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Chapter 1

Introduction: From quantum
paradoxes to quantum devices

1.1 The second quantum revolution

Research in quantum physics has undergone a major breakthrough since the years
1980s, when it became possible to manipulate and readout the state of individual
quantum systems, thanks to the progress of various experimental techniques. One
important motivation was to test and to illustrate quantum theory at the level of
individual systems, where its most counter-intuitive aspects become most vividly
apparent: entanglement, quantum measurement, .. With the advent of ion trapping,
laser cooling, and parametric down-conversion, single ions, single photons could be
detected and prepared into exotic quantum states. Two of the pioneers of this
second quantum revolution were awarded the Nobel prize in 2012 : David Wineland
for experiments with individual trapped ions, and Serge Haroche for experiments
with single atoms interacting with single photons in a microwave cavity.

More recently, a new motivation has emerged for quantum state engineering of
individual systems, in the direction of what could be described as applied quantum
physics. The idea is to make use of the non-classical phenomena arising in quantum
mechanics (such as entanglement or large-scale quantum state superpositions), to
achieve certain tasks more efficiently than allowed by classical physics. In particular,
a large effort worldwide is dedicated to building a quantum computer, that could
outperform classical computers for certain problems thanks to entanglement and
massive parallelism enabled by the superposition principle. A quantum computer
relies on registers of quantum bits or qubits, which are two-level systems behav-
ing quantum-mechanically. The qubits have to be initialized, prepared in arbitrary
superpositions of entangled states, and read-out with high fidelity. Other inter-
esting direction of applied quantum physics include quantum simulators, quantum
metrology and sensing.

This field of both fundamental and applied quantum physics forms the research
background of all my work, from PhD until now, and of my ongoing and future re-
search projects. Within this well-identified conceptual framework, I have been led to
work with a variety of quantum systems : atoms, electrical circuits, spins in crystals.
Another central concept of all my research is the strong coupling between light and
matter. Indeed, in order to produce interesting entangled states involving several
of these systems, they need to be brought in interaction. This is most conveniently



achieved by exchanging real or virtual photons (at microwave frequencies in all the
experiments reported here); but this is only possible if these photons are trapped for
a sufficiently long time in a resonator to be emitted and re-absorbed coherently. The
light-matter coupling thus needs to be much stronger than any dissipative process.
One of my research contributions was precisely to extend the range of systems in
which this strong coupling regime is reached.

1.2 From cavity to circuit QED

In the first part of this manuscript, I will give a brief account of my PhD and postdoc
work. I did my PhD in the group of Serge Haroche at the Laboratoire Kastler-Brossel
(ENS Paris), under the supervision of Jean-Michel Raimond. The experiment deals
with individual circular Rydberg atoms, which are highly excited atoms with a
correspondingly very large dipole momentum, interacting with single photons in a
ultra-high quality factor microwave cavity. This pioneering experiment represents
a 25-year-long research effort and has established most of the concepts and ideas
of the field of Cavity Quantum Electrodynamics (Cavity QED), which describes
the coherent interaction of single atoms with single photons trapped in one mode
of an electromagnetic cavity. This experiment is widely recognized as a constant
source of inspiration for quantum physics as a whole, and this is particularly true
for the field of superconducting qubits. Cavity QED is an ideal system to develop a
deeper understanding and intuition of quantum mechanics, and this was my main
motivation as a PhD student. My contribution consisted in demonstrating the
entanglement of two Rydberg atoms by a controlled collision inside the cavity [1],
and in performing the first quantum state tomography of a field in a cavity by
measuring its Wigner function, a method that I applied to the single-photon Fock
state [2]. In this manuscript I will describe this last experiment.

After this PhD in atomic physics, I opted for a postdoc in mesoscopic physics,
in order to broaden my views and perspective of quantum physics and apply them
to solid-state systems. In Delft, in the Quantum Transport Group under the direc-
tion of Hans Mooij, I discovered the field of superconducting quantum circuits and
learned its techniques. The group main research topic was the flux-qubit circuit. I
teamed up with Irinel Chiorescu, postdoc in the group at that time, who had ob-
served the coherent dynamics of a flux-qubit just before my arrival. In a new sample,
we observed and explained the strong coupling of the flux-qubit to an on-chip LC
oscillator which was part of the qubit detection circuit [3]. This strong coupling was
manifested by the appearance of sideband transitions in which both the qubit and
resonator quantum state were changed, in perfect analogy with ion-trap experiments
performed by D. Wineland group at NIST in particular. This work was published
back-to-back with the ground-breaking experiment performed at the same time at
Yale by A. Wallraff and R. Schoelkopf [4], also reporting the strong coupling of a
qubit to a microwave photon in a complementary setup, and both works attracted
some attention [5] since they opened the perspective of applying the most advanced
concepts and tools of atomic physics to solid-state systems. These promises have
been fully met with the impressive development of circuit QED as a new independent
research field. Another contribution during my postdoc was to identify, investigate,
and suppress, various mechanisms by which the flux-qubit was losing its quantum
coherence, which allowed us to reach record coherence times (at that time) of several
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microseconds [6]. In the manuscript I will give a brief account of these two results.

1.3 Circuit QED with Superconducting Qubits

In the second part of this manuscript I will describe research performed since I joined
the Quantronics Group in CEA Saclay, after my postdoc, as permanent researcher to
further develop research on superconducting qubits, teaming up with Denis Vion and
Daniel Esteve. The group was previously doing research on the Quantronium circuit
design, using DC electrical transport measurements to readout the qubit state. Upon
my arrival, it became clear that microwave measurements at a few-photon level were
extremely promising for quantum and more generally mesoscopic physics. I thus
started a new activity on circuit QED with transmon qubits driven and measured
via superconducting coplanar resonators, inspired by the work performed at Yale in
R. Schoelkopf group. In this way I learned how to perform state-of-the-art ultra-
low-noise microwave measurements.

Circuit QED research in the Quantronics group took two parallel paths. On one
side we developed a research activity on the theme of weak continuous measurements,
based on ideas by A. Korotkov, which was mainly carried out by Agustin Palacios-
Laloy during his PhD (of whom I was the main supervisor). This activity culmi-
nated with the test and violation of the “Leggett-Garg inequality” which brought
further proof of the non-classical nature of superconducting qubits [7]. These ex-
periments are described in A. Palacios-Laloy PhD thesis [§] and will be described in
this manuscript.

I will not describe here the other research path followed in our group, in the
more applied goal of making progress towards a scalable superconducting quantum
processor architecture based on transmon qubits. Compared to similar research
projects in other groups, we developed a qubit readout method based on the bista-
bility of a non-linear resonator to which the qubit is coupled [9], following previous
work in particular with flux-qubits [I0], which yielded the first high-fidelity single-
shot transmon qubit readout in circuit QED [I1] (these experiments were mainly
carried out by postdoc Frangois Mallet, whom I was co-supervisor). This readout
method was used by A. Dewes during his thesis (whom I co-supervised) to demon-
strate a two-qubit gate and the quantum speed-up of a simple two-qubit algorithm
compared to its classical counterpart; and it is at present used by V. Schmitt (PhD
student) to develop a 4-qubit processor. In the process of understanding the read-
out of the transmon qubit by the nonlinear resonator we were led (together with
postdoc Florian Ong whom I co-supervised) to investigate on a more fundamental
level the strong coupling of this two-level system and of the non-linear resonator,
a new playground for quantum optics that could be nicknamed nonlinear circuit
QED [12] 13].

1.4 Hybrid Quantum Circuits

Since 2009 I have somewhat shifted interest towards a new research activity which
aims at coupling spins in crystals to superconducting quantum circuits. The general
motivation is that spins in crystals can have extremely long coherence times (up to
seconds for electronic spins, up to hours for nuclear spins), with frequencies in the



microwave domain matching those of superconducting circuits. It is thus appealing
to imagine novel types of quantum devices combining coherently spins and circuits,
which would benefit both of the long spin coherence times, and of the flexibility
and strong coupling to electromagnetic fields of electrical circuits. At present this
spin-based hybrid project occupies most of my research activity, with Denis Vion
supervising the work on transmon-based circuit QED.

Our first project in this direction uses large ensembles of spins (= 10'!) to store
the state of superconducting qubits. The project was started in 2009 together with
Y. Kubo, a Japanese postdoc whom I supervised on this topic. We first brought
a spectroscopic evidence for the strong coupling of an ensemble of 102 NV centers
to a resonator by measuring a normal mode splitting between the two systems [14].
This experiment attracted some attention as it was considered the first result of
a new field of spin-based hybrid quantum circuits. Since then, we have brought
the first proof-of-principle of spin-based quantum memory for a superconducting
qubit [I5], and we have demonstrated the potential of hybrid quantum circuits for
high-sensitivity electron-spin resonance detection [16]. More recently, we have been
trying to use spin-echo techniques to extend the quantum memory storage time to
longer values, with an initial goal of 100us. This is the project of a PhD student,
Cécile Grezes, of whom I am the main supervisor since her start in 2011. An overview
of this research on spin ensemble quantum memory will be given in this manuscript.

In parallel, I have launched a second project since 2012, with postdoc Michael
Stern, and PhD student Audrey Bienfait (of whom I am main supervisor), which I
will not describe here by lack of space. Its goal is to couple individual spins to super-
conducting resonators and qubits. If successful, this would allow to entangle distant
spins using microwave photons as mediators for the interaction. Detecting single
spins with microwave signals would also have an impact on the field of magnetic
resonance, since it would represent a gain in sensitivity by 10 orders of magnitude
compared to commercial spectrometers. The challenge is to increase the coupling
constant of the unique spin to the superconducting circuit.



Chapter 2

From Cavity QED to Circuit QED

This chapter relates work performed during my PhD thesis in the Laboratoire
Kastler-Brossel at ENS Paris on Rydberg atoms strongly coupled to a microwave
cavity, and during my postdoc in the Quantum Transport group at Delft Technical
University in the Netherlands with flux-qubits coupled to on-chip resonators. Play-
ing with Rydberg atoms and microwave photons during my PhD thesis in S. Haroche
group, under the guidance of Jean-Michel Raimond and Michel Brune in particular
and together with PhD students G. Nogues, A. Rauschenbeutel, and S. Osnaghi,
was a unique opportunity to acquire an intuition of how the most fundamental con-
cepts of quantum physics apply to systems of coupled individual particles. One of
the results obtained, which I will present in the manuscript, is the first full quantum
tomography of a one-photon Fock state of the microwave field, revealing its strong
non-classical character by negative values of its Wigner function. This intuition of
coupled quantum systems acquired during my thesis proved very useful during my
postdoc in Delft when, quite unexpectedly, we found out that our flux-qubit sample
was in strong coupling with a stray harmonic oscillator in its close environment.
With H. Mooij, K. Harmans, and I. Chiorescu, we were thus led to apply the cavity
QED concepts and models to superconducting circuits, which eventually developed
further into the new field of Circuit QED.

2.1 Cavity Quantum Electrodynamics with Ryd-
berg atoms

One of the main motivations of the Cavity QED group at ENS is to achieve the
highest degree of control over the state of the electromagnetic field, using individual
atoms both to manipulate its quantum state and to reveal its properties. In this goal,
the group has developed over many years a setup whose core elements are shown
in Fig. 2.1} individual Rydberg atoms cross and interact with the electromagnetic
field in a high-quality factor microwave cavity. During my thesis I have in particular
demonstrated how these Rydberg atoms can be used to bring the most complete
characterization of the field possible, by measuring its so-called Wigner function. I
have applied this method to a strongly non-classical state of the field, also prepared
in the cavity by Rydberg atoms : the one-photon Fock state. 1 will first give an
overview of the key concepts in cavity QED.
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Figure 2.1: Cavity QED Principle. Individual Rydberg atoms cross and interact with the
electromagnetic field stored in a high-quality factor mode of a Fabry-Pérot superconducting
microwave cavity at 51.1 GHz. The cavity is surrounded by a metallic ring to increase its
quality factor.

2.1.1 The atom-field system

The cavity QED experiments need to be performed in the strong coupling regime,
where the atom-field coupling strength is larger than the decay rate of both the field
and the atom. The system Hamiltonian H = H,; + H.+ H;,; is the sum of the atom
Hamiltonian H,;, of the field Hamiltonian H. and the interaction Hamiltonian H,,,;.
The atom is described as a two-level system with ground state |g) and excited state
le), and transition frequency wy so that

Hat = —TO'Z, (21)

0, being the Pauli operator. The cavity Hamiltonian is

Hc — hWCCLTCL, (22)

with w, the cavity frequency and a (resp. a') the field annihilation (resp. cre-
ation) operator. The atom-field interaction is of the electric dipolar type

Hpy=—d-E. (2:3)

Restricting the dipole operator to the two atomic levels d = <g|7|e>(0+ +
o_) (for atoms with purely transverse dipole such as circular Rydberg atoms), and

rewriting the electric field operator E = dEy(a+ a') we get

Hipe = hg(o_ +oy)(a+al) (2.4)
where
H
, <g|7|;> 3B, 25)

is the so-called atom-field coupling constant. Going one step further we apply
the Rotating Wave Approximation in this interaction Hamiltonian, which consists
in neglecting the non-energy-conserving terms o,a’ and o_a. In the end, in the
rotating frame at w. the atom-field is then described by the Hamiltonian

H/h= gaz +g(o_a' +aoy), (2.6)



with 0 = wy—w, the atom-field detuning. This is the so-called Jaynes-Cummings
model which is the theoretical framework of cavity quantum electrodynamics. More
generally, this model describes the linear coupling of a two-level system with a
harmonic oscillator, which will appear several times in this manuscript.

2.1.2 Jaynes-Cummings Hamiltonian

The physics of the Jaynes-Cummings model is described in several references [17].
Without giving the detail of the calculations, we now describe the two different
regimes of the Jaynes-Cummings model that are relevant for this work : the resonant
regime 0 = 0, and the dispersive regime |6| > g¢.

The resonant regime : vacuum Rabi oscillations

When the atom and field are in resonance (6§ = 0), they can exchange energy. If
we prepare the atom in the excited state while the field is in vacuum, the Jaynes-
Cummings Hamiltonian predicts that the atom-field system evolves as

(1)) = cos gtle, 0) + isin gt]g, 1) (2.7)

implying that the atom excited state probability varies as P(e) = (cos2gt +
1)/2. This describes the periodic emission and re-absorption of a single microwave
photon with a period /g, a phenomenon called vacuum Rabi oscillations. Vacuum
Rabi oscillations are a precious tool for the generation and control of non-classical
states. First, stopping the atom-cavity interaction at time 7, = 7/(2g) prepares
the cavity in the 1-photon Fock state |1) (this is called a “quantum 7 pulse”).
Also useful is the quantum 7/2 pulse where the atom-field interaction is stopped at
Tx/2 = 7/(4g), preparing the atom-cavity system in the maximally entangled state

(e, 0) +1lg,1))/v2.

The dispersive regime : QND measurements

The opposite regime || > g where the atom is largely detuned from the field is the
so-called dispersive regime. Because of the detuning, atom and field can no longer
exchange energy, and their interaction is described by energy shifts. The Jaynes-
Cummings interaction Hamiltonian can then be approximated by the dispersive
Hamiltonian

)
Hd’isp/h = éO'Z -+ XCLTCLO'Z. (28)

with x = ¢?/6 the dispersive coupling constant. This Hamiltonian has the
very interesting property to commute both with H,, and with H., which implies
that the atom-cavity dispersive coupling can be used for Quantum Non-Destructive
measurements of both the atomic state and the photon number distribution. More
precisely, the dispersive Hamiltonian can be interpreted by the fact that the cavity
frequency w.+xo, now slightly depends on the qubit state, which is used for instance
in circuit QED for qubit measurements, as discussed in the next chapter. Recasting
the terms of the same dispersive Hamiltonian differently, one also sees that the
qubit frequency wg — 2xn now depends on the photon number n in the cavity,
a phenomenon called ac-Stark shift. This means that the phase acquired by a
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qubit state superposition will bring some information about the photon number
distribution in the cavity. This is the basis for the Wigner function measurement,
as well as for experiments performed in the ENS group after my thesis, reporting
the observation of quantum jumps of the field in the cavity [I§].

