A. Alfonsi, B. Jourdain, and A. Kohatsu-higa, Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme, The Annals of Applied Probability, vol.24, issue.3, pp.1049-1080, 2014.
DOI : 10.1214/13-AAP941

URL : https://hal.archives-ouvertes.fr/hal-00727430

G. Alsmeyer, The Markov renewal theorem and related results. Markov Process, pp.103-127, 1997.

L. Ambrosio and N. Gigli, Savaré : Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2008.

F. Ancona and A. Marson, Existence Theory by Front Tracking for General Nonlinear Hyperbolic Systems, Archive for Rational Mechanics and Analysis, vol.117, issue.2, pp.287-340, 2007.
DOI : 10.1007/s00205-007-0052-x

D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bulletin of the American Mathematical Society, vol.73, issue.6, pp.890-896, 1967.
DOI : 10.1090/S0002-9904-1967-11830-5

S. Asmussen, Applied probability and queues, volume 51 de Applications of Mathematics, 2003.

S. Attanasio and F. Flandoli, Zero-noise solutions of linear transport equations without uniqueness: an example, Comptes Rendus Mathematique, vol.347, issue.13-14, pp.13-14753, 2009.
DOI : 10.1016/j.crma.2009.04.027

R. Bafico and P. Baldi, Small random perturbations of peano phenomena, Stochastics, vol.14, issue.3-4, pp.279-29282, 1981.
DOI : 10.1080/17442508208833208

P. Baiti and A. Bressan, The semigroup generated by a temple class system with large data, Differential Integral Equations, vol.10, issue.3, pp.401-418, 1997.

A. D. Banner, R. Fernholz, and I. Karatzas, Atlas models of equity markets, The Annals of Applied Probability, vol.15, issue.4, pp.2296-2330, 2005.
DOI : 10.1214/105051605000000449

G. Basile, C. Bernardin, and S. Olla, Thermal Conductivity for a Momentum Conservative Model, Communications in Mathematical Physics, vol.28, issue.1, pp.67-98, 2009.
DOI : 10.1007/s00220-008-0662-7

R. F. Bass and É. Pardoux, Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields, pp.557-572, 1987.

C. Bernardin and S. Olla, Fourier???s Law for a Microscopic Model of Heat Conduction, Journal of Statistical Physics, vol.8, issue.n.1, pp.3-4271, 2005.
DOI : 10.1007/s10955-005-7578-9

L. Bertini, A. De-sole, D. Gabrielli, G. Jona-lasinio, and C. Landim, Stochastic interacting particle systems out of equilibrium, Journal of Statistical Mechanics: Theory and Experiment, vol.2007, issue.07, p.7014, 2007.
DOI : 10.1088/1742-5468/2007/07/P07014

S. Bianchini, The semigroup generated by a temple class system with non-convex flux function, Differential Integral Equations, vol.13, pp.10-121529, 2000.

S. Bianchini, Stability of $L^\infty$ Solutions for Hyperbolic Systems with Coinciding Shocks and Rarefactions, SIAM Journal on Mathematical Analysis, vol.33, issue.4, pp.959-981, 2001.
DOI : 10.1137/S0036141000377900

P. Billingsley, Convergence of probability measures Wiley Series in Probability and Statistics : Probability and Statistics, 1999.

V. I. Bogachev, N. V. Krylov, and M. Röckner, Elliptic and parabolic equations for measures, Uspekhi Mat. Nauk, pp.5-116, 2009.
DOI : 10.1070/RM2009v064n06ABEH004652

F. Bolley, Y. Brenier, and G. Loeper, CONTRACTIVE METRICS FOR SCALAR CONSERVATION LAWS, Journal of Hyperbolic Differential Equations, vol.02, issue.01, pp.91-107, 2005.
DOI : 10.1142/S0219891605000397

URL : https://hal.archives-ouvertes.fr/hal-00453877

F. Bolley, I. Gentil, and A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker???Planck equations, Journal of Functional Analysis, vol.263, issue.8, pp.2430-2457, 2012.
DOI : 10.1016/j.jfa.2012.07.007

URL : https://hal.archives-ouvertes.fr/hal-00632941

F. Bolley, I. Gentil, and A. Guillin, Uniform Convergence to Equilibrium for Granular Media, Archive for Rational Mechanics and Analysis, vol.128, issue.2, pp.429-445, 2013.
DOI : 10.1007/s00205-012-0599-z

