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À la différence des liquides simples, les solides amorphes, une vaste catégorie de
matériaux allant des verres métalliques aux émulsions concentrées, ne se mettent à s’é-
couler qu’au-delà d’une contrainte finie. Notre thèse a pour objet la modélisation de cet
écoulement, dans un cadre général et avec un accent mis sur les hétérogénéités.

En premier lieu, notre travail a porté sur l’inclusion d’inhomogénéités dans le cadre
de la théorie de couplage de modes appliquée à la rhéologie et nous avons notamment
obtenu une équation générale d’évolution des inhomogénéités de densité.

À basse température, l’écoulement est en effet fortement hétérogène : des phases de
déformation élastique sont entrecoupées de réarrangements de particules, brusques et
localisés, qui interagissent par le biais des déformations élastiques qu’ils génèrent. En
second lieu, nous avons donc considéré un modèle calqué sur ce scénario et affiné ses
éléments constitutifs pour rendre compte de la compétition entre cisaillement appliqué
et réarrangements locaux, à l’origine de la courbe d’écoulement des matériaux ather-
miques. Cette dernière a été reproduite de manière satisfaisante.

Pour ce qui est des corrélations spatiales dans l’écoulement, nous avons montré qu’il
n’existe pas de loi d’échelle universelle dans les modèles élasto-plastiques, malgré la
présence d’une classe de longueurs de corrélation décroissant comme γ̇−1/d en d dimen-
sions, dans le régime dominé par le cisaillement.

Par ailleurs, dans diverses variantes du modèle, le cisaillement se trouve localisé dans
une région du matériau. Ce phénomène apparaît dès lors que les blocs élasto-plastiques
sont durablement fragilisés à la suite d’un événement plastique.

Enfin, les prédictions du modèle ont été directement mises en regard avec des ex-
périences sur l’écoulement en microcanal d’émulsions concentrées et des simulations
de dynamique moléculaire à température nulle. Les écarts observés nous ont poussé à
développer et implémenter un code plus flexible, qui s’appuie sur une routine simplifiée
d’Éléments Finis et rend mieux compte du désordre structurel et des effets inertiels.

Contrary to the case of simple fluids, a finite stress is required to initiate the flow of amorphous
solids, a broad class of materials ranging from bulk metallic glasses to dense emulsions. The
objective of this thesis is to model the flow of these materials in a general framework, with an
emphasis on heterogeneities.

In a first approach, using the liquid regime as a starting point, I have investigated to what
extent inhomogeneities can be accommodated in the framework of the mode-coupling theory of
rheology. A generic equation for the evolution of density inhomogeneities has been derived.

At low temperatures, the flow is indeed quite heterogeneous: it consists of periods of elastic
deformation interspersed with swift localised rearrangements of particles, that induce long-range
elastic deformations and can thereby spark off new rearrangements. In a second approach, a model
rooted in this scenario has been refined so as to reflect the interplay between the external drive
and the localised rearrangements, which is at the origin of the flow curve of athermal solids. The
latter has been reproduced satisfactorily.

Turning to spatial correlations in the flow, we have shown that there exists no universal scaling
for these correlations in elastoplastic models, although a broad class of correlation lengths scale
with γ̇−1/d in the shear-dominated regime in d dimensions.

Besides, shear localisation has been observed in diverse variants of the model, whenever blocks
are durably weakened following a plastic event.

Finally, we have directly compared model predictions to experimental results on the flow
of dense emulsions through microchannels and to athermal molecular dynamics simulations.
Spurred on by the observation of some discrepancies, we have developed and implemented a
more flexible code, based on a simplified Finite Element routine, which notably provides a better
account of structural disorder and inertial effects.
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P R É A M B U L E

Hac in re scilicet una
Multum dissimiles, ad cætera pæne gemelli

(Horace, Épître X)

La magie propre au soufflage du verre provient, en partie, du fait qu’un verre
de silicates, le matériau cassant par excellence à température ambiante, est trans-
formé en une substance visqueuse, malléable, par simple chauffage. Pour peu
que l’on s’enquière de l’origine physique de cette transformation frappante, le
mystère ne fait que s’épaissir. En effet, les interactions entre les constituants
atomiques du verre n’ont guère changé au cours du chauffage. De manière en-
core plus intrigante, l’observation microscopique du verre dur et de son pen-
dant visqueux, qui sera désormais appelé liquide surfondu, ne révèle aucune
différence remarquable au niveau de l’arrangement des atomes et molécules de
ces matériaux, c’est-à-dire de leur structure moléculaire.

Cette similitude en termes de structure constraste vivement avec les change-
ments qui se produisent à la fonte d’un glaçon. Pour ce dernier, quand la tem-
pérature approche 0◦C, les molécules d’eau, alors régulièrement empilées, se
mettent à vibrer à tel point que la structure ordonnée, quoique énergétiquement
favorable, laisse place au tohu-bohu du liquide. Ce changement d’état se produit
à une température précise, la température de fusion, soit 0◦C en l’occurrence.

En revanche, entre le verre et le liquide surfondu, il n’existe pas de transition
aussi nette. Certes, on peut définir, par commodité, une température de transi-
tion vitreuse Tg, comme la température en deça de laquelle le matériau devient
«vraiment trop visqueux», autrement dit, par convention, lorsque sa viscosité
franchit le seuil des 1012Pa · s [Binder and Kob, 2011]. Mais la température ainsi
définie dépendra de la vitesse de chauffage ou de refroidissement, si celle-ci n’est
pas prescrite.

Phénoménologie de la transition vitreuse à l’échelle microscopique

L’augmentation spectaculaire de la viscosité autour de la transition vitreuse
s’accompagne d’une augmentation tout aussi spectaculaire du temps de relax-
ation structurel du matériau. Il faut en effet quelques minutes (∼ 102 s) à ce
dernier pour perdre la mémoire de sa configuration instantanée à la tempéra-
ture de transition vitreuse, soit un temps supérieur de 15 ordres de grandeur au
temps de vibration moléculaire, et l’écart s’amplifie encore plus drastiquement si
la température diminue davantage. Il s’ensuit qu’au repos, les verres silicatés ne
peuvent pas atteindre leur état d’équilibre en quelque durée expérimentalement
réaliste que ce soit. Ils ne peuvent pas non plus relâcher la contrainte accumulée
suite à une petite déformation, ce qui, à la grande satisfaction des souffleurs de
verre et de l’industrie verrière, leur assure une solidité effective.
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Si l’on descend à l’échelle microscopique, l’extrême lenteur de la relaxation
structurelle s’explique par le fait que les particules 2 sont piégées dans la “cage”
formée par les nombreux voisins qui les entourent; en dessous de Tg, les fluctua-
tions thermiques, par exemple les vibrations cinétiques, deviennent trop faibles
pour permettre aux particules de quitter cette cage [Goldstein, 1969, Götze and
Voigtmann, 2001] et la plupart d’entre elles se contentent d’évoluer en son sein
(c’est le processus de relaxation β). Ce n’est qu’au bout d’un temps extrêmement
long qu’elles parviennent enfin à s’échapper, et que la mémoire de la configu-
ration initiale est finalement effacée (c’est le processus de relaxation α). Mais,
après cette évasion, les particules tombent dans une cage encore plus solide en
moyenne (la physique est sans merci pour les particules en cavale !), et le verre
devient de plus en plus stable. Cette évolution structurelle est connue sous le
nom de vieillissement [Binder and Kob, 2011].

La transition de blocage

On observe également une transition donnant lieu à de la rigidité sans mise
en ordre dans un tout autre type de matériaux, dans lesquels les fluctuations
thermiques n’ont, au mieux, qu’un rôle négligeable. Aussi l’émergence de la
rigidité (la transition de blocage) n’y est-elle pas contrôlée par la température, mais
par l’accroissement de la fraction volumique φ: les particules sont entassées de
manière tellement dense que leurs contacts empêchent tout mouvement, pour la
majorité d’entre elles.

La transition vitreuse et la transition de blocage sont des phénomènes a priori
distincts [Mari et al., 2009, Ikeda et al., 2012]. Pour illustrer ce point, il suffit de
considérer une dispersion légèrement polydisperse de sphères dures, c’est-à-dire
de boules de billard. Lorsque augmente la fraction volumique à température
finie, si la cristallisation est évitée, la matériau voit sa dynamique quasiment
gelée à l’entrée dans l’état vitreux, autour de φ = 58% en trois dimensions, état
caractérisé par des forces entropiques (finies) et donc des constantes élastiques
finies. Si l’on comprime davantage le système, il atteint le point d’empilement
aléatoire compact autour de φ = 64%; à ce point de blocage, quelle que soit
la température, la pression résulte des forces de contacts et diverge donc [Mari,
2011], ainsi que le font alors les modules élastiques.

Des matériaux d’une diversité étonnante

Mais laissons cette distinction de côté et tentons d’englober du regard l’éton-
nante diversité de la classe des matériaux solides, mais désordonnés. Ils couvrent
de nombreux ordres de grandeur en termes de taille de particule, comme l’illus-
tre la Fig. 1.1 : les atomes métalliques composant les verres métalliques, de même
que les atomes de silicium et d’oxygène dans les verres de silices, ont une taille

2. Tout au long de cette thèse, nous emploierons le mot “particle” pour faire référence à l’en-
tité élementaire du matériau, c’est-à-dire l’atome dans le cas du verre de silicates ou du verre
métallique, la gouttelette pour une émulsion, la bulle pour une mousse, ou encore le grain pour
un matériau granulaire.
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Figure 0.1: Exemples de solides amorphes, rangés en fonction de la taille de leurs con-
stituents élémentaires.

de l’ordre de l’Angström; les colloïdes sont des agrégats compacts, en général
de nature polymérique, qui mesurent moins d’un micron; les mousses et émul-
sions sont faites de gouttelettes ou de bulles de quelques dizaines de microns à
quelques dizaines de millimètres; enfin, les matériaux granulaires comprennent
les grains de riz, macroscopiques, le sable, les billes de verre, etc. Pour ce qui est
de la rigidité, le module d’Young d’un verre métallique est de l’ordre de 100 GPa,
quand celui d’une mousse molle tourne autour de 100 Pa.

L’ambitieuse idée qui nous a guidés, nous comme bien d’autres, est que, nonob-
stant leur extrême diversité, ces matériaux (compte tenu de leur solidité, ainsi
que de l’absence de structure ordonnée, et donc de défauts facilement identifi-
ables) manifestent des propriétés communes. Nous aspirons donc à appréhen-
der dans un cadre général la déformation et l’écoulement de ces matériaux, en
réponse à un cisaillement.

Un cadre commun pour modéliser l’écoulement des solides amorphes?

Du fait de leur solidité, les matériaux amorphes se déforment de manière élas-
tique lorsque de faibles contraintes de cisaillement leur sont appliquées. Pour des
contraintes légèrement plus élevées, on peut observer un certain niveau de dé-
formation plastique mais la déformation n’est pas auto-entretenue et ne s’exerce
que pour une durée finie, à moins que la contrainte dépasse une valeur critique,
appelée contrainte seuil en rhéologie. Pour des contraintes plus importantes, le
matériau cède: s’il est cassant, comme le verre silicaté, cela aboutit à une frac-
ture macroscopique. En revanche, pour la plupart des verres mous, il s’ensuit un
écoulement permanent. Ces deux catégories de matériaux sont habituellement
étudiées par des communautés scientifiques différentes : d’un côté, on trouve
les ingénieurs des matériaux, qui distinguent matériaux cassants et matériaux
ductiles; de l’autre, les rhéologues, qui mettent en exergue le contraste entre
localisation du cisaillement et écoulement homogène. Dans une vision globale,
ces différences peuvent-elles se ramener à la variation d’un paramètre physique
général ?

De manière non moins importante, les effets collectifs et les hétérogénéités
dans l’écoulement persistent, même quand les solides amorphes sont macro-
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scopiquement fluidifiés par le cisaillement. Ces effets non locaux sont une man-
ifestation de la solidité du matériau au repos. En effet, si nous nous rappelons
l’exemple du soufflage de verre, il ne fait pas de doute que le matériau répon-
dra à, mettons, un coup d’aiguillon de manière essentiellement locale à haute
température, alors que la réponse sera globale dans l’état solide. Quel rôle ces
effets collectifs jouent-ils dans l’écoulement ? Dans quelle mesure retrouve-t-on
la limite du liquide simple à vitesse de forçage élevée, c’est-à-dire à fort taux de
cisaillement ?

D’autres différences au sein de l’hétéroclite catégorie des solides amorphes
appellent d’autres questions : les mécanismes à l’œuvre dans l’écoulement des
matériaux thermiques, d’un côté, et athermiques, de l’autre, sont-ils différents ?
Les systèmes de grains durs, frottants, peuvent-ils être traités comme les émul-
sions à l’échelle mésoscopique ?

Plan d’ensemble de la thèse

La première partie de ce manuscrit est dédiée à l’approche de la rhéologie des
liquides surfondus et des verres par la théorie de couplage de modes, avec en
ligne de mire l’inclusion d’inhomogénéités (de contrainte ou de densité) dans la
théorie, dans l’optique, par exemple, d’obtenir une description plus réaliste des
écoulements fortement hétérogènes observés à basse température.

Dans les parties suivantes, nous adoptons d’entrée de jeu une approche mieux
adaptée au régime de basse température, à savoir, la modélisation élasto-plastique.
Les parties 2 et 3 visent à davantage rapprocher les ingrédients de ces modèles
des processus physiques à l’œuvre dans les solides amorphes en situation d’é-
coulement, et, à l’aide de simulations numériques, d’atteindre à une meilleure
compréhension de phénomènes tels que la localisation du cisaillement, les cor-
rélations spatiales dans l’écoulement et les phénomènes collectifs dans les écoule-
ments dans des microcanaux. Enfin, dans la dernière partie, nous travaillons à
une implémentation bien plus flexible des modèles élastoplastiques, fondée sur
une routine d’Éléments Finis simplifiée, laquelle rend notamment mieux compte
du désordre structurel et, éventuellement, de l’anisotropie locale du matériau.

xviii



1
A B I R D ’ S E Y E V I E W

Hac in re scilicet una
Multum dissimiles, ad cætera pæne gemelli

(Horace, Epistle X)

Part of the magic of glassblowing comes from the fact that silicate glass, the
paradigmatic example of a brittle material at room temperature, is turned into
a viscous, malleable substance through plain heating. Should one inquire into
the physical origin of this dramatic transformation, the mystery will get even
deeper. Indeed, the interactions between the atomic constituents of the glass do
not change significantly in the heating process. Even more intriguingly, observ-
ing the brittle glass and its viscous counterpart, hereafter called supercooled
liquid, at the microscale does not reveal any consipicuous difference in the ar-
rangements of their atoms and molecules, i.e., in their molecular structure.

This structural similarity is in marked contrast with the changes occurring
when an ice cube is melted. In the latter case, as the temperature approaches 0°C,
the regularly stacked water molecules in the ice cube start vibrating so much that
the ordered structure, albeit energetically favourable, finally turns into a jumble.
The change of state occurs exactly at a specific melting temperature, 0°C here.

On the other hand, no such clearcut transition temperature separates the glass
from the supercooled liquid. For sure, a glass transition temperature Tg can still
be defined out of convenience, as the temperature below which the material
becomes “really too viscous”, that is, conventionally, when its viscosity η exceeds
1012Pa · s [Binder and Kob, 2011]. But the temperature thus defined will depend
on the heating or cooling rate, if it is not prescribed.

1.1 phenomenology

1.1.1 Microscopic picture of the glass transition

The dramatic increase of viscosity around the glass transition is associated
with a dramatic increase of the structural relaxation time: at the glass transition
temperature, the material needs a couple of minutes (∼ 102 s) to forget about
its instantaneous configuration, i.e., about 15 orders of magnitude longer than
the molecular vibration time, and drastically more when the material is further
cooled down. It follows that silicate glasses cannot equilibriate over any experi-
mental time scale, at rest. Nor can they relax in response to a small deformation,
which, to the great relief of glassblowers and glass manufacturers, implies that
they are effectively solid.
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Microscopically, the sluggish structural relaxation is rationalised by the fact
that particles 1 are trapped in the “cage” formed by the many neighbours that
surround them; below Tg, thermal fluctuations, e.g., kinetic vibrations, become
too small to allow particles to escape from this cage [Goldstein, 1969, Götze and
Voigtmann, 2001], and most of them can only move within the precincts of their
cages (this is the so called β-relaxation process). An extremely long time elapses
before they finally break out of their cages, i.e., before the memory of the initial
configuration has been fully erased (this is the α-relaxation process). But, after their
escapes, particles end up in yet stronger cages on average (physics is adamant
to cage breakers!), and the glass becomes more and more stable. This structural
evolution is known as ageing [Binder and Kob, 2011].

1.1.2 The jamming transition

Interestingly, a transition to rigidity without ordering is also observed in a very
different class of materials, in which thermal fluctuations play a negligible role.
The onset of rigidity in these systems, known as the jamming transition, is not
controlled by a decline of temperature, but by an increase of the volume fraction
φ: particles are packed so densely that their contacts prevent (the majority of)
them from moving.

The glass transition and the jamming transition are distinct phenomena a priori
[Mari et al., 2009, Ikeda et al., 2012]. To illustrate this, let us consider a slightly
polydisperse dispersion of hard spheres, i.e., bowling-ball-like particles. If the
volume fraction is increased at finite temperature and crystallisation is avoided,
the material is arrested into a glassy state, characterised by (finite) entropic forces
and therefore finite elastic constants, around φ = 58% in three dimensions. If the
density is further increased, the system reaches the random close packing point
around φ = 64%; at this (jamming) point, regardless of the temperature, the
pressure is set by contact forces and thus diverges [Mari, 2011]; so do the elastic
moduli.

1.1.3 Extremely diverse materials

If one leaves aside this distinction, the breadth and diversity of the class of
solid, but disordered, materials are arresting. These materials span many orders
of magnitude in terms of particle size, as illustrated in Fig. 1.1: the metal atoms
composing metallic glasses, as well as the silicon and oxygen atoms in silica glass,
lie in the Angström range; colloids are compact (generally polymeric) aggregates
of less than one micron in radius; foams and emulsions are made of droplets or
bubbles from tens of micrometers up to a couple of millimeters; finally, granular
matter encompasses macroscopic rice grains, sand, glass beads, etc. In terms of

1. Throughout this manuscript, the word ’particle’ shall refer to the elementary entity of the
material: the atom in a silicate or a metallic glass, the droplet in an emulsion, the bubble in a foam,
the grain in granular matter.
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Figure 1.1: Amorphous solids, sorted by the size of their elementary constituents.

stiffness, the Young modulus of a metallic glass is of order 100 GPa, whereas that
of a soft foam lies around 100 Pa.

The ambitious hope that has guided us and many others is that, no matter
how diverse these materials are, their solidity, combined with the absence of
ordered structure, and, therefore, of easily identifiable defects, entails some com-
mon properties. Our goal is then to capture the deformation and the flow of
these materials, in response to shear, in a general framework.

1.1.4 A common framework for the flow of amorphous solids?

On account of their solidity, amorphous solids deform elastically upon applica-
tion of very small shear stresses. For slightly larger stresses, some extent of plas-
tic strain may be observed, but the deformation is not self-sustained and finally
dies out, as long as the applied stress does not exceed a critical value, known
as yield stress in rheology. If larger stresses are applied, the material yields: for
brittle materials, such as silicate glasses, this culminates in macroscopic fracture;
on the other hand, for the majority of soft glassy materials, a steady-state flow
ensues. These two categories of materials are generally studied by distinct scien-
tific communities: on the one hand, materials’ scientists, who make a distinction
between brittle and ductile materials; on the other hand, rheologists, who put to
the forefront the contrast between shear localisation and homogeneous flow. In a
global perspective, can these differences be subsumed under a generic physical
parameter?

Another important aspect is that, even when disordered solids are fluidised,
collective effects and flow heterogeneities subsist. The presence of non-local ef-
fects bears the signature of the material’s solidity at rest: calling back to mind
the example of glassblowing, it is clear that the response of the material to, say,
a prod with a sharp pencil is mostly local at high temperatures, but global in the
solid state. What role do these collective effects play in the flow? To what extent
is the simple fluid limit recovered when the driving velocity, i.e., the shear rate,
is increased?

Other discrepancies in the heteroclite category of amorphous solids lead to
other questions: Are different mechanisms responsible for the flow of thermal
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and athermal materials? Are hard frictional grains amenable to the same treat-
ment as emulsion droplets, on the mesoscale?

Several approaches compete to find answers to these broad questions.

1.2 an intractable set of equations

A priori, the problem of the flow of an amorphous solid, made of N interacting
particles labelled i ∈ {1, . . . , N}, requires to solve pN coupled equations of mo-
tion, where p > 1 is the number of relevant degrees of freedom of each particle.
For concreteness, one may consider the simple case in which the motion of each
particle, of mass m, is governed by an overdamped Langevin equation,

0 = Fi (Γt)−mζ ṙi(t) + f th
i (t), (1.1)

where ṙi is the velocity of particle i, ζ is a friction coefficient, the f th
i ’s are yet

unspecified thermal fluctuations (see Chapter 2), and the Fi’s are conservative
forces that originate in interparticle interactions. Deformation is imposed, for
instance, by controlling the position of a slab of particles in the sample.

Unsurprisingly, the problem, as it stands now, is intractable, even in this highly
simplified case.

1.3 dynamical theories

To circumvent the difficulty, a first approach consists in making use of the tra-
ditional tools of statistical physics, namely, ensemble averages and the recourse
to mean-field approximations. However, one of the first obstacles is that, as a
prerequisite to the study of flow, the theory should describe the emergence of
rigidity in the quiescent state; otherwise, no yield stress would be observed. In
this respect, one of the most successful approaches rooted in first principles is
undoubtedly the mode-coupling theory [Bengtzelius et al., 1984, Reichman and
Charbonneau, 2005].

1.3.1 The mode-coupling approach to rheology

The microscopic equations of motion can be recast into equations involving
the probability distribution function of the system, i.e., the function giving the
probability to find the system in a given configuration. In order to capture the
slow reponse of the system, the mode-coupling theory, which will be presented
in greater detail in Chapter 2, relates the evolution of the system to that of a
carefully chosen set of slow variables. At the end of the day, the theory predicts
that the dynamics of the quiescent system freeze below some critical temperature
and the system becomes non-ergodic. The only nontrivial input parameter in the
final equation is the equilibrium structure factor of the material.
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Flow is brought into the picture by writing the microscopic equations, not in
the lab frame, but rather in a frame that moves at a prescribed, space-dependent
velocity [Fuchs and Cates, 2002], which can be thought of as the solvent velocity,
in the case of a colloidal suspension. It is then shown that flow restores ergodic-
ity and the study culminates in the derivation of a constitutive equation for the
stress, based on a generalised Green-Kubo relation. This equation, or schematic
variants thereof, gives (almost) quantitative agreement with experimental mea-
surements on concentrated colloidal suspensions close to the glass transition
[Siebenbürger et al., 2012, Amann et al., 2013, Fritschi et al., 2014] (also see Ref.
[Fritschi et al., 2014] for a comparison with atomistic simulations).