2.1.3 Experimental setup

Cavity QED experiments are performed both in the optical and the microwave
domains, with very different techniques. Microwave circuit QED requires atomic
transitions at microwave frequencies, with a dipole moment as large as possible,
which is achieved with circular Rydberg states, as well as a very high-quality factor
cavity, obtained with a superconducting Fabry-Perot resonator.

Rydberg atoms

Rydberg states are highly excited atomic states (large principal quantum number n),
which are characterized by a strong dipole moment. The experiment worked with
special Rydberg states called “circular Rydberg states” in which also the angular
momentum of the atom is maximal (m = = n—1). We used as ground state |g) the
circular Rydberg state |n = 50,1 = m = 49) of ® Rb, and as excited state the circular
Rydberg state [n = 51,1 = m = 50), with an atomic frequency wy/27 = 51.099 GHz.
The size of the atomic orbital in these states is of order 100 nm, which helps to
understand that the dipole moment between |g) and |e) is 1700 times larger than
the hydrogen atom. From the state |e) the atom can only relax into state |g), and
this occurs by spontaneous emission in ~ 30 ms.

Exciting a Rubidium atom from its ground state into |g) is a difficult task,
achieved in the experiment by a combination of 3 lasers, radiofrequency and mi-
crowave excitations. Note that Rydberg atoms are sensitive to radiation at their
resonance frequency around 50 GHz and therefore need to be in a cryogenic envi-
ronment to remain in a pure quantum state.

The superconducting cavity

The cavity consists in two superconducting mirrors facing each other, in a Fabry-
Pérot configuration, machined out of niobium. The mode of interest is close to
the atomic frequency, at 51.1 GHz. At a temperature of 1K, its quality factor was
measured to be @ = 3 - 108, corresponding to a photon lifetime £ = Q/w, =
1ms. To reach this large value, it was necessary to add a metallic ring around the
cavity, whose goal is to “recycle” the microwave photons scattered by the mirror
imperfections, and thus to increase @) (as can be seen in Figs. and 2.2). It
is essential that the field in the cavity is in its ground state, which implies that
the mean photon number in the cavity due to thermal excitations should be much
smaller than 1. The experiments are performed at 1.5 K yielding ~ 0.1 photon at
51 GHz. Calibration experiments show that the atoms crossing the cavity reach a
maximum coupling constant g/27 = 25kHz, which places the setup largely in the
strong coupling regime.
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Figure 2.2: Cavity QED Setup. The Rubidium atoms effuse out of an oven, cross a zone
where their velocity are selected by optical pumping, and are then excited into the Rydberg
state. After crossing the cavity they are detected by field-ionization.

The experimental setup

An overall schematics of the experimental setup is shown in Fig. 2.2 Rubidium
atoms are effusing out of an oven, then crossing the whole setup. After a laser
repumping scheme that allows to select only atoms with a chosen velocity, the atoms
enter the cryostat. They are first transferred into the circular Rydberg state n = 50,
then enter the microwave cavity. In the cavity, they can be excited by classical
microwave pulses (not shown in Fig. , or interact with the quantum field stored
in the cavity. A DC voltage is applied accross the cavity mirrors, in order to tune
the atom frequency by Stark effect in a time-resolved manner. This allows to control
precisely the atom-field interaction time.

2.1.4 Measurement of the Wigner function of a one-photon
Fock state in the cavity

I will now present the results obtained during my PhD on the measurement of the
Wigner function of a one-photon Fock state in the cavity [2].

The Wigner function

The Wigner function of an electromagnetic field W (a) is a quasi-distribution of
probability in phase space that contains all the information about the statistical
properties of this field [I7]. It is thus equivalent to the field complete density matrix
p. Several equivalent definitions exist, but for our purpose the most useful one is

W(a) =2Tr[D(—a)pD(«a)P], (2.9)

with D(a) = e®@'=e"a the displacement operator, and P = ™' the parity
operator. The Wigner function is thus the average value of the photon number
parity in the cavity field displaced by —a. With this definition the Wigner function
is normalized such that [ W (a)d?a = 7 for all field states.

The Wigner function has a simple physical interpretation, since integrated along
one quadrature I of the field it directly gives the probability distribution of the or-
thogonal quadrature ) (and hence the square of its wavefunction if the field is in a
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Figure 2.3: Protocol for Wigner function measurement. A single atom is used first to
prepare the field in the state to be measured, then for the Wigner function measurement
scheme. After the state preparation step, the atom is detuned, a 7/2 pulse is applied while
the cavity state is displaced by —a, and a dispersive cavity-atom interaction takes place
with a phase shift of m per photon. After the interaction, the atomic dipole is phase-shifted
by ® by Stark-tuning, then the atom undergoes a final w/2 pulse before detection.

pure quantum state). One interesting feature is that it is positive for all classical or
quasi-classical field states (thermal state, coherent state, or even squeezed states),
but takes negative values for non-classical states such as Fock states or Schrodinger-
cat states. First measurements of the Wigner function of an electromagnetic field
were achieved in the optical domain [19, 20] by homodyne detection. The results ob-
tained during my PhD are the first Wigner function measurements in the microwave
domain.

Principle of the measurement

According to Eq.[2.9, measuring W can be achieved in Cavity QED by first preparing
the cavity field in an interesting state p, displacing it by —a (which is done con-
veniently by switching on a classical source with adequate amplitude for a chosen
time), and finally measuring (P). In our experiment we realize this parity mea-
surement based on a proposal by Lutterbach and Davidovich [21]. It relies on the
dispersive atom-field interaction of cavity QED, in the regime where one photon is
enough to impart a phase shift of 7 to an incoming atomic dipole, which according
to Eq. corresponds to an atom-field interaction time 7 = 7/(2x) = 71/(2¢?).
The measurement of W («) is achieved by combining this “w per photon” phase
shift with Ramsey interferometry, as described in Fig. Indeed, if an atom is
prepared in (|e) + |g))/v/2 by a first classical 7/2 pulse before interacting with the
displaced cavity field at detuning ¢ for a duration of 7, it exits the cavity in state
(le) + (=1)"g))/v/2, n being the photon number in the cavity. After a second
7/2 pulse with a varying phase ®, the probability p.(®,«) of finding the atom in
le) if the cavity contains n photons is p.(®,a) = (1 + cos®)/2 if n is even and
(1 —cos®)/2 if n is odd. For an arbitrary photon number distribution, we get that
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Figure 2.4: Wigner function of a thermal field. (a,b,c) Ramsey fringes obtained with the
field prepared in a thermal state, for « = 0,0.57, and 1.25 respectively. (d) Corresponding
measured Wigner function (full squares) and fit to a Gaussian (solid line), yielding a
mean thermal photon number nyg, = 0.2. (inset) Corresponding photon number occupation
probabilities. (Extracted from [2]).

Pe(P, ) = (1+ (P)cos®)/2. In the end, the Wigner function W («) is thus directly
linked to the fringe contrast c¢(a)) by the relation

W(a) = 2¢(a) = 2[pe(0,a) — p — e(m, a)]. (2.10)

Wigner function of the vacuum

To test the measurement principle on a simple field state, we have performed the
measurement on a small thermal field present in the cavity, caused by insufficient
attenuation in the input waveguides of the setup. The Wigner function of such a
state is expected to be a Gaussian with a standard-deviation /1 + 2ny,, ny, being
the average thermal photon number. A schematics of the experimental sequence is
provided in Fig.

The results are shown in Fig. 2.4 Ramsey fringes are shown for various values
of the displacement field «, with « being calibrated prealably by measuring the
ac-Stark shift of an atom in the same field [2]. Note that since the initial state,
being a thermal state, has no phase, the Wigner functions that we measure are by
construction rotationally-invariant and the phase of « is irrelevant. In the following
we will therefore assume «a to be real. In Fig. one notices that the phase of the
Ramsey fringes does not depend on «; only their contrast is reduced, which shows
that the condition of m phase shift per photon is properly satisfied. Computing
W (a) from the Ramsey fringe measurements using Eq. yields a Wigner function
which is not properly normalized due to the finite contrast of the interferometer
caused by mostly by stray electric and magnetic fields. To turn the Ramsey fringe
measurements into a physically meaningful Wigner function, the data are multiplied
by a normalizing factor ensuring that [ W (a)d?a = . This procedure assumes that
the interferometer contrast is independent on «, which is reasonable given that the
factors limiting the contrast can be quantitatively identified [22]. The measurements
analyzed in this way are in good agreement with the expected Wigner function of a
thermal field with a photon number n;, = 0.2.
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Figure 2.5: Wigner function of a one-photon Fock state.(a,b) Ramsey fringes obtained
with the field prepared in a one-photon Fock state (by preparing the atom in initial state
le) and keeping it resonant with the cavity for a quantum m pulse), for o = 0 and 0.81.
Note that the fringes have been m phase shifted, corresponding to a change of sign of W («).
(¢) Corresponding measured Wigner function (full squares) and fit to a statistical mizture
of [0), |1) and |2) states (solid line), showing the expected negative value around o = 0.
(inset) Corresponding photon number occupation probabilities. (Extracted from [2]).

Wigner function of a single-photon Fock state

After this calibration experiment, we now turn to a more interesting situation where
the cavity is prepared in a l-photon Fock state. As explained in [2.1.2] this is
achieved using the vacuum Rabi oscillations of an atom initially prepared in |e) and
interacting with the cavity vacuum field for a duration 7,. In order to minimize
the delay between the cavity field state preparation and its measurement which is
crucial for its fidelity, we decided to use the same atom to generate the photon and to
probe it. The atom thus enters the cavity when prepared in |e), is kept in resonance
with the mode for 7., and is then detuned by the electric field across the mirrors to
the detuning 0 required to satisfy the m-per photon condition during the remaining
atom-field interaction time (see again Fig. .

The results are shown in Fig. 2.5 with two Ramsey fringes measured respectively
at « = 0 and o = 0.81. While the phase of the a = 0.81 fringes is identical to the
one measured in the vacuum case, the phase of the a = 0 fringes is w-phase shifted,
a striking indication that ¢(0) and therefore W (0) have become negative as expected
for |1). As in the previous pragraph W («a) is determined by multiplying c(«) by
a factor ensuring that the Wigner function is properly normalized. The factor is
larger than in the vacuum measurement because the interferometer contrast is fur-
ther reduced by the imperfections of the 7 pulse. The measured Wigner function
corresponds to a density matrix with a one-photon occupation probability of 0.71,
which is well explained by the known experimental imperfections.

Since this first measurement of the Wigner function of a non-classical field state
in a cavity [2], many exciting developments have taken place during the last 5
years, with Wigner functions of higher-order Fock states and Schroedinger-cat states
reported both in cavity QED [23] and in circuit QED [24].

2.2 Flux-qubit coupled to a LC oscillator

My postdoc at TU Delft took place in the field of superconducting qubits that
I discovered on that occasion. Superconducting qubits are artificial atoms made
with electrical circuits with capacitors, inductors, and Josephson junctions as their
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building blocks. My motivation was to experience quantum effects in a solid-state
context, which I imagined to be more “dirty” than atomic physics and therefore
possibly to offer more potential to discover new effects. I was very far from realizing
that my experience in cavity QED would apply itself so literally, as explained in the
following.

2.2.1 Historical context

It is useful to say a few words about the historical context in which my postdoc took
place, especially considering the rapid evolution of the field since then.

The idea that superconducting circuits could be used to build artificial two-
level systems useful for quantum physics and quantum information dates back to
1995 — 1996. If several signatures of quantum behavior were observed in various
circuits in the years 1997 — 1999, the key pioneering experiment marking the birth
of the field is the obervation of the coherent dynamics of a Cooper-pair box (one
of the major qubit designs) by Y. Nakamura, Y. Pashkin and J.-S. Tsai at NEC in
1999 [25]. The very fact that macroscopic, man-made electrical circuits could display
the same quantum-mechanical behavior as a simple two-level atom was perceived as
a major surprise by many physicists, even though the coherence time was only of a
few nanoseconds in this experiment.

At approximately the same time, Hans Mooij and coworkers [26] proposed a
circuit design called the flux-qubit (FQ) which consists of a superconducting loop
interrupted with 3 Josephson junctions, described in more detail below. The interest
of the flux-qubit design is its insensitivity to charge-noise, which was thought to limit
the coherence times in Nakamura’s experiment with the Cooper-pair box (together
with its coupling to the measurement circuit). Since the 1999 proposal, the basic
working principle of the FQ was experimentally demonstrated in Delft in 2000 with
spectroscopic measurements [27].

In 2001 the coherent dynamics of a Cooper-pair box was again observed in
Saclay [28]. But compared to the NEC experiment, several changes were made
which brought a gain of nearly 3 orders of magnitude in coherence time, up to
500ns. First, the Cooper-pair box parameters were chosen to make it less sensi-
tive to charge noise. Then, a novel read-out circuit was designed to measure the
qubit state in a single shot, based on the qubit-state dependent switching of a large
Josephson junction to the voltage state. This circuit, nicknamed the Quantronium,
allowed to minimize the back-action of the read-out circuitry during operation of
the qubit, while being able to measure the qubit state quickly enough afterwards
by pulsing the current through the read-out junction [28]. One essential outcome
of the experiment was the study of the Quantronium coherence time (both with
Ramsey fringes and spin-echo) as a function of its bias point, and the evidence that
coherence is maximized at the so-called optimal points where the qubit frequency
becomes insensitive to the fluctuations of some control parameter (either the gate
charge or the bias flux in the case of the Quantronium).

Inspired by the Quantronium experiment, the Delft team (in particular I. Chiorescu
and Y. Nakamura, by then a visitor in Delft) succeeded in 2002, just before my ar-
rival, to observe the coherent dynamics of a flux-qubit [29], with a read-out circuit
consisting of a switching SQUID instead of a switching junction. The coherence
time measured in that experiment was relatively short compared to the Quantro-

15



(a)

—_
(e
~—

%
K

aE;x [VQ Q O,
K

o,/27 (GHz)

Current | (nA)

-0.010 -0.005 0.000 0.005 0.010
(- [2)®,

Figure 2.6: Fluz-qubit principle. (a) The fluz-qubit is a superconducting loop that includes
three Josephson junctions, one of them being smaller than the two others by a factor
a ~ 0.5 —0.7. The Josephson energy of the large junctions is Ej. The loop is biased
by an external magnetic flux ®, which imposes a phase bias across the three junctions
v = 2n®,/Pg. (b) Scanning Electron Micrograph of a typical fluz-qubit sample (here
with 4 junctions and not 3), made of Aluminum electrodes and Aluminum Ozide Josephson
Junctions. (c) (top) Transition frequency wo between the flux-qubit energy levels |0) and
|1). At &, = ®y/2 one has wg = A and the qubit frequency is first-order insensitive to
@, (optimal point). (bottom) Persistent current (I) for states |0) (blue solid line) and |1)
(red solid line).

nium results, around 20 — 30ns. As a postdoc I was given the task to study in
detail the coherence times of the flux-qubit in order to identify the limiting factors.
In particular it seemed interesting to measure the flux-qubit coherence times at its
optimal biasing point for flux-noise (see below), to confirm the Saclay results about
increased coherence. This had not been possible in the initial experiment [29].

