. Petsc, Extensible Toolkit for Scientific Computation librairie) est composée d'une variété de bibliothèques (semblable à des classes en C++) Chaque bibliothèque manipule une famille particulière d'objets (par exemple, des vecteurs) et les opérations à appliquer à ces objets. Certains des modules PETSc traitent ? un ensemble d'index (SI), y compris les permutations

B. Figure, 1: Organisation de la bibliothèque PETSc Figure C

@. Intel and M. , Intel Math Kernel Library)[49] (bibliothèques de Cpu) est une bibliothèque de routines mathématiques optimisées pour la science, l'ingénierie et les applications financières . Les fonctions mathématiques de base comprennent BLAS, LAPACK, ScaLA- PACK, des solveurs pour matrice creuse

@. La-bibliothèque-cusparse, NVIDIA CUDA Sparse Matrix)[59] fournit une collection de sous-routines d'algèbre

@. La-bibliothèque-cublas, NVIDIA CUDA Basic Linear Algebra)[57] est une version accélérée par le GPU de la bibliothèque BLAS qui offre 6x à 17x une performance plus rapide

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys, vol.4, issue.4, pp.729-796, 2009.

X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross?Pitaevskii equations, Computer Physics Communications, vol.00, pp.1-23, 2013.

X. Antoine and C. Besse, Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schr??dinger equation, Journal of Computational Physics, vol.188, issue.1, pp.157-175, 2003.
DOI : 10.1016/S0021-9991(03)00159-1

X. Antoine, C. Besse, and S. Descombes, Artificial boundary conditions for one-dimensional cubic nonlinear Schr??dinger equations, SIAM Journal on Numerical Analysis, vol.43, issue.6, pp.2272-2293, 2006.
DOI : 10.1137/040606983

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.8041

X. Antoine, C. Besse, and P. Klein, Absorbing boundary conditions for the one-dimensional Schr??dinger equation with an exterior repulsive potential, Journal of Computational Physics, vol.228, issue.2, pp.312-335, 2009.
DOI : 10.1016/j.jcp.2008.09.013

X. Antoine, C. Besse, and P. Klein, Absorbing Boundary Conditions for General Nonlinear Schr??dinger Equations, SIAM Journal on Scientific Computing, vol.33, issue.2, pp.1008-1033, 2011.
DOI : 10.1137/090780535

X. Antoine, C. Besse, and P. Klein, Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I : Construction and a priori estimates, Mathematical Models and Methods in Applied Sciences, issue.10, pp.22-2012

X. Antoine, C. Besse, and P. Klein, Absorbing boundary conditions for the two-dimensional Schr??dinger equation with an exterior potential, Numerische Mathematik, vol.5, issue.3, pp.191-223, 2013.
DOI : 10.1007/s00211-013-0542-8

X. Antoine, C. Besse, and J. Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples, Cubo, A Mathematical Journal, vol.11, issue.4, pp.29-48, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00755572

X. Antoine and R. Duboscq, Computer Physics cations GPELab , a Matlab Toolbox to solve Gross-Pitaevskii Equations I : computation of stationary solutions, Computer Physics Communications, vol.00, pp.1-38, 2014.

X. Antoine, E. Lorin, and A. D. Bandrauk, Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrödinger Equation with Ionization and Recombination by Intense Electric Field, Journal of Scientific Computing, pp.1-27, 2014.

A. Bamberger, R. Glowinski, and Q. Tran, A Domain Decomposition Method for the Acoustic Wave Equation with Discontinuous Coefficients and Grid Change, SIAM Journal on Numerical Analysis, vol.34, issue.2, pp.603-639, 1997.
DOI : 10.1137/S0036142994261518

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose- Einstein condensation. Kinetic and Related Models, pp.1-135, 2012.