URL : https://hal.archives-ouvertes.fr/hal-00688780

F. Bolley, A. Guillin, and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.44, issue.5, pp.867-884, 2010.
DOI : 10.1051/m2an/2010045

URL : https://hal.archives-ouvertes.fr/hal-00392397

F. Bonetto, J. L. Lebowitz, and L. Rey-bellet, FOURIER'S LAW: A CHALLENGE TO THEORISTS, Mathematical physics, pp.128-150, 2000.
DOI : 10.1142/9781848160224_0008

M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, The Annals of Applied Probability, vol.6, issue.3, pp.818-861, 1996.
DOI : 10.1214/aoap/1034968229

URL : https://hal.archives-ouvertes.fr/inria-00074265

M. Bossy, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, vol.66, issue.217, pp.157-192, 1997.
DOI : 10.1090/S0025-5718-97-00776-X

F. Bouchut, ON ZERO PRESSURE GAS DYNAMICS, Numéro 22 de Series on Advances in Mathematics for Applied Sciences. World Scientific, pp.171-190, 1994.
DOI : 10.1142/9789814354165_0006

Y. Brenier, W. Gangbo, and G. Savaré, Westdickenberg : Sticky particle dynamics with interactions, J. Math. Pures Appl, issue.95, pp.99577-617, 2013.
DOI : 10.1016/j.matpur.2012.09.013

URL : http://arxiv.org/abs/1201.2350

Y. Brenier and E. Grenier, Sticky Particles and Scalar Conservation Laws, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2317-2328, 1998.
DOI : 10.1137/S0036142997317353

A. Bressan, Hyperbolic systems of conservation laws, de Oxford Lecture Series in Mathematics and its Applications, 2000.
DOI : 10.5209/rev_REMA.1999.v12.n1.17204

A. Bressan and T. Nguyen, Non-existence and non-uniqueness for multidimensional sticky particle systems, Kinetic and Related Models, vol.7, issue.2, pp.205-218, 2014.
DOI : 10.3934/krm.2014.7.205

URL : http://arxiv.org/abs/1312.1636

H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise, Théorie et applications, 1983.

R. Buckdahn, Y. Ouknine, and M. Quincampoix, On limiting values of stochastic differential equations with small noise intensity tending to zero, Bulletin des Sciences Math??matiques, vol.133, issue.3, pp.229-237, 2009.
DOI : 10.1016/j.bulsci.2008.12.005

L. Bunimovich, C. Liverani, A. Pellegrinotti, and Y. Suhov, Ergodic systems ofn balls in a billiard table, Communications in Mathematical Physics, vol.8, issue.1, pp.357-396, 1992.
DOI : 10.1007/BF02102633

J. A. Carrillo, M. D. Francesco, and C. Lattanzio, Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, vol.10, issue.82, pp.277-292, 2007.

J. A. Carrillo, M. P. Gualdani, and G. Toscani, Finite speed of propagation in porous media by mass transportation methods, Comptes Rendus Mathematique, vol.338, issue.10, pp.338815-818, 2004.
DOI : 10.1016/j.crma.2004.03.025

J. A. Carrillo, R. J. Mccann, and C. Villani, Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media, Archive for Rational Mechanics and Analysis, vol.179, issue.2, pp.217-263, 2006.
DOI : 10.1007/s00205-005-0386-1

J. A. Carrillo and G. Toscani, WASSERSTEIN METRIC AND LARGE???TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS, New Trends in Mathematical Physics, pp.234-244, 2004.
DOI : 10.1142/9789812702319_0022

P. Cattiaux and A. Guillin, Semi log-concave Markov diffusions. À paraître dans Séminaire de Probabilités. Preprint accessible à l'adresse http
DOI : 10.1007/978-3-319-11970-0_9

URL : https://hal.archives-ouvertes.fr/hal-00805299

P. Cattiaux, A. Guillin, and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Related Fields Pal : A phase transition behavior for Brownian motions interacting through their ranks, pp.19-40123, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00021591

N. Chernov and R. Markarian, Introduction to the ergodic theory of chaotic billiards Rio de Janeiro, seconde édition, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto de Matemática Pura e Aplicada (IMPA), 2003.