On the downside, the technical calculations involve some uncontrolled approx-
imations, all potential flow heterogeneities have been left behind, and the solvent
velocity is an input parameter of the theory, instead of being self-consistently ad-
justed.

1.4 a potential energy landscape (pel) approach

to quiescent systems

1.4.1 The Potential Energy Landscape perspective

Owing to the technical difficulty associated with the mode-coupling calcula-
tions, one may wish to turn to a simplified approach, offering a more intuitive
understanding. To this end, let us temporarily forget about the kinetic details
in the microscopic equations and focus only on the potential energy landscape
(PEL) V(Γ) in which the system evolves. Here, Γ ≡ (r1, . . . , rN) ∈ UN denotes
a possible configuration of the system, U is the (potentially periodic) space in
which the particles move 2, e.g., U = Rd, for some spatial dimension d, and V
is the global potential energy of the system. By definition, the interparticle force

exerted on particle i in configuration Γ reads Fi (Γ) = − ∂V
∂ri

∣∣∣
Γ
.

The PEL is therefore oblivious to inertial effects and dissipative forces. This
selective perception is prompted by the idea that the dynamics of the dense
system, whether at rest or in flow, are dominated by excluded volume effects and,
when applicable, short-range attractions, both of which are exclusively contained
in Fi (Γ).

In the overdamped regime, the evolution of the system is entirely described by
the trajectory of the state point, Γt ≡ Γ(t), in phase space, where t ∈ R+ denotes
the time coordinate. But, then, where do the discrepancies between the glassy
state and the liquid state emerge in this perspective? The question is all the
more pertinent as the PEL is blind to temperature and, given that the structure
of a glass does not differ much from that of a liquid, one may think that both
explore similar configurations Γ.

2. Formally, the PEL is then a hypersurface of the high-dimensional space UN ×R.
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Goldstein [1969] addressed this question in an insighful paper published in
1969. In the liquid state, at high temperatures, the thermal energy is of the order
of, or larger than, the typical energy barriers encountered in the PEL, so that the
system virtually “hovers” over the PEL without being significantly delayed by
any barrier. When the temperature declines and the liquid draws closer the glass
transition 3, the presence of energy barriers large compared to the thermal energy
starts to dominate the dynamics. Most of the time, the system is then trapped
near a local energy minimum, in the vicinity of which it vibrates (if inertia is
present), until it finally jumps into another valley, and so on. The trapping of
the system in a potential valley reflects the increasing difficulty for particles to
escape from the cage formed by their neighbours, in real space.

These seminal ideas have since been refined, notably to take into account the
multiple scales of valleys [Stillinger, 1995]: at the smallest scale, valleys are de-
fined as the basins of attraction of a minimum, i.e., the portion of space from
which strict downhill motion leads to the considered minimum. Zooming out,
larger-scale funnel-shaped valleys (“metabasins”) with jagged slopes due to the
smaller-scale valleys, become apparent. In other words, valleys of different scales
are nested. A faithful representation of this hierarchical structure is presented
by Doliwa and Heuer in Ref. [Doliwa and Heuer, 2003] and reproduced here
in Fig. 1.2a. These authors conducted a detailed investigation of the PEL of a
numerical model for a supercooled liquid comprising 50 particles (for larger sys-
tems, the PEL becomes too complex for any useful information to be extracted
from it). For further details, the reader is referred to the comprehensive works
presented in Refs. [Doliwa and Heuer, 2003, Heuer, 2008] and to the references
therein.

1.4.2 Bouchaud’s trap model

Bouchaud [1992]’s trap model provides a quantitative description of Gold-
stein’s ideas about the glass transition. The author envisioned the evolution
of the state point in a Gedanken-PEL composed of basins (“traps”) of expo-
nentially distributed depths E. This means that the number of traps of depths
E in the PEL is proportional to ρ(E) ∝ exp(−E/Eg), Eg being a material pa-
rameter. The thermally activated escape from a trap of depth E takes a time
τ(E) ∼ ω−1

0 exp(E/kBT), where ω0 is some attempt frequency and kBT is the
thermal energy. Immediately after its escape, the state point lands in a new trap,
whose depth is picked at random from the distribution ρ.

For all its simplicity, this model predicts a glass transition at kBT = Eg. Indeed,
for kBT > Eg, the average life time in a trap is finite, because

∫
dEρ(E)τ(E) < ∞,

and an ergodic steady state is reached. On the contrary, for kBT < Eg, the average
life time diverges, i.e.,

∫
dE ρ(E)τ(E) = ∞. As time elapses, the system falls into

deeper and deeper traps on average: this is the ageing process characteristic of
the glassy state.

3. Goldstein assessed that the change of regime should occur when the viscosity gets larger
than 1 Pa · s.
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(a) Potential energy along a reaction path.
pback denotes the probability to return to
the bottom of the initial metabasin, as
calculated by Molecular Dynamics. Taken
from Ref. [Doliwa and Heuer, 2003].

(b) Tilting of the effective PEL by the
application of strain and the en-
suing destabilisation of the first
energy minimum. Adapted from
Ref. [Gagnon et al., 2001].

Figure 1.2: The Potential Energy Landscape perspective

1.4.3 Energy barriers and entropic barriers

At this stage, I would like to append a word of caution regarding the possible
misconceptions about energy barriers due to schematic representations of the
PEL.

The trapping of the state point in a PEL valley can naturally occur because the
energy barriers in all possible escape directions are too high. Alternatively, there
may exist too few exit paths with low enough barriers. Consequently, “energy”
barriers also encompass entropic barriers (where entropy should measure the
number of trajectories, here). This remark is particularly relevant in the context
of hard spheres, for which

V(Γ) =




0 if no particles overlap,

∞ otherwise.

In such systems, the dynamics get frozen when the volume fraction φ is in-
creased above a critical volume fraction φc ≈ 58% in three dimensions. Clearly,
the dynamical arrest is not associated with higher energy barriers here, but with
fewer available directions of motion of the state point.

7



1.5 the pel approach to systems under shear

1.5.1 Shear-induced tilting of the PEL

In general, not all configurations Γ ∈ UN are accessible, because boundary
conditions (BC) constrain the evolution of the system. External drive usually
modifies these BC continuously. In particular, shear is experimentally applied by
moving one wall of a shear cell, thereby dragging the particles in contact with
it (unless there is wall slip). In this section, we show how this effectively affects
the PEL.

To enforce the BC, the equations of motion, for instance, the overdamped
Langevin equation (Eq. 1.1) should be supplemented with a prescription of the
form

Pt(Γ) = 0,

for some time-dependent function 4 Pt. This prescription restricts the motion
of the state point to the submanifold P−1

t (0). A convenient way to enforce this
restriction is to add a penalty term to the potential V(Γ) in the Langevin equation
(Eq. 1.1) through a Lagrange multiplier λ, viz.,

V (Γ)→ Ṽt (Γ) ≡ V (Γ) + λPt (Γ) .

Assuming that Pt=0(Γ) = 0, λ is chosen so as to fulfil

0 =
D
Dt

[Pt(Γt)]

viz., 0 = ∂tPt

∣∣∣
Γt
+

N

∑
j=1

∂jPt · ṙj

0 = ∂tPt

∣∣∣
Γt
+

N

∑
j=1

∂jPt ·
−∂jṼt (Γt) + f th

i

mζ

λ =
mζ∂tPt + ∑N

j=1 ∂jPt · F j
(tot)

∑N
j=1
(
∂jPt

)2 , (1.2)

where F j
(tot) ≡ −∂jV + f th

j , and we have used the shorthands: ∂jV ≡ ∂V/∂rj

and ∂tPt ≡ ∂Pt/∂t.
For example, assume that we want to fix the x-coordinate of particle 1, x1(t), to

a time-dependent value x(t)1 . The associated prescription function reads Pt
(
Γp
)
=

x1 − x(t)1 . Then, from Eq. 1.2, the Lagrange multiplier is λ = −mζ ẋ(t)1 + Fx (tot)
1 ,

i.e., the conjugate quantity to x1. The manipulation thus boils down to applying
a fictitious force on particle 1 such that it moves with the prescribed velocity.

4. We have assumed that the constraint acts only on the positional (and not kinetic, i.e.,
ṙ1, . . . , ṙN ) degrees of freedom. This is clearly the case for a strain-controlled system. But even
in a stress-controlled setup, this restriction is reasonable so long as the stress is dominated by the
interparticles (e.g., elastic) interactions.
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Now, in order to apply a shear strain γ(t) to the system, some particles are
treated as “wall particles” (W). Their y-coordinates are frozen at y = θLy, where

θ =

0 if the particle belongs to the bottom wall,

1 if the particle belongs to the top wall,

and their x-displacements are set to x(t) = x(0) + θγ(t)Ly. With these constraints,
for slow shear (‖mζ ṙi‖ � ‖Fi‖), the effective potential reads

Ṽt (Γ) ≡ V (Γ) + ∑
i∈W

(
yi − θLy

)
Fy (tot)

i + ∑
i∈W

(
xi − x(0)i − θγ(t)Ly

)
Fx (tot)

i

= V (Γ) + ∑
i∈W

(
ri − ri

(0)
)
· Fi

(tot) −U0Σxyγ(t),

where U0 is the volume of the system and we have introduced the macroscopic
shear stress, Σxy ≡ U−1

0 ∑i∈W θLyFx (tot)
i . The terms involving, e.g., Fy (tot)

i im-
pede the dilation of the system in the presence of walls, a tendency known as
Reynolds’ dilatancy in granular matter; but the most interesting term for the
bulk flow is clearly the tilting of the potential with the shear stress, namely,
−U0Σxyγ(t).

1.5.2 Topological changes in the PEL and structural rearrangements

Figure 1.2b shows the increasing tilt of the effective PEL Ṽ as γ(t) increases. As
a result of the tilt, the position Γmin(t) of the minimum in Ṽ is gradually shifted
(Fig. 1.2b, middle). At low temperature, the state point vibrates around that
minimum. Therefore, the response to γ(t) is elastic: if γ(t) is inverted, Γmin(t)
reverts to its previous location, and so does the state point.

However, this only holds over a finite strain window: past a critical strain
γc, a (fold) catastrophe is bound to occur (Fig. 1.2b, bottom): Γmin(t) collides
with the inflection point and is abruptly shifted to another location, as the first
minimum vanishes. Following this change in the PEL topology, the state point
is attracted to a new minimum, associated with a lower stress, and a structural
rearrangement occurs. This corresponds to an irreversible, plastic deformation.
Note that, in the presence of thermal fluctuations, the system may anticipate the
topological change by hopping to the more favourable minimum as soon as the
effective barrier (saddle point) is low enough.

1.6 from the global pel to mesoscopic pels

1.6.1 Collective destabilisation vs. avalanche of local rearrangements

So far we have dealt with the PEL of the global system. However, the PEL of
a macroscopic system suffers from the double disadvantage of being uneasy to
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characterise through atomistic simulations [Doliwa and Heuer, 2003] and incon-
venient to use in spatially resolved models. To counter these problems, could
the global system be partitioned into weakly coupled mesoscopic regions? Here,
weak coupling means that the dynamics within a mesoscopic region are not sen-
sitive to the detailed changes of positions of particles in other regions, in other
words, that the rest of the medium can be idealised from the viewpoint of that
region.

In the elastic regime, such idealisation poses no serious problem: Tsamados
and Barrat showed that Hooke’s law holds for regions as small as 5 particle
diameters, in a Lennard-Jones glass [Tsamados et al., 2009]. To a good approxi-
mation, the internal dynamics of a mesoscopic region (e.g., in response to shear)
can then be described by

(i) its internal potential, and

(ii) the boundary conditions imposed by an idealised medium made of a patch-
work of Hookean blocks.

On the other hand, close to a critical point in the global PEL, one stands on
shaky ground: the upcoming structural rearrangement could potentially origi-
nate in a strictly collective destabilisation of the whole sample, instead of being
initiated by a particularly weak region (and then potentially triggering other
rearrangements). This counterargument may in particular apply to packings of
repulsive particles close to jamming, which exhibit delocalised soft modes and
extended structural rearrangements [Reichhardt and Reichhardt, 2014].

1.6.2 Elastoplastic models

In subtle constrast with the idea of a strictly collective destabilisation, elasto-
plastic models are based on the premise that mesoscopic regions are destabilised
individually. Collective effects are then interpreted as avalanches of localised re-
arrangements, interacting via elastic interactions. This assumption is strongly
supported by the observation of small cooperatively rearranging regions in ma-
terials deep within the solid phase, i.e., far below the glass transition temperature
or significantly above the jamming point (see Refs. [Argon and Kuo, 1979, Schall
et al., 2007, Amon et al., 2012b, Schuh et al., 2007] and Chapter 5). The existence
of localised rearrangements can tentatively be interpreted as the consequence of
the fact that most mesoscopic regions are stable, i.e., not on the brink of failure,
deep in the solid phase.

Accordingly, this line of modelling focuses on an assembly of elastic blocks
subject to local yield criteria. Once the yield criterion is met in a block, a plastic
rearrangement is triggered locally and the local elastic stress is redistributed to
the other blocks in the system, thus potentially inducing new yield events.
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1.7 structure of the thesis

The first part of this manuscript is dedicated to the mode-coupling approach
to the rheology of supercooled liquids and glassy materials. It is guided by the
endeavour to include (stress or density) inhomogeneities in this theory, with
the perspective, for instance, to obtain a more direct reflection of the strongly
heterogeneous flow observed at low temperatures.

In the following parts, we adopt an approach better suited to the low tem-
perature regime, namely, elastoplastic models. Parts 2 and 3 aim to tighten the
connection between the ingredients of these models and the physical processes
at play in flowing amorphous solids and, with the help of numerical simulations,
to gain a better understanding of phenomena such as shear localisation, spatial
correlations in the flow, and collective effects in microchannel flows. Finally, in
the last part, we report on the development of a more flexible implementation of
elastoplastic models, based on a simplified Finite Element routine, which notably
offers a better account of structural disorder and anisotropy.
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Part I

D E N S I T Y A N D S T R E S S H E T E R O G E N E I T I E S I N T H E
M O D E - C O U P L I N G D E S C R I P T I O N O F F L O W





Chapter 1 has provided a glimpse of the phenomenology associated with the
glass transition: as the supercooled liquid is cooled down, structural relaxation
becomes so sluggish that it starts to occur on (at least) macroscopic time scales,
and the material behaves like a solid on any finite timescale.

The liquid-glass transition has been the cradle of many a theory in the past
decades, ranging from the Adam-Gibbs scenario [Adam and Gibbs, 1965] to the
mode-coupling theory (MCT) of the glass transition [Bengtzelius et al., 1984]
and the Random First Order Theory [Kirkpatrick et al., 1989]. More recently, the
focus has been shifted, in part, to the response of these materials to external drive,
in particular shear stress. This marks the advent of the rheology of disordered
solids, the oxymoronically named study of the flow of disordered solids.

In this field, too, different approaches are in competition, ranging from elasto-
plastic models at low temperatures to the rheological extension of the mode cou-
pling theory, dubbed ITT-MCT, closer to Tg. In spite of intense research efforts,
between these lines of thought, a chasm subsists, which mirrors the distinction
associated with scale change pointed out by Anderson [1972]:

The chemists will tell you that ammonia "is" a triangular pyramid with
the nitrogen negatively charged and the hydrogens positively charged, so that
it has an electric dipole moment (µ), negative toward the apex of the pyramid.
Now this seemed very strange to me, because I was just being taught that
nothing has an electric dipole moment. The professor was really proving that
no nucleus has a dipole moment, because he was teaching nuclear physics,
but as his arguments were based on the symmetry of space and time they
should have been correct in general.

P.W. Anderson, “More is different”, Science, 177, 4047, 393-396 (1972)

In the same way as it is of considerable importance to the chemist to know that
the ammonia molecule possesses an electric dipole moment at any given time,
although over long times quantum tunneling restores isotropy, the physicist will
take an interest in the ferromagnetic behaviour of a (finite) block of iron even
though, in the long run, thermal fluctuations destroy the spontaneously created
asymmetry. The lower the magnitude of thermal fluctations, the more relevant
the asymmetric description.

These contentions are echoed in the dilemma between the mean-field-like
MCT and elastoplastic models. The ensemble averages performed in the former,
along with its approximations, may wash out heterogeneities and mask their
importance, say, at low temperature. Just imagine that the most probable config-
urations in the ensemble all exhibited shear localisation, i.e., a strongly sheared
region embedded in a solid medium. 5 After averaging over all configurations,
this heterogeneity would be washed out and global translational invariance, re-
stored.

It is therefore of major interest to dig below the homogeneous situation in
ITT-MCT and study whether heterogeneities can be brought to light and han-

5. Technically, however, this situation appears unlikely in the present ITT-MCT formalism, no-
tably because of the use of a mean-field solvent drag.
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dled within this framework. The following chapters are a very first step in this
direction.

In Chapter 2, after a concise presentation of the principle of ITT-MCT, the
presence in the equations of terms associated with heterogeneities, such as ad-
vection and relaxation, is established by exploring, in particular, the evolution
of arbitrary colloidal density fluctuations in an incompressible solvent flow. In
Chapter 3, we investigate to what extent the constitutive equations derived for
a homogeneous flow are altered by the addition of small heterogeneities in the
prescribed solvent flow. The last chapter of this part, Chapter 4, presents a study
of the occurrence of elastic instabilities in model colloidal suspensions with the
help of a schematic equation derived from ITT-MCT, duly complemented with
the advection term identified in Chapter 2.
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2
F R O M M I C R O S C O P I C E Q U AT I O N S T O A C O N S T I T U T I V E
E Q U AT I O N

2.1 microscopic equations

2.1.1 The Langevin equation

One of the major assets of the mode-coupling approach to rheology is that it is
rooted in the microscopic equations governing the motion of individual particles.

Of course, given the immense diversity of glass-forming materials (and kins),
the specific equations should vary considerably, depending on whether the parti-
cles are metal atoms, colloids, liquid droplets in an emulsion, or bubbles. There-
fore, to be specific, Fuchs and Cates, the developers of ITT-MCT, explicitly wrote
that they focus mainly on dense colloidal suspensions [Fuchs and Cates, 2002].

The adequate starting point is then the microscopic Langevin equation [Langevin,
1908]. Consider an assembly of N colloids, with labels i ∈ {1, . . . , N}, positions
ri, and equal masses m. The Langevin equation for colloid i reads

mr̈i(t) = Fi (Γt)−mζ ṙi(t) + f th
i (t). (2.1)

Here, ζ is a friction coefficient and the f th
i ’s are random forces due to colli-

sions with small solvent molecules. They can be thought of as thermal fluctu-
ations and are usually assumed Gaussian, i.e., characterised by

〈
f th
i (t)

〉
= 0

and
〈

f th
i (t)⊗ f th

j (t′)
〉

= 2mζkBTδijδ(t − t′)I, where kB is the Boltzmann con-
stant and I is the identity matrix in d dimensions, the latter equality resulting
from the equipartition theorem. The drag forces −mζvi(t) and the thermal fluc-
tuations f th

i (t) build up the dissipative contribution to Eq. 2.1. The conserva-
tive forces Fi (Γt) originate in interactions between particles and derive from the

global potential energy V (Γt) of the system, viz., Fi (Γt) = − ∂V(Γ)
∂ri

∣∣∣
Γ=Γt

, where

Γt ≡ (r1(t), . . . , rN(t)) denotes the configuration of the system (in terms of posi-
tions) at time t. The inertial term mv̇i(t) on the left hand side (lhs) of Eq. 2.1 is
generally negligible in dense colloidal suspensions, and accordingly neglected.
This leads to the overdamped Langevin equation,

ṙi(t) = Fi (Γt) + f th
i (t), (2.2)

where we have set m = 1 and ζ = 1, for the rest of the discussion.
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2.1.2 Some remarks on the neglect of hydrodynamic interactions

Some remarks pertaining to the assumptions made in Eqs. 2.1 and 2.2 are now
in order. First, we note the absence of gravity forces: sedimentation is thereby
excluded from this approach. This is no serious issue for the investigation of col-
loidal dispersions; colloids can anyway be made buoyant by density-matching
the solvent. A more serious concern resides in the neglect of the hydrodynamic
interactions between particles. In practice, this omission is required to preserve
any hope to get a tractable theory, but it is also hoped that they play a “sub-
ordinate role” in slowly sheared, dense colloidal suspensions [Fuchs and Cates,
2002]. Indeed, the consensus view is that, qualitatively, excluded volume effects
and direct (non-solvent-mediated) interparticle interactions suffice to explain
the divergence of the viscosity (η) at the jamming transition in these systems,
η ∼ (φc − φ)−α, where φc is the volume fraction at the jamming point. Even
quantitatively, there may be no need to account for hydrodynamic interactions
in order to recover the correct exponents associated with this divergence [An-
dreotti et al., 2012]. Thence, it may be reasonable to expect that hydrodynamic
interactions remain subdominant when the system is slowly sheared. We must
however admit that the issue is still debated and gets particularly prickly if
the system is more vigorously sheared. For instance, the shear-thickening phe-
nomenon, characterised by a dramatic hike of the viscosity as the shear rate γ̇ is
increased, has recently been associated either to the formation of hydrodynamic
clusters and the ensuing large lubrication in interparticle layers [Cheng et al.,
2011], or to the upsurge of frictional contacts between particles [Seto et al., 2013,
Wyart and Cates, 2014].

Nevertheless, the observation of similar features in systems either with or with-
out solvent and the ability of the present approach to capture them support the
assumptions made in Eqs. 2.1 and 2.2. Indeed, besides the natural tests of the
ITT-MCT predictions on colloidal suspensions [Siebenbürger et al., 2012], the
theory has been shown to reproduce interesting facets of the rheology of su-
percooled melts (the Bauschinger effect) [Frahsa et al., 2013], molecular glasses
below Tg (residual stresses after shear cessation) [Ballauff et al., 2013], and bulk
metallic glasses (stress overshoot) [Amann et al., 2013]. These successes bolster
the idea that colloids can be viewed as model systems for these diverse materi-
als. To draw a historical parallel, we may recollect that, in the late 40s of the past
century, Bragg and Nye [1947] had initiated the study of crystalline bubble rafts
in order to better understand dislocations and other defects in metallic crystals,
the former being considered as upscaled models for the latter.

