A. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil et al., Sur les inégalités de Sobolev logarithmiques, volume 10 de Panoramas et Synthèses [Panoramas and Syntheses] From a large-deviations principle to the Wasserstein gradient flow : a new micro-macro passage, Comm. Math. Phys, vol.307, issue.3, pp.791-815, 2000.

S. Adams, N. Dirr, M. Peletier, and J. Zimmer, Large deviations and gradient flows, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.31, issue.2005, p.20120341, 2005.
DOI : 10.1098/rsta.2012.0341

URL : http://arxiv.org/abs/1201.4601

L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2008.

L. Ambrosio, N. Gigli, and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Mathematical Journal, vol.163, issue.7, pp.1405-1490, 2014.
DOI : 10.1215/00127094-2681605

URL : https://hal.archives-ouvertes.fr/hal-00769376

B. [. Alfonsi and . Jourdain, Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme, The Annals of Applied Probability, vol.24, issue.3, pp.1049-1080, 2014.
DOI : 10.1214/13-AAP941

URL : https://hal.archives-ouvertes.fr/hal-00727430

S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré, and M. Veneroni, Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and Partial Differential Equations, vol.47, issue.12, pp.3-4419, 2012.
DOI : 10.1007/s00526-011-0440-9

L. Ambrosio, G. Savaré, L. Zambotti, [. Benamou, and Y. Brenier, Planck equations with log-concave reference measure. Probab. Theory Related Fields A numerical method for the optimal time-continuous mass transport problem and related problems In Monge Ampère equation : applications to geometry and optimization Blower et F. Bolley : Concentration inequalities on product spaces with applications to Markov processes Combinatorial optimization over two random point sets, BB13] Franck Barthe et Charles Bordenave Séminaire de Probabilités XLV, volume 2078 de Lecture Notes in Math, pp.145-148, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00415335

[. Bibliographie, F. Bakry, P. Barthe, A. Cattiaux, and . Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab, vol.13, pp.60-66, 2008.

[. Braides and A. Defranceschi, Homogenization of multiple integrals, de Oxford Lecture Series in Mathematics and its Applications, 1998.

]. L. Bdsg-+-01, A. Bertini, D. De-sole, G. Gabrielli, and C. Jona-lasinio, Landim : Fluctuations in stationary non equilibrium states of irreversible processes, Phys. Rev. Lett, vol.87, 2001.

]. L. Bdsg-+-02, A. Bertini, D. De-sole, G. Gabrielli, C. Jona-lasinio et al., Macroscopic fluctuation theorey for stationary non equilibrium states, J. Stat. Phys, vol.107, 2002.

F. [. Bobkov and . Götze, Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities, Journal of Functional Analysis, vol.163, issue.1, pp.1-28, 1999.
DOI : 10.1006/jfan.1998.3326

G. Sergey, I. Bobkov, M. Gentil, and . Ledoux, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl, vol.80, issue.97, pp.669-696, 2001.

[. Bodineau, I. Gallagher, and L. Saint-raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones mathematicae, vol.18, issue.2
DOI : 10.1007/s00222-015-0593-9

URL : https://hal.archives-ouvertes.fr/hal-01137218

[. Bolley, A. Guillin, and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields, pp.3-4541, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00453883

B. [. Bodineau and . Helffer, The Log-Sobolev Inequality for Unbounded Spin Systems, Journal of Functional Analysis, vol.166, issue.1, pp.168-178, 1999.
DOI : 10.1006/jfan.1999.3419

. [. Bodineau, Helffer : Correlations, spectral gap and log-Sobolev inequalities for unbounded spins systems, Differential equations and mathematical physics, p.de AMS, 1999.

P. Billingsley, Convergence of probability measures Wiley Series in Probability and Statistics : Probability and Statistics, 1999.

