R. Patrick, A. Amestoy, A. Buttari, . Guermouche, L. Jean-yves et al., Exploiting Multithreaded Tree Parallelism for Multicore Systems in a Parallel Multifrontal Solver, SIAM conference on Parallel Processing for Scientific Computing (PP12), 2012.

P. Amestoy, L. Jean-yves, W. Excellent, and . Sid-lakhdar, Characterizing asynchronous broadcast trees for multifrontal factorizations (extended abstract), SIAM Workshop on Combinatorial Scientific Computing, 2014.

P. Amestoy, L. Jean-yves, F. Excellent, W. Rouet, and . Sid-lakhdar, Modeling 1D distributed-memory dense kernels for an asynchronous multifrontal sparse solver (regular paper), High-Performance Computing for Computational Science, VEC- PAR 2014, 2014.

P. Amestoy, A. Buttari, G. Joslin, L. Jean-yves, W. Excellent et al., Shared-Memory Parallelism and Low-Rank Approximation Techniques Applied to Direct Solvers in FEM Simulation, Extended selected short papers from Compumag 2013 conference, pp.517-520, 2014.
DOI : 10.1109/TMAG.2013.2284024

URL : https://hal.archives-ouvertes.fr/hal-01123557

R. Patrick, A. Amestoy, G. Buttari, . Joslin, L. Jean-yves et al., Cristian Pozza, Rémy Perrin, and Valène Pellissier. Shared memory parallelism and low-rank approximation techniques applied to direct solvers in FEM simulation (regular paper), IEEE International Conference on the Computation of Electromagnetic Fields (COMPUMAG), 2013.

E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, G. Joslin et al., Recent advances in sparse direct solvers, Clément Weisbecker, and Ichitaro Yamazaki International Conference on Structural Mechanics in Reactor Technology (SMIRT-22), 2013.
URL : https://hal.archives-ouvertes.fr/hal-01060301

L. Jean-yves, . Excellent, M. Wissam, and . Sid-lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing, vol.40, pp.3-434, 2014.

]. E. Agullo, On the Out-of-core Factorization of Large Sparse Matrices, Bibliography, issue.1, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00563463

E. Agullo, P. R. Amestoy, B. Alfredo, A. Guermouche, G. Joslin et al., Recent advances in sparse direct solvers, International Conference on Structural Mechanics in Reactor Technology (SMIRT-22), 2013.
URL : https://hal.archives-ouvertes.fr/hal-01060301

E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, Multifrontal QR Factorization for Multicore Architectures over Runtime Systems, Euro-Par 2013 Parallel Processing, pp.521-532, 2013.
DOI : 10.1007/978-3-642-40047-6_53

URL : https://hal.archives-ouvertes.fr/hal-01220611

P. Amestoy, Méthodes directes parallèles de résolution des systèmes creux de grande taille . Habilitation à diriger des recherches, 1999.

P. Amestoy, A. Buttari, G. Joslin, J. Excellent, W. Sid-lakhdar et al., Shared-Memory Parallelism and Low-Rank Approximation Techniques Applied to Direct Solvers in FEM Simulation, IEEE Transactions on Magnetics, vol.50, issue.2, 2014.
DOI : 10.1109/TMAG.2013.2284024

URL : https://hal.archives-ouvertes.fr/hal-01123557

P. Amestoy, J. Excellent, and M. Sid-lakhdar, Characterizing asynchronous broadcast trees for multifrontal factorizations, SIAM Workshop on Combinatorial Scientific Computing, pp.2014-2307, 2014.

P. R. Amestoy, Factorization of large sparse matrices based on a multifrontal approach in a multiprocessor environment, 1991.