The basic ingredients of the theory have now been introduced, in the form of
the overdamped Langevin equation, Eq. 2.2. Lying ahead of us at present is the
formidable challenge of deriving rigorous macroscopic equations on this micro-
scopic basis.
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2.2 the mode-coupling view of the glass transi-
tion

A comprehensive survey of the mode-coupling theory of the glass transition is obvi-
ously out of the scope of this thesis. We just aim to give a bird’s eye view of the key steps
involved in the reasoning.

2.2.1 The Smoluchowski operator

The random forces f th
i (t) appearing in the overdamped Langevin equation

(Eq. 2.2) are inconvenient to handle. But their statistical properties, e.g.,
〈

f th
i (t)

〉
=

0 and
〈

f th
i (t)⊗ f th

j (t′)
〉
= 2mζkBTδijδ(t− t′)I, are advantageously used to de-

rive deterministic equations operating on the probability density ψ (Γ, t), where
ψ(Γ, t)dΓ is the probability to find the system dΓ-close to configuration Γ at time
t. The derivation involves for instance a Kramers-Moyal expansion and is well
known [Risken, 1989]. It yields the continuity equation,

∂tψ (Γ, t) = −
N

∑
i=1

∂i · ji, (2.3)

where ji ≡

 Fi (Γ)︸ ︷︷ ︸
drift force

− D0∂i︸︷︷︸
"osmotic pressure"

ψ (Γ, t) ,

where ∂i ≡ ∂
∂ri

and D0 = kBT/mζ will be set to unity. Equation 2.3 can be refor-
mulated as a Fokker-Planck equation, or, equivalently, a Smoluchowski equation,
viz.,

∂tψ (Γ, t) = Ωeq (Γ)ψ (Γ, t) , (2.4)

where we have introduced the equilibrium Smoluchowski operator

Ωeq (Γ) ≡
N

∑
i=1

∂i · [∂i − Fi (Γ)] ,

with operators acting on everything to their right, including ψ. The differential
equation, Eq. 2.4, is formally solved by

ψ (Γ, t) = eΩeq(Γ)tψ(Γ, t = 0).

Its stationary solution is the equilibrium probability density function ψeq, which
obeys Ωeq(Γ)ψeq(Γ) = 0 for all Γ.

Now, consider an observable g, i.e., a generalised function defined over config-
uration space {Γ}. Its average value 〈g〉(t) at time t is, by definition,

〈g〉(t) =
∫

g(Γ)ψ (Γ, t) dΓ. (2.5)

19



2.2.2 A dual approach

So far, the probability distributions evolve in time, while the observables are
fixed. In a dual approach, one can choose to evolve the observables while keeping
ψ(Γ) fixed, ψ(Γ) = ψeq(Γ). This is done by means of a partial integration of
Eq. 2.5, viz.,

〈g〉(t) =
∫

g(Γ)ψ (Γ, t) dΓ

=
∫

g(Γ)
[
eΩeq(Γ)tψ(Γ, t = 0)

]
dΓ

=
∫ [(

eΩeq(Γ)t
)†

g(Γ)
]

ψ(Γ, t = 0)dΓ

=
∫ [

eΩ†
eq(Γ)tg(Γ)

]
ψ(Γ, t = 0)dΓ, (2.6)

where we have introduced the adjoint Smoluchowski operator

Ω†
eq (Γ) =

N

∑
i=1

(∂i + Fi (Γ)) · ∂i.

It follows that, in the dual approach, ψ = cst and g(t) = eΩ†
eq(Γ)tg(0). This change

is analogous to the switch from the Schrödinger formalism to the Heisenberg
formalism in Quantum Mechanics [Brader et al., 2012], or from the Eulerian
approach to the Lagrangian approach in, e.g., Fluid Mechanics.

The distinction in mathematical nature between the mathematical distribution
(“generalised function”) g and its test function ψ is obscured by their apparent
symmetry in Eq. 2.6. Albeit technical, this remark shall have its importance for
the validation of the formal manipulations carried out below. In Appendix 2.8.1,
we show that some concerns with regard to these manipulations are alleviated
by considering g as a distribution acting on regular enough probability density
functions ψ(Γ). Furthermore, if g itself has a dependence on space, i.e., g = g(r),
it should also act on regular enough test functions φ : U −→ R (with, e.g., U = R3),
more precisely, functions that are the sum of their (multi-dimensional) Taylor
series.

2.2.3 Projections onto slow variables

Without further manipulation, the reformulation into a Smoluchowski equa-
tion sheds no light on the slow dynamics arising at the liquid-glass transition.
The basic idea of MCT, fleshed out in the works of Sjögren [1980], Bengtzelius
et al. [1984], is “that a fluctuation (or ’excitation’) of a given dynamical vari-
able decays predominantly into pairs of hydrodynamic modes associated with
conserved single-particle or collective dynamical variables”, as Hansen and Mc-
Donald [1990] phrased it . Because quickly relaxing properties obviously cannot
capture slow relaxations by themselves, intrinsically slow variables are used as a
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starting point, the usual suspects being conserved quantities, ergo, here, density
modes.

Accordingly, the so called Zwanzig Mori projection formalism involves projec-
tions onto Fourier modes ρq of the density ρ(r) ≡ ∑i δ(r − ri). The projector is
defined by

P ≡∑
q

ρq〉
1

NSq
〈ρ?q, (2.7)

where Sq ≡ 〈ρ?qρq〉/N is the (equilibrium) static structure factor and angular
brackets denote a ψeq-weighted average over configurations Γ. Thus, for a func-
tion g, using the full explicit notations,

Pg = ∑
q

∫
ρ?q(Γ)g(Γ)ψeq(Γ)dΓ

NSq
ρq.

Let us specialise to g = ρq and project its time derivative, viz.,

ρ̇q(t) = eΩ†
eq(Γ)tΩ†

eqρq(0)

= eΩ†
eq(Γ)tPΩ†

eqρq(0) + eΩ†
eq(Γ)t (I−P)Ω†

eqρq(0). (2.8)

At time t = 0, part of ρq evolves along P , yielding the first term on the right-hand
side (rhs) of Eq. 2.8, and the remaining part grows orthogonally to it, i.e., along
I− P (second term). The first part is evolved with the full propagator eΩ†

eq(Γ)t.
Regarding the second term, as sketched in Fig. 3.1, it has one part, f (t), that
keeps growing orthogonally to P throughout its evolution, while the remainder
grows along P at some point and therefore couples back to the evolution of ρq(t)
via the so called memory function M(τ) ≡ P ḟ (τ). Collecting these three parts,
while leaving aside any attempt for a rigorous derivation (which can be found
for instance in Ref. [Binder and Kob, 2011]), and projecting Eq. 2.8 onto 〈ρ?q leads
to

〈ρ?qρ̇q(t)〉 = 〈ρ?qρq(t)〉〈ρ?qρ̇q(0)〉︸ ︷︷ ︸
≡Γq

+
∫ t

0
Mq(τ)〈ρ?qρq(t− τ)〉dτ + 〈ρ?q f (t)〉︸ ︷︷ ︸

0

. (2.9)

Let us introduce the transient density correlator

Φq(t) ≡
〈ρ?qρq(t)〉

NSq

and divide Eq. 2.9 by NSq to obtain

Φ̇q(t) = ΓqΦq(t) +
∫ t

0
Mq(τ)Φq(t− τ)dτ.

21



Figure 2.1: Diagrammatic sketch of the Zwanzig-Mori projection formalism (see text).

2.2.4 The memory kernel

The memory function Mq(τ) still needs to be expressed. To this purpose, we
have to go through the derivation steps from Eq. 2.8 to Eq. 2.9 again, but using
the orthogonal part f instead of ρq, i.e., Mq instead of Φq, and the projector onto
density pairs ρqρk instead of P (because f is orthogonal to P by definition!).
Finally, the diffusion kernel Mq(τ) is transformed into a frictional kernel mq(τ)

and, at the expense of some uncontrolled approximations, one arrives at the
main MCT equations,

Φ̇q(t) = ΓqΦq(t) +
∫ t

0
mq(τ)Φ̇q(t − τ)dτ. (2.10)

mq(τ) = ∑
k

Vq,kΦq(τ)Φq−k(τ), (2.11)

where the vertices Vq,k can be expressed as functions of the equilibrium structure
factor Sq (see Ref. [Binder and Kob, 2011], for instance). Note that, if inertia were
present, Eq. 2.10 would be complemented with a term in Φ̈q, but this is mainly
a cosmetic change.

2.2.5 Feedback mechanism and ideal glass transition

If the convolution
∫ t

0 mq(τ)Φ̇q(t− τ)dτ were removed from Eq. 2.10, one would
only get the fast initial relaxation at rate Γq that is expected in a liquid at high
temperature. But, not too far from the glass transition temperature, density fluc-
tuations induce perturbations in the orthogonal space that later couple back to
the density fluctuations in a feedback mechanism. The memory function mq in-
volved in this feedback loop, instead of being a function obtained independently
with a known decay in time, is here a function of the transient density correla-
tors Φk. This fact can lead to the survival of correlations over very long times,
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so much so that, below a critical temperature Tc, a bifurcation occurs: a solution
exists, in which density fluctuations can never fully relax, viz.,

Φq(t)
t→∞−→ fq 6= 0.

Because the relaxation time τrel tends to infinity at Tc, the viscosity η ∼ τ−1
rel also

diverges: this is the ideal glass transition predicted by MCT.

In the very well written Ref. [Götze and Voigtmann, 2001], Götze and Voigt-
mann propose a more visual interpretation of Eqs. 2.10. Any density ’excitation’
δρq distorts the (interconnected) cages around particles, in real space; this dis-
tortion is scattered throughout the medium. In reciprocal space, the fluctuation
waves thereby emitted will live in a space essentially orthogonal to the initial
density ’excitation’. However, they may be backscattered at some time and come
to interact with the initial ’excitation’; this coupling is described by the memory
kernel mq. Finally, because the particles building the cage are subject to the same
cageing effects as the ’excited’ ones, the memory kernel should be a function of
the density correlator Φq(t).

2.3 inclusion of shear

The way shear was included in Section 1.5.1, by moving a slab of particles
identified as “wall particles”, is quite inconvenient for an analytical theory, in-
sofar as it violates translational invariance and assigns a specific role to some
particles. As a more tractable alternative, shear is implemented by prescribing
the solvent velocity field, vsolv (r, t), in the Langevin equation a priori, regardless
of the motion of the colloids:

[
ṙi(t)− vsolv (ri (t) , t)

]
= Fi (Γt) + f th

i (t), (2.12)

where the lhs is the solvent drag force. Colloids then perform a random walk in
the moving solvent frame. The associated Smoluchowski equation reads

∂tψ(Γ, t) = Ω(Γ, t)ψ(Γ, t), (2.13)

where Ω(Γ, t) ≡
N

∑
i=1

∂i ·
[
∂i − Fi (Γ)− vsolv (ri, t)

]
,

or, in the dual approach,

∂tg(Γ, t) = Ω†(Γ, t)g(Γ, t),

where Ω†(Γ, t) ≡
N

∑
i=1

[
∂i + Fi (Γ) + vsolv (ri, t)

]
· ∂i. (2.14)
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2.4 some remarks regarding the flow

In this section, I would like to put a personal emphasis on some features that
are already apparent in Eq. 2.12 or its probabilistic version, Eq. 2.13.

2.4.1 Rigidity length

First, let us compare the relative motion of two particles, i and j, viz.,

ζ
[
ṙi(t)− ṙj(t)

]
= ζ

[
vsolv (ri (t))− vsolv (rj (t)

)]
+
[
Fi (Γt)− Fj (Γt)

]
+ f th

i (t)− f th
j (t),

ζ
∥∥ṙi(t)− ṙj(t)

∥∥ . ζ ‖κ (ri (t))‖
∥∥ri (t)− rj (t)

∥∥+ ‖Fi (Γt)‖+ a few
√

kBT (2.15)

Here I have temporarily restored the friction parameter ζ, κ ≡ ∇vsolv is the veloc-
ity gradient, and I have assumed that the forces exerted on particles decorrelate
fast in space on the length scales that will be considered, so that

∥∥Fi − Fj
∥∥ ∼ ‖Fi‖.

Thanks to Eq. 2.15, a rigidity length scale ξ ≡ ‖Fi‖ /ζ ‖κ‖ comes to light, at low
enough temperature:

- on distances
∥∥ri − rj

∥∥ larger than ξ, the rhs of Eq. 2.15 is dominated by the
first term, that is to say, the shear forces applied by the solvent control the relative
motion of the particles. Considered on these large length scales, the material is
thus fluid,

- on the contrary, the relative motion of particles within a region of size smaller
than ξ is dominated by interparticle forces: the region behaves like a solid.

We should however insist that the force scale ‖Fi‖ entering the definition of
ξ need be assessed in the flowing system, and not in the quiescent one, which
somewhat hampers the practical use one can draw from this analysis.

2.4.2 Condition for flow homogeneity

In Eq. 2.13, the solvent velocity vsolv(r) formally plays exactly the same role
as an external force. Intuitively, one may expect the creation of spatial hetero-
geneities (e.g., in the density or the stress) in a non-uniform force field. On the
other hand, still according to the intuition, the distribution function should re-
main homogeneous in a non-uniform velocity field, provided that the velocity
gradient is uniform. Hence the question: Under what conditions can the steady-
state colloidal flow remain homogeneous when the velocity (or force) field is not
uniform? The answer, given in the following theorem, is that detailed balance
must be violated, which is indeed the case in a shear flow.

Theorem - Only if specific detailed balance is broken in the
steady state can the stationary probability function ψstat be more
symmetric than the prescribed velocity (or force) field vsolv (r)
(with respect to isometric transformations).
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Proof
Detailed balance means that

∀i, ji ≡ ∂iψstat(Γ) + ψstat(Γ)∂iV(Γ)− vsolv(ri)ψ(Γ) = 0.

Let A be an isometric transformation; the associated change of coordinates: r → r′ =
A (r).

Let us express the density current ji in the transformed frame:

0 = j′i = ∂i′ψstat
(
Γ′
)
+ ψstat

(
Γ′
)

∂i′V
(
Γ′
)
− vsolv(ri

′)ψstat
(
Γ′
)

. (2.16)

Suppose now that ψstat is invariant under this transformation, i.e., ψstat (Γ′) = ψstat (Γ) ∀Γ.
It follows that ∂i′ψstat (Γ′) = ∂r

∂r′ (ri) · ∂iψstat (Γ).
Moreover, since A is an isometric transformation, and the potential depends only on

the relative distances between particles,

∂i′V
(
Γ′
)

=
∂r
∂r′

(ri) · ∂iV (Γ) .

Equation 2.16 turns into

0 =
∂r
∂r′

(ri) ·
[
∂iψstat(Γ) + ψstat (Γ) ∂iV (Γ)− vsolv(ri

′)ψstat (Γ)
]

0 = ji +
[
vsolv(ri

′)− vsolv(ri)
]

ψ (Γ) ,

because ∂r/∂r′ is invertible. Therefore, vsolv(ri
′) = vsolv(ri), i.e., vsolv is invariant under

A. QED.

2.5 a generalised green-kubo formula

About one decade ago, Fuchs and Cates [2002, 2003, 2009], then joined by
Brader et al. [2009, 2012], and independently Miyazaki et al. [2004], were able
to extend the mode-coupling theory of the glass transition to flow situations,
through the so called Integrated-Through-Transient Mode-Coupling Theory (ITT-
MCT). Expressions were obtained for a time-dependent, tensorial, but necessarily
homogeneous, velocity gradient tensor κ in two dimensions (2D) [Brader et al.,
2012], i.e., vsolv (r, t) = κ(t) · r. An extension to three dimensions has very re-
cently been proposed by Amann and Fuchs [2014].

The starting point is the non-stationary Smoluchowski equation, Eq. 2.14, along
with its formal solutions,

ψ(Γ, t) = e
∫ t

0 Ω(Γ,s)ds
+ ψ(Γ, 0) in the Schrödinger viewpoint,

g(Γ, t) = e
∫ t

0 Ω†(Γ,s)ds
− g(Γ, 0) in the Heisenberg viewpoint.
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2.5.1 Time-ordered exponentials

Because the operators Ω(Γ, s) at distinct times s need not commute, some care
has to be taken during the integration, hence the use of time-ordered exponen-
tials [Brader et al., 2012], viz.,

e
∫ t2

t1
A(s)ds

+ ≡ 1 +
∫ t2

t1

ds1 A(s1) +
∫ t2

t1

ds1

∫ s1

t1

ds1 A(s1)A(s2) + . . . ,

hence,
∂

∂t2

[
e
∫ t2

t1
A(s)ds

+

]
= A(t2)

[
e
∫ t2

t1
A(s)ds

+

]
,

or negatively ordered exponentials, viz.,

e
∫ t2

t1
A(s)ds

− ≡ 1 +
∫ t2

t1

ds1 A(s1) +
∫ t2

t1

ds1

∫ s1

t1

ds1 A(s2)A(s1) + . . . ,

hence,
∂

∂t2

[
e
∫ t2

t1
A(s)ds

−

]
=

[
e
∫ t2

t1
A(s)ds

−

]
A(t2).

2.5.2 Generalised Green-Kubo formula

If the system is initially at equilibrium, it is helpful to separate the flow-
induced perturbations from the equilibrium parts, viz., in the Schrödinger ap-
proach,

ψ(Γ, t) = ψeq(Γ) + δψ(Γ, t).

The incompressibility condition, ∂ivsolv (ri, t) = 0, and detailed balance at equi-
librium, i.e, ji = 0, ergo ∂iψeq (Γ) = ψeq (Γ) Fi(Γ), allow us to compute the flow-
induced deviations from ψeq at time t,

Ω (t)ψeq (Γ) = Ωeq(Γ)ψeq (Γ)−
N

∑
i=1

∂i ·
[
vsolv (ri, t)ψeq (Γ)

]
= −

N

∑
i=1

vsolv (ri, t) · ∂iψeq (Γ)

= −
N

∑
i=1

Fi(Γ) · vsolv (ri, t)︸ ︷︷ ︸
κ(t):σ(Γ)

ψeq (Γ) .

From ∂tψ(Γ, t) = Ω(Γ, t)
[
ψeq(Γ) + δψ(Γ, t)

]
, it follows that

ψ(Γ, t) = ψeq(Γ) +
∫

dΓ
∫ t

0
dτe

∫ t
τ Ω(Γ,s)ds
+ κ(τ) : σ(Γ)ψeq(Γ).
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Applying this to an arbitrary observable g, e.g., g = σ, and partially integrating
the time ordered exponential yields the generalised Green-Kubo relation à la
Heisenberg, that is to say, with ψeq-weighted ensemble average,

〈g(t)〉 = 〈g〉+
∫ t

0
dτκ(τ) :

〈
σe
∫ t

τ Ω†(s)ds
− g

〉
. (2.17)

2.5.3 Translational invariance of the system and advected wave vectors

The derivation then heavily relies on the demonstration of translation invari-
ance in the system for a uniform velocity gradient κ, which we bypass here. Note
that such invariance does not conflict with the theorem presented in Section 2.4,
because detailed balance is violated in shear flow. It directly follows from trans-
lational invariance that, for a space-dependent observable g,〈

gq(t)
〉
= δq,0 〈g(t)〉 ;

in simpler words, ensemble averages cannot be biased towards any particular
wave vector. The same holds for two-time correlations between observables f
and g, 〈

f ?q (t1)gk(t2)
〉
=

〈
f ?q (t1)e

∫ t2
t1

Ω†(s)ds
− gk(t1)

〉
.

(Note that f−q = f ?q because f is real-valued.) Once again, homogeneity (here,

at time t1) requires that the modes fq(t1) and e
∫ t2

t1
Ω†(s)ds

− gk(t1) be uncorrelated if
they are associated with distinct wave vectors. Therefore, correlations can only

exist if the propagator e
∫ t2

t1
Ω†(s)ds

− advects wavevector q (at time t1) onto k (at time
t2). This advection criterion reads [Brader et al., 2012]

q = k · E(t2, t1), (2.18)

where E(t2, t1) ≡ e
∫ t2

t1
κ(s)ds

+ = ∂r(t2)/∂r(t1) is the deformation gradient tensor.

In particular, the only non-zero transient density correlator is

Φq(t2, t1) =

〈
ρ?q·E(t2,t1)

e
∫ t2

t1
Ω†(s)ds

− ρq

〉
NSq

.

Because E(t2, t1) 6= I under shear, flow couples distinct Fourier modes. More
precisely, shear flow advects slowly relaxing modes (including the mode asso-
ciated with the wavenumber q where the structure factor peaks) into higher
wavenumbers ‖q · E(t1, t2)‖, thereby opening faster channels for thermally-induced
structural relaxation [Fuchs and Cates, 2002]:
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2.5.4 Final constitutive equations

With this in hand, the generalised Green-Kubo relation (Eq. 2.17) is applied
to the stress observable. Because the latter does not couple to linear density
modes (once again, because of homogeneity), a projector onto density pairs, P2,
is introduced, and, after a significant number of further projection steps and
approximations, one arrives at the final ITT-MCT equations for the macroscopic
stress σ [Brader et al., 2009]:

σ(t) = −
∫ t

0
dt′
∫ dk

32π3

[
∂

∂t′
(
k · B(t, t′) · k

)] kk
‖k‖ ‖k · E(t, t′)‖

S′kS′k·E(t,t′)
S2

k
Φ2

k·E(t,t′)(t, t′)

0 = Φ̇q(t2, t1) + Γq(t2, t1)

[
Φq(t2, t1) +

∫ t2

t1

dτmq(t2, τ, t1)Φ̇q(τ, t1)

]
(2.19)

where Γq(t2, t1) =
D0 ‖q · E(t1, t2)‖2

Sq·E(t1,t2)

mq(t2, τ, t1) =
ρ

16π3

∫
dk

Sq·E(t1,t2)Sk·E(t1,τ)Sp·E(t1,τ)

‖q · E(t1, τ)‖2 ‖q · E(t1, t2)‖2

×Vqkp(τ, t1)Vqkp(t2, t1)Φk·E(t1,τ)(t2, τ)Φp·E(t1,τ)(t2, τ)

with Vqkp(t2, t1) = q · E(t1, t2) ·
(

k · E(t1, t2)ck·E(t1,t2) + p · E(t1, t2)cp·E(t1,t2)

)
,

where p ≡ q− k, ρ is the number density, and ck ≡ 1− 1/Sk.

