?. Marqué-par-la and E. , GFP amélioré). a) cette chimère localise les microtubules (b) la EGFP est attaché au N-terminus de la, pp.?-tubuline

. Vonesch, Comparaison schématique des microscopies à champ large et confocale typiquement utilisées pour l'étude du vivant (source, p.17, 2006.

F. Un-exemple-de-mesure and K. Flim-pour, 6 signaux de modulation Le contraste a été augmenté artificiellement pour améliorer la visualisation. Les molécules fluorescentes permettent de localiser le récepteur IFNAR1 marqué en GFP sur des cellules épithéliales (RPE1)

E. Doppler, induit par le mouvement des endosomes sur les mesures de temps de vie de l'ordre de quelques nanosecondes (séquence 0.3), p.21

F. Gain-expérimental-non-stationnaire-en, Représentation de la variance calculée sur une mesure de référence FD FLIM de 12 images acquises avec un microscope confocal, p.23

. Erreurs-moyennes-de-localisation and . La-méthodeanderson, Gaussian Fitting 1992] est analogue à notre méthode, mais sans prise en compte de modèle d'intensité sinusoïdale. La méthode PPT est une méthode plus avancée combinant détection, puis calcul des trajectoires selon le principe du filtrage stochastique Les résultats sont obtenus sur des protéines RX marquées GFP et suivies manuellement (cellules épithéliales), p.26, 2006.

. Suivi-automatique-de-virus-dans-la and . Burckhardt, La fréquence d'acquisition est artificiellement réduite pour tester la robustesse de l'algorithme, p.36, 2011.

S. Jablonsky and D. , The thick horizontal lines denote electronic energy levels. The thinner grey lines represents the various vibrational energy states. Straight arrows are associated with absorption or emission of a photon. Wavy arrows illustrate molecular internal conversions or non-radiative relaxation processes. Vertical upward arrows indicate the instantaneous nature of excitation processes, p.48

T. Example and .. Flim, Total fluorescence intensity is shown in the center and corresponds to the sum of photon counts along the time axis at each pixel. The four side graphs correspond to time dependent photon counts in four dierent regions with variable sizes. By considering large regions, we observe an exponential fluorescence decay (see D) A: one pixel region; B and C: 3 ? 3 patches at dierent locations; D: 15 ? 15 patch and lifetime estimation by least mean squares fitting (commercial software), p.73

.. Doppler-eect, on lifetime measurement (in nanoseconds) due to motion (see Figure 3.7)

. Anderson, 2006] and our method on fluorescently tagged RX protein in living epithelial cells. Endosomes have been tracked by hand using the MJtrack software, Mean localization error using Gaussian fitting Probabilistic particle tracking, p.111, 1992.

G. Tracked and .. Rx-on-endosomes, left) and membrane fluorescence lifetime map (right) in the presence of acceptor mCherry-KX 15 minutes after CX injection Among the KX-injected cells, only two cells present early endosomes that do not belong to the recycling compartment Additionally the lifetime estimated on the membrane exhibits strong variations, p.117

.. Burckhardt, A threshold for detecting large motion is estimated using the 99 Imaging with spinning disk confocal microscope Acquisition speed is set to 1 Hz for a minute Scale bar is 1 µm 192 10.13Evolution of large motion count with large motion threshold for control and treated cells. This is equivalent to a inverted cumulative histogram for the estimated velocities 193 10.14Error rate of u-track and iu-track wrt frame-rate decimation on a virus tracking experiment Frame-rate is artificially reduced to test the robustness of our tracker Frame-rate is artificially reduced to test the robustness of our tracker. On this example, we observe that u-track break point is around a 30-fold decimation while our improvement exhibits a single error at a 30-fold decimation (longer tracks on the last experiment are due to lower frame rate but represent real tracks) Imaging with spinning disk confocal microscope, 12A. Control cell. B. After nocodazole treatment 10.15Viruses tracking inside the cell, 0194.

. Aguet, Detection workflow as described in, 0201.

G. Ackerson and K. Fu, On state estimation in switching environments, IEEE Transactions on Automatic Control, vol.15, issue.1, pp.10-17, 1970.
DOI : 10.1109/TAC.1970.1099359

F. Aguet, N. Costin, M. Antonescu, . Mettlen, L. Sandra et al., Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint, Developmental Cell, vol.26, issue.3, pp.279-291, 2013.
DOI : 10.1016/j.devcel.2013.06.019

S. Paul, . Agutter, D. N. Malone, and . Wheatley, Intracellular transport mechanisms: a critique of diusion theory, Journal of Theoretical Biology, vol.176, issue.2, pp.261-272, 1995.