P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. Excellent et al., Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM Journal on Scientific Computing, vol.37, issue.3, p.2012
DOI : 10.1137/120903476

URL : https://hal.archives-ouvertes.fr/hal-00776859

P. R. Amestoy, A. Buttari, G. Joslin, J. Excellent, W. M. Sid-lakhdar et al., Shared memory parallelism and low-rank approximation techniques applied to direct solvers in FEM simulation (regular paper), IEEE International Conference on the Computation of Electromagnetic Fields (COMPUMAG), pp.302013-302017, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00924660

P. R. Amestoy, T. A. Davis, and I. S. Duff, An Approximate Minimum Degree Ordering Algorithm, Appeared in SIAM J. Matrix Analysis and Applications, 1994.
DOI : 10.1137/S0895479894278952

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.8417

P. R. Amestoy and I. S. Duff, Memory allocation issues in sparse multiprocessor multifrontal methods, CERFACS, vol.83, 1992.

P. R. Amestoy and I. S. Duff, Memory Management Issues in Sparse Multifrontal Methods On Multiprocessors, International Journal of High Performance Computing Applications, vol.7, issue.1, pp.64-82, 1993.
DOI : 10.1177/109434209300700105

P. R. Amestoy, I. S. Duff, J. Koster, and J. Excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

P. R. Amestoy, I. S. Duff, and J. Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.501-520, 2000.
DOI : 10.1016/S0045-7825(99)00242-X

URL : https://hal.archives-ouvertes.fr/hal-00856651

P. R. Amestoy, A. Guermouche, J. Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing, vol.32, issue.2, pp.136-156, 2006.
DOI : 10.1016/j.parco.2005.07.004

URL : https://hal.archives-ouvertes.fr/hal-00358623

P. R. Amestoy, J. Excellent, F. Rouet, and W. M. Sid-lakhdar, Modeling 1D distributed-memory dense kernels for an asynchronous multifrontal sparse solver (regular paper), High-Performance Computing for Computational Science, pp.302014-302017, 2014.

P. R. Amestoy and C. Puglisi, An Unsymmetrized Multifrontal LU Factorization, SIAM Journal on Matrix Analysis and Applications, vol.24, issue.2, pp.553-569, 2002.
DOI : 10.1137/S0895479800375370

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.889

C. Ashcraft and R. G. Grimes, The influence of relaxed supernode partitions on the multifrontal method, ACM Transactions on Mathematical Software, vol.15, issue.4, pp.291-309, 1989.
DOI : 10.1145/76909.76910

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation: Practice and Experience, Special Issue: Euro-Par, pp.187-198, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00384363

H. Avron, G. Shklarski, and S. Toledo, Parallel unsymmetric-pattern multifrontal sparse LU with column preordering, ACM Transactions on Mathematical Software, vol.34, issue.2, pp.1-831, 2008.
DOI : 10.1145/1326548.1326550

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.7234

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Communication-optimal Parallel and Sequential Cholesky Decomposition, SIAM Journal on Scientific Computing, vol.32, issue.6, pp.3495-3523, 2010.
DOI : 10.1137/090760969

URL : http://arxiv.org/abs/0902.2537

C. Balsa, R. Guivarch, D. Ruiz, and M. Zenadi, An hybrid approach for the parallelization of a block iterative algorithm (regular paper), International Conference on Vector and Parallel Processing (VECPAR), pp.116-128, 2010.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall et al., Cilk, ACM SIGPLAN Notices, vol.30, issue.8, pp.207-216, 1995.
DOI : 10.1145/209937.209958

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier et al., DAGuE: A generic distributed DAG engine for high performance computing, 16th International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS'11), 2011.

A. Boukerche and C. Tropper, A distributed algorithm for the detection of local cycles and knots, Parallel Processing Symposium, International, p.118, 1995.