M. [. Bobkov and . Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geometric and Functional Analysis, vol.10, issue.5, pp.1028-1052, 2000.
DOI : 10.1007/PL00001645

[. Bertini, C. Landim, and M. Mourragui, Dynamical large deviations for the boundary driven weakly asymmetric exclusion process, The Annals of Probability, vol.37, issue.6, pp.2357-2403, 2009.
DOI : 10.1214/09-AOP472

J. [. Bensoussan, G. Lions, and . Papanicolaou, Asymptotic analysis for periodic structures, 2011.

F. Bonetto, J. L. Lebowitz, and L. Rey-bellet, FOURIER'S LAW: A CHALLENGE TO THEORISTS, Mathematical physics, pp.128-150, 2000.
DOI : 10.1142/9781848160224_0008

[. Barthe and E. Milman, Transference Principles for Log-Sobolev and Spectral-Gap with Applications to Conservative Spin Systems, Communications in Mathematical Physics, vol.37, issue.2, pp.575-625, 2013.
DOI : 10.1007/s00220-013-1782-2

URL : https://hal.archives-ouvertes.fr/hal-00960803

[. Bernardin and S. Olla, Fourier???s Law for a Microscopic Model of Heat Conduction, Journal of Statistical Physics, vol.8, issue.n.1, pp.3-4271, 2005.
DOI : 10.1007/s10955-005-7578-9

]. E. Boi11 and . Boissard, Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance, Electronic Journal of Probability, vol.16, 2011.

[. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, pp.375-417, 1991.
DOI : 10.1002/cpa.3160440402

M. [. Bou-rabee and . Hairer, Nonasymptotic mixing of the MALA algorithm, IMA Journal of Numerical Analysis, vol.33, issue.1, pp.80-110, 2013.
DOI : 10.1093/imanum/drs003

E. [. Bou-rabee, Vanden-Eijnden : Pathwise accuracy and ergodicity of metropolized integrators for SDEs, Commun. Pure Appl. Math, vol.63, issue.5, pp.655-696, 2009.

D. [. Bally and . Talay, The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte-Carlo methods and Appl, pp.93-128, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074016

C. [. Bolley and . Villani, Weighted Csisz??r-Kullback-Pinsker inequalities and applications to transportation inequalities, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.14, issue.3, pp.331-352, 2005.
DOI : 10.5802/afst.1095

B. [. Bobkov and . Zegarlinski, Entropy bounds and isoperimetry, Memoirs of the American Mathematical Society, vol.176, issue.829, p.69, 2005.
DOI : 10.1090/memo/0829

P. Caputo, Uniform Poincar?? inequalities for unbounded conservative spin systems: the non-interacting case, Stochastic Processes and their Applications, vol.106, issue.2, pp.223-244, 2003.
DOI : 10.1016/S0304-4149(03)00044-9

[. Carlen, D. Cordero-erausquin, and E. Lieb, Asymmetric covariance estimates of Brascamp???Lieb type and related inequalities for log-concave measures, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.49, issue.1, pp.1-12, 2013.
DOI : 10.1214/11-AIHP462

[. Cattiaux and A. Guillin, On quadratic transportation cost inequalities, Journal de Math??matiques Pures et Appliqu??es, vol.86, issue.4, pp.341-361, 2006.
DOI : 10.1016/j.matpur.2006.06.003

]. D. Cha03 and . Chafaï, Glauber versus Kawasaki for spectral gap and logarithmic Sobolev inequalities of some unbounded conservative spin systems, Markov Process. Related Fields, vol.9, issue.3, pp.341-362, 2003.

[. Chang and H. Yau, Fluctuations of one dimensional Ginzburg-Landau models in nonequilibrium, Communications in Mathematical Physics, vol.30, issue.4, pp.209-234, 1992.
DOI : 10.1007/BF02099137

[. Desvillettes, Progrès récents concernant le programme de kac en théorie cinétique (d'après Stéphane Mischler et Clément Mouhot) Astérisque , page Exp. No. 1076, Séminaire Bourbaki, vol.2013, 2014.

[. Duong and M. Fathi, The two-scale approach for nonreversible dynamics, 2014.

A. Donald, J. Dawson, and . Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, vol.20, issue.4, pp.247-308, 1987.

[. Bibliographie, A. Giorgi, M. Marino, and . Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, vol.68, issue.83, pp.180-187, 1980.

A. [. Djellout, L. Guillin, and . Wu, Transportation cost-information inequalities and applications to random dynamical systems and diffusions, pp.2702-2732, 2004.

D. E. Diz07-]-deniz-dizdar-mémoire-de, Towards an optimal rate of convergence in the hydrodynamic limit for kawasaki dynamics Vaios Laschos et Michiel Renger : Wasserstein gradient flows from large deviations of many-particle limits, ESAIM Control Optim. Calc. Var, vol.19, issue.4, pp.1166-1188, 2007.