2.5.5 Schematic models

A schematic theory is obtained by dropping all wave vector information in
these equations while preserving material objectivity [Brader et al., 2009]. It is
very interesting to observe that, if the density correlator is crudely assumed to
decay exponentially, viz., Φ(t2, t1) = exp [−Γ(t2 − t1)], then the schematic ver-
sion of Eq. 2.19 turns into the well-known Upper Convected Maxwell equation,

1
2Γ

O
σ + σ = I

where O
σ ≡ σ̇(t)− κ(t) · σ(t)− σ(t) · κ>(t). (2.20)
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2.6 inhomogeneous case : recovery of the advec-
tion term

In the Maxwell equation (Eq. 2.20) that has just been derived, one may notice
that the usual stress advection term v · ∇σ is missing in the upper convected
derivative! This is annoying, because the presence of stress advection is very
well grounded physically: the local stress is encoded in the local arrangement
of particles, and the latter are advected by the flow. However, the lack of this
term is not much of a surprise here, because the calculations are premised on a
homogeneous flow, so ∇σ = 0.

Nevertheless, we would like to know how an advection term can be recovered
in the equations, in particular, in the generalised Green-Kubo relation (Eq. 2.17).
More generally, our goal is to investigate to what extent heterogeneities can be
accommodated within ITT-MCT, with the prospect to turn the global constitutive
equation it yields into local equations.

2.6.1 Entanglement of density advection and creation processes

First, we should understand that the advection term might be entangled with
other terms arising in the presence of heterogeneities. As an example to illustrate
this point, consider the density observable ρ. We aim to obtain the (ensemble-
average of the) mass conservation equation,

∂t 〈ρ(r, t)〉+∇ · [〈j(r, t)〉] = 0,

∂t 〈ρ(r, t)〉+ V(r, t) · ∇ 〈ρ(r, t)〉 = − 〈ρ(r, t)〉∇ · V(r, t). (2.21)

Here, while j(r, t) = ∑i ṙiδ(r − ri) is the configuration-dependent momentum
flux of the colloids, V(r, t) ≡ 〈j(r, t)〉 / 〈ρ(r, t)〉 is a density-weighted, “mesoscop-
ic” velocity. The term on the rhs of Eq. 2.21 is a source term creating density
inhomogeneities. In Fourier space, Eq. 2.21 reads

∂t
〈
ρq(t)

〉
+ ∑

k
V q−k(t) · k 〈ρk(t)〉 = −∑

k
〈ρk(t)〉 (q− k) · V q−k(t). (2.22)

Suppose that the initial configuration is homogeneous, i.e., 〈ρk(t = 0)〉 = 〈ρ0(0)〉 δk,0,
and that the velocity field does not change too fast. Then the q 6= 0-density mode
will initially grow as

〈
ρq(t)

〉
∼ 〈ρ0(0)〉 q · V qt, thanks to the source term. Inser-

tion into Eq. 2.22 proves that the advection term will be dominated by the source
term as long as ∥∥V0 · q

(
〈ρ0(0)〉 q · V qt

)∥∥ . ∥∥〈ρ0(0)〉 q · V q
∥∥ ,

that is, for a duration t ∼ (‖V0‖ ‖q‖)−1 (which diverges in the hydrodynamic
limit q→ 0).
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2.6.2 Arbitrary initial configuration

Therefore, in order to concentrate on the recovery of the advection term only,
without the complications associated with the creation of inhomogeneities, we
consider an initially inhomogeneous situation at t = 0, with an initial probability
density ψ0 (Γ) that differs from ψeq (Γ) . At times t > 0, an arbitrary incompress-
ible flow vsolv (r, t) is applied and the adjoint Smoluchowski operator keeps its
previous expression (Eq. 2.14):

Ω†(Γ, t > 0) =
N

∑
i=1

[
∂i + Fi (Γ) + vsolv (ri, t)

]
· ∂i.

The equivalent of the Green-Kubo relation (Eq. 2.17), giving the average value of
g at time t and (fixed) position rM, is readily derived:

〈g(rM)〉(t) = 〈g(rM)〉0 +
∫

dΓ
∫ t

0
dt1Ω(Γ, t1)ψ0(Γ)e

∫ t
t1

Ω†(Γ,s)ds
− g(Γ, rM)

= 〈g(rM)〉0 +
∫ t

0
dt1

〈
Ω†(t1)e

∫ t
t1

Ω†(s)ds
− g(rM)

〉
0

, (2.23)

where 〈·〉0 denotes a ψ0-weighted average and Ω(Γ, t1)ψ0(Γ) is the deviation
from ψ0(Γ) created at time t1 (per unit time).

Let us now consider an auxiliary system, with subscripts M, identical to the
previous one except that the solvent velocity field at rM is always zero:

vsolv
M (r, t) = vsolv (r, t)− vsolv (rM, t)

Ω†
M(Γ, t > 0) =

N

∑
i=1

[
∂i + Fi (Γ) + vsolv

M (ri, t)
]
· ∂i

= Ω†(Γ, t > 0)− vsolv (rM, t) ·
N

∑
i=1

∂i︸ ︷︷ ︸
A†(t)

The contribution A†(t) to the operator associated with the advection of the
material point at rM corresponds to a global shift of particle positions along

vsolv (rM, t). Realising that A† commutes with Ω†
M, ergo, e

∫ t
t1

Ω†(Γ,s)ds
− = e

∫ t
t1

Ω†
M(Γ,s)ds

− e
∫ t

t1
A†(Γ,s)ds

− ,
and that A†(t)g(Γ, r) = −vsolv (rM, t) · ∂rg(Γ, r), one arrives at:

〈g(rM)〉(t) = e
−
∫ t

t1
ds vsolv(rM ,s)·∂r

− 〈g(Γ, r)〉M(t) .

Deriving this equation with respect to time leads to

∂t

[
〈g(rM)〉(t)

]
+ vsolv (rM, t) · ∂r

[
〈g(rM)〉(t)

]
= e

−
∫ t

t1
ds vsolv(rM ,s)·∂r

− ∂t

[
〈g(rM)〉M(t)

]
,

(2.24)
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where 〈·〉M(t) obviously denotes an average in the auxiliary system at time t. Details
of the derivation are provided in Appendix 2.8.2.

The second term on the lhs of Eq. 2.24 is the desired advection term, while the
rhs term is the intrinsic relaxation term that subsists when the material point at
rM is not displaced by the solvent flow. The exponential prefactor simply advects
this intrinsic relaxation term to the appropriate position in space.

2.6.3 Aspects of non-locality in the constitutive equation

As a short aside, let us note that the foregoing endeavour to recover non-local
terms in the constitutive equations actually echoes a much wider debate in Con-
tinuum Mechanics. Truesdell and Noll [1965], who pioneered the formalisation
of generalised Continuum Mechanics, made a distinction between simple mate-
rials, in which the response to a deformation is strictly local, that is to say, is
unaffected by deformation gradients, and higher-order materials, in which trans-
formation gradients up to a given order n > 2 matter. 1 Such a dependence on
deformation gradients naturally arises when the material features a microstruc-
ture which is advected during the transformation. To name but one (famous)
example, the local microstructure of Cosserat media is represented by a rigid
body rotation (e.g., of a ’reference’ microstructure) [Forest, 2006].

The ITT-MCT equations describe materials whose “microstructure” strongly
depends on the deformation history, via the memory kernel mq in Eq. 2.19. The
recovery of an advection term in the equations (see Eq. 2.24) shows that this
strong non-locality in time naturally entails an advection of the “microstructure”
with the flow, hence, a non-locality in space. However, it should be clear that
the spatial non-locality need not be restricted to this term: in the presence of
flow heterogeneities (see Chapter 3), other non-local terms may emerge, either
also resulting from the dependence on the local-deformation history, or directly
caused by spatial interactions between distinct regions of the sample.

2.7 inhomogeneity relaxation and creation

(The whole chapter results from collaborative work with Prof. Fuchs [Nicolas and
Fuchs, 2014].)

Equation 2.24 shows that the physically evident process of advection of hetero-
geneities is indeed accounted for in the Green-Kubo equations. However, the ex-
istence of heterogeneities requires a creation process and entails a specific struc-
tural relaxation associated with their presence. So far, both of these processes are,
rather unsatisfactorily, hidden in the term 〈g(rM)〉M(t). Can the projection formal-
ism help us unwrap this term? To address the question, we consider the simplest
observable, the density ρ.

1. Bear in mind that the deformation tensor is already the gradient of the transformation,
hence, n = 1 for simple materials.

31



2.7.1 Relaxation process

Taking the generalised Green-Kubo relation (Eq. 2.23) in Fourier space, i.e.,

〈
ρq
〉
(t) =

〈
ρq
〉

0 +
∫ t

0
dt1

〈
Ω†(t1)e

∫ t
t1

Ω†(s)ds
− ρq

〉
0

, (2.25)

and deriving it with respect to time yields

〈
∂tρq

〉
(t) =

〈
Ω†(t)ρq

〉
0
+
∫ t

0
dt1

〈
Ω†(t1)U† (t, t1)Ω†(t)ρq

〉
0

, (2.26)

where U† (t, t1) is a shorthand for e
∫ t

t′ Ω†(Γ,s)ds. Consistently with the mode-coupling
spirit, we use the projector P onto equilibrium linear density modes to separate
the evolution of the propagator U† into a part along P and an orthogonal part
along Q ≡ I−P , viz.,

∂tU† (t, t1) = U† (t, t1) (P +Q)Ω† (t) . (2.27)

Here, because of the possible confusion between ψ0 and ψeq, let us clarify the
definition of P , for an observable gq:

Pgq (Γ) = ∑
k

ρk (Γ)
Sk

[∫
ρ?k
(
Γ′
)

gq
(
Γ′
)

ψeq
(
Γ′
)

dΓ′
]

.

Coming back to Eq. 2.27 and formally considering U† (t, t1)PΩ† (t) as a per-
turbation to the “irreducible” propagator U†′ (t, t1), defined by ∂tU†′ (t, t1) =

U†′ (t, t1)QU†′ (t), one gets

U† (t, t1) = U†′ (t, t1) +
∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s) ,

and, upon derivation with respect to t,

U† (t, t1)Ω†(t) = U†′ (t, t1)QΩ† (t) + U† (t, t1)PΩ† (t)

+
∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)QΩ† (t).

Inserting this identity into Eq. 2.26 yields the following, rather cumbersome
equation,
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〈
∂tρq

〉
(t) =

〈
(P +Q)Ω†(t)ρq

〉
0

+
∫ t

0
dt1

〈
(P +Q)Ω†(t1)U†′ (t, t1)QΩ† (t)ρq

〉
0

+
∫ t

0
dt1

〈
Ω†(t1)U† (t, t1)PΩ† (t)ρq

〉
0

+
∫ t

0
dt1

〈
Ω†(t1)

∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)QΩ† (t)ρq

〉
0

=
〈
QΩ†(t)ρq

〉
0
+
∫ t

0
dt1

〈
QΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
0︸ ︷︷ ︸

(1)

(2.28)

+
〈
PΩ†(t)ρq

〉
0
+
∫ t

0
dt1

〈
Ω†(t1)U† (t, t1)PΩ† (t) ρq

〉
0︸ ︷︷ ︸

(2)

+
∫ t

0
dt1

〈[
PΩ†(t1)U†′ (t, t1)︸ ︷︷ ︸

(3)︷ ︸︸ ︷
+Ω†(t1)

∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)
]
QΩ† (t) ρq〉0 . (2.29)

The term denoted by (1) is fully irreducible, in the sense that it evolves only
orthogonally to the density modes considered in P .

In Appendix 2.8.3, we show that term (2) can be recast as:

(2) =
−q2

Sq

〈
ρq
〉
(t) −∑

k
vsolv

q−k (t) · ik 〈ρk〉(t) ,

while term (3) takes the following form,

(3) = −∑
k

∫ t

0
ds Mkq (t, s) 〈ρk〉(s) ,

where the memory kernel Mkq (t, s) ≡ −1
NSk

〈
ρ?kΩ† (s)U† ′ (t, s)QΩ† (t) ρq

〉
is an

ensemble average over the equilibrium distribution and therefore does not depend
on the initial heterogeneity in the system. Incidentally, note that Mk0 (t, s) = 0,
because the particle number is conserved.

Collecting these contributions into Eq. 2.28, one arrives at the main result of
this section:
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〈
∂tρq

〉
(t) + ∑

k
vsolv

q−k (t) · ik 〈ρk〉(t) = (1)− q2

Sq

〈
ρq
〉
(t)

−∑
k

∫ t

0
ds Mkq (t, s) 〈ρk〉(s) .

(2.30)

2.7.2 Physical interpretation

Equation 2.30 is exact and describes the evolution of density fluctuations〈
ρq
〉
(t) at time t in a sheared system, starting from an arbitrary (potentially het-

erogeneous) situation at t = 0. It features recognisable terms that all deserve a
comment.

First, the fully irreducible term (1) is the only term that can potentially create
density inhomogeneities starting from a homogeneous situation, presumably via
collective mechanisms. It is worth noting that this “source” term vanishes in the
situation considered by Brader et al. [2012], namely, the application of a uniform
velocity gradient to an initially homogeneous system. Unfortunately, owing to
its irreducible nature, this term has remained intractable to me. However, some
mechanisms giving rise to density fluctuations, that should therefore be captured
by (1), possibly amongst other processes, will be mentioned in Section 2.7.3.

Secondly, the term ∑k vsolv
q−k (t) · ik 〈ρk〉(t) on the lhs is the reciprocal space ver-

sion of the advection term vsolv (r, t) · ∇ 〈ρ (r)〉(t) identified in the previous sec-
tion, in real space.

Thirdly, q2

Sq

〈
ρq
〉
(t) represents a diffusive process for structural relaxation of

inhomogeneities. The structure factor Sq in the denominator is expected, because
the relaxation of a q-density fluctuation does not require single-particle diffusion
over distances ‖q‖−1. Instead, a collective homogenisation of the system via local
sprawl/squeeze is sufficient.

Finally, term (3) describes the memory effect through which inhomogeneities
〈ρk〉(s) existing at times s in the past couple to the present. Crucially, the memory
kernel Mkq (t, s) is evaluated in the equilibrium distribution, i.e., independently
of the initial heterogeneities, and its definition bears close resemblance to that
of the diffusion kernel for the transient density correlation used by Brader et al.
[2012] (Eq. 91 of this reference), when the velocity gradient is uniform. It is there-
fore tempting to replace it with the final expression derived by these authors in
that situation. In any case, we expect this term to be responsible for the long
structural relaxation of inhomogeneities in dense systems.

Incidentally, let us note that, although Eq. 2.30 describes density fluctuations, it
is not expected to account per se for flow-concentration coupling instabilities [Fu-
rukawa and Tanaka, 2006, Besseling et al., 2010], whereby a small density de-
crease increases the local shear, leading to a further decrease in density. Indeed,
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here, the velocity field is prescribed, instead of being self-consistently adjusted.
To go beyond this prescription, an equation should be added to describe the
feedback loop of density fluctuations on the solvent velocity field.

2.7.3 Creation of density inhomogeneities

In the previous section, we have highlighted the co-emergence of fluctuation
advection and relaxation processes in the equations. However, the term that may
potentially account for the creation of such fluctuations by the flow has remained
intractable.

The ensuing question is: How can density heterogeneities be created?
Conceptually, the simplest way to create heterogeneities is to apply a space-

dependent potential U(r) at times t < 0. Experimentally, the potential could for
instance be generated by optical tweezers or holographic optical set-ups [Hanes
et al., 2012]. This potential generates an additional force −∇U and therefore
induces deviations from the equilibrium distribution at negative times. In par-
ticular, one expects a higher concentration of particles near the minima of U. It
should be noted that the compressional or dilational part of a compressible solvent
flow, with ∇ · vsolv = Tr (κ) 6= 0, can be thought of as deriving from an external
potential U such that −∆U(r) = ∇ · vsolv(r) = Tr [κ(r)] .

With an incompressible solvent flow, density inhomogeneities are not so read-
ily created. If the flow is homogeneous, i.e., κ = cst, Brader et al. [2012] demon-
strated that within ITT-MCT the density remains uniform. In the next Chapter,
we show that, for an incompressible inhomogeneous flow that only slightly de-
viates from homogeneity, viz., κ(r) = κhom + δκ(r), the density also remains
constant to (the very) leading order, because on average particles simply follow
stream lines. Nevertheless, beyond the leading order, a collective phenomenon
known as shear-induced migration does exist, whereby particles tend to mi-
grate towards regions of lower shear, for instance, the centre of the channel in
a Poiseuille flow. Intuitively, in strongly sheared regions, particles often collide;
this enhances the local pressure and drives particles away from the high-shear-
rate regions [Nott and Brady, 1994]. However, keeping the example of a channel
flow, one may easily see that the migration would not be altered if the pressure
gradient were inverted (and, accordingly, δκ(r) → −δκ(r)). Consequently, the
migration current is not linear in δκ(r).
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A
2.8 appendices

2.8.1 Clarification of the mathematical basis of some formal manipulations
performed in ITT-MCT

In deriving the ITT-MCT equations, we encounter equations of the form

∂tg (r; t) = A†g (r; t) , (2.31)

where g is a given observable (for instance, the density), and A† = −V∂r. Here,
for convenience, the discussion is restricted to a one-dimensional system. For-
mally, Eq. 2.31 is solved by,

g (r; t) = e
∫

A†dsg (r; t = 0) (2.32)

= e−tV∂r g (r; t = 0) . (2.33)

One should be arrested by the fact that the evaluation of this expression (Eq. 2.32)
only involves local terms, namely, the values of g (r; t = 0) and its derivatives
at position r. This conspicuously leads to a problem if one takes, for instance
g (r; t = 0) = δ (r− r0). Indeed, the solution of Eq. 2.31 is then g (r; t) = δ(r −
r0 −Vt) and involves non-local terms at t = 0!

To circumvent the problem, g (·; t) should not be thought of as a normal func-
tion 2, but as a mathematical distribution (a “generalised function”) that is to be
evaluated against a test function φ (r) ∈ T , where T is the set of real analytic
functions;

g : T → R

φ 7→ 〈g|φ〉 =
∫

g(r)φ(r)dr

Then, using a test function φ, we get the desired result,

〈g (r, t) |φ〉 =
〈

e−tV∂r g (t = 0) |φ
〉

=
〈

δ (r− r0) |eVt∂r φ
〉

=
∞

∑
n=0

(Vt)n

n!
φ(n) (r0)

= φ (r0 + Vt) .

hence, g (r, t) = δ (r− r0 −Vt) .

To conclude, it should be noted that the observable g will in practice also
depend on the positions of the particles Γ ≡ {r1, . . . , rN}, so that one should

2. For the sake of simplicity, the functions are defined in periodic space R/Z.
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write g (r, Γ; t) A problem analogous to that studied above for r arises for Γ. The
solution is similar: instead of evaluating g for a specific configuration Γ, one
should test g against a probability density function ψ (Γ) which is the sum of
its (multidimensional) Taylor series. For instance, 〈g〉 is the value obtained by
testing g against ψeq.

2.8.2 Recovery of the advection term

Recall that we have introduced an auxiliary system (M) identical to the original
one, except that the solvent velocity field at rM is always zero:

vsolv
M (r, t) = vsolv (r, t)− vsolv (rM, t)

Ω†
M(Γ, t > 0) =

N

∑
i=1

[
∂i + Fi (Γ) + vsolv

M (ri, t)
]
· ∂i

= Ω†(Γ, t > 0)− vsolv (rM, t) ·
N

∑
i=1

∂i︸ ︷︷ ︸
A†(t)

The crucial point is to realise that A† commutes with Ω†
M. Indeed, because the

flow is incompressible, i.e., ∂ivsolv
M (ri, t) = 0, and forces are invariant under a

global shift of particles, i.e., ∑j ∂jFi = 0, one can easily calculate

Ω†
M(Γ, t)A†(t)g =

N

∑
i=1

[
∂i + Fi (Γ) + vsolv

M (ri, t)
]
· ∂i

[
vsolv (rM, t) ·

N

∑
j=1

∂j

]
g

= A†(t)Ω†
M(Γ, t)g.

In addition, commonly used observables, such as the stress and the density,
do not depend intrinsically on space, i.e., g(Γ, r) = g(r1, . . . , rN , r) = g̃(r1 −
r, . . . , rN − r). Consequently,

∑
i

∂ig(Γ, r) = ∑
i

∂i g̃(r1 − r, . . . , rN − r)

= −∂r g̃(r1 − r, . . . , rN − r)

= −∂rg(Γ, r),

and A†(t)g(Γ, r) = −vsolv (rM, t) · ∂rg(Γ, r).

It follows that

e
∫ t

t1
Ω†(Γ,s)ds

− g(Γ, r) = e
∫ t

t1
(Ω†

M+A†)(Γ,s)ds
− g(Γ, r)

= e
∫ t

t1
Ω†

M(Γ,s)ds
− e

∫ t
t1

A†(Γ,s)ds
− g(Γ, r)

= e
∫ t

t1
Ω†

M(Γ,s)ds
− e

−
∫ t

t1
ds vsolv(rM ,s)·∂r

− g(Γ, r).
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One can finally highlight the emergence of the advection term by inserting this
equality into a simpler form of Eq. 2.23, namely,

〈g(rM)〉(t) − 〈g(rM)〉0 =
∫ t

0
dt1

〈[(
Ω†

M + A†
)
(t1)

]
e
∫ t

t1
(Ω†

M+A†)(s)ds
− g(rM)

〉
0

= −
〈∫ t

0
dt1∂t1

[
e
∫ t

t1
(Ω†

M+A†)(s)ds
− g(rM)

]〉
0

=

〈(
e
∫ t

0 (Ω†
M+A†)(Γ,s)ds

− − 1
)

g(rM)

〉
0

hence, 〈g(rM)〉(t) =

〈
e
∫ t

0 (Ω†
M+A†)(Γ,s)ds

− g(rM)

〉
0

= e
−
∫ t

t1
ds vsolv(rM ,s)·∂r

−

〈
e
∫ t

t1
Ω†

M(Γ,s)ds
− g(Γ, r)

〉
0

= e
−
∫ t

t1
ds vsolv(rM ,s)·∂r

− 〈g(Γ, r)〉M(t) , (2.34)

where 〈·〉M(t) denotes an average in the fictional auxiliary system at time t. Deriv-
ing Eq. 2.34 with respect to time yields our final result,

∂t

[
〈g(rM)〉(t)

]
+ vsolv (rM, t) · ∂r

[
〈g(rM)〉(t)

]
= e

−
∫ t

t1
ds vsolv(rM ,s)·∂r

− ∂t

[
〈g(rM)〉M(t)

]
.