B. Anderson and J. Moore, Optimal Filtering, IEEE Transactions on Systems, Man, and Cybernetics, vol.12, issue.2, 1979.
DOI : 10.1109/TSMC.1982.4308806

C. M. Anderson, G. N. Georgiou, . Morrison, R. J. Stevenson, and . Cherry, Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera, Journal of Cell Science, vol.101, issue.2, p.415, 1992.

E. Angelini, J. Atif, and J. Delon, DETECTION OF GLIOMA EVOLUTION ON LONGITUDINAL MRI STUDIES, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007.
DOI : 10.1109/ISBI.2007.356785

M. Sanjeev-arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.174-188, 2002.
DOI : 10.1109/78.978374

D. Axelrod, D. Koppel, . Schlessinger, W. Elson, and . Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophysical Journal, vol.16, issue.9, pp.1055-1069, 1976.
DOI : 10.1016/S0006-3495(76)85755-4

Y. Bar-shalom, Multitarget-multisensor tracking: advanced applications, 1990.

Y. Bibliography and . Bar-shalom, Multitarget-multisensor tracking: Applications and advances. Volume III, 2000.

Y. Bar-shalom, T. Li, and . Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, 2004.
DOI : 10.1002/0471221279

M. A. Beaumont, W. Zhang, and D. J. Balding, Approximate Bayesian computation in population genetics, Genetics, vol.162, pp.2025-2035, 2002.

W. Becker, B. Su, and A. Bergmann, Fast-acquisition multispectral FLIM by parallel TCSPC, Multiphoton Microscopy in the Biomedical Sciences IX, pp.718305-718305, 2009.
DOI : 10.1117/12.807697

P. Bergamini, G. Bonelli, E. G. Tanzi, M. Uslenghi, L. Poletto et al., A fast readout and processing electronics for photon counting intensified charge-coupled device, Review of Scientific Instruments, vol.71, issue.4, pp.1841-1848, 2000.
DOI : 10.1063/1.1150545

J. S. David, R. E. Birch, and . Imhof, Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting Topics in Fluorescence Spectroscopy, number 1 in Topics in Fluorescence Spectroscopy, pp.1-95, 1999.

S. Blackman and A. House, Design and Analysis of Modern Tracking Systems, 1999.

S. Samuel and . Blackman, Multiple hypothesis tracking for multiple target tracking. Aerospace and Electronic Systems Magazine, IEEE, vol.19, issue.1, pp.5-18, 2004.

A. Henk, Y. Blom, and . Bar-shalom, The interacting multiple model algorithm for systems with Markovian switching coecients, IEEE Transactions on Automatic Control, vol.33, issue.8, pp.780-783, 1988.

R. Frank and . Boddeke, Quantitative fluorescence microscopy: autofocusing, z-axis calibration, image sensors, fluorescence lifetime imaging, 1998.

S. Bonneau, L. Cohen, and M. Dahan, A multiple target approach for single quantum dot tracking, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.664-667, 2004.
DOI : 10.1109/ISBI.2004.1398625

URL : https://hal.archives-ouvertes.fr/hal-00002448

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J. Sibarita et al., Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.442-454, 2010.
DOI : 10.1109/TMI.2009.2033991

URL : https://hal.archives-ouvertes.fr/inria-00541082

P. Cliord, . Brangwynne, H. Gijsje, . Koenderink, C. Frederick et al., Intracellular transport by active diusion, Trends in Cell Biology, vol.19, issue.9, pp.423-427, 2009.

C. Paul, . Bresslo, M. Jay, and . Newby, Stochastic models of intracellular transport, Reviews of Modern Physics, vol.85, issue.1, p.135, 2013.

F. Briquet-laugier, C. Boulin, and J. Olivo-marin, Analysis of moving biological objects in video microscopy sequences, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.4-12, 1999.

A. Buades and J. M. Coll, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

J. Christoph, M. Burckhardt, P. Suomalainen, K. Schoenenberger, S. Boucke et al., Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure, Cell host & microbe, vol.10, issue.2, pp.105-117, 2011.

A. Caspi, R. Granek, and M. Elbaum, Diffusion and directed motion in cellular transport, Physical Review E, vol.66, issue.1, p.11916, 2002.
DOI : 10.1103/PhysRevE.66.011916

K. Michael, . Cheezum, F. William, . Walker, H. William et al., Quantitative comparison of algorithms for tracking single fluorescent particles, Biophysical Journal, vol.81, issue.4, pp.2378-2388, 2001.