[. Duong, M. A. Peletier, and J. Zimmer, GENE- RIC formalism of a Vlasov-Fokker-Planck equation and connection to largedeviation principles, Nonlinearity, issue.11, pp.262951-2971, 2013.

L. [. Diaconis and . Saloff-coste, What Do We Know about the Metropolis Algorithm ?, 27th Annual ACM Symposium on the Theory of Computing (STOC'95), pp.20-36, 1998.
DOI : 10.1006/jcss.1998.1576

]. R. Dud02 and . Dudley, Real analysis and probability, volume 74 de Cambridge Studies in Advanced Mathematics, 2002.

S. [. Donsker, Large deviations from a hydrodynamic scaling limit, Communications on Pure and Applied Mathematics, vol.46, issue.3, pp.243-270, 1989.
DOI : 10.1002/cpa.3160420303

A. Dembo and O. Zeitouni, Large deviations techniques and applications , volume 38 de Stochastic Modelling and Applied Probability, 1998.

M. Fathi, Modified logarithmic sobolev inequalities for canonical ensembles . preprint, 2013.

M. Fathi, A two-scale approach to the hydrodynamic limit part II : local Gibbs behavior, ALEA Lat. Am. J. Probab. Math. Stat, vol.10, issue.2, pp.625-651, 2013.

M. Fathi, A gradient flow approach to large deviations for diffusion processes, Journal de Math??matiques Pures et Appliqu??es, vol.106, issue.5, 2014.
DOI : 10.1016/j.matpur.2016.03.018

M. Fathi and N. Frikha, Transport-Entropy inequalities and deviation estimates for stochastic approximation schemes, Electronic Journal of Probability, vol.18, issue.0, p.36, 2013.
DOI : 10.1214/EJP.v18-2586

URL : https://hal.archives-ouvertes.fr/hal-00783125

[. Fathi, Ahmed-Amine Hommann et Gabriel Stoltz : Error analysis of the transport properties of metropolized schemes

J. Feng and T. G. Kurtz, Large deviations for stochastic processes, volume 131 de Mathematical Surveys and Monographs, 2006.

S. [. Frikha and . Menozzi, Concentration bounds for stochastic approximations, Electronic Communications in Probability, vol.17, issue.0, pp.1-15, 2012.
DOI : 10.1214/ECP.v17-1952

URL : https://hal.archives-ouvertes.fr/hal-00781695

M. Fathi and G. Menz, Hydrodynamic limit for conservatic spin systems with super-quadratic single-site potential. preprint, 2014.

[. Föllmer, Random fields and diffusion processes In École d'Été de Probabilités de Saint-Flour XV?XVII, Lecture Notes in Math, vol.87, issue.1362, pp.101-203, 1985.

]. J. Fri89 and . Fritz, Hydrodynamics in a symmetric random medium, Comm. Math. Phys, vol.125, issue.1, pp.13-25, 1989.

[. Funaki, Stochastic interface models, École d'Été de Probabilités de Saint-Flour 2003, volume 1869 de Lecture Notes in Math, pp.103-274, 2005.

[. Funaki, Hydrodynamic limit for the ? interface model via two-scale approach, Probability in Complex Physical Systems : In Honour of Erwin Bolthausen and Jurgen Gartner, pp.463-490, 2012.

C. [. Gozlan and . Léonard, A large deviation approach to some transportation cost inequalities. Prob. Th. Rel. Fields, GL10] N. Gozlan et C. Léonard : Transport inequalities. A survey. Markov Process. Related Fields, pp.235-283635, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00012764

[. Gigli and M. Ledoux, From log Sobolev to Talagrand: A quick proof, Discrete and Continuous Dynamical Systems, vol.33, issue.5, pp.1927-1935, 2013.
DOI : 10.3934/dcds.2013.33.1927

URL : https://hal.archives-ouvertes.fr/hal-00769384

N. Grunewald, F. Otto, C. Villani, and G. Maria, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.45, issue.2, pp.302-351, 2009.
DOI : 10.1214/07-AIHP200

. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities Varadhan : Nonlinear diffusion limit for a system with nearest neighbor interactions, Ann. Probab. Comm. Math. Phys, vol.37, issue.1181, pp.2480-249831, 1988.