T. Chumley and S. Cook, From billiards to thermodynamics, Computers & Mathematics with Applications, vol.65, issue.10, pp.1596-1613, 2013.
DOI : 10.1016/j.camwa.2012.09.004

URL : http://arxiv.org/abs/1207.5878

F. Comets, S. Popov, G. M. Schütz, and M. Vachkovskaia, Billiards in a General Domain with Random Reflections, Archive for Rational Mechanics and Analysis, vol.52, issue.1, pp.497-537, 2009.
DOI : 10.1007/s00205-008-0120-x

URL : https://hal.archives-ouvertes.fr/hal-00445762

S. Cook and R. Feres, Random billiards with wall temperature and associated Markov chains, Nonlinearity, vol.25, issue.9, p.2503, 2012.
DOI : 10.1088/0951-7715/25/9/2503

F. Delarue, F. Flandoli, and D. Vincenzi, Noise Prevents Collapse of Vlasov-Poisson Point Charges, Communications on Pure and Applied Mathematics, vol.47, issue.10, pp.1700-1736, 2014.
DOI : 10.1002/cpa.21476

URL : https://hal.archives-ouvertes.fr/hal-00683127

A. Dembo, M. Shkolnikov, S. R. Varadhan, and O. Zeitouni, Large deviations for diffusions interacting through their ranks. À paraître dans Comm, Pure Appl. Math. Preprint

A. Dhar, Heat Conduction in a One-Dimensional Gas of Elastically Colliding Particles of Unequal Masses, Physical Review Letters, vol.86, issue.16, pp.3554-3557, 2001.
DOI : 10.1103/PhysRevLett.86.3554

R. Durrett, Probability : theory and examples, 1996.
DOI : 10.1017/CBO9780511779398

A. Eberle, Reflection coupling and Wasserstein contractivity without convexity, Comptes Rendus Mathematique, vol.349, issue.19-20, pp.19-201101, 2011.
DOI : 10.1016/j.crma.2011.09.003

J. Eckmann and L. Young, Temperature profiles in Hamiltonian heat conduction, Europhysics Letters (EPL), vol.68, issue.6, pp.790-796, 2004.
DOI : 10.1209/epl/i2004-10291-5

A. Hajj and R. Monneau, UNIQUENESS RESULTS FOR DIAGONAL HYPERBOLIC SYSTEMS WITH LARGE AND MONOTONE DATA, Journal of Hyperbolic Differential Equations, vol.10, issue.03, pp.461-494, 2013.
DOI : 10.1142/S0219891613500161

S. N. Ethier and T. G. Kurtz, Markov processes Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics, 1986.

W. Feller, An introduction to probability theory and its applications, 1971.

E. R. Fernholz, Stochastic portfolio theory, 2002.

E. R. Fernholz and T. , A second-order stock market model, Annals of Finance, vol.64, issue.3, pp.439-454, 2013.
DOI : 10.1007/s10436-012-0193-2

URL : http://arxiv.org/abs/1302.3870

E. R. Fernholz and T. , Ichiba et I. Karatzas : Two Brownian particles with rank-based characteristics and skew-elastic collisions. Stochastic Process, Appl, vol.123, issue.8, pp.2999-3026, 2013.

E. R. Fernholz, T. Ichiba, I. Karatzas, and V. Prokaj, Planar diffusions with rank-based characteristics and perturbed Tanaka equations. Probab. Theory Related Fields, pp.343-374, 2013.

E. R. Fernholz and I. Karatzas, Stochastic portfolio theory : A survey, Handbook of Numerical Analysis. Mathematical Modeling and Numerical Methods in Finance, 2009.

A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, Journal of Functional Analysis, vol.254, issue.1, pp.109-153, 2008.
DOI : 10.1016/j.jfa.2007.09.020

W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, volume 25 de Stochastic Modelling and Applied Probability, 2006.

M. I. Freidlin and A. D. , Wentzell : Random perturbations of dynamical systems, Fundamental Principles of Mathematical Sciences, vol.260, 1998.