F. Broquedis, J. Clet-ortega, S. Moreaud, N. Furmento, B. Goglin et al., hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, pp.180-186, 2010.
DOI : 10.1109/PDP.2010.67

URL : https://hal.archives-ouvertes.fr/inria-00429889

A. Buttari, Fine-Grained Multithreading for the Multifrontal $QR$ Factorization of Sparse Matrices, SIAM Journal on Scientific Computing, vol.35, issue.4, pp.323-345, 2013.
DOI : 10.1137/110846427

URL : https://hal.archives-ouvertes.fr/hal-01122471

U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy et al., Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations, 2007 IEEE International Parallel and Distributed Processing Symposium, pp.1-11, 2007.
DOI : 10.1109/IPDPS.2007.370258

B. Chapman, G. Jost, R. Van-der-pas, and D. J. Kuck, Using OpenMP : portable shared memory parallel programming, 2008.

C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering, Proceedings of PMAA2006, 2006.
DOI : 10.1016/j.parco.2007.12.001

URL : https://hal.archives-ouvertes.fr/hal-00402893

I. Chowdhury and J. Excellent, Some experiments and issues to exploit multicore parallelism in a distributed-memory parallel sparse direct solver, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00524249

E. G. Coffman, M. Elphick, and A. Shoshani, System Deadlocks, ACM Computing Surveys, vol.3, issue.2, pp.67-78, 1971.
DOI : 10.1145/356586.356588

T. A. Davis, Algorithm 915, SuiteSparseQR, ACM Transactions on Mathematical Software, vol.38, issue.1, pp.1-822, 2011.
DOI : 10.1145/2049662.2049670

T. A. Davis and I. S. Duff, An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.1, pp.140-158, 1997.
DOI : 10.1137/S0895479894246905

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu, A Supernodal Approach to Sparse Partial Pivoting, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.3, pp.720-755, 1999.
DOI : 10.1137/S0895479895291765

J. W. Demmel, J. R. Gilbert, and X. S. Li, An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.4, pp.915-952, 1999.
DOI : 10.1137/S0895479897317685

F. Dobrian and A. Pothen, The design of I/O-efficient sparse direct solvers, Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '01, 2001.
DOI : 10.1145/582034.582073

J. J. Dongarra and D. C. Sorensen, Schedule: tools for developing and analyzing parallel fortran programs, 1986.

M. Drozdowski, Scheduling multiprocessor tasks ??? An overview, European Journal of Operational Research, vol.94, issue.2, pp.215-230, 1996.
DOI : 10.1016/0377-2217(96)00123-3

I. S. Duff, Parallel implementation of multifrontal schemes, Parallel Computing, vol.3, issue.3, pp.193-204, 1986.
DOI : 10.1016/0167-8191(86)90019-0

I. S. Duff, Multiprocessing a sparse matrix code on the Alliant FX/8, Journal of Computational and Applied Mathematics, vol.27, issue.1-2, pp.229-239, 1989.
DOI : 10.1016/0377-0427(89)90368-3

I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse Symmetric Linear, ACM Transactions on Mathematical Software, vol.9, issue.3, pp.302-325, 1983.
DOI : 10.1145/356044.356047

I. S. Duff and J. K. Reid, The Multifrontal Solution of Unsymmetric Sets of Linear Equations, SIAM Journal on Scientific and Statistical Computing, vol.5, issue.3, pp.633-641, 1984.
DOI : 10.1137/0905045

I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems, ACM Transactions on Mathematical Software, vol.22, issue.2, pp.227-257, 1996.
DOI : 10.1145/229473.229480

S. C. Eisenstat and J. W. Liu, A tree based dataflow model for the unsymmetric multifrontal method, Electronic Transaction on Numerical Analysis, vol.21, pp.1-19, 2005.

M. Faverge, Ordonnancement hybride statique-dynamique en algèbre linéaire creuse pour de grands clusters de machines NUMA et multi-coeurs, 2009.

M. Faverge, X. Lacoste, and P. Ramet, A NUMA-aware scheduler for a parallel sparse direct solver, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00549827

H. Garcia-molina, Elections in a Distributed Computing System, IEEE Transactions on Computers, vol.31, issue.1, pp.47-59, 1982.
DOI : 10.1109/TC.1982.1675885

A. Geist and E. G. Ng, Task scheduling for parallel sparse Cholesky factorization, International Journal of Parallel Programming, vol.27, issue.4, pp.291-314, 1989.
DOI : 10.1007/BF01407861

A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems, 1981.