N. Chenouard, I. Bloch, and J. Olivo-marin, Multiple hypothesis tracking in microscopy images, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1346-1349, 2009.
DOI : 10.1109/ISBI.2009.5193314

N. Chenouard, I. Bloch, and J. Olivo-marin, Multiple Hypothesis Tracking for Cluttered Biological Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.11, 2013.
DOI : 10.1109/TPAMI.2013.97

N. Chenouard, I. Smal, F. De-chaumont, M. Maska, I. F. Sbalzarini et al., Objective comparison of particle tracking methods, Nature Methods, vol.6362, issue.3, pp.281-289, 2014.
DOI : 10.1038/nmeth.2019

URL : https://hal.archives-ouvertes.fr/hal-00932869

A. Chessel, F. Waharte, J. Salamero, and C. Kervrann, A maximum likelihood method for lifetime estimation in photon counting-based fluorescence lifetime imaging microscopy, EUSIPCO-European Signal Processing Conference, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931631

R. M. Clegg, T. W. Gadella, J. , and T. M. Jovin, Fluorescence Lifetime-Resolved Imaging, pp.105-118, 1994.
DOI : 10.1201/9781420078916.sec1

J. Conchello, W. Je, and . Lichtman, Optical sectioning microscopy, Nature Methods, vol.4, issue.12, pp.920-931, 2005.
DOI : 10.1038/nmeth815

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2080-2095, 2007.
DOI : 10.1109/TIP.2007.901238

G. Danuser, Computer Vision in Cell Biology, Cell, vol.147, issue.5, pp.973-978, 2011.
DOI : 10.1016/j.cell.2011.11.001

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop et al., Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.
DOI : 10.1038/nmeth.2075

S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser, Multiframe sure-let denoising of timelapse fluorescence microscopy images, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.149-152, 2008.
DOI : 10.1109/ISBI.2008.4540954

A. Doucet and C. Andrieu, On sequential simulation-based methods for Bayesian filtering, 1998.

K. Dowling, S. C. Hyde, J. Dainty, P. M. French, and J. Hares, 2-D fluorescence lifetime imaging using a time-gated image intensifier, Optics Communications, vol.135, issue.1-3, pp.1-327, 1997.
DOI : 10.1016/S0030-4018(96)00618-9

E. John, T. Eriksson, B. Dechat, B. Grin, M. Helfand et al., Introducing intermediate filaments: from discovery to disease, The Journal of Clinical Investigation, vol.119, issue.7, p.1763, 2009.

A. H. Feiveson and F. C. Delaney, The distribution and properties of a weighted sum of chi squares, National Aeronautics and Space Administration, 1968.

L. Feng, Y. Xu, Y. Yang, and X. Zheng, Multiple dense particle tracking in fluorescence microscopy images based on multidimensional assignment???, Journal of Structural Biology, vol.173, issue.2, pp.219-228, 2011.
DOI : 10.1016/j.jsb.2010.11.001

E. Thomas, Y. Fortmann, M. Bar-shalom, and . Schee, Multi-target tracking using joint probabilistic data association, Decision and Control including the Symposium on Adaptive Processes 19th IEEE Conference on, pp.807-812, 1980.

D. Fortun, C. Chen, P. Paul-gilloteaux, F. Waharte, J. Salamero et al., Correlation and variational approaches for motion and diusion estimation in fluorescence imaging, EUSIPCO-European Signal Processing Conference, pp.1-5, 2013.

D. Fraser and J. Potter, The optimum linear smoother as a combination of two optimum linear filters, IEEE Transactions on Automatic Control, vol.14, issue.4, pp.387-390, 1969.
DOI : 10.1109/TAC.1969.1099196

A. Frenkel, M. Sartor, and M. Wlodawski, Photon-noise-limited operation of intensified CCD cameras, Applied Optics, vol.36, issue.22, pp.5288-5297, 1997.
DOI : 10.1364/AO.36.005288

W. Theodorus, R. M. Gadella, T. M. Clegg, and . Jovin, Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data, 3%3C139::AID-BIO4%3E3.0.CO;2-T/abstract, pp.139-159, 1994.

