O. Lucía, Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges, IEEE Transactions on Industrial Electronics, vol.61, issue.5, 2014.
DOI : 10.1109/TIE.2013.2281162

A. Ducluzaux, Pertes supplémentaires dans les conducteurs pour forte intensité par effet de peau et de proximité, p.83, 2002.

A. Reatti and M. K. Kazimierczuk, Comparison of various methods for calculating the AC resistance of inductors, IEEE Transactions on Magnetics, vol.38, issue.3, pp.1512-1518, 2002.
DOI : 10.1109/20.999124

P. L. Dowell, Effects of eddy currents in transformer windings, Proceedings of the Institution of Electrical Engineers, vol.113, issue.8, pp.1387-1394, 1966.
DOI : 10.1049/piee.1966.0236

J. Schutz, J. Roudet, and A. Shellmann, Modeling Litz wire windings, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, pp.190-195, 1997.
DOI : 10.1109/IAS.1997.629011

J. A. Ferreira, Analytical computation of AC resistance of round and rectangular litz wire windings, IEE Proceedings B Electric Power Applications, vol.139, issue.1, pp.21-25, 1992.
DOI : 10.1049/ip-b.1992.0003

J. A. Ferreira, Improved analytical modeling of conductive losses in magnetic components, IEEE Transactions on Power Electronics, vol.9, issue.1, pp.127-131, 1994.
DOI : 10.1109/63.285503

R. P. Wojda and M. K. Kazimierczuk, Winding resistance of litz-wire and multi-strand inductors, IET Power Electronics, vol.5, issue.2, pp.257-268, 2012.
DOI : 10.1049/iet-pel.2010.0359

C. R. Sullivan, Optimal choice for number of strands in a litz-wire transformer winding, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, pp.283-291, 1999.
DOI : 10.1109/PESC.1997.616632

X. Nan and C. R. Sullivan, An improved calculation of proximity-effect loss in high frequency windings of round conductors, 34th Annual IEEE Power Electronics Specialists Conference, pp.853-860, 2003.

F. Tourkhani and P. Viarouge, Accurate analytical model of winding losses in round Litz wire windings, IEEE Transactions on Magnetics, vol.37, issue.1, pp.538-543, 2001.
DOI : 10.1109/20.914375

J. Acero, The domestic induction heating appliance: An overview of recent research, 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp.39-47, 2010.
DOI : 10.1109/APEC.2008.4522791

J. Acero, Simple resistance calculation in litz-wire planar windings for induction cooking appliances, IEEE Transactions on Magnetics, vol.41, issue.4, pp.1280-1288, 2005.
DOI : 10.1109/TMAG.2005.844844

J. Acero, Frequency-dependent resistance in Litz-wire planar windings for domestic induction heating appliances, IEEE Transactions on Power Electronics, vol.21, issue.4, pp.856-866, 2006.
DOI : 10.1109/TPEL.2006.876894

D. N. Murgatroyd, Calculation of proximity losses in multistranded conductor bunches, IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education), vol.136, issue.3, pp.115-120, 1989.
DOI : 10.1049/ip-a-2.1989.0021

A. W. Lotfi and F. C. Lee, A high frequency model for litz wire for switchmode magnetics, IEEE Industry Applications Soc. Annu. Meeting Conf. Rec, pp.1169-1175, 1993.

G. W. Howe, The High-Frequency Resistance of Multiply-Stranded Insulated Wire, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.93, issue.654, pp.468-492, 1917.
DOI : 10.1098/rspa.1917.0033

G. Cerri, S. A. Kovyryalov, and V. M. Primiani, Rigorous Electromagnetic Analysis of Domestic Induction Heating Appliances, PIERS Online, vol.5, issue.5, pp.491-495, 2009.
DOI : 10.2529/PIERS090319130605

G. Cerri, S. A. Kovyryalov, and V. M. Primiani, Iet sci. meas. technol. Modelling of a Litz-wire planar winding geometry for an accurate reactance evaluation, pp.214-219, 2010.

W. Water and J. Lu, Eddy Current and Structure Optimization of High Frequency Coaxial Transformers Using the Numerical Computation Method, 2012 Sixth International Conference on Electromagnetic Field Problems and Applications, 2012.
DOI : 10.1109/ICEF.2012.6310326

W. Water and J. Lu, Simulation of multi-strands conductors thanks to equivalent electric conductivity, Proceedings of Numelec 2012, p.98, 2012.

C. R. Sullivan, An equivalent complex permeability model for litz-wire windings, IEEE Trans. on Indus. Appl, vol.45, issue.2, pp.854-860, 2009.