J. A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.345-363, 1973.
DOI : 10.1137/0710032

L. Giraud, A. Haidar, and S. Pralet, Using multiple levels of parallelism to enhance the performance of domain decomposition solvers, Parallel Computing, vol.36, issue.5-6, pp.285-296, 2010.
DOI : 10.1016/j.parco.2009.12.006

URL : https://hal.archives-ouvertes.fr/inria-00542444

K. Goto and R. A. Geijn, Anatomy of high-performance matrix multiplication, ACM Transactions on Mathematical Software, vol.34, issue.3, pp.1-1225, 2008.
DOI : 10.1145/1356052.1356053

A. Guermouche and J. Excellent, Constructing memory-minimizing schedules for multifrontal methods, ACM Transactions on Mathematical Software, vol.32, issue.1, pp.17-32, 2006.
DOI : 10.1145/1132973.1132975

URL : https://hal.archives-ouvertes.fr/hal-00358620

A. Guermouche, J. Excellent, and G. Utard, Impact of reordering on the memory of a multifrontal solver, Parallel Computing, vol.29, issue.9, pp.1191-1218, 2003.
DOI : 10.1016/S0167-8191(03)00099-1

URL : https://hal.archives-ouvertes.fr/hal-00807378

A. Gupta, T. J. Watson-research, and . Center, WSMP: Watson Sparse Matrix Package part i -direct solution of symmetric sparse systems version 1.0.0, 2000.

A. Gupta, T. J. Watson-research, and . Center, WSMP: Watson Sparse Matrix Package part ii -direct solution of general sparse systems version 1.0.0, 2000.

A. Gupta, A shared-and distributed-memory parallel general sparse direct solver Applicable Algebra in Engineering, Communication and Computing, vol.18, issue.3, pp.263-277, 2007.

A. N. Habermann, Prevention of system deadlocks, Communications of the ACM, vol.12, issue.7, p.373, 1969.
DOI : 10.1145/363156.363160

M. T. Heath, E. G. Ng, and B. W. Peyton, Parallel Algorithms for Sparse Linear Systems, SIAM Review, vol.33, issue.3, pp.420-460, 1991.
DOI : 10.1137/1033099

P. Hénon, P. Ramet, and J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing, vol.28, issue.2, pp.301-321, 2002.
DOI : 10.1016/S0167-8191(01)00141-7

T. Hérault, J. Herrmann, L. Marchal, and Y. Robert, Determining the optimal redistribution, 2014.

T. Hoefler and A. Lumsdaine, Message progression in parallel computing - to thread or not to thread?, 2008 IEEE International Conference on Cluster Computing, pp.213-222, 2008.
DOI : 10.1109/CLUSTR.2008.4663774

J. Hogg, J. K. Reid, and J. A. Scott, Design of a Multicore Sparse Cholesky Factorization Using DAGs, SIAM Journal on Scientific Computing, vol.32, issue.6, pp.3627-3649, 2010.
DOI : 10.1137/090757216

J. D. Hogg and J. A. Scott, Achieving bit compatibility in sparse direct solvers, 2012.

A. Hugo, A. Guermouche, P. Wacrenier, and R. Namyst, Composing multiple StarPU applications over heterogeneous machines: A supervised approach, The International Journal of High Performance Computing Applications, vol.7698, issue.2, pp.285-300
DOI : 10.1109/MCSE.2009.154

URL : https://hal.archives-ouvertes.fr/hal-00824514

D. Irony, G. Shklarski, and S. Toledo, Parallel and fully recursive multifrontal sparse Cholesky, Future Generation Computer Systems, vol.20, issue.3, pp.425-440, 2004.
DOI : 10.1016/j.future.2003.07.007

M. Jacquelin, L. Marchal, Y. Robert, and B. Uçar, On Optimal Tree Traversals for Sparse Matrix Factorization, 2011 IEEE International Parallel & Distributed Processing Symposium, pp.556-567, 2011.
DOI : 10.1109/IPDPS.2011.60