A. Friedman, Partial differential equations of parabolic type, N.J, 1964.

J. Fritz, T. Funaki, and J. L. , Stationary states of random Hamiltonian systems, Probability Theory and Related Fields, vol.22, issue.2, pp.211-236, 1994.
DOI : 10.1007/BF01199023

P. Gaspard and T. Gilbert, Heat Conduction and Fourier???s Law by Consecutive Local Mixing and Thermalization, Physical Review Letters, vol.101, issue.2, p.20601, 2008.
DOI : 10.1103/PhysRevLett.101.020601

URL : http://arxiv.org/abs/0806.2193

P. Gaspard and T. Gilbert, Heat conduction and Fourier's law in a class of many particle dispersing billiards, New Journal of Physics, vol.10, issue.10, p.103004, 2008.
DOI : 10.1088/1367-2630/10/10/103004

P. Gaspard and T. Gilbert, On the derivation of Fourier???s law in stochastic energy exchange systems, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.11, p.11021, 2008.
DOI : 10.1088/1742-5468/2008/11/P11021

T. Gilbert and R. Lefevere, Heat Conductivity from Molecular Chaos Hypothesis in Locally Confined Billiard Systems, Physical Review Letters, vol.101, issue.20, 2008.
DOI : 10.1103/PhysRevLett.101.200601

URL : https://hal.archives-ouvertes.fr/hal-00355689

F. Golse, Distributions, analyse de Fourier, équations aux dérivées partielles. Cours de l'École Polytechnique Accessible à l'adresse http

M. Gradinaru and S. Herrmann, A singular large deviations phenomenon, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.37, issue.5, pp.555-580, 2001.
DOI : 10.1016/S0246-0203(01)01075-5

URL : https://hal.archives-ouvertes.fr/hal-00091327

E. Gutkin, Billiards in polygons, Physica D: Nonlinear Phenomena, vol.19, issue.3, pp.311-333, 1986.
DOI : 10.1016/0167-2789(86)90062-X

M. Hairer and J. C. Mattingly, Yet Another Look at Harris??? Ergodic Theorem for Markov Chains, Seminar on Stochastic Analysis, Random Fields and Applications VI
DOI : 10.1007/978-3-0348-0021-1_7

S. Herrmann, Ph??nom??ne de Peano et grandes d??viations, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.11, pp.1019-1024, 2001.
DOI : 10.1016/S0764-4442(01)01983-8

T. Ichiba, On collisions of Brownian particles, The Annals of Applied Probability, vol.20, issue.3, pp.951-977, 2010.
DOI : 10.1214/09-AAP641

T. Ichiba, I. Karatzas, and M. Shkolnikov, Strong solutions of stochastic equations with rank-based coefficients. Probab. Theory Related Fields, pp.229-248, 2013.

T. Ichiba, S. Pal, and M. Shkolnikov, Convergence rates for rank-based models with applications to portfolio theory. Probab. Theory Related Fields, pp.415-448, 2013.

T. Ichiba, V. Papathanakos, A. Banner, I. Karatzas, and E. R. , Hybrid Atlas models, The Annals of Applied Probability, vol.21, issue.2, pp.609-644, 2011.
DOI : 10.1214/10-AAP706

B. Jourdain, Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers' equations, ESAIM: Probability and Statistics, vol.1, pp.339-35597, 1995.
DOI : 10.1051/ps:1997113

B. Jourdain, Diffusion processes associated with nonlinear evolution equations for signed measures, Methodology And Computing In Applied Probability, vol.2, issue.1, pp.69-91, 2000.
DOI : 10.1023/A:1010059302049

B. Jourdain, Probabilistic approximation for a porous medium equation. Stochastic Process, Appl, vol.89, issue.1, pp.81-99, 2000.

B. Jourdain, Particules collantes sign??es et lois de conservation scalaires 1D, Comptes Rendus Mathematique, vol.334, issue.3, pp.233-238, 2002.
DOI : 10.1016/S1631-073X(02)02251-3

B. Jourdain, Probabilistic approximation via spatial derivation of some nonlinear parabolic evolution equations. In Monte Carlo and quasi-Monte Carlo methods, pp.197-216, 2004.

B. Jourdain, Equivalence of the Poincar?? inequality with a transport-chi-square inequality in dimension one, Electronic Communications in Probability, vol.17, issue.0, pp.1-12, 2012.
DOI : 10.1214/ECP.v17-2115

B. Jourdain and F. Malrieu, Propagation of chaos and Poincar?? inequalities for a system of particles interacting through their cdf, The Annals of Applied Probability, vol.18, issue.5, pp.1706-1736, 2008.
DOI : 10.1214/07-AAP513

B. Jourdain and J. , Reygner : Capital distribution and portfolio performance for rank-based models of equity market. Preprint accessible à l'adresse http

B. Jourdain and J. Reygner, Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation, Stochastic Partial Differential Equations: Analysis and Computations, vol.58, issue.7, pp.455-506, 2013.
DOI : 10.1007/s40072-013-0014-2

URL : https://hal.archives-ouvertes.fr/hal-00935422

B. Jourdain and J. Reygner, The small noise limit of order-based diffusion processes, Electronic Journal of Probability, vol.19, issue.0, pp.1-36, 2014.
DOI : 10.1214/EJP.v19-2906

URL : https://hal.archives-ouvertes.fr/hal-00840185

I. Karatzas and S. E. Shreve, Trivariate Density of Brownian Motion, Its Local and Occupation Times, with Application to Stochastic Control, The Annals of Probability, vol.12, issue.3, pp.819-828, 1984.
DOI : 10.1214/aop/1176993230

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, volume 113 de Graduate Texts in Mathematics, 1991.

