Y. Bekhti, N. Zilber, F. Pedregosa, P. Ciuciu, V. Van-wassenhove et al., Decoding perceptual thresholds from MEG/EEG, 2014 International Workshop on Pattern Recognition in Neuroimaging, p.0, 2014.
DOI : 10.1109/PRNI.2014.6858510

URL : https://hal.archives-ouvertes.fr/hal-01032909

V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, A perceptual-toconceptual gradient of word coding along the ventral path, 4th International Workshop on Pattern Recognition in Neuroimaging, pp.3-6, 2014.

W. Chu and S. Keerthi, New approaches to support vector ordinal regression, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102370

W. Chu and S. Keerthi, Support Vector Ordinal Regression, Neural Computation, vol.47, issue.3, pp.792-815, 2001.
DOI : 10.1162/089976601300014493

K. J. Friston, A. Holmes, and J. P. Poline, Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, 1995.
DOI : 10.1002/hbm.460020402

R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression, pp.115-132, 1998.

K. Jimura, A. Russell, and . Poldrack, Analyses of regional-average activation and multivoxel pattern information tell complementary stories, Neuropsychologia, vol.50, issue.4, pp.1-9, 2011.
DOI : 10.1016/j.neuropsychologia.2011.11.007

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3161

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, Identifying natural images from human brain activity, Nature, vol.79, issue.7185, pp.352-357, 2008.
DOI : 10.1038/nature06713

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484

Y. Lee, Y. Lin, and G. Wahba, Multicategory Support Vector Machines, Journal of the American Statistical Association, vol.99, issue.465, pp.9967-81, 2004.
DOI : 10.1198/016214504000000098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1879

L. Li and H. Lin, Ordinal Regression by Extended Binary Classiication, Advances in Neural Information Processing Systems (NIPS), 2007.

L. Hsuan-tien-lin and . Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice, Algorithmic Learning Theory, pp.319-333, 2006.

T. Liu, Learning to Rank for Information Retrieval, Foundations and Trends?? in Information Retrieval, vol.3, issue.3, pp.225-331, 2009.
DOI : 10.1561/1500000016

P. Mccullagh, Regression Models for Ordinal Data, Journal of the Royal Statistical Society, vol.42, issue.2, pp.109-142, 1980.

T. Naselaris, J. Ryan, . Prenger, N. Kendrick, M. Kay et al., Bayesian Reconstruction of Natural Images from Human Brain Activity, Neuron, vol.63, issue.6, pp.902-915, 2009.
DOI : 10.1016/j.neuron.2009.09.006

F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion et al., Learning to Rank from Medical Imaging Data, Machine Learning in Medical Imaging, pp.234-241, 2012.
DOI : 10.1007/978-3-642-35428-1_29

URL : https://hal.archives-ouvertes.fr/hal-00717990

F. Pedregosa, M. Eickenberg, P. Ciuciu, B. Thirion, and A. Gramfort, Data-driven HRF estimation for encoding and decoding models, NeuroImage, vol.104, pp.209-220, 2014.
DOI : 10.1016/j.neuroimage.2014.09.060

URL : https://hal.archives-ouvertes.fr/hal-00952554

G. Harish, S. Ramaswamy, and . Agarwal, Classiication Calibration Dimension for General Multiclass Losses, Advances in Neural Information Processing Systems, pp.1-15, 2012.

C. David, J. A. Alsop, and . Detre, Multisection cerebral blood ow mr imaging with continuous arterial spin labeling, Radiology, vol.208, issue.2, pp.410-416, 1998.

A. C. Frederico, . Azevedo, R. B. Ludmila, L. T. Carvalho, J. M. Grinberg et al., Roberto Lent, and Suzana Herculano-Houzel. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain, The Journal of Comparative Neurology, issue.5, pp.513532-541, 2009.

L. Robert, J. C. Barry, and . Gore, Enhanced phase regression with savitzky-golay ltering for high-resolution bold fmri, Human Brain Mapping, vol.35, issue.8, pp.3832-3840, 2014.

E. J. Timothy, M. Behrens, M. D. Jenkinson, S. M. Robson, H. Smith et al., A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex, Neuroimage, vol.30, issue.1, pp.220-227, 2006.

E. J. Timothy, M. W. Behrens, M. E. Woolrich, M. F. Walton, and . Rushworth, Learning the value of information in an uncertain world, Nature neuroscience, vol.10, issue.9, pp.1214-1221, 2007.

V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, A perceptual-toconceptual gradient of word coding along the ventral path, In Pattern Recognition in Neuroimaging, 2014.

A. Borogovac and I. Asllani, Arterial spin labeling (ASL) fMRI: Advantages, theoretical constrains and experimental challenges in neurosciences, International Journal of Biomedical Imaging, 2012.

M. Geoorey, S. A. Boynton, G. H. Engel, D. J. Glover, and . Heeger, Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1, The Journal of Neuroscience, vol.16, issue.13, pp.4207-4221, 1996.

E. Bullmore, M. Brammer, S. C. Williams, S. Rabe-hesketh, N. Janot et al., Statistical methods of estimation and inference for functional MR image analysis, Magnetic Resonance in Medicine, vol.13, issue.2, pp.261-277, 1996.
DOI : 10.1002/mrm.1910350219

N. Chauuert, P. Ciuciu, J. Kahn, and P. Weiss, Variable density sampling with continuous trajectories . application to MRI, SIAM J. Imaging Science, vol.7, issue.4, p.2014

W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, vol.39, issue.368, pp.829-836, 1979.
DOI : 10.1214/aos/1176343886

S. Mark and . Cohen, Parametric analysis of fMRI data using linear systems methods, NeuroImage, vol.6, issue.2, pp.93-103, 1997.

T. Çukur, S. Nishimoto, A. G. Huth, and J. L. Gallant, Attention during natural vision warps semantic representation across the human brain, Nature Neuroscience, vol.16, issue.6, pp.763-770, 2013.
DOI : 10.1038/nn.3381

M. Anders, R. L. Dale, and . Buckner, Selective averaging of rapidly presented individual trials using fMRI, Human Brain Mapping, vol.5, issue.5, pp.329-369, 1997.