During this study of decoherence, I was quickly led to investigate the coupled
dynamics of the flux-qubit and its measurement circuit. It turned out that to under-
stand our data it was necessary to model the two systems quantum-mechanically,
with a Hamiltonian describing the strong-coupling of the qubit two-level system
with a harmonic oscillator. Exactly at the same time, R. Schoelkopf and A. Wallraff
at Yale observed the first vacuum Rabi splitting between a coplanar resonator and
a Cooper-pair box, a major breakthrough for the field of superconducting circuits.
These two experiments made it clear that the appropriate conceptual framework
to describe superconducting circuits was the same as the one needed to describe
the interaction between Rydberg atoms and the microwave field, namely quantum
electrodynamics and the Jaynes-Cummings Hamiltonian. This was a contribution
towards the development of circuit quantum electrodynamics as explained in the
next chapter.
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2.2.2 System description
The flux-qubit

The flux-qubit consists of a superconducting loop interrupted with 3 (or 4 in more
modern designs) Josephson junctions, one of them being smaller than the others by
a factor a =~ 0.5 — 0.7 (see Fig. . When biased by an external magnetic flux &,
close to ®¢/2 (Py = h/2e being the superconducting flux-quantum), which imposes
a phase drop across the 3 junctions 7o = ®,/(27®y) ~ 7, two states of the circuit
| ©) and | O) corresponding to a persistent current [, flowing clockwise or counter-
clockwise in the loop are quasi-degenerate in energy. Because of charging effects,
there exists a quantum tunneling rate A between these two states. As a result their
degeneracy is lifted and the resulting energy eigenstates |0) and |1) are coherent
superpositions of | ©) and | V), with a transition frequency wy(vg)/2m = VA2 + €2,
e = I,90(yg/m — 1)/h being the detuning between the two classical states | O) and
| O) (see Fig. [2.6)).
Here we will write the flux-qubit Hamiltonian in the energy basis so that

HFQ = —hWQO'Z/Q, (211)

with o,, the usual Pauli matrices. Note that in the literature the flux-qubit
Hamiltonian is often written in other bases : either the persistent-current basis
| ©),] ©) yielding Hrgs = —22(cosfo, + sinfo,), or in the basis of the energy
eigenstates at 7o = 7 (so-called transverse basis) |0) = (| O) + | O))/v/2 and
1) = (] ©) = | ©))/V2, in which case Hpgs = —%2(cosfo, + sinfo.). In these
expressions () is a mixing angle defined by sinf = A/wy and cosd = €(yg)/wo
that will be encountered in several formulas below. In this manuscript we will only
use the energy basis (that is Hrg), yielding sometimes different expressions from
the literature.

As seen in Fig. [2.6b, we note that dwy/dyg = 0 for 7g = 7 (which corresponds
to ®, = ®y/2). This is thus an optimal point with respect to magnetic flux noise.
We also show in Fig the average circulating current in each of the two states
which are opposite, making possible to discriminate between the two states during
qubit readout.

Principle of the flux-qubit readout

This circulating current is the basis for the flux-qubit readout principle in our ex-
periments as depicted in Fig. 2.7] Indeed, the flux-qubit is coupled with a mutual
inductance M to the loop of a DC-SQUID (see Fig. [2.7h). The different circulating

currents generate a flux @g}l (¢ = 0,1) in the SQUID, resulting in different critical

currents [ g) with for instance I, (Cl ) <1 é? ). At the end of the experimental sequence,
the SQUID bias current [ is suddenly ramped from its initial value to a value chosen
between Iél ) and I(CO ) so that the SQUID switches to the voltage state if the qubit is
in [1) and not if it is in |0) (see Fig. 2.7p), generating a voltage pulse easily detected
at room-temperature. In other words the SQUID is used as a sample-and-hold de-
tector amplifying the small difference between the two states. Ideally the SQUID
switching probability P,,, should thus be equal to the probability to find the qubit in
|1) P;. Measurements are shown in Fig. , with the SQUID switching probability
plotted as a function of I, for the qubit prepared in states |0) and |1). In reality
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Figure 2.7: Fluz-qubit readout. (a) The qubit is inductively coupled to a DC SQUID with
junctions having a critical current Io, and biased by a current I,. The flux seen by the
SQUID becomes qubit-state dependent. (b) Readout pulse. The SQUID bias current is
ramped at a value such that the SQUID switches if the qubit is in |1) and not if it is in |0)
yielding a measurable voltage pulse. (c¢) Typical measured SQUID switching probability as
a function of bias current for the qubit in state |0) (black dots) and |1) (open dots). An
erf function is used to fit the curve with the qubit in |0) (black solid line); the red solid
line shows the expected curve for qubit in |1). The grey line is a weighted sum of the two
curves, showing that the qubit has relazed from |1) to |0) at the time of the measurement.

because of qubit energy relaxation during the readout pulse, one can only say that
the switching probability Pk, is a linear function of P; (see Fig. 2.7¢).

Qubit - plasma mode coupling

In the purpose of narrowing the SQUID switching events histogram, which is es-
sential for a high fidelity qubit readout, the SQUID is shunted in our circuit by
an on-chip capacitor Cyy, to which it is connected by superconducting lines having
an inductance L, as described in Fig. 2.8 Since the SQUID itself behaves as a
Josephson inductance L ;(®g,), this readout circuit behaves as a LC resonator with
inductance L + L;(®g,) and capacitance Cy,. This resonator is traditionally called
“the plasma mode” and has a frequency w, = 1//(L + L;(®g,))Cs;. Its Hamilto-
nian is H, = hwya'a, with a and a' the usual annihilation and creation operators
for single quanta in this electromagnetic resonator. They are related to the plasma

mode current operator i, = dig(a + a'), with §ip = w, % the zero-point current
P

fluctuations and Z, = /(L + L;(®s,)/Cs; the plasma mode impedance. Note that
in addition the SQUID is biased by a dc current [, so that the total current in the
plasma mode is [y, + i,,.

The flux-qubit is clearly coupled to this plasma mode since it is the heart of its
readout circuit. One of my postdoctoral achievements was precisely to derive the
qubit-plasma mode coupling Hamiltonian, which turns out to be extremely peculiar
and rich from the point of view of cavity QED. I will here only give the physical
content, while the derivation can be found in [30]. With the SQUID biased at a
certain dc current I,, we are looking for the change in qubit energy induced by a
small current fluctuation 7, in the plasma mode. The flux-qubit energy depends
only on the phase v imposed over the 3 junctions, which in turn is governed by the
current J(I) circulating in the SQUID loop, rather than by its bias current. The
key point then is that J(I) is a quadratic function. This results in a Hamiltonian
which has both a linear and quadratic coupling term, with the linear term strongly
dependent on the value of I. One gets the total Hamiltonian (written in the FQ
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Figure 2.8: Qubit-plasma mode coupling. The plasma mode consists of the SQUID Joseph-
son inductance Lj(®g, in series with the inductance L of the superconducting wires that
connect it to the shunt capacitance Csp. The total current through the SQUID is Ib—i—i;,; the
qubit bias point v depends on ®,, I, and i;, yielding the qubit-plasma mode coupling. The
qubit can be excited by an on-chip antenna to which it is coupled by a mutual inductance
M and through which microwave pulses can be applied.

energy basis)

H/h = H,+ Hpg + [g1(Iy)(a + a') + g2(a + a')?](sin fo, + cos fo.,) (2.12)

with the coupling constants g, (1) = (1/2)(d\/dI)dig and go = (1/4)(d*\/dI}?)(di0)?,
and A(I,) = 21,M J(1,)/h [30]. Note that since J(I,) is essentially quadratic g, does
not appreciably depend on I,.

Comparing this interaction Hamiltonian with the simple Jaynes-Cummings case
(Eq. , one notices two essential differences. First, the linear coupling term (equiv-
alent to the dipolar electric coupling of Rydberg atoms to the microwave field) now
has a coupling constant that can be tuned by a control parameter of the circuit by a
very large amount as will be apparent below. Then, the coupling Hamiltonian also
includes a term non-linear in the electromagnetic field, which is very unusual in cav-
ity QED with real atoms where such a term would be usually negligible compared
to the linear coupling. This is a good example of the richness and versatility that
the electrodynamics of circuits brings to quantum physics.

2.2.3 Coherent dynamics of a flux-qubit coupled to a har-
monic oscillator

Sideband transitions

The interest of the coupling Hamiltonian becomes clear in the case where the
qubit and plasma mode are largely detuned |6| > ¢, 9. as was the case in our
experiment. Indeed, by modulating the SQUID bias current it now becomes possible
to modulate the linear coupling constant ¢g; at a rate w, + wy such that g¢,(t) =
g10 + 0g cos(w, + wp)t. Writing Eq. in the interaction representation, keeping
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Figure 2.9: Qubit-plasma mode coupling : spectroscopy. (a) Atomic-Force Micrograph of
the sample, showing the fluz-qubit and SQUID loops. Scale bar is lum. The SQUID is
shunted by capacitor Csp; gold quasi-particle traps (grey losange) are fabricated on each
line. (b) Spectroscopic characterization of the energy levels after a ™ (upper scan) and a
27 (lower scan) Rabi pulse on the qubit transition. (extracted from [3])

only the linear coupling term, and applying the rotating-wave approximation, one
obtains

Hpg/h = dgsinf(acy +a'o_) (2.13)

which looks like an “anti-Jaynes-Cummings” Hamiltonian driving transitions in
which both the oscillator and qubit change state coherently, in a correlated way.
This is the exact analog of the situation encountered in ion-trap experiments [31],
where the coupling to the oscillating motion of the ion can be modulated by a
laser beam, allowing to drive the so-called sideband transitions. The modulation at
wp + wy is called the blue sideband resonance condition since this resonance occurs
at a frequency higher than w, and wy. This transition is highly relevant for quantum
information since it generates a coherent oscillations at frequency dg between states
|0,0) and |1,1) (with |i,7) describing the FQ in |i) and the plasma mode in |j)),
and if stopped at a quarter period a maximally entangled state (]00) + |11))/v/2.
Conversely, modulating g at |w, — wp| (red-sideband resonance condition) yields
a Jaynes-Cummings-like Hamiltonian allowing to drive oscillations between states
10,1) and |1, 0).

Note that the idea applies more generally. If two circuits are coupled by a cou-
pling constant that can be tuned by a control parameter A as is often possible using
SQUIDs as coupling elements, then it is possible to induce sideband transitions and
therefore to entangle them. The interest of this scheme compared to cavity QED
is that the coupling is ON only when A is modulated, which is very conveniently
achieved at microwave frequencies. We called this coupling scheme parametric cou-

pling [32].

Experimental results : sample description

These ideas were tested in a series of experiments reported in [3] on a flux-qubit
sample. A micrograph of the flux-qubit + SQUID loops is shown in Fig. 2.9k,
together with a schematics of the plasma mode and readout circuit. From the
sample design one expects the plasma mode frequency to be w,/2m ~ 3 GHz and
@ ~ 100. The flux-qubit has a gap A = 5.9 GHz and persistent-current I, = 275 nA.
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Figure 2.10: Coherent dynamics on the blue sideband. Black solid lines : Measured

Py (Dt), Dt being the duration of a microwave pulse at wys. Note that in this sample

and at this bias point, the SQUID switching probability is reduced when the qubit is in

the excited state, contrary to the data shown in Fig. [2.9 Red solid line : result of the

integration of a master equation describing the dynamics of the coupled system, with the
energy levels shown on the right panel (unpublished).

Experimental results : spectroscopy of the coupled system

The qubit-plasma mode coupling was first observed spectroscopically, by applying
microwave pulses of varying frequency to the microwave line coupled inductively to
the qubit, followed by a qubit readout pulse. Typical data can be seen in Fig. 2.9,
Starting from the qubit in the ground state, we see that in addition to the main
qubit peak at wp, another peak is seen at higher frequency that we call wy,. We
also performed spectroscopy starting with the qubit in the excited state instead, by
applying a 7 pulse on the qubit before spectroscopy. In this case, in addition to the
main qubit peak a dip is found at a lower frequency w5, with |wps — wo| & |wo — wps|-

These results are readily explained looking at the energy level scheme shown in
Fig. 2.10, The plasma mode being at 3 GHz is expected to be close to its ground
state at 30 mK. Starting from |0, 0), only the blue sideband can be excited, giving
rise to the high-frequency peak. But starting from |1,0) only the red sideband can
be excited this time, which gives rise to qubit de-excitation and therefore to a low-
frequency dip in Pk,, as observed in the data. Other measurements, reported in [3],
make it possible to unambiguously identify the coupled mode as the plasma mode
of the SQUID as described above.

Experimental results : sideband dynamics

We now turn to results showing the coherent dynamics of this coupled qubit-
oscillator system. In Fig. [2.10| are shown measurements of the qubit excited state
population while applying microwave pulses of varying length Dt at the blue side-
band frequency wy,.

Damped oscillations are observed which remarkably do not converge towards
P. = 1/2 as is the case for a usual Rabi oscillation but instead towards P, = 1.
This can be understood from the level scheme shown in Fig. by noting that
the plasma mode damping rate x ~ (10ns)~' is much faster than the qubit damping
rate T, ' ~ (4ps)™!. As a result, driving the blue sideband efficiently pumps the
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system into |10), similar to optical pumping. This is confirmed by the results of a
master equation simulation of the system, also shown in Fig. [2.10} In the course of
these sideband Rabi oscillations the FQ and plasma mode become entangled, even
if it would be necessary to measure both systems independently in order to prove
it, which is impossible in the circuit as it is.

Discussion of the sideband excitation mechanism

Before concluding this part on blue and red sideband transitions in a coupled flux-
qubit-plasma mode system, it is worth having a short technical discussion about the
exact mechanism allowing sideband excitation in our sample, in the goal of correcting
a probable mistake in our original article [3]. Indeed at that time we attributed
the sideband excitation to direct driving via the qubit, and not I-modulation as
discussed earlier in this paragraph. Theoretically [33,[34] it is indeed possible to drive
the sideband resonances by directly driving the qubit at wys or w,s, an alternative
mechanism to the more complex parametric driving discussed earlier in this chapter.
However a more detailed look at the predictions shows one inconsistency with our
measurements: both [33], [34] predict that this direct driving mechanism is only
possible if an interaction term between the qubit and the resonator of the form
(a + a')o, is present in the Hamiltonian (with o, referring to the qubit energy
eigenstates). As seen from Eq. such a term is indeed present in the qubit-
plasme mode Hamiltonian, except when the qubit is biased exactly at its optimal
point. There, the coupling is purely transverse, and it should therefore not be
possible to drive the sidebands (two-photon driving is nevertheless possible [34, 35]).
In the experiment we saw no sign that the sideband driving amplitude is reduced in
the optimal point vicinity.

At the time of these measurements and of the paper publication we did not pay
attention to this problem; but later I noticed this inconsistency, and this pushed
me to develop the idea of parametric driving [32] as a probable explanation for our
observations. Indeed, because of the sample geometry it is unavoidable that the
microwave pulses generated in the microwave line to drive the qubit also induce a
flux modulation in the plasma mode leading to a modulation of the bias current
I, at the frequency of the microwave drive. Estimates indicate that a modulation
of order 100nA would be sufficient to explain the measurements which would be
reached at microwave powers similar to the ones used in the experiment. Despite
this probably erroneous interpretation of the exact sideband excitation mechanism,
the data reported in [3] represent the first experimental evidence for the strong
coupling of a superconducting qubit to a harmonic oscillator; they were published
back-to-back with the ground-breaking results of A. Wallraff in R. Schoelkopf group
at Yale observing the vacuum Rabi splitting of a coupled qubit-resonator system, in
a system described in more details in the next chapter. We also note that sideband
transitions were later used in A. Wallraff group at ETH to perform a full two-qubit

gate between two transmon qubits [35] and have now become a widespread concept
in circuit QED.
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Figure 2.11: Decoherence of fluz-qubit caused by its coupling to the plasma mode. (a)
Dependence of the energy relazation time Ty on I, (at the optimal point ®, = ®y/2,
showing that outside of I} (marked by dahsed line on the figure) Ty is limited by spontaneous
emission in the detection waveguide. (b) Dependence of the spin-echo time Techo and
dephasing time to on the qubit bias € for I, = I} (top) and I, = 0nA (bottom). Solid
black line is the prediction of Eq.[2.1]) for a temperature of 70 mK, without any adjustable
parameter. The qubit frequency is shown as a triangle together with the spectroscopy fit in
dashed line.