W. Bao, Y. Cai, and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose???Einstein condensates, Journal of Computational Physics, vol.229, issue.20, pp.7874-7892, 2010.
DOI : 10.1016/j.jcp.2010.07.001

URL : https://hal.archives-ouvertes.fr/hal-01273317

W. Bao, I. Chern, and F. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose???Einstein condensates, Journal of Computational Physics, vol.219, issue.2, pp.836-854, 2006.
DOI : 10.1016/j.jcp.2006.04.019

W. Bao and Q. Du, Computing the Ground State Solution of Bose--Einstein Condensates by a Normalized Gradient Flow, SIAM Journal on Scientific Computing, vol.25, issue.5, pp.1674-1697, 2004.
DOI : 10.1137/S1064827503422956

W. Bao, D. Marahrens, Q. Tang, and Y. Zhang, A Simmple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose?Einstein Condensates via Rotating Lagrangian Coordinates, SIAM Journal on Scientific Computing, issue.6, pp.35-2013

W. Bao, P. A. Markowich, H. Wang, and . Ground, Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates, Communications in Mathematical Sciences, vol.3, issue.1, pp.57-88, 2005.
DOI : 10.4310/CMS.2005.v3.n1.a5

D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Mathematics of Computation, vol.78, issue.265, pp.185-223, 2009.
DOI : 10.1090/S0025-5718-08-02145-5

URL : https://hal.archives-ouvertes.fr/hal-00111643

C. Besse, A Relaxation Scheme for the Nonlinear Schr??dinger Equation, SIAM Journal on Numerical Analysis, vol.42, issue.3, pp.934-952, 2004.
DOI : 10.1137/S0036142901396521

E. Blayo, L. Halpern, and C. Japhet, Optimized Schwarz waveform relaxation algorithms with nonconforming time discretization for coupling convectiondiffusion problems with discontinuous coefficients. Domain decomposition methods in science and engineering XVI, pp.267-274, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00187555

Y. Boubendir, X. Antoine, and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, Journal of Computational Physics, vol.231, issue.2, pp.262-280, 2012.
DOI : 10.1016/j.jcp.2011.08.007

URL : https://hal.archives-ouvertes.fr/hal-01094828

F. Caetano, M. J. Gander, L. Halpern, and J. Szeftel, Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks and Heterogeneous Media, pp.487-505, 2010.

X. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numerische Mathematik, vol.49, issue.1, pp.1-23, 1991.
DOI : 10.1007/BF01385713

X. Cai, Multiplicative Schwarz Methods for Parabolic Problems, SIAM Journal on Scientific Computing, vol.15, issue.3, pp.1-18, 1994.
DOI : 10.1137/0915039

B. Després, Décomposition de domaine et problème de Helmholtz Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.6, pp.311313-316, 1990.

V. Dolean, M. J. Gander, and L. Gerardo-giorda, Optimized Schwarz Methods for Maxwell's Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.2193-2213, 2009.
DOI : 10.1137/080728536

URL : http://arxiv.org/pdf/math/0610531v5.pdf

A. Durán and J. M. Sanz-serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrodinger equation, IMA Journal of Numerical Analysis, vol.20, issue.2, pp.235-261, 2000.
DOI : 10.1093/imanum/20.2.235

J. Martin and . Gander, Overlapping Schwarz waveform relaxation for parabolic problems, Contemporary Mathematics, vol.218, pp.425-431, 1998.

J. Martin and . Gander, Optimized Schwarz Methods, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.699-731, 2006.

J. Martin and . Gander, Schwarz methods over the course of time, Electronic Transactions on Numerical Analysis, vol.31, pp.228-255, 2008.

J. Martin, L. Gander, and . Halpern, Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.666-697, 2007.

M. J. Gander, L. Halpern, and M. Kern, A Schwarz Waveform Relaxation Method for Advection???Diffusion???Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Domain decomposition methods in science and engineering XVI, pp.283-290, 2007.
DOI : 10.1007/978-3-540-34469-8_33

URL : https://hal.archives-ouvertes.fr/hal-01111940

M. J. Gander, L. Halpern, and F. Nataf, Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation, Proceedings of the 9th International Conference on Domain Decomposition Methods, pp.27-36, 1999.
DOI : 10.1007/3-540-26825-1_23

URL : http://archive-ouverte.unige.ch/unige:8279

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.1643-1681, 2003.
DOI : 10.1137/S003614290139559X

J. Martin, F. Gander, and . Kwok, Best Robin Parameters for Optimized Schwarz Methods at Cross Points, SIAM Journal on Scientific Computing, vol.34, issue.4, pp.1849-1879, 2012.