A. John, J. Detre, and . Wang, Technical aspects and utility of fMRI using BOLD and ASL, Clinical Neurophysiology, vol.113, issue.5, pp.621-634, 2002.

J. A. Detre, W. Zhang, D. A. Roberts, A. C. Silva, D. S. Williams et al., Tissue specific perfusion imaging using arterial spin labeling, NMR in Biomedicine, vol.91, issue.1-2, pp.75-82, 1994.
DOI : 10.1002/nbm.1940070112

K. J. Friston, A. P. Holmes, and J. B. Poline, Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, 1995.
DOI : 10.1002/hbm.460020402

S. Michael and . Gazzaniga, The cognitive neurosciences, 2004.

H. Gary and . Glover, Deconvolution of impulse response in event-related BOLD fMRI, NeuroImage, vol.9, issue.4, pp.416-429, 1999.

A. Gramfort, Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00426852

M. Hanke, J. Florian, P. Baumgartner, . Ibe, R. Falko et al., A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie, Scientific Data, vol.8, 2014.
DOI : 10.1038/sdata.2014.3

H. Johansen-berg, T. E. Behrens, E. Sillery, O. Ciccarelli, A. J. Thompson et al., Functional-Anatomical Validation and Individual Variation of Diffusion Tractography-based Segmentation of the Human Thalamus, Cerebral Cortex, vol.15, issue.1, pp.31-39, 2005.
DOI : 10.1093/cercor/bhh105

F. Kruggel, S. Zysset, and D. Y. Von-cramon, Nonlinear Regression of Functional MRI Data: An Item Recognition Task Study, NeuroImage, vol.12, issue.2, pp.173-183, 2000.
DOI : 10.1006/nimg.2000.0604

A. Martin, J. M. Lindquist, . Loh, Y. Lauren, . Atlas et al., Modeling the hemodynamic response function in fmri: eeciency, bias and mis-modeling, Neuroimage, vol.45, issue.1, pp.187-198, 2009.

M. Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, vol.170, issue.6, pp.1182-1195, 2007.
DOI : 10.1002/mrm.21391

V. Michel, Understanding the visual cortex by using classiication techniques, 2010.

S. Ogawa, T. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proceedings of the National Academy of Sciences, vol.87, issue.24, pp.9868-9872, 1990.
DOI : 10.1073/pnas.87.24.9868

S. Ogawa, T. Lee, A. S. Nayak, and P. Glynn, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magnetic Resonance in Medicine, vol.45, issue.1, pp.68-78, 1990.
DOI : 10.1002/mrm.1910140108

M. Pessiglione, L. Schmidt, B. Draganski, R. Kalisch, H. Lau et al., How the Brain Translates Money into Force: A Neuroimaging Study of Subliminal Motivation, Science, vol.316, issue.5826, pp.316-904, 2007.
DOI : 10.1126/science.1140459

R. Keith, J. C. Thulborn, P. M. Waterton, G. K. Matthews, and . Radda, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high eld, BBA) - General Subjects, pp.265-270, 1982.

D. Tor, A. Wager, L. Vazquez, D. C. Hernandez, and . Noll, Accounting for nonlinear BOLD eeects in fMRI: parameter estimates and a model for prediction in rapid event-related studies, NeuroImage, vol.25, issue.1, pp.206-218, 2005.

S. Donald, . Williams, A. John, . Detre, S. John et al., Magnetic resonance imaging of perfusion using spin inversion of arterial water, Proceedings of the National Academy of Sciences, pp.212-216, 1992.

B. Ye?ilyurt, K. U?urbil, and K. Uluda?, Dynamics and nonlinearities of the BOLD response at very short stimulus durations, Proceedings of the International School on Magnetic Resonance and Brain Function, pp.853-862, 2008.
DOI : 10.1016/j.mri.2008.01.008

X. Zong, J. Lee, A. J. Poplawsky, S. Kim, and J. , Compressed sensing fmri using gradient-recalled echo and EPI sequences ISSN 1053-8119. 3.2.1 Supervised Learning, NeuroImage, issue.0, pp.92312-321, 2014.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, issue.0, pp.40-79, 2010.
DOI : 10.1214/09-SS054

URL : https://hal.archives-ouvertes.fr/hal-00407906

L. Baldassarre, J. Mourao-miranda, and M. Pontil, Structured Sparsity Models for Brain Decoding from fMRI Data, 2012 Second International Workshop on Pattern Recognition in NeuroImaging, pp.5-8, 2012.
DOI : 10.1109/PRNI.2012.31

C. M. Bishop, Pattern recognition and machine learning, 2006.

R. Bock and M. Aitkin, Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm, Psychometrika, vol.46, issue.4, pp.443-459, 1981.
DOI : 10.1007/BF02293801

V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, A perceptual-toconceptual gradient of word coding along the ventral path, In Pattern Recognition in Neuroimaging, 2014.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classiiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT '92, pp.144-152, 1992.

L. Bottou, C. Cortes, S. John, H. Denker, I. Drucker et al., Comparison of classiier methods: a case study in handwritten digit recognition, International Conference on Pattern Recognition, pp.77-77, 1994.

R. Caruana and A. Niculescu, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.161-168, 2006.
DOI : 10.1145/1143844.1143865

G. Casella and R. L. Berger, Statistical Inference., Biometrics, vol.49, issue.1, 2002.
DOI : 10.2307/2532634

T. F. Chan, G. H. Golub, and P. Mulet, A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration, SIAM Journal on Scientific Computing, vol.20, issue.6, pp.1964-1977, 1999.
DOI : 10.1137/S1064827596299767

. Scott-shaobing-chen, L. David, . Donoho, A. Michael, and . Saunders, Atomic Decomposition by Basis Pursuit, SIAM Review, vol.43, issue.1, pp.129-159, 2001.
DOI : 10.1137/S003614450037906X

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

D. David, R. L. Cox, and . Savoy, Functional magnetic resonance imaging (fMRI) " brain reading " : detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, vol.19, issue.2, pp.261-270, 2003.