E. Gaviola, Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten, Zeitschrift für Physik, pp.11-12853, 1927.
DOI : 10.1007/BF01776683

E. Gaviola, Die Abklingungszeiten der Fluoreszenz von Farbstoffl??sungen, Annalen der Physik, vol.32, issue.23, pp.681-710, 1926.
DOI : 10.1002/andp.19263862304

J. Gelles, J. Bruce, . Schnapp, P. Michael, and . Sheetz, Tracking kinesin-driven movements with nanometre-scale precision, Nature, vol.331, issue.6155, pp.450-453, 1988.
DOI : 10.1038/331450a0

A. Bibliography, T. Genovesio, V. Liedl, W. J. Emiliani, M. Parak et al., Multiple particle tracking in 3-D+ t microscopy: method and application to the tracking of endocytosed quantum dots, IEEE Transactions on Image Processing, vol.15, issue.5, pp.1062-1070, 2006.

A. Genovesio, B. Zhang, and J. Olivo-marin, Tracking of multiple fluorescent biological objects in three dimensional video microscopy, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), p.1105, 2003.
DOI : 10.1109/ICIP.2003.1247160

N. Ben, . Giepmans, R. Stephen, . Adams, H. Mark et al., The fluorescent toolbox for assessing protein location and function, Science, issue.5771, pp.312217-224, 2006.

J. William, M. Godinez, S. Lampe, B. Wörz, R. Müller et al., Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences, Medical Image Analysis, vol.13, issue.2, pp.325-342, 2009.

J. William, M. Godinez, R. Lampe, . Eils, K. Muller et al., Tracking multiple particles in fluorescence microscopy images via probabilistic data association, Biomedical Imaging: From Nano to Macro IEEE International Symposium on, pp.1925-1928, 2011.

D. Robert, B. Goldman, . Grin, G. Melissa, . Mendez et al., Intermediate filaments: versatile building blocks of cell structure, Current Opinion in Cell Biology, vol.20, issue.1, pp.28-34, 2008.

E. Gratton and M. Limkeman, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophysical Journal, vol.44, issue.3, pp.315-324, 1983.
DOI : 10.1016/S0006-3495(83)84305-7

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, Journal of Biological Chemistry, vol.2602603440, issue.66, pp.3440-3450, 1985.

G. Mats and . Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.37, pp.13081-13086, 2005.

J. Han and K. Burgess, Fluorescent Indicators for Intracellular pH, Chemical Reviews, vol.110, issue.5, pp.2709-2728, 2010.
DOI : 10.1021/cr900249z

Q. Hanley, D. Subramaniam, T. Arndt-jovin, and . Jovin, Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression, Cytometry, vol.263, issue.4, pp.248-260, 2001.
DOI : 10.1002/1097-0320(20010401)43:4<248::AID-CYTO1057>3.0.CO;2-Y

J. Hedstrom, F. Sedarous, and . Prendergast, Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer, Biochemistry, vol.27, issue.17, pp.6203-6208, 1988.
DOI : 10.1021/bi00417a002

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer et al., QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ, Nature Methods, vol.47, issue.5, pp.339-340, 2010.
DOI : 10.1038/nmeth0510-339

H. Herrmann, H. Bär, L. Kreplak, V. Sergei, U. Strelkov et al., Intermediate filaments: from cell architecture to nanomechanics, Nature Reviews Molecular Cell Biology, vol.14, issue.7, pp.562-573, 2007.
DOI : 10.1038/nrm2197

M. A. Hink, T. Bisseling, and A. J. Visser, Imaging protein-protein interactions in living cells, Plant Molecular Biology, vol.50, issue.6, pp.871-883, 2002.
DOI : 10.1023/A:1021282619035

L. Frank and . Hitchcock, The distribution of a product from several sources to numerous localities, Math. Phys, vol.20, issue.1, p.224, 1941.

O. Holub, M. J. Seuerheld, C. Gohlke, R. M. Govindjee, and . Clegg, Fluorescence Lifetime Imaging (FLI) in Real-Time -a New Technique in Photosynthesis Research, Photosynthetica, vol.38, issue.4, pp.581-599, 2001.
DOI : 10.1023/A:1012465508465

O. Holub, Fluorescence lifetime imaging at video rate a new technique in photosynthesis research, 2003.

F. Erik, F. Hom, T. K. Marchis, S. Lee, D. A. Haase et al., AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data, Journal of the Optical Society of America A, vol.24, issue.6, pp.1580-1600, 2007.