2.2.4 Qubit decoherence induced by coupling to the plasma
mode

The strong coupling of the flux-qubit to the plasma mode can lead to its decoherence.
This can occur in two different ways : (i) the qubit can lose its energy by spontaneous
emission of a photon into the measurement line via the plasma mode (so-called
Purcell effect) (ii) fluctuations of the photon number in the resonator can induce
corresponding fluctuations of the qubit frequency, leading to qubit dephasing. To
study these effects, we have measured the coherence properties of a flux-qubit sample
for various bias parameters : SQUID bias current I, and qubit flux-bias e [6, [30].

Energy relaxation via the plasma mode

The dependence of the flux-qubit energy relaxation time 77 as a function of I, while
keeping the qubit at precisely the same frequency is shown in Fig. 2.11Th. The
data show that T} changes by more than an order of magnitude when I, is varied,
being maximal at a current that we called the decoupling current I;. In order to
understand these results from the point of view of the coupling Hamiltonian [2.12
we have performed extensive spectroscopic measurements of the flux-qubit which
enabled us to directly measure all the Hamiltonian parameters as explained in [6], 30].
They indicate that the current I; corresponds precisely to the current for which the
linear coupling term in Eq. vanishes : ¢;(1;) = 0. This shows that for I, # I}
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at least, the qubit energy relaxation is indeed caused by spontaneous emission via
the plasma mode.

Dephasing by photon number thermal fluctuations

As regards qubit dephasing, I developed a model [30] describing the dephasing of
a qubit coupled to a harmonic oscillator with mean thermal photon number ny,
causing a qubit frequency shift 27d1y per photon in the oscillator. In the limit
where 271y < k (the harmonic oscillator energy damping rate), I found that the
qubit dephasing time is
K
¢ = ngn (e, + 1) (27019)2 (2.14)

If 01y is large, this can result is strong dephasing as discussed below. This photon-
noise model contributed to a better understanding of decoherence in superconducting
qubits in several other experiments [306], 37, [38], and was recently generalized to an
arbitrary ratio between diy and k [39].

In our case dvy is not given by the simple Jaynes-Cummings formula because of
the more complex form of the coupling Hamiltonian which contains one linear
and one quadratic term in the field. The linear term causes a frequency shift by
application of second-order perturbation theory to the term (a + a')o, (without
rotating wave approximation, not valid here). The quadratic term however leads
to a frequency-shift per photon at the first order of perturbation theory because of
the term a'ao,. In total, for a flux-qubit coupled to the SQUID plasma mode, we
obtain

, w
oy = 4[(g1(1p) sin 9)227Tm — go cosb]. (2.15)

Combining formulas and yields quantitative predictions of the flux-
qubit dephasing time, the only adjustable parameter of the model being the tem-
perature of the plasma mode, that we compared to measurements of the flux-qubit
coherence times with spectroscopic measurements and spin-echo sequences as a func-
tion of I, and e shown in Fig. 2.11p.

The best coherence times (with a spin-echo time T = 4us) are obtained for
Iy = I and € = 0, which is an optimal point for the flux-qubit as regards flux-noise,
bias current noise, and thermal photon noise [6]. Note that the measured values of
Ty and Tg were remarkably long for superconducting qubits at that time, remaining
a world record until 2009 [40] and the later development of a new generation of
qubits with longer coherence times [37]. Outside of this optimal point, we find that
a quantitative agreement between the measured coherence times and the photon-
noise model if we inject a plasma mode effective temperature of 70 mK, slightly
higher than the cryostat temperature but plausible for this type of experiments.

2.2.5 Flux-qubit : Summary and Perspectives

As seen earlier in this section, the work with flux-qubits performed during my post-
doc revealed an aspect that had been somewhat overlooked so far in the field of
superconducting circuits: the importance of properly modeling and understanding
the coupling of the qubit to its detection circuit. Coupling the flux-qubit to the
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plasma mode via a dc SQUID was shown to yield a rich Hamiltonian, which enabled
the observation of coupled dynamics between the two systems. The tunability of
this coupling allowed also to demonstrate unambiguously that its fluctuations were
responsible for qubit decoherence around the optimal point. In demonstrating and
understanding these effects, my PhD experience in cavity quantum electrodynamics
with Rydberg atoms was essential, since a quantized description of the plasma mode
and of its coupling to the qubit was key. In a sense these results, obtained in parallel
with the pioneering experiments of Andreas Wallraff and Rob Schoelkopf at Yale,
marked the transition between early superconducting qubit experiments which were
treated in the framework of mesoscopic physics and a new generation of experiments
which required advanced quantum optics treatment. It also led us to realize that,
while it is utterly difficult to achieve strong coupling between real atoms and elec-
tromagnetic cavities, artificial superconducting atoms tend to be strongly coupled
to oscillators in their environment, even in circuits that were not designed in that
purpose. These aspects will be more developed in the next chapter which deals
with a next generation of experiments performed with all-microwave measurements,
following the path opened by R. Schoelkopf group at Yale.

It is also timely to briefly assess the present status of flux-qubit research. From a
quantum information viewpoint, the flux-qubit suffers from two drawbacks : (i) its
coherence times are long only at the optimal point (ii) the flux-qubit frequency at this
optimal point (the gap A) is difficult to predict due to its exponential dependence
on the size of the small Josephson junction. An interesting solution is to make
A tunable, by turning this small qubit junction into a SQUID as demonstrated
in [41]; this however requires an additional local control line which complicates the
chip design. Compared to transmon qubits (described in the next chapter), the
flux-qubit appears in present days as a more complex circuit whose coherence times
are slightly inferior. It is therefore not the qubit of choice for present designs of
large-scale (~ 100 qubits !) quantum processors.

Nonetheless, flux-qubits have a truly unique property : their magnetic dipole
is by far the largest of all qubit designs. Certain specific applications can greatly
benefit from this enormous dipole. In particular flux-qubits have a bright future
in hybrid quantum circuits aiming at coupling spins to superconducting circuits, as
shown by several proposals [42] and experiments [43]. This is the focus of one of
our ongoing projects (led by Michaél Stern presently postdoc in the group), whose
long-term goal is to reach the strong coupling regime between a single spin and a
flux-qubit. For this purpose a first preliminary step was to obtain flux-qubits with
reproducibly long coherence times. We revisited the flux-qubit readout with a circuit
QED approach and obtained coherence times significantly enhanced compared to the
results presented in this chapter, of order 5 — 20us [44], which is encouraging for the
future of the project.
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Chapter 3

Circuit QED with Transmon
Qubits

This chapter describes work performed since I joined the Quantronics group, first as
a postdoc (2005 —2006) then as a permanent researcher. At the time that I arrived,
it was becoming clearer and clearer that the circuit QED experiments performed in
R. Schoelkopf group at Yale University were a major breakthrough for the field of
quantum circuits, in particular because qubit readout by microwave probing of the
cavity is much less invasive for the qubit than dc switching of a Josephson junction
to the voltage state. Together with Denis Vion and Daniel Esteve we quickly decided
that I would start developing a similar research line in the Quantronics group, and
I supervised PhD student Agustin Palacios-Laloy to do that.

One of the interests of the circuit QED setup is to make it possible to vary the
strength of the measurement, from weak to projective, simply by changing the power
of a microwave source. Motivated by proposals by A. Korotkov, this suggested us to
study this transition in the context of circuit QED. As a final goal of this project we
were able to perform for the first time a thought experiment proposed by A. Leggett
and A. Garg in 1985 and to test their proposed inequality [45], which brought further
confirmation that superconducting circuits, despite their macroscopic character, do
behave quantum-mechanically [7].

3.1 System description

In order to develop novel circuit QED experiments, our starting point was to re-
produce the remarkable results obtained in R. Schoelkopf group. Two major break-
throughs came from that group : circuit QED with microwave measurements [40),
4, [47], and a new qubit design called the transmon [48, 49]. In this section we will
describe our implementation of circuit QED with transmon qubits, again strongly
inspired by the work at Yale.

The core of circuit QED experiments is shown in Fig. 3.1} a superconducting
qubit of the transmon type (in purple) is capacitively coupled to a coplanar waveg-
uide (CPW) superconducting resonator (in green). The resonator consists in a CPW
transmission line of length L interrupted in two points, giving rise to Fabry-Pérot
resonances at frequencies ¢/ L, with ¢ the speed of light in the waveguide.

The perfect analogy with cavity QED (see Fig.1 of previous chapter) is visible at
first sight, with the superconducting qubit playing the role of the Rydberg atom and
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Figure 3.1: Circuit QED principle. A transmon qubit (in purple) is capacitively coupled
to a coplanar waveguide (CPW) resonator (in green). The coupled system is probed and
driven by microwave pulses at the resonator input.

the CPW resonator the role of the high-Q cavity. While in cavity QED the atoms
were used to as a probe of the cavity field, in circuit QED the resonator, probed by
microwave signals reflecting at the cavity input (see Fig. , is used to infer the
state of the qubit. The essentials of this system are described in this paragraph,
while more details can be found in several references [50, [§].

3.1.1 The transmon qubit

The transmon qubit is the modern version of one of the major qubit designs, the
Cooper-pair box (CPB). Its circuit diagram is shown in Fig. 8.2} It consists of an
isolated Josephson junction of critical current I in parallel with a shunting capacitor
C'. The physics of the CPB is governed by two energy scales : the Josephson energy
E; = Ic®y/27 which quantifies the pairing energy gained by tunneling between the
two superconducting islands of the CPB, and the charging energy E¢ = €*/2C giving
the cost in energy of charging the capacitor C' with one electronic charge. Early
CPBs (in particular in Nakamura’s pioneering experiment [25]) were in the regime
E; < E¢ where they are highly sensitive to charge noise; the Quantronium CPB
was in a regime F; ~ E- where coherence times can be rather long at the charge
optimal point. The transmon is a CPB with E; > F¢ (typically E;/Ec = 50),
which yields an exponential suppression of charge noise sensitivity [48].

The simplest way to understand the transmon qubit basic properties is to treat
the Josephson Hamiltonian —FE; cos ¢, ¢ being the phase across the junction, in
perturbation theory. This is possible for a transmon, since in the E;/Ec > 1
regime the quantum fluctuations of the phase around its equilibrium value are < 1
so that cos ¢ can be expanded in powers of ¢. Together with the charging energy
the total Hamiltonian of the transmon qubit can thus be written as

2 4
H = 4Eon* — E;(1 — % + f—4), (3.1)

with n the number of Cooper-pairs having tunneled through the junction, which
is conjugate variable to ¢ [(;3, n] = 1. The first three terms describe a simple harmonic
resonator, with inductance L; = ¢2/E; and capacitance C' (¢y = h/2e being the
reduced flux quantum). The fourth term makes this resonator non-linear. Using
the field creation and annihilation operators b and b' and keeping only the secular
terms yields

K
H/h = wob'b + 5(5)*)252, (3.2)

27



Figure 3.2: Transmon qubit principle. (left) Electrical scheme. The transmon consists of
a Josephson junction (here shown as a cross) in parallel with a shunting capacitor. (right)
The transmon energy levels are those of a weakly nonlinear resonator, so that the two
lowest levels form a qubit.

with wg = 1/y/L;C and K = E¢/h. The corresponding transmon energy spec-
trum is shown schematically in Fig. 3.2} successive levels have an energy difference
E,+1 — E, = hwy ny1 = hlwo + [n + 1/2]K]. They are thus non-equidistant, and if
the anharmonicity parameter K is large enough the two lowest levels form a qubit.
Typical parameters are wy/2m ~ 6 GHz and K /27 = 300 MHz, implying that as
long as the transmon is driven at low enough Rabi frequency it will indeed behave
as a two-level system. Restricted to the |0) — |1) subspace the transmon artificial
atom Hamiltonian is thus Hy = —w,0,/2, with w, = wy + K/2.

Compared to the CPB and the FQ, the transmon has one major advantage. It
does not need to be biased at a specific working point by a DC control parameter.
As a result the transmon is a very robust qubit design, and it is possible to obtain
coherence times in the hundreds of nanoseconds without big effort.

3.1.2 Transmon coupled to a CPW resonator

In the circuit QED setup shown in Fig. the transmon is capacitively coupled to
a CPW resonator of characteristic impedance 7, with a coupling capacitor C.. This
is the exact equivalent of the dipole electric Hamiltonian coupling a Rydberg atom
to the resonator in the Cavity QED setup. This qualitative argument can be turned
into a rigorous derivation [46], 50, 48], showing that the coupled system Hamiltonian
is indeed the Jaynes-Cummings Hamiltonian of Cavity QED

H/h= —%oz +wrala+gla'o™ +ao™). (3.3)

The coupling constant is given by hg = £6V;|(0|Q,]1)| [6], with g = C./C,
6Vo = wor/hZy/7 the voltage zero-point fluctuations, and |(0]Q,|1)| the charge
matrix element of the transmon qubit which can be quantitatively computed for
precise parameters but is of order 2e.

To determine whether the system is in the strong coupling regime, one can
evaluate the coupling constant g and compare it to the various damping rates.
With 6Vp = 2 — 3uV, B~ 0.2, and |(0|Q,]1)] = 2¢, one gets g/27 ~ 250 MHz. All
typical damping rates (at least the damping caused by uncontrolled internal losses)
being of order ~ 100 kHz, the qubit - resonator coupling constant is several orders
of magnitude large enough so that the strong coupling regime is reached.

Note that compared to the coupling of a FQ to the plasma mode of its readout
SQUID as discussed in the previous chapter, we have a less rich Hamiltonian; in
particular the coupling constant ¢ is not tunable in this case. However this also
yields a more robust system: whereas in the FQ sample discussed in the last chapter
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Figure 3.3: Qubit readout principle. Microwave pulses at the qubit resonance frequency
are sent down input lines (heavily attenuated at low temperatures), generate a field inside
the resonator with a phase that depends on the qubit state due to dispersive coupling, and
are reflected in the output line. After amplification the reflected pulse phase is measured
by homodyne demodulation yielding the qubit state.

both the SQUID bias current and the flux threading the qubit had to be set at a very
precise value to benefit from the best properties of the circuit, the transmon - circuit
QED setup needs no special tuning. This robustness enabled the superconducting
qubit community to move from performing experiments dedicated to either have a
qubit work or study how it works, to experiments in which the qubit in itself is
no longer a research topic but a tool for research on quantum physics or quantum
information. This is because of this robustness and simplicity that we decided to
use the transmon-circuit QED system for our future experiments in the group.

3.1.3 Qubit state manipulation and readout

One of the key advantages of the circuit QED setup developed in R. Schoelkopf
group is the possibility of performing single-qubit rotations as well as qubit state
readout with microwave pulses sent at the input of the CPW resonator. Qubit state
manipulation is done using a microwave pulse at the qubit frequency w,; by varying
the amplitude and phase of this pulse arbitrary rotations on the Bloch sphere can
be achieved. Qubit state readout is performed at the end of each experimental
sequence, by sending a microwave pulse at the cavity frequency w,., and measuring
the reflected phase. A schematics of the readout process is shown in Fig. [3.3]
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Figure 3.4: Double-dot experiment proposed by Korotkov [52]. A double dot with tunneling
amplitude A and detuning € is measured by the current through a neighboring Quantum
Point COntact (QPC). (a) Predicted spectrum of the QPC current, showing a peak at the
Rabi frequency Q = VA2 + €2. (b) Dependence of the Rabi peak shape on the measurement
rate T' [52)]

3.2 Weak measurements, Quantum Zeno effect,
and test of the Leggett-Garg inequality

3.2.1 Background

In quantum mechanics, the measurement of an observable always imparts a very
peculiar back-action on the measured system, summarized by the wave-function
collapse postulate which states that (i) the measurement outcome is an eigenvalue
of this observable, with a probability determined by the system quantum state prior
to the measurement, and (ii) the system quantum state is irreversibly projected
onto the corresponding observable eigenstate. For some types of measurements this
projection occurs instantaneously, as is the case for the detection of an optical pho-
ton by a photo-detector, a prototypical measurement for quantum optics. But for
other types of measurements, acquiring enough information for resolving the observ-
able eigenstates takes a time sufficient that an experimentalist can “zoom in” and
try to observe in direct the projection occurring. With such weak continuous mea-
surements, every time increment brings slightly more information about the system
(together with some randomness), which causes a slight drift of the system quan-
tum state determined by the measurement outcome. The evolution of the system is
best described by a stochastic master equation which takes into account both the
system Hamiltonian evolution, its damping, the random measurement outcome, to-
gether with the quantum back-action of this continuous measurement record, yield-
ing “quantum trajectories” that have long been studied in quantum optics [51].
On this topic of continuous measurements and of the quantum back-action, sev-
eral interesting theoretical predictions were made by Alexander Korotkov. He was
the first physicist to dare to apply advanced quantum optics concepts such as quan-
tum trajectories to solid-state mesoscopic devices, at a time where the convergence
of atomic and solid-state quantum physics was far from being evident. In all his
articles, Korotkov considered a system consisting of a double quantum dot (DQD)
in a 2D electron gas (see Fig. , loaded with one electron that can tunnel between
the left and the right dot, which can be modelled as a two-level system (TLS) with a
o, observable corresponding to the presence of the dot in either dot. The DQD is ca-
pacitively coupled to a quantum point contact (QPC) in such a way that the tunnel
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barrier is slightly modified depending on which dot the electron is actually located.
Electrons passing through the QPC thus perform a weak continuous measurement
of .. One of the first predictions of A. Korotkov in this system was that the current
through the QPC would carry a spectral signature of the quantum dynamics of the
electron in the QDQ : namely, a peak at the frequency corresponding to the tunnel-
ing of the electron between the two dots should be oberved, the so-called Rabi peak
as can be seen in Fig. [3.4] [53 52].