S. Dehaene, G. Le-clec-'h, L. Cohen, J. Poline, P. Van-de-moortele et al., Inferring behavior from functional brain images, Nature Neuroscience, vol.388, issue.7, pp.549-549, 1998.
DOI : 10.1038/2785

URL : https://hal.archives-ouvertes.fr/hal-00349936

E. Dohmatob, A. Gramfort, B. Thirion, and G. Varoquaux, Benchmarking solvers for tv-l1 leastsquares and logistic regression in brain imaging, Pattern Recoginition in Neuroimaging (PRNI), 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991743

L. David, I. M. Donoho, and . Johnstone, Adapting to unknown smoothness via wavelet shrinkage, Journal of the american statistical association, vol.90, issue.432, pp.1200-1224, 1995.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, Support vector regression machines Advances in neural information processing systems, pp.155-161, 1997.

M. Dubois, F. Hadj-selem, T. Lofstedt, M. Perrot, C. Fischer et al., Predictive support recovery with TV-Elastic Net penalty and logistic regression: An application to structural MRI, 2014 International Workshop on Pattern Recognition in Neuroimaging, pp.1-4, 2014.
DOI : 10.1109/PRNI.2014.6858517

URL : https://hal.archives-ouvertes.fr/cea-01016145

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu, Agnostic Learning of Monomials by Halfspaces Is Hard, SIAM Journal on Computing, vol.41, issue.6, pp.1558-1590, 2012.
DOI : 10.1137/120865094

R. Fisher, Statistical methods for research workers, 1925.

E. Formisano, F. D. Martino, M. Bonte, and R. Goebel, "Who" Is Saying "What"? Brain-Based Decoding of Human Voice and Speech, Science, vol.322, issue.5903, pp.322970-973, 2008.
DOI : 10.1126/science.1164318

O. Friman and C. Westin, Resampling fMRI time series, NeuroImage, vol.25, issue.3, pp.859-867, 2005.
DOI : 10.1016/j.neuroimage.2004.11.046

K. J. Friston, J. Keith, . Worsley, . Frackowiak, C. John et al., Assessing the significance of focal activations using their spatial extent, Human Brain Mapping, vol.12, issue.3, pp.210-220, 1994.
DOI : 10.1002/hbm.460010306

S. Geisser, The Predictive Sample Reuse Method with Applications, Journal of the American Statistical Association, vol.36, issue.2, pp.320-328, 1975.
DOI : 10.1080/01621459.1975.10479865

A. Gramfort, B. Thirion, and G. Varoquaux, Identifying Predictive Regions from fMRI with TV-L1 Prior, 2013 International Workshop on Pattern Recognition in Neuroimaging, 2013.
DOI : 10.1109/PRNI.2013.14

URL : https://hal.archives-ouvertes.fr/hal-00839984

A. Stephenie, F. Harrison, and . Tong, Decoding reveals the contents of visual working memory in early visual areas, Nature, vol.458, issue.7238, pp.632-635, 2009.

J. V. Haxby, I. Gobbini, L. Maura, A. Furey, . Ishai et al., Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex, Science, vol.293, issue.5539, pp.2932425-2430, 2001.
DOI : 10.1126/science.1063736

J. Haynes and G. Rees, Predicting the orientation of invisible stimuli from activity in human primary visual cortex, Nature Neuroscience, vol.268, issue.5, pp.686-691, 2005.
DOI : 10.1162/089892900562561

J. Haynes, K. Sakai, G. Rees, S. Gilbert, C. Frith et al., Reading Hidden Intentions in the Human Brain, Current Biology, vol.17, issue.4, pp.323-328, 2007.
DOI : 10.1016/j.cub.2006.11.072

S. Holmes, Bootstrapping Phylogenetic Trees: Theory and Methods, Statistical Science, vol.18, issue.2, pp.241-255, 2003.
DOI : 10.1214/ss/1063994979

Y. Kamitani and F. Tong, Decoding the visual and subjective contents of the human brain, Nature Neuroscience, vol.15, issue.5, pp.679-685, 2005.
DOI : 10.1097/00004728-199801000-00027

K. N. Kay, T. Naselaris, J. Ryan, . Prenger, L. Jack et al., Identifying natural images from human brain activity, Nature, vol.79, issue.7185, pp.352-357, 2008.
DOI : 10.1038/nature06713

R. D. King, C. Feng, and A. Sutherland, STATLOG: COMPARISON OF CLASSIFICATION ALGORITHMS ON LARGE REAL-WORLD PROBLEMS, Applied Artificial Intelligence, vol.9, issue.3, pp.289-333, 1995.
DOI : 10.1080/08839519508945477

S. Laconte, S. Strother, V. Cherkassky, J. Anderson, and X. Hu, Support vector machines for temporal classification of block design fMRI data, NeuroImage, vol.26, issue.2, pp.317-329, 2005.
DOI : 10.1016/j.neuroimage.2005.01.048

R. Brent, D. B. Logan, and . Rowe, An evaluation of thresholding techniques in fmri analysis, NeuroImage, vol.22, issue.1, pp.95-108, 2004.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1328-1340, 2011.
DOI : 10.1109/TMI.2011.2113378

T. M. Mitchell, V. Svetlana, A. Shinkareva, K. Carlson, . Chang et al., Predicting Human Brain Activity Associated with the Meanings of Nouns, Science, vol.320, issue.5880, pp.320-1191, 2008.
DOI : 10.1126/science.1152876

Y. Miyawaki, H. Uchida, O. Yamashita, M. Sato, Y. Morito et al., Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders, Neuron, vol.60, issue.5, pp.915-929, 2008.
DOI : 10.1016/j.neuron.2008.11.004

F. Mosteller and J. W. Tukey, Data analysis, including statistics, 1968.

T. Naselaris, J. Ryan, . Prenger, N. Kendrick, M. Kay et al., Bayesian Reconstruction of Natural Images from Human Brain Activity, Neuron, vol.63, issue.6, pp.902-915, 2009.
DOI : 10.1016/j.neuron.2009.09.006

T. Naselaris, K. N. Kay, S. Nishimoto, and J. L. Gallant, Encoding and decoding in fMRI, NeuroImage, vol.56, issue.2, pp.400-410, 2011.
DOI : 10.1016/j.neuroimage.2010.07.073

T. Naselaris, C. A. Olman, D. E. Stansbury, K. Ugurbil, and J. L. Gallant, A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes, NeuroImage, vol.105, issue.0, 2014.
DOI : 10.1016/j.neuroimage.2014.10.018

E. Thomas and . Nichols, Multiple testing corrections, nonparametric methods, and random eld theory, NeuroImage, vol.62, issue.2, pp.811-815, 2012.