R. Hooke and R. Waller-robert-hooke, The Posthumous Works of Containing His Cutlerian Lectures, and Other Discourses, Read at the Meetings of the Illustrated with Sculptures. To These Discourses is Prefixt the Author's Life, Illustrious Royal Society, pp.1705-1705

S. Huet, E. Karatekin, V. Samuel-tran, I. Fanget, S. Cribier et al., Analysis of Transient Behavior in Complex Trajectories: Application to Secretory Vesicle Dynamics, Biophysical Journal, vol.91, issue.9, pp.3542-3559, 2006.
DOI : 10.1529/biophysj.105.080622

URL : https://hal.archives-ouvertes.fr/hal-00169591

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-muraca, Fluorescence lifetime-based sensing in tissues: a computational study, Biophysical Journal, vol.68, issue.4, pp.1574-1582, 1995.
DOI : 10.1016/S0006-3495(95)80330-9

M. Isard and A. Blake, Contour tracking by stochastic propagation of conditional density, European Conference on Computer Vision?ECCV'96, pp.343-356, 1996.
DOI : 10.1007/BFb0015549

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein et al., Robust single-particle tracking in live-cell time-lapse sequences, Nature Methods, vol.4, issue.8, pp.695-702, 2008.
DOI : 10.1046/j.1365-2818.2002.01066.x

A. Elizabeth, . Jares-erijman, M. Thomas, and . Jovin, FRET imaging, Nature Biotechnology, vol.21, issue.11, pp.1387-1395, 2003.

R. Jonker and A. Volgenant, Ein Algorithmus mit k??rzesten alternierenden Wegen f??r dichte und d??nne Zuordnungsprobleme, Computing, vol.1, issue.4, pp.325-340, 1987.
DOI : 10.1007/BF02278710

J. Simon, . Julier, K. Jerey, H. F. Uhlmann, and . Durrant-whyte, A new approach for filtering nonlinear systems, American Control Conference Proceedings of the, pp.1628-1632, 1995.

Y. Kalaidzidis, Intracellular objects tracking, European Journal of Cell Biology, vol.86, issue.9, pp.569-578, 2007.
DOI : 10.1016/j.ejcb.2007.05.005

Y. Kalaidzidis, Multiple objects tracking in fluorescence microscopy, Journal of Mathematical Biology, vol.225, issue.3, pp.57-80, 2009.
DOI : 10.1007/s00285-008-0180-4

R. E. Kalman and . Others, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

A. Kechkar, D. Nair, M. Heilemann, D. Choquet, and J. Sibarita, Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy, PLoS ONE, vol.17, issue.4, p.62918, 2013.
DOI : 10.1371/journal.pone.0062918.g006

C. Kervrann, Neighborhod filters and novel Bayesian approximations for non-local image regularization, In SIAM Imaging Science, 2010.

C. Kervrann, J. Boulanger, and P. Coupe, Bayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal, Scale-Space and Variational Methods (SSVM'07), pp.520-532, 2007.
DOI : 10.1007/978-3-540-72823-8_45

URL : https://hal.archives-ouvertes.fr/hal-00645444

H. Kim, X. Li, C. T. Jones, C. M. Rice, J. Garcia et al., Development of a multiplex phenotypic cell-based high throughput screening assay to identify novel hepatitis C virus antivirals, Antiviral Research, vol.99, issue.1, pp.6-11, 2013.
DOI : 10.1016/j.antiviral.2013.04.020

T. Kyung, K. , and J. H. Eberwine, Mammalian cell transfection: the present and the future, Analytical and Bioanalytical Chemistry, vol.397, issue.8, pp.3173-3178, 2010.

R. Kirmse, S. Portet, N. Mücke, U. Aebi, H. Herrmann et al., A Quantitative Kinetic Model for the in Vitro Assembly of Intermediate Filaments from Tetrameric Vimentin, Journal of Biological Chemistry, vol.282, issue.25, pp.18563-18572, 2007.
DOI : 10.1074/jbc.M701063200

P. Kner, B. B. Chhun, E. R. Gris, L. Winoto, G. Mats et al., Super-resolution video microscopy of live cells by structured illumination, Nature Methods, vol.167, issue.5, pp.339-342, 2009.
DOI : 10.1038/nmeth.1324

A. Kusumi, Y. Sako, and M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophysical Journal, vol.65, issue.5, pp.2021-2040, 1993.
DOI : 10.1016/S0006-3495(93)81253-0

T. Lagache, D. Dauty, and . Holcman, Physical principles and models describing intracellular virus particle dynamics, Current Opinion in Microbiology, vol.12, issue.4, pp.439-445, 2009.
DOI : 10.1016/j.mib.2009.06.015

A. Lajevardipour and A. H. Clayton, The Effect of Translational Motion on FLIM Measurements-Single Particle Phasor-FLIM, Journal of Fluorescence, vol.235, issue.2, pp.671-679, 2013.
DOI : 10.1007/s10895-013-1174-1

R. Joseph, H. Lakowicz, and . Szmacinski, Fluorescence lifetime-based sensing of pH, Ca2+, K+ and glucose, Sensors and Actuators B: Chemical, vol.11, issue.13, pp.133-143, 1993.