The interesting non-trivial aspect of this prediction was that left to itself (that is,
unmeasured), the electron in the DQD would quickly relax towards the ground state
of its Hamiltonian, namely an eigenstate of the o, operator consisting of an equal
weight superposition of the electron being in the left and right dot, a state which by
essence is entirely stationary and in which all dynamics is suppressed. However, even
the weakest current passing through the QPC performs a weak measurement of o,
an observable which does not commute with the Hamiltonian, and is thus sufficient
to generate some dynamics in the electron state through its quantum back-action,
giving rise to the Rabi peak. Korotkov provided detailed predictions about the
width of the Rabi peak, and its evolution when the measurement strength (governed
by the voltage bias across the QPC) is increased. He pointed out in particular a
crossover that should occur when the measurement strength becomes comparable
to the tunneling in the DQD (that is between a weak and a strong measurement):
the peak at the tunneling frequency should evolve progressively into a Lorentzian
peak centered at zero frequency (see Fig. ) Korotkov made also important
predictions regarding the maximum possible signal-to-noise of the Rabi peak allowed
by quantum mechanics [52]. He then made the connection between the spectral
weight of this Rabi peak and a long-standing prediction by Tony Leggett [54], to
which we will come back below. And finally, he proposed several quantum feedback
schemes aimed at stabilizing the phase of the Rabi oscillations [55, [56].

The predictions of Korotkov have still never been tested in the system he con-
sidered, for several reasons: first, Korotkov neglected the fact that the dc current
passing through a quantum dot is very far from being measured at the quantum
limit; then DQDs are subject to charge noise which shortens their coherence times,
so that coherent tunneling rates need to be in the few GHz, which in turn re-
quires colossal detection bandwidth of the QPC current, very far from any realistic
measurement system. My contribution was to realize in 2006 (following several dis-
cussions with H. Mooij and A. Lupascu in Delft who introduced me to this topic)
that instead of an electron tunneling between two quantum dots and measured by
the current through a QPC, a superconducting qubit driven by a microwave signal
and measured at the same time dispersively by a coplanar waveguide resonator in
circuit QED was the ideal testbench for Korotkov ideas and predictions. Indeed,
the dispersive measurement is quantum non-destructive since the dispersive Hamil-
tonian commutes with the qubit o, operator, and its strength can be very easily
varied by changing the mean photon number in the cavity n. This led us to a series
of experiments, described in the following, in which we verified some of Korotkov’s
predictions by observing the Rabi peak, and testing the Leggett-Garg inequality [45]
using weak measurements. Later, building on our work, other groups pushed the
circuit QED implementation of Korotkov ideas even further thanks to the develop-
ment of parametric amplifiers, and managed to go up to the implementation of the
quantum feedback schemes [57, [58].
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Figure 8.5: Ensemble-averaged Rabi oscillations. (a) Experimental setup. (b) (left) Pulse
sequence to measure ensemble-averaged Rabi oscillations in the presence of a weak mea-
surement pulse in the cavity. (right) Ezperimental ensemble-averaged Rabi oscillations
with respectively n = 0,1,2,5,10,and 20 photons in the cavity, showing the progressive
dephasing of the Rabi oscillations up to an exponential decay. (c) Extracted measurement-
induced dephasing rate I'y(n) showing the expected linear dependence in n. (d) (pink dots)
Dephasing rate per photon as a function of Qg, together with theoretical predictions (gray
area) and simulation results (blue squares).

3.2.2 Experimental Setup

For our implementation of these ideas, we used the experimental setup shown in
Fig. [3.5] A trasmon qubit is coupled dispersively to its readout resonator with dis-
persive coupling constant x /27w = 1.75 MHz. The cavity damping rate is k/2r =
30 MHz, placing the experiment largely in the regime where y < k as needed for
weak measurements. It is driven by a microwave source V; at its resonance fre-
quency. Measurements are performed with another microwave source V,, at the
cavity frequency w,. which builds up an intra-cavity field with mean photon number
n. The field reflected on the cavity is routed by a circulator to a cryogenic amplifier,
before being detected by homodyne demodulation with a local oscillator at the same
frequency, yielding its in-phase and out-of-phase quadratures I(¢) and Q(t) with a
bandwidth ~ 100 MHz.

In this low-quality factor regime, it can be shown that the output quadratures
(noted X = I,Q) are directly proportional to the qubit excited state population :
X(t) =X + (0X/2)(5.)e(t) + &(t), where (c.).(t) is the expectation value of &, at
time t conditioned on the whole history of the detector outcome X (¢') for ¢/ <t, 6X
is the maximum detector signal proportional to the measurement amplitude v/n, and
&o(t) is the total output noise of the amplifier. When both the drive and the mea-
surement pulses are on, the state of the qubit evolves under 2 conflicting influences :
(i) the effect of the drive which tends to mix the o, eigenstates (ii) the quantum
back-action of the measurement pulse, which tends to project it on a o, eigenstate.
Depending on the ratio between the driving strength (characterized quantitatively
by the Rabi frequency Q2g) and the measurement strength (characterized quantita-
tively by the inverse of the minimum measurement time needed to discriminate the
two system states with a quantum-limited amplifier T'ees = 8nX2/k), the system
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Figure 3.6: Principle of our weak measurement experiment. (left) The two-level system
is at the same time driven at frequency Qg and measured with a strength T peqs, which
also causes a quantum back-action. (right) Examples of quantum trajectories [59] in the
diffusive Rabi limit Qg > Tpeas (top) and the quantum jump limit Qg < Tpeqs (bottom).

will have qualitatively different types of quantum trajectory : either a diffusive Rabi
oscillation if Qg > I'),cqs Or incoherent quantum jumps between o, eigenstates if
Qr < I'eas- This complex dynamics is described by a stochastic master equa-
tion (see in particular [53 59]). Typical trajectories in the two regimes (extracted
from [59]) are shown in Fig. [3.6 together with a summary of the principle of the
experiment.

3.2.3 Ensemble-averaged Rabi oscillations in the presence
of a weak measurement

We start with a series of calibration experiments in which we measure standard
ensemble-averaged Rabi oscillations, in the presence of a weak measurement pulse
in the cavity. In ensemble-averaged experiments, the back-action of the measure-
ment, which projects each time on a different eigenstate due to the randomness of
the measurement process, appears simply as an extra dephasing term in the qubit
dynamics. It was measured spectroscopically in circuit QED in [60]. A semi-classical
description of this dephasing process is that the intra-cavity photon number fluctu-
ates due to shot-noise, which in turn induces fluctuations of the qubit frequency and
therefore dephasing, similar to the thermal photon noise encountered in the previous
chapter. The predicted dephasing rate is I'y = 8nx?/x [8], with a dependence on
n which can be understood by the photon number variance scaling like /2 for a
coherent state of the electromagnetic field.

The experimental protocol shown in Fig. consists in repeating 10* identical
sequences of (i) waiting a time long enough that the qubit has relaxed in its ground
state (ii) applying a microwave pulse of duration Dt at w, in presence of a weak
microwave drive in the cavity, populating it with 7 photons on average (iii) Turning
off the qubit drive and performing a projective measurement of the qubit state,
yielding an average signal phase ¢;.
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For n = 0 the phase of the reflected signal shows damped Rabi oscillations
as expected, with a damping time governed by the qubit intrinsic relaxation time
Ty = 200ns probably limited by dielectric losses in the transmon shunting capac-
itor. Increasing n, the Rabi oscillations damping time becomes shorter, up to the
point where the Rabi oscillations vanish and give place to an exponential damp-
ing. Fitting these data with analytical solutions of the Bloch equations, we extract
a measurement-induced dephasing rate I',(n) in quantitative agreement with the
predicted 8nx?/k (see Fig. as long as the Rabi frequency is smaller than the
cavity bandwidth . Note that as can be seen in Fig. [3.5] once the qubit evolution
has become exponential, increasing the measurement strength further makes the
exponential time constant longer and longer. This is a manifestation of the quan-
tum Zeno effect: a strong measurement inhibits the transition between ground and
excited states.

3.2.4 Continuous monitoring of Rabi oscillations : the Rabi
peak

In order to observe a measurement back-action that goes beyond a simple extra
dephasing term with a semi-classical intepretation, one needs to measure not the
ensemble-averaged detector output signal but instead higher-order correlation func-
tions. For that, we monitor the system in its steady-state, long after the tran-
sient ensemble-averaged Rabi oscillations such as shown in Fig. are washed
out. Instead of applying microwave pulses, the two sources V; and V,, are con-
tinuously ON. The measurement of the two-time detector output signal Ky (7) =
(X(t) - X)(X(t+7)—X))/(6X/2)? is difficult in our setup because the amplifier
noise dominates the output signal. However this added noise can be removed by
processing the signal in the frequency domain.

For that, we compute the square modulus S; and Sq of the Fourier transforms of
I(t) and Q(t), to obtain the detector output power spectrum S(w) = Sr(w) + Sg(w).
The signal power spectrum is then obtained by subtracting the amplifier noise spec-
trum Sopp(w) measured when the two sources V; and V,,, are OFF from the signal-
plus-noise spectrum Soy(w) measured with both sources ON, and by dividing this
difference by the independently calibrated frequency response of the measurement
lines and setup. Typical curves are shown in Fig. [3.7h. They show a single peak lo-
cated at the Rabi frequency (already known from the time-domain measurements),
without any harmonics within the 50 MHz detection window, as expected from the-
oretical predictions [53]. To be more quantitative, the measured S(w) is converted
into spin units, using a conversion factor 6V? = §I? + §Q? measured as accurately
as possible in a separate experiment by saturating the qubit transition [7), §].

The resulting spin spectrum S, (w) is shown in Fig. and is in good agree-
ment with theoretical predictions. The data clearly show the transition from weak to
strong measurement in a continuously monitored driven TLS : at low 7 the spectrum
consists of a single Lorentzian peak at {2z; on increasing the measurement strength,
this Lorentzian broadens towards low frequencies, and for strong measurements the
spectrum becomes a Lorentzian centered at zero frequency, similar to that of an
incoherent TLS jumping stochastically between its two states[53, [52]. The theoreti-
cal curves shown in Fig. [3.7c-f are obtained without adjustable parameter, using an
analytical formula derived from the solution of Bloch equations in which the finite
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Figure 3.7: Continuous monitoring of the driven TLS. (a) Spectral densities Son(w) and
Sorr(w) when Vg and Vy, are both OFF (brown) or both ON (red), with Qr = 2710 MHz
and n = 1. The difference between the two curves shows the Rabi peak. (b) Normalized
Rabi spectra at Qp = 275 MHz and 7 = 0.23,0.78,1.56,3.9,7.8,and15.6 (from blue to
red). (C-F) Normalized Rabi peaks at wr/2m = 2.5,5,10and20 MHz (from blue to red)
for n = 0.23(C),1.56(D),3.9(F),and15.6 (F). Thick and thin color lines are respectively
the experimental spectra and those calculated from a theoretical analytical formula using
only independently measured parameters (including x /2w = 1.8 MHz). Dashed black lines
on top of the orange curves in (C,D,E) are Rabi peaks obtained by numerical simulation
with the same parameters. The dotted-dashed black curve in C is the Lorentzian frequency
response C(w) of the resonator.

detector bandwidth is taken into account phenomenologically. The agreement be-
tween theory and experiment is good for n < 5 but is only qualitative at larger n,
possibly because of a breakdown of the dispersive approximation.

3.2.5 Experimental test of the Leggett-Garg inequality
Macrorealism

In the quantum trajectory description, the observation of the Rabi peak is possible
because of the progressive and continuous projection of the qubit quantum state
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towards eigenstates of o, caused by the measurement quantum back-action. However
one could wonder whether an alternative model could yield the same curves. For
instance, a “classical” variable such as the collective magnetization of a collection
of spin-1/2; driven and continuously measured, would also yield a peak at the Rabi
frequency, because even though the phase of the Rabi oscillation is lost after the
transient nutation, this nutation continues and would have a spectral signature
similar to the one oberved in Fig.[3.7, Quite remarkably, it is nevertheless possible to
discriminate between a Rabi peak originating from a “classical” or from a quantum
spin, as noticed by Ruskov and Korotkov [54]: indeed the amplitude of the Rabi peak
for a quantum TLS should be slightly larger than the amplitude of any Rabi peak
allowed for a “classical” system, as demonstrated below using a reasoning which is
a weak measurement version of an earlier reasoning of Leggett and Garg [45].

Before presenting the original Leggett-Garg argument [45] it is necessary to be
more precise about the meaning of the word “classical”. In [45] Leggett and Garg
consider systems satisfying two assumptions corresponding to a type of behavior
that they call “macrorealism” : (A1) the system is always in one of its macroscop-
ically distinguishable states and (A2) this state can be measured in a non-invasive
way, that is without perturbing the subsequent dynamics of the system. Quan-
tum mechanics however contradicts both assumptions, since a system can be in a
superposition of any states, and any measurement in quantum mechanics has an
unavoidable back-action. The macrorealistic assumptions are particularly plausible
for systems that can be qualified of being “macroscopic”. The example considered in
the initial Leggett-Garg article is in fact precisely a superconducting SQUID being
in two of its metastable flux-states - in fact a flux-qubit. It was therefore partic-
ularly relevant to test the validity of these two hypotheses on a superconducting
qubit, even if its macroscopic character is subject to discussion and debate.

Leggett-Garg inequality with projective measurements

To obtain a quantitative test discriminating if a physical system obeys or not the
two rather general assumptions (A1) and (A2), Leggett and Garg consider a certain
degree of freedom, described by a variable z(t) such that —1 < z(¢) < 1, and fulfilling
the macrorealistic axioms. Using a simple arithmetic argument in the spirit of the
Bell inequalities, it is possible to show that unavoidably

2(to)z(t1) + 2(t1)z(ta) — 2(t0)2(t2) <1 (3.4)

for all t;. Consequently, an oberver measuring z on many identical systems, at
to and t; = ty + 7, at ty and ty, = tg + 27, or at t; and t5, should find ensemble-
averaged correlators K;;(to, 7) = (2(t;)2(t;)) (for i, j =0, 1,2, with i < j) satisfying
the Leggett-Garg inequality

fra(to,7) = Koi + Ki2 — Koz < 1. (3.5)

Quantum mechanics on the other hand predicts that, applied to the case of a
qubit undergoing coherent oscillations at frequency {2z, this inequality is violated
for well-chosen values of 7, with maximal violation frg(to, 7 = 7/3Qg) = 1.5 inde-
pendent of ty. Note that the delay 7 between the successive measurements has a role
analogous to the angle between the measurement directions in the Bell inequality
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Figure 3.8: FEzxperimental violation of the Leggett-Garg inequality. A) experimental (red)
and theoretical (blue) spectral densities S,(w), calculated or measured at w/2m = 10.6 MHz
and n = 0.78. B) experimental (dots) and theoretical (blue line) Leggett-Garg function
fra(T) =2K(1) — K(27). Green error bars correspond to the mazimum systematic error
associated with calibration, whereas red ones also include a two standard deviation wide
statistical error £20(T) associated with the experimental noise on S.. The Leggett-Garg
inequality is violated (yellow region) at T = 17 ns (see green arrow) by 5o0.

argument, justifying the nickname “Bell inequality in time”. The excess of correla-
tions predicted by quantum mechanics, compared to the macrorealistic case, can be
interpreted as resulting from the projection of the qubit state onto a o, eigenstate
induced by the first measurement.

