodes ? Modified electrodes possessing amino-acid, peptide and ferredoxin-type groups on a poly(pyrrole) backbone, J. Chem. Soc. Dalton Trans, pp.2181-2189, 1994.

Y. Nicolet, C. Piras, P. Legrand, and C. E. Hatchikian, Fontecilla-Camps, J. C. Structure, vol.7, pp.13-23, 1999.

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8&nbsp;Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1861, 1998.
DOI : 10.1126/science.282.5395.1853

A. T. Fiedler and T. C. Brunold, Combined Spectroscopic/Computational Study of Binuclear Fe(I)???Fe(I) Complexes:?? Implications for the Fully-Reduced Active-Site Cluster of Fe-Only Hydrogenases, Inorganic Chemistry, vol.44, issue.6, pp.1794-809, 2005.
DOI : 10.1021/ic048739n

M. Bruschi, P. Fantucci, and L. De-gioia, Subcluster of Fe-Only Hydrogenases, Inorganic Chemistry, vol.41, issue.6, pp.1421-1430, 2002.
DOI : 10.1021/ic010770r

S. J. Borg, J. W. Tye, M. B. Hall, and S. P. Best, Assignment of Molecular Structures to the Electrochemical Reduction Products of Diiron Compounds Related to [Fe???Fe] Hydrogenase:?? A Combined Experimental and Density Functional Theory Study, Inorganic Chemistry, vol.46, issue.2, pp.384-94, 2007.
DOI : 10.1021/ic061211t

Z. Cao, M. B. Hall, H. Fan, M. B. Hall, and P. Hu, Modeling the Active Sites in Metalloenzymes. 3. Density Functional Calculations on Models for [Fe]-Hydrogenase:?? Structures and Vibrational Frequencies of the Observed Redox Forms and the Reaction Mechanism at the Diiron Active Center, Journal of the American Chemical Society, vol.123, issue.16, pp.3734-3776, 2001.
DOI : 10.1021/ja000116v

T. Zhou, Y. Mo, A. Liu, Z. Zhou, and K. R. Tsai, Enzymatic Mechanism of Fe-Only Hydrogenase:?? Density Functional Study on H???H Making/Breaking at the Diiron Cluster with Concerted Proton and Electron Transfers, Inorganic Chemistry, vol.43, issue.3, pp.923-953, 2004.
DOI : 10.1021/ic0342301

Y. Nicolet, B. J. Lemon, J. C. Fontecilla-camps, and . Peters, A novel FeS cluster in Fe-only hydrogenases, Trends in Biochemical Sciences, vol.25, issue.3, pp.138-181, 2000.
DOI : 10.1016/S0968-0004(99)01536-4

G. Zampella, C. Greco, P. Fantucci, and L. De-gioia, Cluster of [Fe] Hydrogenases. A Density Functional Theory Investigation, Inorganic Chemistry, vol.45, issue.10, pp.4109-4127, 2006.
DOI : 10.1021/ic051986m

S. J. Borg, T. Behrsing, S. P. Best, M. Razavet, X. Liu et al., Electron Transfer at a Dithiolate-Bridged Diiron Assembly:?? Electrocatalytic Hydrogen Evolution, Journal of the American Chemical Society, vol.126, issue.51, pp.16988-99, 2004.
DOI : 10.1021/ja045281f

C. Tard, X. Liu, K. Saad, M. Bruschi, L. De-gioia et al., Synthesis of the H-cluster framework of iron-only hydrogenase, Nature, vol.100, issue.7026, pp.610-613, 2005.
DOI : 10.1039/dt9940002181

S. J. George, Z. Cui, M. Razavet, and C. Pickett, The Di-Iron Subsite of All-Iron Hydrogenase: Mechanism of Cyanation of a Synthetic {2Fe3S}???Carbonyl Assembly, Chemistry - A European Journal, vol.8, issue.17, pp.4037-4083, 2002.
DOI : 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O

J. I. Van-der-vlugt, T. B. Rauchfuss, C. M. Whaley, and S. R. Wilson, Characterization of a Diferrous Terminal Hydride Mechanistically Relevant to the Fe-Only Hydrogenases, Journal of the American Chemical Society, vol.127, issue.46, pp.16012-16015, 2005.
DOI : 10.1021/ja055475a

M. H. Cheah, S. J. Borg, M. I. Bondin, and S. P. Best, Electrocatalytic Proton Reduction by Phosphido-Bridged Diiron Carbonyl Compounds:?? Distant Relations to the H-Cluster?, Inorganic Chemistry, vol.43, issue.18, pp.5635-5679, 2004.
DOI : 10.1021/ic049746e