(2.35)

2.8.3 Expression of terms in the full equation

Let us recall Eq. 2.28:

〈
∂tρq

〉
(t) =

〈
QΩ†(t)ρq

〉
0
+
∫ t

0
dt1

〈
QΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
0︸ ︷︷ ︸

(1)

+
〈
PΩ†(t)ρq

〉
0
+
∫ t

0
dt1

〈
Ω†(t1)U† (t, t1)PΩ† (t) ρq

〉
0︸ ︷︷ ︸

(2)

+
∫ t

0
dt1

〈[
PΩ†(t1)U†′ (t, t1)︸ ︷︷ ︸

(3)

.

︷ ︸︸ ︷
+Ω†(t1)

∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)
]
QΩ† (t) ρq〉0 .

The reader will probably not be much surprised to learn that our goal is to
express terms (2) and (3), term (1) being the “irreducible” term.

Let us first consider term (2). Recalling the definition of our projector P ,
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Pgq (Γ) ≡ ∑
k

ρk (Γ)
NSk

[∫
ρ?k (Γ) gq (Γ)ψeq (Γ) dΓ

]
= ∑

k

ρk (Γ)
NSk

〈
ρ?kgq

〉
,

we get:

〈
PΩ†(t)ρq

〉
0

= ∑
k

∫
dΓρk(Γ)ψ0(Γ)dΓ

〈
ρ?kΩ†(t)ρq

〉
NSk

= 〈ρk〉0 Γkq (t) ,

where we have introduced the shorthand Γkq (t) for 〈ρ
?
kΩ†(t)ρq〉

NSk
.

The integral part of (2) is

∫ t

0
dt1

〈
Ω†(t1)U† (t, t1)PΩ† (t) ρq

〉
0

=
∫ t

0
dt1 ∑

k

〈
Ω†(t1)U† (t, t1) ρk (t, t1)

〉
0

〈
ρ?kΩ† (t) ρq

〉
NSk

= ∑
k

∫ t

0
dt1

〈
Ω†(t1)U† (t, t1) ρk (t, t1)

〉
0︸ ︷︷ ︸

〈ρk〉(t)−〈ρk〉0

Γkq (t) ,

where we have used the generalised Green-Kubo relation (Eq. 2.25) to replace
the brace.

Adding up these contributions, we obtain:

(2) = ∑
k

Γkq (t) 〈ρk〉(t) ,

and we are left with the evaluation of Γkq (t) =
〈
ρ?kΩ†(t)ρq

〉
/NSk. Noting that

〈
ρ?kΩ†(t)ρq

〉
=

〈
ρ?kΩ†

eqρq

〉
+

〈
ρ?k ∑

j
vsolv (rj, t

)
· ∂jρq

〉
,
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we simplify the first term by means of partial integration

〈
ρ?kΩ†

eqρq

〉
=

〈
ρ?k ∑

j

(
∂j + Fj

)
· ∂jρq

〉

=
∫

dΓψeq(Γ)ρ?k ∑
j

(
∂j + Fj

)
· ∂jρq

= −
∫

dΓ ∑
j

{
∂j
[
ψeq(Γ)ρ?k

]
− ρ?k ∑

j
Fjψeq(Γ)

}
· ∂jρq

= −q2

〈
∑

j
ei(k−q)·rj

〉
= −q2δkqN.

where we have used detailed balance, ∂jψeq = Fjψeq to get the penult line.

The second term,
〈

ρ?k ∑j vsolv (rj, t
)
· ∂jρq

〉
≡ Fkq, calls for more subtlety, be-

cause the solvent velocity field is not uniform. The “trick” is to backward-Fourier
transform Fkq with respect to q only, viz.,

Fk (r0) =

〈
ρ?k ∑

j
vsolv (rj, t

)
∂jρ
(
r0 − rj

)〉
,

= −
〈

ρ?k ∑
j

vsolv (rj, t
)

∂r0 δ
(
r0 − rj

)〉

and to notice 3 that this term shall not be altered in any way if the true solvent
velocity vsolv (r, t) is substituted by a uniform velocity field vr0(t) ≡ vsolv (r0, t),
with fixed r0 (independently of the position, e.g., rj, where it is evaluated):

Fk (r0) = −N
〈
ρ?kvr0(t)∂r0 δ

(
r0 − rj

)〉
.

Now, we can transform Fk (r0) back into reciprocal space (with respect to r0), to
obtain:

Fkq = −N ∑
p

〈
ρ?kvp(t) · i (q− p) e−i(q−p)·rj

〉
= −Nvp(t) · i (q− p)∑

p

〈
ρ?ke−i(q−p)·rj

〉
= −iNvsolv

q−k (t) · kSk.

Finally, let us collect the different contributions to term (2):

(2) =
−q2

Sq

〈
ρq
〉
(t) −∑

k
vsolv

q−k (t) · ik 〈ρk〉(t) .

3. Actually, this point is less trivial than it seems, because we have to bear in mind that we are
dealing with mathematical distributions. However, the proof straightforwardly follows from the
evaluation of Fk (r0) against a suitable test function φ(r0).
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With this in hand, we can move on to term (3),

(3) =
∫ t

0
dt1

〈
PΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
0

+
∫ t

0
dt1

〈
Ω†(t1)

∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)QΩ† (t) ρq

〉
0

.

The first part obeys,

∫ t

0
dt1

〈
PΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
0

=
∫ t

0
dt1 ∑

k

[∫
dΓψ0(Γ)ρk(Γ)

]
× 1

NSk

〈
ρ?kΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
︸ ︷︷ ︸

≡−Mkq(t,t1)

= −
∫ t

0
dt1 ∑

k
〈ρk〉0 Mkq (t, t1) ,

while the second part is∫ t

0
dt1

〈
Ω†(t1)

∫ t

t1

dsU† (s, t1)PΩ† (s)U†′ (t, s)QΩ† (t) ρq

〉
0

= ∑
k

∫ t

0
dt1

〈
Ω†(t1)

∫ t

t1

dsU† (s, t1) ρk

〉
0

1
NSk

〈
ρ?kΩ† (s)U†′ (t, s)QΩ† (t) ρq

〉
= −∑

k

∫ t

0
ds
∫ s

0
dt1

〈
Ω†(t1)U† (s, t1) ρk

〉
0︸ ︷︷ ︸

〈ρk〉(s)−〈ρk〉0

Mkq (t, s) ,

where we have exchanged the time integrals in the last lines and, once more,
used the generalised Green-Kubo relation (Eq. 2.25) to replace the brace.

Collecting the contributions to term (3) finally yields

(3) = −∑
k

∫ t

0
ds Mkq (t, s) 〈ρk〉(s) ,

where we recall that Mkq (t, t1) ≡ −1
NSk

〈
ρ?kΩ†(t1)U†′ (t, t1)QΩ† (t) ρq

〉
.
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3
A P E RT U R B AT I V E A P P R O A C H T O S L I G H T LY
H E T E R O G E N E O U S F L O W S

The previous chapter has shown that specific terms emerge in the generalised
Green-Kubo equations that lie at the heart of ITT-MCT in the presence of het-
erogeneities. These terms notably reflect processes of heterogeneity advection or
relaxation. However, the process of ex nihilo creation of heterogeneities has re-
mained analyticially out of our reach. Moreover, the memory kernel involved in
Eq. 2.30 has so far been approximated only for a strictly homogeneous flow, i.e.,
with κ = cst. On top of that, Eq. 2.30 has been derived for the density observ-
able; its extension to the stress σ is somewhat complicated by the fact that not
only particles exactly at r, but also particles in the vicinity of r, matter for the
computation of σ(r), contrary to the density.

To overcome these deficiencies, one can hope to extend the original framework,
for κ = cst, to heterogeneous solvent flows, encountered, for instance, in typical
extensional flows or (non purely azimuthal) Taylor-Couette flows. However, the
complexity inherent in this type of approach has been a hard blow to my original
ambitions in this regard. Even a perturbative study of heterogeneities has proved
technically challenging. Nevertheless, I have deemed that the skeleton of the
derivation is still worth some interest, for two reasons:

(i) it sheds vivid light on the techical difficulties associated with the inclusion
of any heterogeneity within MCT,

(ii) it clarifies the additional terms that the homogeneous equations must be
supplemented with in that case, thereby blazing the trail for schematic ITT-MCT
equations for heterogeneous flows, for want of exact ones.

3.1 coupling to linear density modes

Let us recall the generalised Green-Kubo relation,

〈g(t)〉 = 〈g〉+
∫ t

0
dτ

〈
κ(τ) : σe

∫ t
τ Ω†(s)ds
− g

〉
.

As we have seen in the previous chapter, to simplify this expression, ITT-MCT
heavily relies on translational invariance of the probability density ψ, i.e., the
equiprobability of configurations Γ and Γ+ a ≡ {r1 + a, . . . , rN + a} for any vec-
tor a, and the ensuing absence of linear couplings to density fluctuations [Brader
et al., 2012]. Indeed, because the equilibrium distribution is isotropic, all equilib-

rium ensemble averages of the form
〈

κ(τ) : σe
∫ t

τ Ω†(s)ds
− gq

〉
, which are related to
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g : q q(t)→ q(t)

Homogeneous flow

g : q q(t) ↘
(q + k) (t)

E : k k(t) ↗

Heterogeneous flow

Figure 3.1: Diagrammatic sketch of the interaction between the drive (here, the flow of
deformation gradient tensor E) and an arbitrary observable (g).

a specific wave vector q 6= 0, must vanish. Similarly, ensemble averages of the

form
〈

κ(τ) : σe
∫ t

τ Ω†(s)ds
− gqgk

〉
are finite only if q + k = 0.

However, if the flow is no longer homogeneous, the prescribed velocity gra-
dient κ will display (finite) q 6= 0-Fourier modes κq. As sketched in Fig. 3.1
and justified in Section 3.3, finite q-modes of an observable may then produce 0-
Fourier mode in the equilibrium average via an interaction with κ−q . This leads
to the emergence of couplings to linear density modes.

It follows that the complex scaffolding of homogeneous ITT-MCT would need
substantial alteration in the presence of solvent flow heterogeneities. Given the
intricacy of the task, it is sensible to restrict one’s attention to a perturbative
approach, i.e., to slight deviations from a homogeneous flow, starting from equi-
librium.

3.2 symmetries of the flow

To fill the gap left by the absence of translational invariance, we seek other
(probably weaker) flow symmetries that may be satisfied in the slightly hetero-
geneous case. We hypothesise that, in a limit to be specified later, particles are on
average advected along the solvent flow field, so that, if two configurations are
equiprobable at some time t, their “vsolv-advected” images remain equiprobable
at a later time.

Translational invariance holds in the initial (equilibrium) state, so, for any real-
space vector a, initial configurations Γ ≡ {r1, . . . , rN} and Γ′, obeying

∀i, r′i(t = 0) = ri(t = 0) + a,

are equivalent. Our hypothesis then elicits us to define, for any configuration
Γ(t) ≡

{
r1

(t), . . . , rN
(t)
}

at a given time t, the twin configuration Γ′(t) such that
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∀i, r′i(t) = φsolv
0→t (ri + a)

' φsolv
0→t (ri) +∇φsolv

0→t · a,

= ri
(t) + E

[
t, 0, φsolv

t→0

(
ri
(t)
)]
· a︸ ︷︷ ︸

≡ai(Γ,t)

,

where φsolv
t0→t(r0) is the “vsolv-advected” position at time t of the point that was at

r0 at time t0, ri ≡ φsolv
t→0(ri

(t)), and E(t, t0, r0) ≡ ∂φsolv
t0→t(r0)/∂r0 is the deformation

gradient tensor based on initial positions. Also note that, in order to define the
twin configuration, we only have access to the ri

(t)’s at a given time t, and not at
all times!

It behoves us now to show that twin configurations are indeed equiprobable
in some limit, i.e.,

ψ
(
Γ′ (t) , t

)
= ψ (Γ, t) .

To this purpose, we introduce the probability spread between twin configura-
tions,

∆ (Γ, t) ≡ ψ
(
Γ′ (t) , t

)
− ψ (Γ, t) .

Thanks to translational invariance at equilibrium, ∆(Γ, 0) = 0, ∀Γ. In Appendix 3.6.1,
it is shown that, for small ‖a‖,

∂t∆ (Γ, t) =

[
Ω′ + ∑

i
κi · Ei · a · ∂i

]
∆ (Γ, t)

+O
(

max ‖ai‖2 ‖∂r0κ‖∞ + ‖∂r0 E‖∞ ‖a‖+ ∑
i

∥∥F′i + Fi
∥∥)(3.1)

For a homogeneous flow, only the terms involving ∆ survive, so that ∆ remains
zero at all times: twin configurations are exactly equivalent.

On the other hand, in presence of heterogeneities, corrective terms subsist,
and their origin must be identified. The corrective terms involving ∂r0κ and ∂r0 E,
which scale as the magnitude of the heterogeneous deviations times their inverse
wavelength, stem from the linearisations of the solvent velocity field that were
performed, notably in the definition of the twin configuration, and this approxi-
mation could be refined. But the corrective term (roughly) of order ∑i ‖F′i + Fi‖
is inherent in the mechanics of the system: the inhomogeneous flow distorts the
local arrangement of particles differently around ri and around r′i . To understand
this, suppose that the solvent velocity varies fast over a small distance; because
of the finite rigidity length evidenced in Section 2.4, regions that move “fast”
will tend to push, or drag, their “slow” neighbours. As a consequence of this
collective effect, particles will not be advected by the local solvent velocity only.

Following Eq. 3.1, for the probability spread between twin configurations to
remain negligible, we must (tentatively) consider a stringent limit in which the
cumulated heterogeneous part of the deformation is exponentially small in mag-
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nitude and/or wave number, in absolute value and with respect to the rigidity
length.

3.3 (absence of) density fluctuations for slight

deviations from homogeneity

Suppose that the stringent condition required to keep the spread ∆ under
control is met, over a given time window, for a slightly heterogeneous (Fourier-
transformed 1) deformation gradient tensor Ek (t, 0) obeying‖Ek (t, 0)‖ � ‖E0 (t, 0)‖ for 0 < ‖k‖ < ε,

Ek (t, 0) = 0 for ‖k‖ > ε,

where 0 < ε � 1. We want to use the resulting symmetry to compute density
fluctuations.

For an arbitrary configuration Γ, density modes in the twin configuration Γ′(t)
obey

ρq
(
Γ′(t)

)
=

N

∑
j=1

e−iq·rj e−iq·aj .

=
N

∑
j=1

e−iq·rj e−iq·
∫

dkEk·a eik·rj

=
N

∑
j=1

e−iq·rj

[
∞

∑
n=0

(−i)n
(∫

dk q · Ek · a eik·rj
)n

n!

]

=
∞

∑
n=0

(−i)n

n!

(∫ n

∏
p=1

dkpq · Ekp · a
N

∑
j=1

ei(−q+∑n
p=1 kp)·rj

)

=
∞

∑
n=0

(−i)n

n!

(∫ n

∏
p=1

dkpq · Ekp · a ρq−∑n
p=1 kp(Γ)

)
.

≈
∞

∑
n=0

(−i)n

n!
(q · E0 · a)n−1 (q · E0 · aρq + nq · (E ? ρ)(q) · a

)
,

= e−iq·E0·a (ρq − iq · (E ? ρ)(q) · a
)

,

where (E ? ρ)(q) denotes the multi-dimensional convolution
∫

E(q− k)ρ(k)dk.
Let us now make use of the equiprobability of twin configurations and integrate
over all configurations:∫

dΓρq
(
Γ′(t)

)
ψ
(
Γ′(t), t

)
≈

∫
dΓe−iq·E0·a (ρq − iq · (E ? ρ)(q) · a

)
ψ (Γ, t) ,

1. A priori, E(t, 0, r) is not Fourier-transformable because it is not integrable. However, this
raises no serious issue, because it can be smoothly cut off at large ‖r‖ without it affecting the local
rheology.
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where we should note that det
(

dΓ′(t)
dΓ

)
= 1 because of incompressibility. Finally,

we arrive at〈
ρq
〉
(t) ≈ e−iq·E0·a

(〈
ρq
〉
(t) − i

∫
k 6=0

dk
〈
ρq−k

〉
(t) q · Ek · a

)
. (3.2)

For a homogeneous flow, ∀k 6= 0, Ek (t, 0) = 0, so Eq. 3.2 implies that
〈
ρq
〉
(t) = 0

for any finite wave vector, consistently with Ref. [Brader et al., 2012]. In an inho-
mogeneous flow, Eq. 3.2 contains the first two terms of a diagrammatic expan-
sion of the interaction of a density mode with the solvent flow. Thus, it justifies
Fig. 3.2.

However, incompressibility implies that q · Ek = 0, the time derivative of this
quantity being zero. Therefore, in the stringent limit considered here, no density
fluctuations are created. At the end of the day, this is not very surprising, because
the premise on which twin configurations were devised was that particles should
on average follow the (incompressible) solvent streamlines.

Finally, it is worth noting that this derivation has relied on the strict locality of
the density observable and is not directly transposable to the stress observable.
Indeed, stress fluctuations should be created much more easily than density
fluctuations, because the former only require a distortion of the local structure
of the material, whereas the latter demand a net flux of particles on a length
scale ‖q‖−1 (for the q-mode).

3.4 corrective terms due to flow inhomogeneities

Can the expression of the homogeneous Green-Kubo relation for the stress be
extended to the heterogeneous case? Let us first call back to mind its general
expression (Eq. 2.23 of the previous chapter):

〈σ(r)〉(t) = 〈σ(r)〉+
∫ t

0
dt1

〈
Ω†(t1)e

∫ t
t1

Ω†(s)ds
− g(r)

〉
.

Because a heterogeneous flow can induce couplings to linear density modes that
do not exist with a uniform velocity gradient, projections onto linear density
modes should be performed in addition to projections onto density pairs. To
this end, the projector P1+2 onto the union of linear density modes and density
pairs 2 can be introduced, viz.,

〈
σq
〉
(t) ≈

〈
σq
〉
+
∫ t

0
dt1

〈
Ω†(t1)P1+2e

∫ t
t1

Ω†(s)ds
− P1+2σq

〉
.

2. These modes are not orthogonal, but an orthonormal basis can be extracted through, e.g., a
Gram-Schmidt procedure.
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Formally, the first order expansion of this equation around homogeneous flow
will have the following structure,

〈
σq
〉
(t) ≈

∫ t

0
dt1 ∑

p

(
V(1) + δV(1)

) (
Φp + δΦp

) (
Φq−p + δΦq−p

) (
V(2) + δV(2)

)
.

Clearly, the leading order boils down to the homogeneous equation, where the
vertices V(1) and/or V(2) vanish if q 6= 0. Flow heterogeneities impose cor-
rections to the vertices, indicating changes in the magnitude of the coupling,
but they also alter the transient density correlator Φp(t, t′). The reason for this
change is that in the time interval [t′, t] a small volume of the material will have
travelled through regions subject to different shear rates.

3.5 perspectives

The corrective terms δV(1), δV(2), and δΦp are two-time correlators that could,
in principle, be expressed with the same procedure as that employed for density
fluctuations in Section 3.3, in the stringent limit exposed above.

Whether such lengthy rigorous calculations are worth the effort is however
questionable, given the approximations already performed and the unrealisti-
cally stringent limit that one would need to consider. I have personally grown
sceptical about the endeavour I had initiated along these lines. On the other hand,
the very existence of these diverse corrective terms needs to be underscored, in
my view, and not only because they are indicative of the technical difficulty of
including heterogeneity within ITT-MCT: since these corrections pertain to the
first order, they should be taken into account (e.g., through the inclusion of ad hoc
terms) in schematic constitutive equations, on top of the (also first-order) stress
advection process, when heterogeneities play a role.

This remains a challenge, however. Consequently, of the corrective terms asso-
ciated with flow heterogeneity, the schematic model studied in the next chapter
only features stress advection.
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A
3.6 appendix

3.6.1 Probability spread

At t = 0, globally translated configurations are equivalent, so the spread
∆ (Γ, 0) ≡ ψ (Γ′ (0) , 0)− ψ (Γ, 0) is zero for any Γ.

The variation of the spread with time is assessed with its time derivative, viz.,
for small ai’s:

∂t∆ (Γ, t) =
∂ai

∂t
· ∂iψ

′ + ∂tψ
′ − ∂tψ

=
∂ai

∂t
· ∂iψ

′ + Ω′ψ′ −Ωψ

=
∂ai

∂t
· ∂iψ

′ + (Ω′ −Ω)ψ + Ω′∆ (Γ, t) , (3.3)

where ∂iψ ≡ ∂ψ/∂ri, we have used the shorthands ψ′ ≡ ψ(Γ′(t), t), ψ ≡ ψ(Γ, t)
(and similarly for Ω), and Einstein summation convention have been used.

Let us evaluate the terms appearing in Eq. 3.3 one by one:

∂ai

∂t
=

{
∂tEi + ∂r0 Ei · ∂t

[
φsolv

t→0 (ri)
]}
· a

=
{

κi · Ei − ∂r0 Ei · E(0, t, ri) · vsolv(ri, t)
}
· a. (3.4)

Here, we have used the shorthands Ei ≡ E
[
t, 0, φsolv

t→0 (ri)
]

and κi ≡ κ
[
t, 0, φsolv

t→0 (ri)
]
,

as well as the equalities: ∂tE = κ · E and:

∂t

[
φsolv

t→0 (ri)
]

= lim
dt→0

φsolv
t+dt→0 (ri)− φsolv

t→0 (ri)

dt

= lim
φsolv

t→0
[
φsolv

t+dt→t (ri)
]
− φsolv

t→0 (r)
dt

= ∂rφsolv
t→0 ·

[
vsolv(ri, t)

]
= −E(0, t, ri) · vsolv(ri, t).

Regarding the second term, if one recalls the incompressibility criterion, i.e.,
∂rvsolv = 0, one gets

(Ω′ −Ω)ψ = ∑
i

∂i ·
{[
−F′i + Fi − vsolv(r′i(t), t) + vsolv(ri, t)

]
ψ
}

= ∑
i

∂i ·
[(
−F′i + Fi

)
ψ
]
− κ (ri, t) · ai · ∂iψ

+O
(

max ‖ai‖2 ‖∂r0κ‖∞

)
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We can now sum up the different contributions to ∂t∆ in Eq. 3.3, and notice
that the terms in κ (ri, t) · ai · ∂iψ cancel out:

∂t∆ (Γ, t) = Ω′∆ (Γ, t) + ∑
i

κi · Ei · a · ∂i∆ (Γ, t)

−∑
i

[
∂r0 E · E(0, t, ri) · vsolv(ri, t)

]
· a · ∂iψ

′

+∑
i

∂i ·
[(
−F′i + Fi

)
ψ
]

+O
(

max ‖ai‖2 ‖∂r0κ‖∞

)
=

[
Ω′ + ∑

i
κi · Ei · a · ∂i

]
∆ (Γ, t)

+O
(

max ‖ai‖2 ‖∂r0κ‖∞ + ‖∂r0 E‖∞ ‖a‖+ ∑
i

∥∥F′i + Fi
∥∥) .
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4
E L A S T I C I N S TA B I L I T Y I N A S C H E M AT I C M O D E L

The ITT-MCT approach exposed in the previous chapters is based on a pre-
scribed solvent velocity field. However, it often happens that, because of an in-
stability, the observed flow field strongly departs from the expectations, and this
can cause serious concerns in the industrial context.