Leggett-Garg inequality with weak continuous measurements

As shown in [54] the very same conclusions also hold if the qubit undergoing coher-
ent oscillations is continuously and weakly monitored along o, as in our experiment,
with the system in its steady-state implying that the two-time correlation functions
depend only on the time difference. The detector now delivers an output signal
V(t) = (6V/2)z(t) + £(t) proportional to z(t) with some extra noise £(t). Macrore-
alism implies that the qubit dynamics at time ¢ 4+ 7 is unaffected by the detector
noise at time ¢ which mathematically implies that (£(t)z(t + 7)) = 0. The de-
tector output correlation function K(7) = (V(t)V(t 4+ 7))/(6V/2)? is then simply
equal to (z(t)z(t + 7)). By averaging inequality [3.5 over ¢, in the steady-state, the
Leggett-Garg inequality in time becomes

fra(r) =2K(1) — K(27) < 1, (3.6)

and should be violated by a quantum TLS. The violation here is due to a con-
tinuous partial projection caused by the measurement during the TLS coherent
evolution, which reinforces correlations between the detector output at successive
times.

Experimental test of the Leggett-Garg inequality

Using one of the measurements of Rabi peaks described in the previous paragraph,
it is straightforward to compute K(7) (after normalizing the data to account for
the cavity finite bandwidth [7]), and thus frq(7). The results are shown in Fig. [3.8
for a Rabi peak at 10 MHz, and a measurement strength 7 = 0.78. They are in
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quantitative agreement with predictions taking into account the known decoher-
ence times of the qubit. Importantly, we measure fiq(7 = 17ns = 7/3Qr) =
1.44(£0.12) £ 2 x (o = 0.065), which violates inequality [3.6] by 5 standard devia-
tions o. This is a proof that, even for a vanishingly small measurement power of less
than one microwave photon in the cavity, the quantum measurement back-action
cannot be neglected, and has strong measurable consequences on the detector out-
put correlation function; or alternatively that the state of the transmon qubit in the
experiment cannot be described as a classical variable such as the position of the
moon, following the image used by Einstein as related by H. Mooij [61]. Further
evidence for the quantum behavior of superconducting circuits was brought in par-
ticular with the violation of the Bell inequality in a system of two coupled phase
qubits [62].

This first test of the Leggett-Garg inequality was performed using continuous
weak measurements on a driven superconducting qubit in its steady-state. Since
then, other experiments were conducted to test this inequality, with different systems
and different types of measurements (see [63] for a review on the subject). An
interesting direction consists in making the non-invasive measurement assumption
(A2) as plausible as possible from a macrorealistic viewpoint. This can be achieved
with a detector able to measure only one of the two states, and which is therefore
truly non-invasive in the eyes of a macrorealist when it gives a null result. Such
“ideal negative result” measurements were used to test the Leggett-Garg inequality
with phosphorus donors in silicon [64] and in related experiments with NV centers in
diamond [65] 66]. Another research topic is the link between Leggett-Garg inequality
violation and so-called strange weak values which was pointed out by Williams and
Jordan [67] and experimentally demonstrated with optical photons [68] and with
superconducting qubits [69].

3.2.6 Weak measurements : perspectives

After measuring the detector output power spectrum of a continuously monitored
qubit as in our experiment, the next step would be to implement Korotkov’s ideas
of quantum feedback. The idea is to use the information acquired in the course of a
continuous measurement to actively feedback on the qubit drive and control fields, in
order for instance to stabilize the phase of a Rabi oscillations so that it lasts forever.
The only obstacle that prevented us from realizing this experiment is that the qubit
signal represents only a small fraction of the detector output, because the cryogenic
amplifier adds a large amount of noise to the qubit readout signal. More recently,
several groups developed better amplifiers, with noise properties much closer to
the quantum limit, which added little or even no noise in addition to the qubit
signal. This has enabled a new generation of experiments on weak measurements
which built upon our results [7]. Noticeable recent results are the stabilization of
a Rabi oscillation by quantum feedback [57, 58], and very recently even the direct
observation of quantum trajectories [70].
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Chapter 4

Hybrid Quantum Circuits

In parallel to research on circuit QED with transmon qubits, I started developing
a new research project in 2009, which occupied me progressively more and more
since then and at present constitutes my main research direction. It consists in
developing new “hybrid” quantum devices that combine superconducting quantum
circuits and spins in crystals, and that will benefit from the interesting properties
of each system : the strong coupling to electromagnetic fields and flexibility of the
circuits, and the long coherence times of the spins.

The most straightforward way to harness these two complementary features is
to use spins in crystals as storage medium for the quantum state of superconduct-
ing qubits. I will describe here in some detail two of the steps we made towards
the implementation of such an operational spin-based quantum memory, namely
the demonstration of strong coupling of a spin ensemble to a coplanar waveguide
resonator, and the transfer of a quantum state from a qubit into this spin ensem-
ble. The experiments were carried out by postdoc Yuimaru Kubo and PhD student
Cécile Grezes, of whom I was the main supervisor; they strongly benefitted from
collaborations with the group of Jean-Francois Roch and Vincent Jacques, who are
the French experts of NV centers.

4.1 Hybrid Quantum Circuits

4.1.1 Rationale for the hybrid way

Quantum information processing protocols consist in more or less complex opera-
tions on abstract quantum states, and the choice of the system which should embody
these states is left to the “quantum engineer”: either microscopic systems such as
atoms, ions, photons, electron and nuclear spins, or more macroscopic artificial sys-
tems such as superconducting qubits, nanomechanical resonators, semi-conducting
heterostructures, ... Each of these physical implementations has specific advantages
from the point of view of quantum information processing. Atoms and spins can have
long coherence times because of their decoupling from the macroscopic environment;
mechanical resonators can be functionalized; photons are interesting for communi-
cation; and superconducting circuits are well-suited for rapid entangling gates. It is
then natural to imagine that the possibility of exchanging quantum states between
all these different types of quantum systems will lead to new quantum devices with
new functionalities. This is precisely the framework of the emerging field of Hybrid
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Figure 4.1: Spin-ensemble Quantum memory principle. The state |1)) of a transmon qubit
is stored into an ensemble of spins in a crystal, via an intermediate quantum bus consisting
of a coplanar waveguide resonator coupled electrically to the qubit and magnetically to the
Spins.

Quantum Circuits.

The birth of this field is intimately linked to the development of circuit QED.
Indeed, coplanar resonators offer a natural platform for coupling all kinds of quantum
systems. Early proposals were motivated by the idea of increasing the coherence
times of superconducting qubits, which was only on the microsecond scale at that
time, while benefitting from their versatility and rapid single- and two-qubit gates.
It was thus proposed to couple superconducting qubits, via the CPW quantum bus,

to ions [71], atoms [72, [73, [74] and polar molecules [75], electrons on helium [76], or
ensembles of impurity spins [77, [78] [42].

Experimental progress has been slow, because combining two different quantum
systems requires to develop new experimental techniques to make them compatible
which is sometimes challenging. Besides the case of spin-ensemble hybrid circuits
which is discussed below, noteworthy progress was made in coupling atoms [79], 80,
1] and semiconducting quantum dots [35], [82] to coplanar waveguide resonators,
and nanomechanical resonators to superconducting resonators and qubits [83], 84].

4.1.2 Towards a spin-ensemble quantum memory for super-
conducting qubits

Our hybrid project consists in combining electronic spins on the one hand, which
can have ultra-long coherence times when embedded in clean crystals (up to seconds
or more), and superconducting quantum circuits on the other hand, in the goal of
realizing a quantum memory for superconducting qubits. We chose to use NV
centers in diamond for their interesting properties and demonstrated long coherence
times [85] [86]. The general goal of the experiment is to store the quantum state of
a superconducting qubit into a NV centers ensemble quantum memory.

As schematically shown in Fig.[£.1] in our project the transmon qubit transfers its
quantum state to the spin ensemble via an intermediate “quantum bus” resonator,
to which the transmon is electrically coupled, and the spin ensemble magnetically
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Figure 4.2: NV centers in diamond. (a) Negatively-charged NV centers consist of a sub-
stitutional Nitrogen atom mnext to a Vacancy of the diamond lattice, having trapped an
electron. The electronic spin S = 1 is coupled to the I = 1 nuclear spin of the nitrogen
atom by hyperfine interaction. (b) NV centers can be excited optically in an excited orbital
state, through which they are repumped into the mg = 0 state. (c¢) Transition frequency
from the spin ground state |mg = 0,mj) to the excited states |+,my). (d) Optically-
Detected Magnetic Resonance (ODMR) hyperfine spectrum of an ensemble of NV centers
in a diamond crystal used for the experiment reported in pamgmph and [15)].

coupled. This requires that the resonator is strongly coupled to the qubit, which
is straightforwardly achieved with usual circuit QED techniques as described in the
previous chapter, but also to the spin ensemble, which is more demanding and had
never been achieved before.

4.2 Spin-ensemble quantum memory for super-
conducting qubits : principle

4.2.1 NV centers in diamond

NV centers are diamond defects consisting of a substitutional nitrogen atom (N) sit-
ting next to a vacancy (V) of the diamond lattice (see Fig.[4.2a). In their negatively-
charged state (NV ), NV centers have very interesting electronic properties arising
from their peculiar energy level scheme, shown schematically in Fig. [4.2p.

First, the electronic ground state of the NV is a spin-triplet S = 1, with a
zero-field splitting D /27 = 2.88 GHz between states mg = +1 and mg = 0 (along
the NV center symmetry axis which plays the role of a natural quantization axis),
arising because of spin-spin interactions in the diamond crystal field. The complete
NV ground state spin Hamiltonian needs to be presented in some detail, since this
is the degree of freedom that is used for storing the quantum information in our
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experiments. Physically, four terms contribute to this Hamiltonian : (i) the zero-
field splitting (ii) the Zeeman energy shift in an external magnetic field B—NV> (iii)
the interaction of the NV spin with local electric field or strain in the diamond due
to the spin-orbit coupling, which causes the states mg = +1 to hybridize around
zero magnetic field, and (iv) the hyperfine (HF) interaction of the NV electronic
spin with the nuclear spin of the nitrogen atom, which is also a spin triplet I = 1 for
the isotope *N used in our experiments. In total, the spin Hamiltonian [87] writes

Hyv/h=DS?*+~.Buv - S + E(S2 — S%) + A.S.L + QII> — I(I +1)/3], (4.1)

with S, (resp. I, ) the spin angular momentum operators of the NV electron
(resp. nitrogen nucleus), £ the coupling induced by local strain and electric fields,
A,/2r = —2.1MHz, ~./2n = —28 GHz/T the electronic gyromagnetic ratio, and
Q /27 = —5 MHz the quadrupolar momentum of the nitrogen nuclear spin. The re-
sulting energy levels are shown schematically in Fig. [4.2b. Only transitions between
levels with the same nuclear spin state m; are allowed, and their frequency from
the ground state |mg = 0,my) to |£,m;) is shown in Fig. in the case where
E/2m = 2MHz. Note that because of the spin-orbit term, the energy eigenstates
|£) correspond to the pure spin states mg = 41 only for large magnetic fields,
and are linear combinations of these spin states around zero magnetic field. From
Fig. one sees that superconducting circuits with resonance frequencies around
2.9 GHz can be brought into resonance with one of these spin transitions in a small
magnetic field of a few Gauss, which is important since superconducting circuits
have increased dissipation in large magnetic fields due to penetration of the film by
vortices.

Another aspect is the optical properties of NV centers. Indeed, NV centers are
optically active : when excited with green light, they fluoresce in the red. This
is due to their excited electronic state (see Fig. ), which is also a spin-triplet.
Ground-state to excited state transitions conserve the electronic spin; however the
NV relaxation trom its excited state is spin-dependent: the mg = 41 state has a
large probability of relaxing via a singlet metastable state (not shown in the energy
diagram of Fig. [4.2b) which then relaxes to mg = 0 in the ground state. After a
few optical cycles, the NV center spin state is therefore repumped in mg = 0 with
a ~ 90% efficiency [88]. Since the metastable state is long-lived, the fluorescence
intensity is reduced if the NV spin is initially in mg = 41 compared to mg =
0. These remarkable properties enable the optical detection of the spin state of
indivudal NV centers (so-called Optical Detection of Magnetic Resonance ODMR) at
room-temperature, using a straightforward confocal microscope setup. For instance
the spectroscopy of an ensemble of NV centers, measured at room-temperature by
ODMR on one of our diamond samples, is shown in Fig. [4.2l. It displays the typical
hyperfine structure of the *NV center transitions with a triplet of lines separated
by 2.17MHz. Numerous research groups worldwide use ODMR, of individual NV
centers to develop quantum information [89, 0] and magnetometry [91]. This is
in particular the case in the group of Jean-Francois Roch and Vincent Jacques at
ENS Cachan[92, 03], with whom we developed a fruitful collaboration which made
possible the experiments reported here.
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4.2.2 Coherence properties of NV centers

The interest of using NV centers for storing quantum information comes from the
fact that long coherence times have been observed on the ground state spin transition
in ultra-pure crystals. The coherence properties of NV centers are thus of utter
importance for our project.

At room-temperature, the NV energy relaxation time is of order 5 ms, limited by
the coupling to phonons, and is strongly enhanced at lower temperatures. Coherence
properties are characterized by the Free-Induction Decay time Ty (measured by
Ramsey fringes), the Hahn-echo decay time T5 (measured by a spin-echo sequence),
and the coherence time under dynamical decoupling sequences such as Carr-Purcell-
Meiboom-Gil Thopara. It is well-established that the values found for all these times
depend crucially on the local magnetic environment of each NV center (in a sphere
of few tens of nanometers diameter). In diamond, the main magnetic impurities
surrounding the NVs are either neutral nitrogen atoms (so-called P1 centers) which
have an electronic spin 1/2, or carbon 13 nuclei present to 1.1% abundance in natural
carbon and which are nuclear spin 1/2. The longest coherence times were therefore
measured in ultra-pure samples grown by Chemical-Vapor Deposition (CVD) with
very low nitrogen concentration as well as an isotopically enriched carbon source.
In such samples, T3 = 500us [04] and T, = 2ms [85] have been measured at room-
temperature; at lower temperatures (100 K), Thocpye = 0.5s was reached [86].

The crystals used in our experiments are however not as pure. Indeed, we need
relatively large concentrations of NV centers of order ~ 1 — 10ppm to efficiently
absorb the microwave radiation. These concentrations are not easily reached with
samples grown by CVD; our crystals instead are grown by another method called
High-Pressure-High-Temperature (HPHT). HPHT diamonds usually have a large
nitrogen concentration of 1 — 100 ppm. To create NV centers the crystals are irra-
diated (either with protons or electrons) to create vacancies in the lattice; they are
then annealed at 800 — 1000 °C for few hours so that the vacancies migrate and form
NV centers when they meet a nitrogen atom. This method unavoidably leaves a
significant residual concentration of P1 centers (1 — 100 ppm), which limits the spin
coherence time (both T and Ts) to lower values than reported above. In the exper-
iments discussed here these residual P1 centers are the main cause of decoherence
of the NV centers.