[. Gross, Logarithmic Sobolev Inequalities, American Journal of Mathematics, vol.97, issue.4, pp.1061-1083, 1975.
DOI : 10.2307/2373688

M. Gromov, Paul Lévy's isoperimetric inequality. Prépublication I, 1980.

[. Gromov, Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics, 2007.

L. [. Guerra, B. Rosen, and . Simon, The P(?) 2 Euclidean quantum field theory as classical statistical mechanics. I, II Samson : From concentration to logarithmic Sobolev and Poincaré inequalities, GRS11a] Nathael Gozlan, pp.1491-1522, 1975.

C. Gozlan, P. Roberto, and . Samson, A new characterization of Talagrand???s transport-entropy inequalities and applications, The Annals of Probability, vol.39, issue.3, pp.857-880, 2011.
DOI : 10.1214/10-AOP570

C. [. Gozlan, P. Roberto, and . Samson, Characterization of Talagrand???s transport-entropy inequalities in metric spaces, The Annals of Probability, vol.41, issue.5, pp.3112-3139, 2013.
DOI : 10.1214/12-AOP757

C. Gozlan, P. Roberto, and . Samson, Hamilton Jacobi equations on metric spaces and transport entropy inequalities, Revista Matem??tica Iberoamericana, vol.30, issue.1, pp.133-163, 2014.
DOI : 10.4171/RMI/772

URL : https://hal.archives-ouvertes.fr/hal-00795829

]. W. Bibliographie-[-has70 and . Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, pp.97-109, 1970.

A. [. Heyes and . Bra?ka, Monte Carlo as Brownian dynamics, Molecular Physics, vol.94, issue.3, pp.447-454, 1998.
DOI : 10.1080/00268979809482337

D. Hilbert, Mathematical problems, Bulletin of the American Mathematical Society, vol.8, issue.10, pp.437-479, 1902.
DOI : 10.1090/S0002-9904-1902-00923-3

M. Hairer and J. C. Mattingly, Yet Another Look at Harris??? Ergodic Theorem for Markov Chains, Seminar on Stochastic Analysis, Random Fields and Applications VI, pp.109-117, 2011.
DOI : 10.1007/978-3-0348-0021-1_7

M. Jardat, O. Bernard, P. Turq, and G. R. Kneller, Transport coefficients of electrolyte solutions from Smart Brownian dynamics simulations, The Journal of Chemical Physics, vol.110, issue.16, pp.7993-7999, 1999.
DOI : 10.1063/1.478703

URL : https://hal.archives-ouvertes.fr/hal-00164882

[. Jordan, D. Kinderlehrer, and F. Otto, The Variational Formulation of the Fokker--Planck Equation, SIAM Journal on Mathematical Analysis, vol.29, issue.1, pp.1-17, 1998.
DOI : 10.1137/S0036141096303359

G. [. Johnson, J. Schechtman, and . Zinn, Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables, The Annals of Probability, vol.13, issue.1, pp.234-253, 1985.
DOI : 10.1214/aop/1176993078

C. Kipnis and C. Landim, Scaling limits of interacting particle systems, de Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.
DOI : 10.1007/978-3-662-03752-2

]. E. Kos01a and . Kosygina, The behaviour of the specific entropy in the hydrodynamic scaling limit for Ginzburg-Landau model. Markov Process, pp.383-417, 2001.

[. Kosygina, Limit, The Annals of Probability, vol.29, issue.3, pp.1086-1110, 2001.
DOI : 10.1214/aop/1015345597

P. [. Katsoulakis and D. K. Plechác, Tsagkarogiannis : Mesoscopic modeling for continuous spin lattice systems : model problems and micromagnetics applications, J. Stat. Phys, issue.119, pp.347-389, 2005.

A. Krámli and N. Simanyi, Szász : The K-property of three billiard balls, Annals of Mathematics, vol.133, pp.32-72, 1991.

S. [. Kipnis and . Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications in Mathematical Physics, vol.28, issue.1, pp.1-19, 1986.
DOI : 10.1007/BF01210789

M. Ledoux, Inégalités isopérimétriques en analyse et probabilités. Astérisque , page Exp. No. 773, Séminaire Bourbaki, 1992.

M. Ledoux, Logarithmic Sobolev inequalities for spin systems revisited [Led01] Michel Ledoux : The concentration of measure phenomenon, de Mathematical Surveys and Monographs, 1999.