URL : https://hal.archives-ouvertes.fr/hal-00945078

P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lumsdaine, PFunc, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC '09, pp.1-43, 2009.
DOI : 10.1145/1654059.1654103

G. Karypis and V. Kumar, MeTiS ? A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices ? Version 4.0, 1998.

G. Karypis and V. Kumar, MeTiS ? A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices ? Version 4.0, 1998.

H. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.83-97, 1955.
DOI : 10.1002/nav.3800020109

J. Kurzak and J. Dongarra, Implementing Linear Algebra Routines on Multi-core Processors with Pipelining and a Look Ahead, Applied Parallel Computing. State of the Art in Scientific Computing, pp.147-156, 2007.
DOI : 10.1007/978-3-540-75755-9_18

X. Lacoste, P. Ramet, M. Faverge, Y. Ichitaro, and J. Dongarra, Sparse direct solvers with accelerators over DAG runtimes
URL : https://hal.archives-ouvertes.fr/hal-00700066

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, vol.5, issue.3, pp.308-323, 1979.
DOI : 10.1145/355841.355847

J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling: Algorithms, Models, and Performance Analysis, 2004.

J. L. Excellent and M. W. Sid-lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing, vol.40, pp.3-434, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01060322

X. S. Li, Evaluation of SuperLU on multicore architectures, Journal of Physics: Conference Series, vol.125, p.12079, 2008.
DOI : 10.1088/1742-6596/125/1/012079

X. S. Li and J. W. , SuperLU_DIST, ACM Transactions on Mathematical Software, vol.29, issue.2, pp.110-140, 2003.
DOI : 10.1145/779359.779361

J. W. Liu, Modification of the minimum-degree algorithm by multiple elimination, ACM Transactions on Mathematical Software, vol.11, issue.2, pp.141-153, 1985.
DOI : 10.1145/214392.214398

J. W. Liu, On the storage requirement in the out-of-core multifrontal method for sparse factorization, ACM Transactions on Mathematical Software, vol.12, issue.3, pp.127-148, 1986.
DOI : 10.1145/7921.11325

J. W. Liu, An Application of Generalized Tree Pebbling to Sparse Matrix Factorization, SIAM Journal on Algebraic Discrete Methods, vol.8, issue.3, pp.375-395, 1987.
DOI : 10.1137/0608031

J. W. Liu, The Role of Elimination Trees in Sparse Factorization, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.1, pp.134-172, 1990.
DOI : 10.1137/0611010

J. W. Liu, The Multifrontal Method for Sparse Matrix Solution: Theory and Practice, SIAM Review, vol.34, issue.1, pp.82-109, 1992.
DOI : 10.1137/1034004

D. Manivannan and M. Singhal, An efficient distributed algorithm for detection of knots and cycles in a distributed graph, IEEE Transactions on Parallel and Distributed Systems, vol.14, issue.10, pp.961-972, 2003.
DOI : 10.1109/TPDS.2003.1239865

E. G. Ng and B. W. Peyton, Fast implementation of the minimum local fill ordering heuristic, SIAM Workshop on Combinatorial Scientific Computing (CSC14), pp.21-23, 2014.

E. G. Ng and P. Raghavan, Performance of Greedy Ordering Heuristics for Sparse Cholesky Factorization, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.4, pp.902-914, 1999.
DOI : 10.1137/S0895479897319313

S. Operto, J. Virieux, P. R. Amestoy, J. Excellent, L. Giraud et al., 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, GEOPHYSICS, vol.72, issue.5, pp.72195-211, 2007.
DOI : 10.1190/1.2759835

URL : https://hal.archives-ouvertes.fr/insu-00355256

F. Pellegrini, Scotch and libscotch 5.0 User's guide, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00410332

F. Pellegrini and J. Roman, Sparse matrix ordering with Scotch, Proceedings of HPCN'97, pp.370-378, 1997.
DOI : 10.1007/BFb0031609

A. Pothen and C. Sun, A Mapping Algorithm for Parallel Sparse Cholesky Factorization, SIAM Journal on Scientific Computing, vol.14, issue.5, pp.1253-1257, 1993.
DOI : 10.1137/0914074

G. Prasanna and B. Musicus, Generalized multiprocessor scheduling and applications to matrix computations. Parallel and Distributed Systems, IEEE Transactions on, vol.7, issue.6, pp.650-664, 1996.