J. R. Lakowicz and B. R. Masters, Principles of fluorescence spectroscopy, Journal of Biomedical Optics, vol.13, p.29901, 2008.
DOI : 10.1007/978-0-387-46312-4

J. Lee, Speckle analysis and smoothing of synthetic aperture radar images, Computer Graphics and Image Processing, vol.17, issue.1, pp.24-32, 1981.
DOI : 10.1016/S0146-664X(81)80005-6

Y. Li, P. Jung, and A. Brown, Axonal Transport of Neurofilaments: A Single Population of Intermittently Moving Polymers, Journal of Neuroscience, vol.32, issue.2, pp.746-758, 2012.
DOI : 10.1523/JNEUROSCI.4926-11.2012

L. Liang, H. Shen, P. D. Camilli, S. James, and . Duncan, Tracking Clathrin Coated Pits with a Multiple Hypothesis Based Method, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2010, pp.315-322, 2010.
DOI : 10.1007/978-3-642-15745-5_39

H. Lin, P. Herman, and J. R. Lakowicz, Fluorescence lifetime-resolved pH imaging of living cells, Cytometry, vol.72, issue.2, pp.77-89, 2003.
DOI : 10.1002/cyto.a.10028

J. Lippincott-schwartz, Development and Use of Fluorescent Protein Markers in Living Cells, Science, vol.300, issue.5616, pp.87-91, 2003.
DOI : 10.1126/science.1082520

J. Lippincott-schwartz, E. Snapp, and A. Kenworthy, Studying protein dynamics in living cells. Nature reviews, Molecular cell biology, vol.2, issue.6, pp.444-456, 2001.

H. Lodish, Molecular cell biology, 2008.

C. Louchet, Variational and Bayesian models for image denoising : from total variation towards non-local means, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00371438

M. Machacek, L. Hodgson, C. Welch, H. Elliott, O. Pertz et al., Bibliography Coordination of Rho GTPase activities during cell protrusion, Nature, issue.7260, p.461

E. Klas, J. Magnusson, and . Jaldén, A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages, Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, pp.382-385, 2012.

M. Makitalo and A. Foi, Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise, IEEE Transactions on Image Processing, vol.22, issue.1, pp.91-103, 2013.
DOI : 10.1109/TIP.2012.2202675

P. Marjoram, P. Molitor, V. Plagnol, and S. Tavaré, Markov chain Monte Carlo without likelihoods, Proceedings of the National Academy of Sciences of the United States of America, pp.15324-15328, 2003.
DOI : 10.1073/pnas.0306899100

K. Matusita, Decision rule, based on the distance, for the classification problem, Annals of the Institute of Statistical Mathematics, vol.VII, issue.1, pp.67-77, 1956.
DOI : 10.1007/BF02863571

E. Meijering, I. Smal, and G. Danuser, Tracking in molecular bioimaging, IEEE Signal Processing Magazine, vol.23, issue.3, pp.46-53, 2006.
DOI : 10.1109/MSP.2006.1628877

E. Meijering, O. Dzyubachyk, and I. Smal, Methods for Cell and Particle Tracking, Methods Enzymol, vol.504, issue.9, pp.183-200, 2012.
DOI : 10.1016/B978-0-12-391857-4.00009-4

D. Miller and D. Shakes, Chapter 16 Immunofluorescence Microscopy, Methods in Cell Biology, vol.48, pp.365-394, 1995.
DOI : 10.1016/S0091-679X(08)61396-5

M. Minsky, Memoir on inventing the confocal scanning microscope, Scanning, vol.10, issue.4, pp.128-138, 1988.
DOI : 10.1002/sca.4950100403

O. Desmond and . Connor, Time-Correlated Single Photon Counting, 1984.

J. Olivo-marin, Extraction of spots in biological images using multiscale products, Pattern Recognition, vol.35, issue.9, pp.1989-1996, 2002.
DOI : 10.1016/S0031-3203(01)00127-3

A. Olympus and . Inc, Olympus Microscopy Resource Center | Confocal Microscopy -Calcium Ion Probes, 2012.

R. M. Clegg and P. C. Schneider, Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications, Review of Scientific Instruments, vol.68, pp.4107-4119, 1997.