4.2.3 Coupling NV centers to a superconducting resonator
The coupling constant of a single NV to a resonator

To perform circuit QED experiments with NV centers, one needs to evaluate the
interaction strength of a single NV center at position 7 coupled to the electromag-
netic field in a CPW resonator via the magnetic dipole interaction. The coupling
Hamiltonian is H = —M - 1_3>, with M —= %? and B = 5—B_O>(a +al), 5—3%(?) be-
ing the rms vacuum fluctuations of the magnetic field in the CPW resonator mode
at 7. Restricting this Hamiltonian to one of the NV transitions (for instance the
mg=0—mg=+1 transitionE]), it can be rewritten in a Jaynes-Cummings form

'We suppose here to be in the high field limit where the energy eigenstates correspond to the
pure spin states
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H = hg(ocya+o_a') (4.2)

with hg = v.(mg = +1|?|m5 =0) - (_57-1—0)(?). If (7) is the angle between
the NV axis and the microwave field, choosing z as the NV axis and z as the
orthogonal direction in the (z,5B,(7)) plane, one finds hg = v.|(ms = +1|S,|mg =
0)|[0Bo(7)]|sin O(7)], yielding

9= "%l6Bo(P)||sin6(7)|/v2, (4.3)

since (mg = +1|S,|mg = 0) = h/v/2. The coupling constant is thus governed
by the amplitude of the vacuum field fluctuations at the spin location |6By(7)).
For a conventional CPW resonator as frequently used in circuit QED (with trans-
verse dimensions of order 10um and a 509 characteristic impedance), one finds
|6Bo(7)| =~ 4pGs, which gives a coupling constant g/27 =~ 10Hz for (7) = 7/2.
This is many orders of magnitude too low to reach the strong coupling regime, since
the highest-Q CPW resonators reported so far have Q = 10° and therefore a 3 kHz
linewidth at the NV frequency of 3 GHz.

Collective coupling

To make the coupling stronger, our approach is to use a large ensemble of N spins
instead of a single one, each located at a position 7’7 and coupled to the cavity field
with a constant g;(77). The coupling Hamiltonian then writes

Hens = a Y g;(T])os;+al Y gr(7)o_;, (4.4)

indicating that excitations in the resonator mode are coupled to a well-defined
coherent superposition of spin excitations (analogous to a spin-wave). In the limit
where the number of system excitations is small compared to N, this spin-wave be-
haves as a harmonic oscillator described by an annihilation operator b = 3"(g;(77)/gens)o— 4,

with gens = /> |9;]%. Indeed, the commutator

b,07 = > lgilPlo- .00 (4.5)
= O 1902/ 60 (4.6)
4.7

~ 1,

since in the limit of small excitation numbers, the mean excitation of each spin
is < 1 and one can therefore approximate o, ; ~ 1. Using the collective operator b
the coupling Hamiltonian is rewritten as

Heps = Gens(ab™ + a'b). (4.8)

The field is thus coupled to the collective spin operator b with a coupling strength
Gens which scales like v/N, implying that with 10'? spins the ensemble coupling
constant can reach ge,s/2m ~ 10 MHz, largely sufficient to reach the strong coupling
condition this time. This collective enhancement of the coupling constant is well
known in atomic physics and was demonstrated in several experiments [95] 96l 97];
it can be qualitatively understood by the simple fact that at short times, one photon
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present in the cavity has a probability N times larger to be absorbed by N spins in
a given time than by a single spin.

The collective mode b is called the super-radiant mode, by opposition to N — 1
other collective spin modes that are not coupled to the radiation field and which are
called dark modes. An elementary excitation of this collective mode is described by
a massively entangled state of all N spins called a Dicke state

bT|010N> = (91|110N> + ...+ gN‘011N>)/gens (49)

Inhomogeneity issues

One noteworthy issue makes the situation slightly more complex than described in
the previous paragraph: the frequency spread of all the NV centers in the sam-
ple. Indeed, as mentioned earlier each NV has a slightly different magnetic local
environment due to the specific and random distribution of paramagnetic impuri-
ties in its close vicinity (the typical relevant scale being ~ 10nm) and therefore
its own resonance frequency wj;, a phenomenon known as inhomogeneous broad-
ening of the spin resonance. This leads to a more complex situation than the
usual Tavis-Cummings model of atomic physics described just above. Indeed the
Dicke state (g1]11...0n) + ... + gn|01...1x))/Gens in which an excitation from the
cavity can be stored is no longer stationary since each spin state will acquire a
different relative phase ¢; = w;7 after a delay 7, turning the collective state into
(g1|11...0x) exp™® +... + gn|01...1x) €xXp N ) /gens Whose overlap with the initial
super-radiant state decays rapidly with 7. With the help of A. Auffeves and I. Di-
niz we analyzed this problem theoretically [98], in parallel with Z. Kurucz and K.
Moelmer in Aarhus [99].

To obtain a more precise understanding of the effect of inhomogeneous broaden-
ing, we write the total system Hamiltonian

H/h = Z —%am + wea'a + geps(abl + a'd) (4.10)
and compute the Heisenberg equations of motion for the field operator

4 = —1Wea — 1Gensh (4.11)

and for the super-radiant mode

; . Wy .
b = z[Z—?JUZJ,Z Ik O— k| = igensa (4.12)

Eens

. W;g; .
= —i Z gZ—TLja,7j — i Gens . (4.13)

If we then define the mean NV frequency @ = 3 |g;/gens|*w; and the spin fre-
quency variance Aw? = Y |w; — ©*g;/gens|?; this last equation can be rewritten
as

b= —i@b — igensa — iAwe, (4.14)

where ¢ = (Aw)™' > (wj — ©)(g;/gens)o—; is a collective spin operator not di-
rectly coupled to the resonator mode (i.e. one of the “dark modes”). This mode is
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orthogonal to b since [c, b'] = 0. Equations and show that if all the spins
had the same frequency (case Aw = 0), a and b would form a closed system, rig-
orously decoupled from all other dark modes. An excitation initially present in the
cavity would therefore be absorbed and re-emitted coherently by the super-radiant
spin mode, at a frequency ge,s. However in the presence of non-zero inhomogeneous
broadening, the super-radiant mode b is no longer stationary; it is instead coupled
with a strength Aw to the dark mode ¢, which is itself coupled to another dark
mode, and so forth. Since there are many (N — 1, with N & 10'!) dark modes, one
can expect that the excitation initially exchanged coherently between modes a and
b eventually decays into this “bath” of dark modes, in a time of order Aw~=! which
is precisely the Free-Induction-Decay time of the ensemble T3

It is worth stressing that the issue here is the inhomogeneity of the NV frequen-
cies. The spread of the NV coupling constants to the cavity mode throughout the
ensemble is on the contrary not detrimental to the storage of a quantum state as we
envision it here.

The analysis above allows us to establish a new strong-coupling criterion for the
case of a cavity mode coupled with N inhomogeneously broadened spins: in the
limit where

Jens > K, Aw (4.15)

the cavity mode and the superradiant spin mode can exchange excitations co-
herently several times before they leak out into the bath of dark states or outside
of the cavity. In this strong coupling limit the system spectrum should show well-
resolved polaritonic peaks separated by 2g¢.,s when the cavity and spins are tuned
into resonance.

4.2.4 Input-Output theory

Even though the above argument enables to qualitatively understand the effect
of inhomogeneous broadening, we haven’t explained here how to compute actual
physical quantities such as the transmission spectrum of a resonator coupled to a
spin ensemble, or the dynamics of this coupled system. Using input-output theory
it is possible to do so as described in [98, 99]; in this way quantitative theoretical
predictions can be made as seen in the following, provided the spin density function
p(w) => 0(w—w;) (which can be determined by ODMR) is known.

4.3 Strong coupling of an ensemble of NV centers
to a resonator

Our first experimental result [14] was the spectroscopic evidence for strong cou-
pling between an ensemble of NV centers and a frequency-tunable superconducting
resonator.

4.3.1 Experimental setup

The experiment is sketched in Fig. [£.3(a,b,c). A diamond crystal (3 x 3 x 0.5mm?)
containing the NV centers is glued with vacuum grease on top of a half-wavelength
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Figure 4.3: Strong coupling between NVs and a superconducting resonator : FExperimental
setup. (a) Photograph of the chip with diamond sample glued on top. (b,c,e,f) Equiva-
lent electrical circuit. The coplanar resonator frequency w, can be tuned with the flux ®
applied through the SQUID loop via an on-chip line. The resonator transmission coeffi-
cient is measured. Due to the diamond crystalline orientation with respect to the applied
magnetic field Byy, the 4 NV center families undergo the same Zeeman shift and have
degenerate transition frequencies w—_ and wy. (d) Electron micrograph of the 4-SQUID
array (extracted from [17)]).

niobium coplanar waveguide resonator, with a distance to the silicon substrate less
than ~ 0.5pum to ensure a maxium spin-resonator coupling. The diamond is posi-
tioned in the middle of the resonator where the magnetic field is maximum, with
its (001) crystallographic plane facing the chip. The spin Zeeman splitting can be
tuned with a magnetic field Byy parallel to the sample surface along the [100] axis
within a few degrees.

An array of four SQUIDs (see Fig. [£.3/1) was inserted in the resonator central
conductor, away from the diamond crystal, to make its frequency w,(®,) tunable
with the magnetic flux ®, threading the SQUID loops [100]. This flux is generated
by passing current through an on-chip wire so that the resonator can be brought in
resonance with the spins without changing their Zeeman splitting. The resonator
transmission Sy (w) is measured with a network analyzer, at powers low enough for
the current through the SQUIDs to stay well below their critical current so that the
resonator behaves linearly.

4.3.2 Sample characterization

The coplanar resonator and diamond crystal were first characterized separately.
The transmission amplitude of the resonator cooled at 40 mK and at &, = 0, is
shown in Fig. [f.4h. Its frequency dependence with @, is in good agreement with

predictions [100] (see Fig. [4.4p).
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Figure 4.4: Sample characterization. (a) Tunable resonator transmission (at 40 mK) for
® = 0 with Lorentzian fit (red curve), showing a resonance with Q = 4-10*. (b) Measured
(full circles) and predicted (dashed red line) resonator frequency dependence w,(®). (c)
Magnetic resonance spectrum (detected by ODMR at 300 K) of the NV ensemble used in
the experiment, for Byny = 0, showing the 2 resonance frequencies w_ and wy. The blue
line is a fit with a sum of two Lorentzians. (d) Measured (dots) and predicted (dotted
lines) NV frequency dependence on Byy for Byvy applied along the [100] azis (extracted

from [1])]).

The diamond crystal is of the HPHT type, with a nominal 100 ppm nitrogen
concentration. After irradiation and annealing, we measured a NV concentration of
~ 1.2-10%um™3 (that is, 7ppm) by comparing the sample photoluminescence to the
photoluminescence of an individual center in the same conditions. The NV spectrum
at Byy = 0mT measured by ODMR is shown in Fig. [{.4k. It consists of two lines
at frequencies w_ and wy due to the strain-induced splitting with F /27 ~ 4 MHz.
The resonance frequencies vary as expected when applying a magnetic field along
the [100] axis (see Fig. |4.4(d); note that only two lines are observed because for this
magnetic field orientation the frequencies of the 4 different NV axis orientations are
degenerate. The measured linewidth is Aw/27 ~ 6 MHz, due to dipolar interactions
with the residual P1 centers (with estimated concentration ~ 100 ppm).

4.3.3 Normal mode splitting

Measurements of the resonator transmission at 40 mK with the diamond crystal on
top are shown in Fig. [1.5] Two-dimensional plots of the transmission spectrum as
a function of ®, are presented for 3 values of Byy. For each Byy two avoided
crossings are observed when the resonator is tuned through the NV center ESR
frequencies, which reveal the strong coupling of the NV ensemble to the resonator.
To model these results we use the 3-mode Hamiltonian H/h = w,(®,)ata+&, bl b, +
W bl b+ g, (aTby + h.c)+ g_(a'b_ + h.c.), where we introduced two super-radiant
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Figure 4.5: Tunable resonator transmission coefficient amplitude |So1|(w) as a function
of ®, for Byy = 0,0.99,1.98 mT. Fach graph shows two avoided level crossing whenever
wr(P) crosses w_(Byy) and Jy(Byy), the NV resonance frequencies at low temperatures.
(right panel) Measured (dots) and predicted (solid curves) values of wi(Bnv), together
with the room-temperature values wi (Bnv) (dashed line) (extracted from [14]).

spin modes by for each ESR frequency @w.. The transmission spectrum was fitted
for each @, by a sum of Lorentzian peaks whose central frequencies are then fitted
to the eigenfrequencies of H, yielding the red solid lines in Fig. 4.5, The @i (Byv)
is well described by the NV center Hamiltonian, taking into account a slight change
of the zero-field splitting and of the average strain in the crystal compared to the
room-temperature values as seen in Fig. 4.5 The fitted coupling constants are
gi/2m = g_/2m = 11 MHz, indeed larger than the spin and resonator linewidths,
which confirms that the strong coupling regime is indeed reached. They are in
quantitative agreement with the values estimated from the measured NV center
concentration.

Since these measurements, normal mode splittings between a spin ensemble and a
superconducting resonator mode have been observed in several different experiments:
again NV centers [10I] and P1 centers [102] in diamond, and rare-earth ions in

YSO [103].

4.4 Transfer of a qubit state into the NV ensem-
ble

After the spectroscopic evidence for strong coupling between an ensemble of NVs
and a resonator, the next step was to add a superconducting qubit on the chip with
its readout circuit and to demonstrate the transfer of its quantum state into the NV
spin ensemble. For that it was essential to have a narrower NV resonance. Pr. Isoya
from Tsukuba University provided us with a diamond crystal containing a lower
concentration of P1 centers while still being sufficiently doped in NV centers for our
experiments.

4.4.1 Sample design and spectroscopy

A schematic picture of our experiment is shown in Fig. We integrate on the
same chip the diamond crystal containing the NV centers ensemble (denoted NV)
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Figure 4.6: Single-photon storage: Sample layout. (a) Schematic view of the sample,
including a diamond crystal with the NV ensemble NV, and a transmon qubit Q (in red).
They are coupled via the quantum bus coplanar resonator B (in yellow) whose frequency
can be adjusted by passing current in a flux line (in green). The qubit is driven and
readout via the bistable resonator R (in blue). A magnetic field Bnvy is applied parallel to
the sample surface. (b) Photograph of the sample with diamond on top (the purple color
is due to the NV centers). (c¢) Transmission coefficient amplitude |So1| of B, showing
4 anticrossings corresponding to the 2 ESR frequencies wy of each of the 2 NV families
1,111 undergoing different Zeeman shift due to their crystalline orientation as shown in
the right top inset. At lower frequency an anti-crossing with the transmon qubit is seen at
wq/2m = 2.607 GHz (extracted from [15]).

and a transmon qubit ) (with transition frequency wg between its levels |g) and
le)). Their interaction is mediated by a quantum bus: a coplanar resonator B whose
frequency wp can be tuned on a nanosecond timescale by changing the flux ¢ through
the loop of a SQUID integrated in the resonator central conductor. The qubit is
driven and readout through a second dedicated resonator R, using standard circuit
QED methods. Note that contrary to the experiments described in the previous
chapter, R was made non-linear by inserting a Josephson junction in its middle,
which transforms the resonator into a high-fidelity sample-and-hold detector of the
qubit state [11] enabling a direct measurement of the qubit excited state probability
P,.

The diamond is a HPHT crystal with 40 ppm initial nitrogen concentration (i.e.
P1 centers). After irradiation and annealing, the NV concentration measured by
photoluminescence is 2.5 ppm, implying a probable final P1 concentration of 35 ppm,
i.e. 3—4 times lower than in the experiment reported in paragraph[4.3] As a result,
the NV linewidth is also narrower, as can be seen from the ODMR spectrum shown
in Fig. which was measured on this sample, where the hyperfine NV structure is
well-resolved with a linewidth of &~ 1.5 MHz for each peak.