The issue is well examplified by the problem of polymer extrusion that poly-
mer processing factories more or less routinely face. Often, a polymer has to be
extruded, i.e., pushed out of a barrel through a tube or pipe of narrow diame-
ter (the “die”) [Aarts, 1997]. No matter how smooth this tube is, the extrudate
will display surface irregularities that can culminate in large distortions (known
as melt fracture) from the expected cylindrical shape, unless the material is ex-
truded very slowly. This flow instability is not inertial in nature, because the
Reynolds number is usually close to zero in these problems; it is an elastic insta-
bility [Muller et al., 1989]. Curvature plays a major role in this type of instabili-
ties, which have been reported for polymer melts, worm-like micellar solutions
[Fardin et al., 2012a] in Taylor-Couette shear cells, i.e., in the gap between two
concentric rotating cylinders.

Do the ITT-MCT constitutive equations also contain this type of instability?
Regardless of the answer, addressing the question will put to good use the ad-
vection term recovered in Chapter 2 (and therefore reward our endeavours...):
without this term, the description of the flow would clearly be unphysical, in the
presence of any perturbation to the base flow.

A convenient way to circumvent the problem of the prescribed velocity field in
ITT-MCT, so as to address the above question, consists in deriving a tractable
constitutive equation from the ITT-MCT ones (Eqs. 2.19), albeit at the expense of
severe approximations, and then combining this equation with the momentum
conservation equation. This gives the desired feedback loop between the stress
and the velocity field.

It is now appropriate to recall, from Chapter 2, that the crudest approxima-
tion of the transient density correlator Φ in Eqs. 2.19, namely, the assumption
that it decays exponentially, independently of shear, viz., Φ(t2, t1) ∝ exp

(
t2−t1

τM

)
,

yields the Upper Convected Maxwell (UCM) model. Interestingly, Muller et al.
[1989] demonstrated that UCM flows are susceptible to elastic instabilities (at
high shear rates, large curvatures of the Taylor-Couette cells and for long relax-
ation times).

But the UCM model is oblivious to the interplay between structural relax-
ation and the shear drive that is encoded in the ITT-MCT equations. This in-
terplay, however, strongly affects the rheology, since it is at the origin of the
shear-thinning behaviour of glassy materials [Fuchs and Cates, 2002]. One may
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then wonder about the effect of this shear-thinning mechanism on the elastic
instability.

In this chapter, on the basis of a schematic model, we show that the shear-
induced cut-off of structural relaxation suppresses the elastic instability. This
may explain why, as far as we know, there have been no reports of any elastic
instability in dense colloidal suspensions.

4.1 the elastic instability

Consider a Taylor-Couette rheometer, made of a rotating inner cylinder of
radius R1 and a concentric outer cylinder of radius R1(1 + ε), with ε > 0, as
sketched in Fig. 4.1, and the natural polar coordinates (r, θ, z). The outer cylinder
(the “stator”) is kept fixed.

It has long been known that for Reynolds numbers Re (or, more precisely,
Taylor numbers) larger than some critical value the purely azimuthal base flow
v(r, θ, z) = vθ(r)eθ of a liquid is destabilised in favour of a vortex flow [Tay-
lor, 1923]. This instability is triggered by inertial forces, while viscosity has a
stabilising role. However, even when inertia is entirely negligible, i.e., Re → 0,
it became clear some twenty years ago, both experimentally and analytically,
that the base flow symmetry can be broken; the instability is then “purely elas-
tic” [Muller et al., 1989, Larson et al., 1990, Shaqfeh et al., 1992], in that it comes
from the nonlinear terms in the constitutive equation relating stress and strain
derivatives, and has notably been evidenced in dilute polymer solutions [Muller
et al., 1989] and semi-dilute worm-like micellar solutions [Fardin et al., 2012b].
The proper adimensional number in that case is the Weissenberg number

Wi ≡ τMγ̇,

where τM is the relaxation time of the solution, obtained by linear rheology mea-
surements, for instance. For low Wi, the flow only slightly distorts the microstruc-
ture.

The precise mechanism underpinning the elastic instability remains unknown
to a large extent, but it clearly results from an interplay between the curvature
of the (base flow) streamlines and the first normal-stress-difference (hoop stress)
N1 ≡ σθθ − σrr created by the stretching of the polymeric chains. For Shaqfeh
[1996], a radial velocity fluctuation, on top of the base flow, stretches polymer
chains in the azimuthal direction; but, in curved geometry, the radial (er) and az-
imuthal (eθ) directions are coupled in the equation, so that the hoop stress may
increase because of this perturbation, which further enhances the original veloc-
ity fluctuation and leads to instability. From a dimensional analysis of general
nonlinear constitutive equations, Pakdel and McKinley [Pakdel and McKinley,
1996] suggested the following criterion for the appearance of an elastic instabil-
ity,

lp

R
N1

σrθ
> Mc, (4.1)
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Figure 4.1: Top view of a Taylor-Couette rheometer.

Figure 4.2: Shaqfeh’s sketch explaining the driving mechanism for the (nonaxisymmet-
ric) elastic instability. Taken from Ref. Shaqfeh [1996].

where lp ≡ vθτM is the typical distance travelled by a chain along the base-flow
streamline while relaxing, R is the radius of curvature of the streamline, and
Mc is a threshold value of order 1. Some efforts have been made to recover and
extend this criterion on the basis of a schematic interpretation of the general
equations of motion [Fardin et al., 2012a].

Although, to the best of our knowledge, elastic instabilities have not been
observed in dense colloidal suspensions yet, the ITT-MCT equations predict a
large first normal-stress-difference N1 for these materials, which, according to
Pakdel and McKinley’s criterion (Eq. 4.1) should produce an instability. We want
to test this in a schematic model.

4.2 schematic model

4.2.1 Model

Papenkort and Voigtmann [2013] simulated the flow of a generalised UCM
fluid in a channel, derived from a schematic approximation of the ITT-MCT
equations of motion. Here, we consider a similar, albeit somewhat less general,
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model in a Taylor-Couette geometry. More precisely, the model constitutive equa-
tion reads

σ

τ (∇v)
+
O
σ = G∞

(
κ + κ>

)
(4.2)

with τ (∇v) ≡ τM

1 + 2ατM
√

J2 (ε̇)
,

and
O
σ ≡ ∂σ

∂t
+ v · ∇σ −∇v> · σ− σ · ∇v (4.3)

where τM is the Maxwellian relaxation time of the material at rest (τM → ∞ for
an ideal glass), G∞ is a shear modulus, α > 0 is the shear-thinning parameter, v
and ∇vij ≡ ∂vj/∂xi (in Cartesian coordinates) are the local velocity and velocity
gradient, respectively, and J2 (ε̇) is the second deviatoric stress invariant of the
strain rate tensor ε̇ ≡ ∇v>+∇v

2 , i.e.,

J2 (ε̇) ≡
1
2

ε̇ijε̇ji.

This model is actually known in the polymer rheology community as the White-
Metzner model [White and Metzner, 1963]. For a simple shear flow as well as
for a purely azimuthal flow in Taylor-Couette geometry, J2 (ε̇) =

1
4 γ̇2 and, conse-

quently,

τ (∇v) ≡ τM

1 + ατM|γ̇|
.

The interpretation of this dependence is that the relaxation mechanism is cut off
by the strain-induced distortion of the local structure (see Chapter 2). The shear-
thinning parameter α describes how much strain is required to erase this local
structure and could be thought of, crudely, as an inverse yield strain; for α = 0,
a genuine UCM model is recovered.

The constitutive equation is complemented with the inertialess momentum
conservation equation,

0 = ∇ · σ −∇p, (4.4)

where p is the pressure, 1 and the incompressibility postulate,

0 = ∇ · v. (4.5)

4.2.2 Non-dimensionalisation

From now on, we set the unit of time to τM, the unit of length to R1, and the
unit of stress to G∞.

1. In the UCM equation presented in Chapter 2, the pressure was included in the total stress
σ.

54



1.00 1.05 1.10 1.15 1.20
r

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

v
⋆ θ

α=0

α=0.001

α=0.1

α=1

(a) Velocity profile for an applied shear rate
γ̇(1) = 5 at the rotor.

10-1 100 101

γ̇

0

5

10

15

Σ

α=0

α=0.001

α=0.1

α=1

(b) Flow curve Σ(γ̇).

Figure 4.3: Base flow properties of the rheological model, for a relative gap width ε = 0.2
and using various shear-thinning parameters α, as indicated in the legend.

4.2.3 Base flow

First, we consider the purely azimuthal base flow, prior to any instability,
v?(r, θ, z) = v?θ (r)eθ, with the following boudary conditions,v′θ(1)− vθ

1 = γ̇(1)

vθ(1 + ε) = 0,

where γ̇(1) is the imposed shear rate at the rotor. One can then easily check
that the following stress and velocity fields satisfy the constitutive equations, the
momentum conservation equation, as well as the boundary conditions:

v?θ (r) = sign
[
γ̇(1)

] r
α

ln

√
1− B/r2

1− B/(1+ε)2

σ?
rr(r) = 0

σ?
rθ(r) =

γ̇?(r)
1 + α|γ̇?(r)|

σ?
θθ(r) = 2

(
γ̇?(r)

1 + α|γ̇?(r)|

)2

,

where B ≡ α|γ̇(1)|
1+|γ̇(1)| and γ̇?(r) ≡ v? ′θ −

v?θ
r = B

α(r2−|B|) . The macroscopic shear stress

at the rotor is: Σ = γ̇(1)

1+αγ̇(1) .

Figure 4.3 presents the variation of the velocity profile of the base flow with
the shear-thinning parameter α, at fixed gap width ε and applied shear rate γ̇(1).
Reasonable agreement with experimental data is obtained for large values 2 of α,
α ≈ 10.

2. Matthias Fuchs, private communication.
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4.3 linear stability analysis of the base flow

4.3.1 Pseudo-spectral method

Let us now study whether the previously derived base flow is stable with
respect to (three-dimensional) linear perturbations

δφ(r, θ, z, t) ≡
(

δσrr δσrθ δσrz δσθθ δσθz δσzz δvr δvθ δvz δp
)>

.

To do so, we resort to a pseudo-spectral method, similar to that used in Ref. [Nico-
las and Morozov, 2012]. This method consists in linearising the equations of
the problem, comprising the six constitutive equations (Eqs. 4.2), the three mo-
mentum conservation equations (Eqs. 4.4), and the incompressibility postulate
(Eq. 4.5), around the base flow so as to obtain a linear equation of the form

∂
∂t

. . .
∂
∂t

0

0

0

0


︸ ︷︷ ︸

A

δφ = L?δφ,

and expressing the linear operators (more precisely, the endomorphisms) A and
L? as matrices, viz., A → A and L? → L?. This is done by:

– Fourier-transforming δφ both in the azimuthal direction (wavenumber m)
and in the axial direction (wavenumber k), viz.,

δφ(r, θ, z, t) =
∞

∑
m=−∞

∑
k∈2π/LzZ

δφ(r, m, k, t) eimθeikz,

– discretising the r-coordinate at the Chebyshev–Gauss–Lobatto points rn ≡
1.0 + ε

2

[
1 + cos

(
π n

N

)]
, 0 6 n < N, for a given N ∈ N?, and expressing

radial derivatives ∂rδφ as matrix-vector products 3 “Dr · δφ”,
– and, finally, Laplace-transforming δφ with respect to time (Laplace coordi-

nate s), viz., δφ(r, m, k, s) =
∫

estδφ(r, m, k, t)dt.
One then obtains a generalised eigenvalue problem

Aδφ(r, m, k, s) = sL?δφ(r, m, k, s), (4.6)

where A and L? are 10N × 10N matrices, a few lines of which are subsequently
substituted for the implementation of the boundary conditions.

3. The method is pseudo-spectral insofar as the Dr matrices are actually derived from an inter-
polation with Chebyshev polynomials.
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Let s? be the maximal growth rate, i.e., the real part of the maximal eigenvalue 4

of Eq. 4.6 over all possible wavenumbers m and k.

The condition for the base flow to be stable simply reads:

The base flow is stable iff s? < 0.

4.3.2 Linearised equations

The linearised constitutive equations read

∂δσrr

∂t
=

(−1
τ?
− im

r
v?θ

)
δσrr +

(
2σ?

rθ

im
r

+ 2∂r

)
δvr

∂δσrθ

∂t
= γ̇?δσrr +

(−1
τ?
− im

r
v?θ

)
δσrθ +

[
σ?

rθ

im
r

+ ∂r −
1
r
− ασ?

rθ

(
∂r −

1
r

)]
δvθ

+

[
σ?

rθ

(
∂r +

1
r

)
− ∂rσ?

rθ + σ?
θθ

im
r

+
im
r
− ασ?

rθ

im
r

]
δvr

∂δσrz

∂t
=

(−1
τ?
− im

r
v?θ

)
δσrz + ikδvr +

(
σ?

rθ

im
r

+ ∂r

)
δvz

∂δσθθ

∂t
= 2γ̇?δσrθ +

(−1
τ?
− im

r
v?θ

)
δσθθ +

(
2σ?

θθ

r
− ∂rσ?

θθ +
2
r
− ασ?

θθ

im
r

)
δvr

+

[
2σ?

rθ(∂r − 1/r) + 2σ?
θθ

im
r

+ 2
im
r
− ασ?

θθ

(
∂r −

1
r

)]
δvθ

∂δσθz

∂t
= γ̇?δσrz +

(−1
τ?
− im

r
v?θ

)
δσθz + ikδvθ +

(
im
r

+ σ?
θθ

im
r

+ σ?
rθ∂r

)
δvz

∂δσzz

∂t
=

(−1
τ?
− im

r
v?θ

)
δσzz + 2ikδvz,

where τ? ≡ 1
1+α|γ̇?| , while the linearised momentum conservation equations are

0 =

(
∂r +

1
r

)
δσrr +

im
r

δσrθ + ikδσrz −
1
r

δσθθ − ∂rδp

0 =

(
∂r +

2
r

)
δσrθ +

im
r

δσθθ + ikδσθz −
im
r

δp

0 =

(
∂r +

1
r

)
δσrz +

im
r

δσθz + ikδσzz − ikδp,

and incompressibility states that

0 =

(
∂r +

1
r

)
δvr +

im
r

δvθ + ikδvz.

4. Due to the discretisation, some spurious eigenvalues may pop up in the generalised eigen-
value problem (Eq. 4.6), but they can easily be eliminated because, unlike their physical counter-
parts, they vary with the number of discretisation points.
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4.3.3 Numerical results

For a shear-thinning parameter α close to zero, we expect to recover a con-
ventional UCM model. Following Ref. [Larson et al., 1990], some axisymmetric
modes should then become unstable at sufficiently large applied shear rates. We
do indeed observe this destabilisation in our simulations. This trend is robust to
small variations of α: in Fig. 4.4a, we show the increase of the maximal growth
rate s? with the applied shear rate for α = 4 · 10−3. The relative gap width ε is
set to 0.2, until the end of this chapter.

The influence of the shear-thinning magnitude α is studied by varying this pa-
rameter while keeping the applied shear rate fixed, here, γ̇(1) = 40. The results
for small values of α are plotted in Fig. 4.4b, and a more detailed view of the
maximal growth rates for each Fourier mode (m, k) is presented in Fig. 4.5 for
two distinct values of α. Clearly, the more shear-thinning the fluid is, the more
stable it is with respect to elastic instabilities. In particular, we have checked that
for α ∼ 10, the base flow is quite stable with respect to all tested perturbation
modes, (k, m) ∈ [0, 200]× [0, 15]. It should however perhaps be mentioned that,
for a range of shear thinning parameters, 0.1 . α . 1 here, although the modes
that were elastically unstable at lower values of α are indeed stabilised, another
unstable mode emerges, at k ≈ 0 in our numerical simulations (azimuthal mode).
At present, it is unsure whether this is an artifact of the model under considera-
tion, or whether this new instability is physically grounded.

The enhanced stability of the shear-thinning fluid is the major result of this
section, and it is consistent with the Pakdel-McKinley criterion introduced in
Eq. 4.1. Indeed, in the model under study, the lhs of Eq. 4.1 reads lp

R
N1
σrθ
∼

vθ
R

2γ̇?(r)
1+α|γ̇?| and therefore decreases with increasing α. It follows that, according to

the criterion, stability should be restored for large enough α.
Physically, the shear-induced acceleration of structural relaxation is therefore

expected to inhibit elastic instabilities in supercooled liquids and glasses.

The success of schematic equations loosely derived from ITT-MCT to capture
instabilities should not obliterate the difficulties associated with the presence of
heterogeneities in the genuine ITT-MCT equations. Since heterogeneities play a
central role at low temperature, we adopt another line of modelling to study the
flow of materials deep within the solid phase: elastoplastic models.
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(a) At fixed shear-thinning parameter, α = 4 · 10−3. (b) At fixed applied shear rate, γ̇(1) = 40.

Figure 4.4: Maximal growth rate s� (over all modes).

(a) α = 2 · 10−4 (b) α = 7 · 10−3

Figure 4.5: Colour maps of the maximal growth rates associated with each pair of
wavenumbers (m, k), at an applied shear rate γ̇(1) = 40. Stable modes ap-
pear in dark blue.
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Part II

T H E E L A S T O P L A S T I C D E S C R I P T I O N O F T H E F L O W
O F A M O R P H O U S S O L I D S





Funes remembered not only every leaf of every tree of every wood, but also
every one of the times he had perceived or imagined it [...]. He was, let us
not forget, almost incapable of ideas of a general, Platonic sort. Not only
was it difficult for him to comprehend that the generic symbol dog embraces
so many unlike individuals of diverse size and form; it bothered him that
the dog at three fourteen (seen from the side) should have the same name as
the dog at three fifteen (seen from the front) [...] He was the solitary and
lucid spectator of a multiform, instantaneous and almost intolerably precise
world.

Jorge Luis Borges, ’Funes The Memorious’, in Labyrinths, translated
by James E. Irby, New Directions, 1962.

Most physicists are aware that any particular dog is distinct from any other
dog, as is any particular emulsion from any other emulsion, as is (and even more
so) any emulsion from any metallic glass. However, the development of Physics
has proved that, by turning a blind eye to petty differences and focusing on
general aspects and similarities, much can be learnt about ferromagnetic systems,
about phase transitions, or about the world. Here, the differences will not be
petty in any way: an emulsion really does not seem to have much in common
with a metallic glass (not to mention the dog...).

In comparison with the previous part, whose realm of application is mostly
above or around the glass transition temperature, here the focus will be on mate-
rials much deeper in the solid phase, and often in the athermal limit, hence the
centrality of the concept of elasticity. We aim to provide extensive evidence that,
on account of the solidity of these materials and the absence of readily identifi-
able structural defects, they can be studied in a common framework. Admittedly,
the emphasis will be on soft jammed materials, but I will strive to point to the
major aspects which may not be generic.

This part exposes the foundations and building blocks of elastoplastic models.
Chapter 5 presents the experimental and numerical observations out of which
such models were devised. A review of existing models is proposed in Chap-
ter 6. In Chapter 7, we identify the ingredients that need to be included in the
elastoplastic description to account for bulk rheology and their connection to mi-
croscopic physical processes. The last chapter of this part, Chapter 8, provides
details on the implementation of our elastoplastic model.

63





5
A S I M I L A R F L O W S C E N A R I O F O R E X T R E M E LY D I V E R S E
D I S O R D E R E D S O L I D S

To begin with, let us summarise in a few words the macroscopic features that
distinguish the rheology of amorphous solids from that of simple fluids:

- a finite yield stress needs to be surpassed in order to initiate and maintain a
permanent flow,

- as the yield stress is approached from below, a creep regime featuring jerky,
but dwindling, flow sets is,

- even (not too far) above the yield stress, the flow is jerky, and sometimes
macroscopically heterogeneous.

Experimental as well as numerical evidence, detailed in this chapter, ascribe
these characteristics to bursts of swift localised rearrangements of particles tak-
ing place in a solid-like medium.

5.1 the elastic-rebound theory of earthquakes

The characteristics of the flow dynamics that have just been listed are strongly
reminiscent of earthquakes.

A basic, but widely accepted, description of the mechanism of earthquakes is
the elastic-rebound theory, propounded by Reid [1910] in an official report on
the devastating California earthquake of 1906: potential energy is accumulated
prior to the earthquake as the soil is elastically strained, due to the relative dis-
placement of (what is now called) tectonic plates (see Fig. 5.1). As soon as the
applied forces exceed the cohesion of the strained rocks and soil (represented in
yellow in Fig. 5.1), the accumulated energy is suddenly released and takes the
form of seismic waves, making the earth quake.

Figure 5.1: Schematic illustration of H.F. Reid’s elastic-rebound theory.
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Figure 5.2: Sketch of a ’T1 event’. Adapted from Ref. [Princen and Kiss, 1989] .

This theory of stick-slip motion naturally also has bearing on tribology [Pers-
son, 1999], i.e., the study of the relative sliding of surfaces in contact or the
propagation of cracks in matter. Since amorphous solids, too, may store elastic
energy, it is tempting to apply the theory to them as well.

The analogy may suffer from a drawback, however. Structurally weak regions,
where rupture is most likely to occur, can easily be identified in seismology and
in tribology: these are the faults and the sliding plane, respectively. But where
and how is rupture initiated in the bulk of a macroscopically homogeneous amor-
phous solid?

5.2 localised shear transformations

Since atoms in metallic glasses can hardly be imaged, Argon and Kuo [1979]
resorted to experiments on bubble rafts to gain better understanding of the de-
formation of amorphous metals, thereby reinvigorating an analogy pointed out
by Bragg and Nye [1947]. Argon and Kuo observed that the macroscopic defor-
mation of monolayers of bidisperse millimetric bubbles floating on an aqueous
solution proceeds through very localised shear transformations, that is to say, in-
ternal rearrangements of regions of about 5 bubble diameters.