M. H. Cheah, S. J. Borg, and S. P. Best, Steps along the Path to Dihydrogen Activation at [FeFe] Hydrogenase Structural Models:?? Dependence of the Core Geometry on Electrocatalytic Proton Reduction, Inorganic Chemistry, vol.46, issue.5, pp.1741-50, 2007.
DOI : 10.1021/ic0623361

W. L. Armarego, D. D. Perrin, D. T. Sawyer, A. Sobkowiak, J. J. Roberts et al., Purification of Laboratory Chemicals, 36) Frisch, M. J.; et al. Gaussian 03, pp.4288-92, 1995.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-100, 1986.
DOI : 10.1103/PhysRevA.38.3098

C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert et al., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, The Journal of Physical Chemistry A, vol.105, issue.34, pp.8111-8117, 2001.
DOI : 10.1021/jp011945l

*. Corresponding, Fax: (+33) (0)1 69 33 47 99, Phone: (+33), pp.69-102

C. J. Brinker, G. W. Scherrer, D. Avnir, D. Levy, R. Reisfeld et al., Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing, J. Phys. Chem. New J. Chem. Chem. Mater. J. Chem. ReV, vol.88, issue.18, pp.5956-1007, 1984.

M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput et al., Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels, Applied Optics, vol.36, issue.27, p.6760, 1997.
DOI : 10.1364/AO.36.006760

V. Buissette, D. Giaume, T. Gacoin, and J. Boilot, Aqueous routes to lanthanide-doped oxide nanophosphors, J. Mater. Chem., vol.16, issue.23???24, p.529, 2006.
DOI : 10.1039/B508656F

G. M. Sheldrick, SHELXL-97, J. Appl. Crystallogr, vol.32, pp.115-141, 1997.

C. A. Wraight, Chance and design???Proton transfer in water, channels and bioenergetic proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.8, pp.886-912, 2006.
DOI : 10.1016/j.bbabio.2006.06.017

). S. Reece and D. G. Nocera, Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems, Annual Review of Biochemistry, vol.78, issue.1, pp.673-699, 2008.
DOI : 10.1146/annurev.biochem.78.080207.092132

A. W. Rutherford and A. Boussac, BIOCHEMISTRY: Water Photolysis in Biology, Science, vol.303, issue.5665, pp.1782-1784, 2004.
DOI : 10.1126/science.1096767

J. Stubbe, D. G. Nocera, C. S. Yee, and M. C. Chang, Radical Initiation in the Class I Ribonucleotide Reductase:?? Long-Range Proton-Coupled Electron Transfer?, Chemical Reviews, vol.103, issue.6, pp.2167-2202, 2003.
DOI : 10.1021/cr020421u

M. Wang, J. Gao, P. Müller, and B. Giese, Elektronentransfer entlang Peptiden mit Cystein und Methionin als Relais-Aminos??uren, Angewandte Chemie, vol.110, issue.23, pp.4296-4298, 2009.
DOI : 10.1002/ange.200900827

J. T. Hynes, Physical chemistry: The peripatetic proton, Nature, vol.103, issue.7133, pp.270-273, 2006.
DOI : 10.1038/446270a

S. Wang, P. S. Singh, and D. H. Evans, Concerted Proton???Electron Transfer: Effect of Hydroxylic Additives on the Reduction of Benzophenone, 4-Cyanobenzophenone, and 4,4???-Dicyanobenzophenone, The Journal of Physical Chemistry C, vol.113, issue.38, pp.16686-16693, 2009.
DOI : 10.1021/jp904976v

J. A. Richards, P. E. Whitson, and D. H. Evans, Electrochemical oxidation of 2,4,6-tri-tert-butylphenol, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.63, issue.3, pp.311-327, 1975.
DOI : 10.1016/S0022-0728(75)80303-2

M. Costentin, J. Robert, and . Savøant, Electrochemical and Homogeneous Proton-Coupled Electron Transfers:?? Concerted Pathways in the One-Electron Oxidation of a Phenol Coupled with an Intramolecular Amine-Driven Proton Transfer, Journal of the American Chemical Society, vol.128, issue.14, pp.4552-4553, 2006.
DOI : 10.1021/ja060527x

L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin et al., Historical Statistics for Mineral and Material Commodities in the United States, 802?807. (34), pp.14-15, 1999.