As in the previous experiment, the diamond crystal is glued on top of the res-
onator with vacuum grease. The degeneracy between states |£) is lifted with a
Byy = 1.1mT magnetic field applied parallel to the chip and along the [1,1, 1]
crystalline axis H The NV frequencies being sensitive only to the projection of Byy
along the N — V axis, two groups of NVs thus experience different Zeeman effects:

Znote that Byy is wrongly mentioned to be 1.4mT in the original article [I5 [16]
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those along [1,1,1] (denoted I) and those along either of the three other (1,1,1)
axes (denoted 111 as they are 3 times more numerous). This results in four different
ESR frequencies wis 1117.

They are visible as 4 avoided crossings in the resonator transmission spectrum
(see Fig. ) as a function of ®, similar to the results reported in paragraph .
From the data we also deduce the ensemble coupling constants g.;/27 = 2.9 MHz
and giyrr/27 = 3.8 MHz, lower than in the results of paragraph due to the
lower NV concentration. At a frequency much lower than the 4 NV center ESR
frequencies we observe another avoided crossing, this time due to the interaction
with the transmon qubit. The transmission spectrum in Fig. shows that the
tunable resonator can be used as a bus to dynamically transfer excitations from the
qubit into the NV ensemble at one of its resonance frequency.

4.4.2 Transfer of a superconducting qubit state into the NV
ensemble

The pulse sequence used to transfer an arbitrary qubit state |¢)) into the spin en-
semble is shown in Fig .7 The state is first transferred from the qubit into the
bus resonator with an adiabatic SWAP gate (aSWAP operation), by adiabatically
sweeping wp across wg. B is then brought at a frequency wg(®) in or near one of the
spin ensemble resonances for a duration 7; the resulting B state is then transferred
back into the qubit, which is finally read-out.

The result is shown in Fig. [1.7] for wp(®) = w_; and two different initial qubit
states. For |¢)) = |e) (see Fig. [1.7h), an oscillation of small amplitude in P. is
observed, revealing the storage in the spin ensemble of the single quantum of exci-
tation initially in the qubit at 7, = 97 ns, and its retrieval back into the qubit at
7, = 146 ns. Similar results were obtained at the same time by a Japanese group at
NTT Research Labs, with a NV ensemble directly coupled to a flux-qubit [43].

The fidelity of this storage-retrieval process, defined as P.(7,.)/P.(0), is only of
0.07 for group I (it was twice larger for group /711 [15]). This relatively low value is
not due to a short spin dephasing time, but rather to an interference effect caused
by the HF structure of NV centers, as evidenced by the non-exponential damping
observed in P,(7). The measurements are accurately reproduced by a full calculation
of the spin-resonator dynamics [99] 08, [104] taking into account this HF structure,
with the linewidth of each HF peak as the only adjustable parameter. A linewidth
of 1.6 MHz (compatible with ODMR measurements shown in Fig. [4.2[1) is in this
way determined for the spins in group I.

A quantum memory should be able not only to store the qubit basis states, but
also an arbitrary superposition with a well-defined phase. To demonstrate that, we
repeated the experiment with |¢) = (|g) + |e))/v/2 as shown in Fig. . Instead of
measuring the qubit at the end of the sequence with a simple readout pulse yielding
only the qubit (oz), we perform a full quantum tomography of the qubit state
to test in particular if the phase of the initial superposition state was preserved
during the transfer to the spins. After substracting a trivial rotation around Z
occurring at frequency (w_; — wg), we reconstruct the trajectory of this Bloch vector
as a function of the interaction time 7. It is plotted in Fig. . 7b, together with
the off-diagonal element pg. of the final qubit density matrix, which quantifies its
coherence. We find that no coherence is left in the qubit at the end of the sequence
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Figure 4.7: Transfer of a qubit state into the spin ensemble. (top) Pulse sequence. The
qubit is prepared in state |1) with the appropriate pulse sequence; this state is then trans-
ferred to B by an adiabatic swap operation aSWAP; after which the bus is tuned near the
spin resonance at frequency wp(®) during a time 7; the final bus quantum state is trans-
ferred back to the qubit. The qubit state is either measured with a simple readout pulse
yielding the excited state probability pe, or with full quantum state tomography yielding the
qubit (oz), (ox), and (oy). (a) Qubit excited state probability p.(r) for wp(P) = w_;
and ) = le). A single microwave photon is transferred into the spin ensemble at time
Ts and retrieved at time T.. (b) Qubit quantum state tomography for wp(®) = w_; and
1) = (lg) + |e))/V/2. The left panel shows the trajectory of the qubit Bloch vector; the
right panel shows the off-diagonal density matriz element pye which quantifies its coherence

(extracted from [15]).

for 7 = 7,, as expected for a full storage of the initial state into the ensemble.
Then, coherence is retrieved at 7 = 7., although with an amplitude ~ 5 times
smaller than its value at 7 = 0 (i.e. without interaction with the spins). Note
the 7 phase shift occurring after each storage-retrieval cycle, characteristic of 27
rotations in the two-level space {|15,0_;),|0p,1_7)}. The combination of the results
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Figure 4.8: Evidence for entanglement between a resonator and a spin-ensemble. (a) Pulse
sequence. The resonator is prepared in |1p) state by transfer of the qubit excitation. It
is then tuned in resonance with the NV ensemble at w_j for 7,9 = 75 _1/2 generating an
entangled state of the two systems. B is then detuned from the spins by dw /27w = 38 MHz
during T, after which a second half-swap is performed. The excitation remaining in B is
then transferred back to the qubit which is finally readout. (b) Measured (red circles) and
calculated (black line - see text) probability P.(T), as well as its Fourier transform (inset)
revealing the NV centers HF structure (extracted from [15]]).

of Figs. f.7h and b demonstrates that arbitrary superpositions of the two qubit
states can be stored and retrieved in a spin ensemble - although with limited fidelity
- and thus represents a first proof-of-concept of a spin-based quantum memory for
superconducting qubits [15].

4.4.3 Resonator-spin ensemble entanglement

Stopping the NV - bus swap interaction at half of the storage time 7, yields an
interesting situation where the single excitation is shared coherently between the
spin ensemble and the quantum bus. This is described by the maximally entangled
photon-spin state [¢ps) = (|1505) + [051,))/v/2. One way to probe the quantum
coherence of this state superposition is shown in Fig. : after preparing |¢pg),
the resonator is suddenly detuned from the NV frequency by dw. After a time 7,
lvps) should evolve into (|150,) + exp™®|0p1,))/Vv/2 with ¢ = dwr; tuning back the
resonator into resonance with the NV ensemble for a time 74/2 then converts the
phase ¢ into population of state |1505). This population is transferred to the qubit,
and readout.

Oscillations at frequency dw are observed in P.(7) as seen in Fig. [4.8] confirming
that the resonator and the spins are entangled after the first 7/2 pulse. These
oscillations are modulated by a beating pattern, with an overall damping of the
oscillations envelope in ~ 200 ns. Quite remarkably, this beating observed in the
qubit excited state probability is directly caused by the HF structure of NV centers,
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as proved by the Fourier transform of P,(7) which shows the three HF lines. The
full calculation of the system dynamics quantitatively captures both the beatings
and the oscillations damping, which is thus completely explained by the 1.6 MHz
inhomogeneous linewidth of each HF line taken into account in the theory.

4.5 Towards an operational spin-ensemble quan-
tum memory

The experiments reported above demonstrate the possibility of storing a qubit state
into a spin ensemble. However they do not constitute an operational quantum mem-
ory since the storage time is only of order 100 ns, much shorter than present-day
qubit coherence times. As explained earlier, due to inhomogeneous broadening in
the NV ensemble, the quantum state decays into the bath of dark modes shortly af-
ter its transfer to the super-radiant mode. The challenge of an operational quantum
memory is therefore to retrieve this state long after it has dephased, using dynami-
cal decoupling methods such as spin-echoes or more complex sequences (CPMG or
others).

This is the path in which we are engaged since 2012, and the PhD subject of C.
Grezes. [ will here only briefly describe the steps taken in that direction:

(i) Together with K. Moelmer and his postdoc B. Julsgaard, we have first de-
signed a realistic proposal [105] for a quantum memory protocol that overcomes
inhomogeneous broadening using adiabatic refocusing pulses applied to the spins,
combined with dynamic tuning of the resonator frequency and quality factor. One
key interest of this protocol is its capacity to store in parallel many qubit states, due
to the large number of degrees of freedom in the spin ensemble. This multi-mode
capability of the spin-ensemble quantum memory opens the exciting perspective to
store in one single diamond crystal hundreds of (possibly entangled) qubit states.
This clearly shows the major impact that an operational quantum memory of this
type would have on qubit-based quantum information processing.

(ii) On the experimental level, we have made progress towards the implementa-
tion of this protocol by demonstrating the storage and retrieval with spin-echo of
very weak microwave pulses (corresponding to ~ 10% photons in the cavity) [106],
an encouraging indication that inhomogeneous broadening can indeed be overcome.
Note that to obtain this result we had to implement optical repumping of the NVs
inside our dilution cryostat [106].

With these technical steps recently taken, combined with samples of even higher
quality provided by J. Isoya, the implementation of an operational quantum memory,
able to store hundreds of qubit states for long times and to retrieve any of them
on-demand, seems within reach.
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Chapter 5

Conclusion and Perspectives

In this manuscript [ have given an overview of the results obtained in quantum
physics and quantum information during my research work. I was fortunate enough
to undertake it in three outstanding laboratories, with inspiring supervisors and
coworkers as a PhD student and postdoc, then with talented and enthusiastic col-
leagues and students since my arrival in the Quantronics group at CEA Saclay.

5.1 Concluding remarks

Working during my PhD in cavity QED with Rydberg atoms was an opportunity to
acquire an intuition about the most fundamental aspects of quantum physics, while
getting hands-on training on a demanding experimental setup. We used Rydberg
atoms to generate one of the simplest non-classical states of the field in a microwave
cavity, the one-photon Fock state; we then measured its Wigner function and re-
vealed its negativity around the center of phase space [2]. The lifetime of the cavity
field was so short in our experiment that we had to resort to a trick which consisted
in using the same atom to both prepare the cavity field and measure it; otherwise
the field would have already relaxed to the vacuum if probed by a subsequent atom.
After the end of my PhD the quality factor of the microwave cavity was improved
by two orders of magnitude thanks to the group efforts, so that the photon number
could stay unchanged during the passage of several successive atoms. This made it
possible to push the quantum state engineering and probing of the field by the Ryd-
berg atoms to a completely new level, with in particular the first direct observation
of the quantum trajectories of the photon number in the cavity [I8], a milestone for
quantum optics and quantum physics in general.

At the time of my PhD, the only experiments reaching the celebrated “strong cou-
pling” regime necessary to generate entangled states of several particles were atomic
cavity QED [107] and trapped-ion experiments [31], which encompassed essentially 5
research groups in the world; manipulating the quantum state of individual coupled
quantum systems was restricted to these complex atomic physics experimental se-
tups. I was thus immensely surprised when it became clear that the superconducting
flux-qubit circuit that we were measuring during my postdoc in Delft in 2003 was
in fact strongly coupled to a parasitic on-chip resonance, and that we could easily
drive their joint quantum state with sideband transitions in complete analogy with
trapped-ion experiments [3]. Whereas our discovery was not planned, the group of
R. Schoelkopf at Yale University had designed a dedicated experiment which led
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to the first observation of the vacuum Rabi splitting in a superconducting qubit
coupled to a coplanar resonator [4]. The combination of the two results marked
the birth of circuit QED and the extension of superconducting qubit research into
the realm of quantum optics, which resulted in a strong broadening of the scientific
community working on the quantum state engineering of indivdual coupled systems.
Vacuum Rabi splittings are nowadays straightforwardly observed in many research
groups, and more generally all the concepts and ideas developed in cavity QED [17]
have been vigorously disseminated throughout the mesoscopic physics community.

One of the remarkable aspects of circuit QED is the dispersive readout of the
qubit state via the cavity [47]. In Saclay we made use of this variable-strength
quantum non-destructive measurement to conduct fundamental investigations of
the measurement back-action in quantum mechanics. Motivated by a series of pre-
dictions of A. Korotkov, we performed an experiment in which a two-level system is
submitted to the conflicting actions of a continuous drive, which induces quantum
coherent oscillations between the two basis states, and of a continuous projective
readout which tends to project the qubit onto one of these states. This research
program culminated with the first test and violation of the Leggett-Garg inequality,
proving that superconducting circuits do behave quantum-mechanically despite their
macroscopic character [7]. The next step was taken by other groups [57, [58]: using
the signal from the continuous qubit monitoring to react on the qubit dynamics and
actively stabilize the phase of its coherent oscillations. These quantum feedback
schemes [108] became only possible after quantum-limited amplifiers at microwave
frequencies were developed [109, 110]. The importance of these parametric ampli-
fiers for the future of the field can hardly be over-estimated, since they enable for
the first time microwave signals to be measured at the shot-noise limit, and puts
therefore quantum optics in the microwave domain on the same footing as in the
optical domain.

Besides fundamental quantum physics experiments, circuit QED is also actively
investigated as an architecture for quantum information processing [46], and a strong
worldwide effort is dedicated to using and perfecting the qubit circuits for building
an actual quantum computer. Our contribution was to realize the first high-fidelity
transmon qubit readout in circuit QED [I11], and to demonstrate quantum speed-
up with an elementary two-qubit processor [I12 113]. Recent progress of qubit
coherence times [37, 39, [114], obtained thanks to many systematic studies and im-
provements of sample fabrication as well as the measurement setup, puts indeed
superconducting qubits among the strongest candidates for implementing quantum
computation [115, 116, [117]; and experiments with small-scale quantum processors
of order 10 qubits are for sure within reach on a short timescale. The major challenge
nowadays is the demonstration of a qubit actively protected against computational
errors.

5.2 Future projects : circuit QED with spins

If our group has a strong activity in superconducting quantum computing with in
particular the PhD thesis of V. Schmitt aiming at the demonstration of a scalable
4-qubit quantum processor, my present research interests have however somewhat
shifted aside that goal. I am now and for the foreseeable future dedicated to explore
and develop the links between quantum spin dynamics and circuit QED, which I
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believe are numerous and yet to be discovered.

In this manuscript I have described our most advanced project in that area: the
realization of an operational quantum memory based on ensembles of NV centers
in diamond [I05], able to store the state of multiple qubits over long times and to
retrieve them on-demand. Since the beginning of the project in 2009, several results
obtained in the group (in particular by Yuimaru Kubo and Cécile Grezes during her
PhD) indicate the feasability of this idea [14] [15].

Another project, conducted by Audrey Bienfait as a PhD and Michaél Stern
as postdoc, aims at developing circuit QED with single spins instead of large en-
sembles. Several motivations make this an attractive goal. Quantum information
with spin qubits made important progress in the recent years, with several new ex-
periments demonstrating the readout and manipulation of individual nuclear and
electron spins [118, 119, 120], and the experimental demonstration of remarkably
long coherence times (up to 30s for an individual nuclear spin in silicon [121]). Al-
though impressive experiments have very recently reported the entanglement [90]
and teleportation [122] of distant NV centers based on the measurement of optical
photons emitted by each NV, finding efficient schemes for entangling distant spins
remains one of the main challenges of spin-qubit research.

Superconducting circuits would constitute ideal quantum buses to mediate the
interaction between distant spins by exchange of real or virtual microwave photons;
the combination of circuit QED and of single spin manipulation and readout could
result in an operational spin-qubit architecture for quantum information processing.
Another motivation is the interest of pushing electron spin resonance sensitivity up
to the single spin limit, which could have applications to single-molecule science.
As mentioned in this manuscript, reaching the strong coupling of a single electronic
spin with microwave photons in a cavity is unfortunately very challenging due to the
small value of the coupling constant; however, using optimized miniature resonators
and circuits, this coupling strength could reach the necessary value. This would
open the way to the development of single-spin circuit QED as a new field at the
interface of microwave quantum optics and quantum spin dynamics.
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