In his pioneering studies on dense foams and oil-in-water emulsions, Princen
[1983, 1985] identified these shear transformations as T1 events. These events
are local topological changes, more precisely first-neighbour exchanges, that oc-
cur whenever four bubbles come to share a common vertex, as a result of the
macroscopic drive. This unstable situation is depicted in Fig. 5.2.

More recently, Schall et al. [2007] used confocal microscopy to visualise re-
arrangements in quasi-statically deformed colloidal glasses and observed rear-
ranging regions of about 3 colloid diameters. In slowly sheared granular matter,
diffusive wave spectroscopy imaging by Amon et al. [2012b] has brought to light
swiftly rearranging regions of about 15 grain diameters ’randomly’ bursting in
an essentially still medium.

Throughout this thesis, these elementary rearrangements will often be referred
to as plastic events, 1 regardless of their specific details. Incidentally, the geome-
try of these shear-induced rearrangements is very likely to differ from that of the

1. This definition may differ from that of Procaccia and co-workers [Hentschel et al., 2010] or
Tanguy and co-workers [Fusco et al., 2014]
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localised excitations due to thermal fluctuations in the quiescent system, which
are, arguably, string-like [Keys et al., 2011].

Atomistic simulations have also greatly contributed to the understanding of
the deformation of disordered solids. Because the difficulty inherent in the
study of these complex systems mostly results from the large number of par-
ticles and collective effects, and not from the ignorance of elementary interparti-
cle interactions, numerical systems are generally reliable model systems in this
field. Almost two decades ago, Falk and Langer [1998] reported on the presence
of localised region displaying intense non-affine deformations in molecular dy-
namics simulations of a low-temperature glass. This observation has since been
reproduced in very diverse numerical systems, with different algorithms [Mal-
oney and Lemaître, 2006, Tanguy et al., 2006, Chaudhuri and Horbach, 2013,
Chattoraj and Lemaître, 2013].

5.3 non-local effects

The accurate “measurements” provided by simulations have notably shed
light on the existence of long-ranged displacement and strain fields induced
by localised rearrangements, in glasses as well as in supercooled liquids [Mal-
oney and Lemaître, 2006, Tanguy et al., 2006, Goldenberg et al., 2007, Lemaître
and Caroli, 2007, Chattoraj and Lemaître, 2013, Mandal et al., 2013]. This long-
ranged field is illustrated in Fig. 5.3a.

Theoretically, these long-ranged fields are expected when an inclusion embed-
ded in an elastic medium gets deformed [Goldstein, 1969]. More precisely, Es-
helby [1957] had worked out the exact strain field caused by an elastic inclusion
bearing a spontaneous deformation (eigenstrain), in a uniform elastic medium;
the displacement and strain fields have, respectively, a two-fold and a four-fold
symmetry, and an r1−d and an r−d decay in (d-dimensional) space, in accordance
with numerical simulations (see Fig. 5.3b). In 2D, if the system is incompressible,
the εxy-strain field induced by a circular inclusion (of unit surface) located at the
origin and bearing an eigenstrain ε?xy is given by the elastic propagator G in the
far field, viz.,

εxy(r) = G(r)ε?xy,

where G(r, θ) ∼ cos(4θ)/r2, with polar coordinates (r, θ).
Direct experimental evidence of these long-ranged fields has also been ob-

tained, e.g., via confocal microscopy imaging of slowly sheared colloidal glasses [Schall
et al., 2007, Chikkadi et al., 2011, 2012] or via diffusive wave spectroscopy in
granular matter [Le Bouil et al., 2014]. Besides these direct observations, non-
local effects alledgedly mediated by the induced fields have also been reported.
Nichol and co-workers reported on an elegant experiment in which a steel ball
placed on the surface of a box filled with millimetric glass beads starts to sink if
the granular material is sheared at the bottom of the box, even though, when the
steel ball is removed, the surface looks unaffected by this distant shear [Nichol
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(a) (b)

Figure 5.3: (a) Non-affine displacement field observed in a quasi-static simulation, on
approaching an avalanche of plastic events. Reproduced from Ref. [Maloney
and Lemaître, 2006]. (b) Average displacement field induced by artificially
triggered shear rearrangements in a binary Lennard-Jones glass. Taken from
Ref. [Puosi et al., 2014]

et al., 2010, Nichol and van Hecke, 2012]. In microchannel flows of dense emul-
sions and suspensions, striking non-local effects leading to strong deviations
from bulk rheology have been observed by different groups [Goyon et al., 2008,
Jop et al., 2012, Geraud et al., 2013].

Such collective effects, indicative of correlations between plastic events, ratio-
nalise the observed cascades of plastic events in slow flows, and the serrated
profile of macroscopic stress vs. strain curves [Baret et al., 2002, Bailey et al., 2007,
Lemaître and Caroli, 2009, Chattoraj et al., 2011, Antonaglia et al., 2014].

5.4 flow curve

For materials that do not fracture, a flow curve, that is to say, a macroscopic
stress vs. strain rate relation Σ = f (γ̇), can be measured, in experiments as
well as in atomistic simulations. Whether it be for dense emulsions [Princen and
Kiss, 1989, Bécu et al., 2006, Jop et al., 2006], foams with low surface modulus
(i.e., fast relaxation of surface tension fluctuations) [Denkov et al., 2009], carbopol
microgels [Divoux et al., 2011b], soft colloidal pastes [Cloitre et al., 2003, Nord-
strom et al., 2010], hard-sphere colloidal suspensions [Ballesta et al., 2008, 2012],
numerical binary Lennard-Jones glasses [Lemaître and Caroli, 2009] or numeri-
cal models of dense suspensions of deformable capsules [Gross et al., 2014], the
flow curve is very often well fitted by a Herschel-Bulkley equation Σ = Σ0 + Aγ̇n,
with a finite yield stress Σ0 and an exponent n generally (but not always) around
0.5.

When the flow is macroscopically homogeneous, the flow curve reflects the
relation between local stresses and strain rates. But, in a heterogeneous flow, in
particular when shear localisation occurs, i.e., when shear is confined in a (gener-
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ally macroscopic) band in the sample, local strain rates strongly differ from the
applied strain rates. In that case, the flow curve is not a local constitutive curve,
and it often displays a plateau [Martens et al., 2012] or even a non-monotonic
behaviour [Schall and van Hecke, 2010] at low shear rates.
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6
M E S O S C O P I C M O D E L S : S TAT E O F T H E A RT

The enticing simplicity of the generic flow scenario exposed in Chapter 5 has
led to the emergence of a variety of mesoscale models. All models in this cate-
gory rest on the idea of shear transformation regions, or flow defects, embedded
in an essentially solid medium, and focus on the activity of these regions. Nev-
ertheless, they differ considerably with regard to the dynamics of these regions
and their coupling (or the absence thereof).

Before delving into the zoology of these models, I feel compelled to mention
the following bias in favour of a physicist’s, rather than a material scientist’s, ap-
proach: in my view, what these models should target is not the perfectly faithful
description of a specific system, at the expense of a large set of parameters, but,
rather, a minimal framework permitting the identification of

(i) the relevant mechanisms accounting for universal rheological properties of
these materials, and

(ii) the key physical parameters explaining the major differences that are ob-
served.

It follows that the design and the appraisal of a model will depend on the
properties (i.e., the observable) that one wants to reproduce, from the most basic
ones to the most sophisticated.

6.1 generic viscoelastic models

6.1.1 Kelvin-Voigt and Maxwell models

The viscoelastic Kelvin-Voigt and Maxwell models consist of the assembly of a
spring (σs = Eγs) and a dashpot (σd = ηγ̇d), either in parallel (Kelvin-Voigt) or in
series (Maxwell), as sketched in Fig. 6.1. In the former model, both components
are equally strained, but their stresses σ add up to give the total stress, ergo,

σ(t) = Eγ(t) + ηγ̇(t),

whereas it works the other way round for the Maxwell model:

σ(t) +
η

E
σ̇(t) = ηγ̇(t).

The Kelvin-Voigt model is therefore a generic model of dissipative deforma-
tion with respect to a fixed reference elastic configuration, whereas the Maxwell
model describes the gradual loss of the memory of this reference configuration.
Neither really reflects the alternation of processes at work in amorphous solids.
Nevertheless, it may be noted that Tighe [2011] was able to derive linear rheol-
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(a) Kelvin-Voigt model (b) Maxwell model

Figure 6.1: Schematic representations of the Kelvin-Voigt and the Maxwell models.

ogy properties of jammed packings by considering an assembly of Kelvin-Voigt-
elements.

The elastoplastic models that follow elaborate the idea of an assembly of elas-
tically strained mesoscopic regions that yield past a critical stress, or owing to
thermal fluctuations.

6.2 extremal models

Extremal models account for the elastic interactions between rearranging re-
gions while leaving aside dynamical aspects, by investigating the quasi-static
limit, γ̇ → 0. Generally, the interactions are described by an (instantaneous)
Eshelby-like propagator of the form G(r, θ) ∼ cos(4θ)/r2 (the reader is referred
to Section 5.3 or Refs. [Eshelby, 1957, Picard et al., 2004]), in 2D, in the limits
to be discussed in Chapter 8. G(r, θ) gives the stress increment at position (r, θ)

resulting from a unit plastic strain at the origin.

6.2.1 Chen, Bak, and Obukhov

This line of modelling was pioneered by Chen et al. [1991], who were inter-
ested in the statistics of earthquake magnitudes. They succeeded in recover-
ing the characteristic Gutenberg-Richter power-law distribution by simulating
a square lattice of blocks connected by springs (i, j) that break past a random
stress threshold, σy(i, j). Springs are gradually loaded, via the increment of
their shear stress σ(i, j) at each time step, viz., σ(i, j) → σ(i, j) + δσ. When a
spring-bond (i, j) breaks, its load is entirely redistributed to the other bonds
on the lattice via the Green function G of their elastic network, viz., σ(i′, j′) →
σ(i′, j′) + Gi′−i;j′−j σ(i, j), and a new random stress threshold is assigned to it.
The earthquake magnitude is defined as the number of bonds that break in a
row, i.e., in an avalanche.
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6.2.2 Baret, Vandembroucq, and Roux

Baret et al. [2002] applied a similar model to the study of plasticity in amor-
phous media and unveiled a diffuse localisation of the plastic strain increments
over finite time windows. Their model is made explicitly extremal by controlling
the macroscopic load increments so that one, and only one, site yields at each
time step; thus, the macroscopic stress is not increased during an avalanche.

6.2.3 Dahmen, Ben-Zion, and Uhl

Dahmen et al. [2009] added strain weakening (hardening) to this picture by
making use of two distinct distributions for the initial yield stresses and the ones
picked thereafter. These distributions are such that the “new” yield stresses are
on average smaller (larger, respectively) than the initial ones.

The authors resorted to mean-field theory and renormalisation group approaches
to solve the problem, and invoked the long range of the elastic propagator to jus-
tify this recourse. 1 One of the conclusions of the study was that, while plasticity
(i.e., slip) is more or less uniformly distributed in strain-hardening materials,
their strain-weakening counterparts are brittle, insofar as slip gets localised in a
narrow band, which leads to macroscopic failure.

Similar conclusions were drawn by Vandembroucq and Roux [2011], with a
different model featuring a bona fide Eshelby-like propagator.

6.3 models based on a periodic potential land-
scape

With the particular prospect of reproducing strain localisation phenomena,
Jagla [2007] proposed a 2D model of amorphous plasticity based on an ad hoc
PEL.

The main variable of the model is the deformation tensor ε(r), which is de-
scribed by three scalar fields, e1(r), e2(r), and e3(r), respectively associated with
local volume change (e1 = 1

2 Tr ε) and shear in two complementary directions
(e2 and e3). The local free energy f is entirely determined by these scalars; the
author’s choice was

f (e1, e2, e3) = Be2
1 + f0(e2, e3),

where B should be regarded as the bulk modulus of the material and the quadratic
form Be2

1 counters volumetric changes. Since plastic deformation uproots the sys-
tem from a given elastic energy basin and shifts it to another roughly similar basin,
the author chose a periodic function f0 (more precisely, it is a linear combination

1. In Chapter 11, it will however be argued that the presence of positive and negative lobes in
the propagator may undermine this argument [Budrikis and Zapperi, 2013].
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of sines), in order to allow plasticity. That being set, the evolution of the system
is governed by

∀i ∈ {1, 2, 3} ,
∂ei(r)

∂t
= η

δF
δei(r)︸ ︷︷ ︸

σi

+ Λ,

where η sets the typical time scale of evolution, the global free energy F is the in-
tegral of f over space, and Λ is a function that accounts for the coupling between
the deformation at different positions (formally, it is a Lagrange multiplier en-
forcing a compatibility condition on the ei’s required by continuum mechanics).

If the system is strained, e.g., by controlling the value of the macroscopic shear
strain

∫
e2d2r, the ei’s evolve locally, and ’hops’ between free energy basins are

observed. However, for strain localisation to occur, an additional ingredient is
needed: the system must spontaneously relax with time, that is to say, it must
age. This is (successfully) achieved by guiding the evolution of the ei’s towards
minima of the global free energy, through the introduction of additional fields.

6.4 the soft glassy rheology (sgr) model

6.4.1 The mean-field model

Sollich and co-workers supplemented Bouchaud’s trap model (see Section 1.4.2)
with an external shear drive [Sollich et al., 1997, Sollich, 1998].

The material is divided into mesoscopic regions, each of which carries a strain
l and evolves through a landscape of energy traps randomly drawn from an
exponential distribution ρ(E) ∝ exp(−E/Eg). Here, E is the trap depth and Eg

is a material parameter that will be set to unity. Instead of being caused only
by temperature-like fluctuations, the escape from a trap is now facilitated by the
local strain l, insofar as the latter lowers the local energy barrier: E → E− 1

2 kl2.
Here, the stiffness parameter k is such that kl is the mesoscopic stress. The escape
rate then reads

ω(E, l) = ω0exp

(
−E + 1

2 kl2

x

)
. (6.1)

Due to the applied shear rate γ̇, the local strain l increases with time, at a rate
l̇ = γ̇. After an escape event, l is set back to zero and a new trap depth E is
randomly picked from the distribution ρ.

The second major difference with respect to Bouchaud’s trap model is that, in
Eq. 6.1, the room temperature is replaced by a “mechanical noise temperature”
x, presumably of order 1, which should account for the local (e.g., stress) fluctu-
ations induced by distant rearrangements in the system, for want of an explicit
computation of these interactions here.
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Sollich and co-workers proposed a mean-field analysis of the model, based on
a master equation for the probability distribution P(E, l; t), viz.,

∂P
∂t

(E, l; t) = −γ̇
∂P
∂l

(E, l; t)−ω(E, l)P(E, l; t) + 〈ω(E, l)〉P ρ(E)δ(l), (6.2)

where the average 〈ω(E, l)〉P is calculated with respect to the probability dis-
tribution P(E, l; t). The terms on the rhs of Eq. 6.2 describe, in their order of
appearance, the strain increments due to the macroscopic drive, the depletion
of highly strained regions due to escape events, and the rate of rebirth at zero
strain associated with these events. From this equation, the authors were able
to derive scaling laws for the linear rheology moduli and the steady-state flow
curve, in the limit of vanishing shear rate, γ̇ → 0, and at fixed x. Particularly
encouraging aspects include the observation of a power-law equation Σ ∼ γ̇x−1

above the glass transition, i.e., for x > 1, while a yield stress Σ0 emerges for
x < 1, along with a Hershel-Bulkley flow curve, Σ− Σy ∼ γ̇1−x.

The intuitive explanation for the increase of the stress with the shear rate in
this model is that, at higher shear rates, a mesoscopic region has reached a higher
local strain by the time a ’thermally’ activated hop over the energy barrier occurs.

6.4.2 Inclusion of a diffusive process for x

In principle, the mechanical noise temperature x should not be fixed externally,
but, instead, adjusted self-consistently as a function of the plastic activity in the
system. As a first move in this direction, Fielding et al. [2009] described its
evolution with a diffusion equation, viz.,

ẋ ∼ (x0 − x) + S + D∆x,

where the first term on the rhs favours relaxation to the equilibrium value x0, S
is a source term that depends on the local rearrangement rate, and the parameter
D denotes a diffusion coefficient.

Depending on the expression of the source term S, the authors showed that
the model displays (or not) shear localisation.

6.4.3 Argon and Bulatov’s lattice-based model

Even before the development of the SGR theory, Bulatov and Argon [1994a,b,c]
had proposed a mesoscale model also based on the lowering of (free) energy
barriers ∆G?(σ) through the local stress σ. Similarly to SGR, local transition
rates were evaluated as

ω = ω0exp
(−∆G?(σ)

kBT

)
.

On the other hand, unlike SGR, Bulatov and Argon’s model is lattice-based, and
a Monte-Carlo method is used to determine the mesoscopic cell that will yield at
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every step of the algorithm. More importantly, the elastic interactions due to the
deformation of cells on the (hexagonal) lattice were computed, using Eshelby’s
inclusion procedure.

A numerical investigation of the model showed that, at high temperature, the
simulated flow is homogeneous, because purely thermal activation is predomi-
nant, while collective effects and heterogeneities are more and more enhanced
as the temperature declines.

6.5 the shear-transformation zone (stz) theory

In the wake of Spaepen [1977]’s emphasis on free volume as a rearrange-
ment facilitator, Falk and Langer [1998] suggested to describe the deformation
of (model) metallic glasses by focusing on potential defects, i.e., weak regions
which are most susceptible to yield. These defects are characterised by a high
weakness coefficient, e.g., a large free volume density. An intensive parameter χ,
called effective temperature, is introduced to measure the spatial variations of
this weakness coefficient, that is, the extent of structural disorder. In analogy to
thermodynamics, the density of potential defects is assumed to be proportional
to the Boltzmann factor exp (−1/χ).

Within each defect, thermally activated rearrangements (“shear transforma-
tions”) can take place in any direction, but, for simplicity, only two directions,
forwards (+) and backwards (-), are considered. The overall concentrations of +
and − shear transformations, written n+ and n−, respectively, are central in the
theory, because the strain rate itself is proportional to n+ − n−. These concentra-
tions are not known a priori, but, under some physical assumptions, their rates
of evolution ṅ± can be expressed; the expressions notably involve the rates of
creation and annihilation of forwards/backwards defects, controlled by χ, and
the stress-dependent +/− inversion rates.

Finally, explicit couplings between flow defects are discarded in the theory, but
the effective temperature χ is allowed to vary in time, 2 according to a specified
equation of motion.

If the model parameters are correctly fitted, quantitative agreement with ex-
perimental data on strained metallic glasses is obtained [Langer, 2004].

6.6 hébraud-lequeux’s model and related models

based on a latency time

6.6.1 The mean-field model

Unlike the previous models, Hébraud and Lequeux [1998] investigate the zero
temperature limit and therefore explicitly neglect thermal activation.

2. ... and in space if the model is spatially resolved [Manning et al., 2007].
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The basic ingredients of their model are elastic blocks with a unique stress
threshold σy. The macroscopic drive contributes to increasing the (scalar) stress
carried by each block, linearly with time. Past the threshold σy, there is a finite
rate of yield τ−1

liq ; in other words, past σy, it takes blocks an average time τliq,
presumably set by dissipative forces, to yield. When a block yields, its stress is
instantaneously redistributed to the rest of the medium (see Fig. 6.2a) and reset
to zero locally.

Actually, the authors wanted to proceed analytically and to obtain a tractable
equation operating on the probability distribution P(σ, t). Since this endeavour
would be forlorn with an exact computation of stress redistrubtion, they de-
scribed this process in a mean-field-like way. In this approach, the redistributed
stress following a rearrangement is a random quantity, centred around zero. This
leads to a diffusive contribution D ∂2P(σ,t)

∂σ2 to ∂P
∂t , where the diffusivity D is pro-

portional to the global rate of rearrangements Γ(t) ≡ τ−1
liq

∫
|σ′|>σy

P(σ′, t)dσ′, with
a coefficient α, i.e., D(t) = αΓ(t). Overall, the equation of evolution of the proba-
bility distribution reads:

∂P(σ, t)
∂t

= −µγ̇
∂P(σ, t)

∂σ
+ D

∂2P(σ, t)
∂σ2 − Θ

(
|σ| − σy

)
τliq

P(σ, t) + Γ(t)δ(σ).(6.3)

Here, µ is the shear modulus, Θ is the Heaviside function, and the last two terms
on the rhs account for the process of yield and rebirth at zero stress, which occurs
at a rate τ−1

liq above σy.

Interestingly, in the quiescent state (γ̇ = 0), the model predicts a glass transi-
tion at a critical value of the coupling paramater, αc = 1/2. For α < 1/2, the only
steady-state solution is plastically inactive, with Γ = 0, hence D = 0, while a
solution with D > 0 exists for α > 1/2. Accordingly, the model describes a liquid
state for α > 1/2; under shear, the system in this regime exhibits a Newtonian
flow curve, Σ ∼ γ̇. On the other hand, for α < 1/2, a Herschel-Bulkley behaviour
with a finite yield stress and an exponent n = 0.5 is obtained at small shear rates
[Olivier, 2011].

6.6.2 The Kinetic Elastoplastic theory

Bocquet et al. [2009] took due notice of the analogy between the Hébraud-
Lequeux equation (Eq. 6.3) and a Boltzmann equation. In this analogy, the term
D∂2

σ2 P(σ, t) in Eq. 6.3 plays the role of the Boltzmann collision term.

Beyond mean field, this collision term has no reason to be uniform in space;
it should actually depend on the local rates of rearrangement, through elastic
couplings, viz.,

D(r, t) = f
[{

Γ(r′, t), for all r′
}]

,
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(a) Physical origin of stress redistribution. (b) Life cycle of a block in
Picard’s model.

Figure 6.2: Alternation between elastic regime and plastic events. (a) Picture taken from
Ref. [Bocquet et al., 2009]; (b) sketch adapted from from Ref. [Martens et al.,
2012]. The plastic event is overlaid in red.

instead of depending only on the global one, Γ(t). A low-order spatial expansion
of f (i.e., of the elastic interactions) yields

D (r, t) = αΓ (r, t) + m∆Γ (r, t) .

A diffusive term m∆Γ (r, t) is thus added to the mean-field Hébraud-Lequeux
picture, which leads to the prediction of spatial correlations in the flow. More
precisely, Bocquet et al. [2009] showed that the fluidity f ≡ γ̇/σ then satisfies a
diffusion equation,

f − fb = ξ2∆ f , (6.4)

where the correlation length ξ is proportional to
√

m
|σ−Σ0| and fb is the homoge-

neous (m = 0) solution given by the mean-field Hébraud-Lequeux model.