S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu et al., Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies, Current Biology, vol.21, issue.19, pp.1641-1646, 2011.
DOI : 10.1016/j.cub.2011.08.031

P. Pinel, B. Thirion, S. Meriaux, A. Jobert, J. Serres et al., Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neuroscience, vol.8, issue.1, p.91, 2007.
DOI : 10.1186/1471-2202-8-91

URL : https://hal.archives-ouvertes.fr/hal-00784462

J. Rice, Mathematical statistics and data analysis, Cengage Learning, 2006.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

J. Shawe-taylor and N. Cristianini, Kernel methods for pattern analysis, 2004.
DOI : 10.1017/CBO9780511809682

K. Smith, Brain decoding: Reading minds, Nature, vol.502, issue.7472, 2013.
DOI : 10.1038/502428a

S. Song, Z. Zhan, Z. Long, J. Zhang, and L. Yao, Comparative study of svm methods combined with voxel selection for object category classiication on fmri data, PLoS ONE, vol.6, issue.2, pp.2-2011

C. Siong-soon, M. Brass, H. Heinze, and J. Haynes, Unconscious determinants of free decisions in the human brain, Nature Neuroscience, vol.8, issue.5, pp.543-545, 2008.
DOI : 10.1038/nrn1931

N. Staeren, H. Renvall, F. D. Martino, R. Goebel, and E. Formisano, Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex, Current Biology, vol.19, issue.6, pp.498-502, 2009.
DOI : 10.1016/j.cub.2009.01.066

C. M. Stein, Estimation of the mean of a multivariate normal distribution. The annals of Statistics, pp.1135-1151, 1981.

M. Stone, Asymptotics for and against cross-validation, Biometrika, vol.64, issue.1, pp.29-35, 1977.
DOI : 10.1093/biomet/64.1.29

. Student, The probable error of a mean, Biometrika, pp.1-25, 1908.

B. Thirion, E. Duchesnay, E. Hubbard, J. Dubois, J. Poline et al., Inverse retinotopy: Inferring the visual content of images from brain activation patterns, NeuroImage, vol.33, issue.4, pp.1104-1120, 2006.
DOI : 10.1016/j.neuroimage.2006.06.062

URL : https://hal.archives-ouvertes.fr/hal-00349668

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

A. Nikolaevich and T. Vasiliy-yakovlevich-arsenin, Solutions of ill-posed problems (translated from the russian), 1977.

E. Larry and . Toothaker, Multiple comparison procedures. Number 89, Sage, 1993.

N. Vladimir, A. Y. Vapnik, and . Chervonenkis, Teoriya raspoznavaniya obrazov. statisticheskie problemy obucheniya (theory of pattern recognition. statistical problems of learning, 1974.

H. Peter and . Westfall, Resampling-based multiple testing: Examples and methods for p-value adjustment, 1993.

K. J. Worsley, A. C. Evans, S. Marrett, and P. Neelin, A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain, Journal of Cerebral Blood Flow & Metabolism, vol.251, issue.6, pp.900-918, 1992.
DOI : 10.1038/jcbfm.1992.127

T. Zhang, Statistical Analysis of Some Multi-Category Large Margin Classiication Methods, Journal of Machine Learning Research, vol.5, pp.1225-1251, 2004.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

G. K. Bibliography, E. Aguirre, M. D. Zarahn, and . Esposito, The variability of human, BOLD hemodynamic responses, NeuroImage, vol.8, issue.4, pp.360-369, 1998.

S. Badillo, G. Varoquaux, and P. Ciuciu, Hemodynamic Estimation Based on Consensus Clustering, 2013 International Workshop on Pattern Recognition in Neuroimaging, pp.211-215, 2013.
DOI : 10.1109/PRNI.2013.61

URL : https://hal.archives-ouvertes.fr/hal-00854621

S. Badillo, T. Vincent, and P. Ciuciu, Group-level impacts of within- and between-subject hemodynamic variability in fMRI, NeuroImage, vol.82, pp.433-448, 2013.
DOI : 10.1016/j.neuroimage.2013.05.100

URL : https://hal.archives-ouvertes.fr/hal-00854481

S. Badillo, S. Desmidt, C. Ginisty, and P. Ciuciu, Multi-subject Bayesian Joint Detection and Estimation in fMRI, 2014 International Workshop on Pattern Recognition in Neuroimaging, pp.1-4, 2014.
DOI : 10.1109/PRNI.2014.6858508

Y. Bekhti, N. Zilber, F. Pedregosa, P. Ciuciu, V. Van-wassenhove et al., Decoding perceptual thresholds from MEG/EEG, 2014 International Workshop on Pattern Recognition in Neuroimaging, 2014.
DOI : 10.1109/PRNI.2014.6858510

URL : https://hal.archives-ouvertes.fr/hal-01032909

R. Casanova, S. Ryali, J. Serences, L. Yang, R. Kraft et al., The impact of temporal regularization on estimates of the BOLD hemodynamic response function: A comparative analysis, NeuroImage, vol.40, issue.4, pp.1606-1624, 2008.
DOI : 10.1016/j.neuroimage.2008.01.011

L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu, Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.180-188, 2012.
DOI : 10.1007/978-3-642-33454-2_23

URL : https://hal.archives-ouvertes.fr/hal-00859388

P. Ciuciu, J. Poline, G. Marrelec, J. Idier, C. Pallier et al., Unsupervised robust nonparametric estimation of the hemodynamic response function for any fmri experiment, IEEE Transactions on Medical Imaging, vol.22, issue.10, pp.1235-51, 2003.
DOI : 10.1109/TMI.2003.817759

URL : https://hal.archives-ouvertes.fr/cea-00333694

T. Matthew, M. A. Colonnese, M. Phillips, K. Constantine-paton, A. Kaila et al., Development of hemodynamic responses and functional connectivity in rat somatosensory cortex, Nature neuroscience, vol.11, issue.1, pp.72-79, 2007.