K. Khanin and T. Yarmola, Ergodic properties of random billiards driven by thermostats, Comm. Math. Phys, vol.320, issue.1, pp.121-147, 2013.

J. F. Kingman, Random discrete distribution Avec une discussion par S, J. Roy. Statist. Soc. Ser. B, vol.37, pp.1-22, 1975.

O. A. Lady?enskaja, V. A. Solonnikov, and N. N. , Ural'ceva : Linear and quasilinear equations of parabolic type. Traduit du russe par S, Smith. Translations of Mathematical Monographs, vol.23, 1967.

R. Lefevere, Macroscopic fluctuation theory of local collisional dynamics, Physica Scripta, vol.86, issue.5, p.58506, 2012.
DOI : 10.1088/0031-8949/86/05/058506

URL : https://hal.archives-ouvertes.fr/hal-00751377

R. Lefevere, M. Mariani, and L. Zambotti, Macroscopic fluctuation theory of aerogel dynamics, Journal of Statistical Mechanics: Theory and Experiment, vol.2010, issue.12, 2010.
DOI : 10.1088/1742-5468/2010/12/L12004

URL : https://hal.archives-ouvertes.fr/hal-00680999

R. Lefevere, M. Mariani, and L. Zambotti, Large deviations for renewal processes, Stochastic Processes and their Applications, vol.121, issue.10, pp.2243-2271, 2011.
DOI : 10.1016/j.spa.2011.06.005

URL : https://hal.archives-ouvertes.fr/hal-00520234

R. Lefevere, M. Mariani, and L. Zambotti, Large deviations of the current in stochastic collisional dynamics, Journal of Mathematical Physics, vol.52, issue.3, p.33302, 2011.
DOI : 10.1063/1.3567169

URL : https://hal.archives-ouvertes.fr/hal-00504908

R. Lefevere, M. Mariani, and L. Zambotti, Large deviations for a random speed particle, ALEA Lat. Am. J. Probab. Math. Stat, vol.9, issue.2, pp.739-760, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00780188

R. Lefevere and L. Zambotti, Hot Scatterers and Tracers for the Transfer of Heat in??Collisional Dynamics, Journal of Statistical Physics, vol.57, issue.5, pp.686-713, 2010.
DOI : 10.1007/s10955-010-9962-3

URL : https://hal.archives-ouvertes.fr/hal-00497154

S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Physics Reports, vol.377, issue.1, pp.1-80, 2003.
DOI : 10.1016/S0370-1573(02)00558-6

Q. Liu and C. Wang, Uniqueness of the bounded solution to a strongly degenerate parabolic problem, Nonlinear Analysis: Theory, Methods & Applications, vol.67, issue.11, pp.2993-3002, 2007.
DOI : 10.1016/j.na.2006.09.053

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's. Stochastic Process, Appl, vol.95, issue.1, pp.109-132, 2001.

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, The Annals of Applied Probability, vol.13, issue.2, pp.540-560, 2003.
DOI : 10.1214/aoap/1050689593

URL : https://hal.archives-ouvertes.fr/hal-01282602

H. P. Mckean and J. , Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, pp.41-57, 1967.

S. Meyn and R. L. , Tweedie : Markov chains and stochastic stability, 2009.

L. Natile, A Wasserstein Approach to the One-Dimensional Sticky Particle System, SIAM Journal on Mathematical Analysis, vol.41, issue.4, pp.1340-1365, 2009.
DOI : 10.1137/090750809

S. Olla, S. R. Varadhan, and H. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Communications in Mathematical Physics, vol.129, issue.3, pp.523-560, 1993.
DOI : 10.1007/BF02096727

F. Otto, THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION, Communications in Partial Differential Equations, vol.4, issue.1-2, pp.101-174, 2001.
DOI : 10.1007/BF00535689

