§. Comme-constaté-en, 3 et §3.5, il est possible d'obtenir un couplage inductif même à très basse pression (1-10 mtorr), si la puissance appliquée au plasma P est suffisante pour produire un plasma dense. Par conséquent, l'efficacité en transmission de l'applicateur est étroitement

]. S. Références1, M. J. Rauf, . Kushner-]-i, M. Ghanashev, H. Nagatsu et al., A self-consistent analytical model for non-collisional heating Surface wave eigenmodes in a finite-area plane microwave plasma, Plasma Sources Sci. Technol. Jpn. J. Appl. Phys, vol.6, issue.2, pp.518-523, 1997.

H. Sugai, I. Ghanashev, and M. Nagatsu, High-density flat plasma production based on surface waves, Plasma Sources Science and Technology, vol.7, issue.2, pp.192-205, 1998.
DOI : 10.1088/0963-0252/7/2/014

M. Moisan and J. Pelletier, Physique des plasmas collisionnels : application aux décharges hautes fréquences, pp.205-209, 2006.

Z. Chen, M. Liu, L. Tang, P. Hu, and X. Hu, A planar-type surface-wave plasma source with a subwavelength diffraction grating inclusion for large-area plasma applications, Journal of Applied Physics, vol.106, issue.1, pp.1-6, 2009.
DOI : 10.1063/1.3168493

V. I. Kolobov, D. J. Economu, G. J. Hagelaar, K. Makasheva, L. Garrigues et al., The anomalous skin effect in gas discharge plasmas Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance, Plasma Sources Sci. Technol. J. Phys. D: Appl. Phys, vol.6, p.42, 1997.

J. Pelletier, A. Lacoste, T. Lagarde, M. Moisan, Y. Arnal et al., Dispositif assurant une division de puissance micro-onde prédéterminée sur une pluralité de charges, notamment pour la production de plasma, pp.11-422

M. Moisan, J. Pelletier, ]. A. Lacoste, T. Lagarde, S. Béchu et al., Physique des plasmas collisionnels : application aux décharges hautes fréquences Multi-dipolar plasmas for uniform processing : physics, design and performance, Plasma Sources Science Technol, Grenoble: EDP Sciences, vol.11, pp.102-124, 2002.

]. L. Latrasse, Conception, caractérisation et application des plasmas micro-onde en configuration matricielle, 2006.

]. L. Latrasse, A. Lacoste, J. Sirou, and J. Pelletier, High density distributed microwave plasma sources in a matrix configuration: concept, design and performance, Plasma Sources Science and Technology, vol.16, issue.1
DOI : 10.1088/0963-0252/16/1/002

URL : https://hal.archives-ouvertes.fr/in2p3-00167270

. Technol, 7-12 [13] P.F. Combes, Micro-ondes 1. Lignes, guides et cavités, Cours et exercices, 2 ème édition, pp.27-32, 1999.

H. E. Porteanu, S. Kühn, R. Gesche, ]. J. Low-power-microwave-plasma-conductivity, J. L. Stevens et al., Optimized microwave coupling in an electron resonance etch tool, IEEE Trans. on Plasma Science J.Vac.Sci.Techn. A, vol.37, issue.9, p.3, 1991.

. Génération, Publications de l'Université de Saint-Etienne) pp159-223 Electrical probes in stationary and flowing plasma: theory and application, 1975.

J. G. Laframboise, J. Rubinstein, ]. J. Rubinstein, J. G. Laframboise-laframboise, L. J. Sonmor37 et al., Microwave Engineering Dispositif et procédé de production et/ou de confinement d'un plasma High density plasma sources: designs, physics and performance Microwave excited plasmas : Ambipolar diffusion model of multipolar plasmas, n° FR 08 57 392 [41] C. Gauthereau , G. Matthieussent, J. Physique48] P.F. Combes, Micro-ondes 1. Lignes, guides et cavités. Cours et exercices, 2 nde édition, pp.12-1655, 1900.

G. Regnard, A. Lacoste, J. Pelletier, A. Bès, and S. Béchu, Dispositif de production de plasma comportant au moins un applicateur coaxial (25 mai 2010) n° FR 10 RF discharge impedance measurements using a new method to determine the stray impedances, IEEE Trans. on plasma science, vol.27, issue.3, p.64042, 1999.

]. M. Moisan, R. Grenier, and Z. Zakrzewski, The electromagnetic performance of a surfatron-based coaxial microwave plasma torch, Spetrochim, 1994.

M. A. Lieberman, R. Boswell, M. Moisan, J. Pelletier, J. Moisan et al., Modelling the transitions from capacitive to inductive to wave-sustained RF discharges Microwave excited plasma Physique des plasmas collisionnels : application aux décharges hautes fréquences The mechanism of electrical discharges in gases of lowpressure Breakdown of a gas at microwave frequencies Research laboratory of electronics; Massachusetts institute of technology, Mai 1948 [57] M. Sato, Interpretation for argon breakdown in DC and microwave fields Lisovskiy, V. D. Yegorenkov, Low-pressure gas in combined fields, J. Phys. D: Appl, pp.137-139, 1940.

P. Lisovskiy and V. D. Yegorenkov, Low-pressure gas breakdown in combined fields, Journal of Physics D: Applied Physics, vol.27, issue.11, pp.2340-2348, 1994.
DOI : 10.1088/0022-3727/27/11/014

]. V. Phys61, S. Lisovskiy, V. D. Yakovin, and . Yegorenkov, Low-pressure gas breakdown in uniform DC electric field Breakdown and discharge in low-pressure gas created by a microwave radiation undergoing stochastic phase jumps, J. Phys. D: Appl. Phys. Prob. of Atomic Sciences and Techn.: Plasma physics Z. Zakrzewski, J. Phys. D : Appl. Phys, vol.32, issue.12, pp.2645-2648, 1991.

]. H. Sugai, I. Ghanashev, and M. Nagatsu, High-density flat plasma production based on surface waves, Plasma Sources Science and Technology, vol.7, issue.2, p.192, 1998.
DOI : 10.1088/0963-0252/7/2/014

]. I. Ghanashev, M. Nagatsu, and H. Sugai, Surface Wave Eigenmodes in a Finite-Area Plane Microwave Plasma, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 1A, p.337, 1997.
DOI : 10.1143/JJAP.36.337

]. F. Werner, D. Korzec, and J. Engemenn, Slot antenna 2.45 GHz microwave plasma source, Plasma Sources Science and Technology, vol.3, issue.4, p.473, 1994.
DOI : 10.1088/0963-0252/3/4/004

. Pollak, D. Moisan, J. Kéroack, J. Séguin, P. Barbeau et al., On the E-H transition in RF inductive discharges Characterization on the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysterisis, Lieberman, Hysterisis and the E to H transition in radiofrequency inductive discharges, Plasma Sources Sci, pp.1224-1236, 1996.