A. M. Dale, Optimal experimental design for event-related fMRI, Human Brain Mapping, vol.6, issue.2-3, pp.109-123, 1999.
DOI : 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W

D. Degras and M. A. Lindquist, A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies, NeuroImage, vol.98, pp.61-72, 2014.
DOI : 10.1016/j.neuroimage.2014.04.052

K. J. Friston, A. Holmes, and J. P. Poline, Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, 1995.
DOI : 10.1002/hbm.460020402

K. J. Friston, O. Josephs, G. Rees, and R. Turner, Nonlinear event-related responses in fMRI, Magnetic Resonance in Medicine, vol.4, issue.1, pp.41-52, 1998.
DOI : 10.1002/mrm.1910390109

H. Gary and . Glover, Deconvolution of impulse response in event-related BOLD fMRI, NeuroImage, vol.9, issue.4, pp.416-445, 1999.

G. H. Golub, M. Heath, and G. Wahba, Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter, Technometrics, vol.5, issue.2, pp.215-223, 1979.
DOI : 10.1080/03610927508827223

C. Goutte, A. Finn, L. K. Nielsen, and . Hansen, Modeling the hemodynamic response in fMRI using smooth FIR filters, IEEE Transactions on Medical Imaging, vol.19, issue.12, pp.1188-201, 2000.
DOI : 10.1109/42.897811

A. Daniel, J. M. Handwerker, M. D. Ollinger, and . Esposito, Variation of BOLD hemodynamic responses across subjects and brain regions and their eeects on statistical analyses, NeuroImage, vol.21, issue.4, pp.1639-51, 2004.

A. Roger, C. R. Horn, and . Johnson, Topics in matrix analysis, 1991.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, Identifying natural images from human brain activity, Nature, vol.79, issue.7185, pp.352-357, 2008.
DOI : 10.1038/nature06713

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484

K. N. Kay, J. L. Naselaris, and . Gallant, fMRI of human visual areas in response to natural images, 2011.

M. G. Kendall, A NEW MEASURE OF RANK CORRELATION, Biometrika, vol.30, issue.1-2, pp.81-93, 1938.
DOI : 10.1093/biomet/30.1-2.81

Y. Lei, L. Tong, and B. Yan, A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments. Computational and mathematical methods in medicine, p.643129, 2013.

A. Martin, . Lindquist, D. Tor, and . Wager, Validity and power in hemodynamic response modeling: A comparison study and a new approach, Hum Brain Mapp, vol.28, issue.8, pp.764-784, 2007.

C. Dong, J. Liu, and . Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical programming, vol.45, issue.1-3, pp.503-528, 1989.

S. Makni, P. Ciuciu, J. Idier, and J. Poline, Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution, IEEE Transactions on Signal Processing, vol.53, issue.9, pp.3488-3502, 2005.
DOI : 10.1109/TSP.2005.853303

S. Makni, C. Beckmann, S. Smith, and M. Woolrich, Bayesian deconvolution fMRI data using bilinear dynamical systems, NeuroImage, vol.42, issue.4, pp.1381-96, 2008.
DOI : 10.1016/j.neuroimage.2008.05.052

G. Marrelec, H. Benali, P. Ciuciu, M. Pélégrini-issac, and J. Poline, Robust Bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information, Human Brain Mapping, vol.2, issue.1, pp.1-17, 2003.
DOI : 10.1002/hbm.10100

URL : https://hal.archives-ouvertes.fr/cea-00333748

J. A. Mumford, O. Benjamin, G. Turner, . Ashby, and . Poldrack, Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses, NeuroImage, vol.59, issue.3, pp.2636-2679, 2012.
DOI : 10.1016/j.neuroimage.2011.08.076

T. Naselaris, J. Ryan, . Prenger, N. Kendrick, M. Kay et al., Bayesian Reconstruction of Natural Images from Human Brain Activity, Neuron, vol.63, issue.6, pp.902-915, 2009.
DOI : 10.1016/j.neuron.2009.09.006

G. Stephen and . Nash, Newton-type minimization via the lanczos method, SIAM Journal on Numerical Analysis, vol.21, issue.4, pp.770-788, 1984.

J. Nocedal and S. Wright, Numerical optimization, series in operations research and nancial engineering, 2006.

F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion et al., Learning to Rank from Medical Imaging Data, Third International Workshop on Machine Learning in Medical Imaging -MLMI 2012, 2012.
DOI : 10.1007/978-3-642-35428-1_29

URL : https://hal.archives-ouvertes.fr/hal-00717990

R. A. Poldrack, J. A. Mumford, and T. E. Nichols, Handbook of Functional MRI Data Analysis, 2011.
DOI : 10.1017/CBO9780511895029

J. Poline and M. Brett, The general linear model and fMRI: Does love last forever?, NeuroImage, vol.62, issue.2, pp.871-80, 2012.
DOI : 10.1016/j.neuroimage.2012.01.133

J. Röhmel and U. Mansmann, Unconditional Non-Asymptotic One-Sided Tests for Independent Binomial Proportions When the Interest Lies in Showing Non-Inferiority and/or Superiority, Biometrical Journal, vol.41, issue.2, pp.149-170, 1999.
DOI : 10.1002/(SICI)1521-4036(199905)41:2<149::AID-BIMJ149>3.0.CO;2-E

A. Savitzky, J. Marcel, and . Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.
DOI : 10.1021/ac60214a047

L. Daniel, R. L. Schacter, W. Buckner, A. M. Koutstaal, B. R. Dale et al., Late onset of anterior prefrontal activity during true and false recognition: An event-related fMRI study, NeuroImage, vol.6, issue.4, pp.259-269, 1997.

S. Schoenmakers, M. Barth, T. Heskes, and M. Van-gerven, Linear reconstruction of perceived images from human brain activity, NeuroImage, vol.83, pp.951-961, 2013.
DOI : 10.1016/j.neuroimage.2013.07.043

M. Sabrina, . Tom, R. Craig, C. Fox, . Trepel et al., The neural basis of loss aversion in decisionmaking under risk, Science, issue.5811, pp.315515-315523, 2007.

O. Benjamin, J. A. Turner, . Mumford, G. Poldrack, and . Ashby, Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs, NeuroImage, vol.62, issue.3, pp.1429-1467, 2012.