G. Pagès, Sur quelques algorithmes r??cursifs pour les probabilit??s num??riques, ESAIM: Probability and Statistics, vol.5, pp.141-170, 2001.
DOI : 10.1051/ps:2001106

S. Pal and J. Pitman, One-dimensional Brownian particle systems with rank-dependent drifts, The Annals of Applied Probability, vol.18, issue.6, pp.2179-2207, 2008.
DOI : 10.1214/08-AAP516

URL : http://arxiv.org/pdf/0704.0957v1.pdf

S. Pal and M. Shkolnikov, Concentration of measure for systems of Brownian particles interacting through their ranks. À paraître dans Ann. Appl. Probab. Preprint accessible à l'adresse http

S. Pal and T. L. , Wong : Energy, entropy, and arbitrage. Preprint accessible à l'adresse http

Y. Plyakha, R. Uppal, and G. Vilkov, Equal or Value Weighting ? Implications for Asset- Pricing Tests. Preprint accessible à l'adresse http

T. Prosen and D. K. Campbell, Normal and anomalous heat transport in one-dimensional classical lattices, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.15, issue.1, p.15117, 2005.
DOI : 10.1063/1.1868532

S. T. Rachev and L. Rüschendorf, Mass transportation problems, Probability and its Applications, 1998.

D. Revuz, Yor : Continuous martingales and Brownian motion, de Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.

L. Rey-bellet, Ergodic properties of Markov processes In Open quantum systems. II, volume 1881 de, Lecture Notes in Math, pp.1-39, 2006.

J. Reygner, Chaoticity of the stationary distribution of rank-based interacting diffusions. Preprint accessible à l'adresse http
URL : https://hal.archives-ouvertes.fr/hal-01056364

B. Ryals and L. Young, Nonequilibrium Steady States of Some Simple 1-D Mechanical Chains, Journal of Statistical Physics, vol.68, issue.5, pp.1089-1103, 2012.
DOI : 10.1007/s10955-012-0437-6

A. Sarantsev, Infinite-dimensional reflected brownian motion and competing particle sys- tems. Preprint accessible à l'adresse http

A. Sarantsev, On a class of diverse market models, Annals of Finance, vol.7, issue.1, pp.291-314, 2014.
DOI : 10.1007/s10436-013-0245-2

M. Shkolnikov, Large systems of diffusions interacting through their ranks. Stochastic Process, Appl, vol.122, issue.4, pp.1730-1747, 2012.

M. Shkolnikov, Large volatility-stabilized markets, Stochastic Processes and their Applications, vol.123, issue.1, pp.212-228, 1997.
DOI : 10.1016/j.spa.2012.09.001

A. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint- Flour XIX?1989, volume 1464 de Lecture Notes in Math, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

S. Tabachnikov, Geometry and billiards, volume 30 de Student Mathematical Library, 2005.

H. Tanaka, Stochastic Differential Equations with Reflecting Boundary Condition in Convex Regions, Hiroshima Math. J, vol.9, issue.1, pp.163-177, 1979.
DOI : 10.1142/9789812778550_0013

A. Ju, Veretennikov : Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb, issue.1533, pp.111434-452, 1980.

A. Ju, Veretennikov : Approximation of ordinary differential equations by stochastic ones, Mat. Zametki, vol.33, issue.6, pp.929-932, 1983.

C. Villani, Optimal transport, de Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2009.
DOI : 10.1007/978-3-540-71050-9

URL : https://hal.archives-ouvertes.fr/hal-00974787

M. Von-renesse and K. Sturm, Transport inequalities, gradient estimates, entropy and Ricci curvature, Communications on Pure and Applied Mathematics, vol.108, issue.7, pp.923-940, 2005.
DOI : 10.1002/cpa.20060

Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear diffusion equations, 2001.
DOI : 10.1142/4782

T. Yarmola, Sub-exponential mixing of open systems with particle-disk interactions. Preprint accessible à l'adresse http

T. Yarmola, Ergodicity of Some Open Systems with Particle-Disk Interactions, Communications in Mathematical Physics, vol.113, issue.1, pp.665-688, 2011.
DOI : 10.1007/s00220-011-1238-5

T. Yarmola, Sub-exponential mixing of random billiards driven by thermostats, Nonlinearity, vol.26, issue.7, pp.1825-1837, 2013.
DOI : 10.1088/0951-7715/26/7/1825