[. Lelièvre, A general two-scale criteria for logarithmic Sobolev inequalities, Journal of Functional Analysis, vol.256, issue.7, pp.2211-2221, 2009.
DOI : 10.1016/j.jfa.2008.09.019

[. Léonard, Girsanov Theory Under a Finite Entropy Condition, Séminaire de Probabilités XLIV, volume 2046 de Lecture Notes in Math, pp.429-465
DOI : 10.1007/978-3-642-27461-9_20

S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control, Optimisation and Calculus of Variations, vol.15, issue.3, pp.712-740, 2009.
DOI : 10.1051/cocv:2008044

S. [. Lemaire and . Menozzi, On some non asymptotic bounds for the Euler scheme, Electronic Journal of Probability, vol.15, pp.1645-1681, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566482

C. [. Leimkuhler, G. Matthews, and . Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. arXiv preprint, 1308.
URL : https://hal.archives-ouvertes.fr/hal-00854791

J. [. Landim, . Noronha, and . Neto, Poincaré and logarithmic Sobolev inequality for Ginzburg-Landau processes in random environment. Probab. Theory Related Fields, pp.229-260, 2005.

[. Liverani and S. Olla, Toward the Fourier law for a weakly interacting anharmonic crystal, Journal of the American Mathematical Society, vol.25, issue.2, pp.555-583195, 1976.
DOI : 10.1090/S0894-0347-2011-00724-8

URL : https://hal.archives-ouvertes.fr/hal-00492016

G. [. Landim, H. T. Panizo, and . Yau, Trou spectral et in??galit??s de Sobolev logarithmiques pour des syst??mes de spins conservatifs et non born??s, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.38, issue.5, pp.739-777, 2002.
DOI : 10.1016/S0246-0203(02)01108-1

M. [. Lelièvre and . Rousset, Stoltz : Free-energy computations : a mathematical perspective, 2010.

V. [. Lady?enskaja and N. N. Solonnikov, Uralceva : Linear and quasilinear equations of parabolic type. Translated from the Russian by S, Smith. Translations of Mathematical Monographs, vol.23, p.241822, 1968.

L. Sheng-lin and H. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys, vol.156, issue.2, pp.399-433, 1993.

J. Maas, Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, vol.261, issue.8, pp.2250-2292, 2011.
DOI : 10.1016/j.jfa.2011.06.009

]. K. Mar96, Marton : A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal, vol.6, issue.3, pp.556-571, 1996.

]. D. Mar12, Marahrens : On some nonlinear partial differential equations for classical and quantum many body problems, Thèse de doctorat, 2012.

[. Massart, Concentration inequalities and model selection, Lecture Notes in Math, 1896.

R. J. Mccann, A Convexity Principle for Interacting Gases, Advances in Mathematics, vol.128, issue.1, pp.153-179, 1997.
DOI : 10.1006/aima.1997.1634

R. J. Mccann, Polar factorization of maps on Riemannian manifolds, Geometric and Functional Analysis, vol.11, issue.3, pp.589-608, 2001.
DOI : 10.1007/PL00001679

G. Menz, LSI for Kawasaki Dynamics with Weak Interaction, Communications in Mathematical Physics, vol.175, issue.2, pp.817-860, 2011.
DOI : 10.1007/s00220-011-1326-6

G. Menz, [. Muller-gronbach, and K. Ritter, The approach of Otto-Reznikoff revisited. preprint, 2013 Minimal errors for strong and weak approximation of stochastic differential equations, pp.53-82, 2006.

]. V. Mil71, Milman : New proof of the theorem of Dvoretzky on sections of convex bodies, Funct. Anal. Appl, issue.5, pp.28-37, 1971.

E. Milman, Isoperimetric and concentration inequalities: Equivalence under curvature lower bound, Duke Mathematical Journal, vol.154, issue.2, pp.207-239, 2010.
DOI : 10.1215/00127094-2010-038

[. Mischler and C. Mouhot, Kac???s program in kinetic theory, Inventiones mathematicae, vol.47, issue.3, pp.1-147, 2013.
DOI : 10.1007/s00222-012-0422-3

G. Menz and R. Nittka, Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential, The Annals of Probability, vol.41, issue.3B, pp.2182-2224, 1214.
DOI : 10.1214/11-AOP715

C. B. Morrey and J. , On the derivation of the equations of hydrodynamics from statistical mechanics, Communications on Pure and Applied Mathematics, vol.2, issue.2, pp.279-326, 1955.
DOI : 10.1002/cpa.3160080206

]. N. Mrr-+-53, A. W. Metropolis, M. N. Rosenbluth, A. H. Rosenbluth, and . Teller, Teller : Equations of state calculations by fast computing machines, J. Chem. Phys, vol.21, issue.6, pp.1087-1091, 1953.