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594

J. Wang, H. Zhu, J. Fan, K. Giovanello, and W. Lin, Multiscale adaptive smoothing models for the hemodynamic response function in fMRI, The Annals of Applied Statistics, vol.7, issue.2, pp.904-935, 2013.
DOI : 10.1214/12-AOAS609SUPP

W. Mark, T. E. Woolrich, . Behrens, M. Stephen, and . Smith, Constrained linear basis sets for HRF modelling using variational bayes, NeuroImage, vol.21, issue.4, pp.1748-61, 2004.

T. Zhang, F. Li, L. Beckes, C. Brown, and J. A. Coan, Nonparametric inference of the hemodynamic response using multi-subject fMRI data, NeuroImage, vol.63, issue.3, pp.1754-65, 2012.
DOI : 10.1016/j.neuroimage.2012.08.014

T. Zhang, F. Li, L. Beckes, and J. Coan, A semi-parametric model of the hemodynamic response for multi-subject fMRI data, NeuroImage, vol.75, pp.136-181, 2013.
DOI : 10.1016/j.neuroimage.2013.02.048

C. Zhu, H. Richard, P. Byrd, J. Lu, and . Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236

P. Bloommeld and W. Steiger, Least Absolute Deviations Curve-Fitting, SIAM Journal on Scientific and Statistical Computing, vol.1, issue.2, pp.290-301, 1980.
DOI : 10.1137/0901019

P. Bloommeld and W. L. Steiger, Least absolute deviations: Theory, applications and algorithms, Birkhiiuser, 1983.

V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, A perceptual-toconceptual gradient of word coding along the ventral path, 4th International Workshop on Pattern Recognition in Neuroimaging, pp.3-6, 2014.

J. C. Christopher, R. Burges, Q. Ragno, and . Le, Learning to Rank with Nonsmooth Cost Functions, Machine Learning, vol.19, issue.17, pp.193-200, 2007.

C. Calauzènes, N. Usunier, and P. Gallinari, On the ( Non-) existence of Convex , Calibrated Surrogate Losses for Ranking, Advances in Neural Information Processing Systems 2012, pp.1-9, 2012.

S. Jaime, R. Cardoso, and . Sousa, Measuring the Performance of Ordinal Classiication, International Journal of Pattern Recognition and Artiicial Intelligence, vol.25, issue.08, pp.1173-1195, 2011.

E. Cauvet, Traitement des Structures Syntaxiques dans le langage et dans la musique, 2012.

W. Chen, Y. Lan, T. Y. Liu, and H. Li, A uniied view on loss functions in learning to rank, 2009.

W. Chu and Z. Ghahramani, Gaussian Processes for Ordinal Regression, Journal of Machine Learning Research, vol.6, pp.1-24, 2005.

W. Chu, S. Sathiya, and . Keerthi, New approaches to support vector ordinal regression, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102370

W. Chu, S. Sathiya, and . Keerthi, Support Vector Ordinal Regression, Neural Computation, vol.47, issue.3, pp.792-815, 2001.
DOI : 10.1162/089976601300014493

D. David, R. L. Cox, and . Savoy, Functional magnetic resonance imaging (fMRI) " brain reading " : detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, vol.19, issue.2, pp.261-270, 2003.

O. Dekel, C. D. Manning, and Y. Singer, Log-linear models for label ranking, Advances in Neural Information Processing Systems 16, pp.497-504, 2004.

C. John, L. W. Duchi, M. I. Mackey, and . Jordan, On the Consistency of Ranking Algorithms, Proceedings of the 27th International Conference on Machine Learning, 2010.

K. Rong-en-fan, C. Chang, X. Hsieh, C. Wang, and . Lin, Liblinear: A library for large linear classiication, The Journal of Machine Learning Research, vol.9, pp.1871-1874, 2008.

E. Frank and M. Hall, A Simple Approach to Ordinal Classiication, ECML '01: Proceedings of the 12th European Conference on Machine Learning, 2001.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An eecient boosting algorithm for combining preferences . The journal of machine learning research, pp.933-969, 2003.

C. T. Hartrick, J. P. Kovan, and S. Shapiro, The numeric rating scale for clinical pain measurement: A ratio measure? Pain Practice, pp.310-316, 2003.

R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression, pp.115-132, 2000.

C. Ho and C. Lin, Large-scale linear support vector regression, The Journal of Machine Learning Research, vol.13, issue.1, pp.3323-3348, 2012.

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3161

T. Joachims, Training linear SVMs in linear time, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.217-226, 2006.
DOI : 10.1145/1150402.1150429

S. Laconte, S. Strother, V. Cherkassky, J. Anderson, and X. Hu, Support vector machines for temporal classification of block design fMRI data, NeuroImage, vol.26, issue.2, pp.317-329, 2005.
DOI : 10.1016/j.neuroimage.2005.01.048

Y. Lee, Y. Lin, and G. Wahba, Multicategory Support Vector Machines, Journal of the American Statistical Association, vol.99, issue.465, pp.9967-81, 2004.
DOI : 10.1198/016214504000000098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1879

C. Lin, R. C. Weng, S. Sathiya, and . Keerthi, Trust region newton method for logistic regression, The Journal of Machine Learning Research, vol.9, pp.627-650, 2008.

L. Hsuan-tien-lin and . Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice, Algorithmic Learning Theory, pp.319-333, 2006.

P. Mccullagh, Regression Models for Ordinal Data, Journal of the Royal Statistical Society, vol.42, issue.2, pp.109-142, 1980.

G. Susanne, . Mueller, W. Michael, L. J. Weiner, . Thal et al., Ways toward an early diagnosis in alzheimer's disease: The alzheimer's disease neuroimaging initiative (adni) Alzheimer's & Dementia, pp.55-66, 2005.

C. Subhash, J. F. Narula, and . Wellington, The minimum sum of absolute errors regression: A state of the art survey, International Statistical Review/Revue Internationale de Statistique, pp.317-326, 1982.

T. Naselaris, N. Kendrick, S. Kay, . Nishimoto, L. Jack et al., Encoding and decoding in fMRI, NeuroImage, vol.56, issue.2, pp.400-410, 2011.
DOI : 10.1016/j.neuroimage.2010.07.073

C. Pallier, A. Devauchelle, and S. Dehaene, Cortical representation of the constituent structure of sentences, Proceedings of the National Academy of Sciences, pp.2522-2527, 2011.
DOI : 10.1073/pnas.1018711108

F. Pedregosa, Numerical optimizers for logistic regression. http://fa.bianp.net/blog/2013/ numerical-optimizers-for-logistic-regression, pp.2014-2025, 2013.