J. Martin, F. Gander, and . Kwok, On the applicability of lions' energy estimates in the analysis of discrete optimized schwarz methods with cross points, In Domain Decomposition Methods in Science and Engineering XX, pp.475-483, 2013.

M. J. Gander, F. Magoules, and F. Nataf, Optimized Schwarz Methods without Overlap for the Helmholtz Equation, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.38-60, 2002.
DOI : 10.1137/S1064827501387012

URL : https://hal.archives-ouvertes.fr/hal-00624495

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.791309-1331, 2009.
DOI : 10.1002/nme.2579

E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Numerische Mathematik, vol.93, issue.2, pp.279-313, 2002.
DOI : 10.1007/s002110100345

L. Halpern, C. Japhet, and J. Szeftel, Optimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems, SIAM Journal on Numerical Analysis, vol.50, issue.5, pp.2588-2611, 2012.
DOI : 10.1137/120865033

URL : https://hal.archives-ouvertes.fr/hal-00479814

L. Halpern and J. Szeftel, Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation, CNRS, 2006.

L. Halpern and J. Szeftel, Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation, Mathematics of Computation, vol.78, issue.266, pp.865-889, 2009.
DOI : 10.1090/S0025-5718-08-02164-9

URL : https://hal.archives-ouvertes.fr/hal-00128219

L. Halpern and J. Szeftel, OPTIMIZED AND QUASI-OPTIMAL SCHWARZ WAVEFORM RELAXATION FOR THE ONE-DIMENSIONAL SCHR??DINGER EQUATION, Mathematical Models and Methods in Applied Sciences, vol.20, issue.12, pp.2167-2199, 2010.
DOI : 10.1142/S0218202510004891

T. Hoang, Méthodes de décomposition de domaine espace-temps pour la formulation mixte de problèmes d'écoulement et de transport en milieu poreux, 2013.

T. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations, SIAM Journal on Numerical Analysis, vol.51, issue.6, pp.3532-3559, 2013.
DOI : 10.1137/130914401

URL : https://hal.archives-ouvertes.fr/hal-00803796

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, CULA: hybrid GPU accelerated linear algebra routines, Modeling and Simulation for Defense Systems and Applications V, 2010.
DOI : 10.1117/12.850538

C. Japhet, Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2, 1998.

P. Klein, Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités, 2010.

P. Lions, On the Schwarz alternating method. I, First international symposium on domain decomposition methods for partial differential equations, pp.1-42, 1988.

P. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, Third international symposium on domain decomposition methods for partial differential equations, pp.202-223, 1990.

S. Loisel, Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points, SIAM Journal on Numerical Analysis, vol.51, issue.6, pp.3062-3083, 2013.
DOI : 10.1137/100803316

V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Applied Numerical Mathematics, vol.52, issue.4, pp.401-428, 2005.
DOI : 10.1016/j.apnum.2004.08.022

F. Nataf and F. Rogier, FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM, Mathematical Models and Methods in Applied Sciences, vol.05, issue.01, pp.567-93, 1995.
DOI : 10.1142/S021820259500005X

C. Philippe, F. Nataf, and F. Rogier, Méthode de décomposition de domaine pour l'équation d'advection-diffusion. Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.9, pp.313623-626, 1991.

A. Rodríguez and L. Gerardo-giorda, New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System, SIAM Journal on Scientific Computing, vol.28, issue.1, pp.102-122, 2006.
DOI : 10.1137/040608696

Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003.
DOI : 10.1137/1.9780898718003

Y. Wu, X. Cai, and D. E. Keyes, Additive Schwarz methods for hyperbolic equations, Contemporary Mathematics, vol.218, pp.468-476, 1998.
DOI : 10.1090/conm/218/03044