A. [. Menz, A. M. Mattingly, D. J. Stuart, and . Higham, Schlichting : Poincarï¿ 1 2 and logarithmic Sobolev inequalities by decomposition of the energy landscape. to appear in Ann Ergodicity for SDEs and approximations : locally Lipschitz vector fields and degenerate noise, Probab. Stoch. Proc. Appl, vol.101, issue.2, pp.185-232, 2002.

D. [. Malrieu and . Talay, Concentration inequalities for Euler schemes. In Monte Carlo and quasi-Monte Carlo methods, pp.355-371, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00452108

]. S. Oll94 and . Olla, Homogenization of diffusion processes in random fields Lecture notes from Ecole polytechnique, 1994.

[. Otto and G. Maria, A new criterion for the logarithmic Sobolev inequality and two applications, Journal of Functional Analysis, vol.243, issue.1, pp.121-157, 2007.
DOI : 10.1016/j.jfa.2006.10.002

[. Otto, THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION, Communications in Partial Differential Equations, vol.4, issue.1-2, pp.101-174, 2001.
DOI : 10.1007/BF00535689

C. [. Otto and . Villani, Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, vol.173, issue.2, pp.361-400, 2000.
DOI : 10.1006/jfan.1999.3557

S. [. Olla, H. Varadhan, and . Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Communications in Mathematical Physics, vol.129, issue.3, pp.523-560, 1993.
DOI : 10.1007/BF02096727

A. Mark, G. Peletier, M. Savaré, and . Veneroni, From diffusion to reaction via ?-convergence Varadhan : Large deviations for the symmetric simple exclusion process in dimensions d ? 3, SIAM J. Math. Anal, vol.42, issue.1131, pp.1805-18251, 1999.

J. Quastel, Large Deviations from a Hydrodynamic Scaling Limit for a Nongradient System, The Annals of Probability, vol.23, issue.2, pp.724-742, 1995.
DOI : 10.1214/aop/1176988286

H. [. Quastel, . J. Yau-[-rdf78-]-p, J. D. Rossky, H. L. Doll, and . Friedman, Lattice gases, large deviations, and the incompressible Navier-Stokes equations Brownian dynamics as smart Monte Carlo simulation, Rid] S. Rideau : De la preuve par contraposition et ses applications, pp.51-1084628, 1978.

R. [. Roberts, Exponential Convergence of Langevin Distributions and Their Discrete Approximations, Bernoulli, vol.2, issue.4, pp.341-363, 1996.
DOI : 10.2307/3318418

[. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin, Dyn. Syst, vol.31, issue.4, pp.1427-1451, 2011.

]. N. Sim13 and . Simanyi, Singularities and nonhyperbolic manifolds do not coincide, Nonlinearity, vol.26, pp.1703-1717, 2013.

]. Y. Sin70 and . Sinai, Dynamical systems with elastic reflections, Russ. Math. Survey, vol.25, pp.137-189, 1970.

]. M. Tal96 and . Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal, vol.6, issue.3, pp.587-600, 1996.

[. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal, Appl, vol.8, issue.4, pp.483-509, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075490

]. S. Var93 and . Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. II, Asymptotic problems in probability theory : stochastic models and diffusions on fractals, 1990.

. De-pitman-res, . Notes-math, and . R. Servar08-]-s, Varadhan : Large deviations Cédric Villani : Limites hydrodynamiques de l'équation de Boltzmann (d'après C Astérisque, Exp. No. 893, ix, pp.75-128397, 1993.

[. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Letters in Mathematical Physics, vol.77, issue.1, pp.63-80, 1991.
DOI : 10.1007/BF00400379

[. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Communications in Mathematical Physics, vol.105, issue.2, pp.401-432, 1996.
DOI : 10.1007/BF02102414