F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion et al., Learning to Rank from Medical Imaging Data, Machine Learning in Medical Imaging, pp.234-241, 2012.
DOI : 10.1007/978-3-642-35428-1_29

URL : https://hal.archives-ouvertes.fr/hal-00717990

J. D. Rennie and N. Srebro, Loss Functions for Preference Levels : Regression with Discrete Ordered Labels, Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, 2005.

W. William, E. Cohen-robert, Y. Schapire, and . Singer, Learning to order things, Advances in Neural Information Processing Systems 10: Proceedings of the 1997 Conference, p.451, 1998.

D. Sculley, Large Scale Learning to Rank, NIPS 2009 Workshop on Advances in Ranking, pp.1-6, 2009.

A. Shashua and A. Levin, Ranking with large margin principle : Two approaches, Advances in Neural Information Processing Systems (NIPS), 2003.

S. Song, Z. Zhan, Z. Long, J. Zhang, and L. Yao, Comparative study of svm methods combined with voxel selection for object category classiication on fmri data, PLoS ONE, vol.6, issue.2, pp.2-2011

A. Statnikov, F. Constantin, I. Aliferis, D. Tsamardinos, S. Hardin et al., A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis, Bioinformatics, vol.21, issue.5, pp.631-643, 2005.
DOI : 10.1093/bioinformatics/bti033

B. Thirion, E. Duchesnay, E. Hubbard, J. Dubois, J. Poline et al., Inverse retinotopy: Inferring the visual content of images from brain activation patterns, NeuroImage, vol.33, issue.4, pp.1104-1120, 2006.
DOI : 10.1016/j.neuroimage.2006.06.062

URL : https://hal.archives-ouvertes.fr/hal-00349668

F. Wauthier, M. Jordan, and N. Jojic, EEcient ranking from pairwise comparisons, Proceedings of the 30th International Conference on Machine Learning, pp.109-117, 2013.

Y. Hao-helen-zhang, Y. Liu, J. Wu, and . Zhu, Variable selection for the multicategory SVM via adaptive sup-norm regularization, Electronic Journal of Statistics, vol.2, issue.0, pp.149-167, 2008.
DOI : 10.1214/08-EJS122

Z. Zhang and M. I. Jordan, Bayesian multicategory support vector machines, In In Uncertainty in Artiicial Intelligence, 2006.

V. Cande, D. G. Ananth, and . Kleinbaum, Regression models for ordinal responses: a review of methods and applications, International journal of epidemiology, vol.26, issue.6, pp.1323-1333, 1997.

G. Ben, M. Armstrong, and . Sloan, Ordinal regression models for epidemiologic data, American Journal of Epidemiology, vol.129, issue.1, pp.191-204, 1989.

L. Peter, M. I. Bartlett, J. D. Jordan, and . Mcauliie, Convexity, classiication, and risk bounds, Journal of the American Statistical Association, vol.101, issue.473, pp.138-156, 2003.

S. Ben-david, N. Eiron, and P. M. Long, On the difficulty of approximately maximizing agreements, Journal of Computer and System Sciences, vol.66, issue.3, pp.496-514, 2003.
DOI : 10.1016/S0022-0000(03)00038-2

P. Stephen, L. Boyd, and . Vandenberghe, Convex optimization, 2004.

W. Chu and Z. Ghahramani, Gaussian processes for ordinal regression, Journal of Machine Learning Research, vol.6, pp.1-24, 2004.

W. Chu and S. Keerthi, New approaches to support vector ordinal regression, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102370

W. Chu and S. Keerthi, Support Vector Ordinal Regression, Neural Computation, vol.47, issue.3, pp.792-815, 2001.
DOI : 10.1162/089976601300014493

K. Crammer and Y. Singer, Pranking with ranking, Advances in Neural Information Processing Systems 14, 2001.

M. Orla, J. Doyle, F. O. Ashburner, . Zelaya, C. R. Stephen et al., Multivariate decoding of brain images using ordinal regression, NeuroImage, vol.81, pp.347-357, 2013.

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu, Agnostic Learning of Monomials by Halfspaces Is Hard, SIAM Journal on Computing, vol.41, issue.6, pp.1558-1590, 2012.
DOI : 10.1137/120865094

H. William and . Greene, Econometric analysis, 1997.

C. T. Hartrick, J. P. Kovan, and S. Shapiro, The numeric rating scale for clinical pain measurement: A ratio measure? Pain Practice, pp.310-316, 2003.

S. Kramer, G. Widmer, B. Pfahringer, and M. De-groeve, Prediction of Ordinal Classes Using Regression Trees, Fundamenta Informaticae, vol.47, issue.1, pp.1-13, 2001.
DOI : 10.1007/3-540-39963-1_45

Y. Lee, Y. Lin, and G. Wahba, Multicategory Support Vector Machines, Journal of the American Statistical Association, vol.99, issue.465, pp.9967-81, 2004.
DOI : 10.1198/016214504000000098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1879

L. Li and H. Lin, Ordinal Regression by Extended Binary Classiication, Advances in Neural Information Processing Systems (NIPS), 2007.

L. Hsuan-tien-lin and . Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice, Algorithmic Learning Theory, pp.319-333, 2006.

Y. Lin, A note on margin-based loss functions in classification, Statistics & Probability Letters, vol.68, issue.1, pp.73-82, 2004.
DOI : 10.1016/j.spl.2004.03.002

P. Mccullagh, Regression Models for Ordinal Data, Journal of the Royal Statistical Society, vol.42, issue.2, pp.109-142, 1980.

D. B. O-'brien, M. R. Gupta, and R. M. Gray, Cost-sensitive multi-class classiication from probability estimates, Proceedings of the 25th international conference on Machine learning, pp.712-719, 2008.

B. Peterson and F. E. Harrell, Partial Proportional Odds Models for Ordinal Response Variables, Applied Statistics, vol.39, issue.2, pp.205-217, 1990.
DOI : 10.2307/2347760

G. Harish, S. Ramaswamy, and . Agarwal, Classiication Calibration Dimension for General Multiclass Losses, Advances in Neural Information Processing Systems (NIPS), 2012.