J. Philip and K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging, Journal of the Optical Society of America A, vol.20, issue.2, pp.368-379, 2003.
DOI : 10.1364/JOSAA.20.000368

V. Prahlad, M. Yoon, D. Robert, . Moir, D. Ronald et al., Rapid Movements of Vimentin on Microtubule Tracks: Kinesin-dependent Assembly of Intermediate Filament Networks, The Journal of Cell Biology, vol.110, issue.1, pp.159-170, 1998.
DOI : 10.1083/jcb.143.1.147

D. Prasher, V. Eckenrode, W. Ward, M. Prendergast, and . Cormier, Primary structure of the Aequorea victoria green-fluorescent protein, Gene, vol.111, issue.2, pp.229-233, 1992.
DOI : 10.1016/0378-1119(92)90691-H

H. Qian, P. Michael, . Sheetz, L. Elliot, and . Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems, Biophysical Journal, vol.60, issue.4, pp.910-921, 1991.
DOI : 10.1016/S0006-3495(91)82125-7

V. Racine, A. Hertzog, J. Jouanneau, J. Salamero, C. Kervrann et al., Multiple-Target Tracking of 3D Fluorescent Objects Based on Simulated Annealing, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.1020-1023, 2006.
DOI : 10.1109/ISBI.2006.1625094

S. Ramani, C. Vonesch, and M. Unser, Deconvolution of 3D fluorescence micrographs with automatic risk minimization, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.732-735, 2008.
DOI : 10.1109/ISBI.2008.4541100

A. R. Rao, Computing oriented texture fields, 1990.
DOI : 10.1016/1049-9652(91)90059-s

URL : http://deepblue.lib.umich.edu/bitstream/2027.42/29428/1/0000509.pdf

D. Reid, An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, vol.24, issue.6, pp.843-854, 1979.
DOI : 10.1109/TAC.1979.1102177

S. Hamid-rezatofighi, S. Gould, R. Hartley, K. Mele, E. William et al., Application of the IMM-JPDA Filter to Multiple Target Tracking in Total Internal Reflection Fluorescence Microscopy Images, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2012, pp.357-364, 2012.
DOI : 10.1007/978-3-642-33415-3_44

P. J. Rousseeuw, A. M. Leroy, and J. Wiley, Robust Regression and Outlier Detection, 1987.
DOI : 10.1002/0471725382

J. Salmon and Y. Strozecki, Patch reprojections for Non-Local methods, Signal Processing, vol.92, issue.2, pp.477-489, 2012.
DOI : 10.1016/j.sigpro.2011.08.011

J. Michael and . Saxton, Single-particle tracking: models of directed transport, Biophysical Journal, vol.67, issue.5, pp.2110-2119, 1994.

J. Michael and . Saxton, Single-particle tracking: models of directed transport, Biophysical Journal, vol.67, issue.5, pp.2110-2119, 1994.

F. Ivo, P. Sbalzarini, and . Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of structural biology, vol.151, issue.2, pp.182-195, 2005.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes, Nature Methods, vol.84, issue.8, pp.687-694, 2008.
DOI : 10.1038/nmeth.1176

O. Shimomura, F. Johnson, and Y. Saiga, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.223-239, 1962.
DOI : 10.1002/jcp.1030590302

I. Smal, M. Loog, W. Niessen, and E. Meijering, Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.282-301, 2010.
DOI : 10.1109/TMI.2009.2025127

I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering, Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis, IEEE Transactions on Medical Imaging, vol.27, issue.6, pp.789-804, 2008.
DOI : 10.1109/TMI.2008.916964

I. Smal, W. Niessen, and E. Meijering, A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.264-267, 2008.
DOI : 10.1109/ISBI.2008.4540983

B. L. Sprague, C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon et al., Mechanisms of Microtubule-Based Kinetochore Positioning in the Yeast Metaphase Spindle, Biophysical Journal, vol.84, issue.6, pp.3529-3546, 2003.
DOI : 10.1016/S0006-3495(03)75087-5

B. Spring and R. Clegg, Image analysis for denoising full-field frequency-domain fluorescence lifetime images, Journal of Microscopy, vol.38, issue.2, pp.221-237, 2009.
DOI : 10.1111/j.1365-2818.2009.03212.x