G. Meunier and A. T. Phung, Propri??t??s macroscopiques ??quivalentes pour repr??senter les pertes dans les bobines conductrices, Revue internationale de g??nie ??lectrique, vol.10, issue.6, pp.675-694, 2008.
DOI : 10.3166/rige.11.675-694

URL : https://hal.archives-ouvertes.fr/hal-00360724/file/2-RIGE_98_GM.pdf

M. Etemadrezaei and S. M. Lukic, Equivalent complex permeability and conductivity of Litz wire in wireless power transfer systems, 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp.3833-3840, 2012.
DOI : 10.1109/ECCE.2012.6342286

P. B. Reddy, T. M. Jahns, and T. P. Bohn, Transposition effects on bundle proximity losses in high-speed PM machines, 2009 IEEE Energy Conversion Congress and Exposition, pp.1919-1926, 2009.
DOI : 10.1109/ECCE.2009.5316037

V. Väisänen, AC resistance calculation methods and practical design considerations when using litz wire, IECON 2013, 39th Annual Conference of the IEEE Industrial Electronics Society, pp.368-375, 2013.
DOI : 10.1109/IECON.2013.6699164

M. Bartoli, Modeling Litz-wire winding losses in high-frequency power inductors, PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, pp.1690-1696, 1996.
DOI : 10.1109/PESC.1996.548808

L. Ignacio, Ac power losses model for planar windings with rectangular cross-sectional conductors, IEEE Trans. on Power Electron, vol.29, issue.1, pp.23-28, 2014.

H. Hämäläinen, AC Resistance Factor of Litz-Wire Windings Used in Low-Voltage High-Power Generators, IEEE Transactions on Industrial Electronics, vol.61, issue.2, pp.693-700, 2014.
DOI : 10.1109/TIE.2013.2251735

A. Stadler, Analytical Calculation of Copper Losses in Litz-Wire Windings of Gapped Inductors, IEEE Transactions on Magnetics, vol.50, issue.2, 2014.
DOI : 10.1109/TMAG.2013.2282333

A. Roßkopf, E. Bär, and C. Joff, Influence of Inner Skin- and Proximity Effects on Conduction in Litz Wires, IEEE Transactions on Power Electronics, vol.29, issue.10, pp.5454-5461, 2014.
DOI : 10.1109/TPEL.2013.2293847

C. R. Sullivan and R. Y. Zhang, Simplified design method for litz wire, 2014 IEEE Applied Power Electronics Conference and Exposition, APEC 2014, pp.2667-2674, 2014.
DOI : 10.1109/APEC.2014.6803681

R. Y. Zhang, Realistic litz wire characterization using fast numerical simulations, 2014 IEEE Applied Power Electronics Conference and Exposition, APEC 2014, pp.738-745, 2014.
DOI : 10.1109/APEC.2014.6803390

URL : http://hdl.handle.net/1721.1/91048

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, 2012.

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, p.24, 2012.

D. Etiemble, Évolution de l'architecture des ordinateurs. Dossier Techniques de l'Ingénieur, 2009.

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, p.25, 2012.

D. Koufaty and D. Marr, Hyperthreading technology in the netburst microarchitecture, IEEE Micro, vol.23, issue.2, pp.56-65, 2003.
DOI : 10.1109/MM.2003.1196115

S. Casey, How to determine the effectiveness of hyper-threading technology with an application, Intel Technology Journal, vol.6, issue.1, p.11, 2011.

I. Foster and C. Kesselman, The Grid : Blueprint for a New Computing Infrastructure, 1999.

F. Malek, Le calcul scientifique des expériences lhc -une grille de production mondiale. Reflets phys, pp.11-15, 2010.

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers, vol.21, issue.9, pp.948-960, 1972.
DOI : 10.1109/TC.1972.5009071

M. J. Flynn and K. W. Rudd, Parallel architectures, ACM Computing Surveys, vol.28, issue.1, pp.67-70, 1996.
DOI : 10.1145/234313.234345

J. Sansonnet, Architecture des ordinateurs parallèles. Dossier Techniques de l'Ingénieur, 1992.

A. Munsh, The OpenCL Specification. The Khronos Group Inc, 2011.

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, pp.37-39, 2012.

J. J. Dongarra, A proposal for a user-level, message passing interface in a distributed memory environment. Oak Ridge National Laboratory, Tennessee 37831, Feb, 1993.

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, pp.42-47, 2012.

. Modelitz®, Agence pour la Protection des Programmes (APP), 2014.

A. Gagnoud, Three-Dimensional Integral Method for Modeling Electromagnetic Inductive Processes, IEEE Transactions on Magnetics, vol.40, issue.1, pp.29-36, 2004.
DOI : 10.1109/TMAG.2003.821117

V. Labbé, Modélisation numérique du chauffage par induction ? Approche éléments finis et calcul parallèle, 2002.

G. Dhatt and G. Touzot, Une présentation de la méthode des éléments finis. Maloine S.A., Paris, Les presses de l, 1981.

. Migen®, Agence pour la Protection des Programmes (APP), 2011.

J. Clet-ortega, Exploitation efficace des architectures parallèles de type grappes de NUMA à l'aide de modèles hybrides de programmation, 2012.

R. Scapolan, A. Gagnoud, and Y. , Du Terrail. 3d multi-strands inductor modeling : influence of complex geometry arrangements, IEEE Trans. on Magn, vol.50, issue.2, 2014.

I. Stefanini, Méthodologie de conception et optimisation d'actionneurs intégrés sans fer, 2012.