D. Jason, N. Rennie, and . Srebro, Loss Functions for Preference Levels : Regression with Discrete Ordered Labels, Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, 2005.

R. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific Journal of Mathematics, vol.33, issue.1, pp.209-216, 1970.
DOI : 10.2140/pjm.1970.33.209

A. Shashua and A. Levin, Ranking with large margin principle : Two approaches, Advances in Neural Information Processing Systems (NIPS), 2003.

I. Steinwart, Support Vector Machines are Universally Consistent, Journal of Complexity, vol.18, issue.3, pp.768-791, 2002.
DOI : 10.1006/jcom.2002.0642

URL : http://doi.org/10.1006/jcom.2002.0642

C. J. Stone, Consistent nonparametric regression. The Annals of Statistics, pp.595-620, 1977.

A. Tewari and P. L. Bartlett, On the Consistency of Multiclass Classiication Methods, Journal of Machine Learning Research, vol.8, pp.1007-1025, 2007.

T. Zhang, Statistical Behavior and Consistency of Classiication Methods based on Convex Risk Minimization. The Annals of Statistics, pp.56-85, 2004.

@. V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, A perceptual-to-conceptual gradient of word coding along the ventral path, 2014 International Workshop on Pattern Recognition in Neuroimaging, 2014.
DOI : 10.1109/PRNI.2014.6858512

URL : https://hal.archives-ouvertes.fr/hal-00986606

@. F. Pedregosa, M. Eickenberg, P. Ciuciu, B. Thirion, and A. Gramfort, Data-driven HRF estimation for encoding and decoding models, NeuroImage, vol.104, pp.209-220, 2015.
DOI : 10.1016/j.neuroimage.2014.09.060

URL : https://hal.archives-ouvertes.fr/hal-00952554

@. F. Pedregosa, M. Eickenberg, B. Thirion, and A. Gramfort, HRF Estimation Improves Sensitivity of fMRI Encoding and Decoding Models, 2013 International Workshop on Pattern Recognition in Neuroimaging, 2013.
DOI : 10.1109/PRNI.2013.50

URL : https://hal.archives-ouvertes.fr/hal-00821946

@. F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion et al., Learning to Rank from Medical Imaging Data, Proceedings of the 3rd International Workshop on Machine Learning in Medical Imaging, 2012.
DOI : 10.1007/978-3-642-35428-1_29

URL : https://hal.archives-ouvertes.fr/hal-00717990

@. F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion et al., Improved Brain Pattern Recovery through Ranking Approaches, 2012 Second International Workshop on Pattern Recognition in NeuroImaging, 2012.
DOI : 10.1109/PRNI.2012.23

URL : https://hal.archives-ouvertes.fr/hal-00717954

@. Y. Bekhti, N. Zilber, F. Pedregosa, P. Ciuciu, V. Van-wassenhove et al., Decoding perceptual thresholds from MEG/EEG, 2014 International Workshop on Pattern Recognition in Neuroimaging, 2014.
DOI : 10.1109/PRNI.2014.6858510

URL : https://hal.archives-ouvertes.fr/hal-01032909

@. F. Pedregosa, F. Bach, and A. Gramfort, On the Consistency of Ordinal Regression Methods
URL : https://hal.archives-ouvertes.fr/hal-01054942

@. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, and A. Mueller, API design for machine learning software: experiences from the scikit-learn project, European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856511

@. M. Eickenberg, F. Pedregosa, S. Mehdi, A. Gramfort, and B. Thirion, Second Order Scattering Descriptors Predict fMRI Activity Due to Visual Textures, 2013 International Workshop on Pattern Recognition in Neuroimaging, 2013.
DOI : 10.1109/PRNI.2013.11

URL : https://hal.archives-ouvertes.fr/hal-00834928

@. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, 2014.
DOI : 10.3389/fninf.2014.00014

URL : https://hal.archives-ouvertes.fr/hal-01093971

@. F. Yepes-calderon, F. Pedregosa, F. Thirion, B. Wang, Y. Lepore et al., Automatic pathology classiication using a single feature machine learning support-vector machines, SPIE Medical Imaging International Society for Optics and Photonics, pp.903524-903524, 2014.

S. Badillo, G. Varoquaux, and P. Ciuciu, Hemodynamic Estimation Based on Consensus Clustering, 2013 International Workshop on Pattern Recognition in Neuroimaging, pp.211-215, 2013.
DOI : 10.1109/PRNI.2013.61

URL : https://hal.archives-ouvertes.fr/hal-00854621

E. Bai and Y. Liu, Least squares solutions of bilinear equations, Systems & Control Letters, vol.55, issue.6, pp.466-472, 2006.
DOI : 10.1016/j.sysconle.2005.09.010

L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu, Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.180-188, 2012.
DOI : 10.1007/978-3-642-33454-2_23

URL : https://hal.archives-ouvertes.fr/hal-00859388

D. Degras and M. A. Lindquist, A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies, NeuroImage, vol.98, pp.61-72, 2014.
DOI : 10.1016/j.neuroimage.2014.04.052

R. Herbrich, T. Graepel, K. Obermayer, and F. Informatik, Regression Models for Ordinal Data : A Machine Learning Approach, 1999.

S. Makni, C. Beckmann, S. Smith, and M. Woolrich, Bayesian deconvolution fMRI data using bilinear dynamical systems, NeuroImage, vol.42, issue.4, pp.1381-96, 2008.
DOI : 10.1016/j.neuroimage.2008.05.052

P. Mccullagh, Regression Models for Ordinal Data, Journal of the Royal Statistical Society, vol.42, issue.2, pp.109-142, 1980.

D. Sculley, Large scale learning to rank, NIPS 2009 Workshop on Advances in Ranking, pp.1-6, 2009.

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594

J. Wang, H. Zhu, J. Fan, K. Giovanello, and W. Lin, Multiscale adaptive smoothing models for the hemodynamic response function in fMRI, The Annals of Applied Statistics, vol.7, issue.2, pp.904-935, 2013.
DOI : 10.1214/12-AOAS609SUPP