B. Squire and B. Verveer, Multiple frequency fluorescence lifetime imaging microscopy, Journal of Microscopy, vol.197, issue.2, pp.136-149, 2000.
DOI : 10.1046/j.1365-2818.2000.00651.x

URL : http://hdl.handle.net/11858/00-001M-0000-0014-1033-7

F. Robert and . Stengel, Optimal control and estimation. Dover publications, 1986.

G. G. Stokes, On the Change of Refrangibility of Light, Philosophical Transactions of the Royal Society of London, vol.142, issue.0, pp.463-562, 1852.
DOI : 10.1098/rstl.1852.0022

K. Suhling, P. M. French, and D. Phillips, Time-resolved fluorescence microscopy, Photochemical & Photobiological Sciences, vol.4, issue.1, pp.13-412924, 2005.
DOI : 10.1039/b412924p

D. Thomann, . Dr-rines, G. Sorger, and . Danuser, Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement, Journal of Microscopy, vol.208, issue.1, pp.49-64, 2002.
DOI : 10.1046/j.1365-2818.2002.01066.x

I. Tinoco, L. Ruben, and . Gonzalez, Biological mechanisms, one molecule at a time, Genes & Development, vol.25, issue.12, pp.1205-1231, 2011.
DOI : 10.1101/gad.2050011

R. Tsien, The green fluorescent protein Annual review of biochemistry, pp.509-544, 1998.

K. Jitendra and . Tugnait, Detection and estimation for abruptly changing systems, Automatica, vol.18, issue.5, pp.607-615, 1982.

D. Ronald and . Vale, The molecular motor toolbox for intracellular transport, Cell, vol.112, issue.4, pp.467-480, 2003.

E. B. Van-munster and T. W. Gadella-jr, Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order, Cytometry, vol.2, issue.2, pp.185-194, 2004.
DOI : 10.1002/cyto.a.20013

M. Vilela, N. Halidi, S. Besson, H. Elliott, K. Hahn et al., Fluctuation Analysis of Activity Biosensor Images for the Study of Information Flow in Signaling Pathways, Methods Enzymol, vol.519, pp.253-276, 2013.
DOI : 10.1016/B978-0-12-405539-1.00009-9

C. Vonesch, F. Aguet, J. Vonesch, and M. Unser, The colored revolution of bioimaging, IEEE Signal Processing Magazine, vol.23, issue.3, pp.20-31, 2006.
DOI : 10.1109/MSP.2006.1628875

T. Walter, M. Held, B. Neumann, J. Hériché, C. Conrad et al., Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging, Journal of Structural Biology, vol.170, issue.1, pp.1-9, 2010.
DOI : 10.1016/j.jsb.2009.10.004

URL : https://hal.archives-ouvertes.fr/hal-01427996

L. Wang and A. Brown, Rapid Intermittent Movement of Axonal Neurofilaments Observed by Fluorescence Photobleaching, Molecular Biology of the Cell, vol.12, issue.10, pp.3257-3267, 2001.
DOI : 10.1091/mbc.12.10.3257

R. Mark, C. Winter, G. Fang, B. Banker, . Roysam et al., Axonal transport analysis using Multitemporal Association Tracking, International Journal of Computational Biology and Drug Design, vol.5, issue.1, pp.35-48, 2012.

H. Yang, X. Descombes, C. Kervrann, C. Medioni, and F. Besse, Tracking Growing Axons by Particle Filtering in 3D???+???t Fluorescent Two-Photon Microscopy Images, ACCV -Asian Conference on Computer Vision, pp.272-283, 2012.
DOI : 10.1007/978-3-642-37431-9_21

URL : https://hal.archives-ouvertes.fr/hal-00740966

J. Won-yoon, A. Bruckbauer, J. William, D. Fitzgerald, and . Klenerman, Bayesian Inference for Improved Single Molecule Fluorescence Tracking, Biophysical Journal, vol.94, issue.12, pp.4932-4947, 2008.
DOI : 10.1529/biophysj.107.116285

M. Yoon, D. Robert, V. Moir, . Prahlad, D. Robert et al., Motile Properties of Vimentin Intermediate Filament Networks in Living Cells, The Journal of Cell Biology, vol.86, issue.1, pp.147-157, 1998.
DOI : 10.1073/pnas.76.12.6226

C. Zimmer, From microbes to numbers: extracting meaningful quantities from images, Cellular Microbiology, vol.21, issue.12, pp.1828-1835, 2012.
DOI : 10.1111/cmi.12032