M. Ramachandran and M. Singhal, Decentralized semaphore support in a virtual shared-memory system, The Journal of Supercomputing, vol.24, issue.3, pp.51-70, 1995.
DOI : 10.1007/BF01245397

E. Rothberg and S. C. Eisenstat, Node Selection Strategies for Bottom-Up Sparse Matrix Ordering, SIAM Journal on Matrix Analysis and Applications, vol.19, issue.3, pp.682-695, 1998.
DOI : 10.1137/S0895479896302692

F. Rouet, Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00785748

P. Sao, R. Vuduc, and X. Li, A Distributed CPU-GPU Sparse Direct Solver, Euro-Par 2014 Parallel Processing, pp.487-498, 2014.
DOI : 10.1007/978-3-319-09873-9_41

O. Schenk and K. Gärtner, On fast factorization pivoting methods for sparse symmetric indefinite systems, 2004.

R. Schreiber, A New Implementation of Sparse Gaussian Elimination, ACM Transactions on Mathematical Software, vol.8, issue.3, pp.256-276, 1982.
DOI : 10.1145/356004.356006

J. Schulze, Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods, Bit Numerical Mathematics, vol.41, issue.4, pp.800-841, 2001.
DOI : 10.1023/A:1021908421589

. Tz and . Slavova, Parallel triangular solution in the out-of-core multifrontal approach for solving large sparse linear systems, 2009.

E. Solomonik, A. Bhatele, and J. Demmel, Improving communication performance in dense linear algebra via topology aware collectives, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '11, pp.1-77, 2011.
DOI : 10.1145/2063384.2063487

F. Sourbier, S. Operto, J. Virieux, P. R. Amestoy, and J. Excellent, FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data???Part 2, Computers & Geosciences, vol.35, issue.3, pp.496-514, 2009.
DOI : 10.1016/j.cageo.2008.04.012

URL : https://hal.archives-ouvertes.fr/insu-00354706

S. D. Stoller, Leader election in asynchronous distributed systems, IEEE Transactions on Computers, vol.49, issue.3, pp.283-284, 2000.
DOI : 10.1109/12.841132

R. E. Tarjan, Depth-First Search and Linear Graph Algorithms, SIAM Journal on Computing, vol.1, issue.2, pp.146-159, 1972.
DOI : 10.1137/0201010

S. Toledo, Locality of Reference in LU Decomposition with Partial Pivoting, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.4, pp.1065-1081, 1997.
DOI : 10.1137/S0895479896297744

C. Vömel, Contributions to research in high performance scientific computing for sparse matrices, 2003.

C. Vuchener and A. Esnard, Graph repartitioning with both dynamic load and dynamic processor allocation, International Conference on Parallel Computing-ParCo2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00857881

D. M. Wadsworht and Z. Chen, Performance of MPI broadcast algorithms, 2008 IEEE International Symposium on Parallel and Distributed Processing, pp.1-7, 2008.
DOI : 10.1109/IPDPS.2008.4536478

C. Weisbecker, Improving multifrontal solvers by means of algebraic block low-rank representations, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00934939

R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimizations of software and the ATLAS project, Parallel Computing, vol.27, issue.1-2, pp.3-35, 2000.
DOI : 10.1016/S0167-8191(00)00087-9

M. Yannakakis, Computing the Minimum Fill-In is NP-Complete, SIAM Journal on Algebraic Discrete Methods, vol.2, issue.1, pp.77-79, 1981.
DOI : 10.1137/0602010