It turns out that the fluidity diffusion equation (Eq. 6.4) had already been used
by Goyon et al. [2008] to describe the cooperative effects that they had observed
in microchannel flows of concentrated emulsions. With well fitted parameters,
this equation proved very successful in reproducing their experimental velocity
measurements [Goyon et al., 2008, 2010, Geraud et al., 2013].

6.6.3 Picard’s two-time-scale model

Picard et al. [2005] added two main refinements to this model, but jettisoned
the analytical approach in favour of numerical simulations.

First, upon yielding, blocks no longer have their stresses instantaneously brought
to zero, but relax exponentially, with a characteristic time scale τ (in practice,
τ = τliq). The rate of recovery of the elastic regime is τ−1

res , so that the average
duration of a plastic event is the restructuring time τres, which is an additional
model parameter. The use of (fixed) rates, instead fixed durations, introduces
a simple element of stochasticity in the model, and is believed to indirectly ac-
count for the variability of local environements. The life cycle of an elastoplastic
block is sketched in Fig. 6.2b.
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Secondly, stress redistribution is now explicitly computed, with the help of
an Eshelby-like propagator (see Chapter 8), which should provide a much more
faithful account of spatial correlations and which renders parameters α and m
superfluous .

Numerical simulations have revealed a complex spatiotemporal behaviour in
slow flow, which fades into a more homogeneous picture as the shear rate is
increased [Picard et al., 2005]. In Ref. [Martens et al., 2012], the model was shown
to exhibit permanent shear localisation at low shear rates, when the restructuring
time is long. As the Picard model will be used as both a starting point and a
benchmark in the following, these flow properties will be discussed in greater
detail in the next chapters.

Nevertheless, it can already be pointed out that, in Picard’s model as well as
in Hébraud-Lequeux’s theory and its extension by Bocquet et al., the origin of
the stress increase with the shear rate resides in the latency time τliq prior to
yield, during which blocks continue to accumulate elastic strain, although their
yield stress has already been overcome. Annoyingly, this aspect can hardly be
justified within a PEL perspective.
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7
I D E N T I F I C AT I O N O F T H E R E L E VA N T P R O C E S S E S I N T H E
R H E O L O G Y O F AT H E R M A L S O L I D S

The review of elastoplastic models conducted in the previous chapter has re-
vealed that the apparent unity of the elastoplastic description is shattered by the
diversity of the physical ingredients that are used in practice. Here, we aim to
identify the physical processes that may be relevant for the bulk rheology, on
a theoretical basis, with the perspective to get a clearer view on the choice of
model ingredients.

7.1 relevant timescales for the bulk rheology

The flow curve is central in rheology. Since it quantifies the dependence of the
macroscopic stress on the driving velocity, we first enquire into temporal aspects.

7.1.1 Two timescales in the limit γ̇→ 0

Consider a dense packing of particles confined between parallel walls and
subject to a (macroscopically) constant shear rate γ̇, imposed through successive
infinitesimal displacements of one of the walls. We start the discussion with an
enumeration of the timescales that subsist in the limit of vanishing shear rate. To
do so, we focus on a “mesoscopic” region of the typical size of a plastic event.

First in line comes the timescale(s) for thermally-activated structural relax-
ation, τT, which diverges in the athermal limit.

Secondly, the response of the region of interest to a small displacement of the
wall can take a finite time, τpl. This time essentially combines the duration of a
local rearrangement, i.e., the time needed to dissipate the elastic energy that was
stored locally [Nicolas and Barrat, 2013b, Ikeda et al., 2012], with the delay for
shear signal transmission within one avalanche [Chattoraj et al., 2011].

τT and τpl are the only potentially relevant timescales when γ̇ → 0. Within a
potential energy landscape (PEL) description, they are associated with thermally-
activated hops between energy (meta)basins, and descents towards the local min-
imum, respectively.

7.1.2 The quasi-static limit and beyond

The application of a finite shear rate introduces a new timescale, γ̇−1γy, which
is the duration of the elastic loading phase prior to yield. In the PEL view-
point, this is also the “refresh rate” of the PEL topology, owing to changes in the
boundary conditions.
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As stated by Maloney and Lemaître [2006], quasistatic simulations, which per-
form an energy minimisation after each strain increment, rely on the following
separation of the material and driving timescales:

τpl ≪ γyγ̇−1 ≪ τT. (7.1)

As long as Eq. 7.1 holds, the system will follow the very same trajectory in phase space
as a function of the strain γ ≡ γ̇t, regardless of the shear rate, thereby yielding a
constant elastic stress σel. One should now recall that, for a solid-like material
at low shear rate, the elastic stress dominates the total stress Σ to such an extent
that the dissipative contribution to the stress is often discarded in computer
simulations, viz., Σ ≈ σel, [Tighe et al., 2010] and can therefore be dismissed as
a candidate for effecting the stress increase. This point is substantiated by the
large discrepancy between the low-frequency loss and storage moduli in these
materials, which differ by at least one order of magnitude in a liquid foam, for
instance [Cohen-Addad et al., 1998].

Accordingly, the only way to recover a non constant flow curve Σ (γ̇) involves
the breakdown of the timescale separation (Eq. 7.1). In accordance with this
deduction, Ikeda et al. [2012, 2013] recently showed that two rheological regimes
can be distinguished, depending on whether γ̇−1 � τT (“glassy rheology”), or
not (“jammed, or athermal, rheology”) .

7.1.3 Limitations of the foregoing discussion

Before we start exploring these two regimes, let us point out some limitations
of the foregoing discussion. First, ageing effects that are not reducible to hops in
the considered PEL (“coarsening”) have been left aside so far. In liquid foams,
e.g., Gillette shaving foam, coarsening originates from gas diffusion between
particles, drainage, and bubble coalescence, and it was shown to affect the linear
viscoelastic properties of the material [Cohen-Addad et al., 1998]. But, a few
minutes after the foam has been sprayed, the evolution occurs over timescales
significantly longer than the values of γyγ̇−1 probed experimentally.

Secondly, the reference to a single timescale τT (or τpl) sounds of the utmost
naïvety: one does indeed expect distributions of such timescales. But this hardly
affects the arguments exposed above: Writing, e.g., γyγ̇−1 ≪ τT was just a
convenient way to indicate that values τT < γyγ̇−1 can be neglected in the distri-
bution. The fact that that τpl may actually cover a broad spectrum of relaxation
timescales (as evidenced, e.g., in foams [Buzza et al., 1995, Cohen-Addad et al.,
1998]) shall however prove important in Chapter 11.
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7.2 athermal regime

7.2.1 An interplay between the drive and (cascades of) rearrangements

By definition, the athermal limit dictates τT → ∞. Consequently, to break
the separation of timescales (Eq. 7.1), the driving timescale γyγ̇−1 must interfere
with the distribution of τpl . In other words, the flow curve results from an
interplay between the drive and the (cascades of) localised rearrangements.

In granular media or suspensions of hard particles, the interplay is quantified
by a dimensionless inertial or viscous number [da Cruz et al., 2005, Boyer et al.,
2011]. More generally, the descent towards the energy minimum of the system
is disrupted by the external drive. The impossibility for the system to fully relax
between strain increments (see Fig.1(right) in Ref. Tsamados [2010]) is reflected,
for instance, by the variations of the mean particle overlaps with the shear rate.
Near the jamming transition, these variations are correlated to the flow curve
[Olsson and Teitel, 2012]. Deeper in the solid phase, strain accumulation during
the propagation of shear waves sets a shear-rate dependent upper bound on the
spatial extent of the avalanches observed in athermal particle-based simulations
[Lemaître and Caroli, 2009]. Some authors [Lemaître and Caroli, 2009, Fusco
et al., 2014] claim that the macroscopic stress evolution is a direct consequence
of this variation of avalanche sizes with the shear rate. 1

However, a survey of existing elastoplastic models designed for the low-temperature
regime reveals that they very generally fail to describe this disruption of plastic
events through the drive. For instance, we have already noted that the origin
of the stress increase in Hébraud-Lequeux’s model or the related Picard model
is the very questionable latency time τliq. To remedy this deficiency, we shall
introduce new dynamical rules in Chapter 9, giving a more realistic reflection of
the physical processes at play.

7.2.2 Athermal materials?

The recipe to make an athermal material in silico is pretty simple: thermal fluc-
tuations are simply removed from the equation of motion. But what materials
can be considered athermal in nature?

Foams and, to a lesser extent, emulsions made of large droplets are the paradig-
matic examples of athermal solids, and are indeed classified as jammed, by op-
position to glassy, in Ref. [Ikeda et al., 2013]. However, the possible occurrence
of coarsening somewhat taints the athermal picture: these materials, too, age.

Ageing is also observed in granular matter. On top of that, although thermal
fluctuations are almost systematically assumed to be negligible because of the
size of the grains, in Appendix 7.5.1 we list a few arguments that might cloud
this evidence for granular matter, especially under shear.

1. This claim will be questioned in Chapter 17.
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7.3 thermal regime and ageing

Let us now turn to materials with significant thermal fluctuations, but still
considerably below the glass transition temperature.

Schall et al. [2007] show that their slowly sheared colloidal suspensions fall
into this category, through an assessment of the typical activation energy: plastic
events are mostly of thermal origin, but the stress slightly biases the probabilities
of shear transformations in one direction.

Let me mention that, in the presence of thermally activated rearrangements,
the existence of a yield stress in the mathematical limit γ̇ → 0 is rather un-
expected (if it does indeed exist): suppose that the thermally activated escape
from an energy (meta)basin takes a typical time τT; then, the elastic strain that
is built up prior to plastic relaxation scales with γ̇τT, which goes to zero in the
limit of vanishing shear rates. 2 The paradox is solved by calling back to mind
Bouchaud’s trap model or the SGR picture (see Sections 1.4.2 and 6.4): as time
passes, the system ages and τT diverges, at vanishing shear rates. These remarks
are vested with special importance for elastoplastic modelling: they imply that,
to describe the rheology of thermal systems, even a minimal model ought to
include an ageing process, at least in an ad hoc way..

In Chapter 9, numerical simulations of our model will allow us to investigate
further aspects of the ageing regime.

Clearly, a crossover exists between the athermal limit and the thermal regime.
It is noteworthy that changes in the scalings of the shear stress and the shear
moduli associated with this crossover region have been reported experimen-
tally [Basu et al., 2014, Nordstrom et al., 2010] and numerically [Ikeda et al.,
2013].

7.4 description of the stress relaxation during

a plastic event

Having discussed rheologically relevant timescales on the basis of very general
arguments, we are now intent on understanding the origin of the relaxation
timescale during a plastic event in a more concrete situation. To do so, we
develop a continuum mechanics-based framework.

2. In mode-coupling theory, the ideal glass does not age, but there are no activated processes
either...
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7.4.1 A Hookean medium

Modelling the elastic regime should pose no serious problem. In that case,
the stress tensor Σ is simply related to the linearised elastic deformation tensor

E ≡ ∇u+∇u>
2 via Hooke’s law,

Σ = CE, (7.2)

where C is a fourth-rank tensor called the stiffness tensor. 3 In two dimensions, 4

it is usually convenient to extract the deviatoric part σ from the total stress tensor
Σ through the introduction of the isotropic pressure p ≡ −Tr Σ/d, where d = 2
is the dimension of space, viz.,

Σ = σ− pI,

where I is the identity matrix. Similarly, the contraction/dilation component

εvol ≡ Tr E/d can be subtracted from the linear deformation tensor to obtain

ε ≡ E− εvolI. It is noteworthy that, for an incompressible material, 0 = ∇ · u =

Tr E = εvold, therefore E reduces to its deviatoric part ε. With these notations
and making the assumption that the material is isotropic, Hooke’s law (Eq. 7.2)
turns into

σ = 2µε,

i.e.,

(
σxx−σyy

2 σxy

σxy
σyy−σxx

2

)
= 2µ

(
εxx−εyy

2 εxy

εxy
εyy−εxx

2

)
,

where we have introduced the shear modulus µ. Mechanical equilibrium then
states

∇ · σ−∇p = 0

2µ∇ · ε−∇p = 0. (7.3)

To insist on the fact that Eq. 7.3 describes the elastic state of the system prior
to the perturbations induced by an upcoming plastic event, let us add (0) super-
scripts to the variables

2µ∇ · ε(0) −∇p(0) = 0.

3. To avoid confusion regarding the tensor ranks, distinct notations for fourth-rank tensors
(e.g., C) , second-rank tensors (e.g., E), and vectors (e.g., u) are temporarily used.

4. Although the expressions are formally simpler in two dimensions, the reasoning also holds
in three dimensions, with no significant alteration.
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7.4.2 Deformation of a fluid-like plastic inclusion

Clearly, Hooke’s law will only hold to a certain extent. Indeed, when the
configuration is too strained locally, say, in a region S , particles will rearrange
so that the system evolves into a new local minimum: this is a plastic event.

While this rearrangement occurs, the memory of the reference elastic config-
uration is lost, and, consequently, the local elastic stress vanishes. The region
undergoing the rearrangement is therefore a fluid-like inclusion in an elastic
medium. It follows that its stress is mainly dissipative, and elastic forces shall
be neglected in the inclusion for the entire duration of the plastic event. In the
overdamped regime, force balance during the plastic rearrangement reads

∇ · σdiss −∇p = 0 in region S ,

2µ∇ · ε−∇p = 0 outside S .
(7.4)

Here, the dissipative stress σdiss was supposed to be concentrated in the rear-
ranging region. For simplicity, we further assume that dissipation is linear with
respect to the strain rate, viz. σdiss = 2ηeff ε̇. This linearity is naturally to be
understood as a simplification, and not as a claim of the existence of some uni-
versality regarding the dissipative mechanism (see Ref. [Le Merrer et al., 2012]
for a non-linear law in the case of a foam). In addition to Eqs. 7.4, mechanical
equilibrium requires the continuity of the stress vector σ · n across the boundary
of region S , of normal n. If S is small enough so that the (plastic) deformation
rate in this region can be considered homogeneous, i.e., ε (r) ≡ εin for r ∈ S , the
continuity of stress 5 all along the boundary ∂S of S leads to:

2ηeff ε̇in = 2µε∂S (7.5)

ε̇in =
1
τ

ε∂S , (7.6)

where ε∂S refers to the (elastic) strain on the boundary ∂S surrounding the plas-

tic inclusion. The timescale τ ≡ ηeff
µ for the viscous dissipation of the elastic en-

ergy has been made apparent. One should already note that, in this continuum
description, the deformation tensor will not be continuous across the boundary
∂S .

Comment on the neglect of dilational effects in the model

The present treatment does not describe the dilational effects that may take
place during plastic events or the deformation field thereby induced. In metallic
glasses, the volume change in the activated state (at the saddle point) may how-
ever be determinant in the evaluation of the associated energy barrier Ey [Schuh

5. We have assumed that the isotropic pressure p, which is associated to volumetric changes,
remains continuous across the boundary ∂S . This assumption is debatable in cases where signifi-
cant dilation is observed in plastic regions.
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et al., 2007]. Nevertheless, since the physical origin of energy barriers, or, equiv-
alently, yield stresses, need not be specified in elastoplastic models, one might
argue that this local dilational effect is included implicitly in Ey.

On the other hand, free volume diffusion due to local dilations is clearly dis-
carded in the model, although, in metallic glasses, it is believed be connected
with strain localisation [Manning et al., 2007, Bokeloh et al., 2011].

For soft jammed materials at high density, e.g., concentrated emulsions, these
dilational effects are arguably secondary, insofar as the flow is not accompanied
by any observable variation in the local volume fractions [Goyon et al., 2008,
Chaudhuri et al., 2012].

7.4.3 Counter-reaction of the elastic medium

Equation 7.6 entails a deformation of the incluson S . But, since the inclusion is
embedded in an elastic medium, its deformation induces additional elastic strain
and pressure fields, ε(1)(r) and p(1)(r), in the surrounding medium. Because the
problem under consideration is purely linear, for any r /∈ S , there exists a fourth-
rank tensor G(r) relating the strain increment (per unit time) to the deformation

of the boundary ∂S (per unit time), viz.,

ε̇(1)(r) = G(r)ε̇in. (7.7)

Moving back to the vicinity of region S , if the inclusion is small enough and can
be considered circular, the strain field increment will be approximately uniform
at its outer boundary ∂S . Its value obeys

ε̇(1)
∂S

= −g0ε̇in, (7.8)

where g0 is a scalar (and not a tensor) because of symmetry arguments. More-
over, since the induced strain is a counter-reaction to the elastic stress applied on
the boundary ∂S , it will be of opposite sign, hence g0 < 0. This is most easily
understood in a one-dimensional geometry, as sketched in Fig. 7.1. Combining
Eq. 7.8 with Eq. 7.6 and noting that ε̇(1)

∂S
= ε̇

∂S
because ε(0) is constant, one finally

arrives at
ε̇

∂S
=
−g0

τ
ε∂S . (7.9)

Equation 7.9 expresses the fact that the force driving the rearrangement is the
elastic stress imposed on S by the rest of the system, and that, in opposing this
force, dissipation sets a finite timescale τ to the plastic transformation, 6 up to
a geometric prefactor g0. Remarkably, Cloitre et al. [2003] suggested that the
duration of a rearrangement in soft colloidal pastes coincides with the shortest
structural relaxation time τβ, which also results from a “competition between

6. The finite duration of a plastic rearrangement, which is neglected in SGR, the Kinetic Elasto-
plastic model [Bocquet et al., 2009], as well as in the mesoscopic models of Refs. [Baret et al., 2002,
Homer and Schuh, 2009], might be key to understanding the compressed exponential relaxation
of different soft materials. For details, see Refs. [Bouchaud, 2008, Ferrero et al., 2014].
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Figure 7.1: Sketch of a one-dimensional fluid inclusion S in an elastic medium. Since
the inclusion deforms in reaction to the elastic stress to which it is subject,
the effect of the deformation is to reduce the elastic stress in the vicinity of
the inclusion, hence g0 < 0 (see text).

elastic restoring forces and interparticle friction”, and experimentally confirmed
the proposed scaling ηeff

µ for the latter time. This scaling was also used to collapse
flow curves onto a single master curve, which bolsters its relevance for the rhe-
ology of these materials. Moreover, Cohen-Addad et al. [1998] have introduced
the same characteristic time τ = ηeff

µ for the relaxation of weak inclusions in a
coarsening liquid foam.

One is now left with the evaluation of the elastic propagator G(r) introduced

in Eq. 7.7, which is one of the topics of the next chapter.

Key Points of the Chapter

– In athermal amorphous solids, the non constant flow
curve results from an interplay between the external
drive and (cascades of) localised rearrangements.

– During a rearrangement, the driving force, which is
the elastic strain imposed at the boundary of the plas-
tic inclusion, is opposed by dissipative forces (in the
overdamped regime).

– The deformation of the inclusion lowers the driving
force at the boundary; and a timescale set by dis-
sipative forces is made apparent in the overdamped
regime.

88



A
7.5 appendices

7.5.1 Is granular matter athermal?

Are thermal fluctuations truly negligible in (sheared) granular media?
The mechanical properties of densely packed granular matter mostly originate

in the contacts between grains.
But contacts between surfaces (and hence the friction coefficient) are known to

mature with time, through a slow (logarithmic) increase of the contact area [Pers-
son, 1999]. This increase results from the thermally activated nucleation of
“joints” [Bureau et al., 2002]. For granular matter, these joints may be moisture-
induced water bridges between grains [Bocquet et al., 1998]. As a complemen-
tary, or alternative, explanation, nonlinear acoustic measurements suggest that
macroscopic contacts may age via the thermal rearrangement of the nanoscale
contacts that form them (the failure of these nanocontacts is even claimed to be
a precursor of macroscopic failure) [Zaitsev et al., 2008, 2014].

Additionally, granular media are sensitive to environmental fluctuations, such
as mechanical vibrations or (repeated) variations of the temperature [Divoux
et al., 2008], and we expect this sensitivity to be heightened when the (pre-
sheared) material is on the brink of failure.

These different effects have the potential to explain the following paradox:
granular contacts involve energies far larger than the thermal energy kBT, so
one would expect them to either fail immediately or resist forever upon the
application of a force. Contrary to this intuition, pre-sheared granular media
relax over surprisingly long timescales, with some rearrangements that were
reported to occur hours after shear cessation [Hartley and Behringer, 2003].

On a more general note, it is important to realise that macroscopic failure can
be greatly facilitated if it is mediated by cascading (asymmetric) microscopic pro-
cesses, whether it be the formation of capillary bridges or the failure of nanocon-
tacts. Thermal fibre bundle models (see Appendix 7.5.2) exemplify this effect, in
the limit of fully irreversible microscopic failures.

Nevertheless, even if thermal fluctuations may indeed have a visible macro-
scopic effect on granular matter in some situations, it is dubious that tempera-
ture might significantly impact their rheology.

As an incidental remark, the foregoing discussion has underscored how inter-
woven tribology and the rheology of amorphous solids are [Bureau et al., 2002];
in particular, mean-field theories in the two fields bear striking resemblance. To
convince himself or herself, the reader may simply compare the equations of
the Hébraud-Lequeux model or SGR with Persson’s 7 theory of friction [Persson,
1995, 1999]. The resemblance is even more striking in the case of SGR’s trans-
position to granular media through the substitution of the stress ensemble for

7. The similarity was pointed out to me by Prof. Lydéric Bocquet.
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the energy ensemble [Behringer et al., 2008, Bi and Chakraborty, 2009], and it
is then hardly a surprise that both theories yield identical predictions, namely,
Σ− Σ0 ∼ ln (γ̇), where γ̇ is either the shear rate or the sliding velocity.

7.5.2 Thermal fibre bundle models (or: why do firs break long after they have
been covered with snow?)

If the failure of a macroscopic contact is mediated by essentially irreversible
microscopic processes, such as the failure of nanocontacts, then thermal fluctua-
tions may play a decisive role. We purport to illustrate this with a simple fibre
bundle model in which fibres may (irreversibly) break under the load they bear.

We should however emphasise that, insofar as the explanation is of quite gen-
eral scope, similar models have already been proposed, and studied both more
rigorously and in greater detail in the literature. In particular, disorder in the
yield stresses of individual fibres was shown to lower the effective yield stress,
or, equivalently, increase the effective activation temperature [Roux, 2000, Politi
et al., 2002].

Let us consider a bond of yield energy Ey � kT, bearing a total load/energy E.
Now, suppose that the bond is actually a bundle made of n microscopic bonds,
of yield energy Ey/n each, and each bearing an energy E/n.

The yield rate of a microscopic bond is initially: f = exp
(

β
E−Ey

n

)
, where

β ≡ (kT)−1.

If f � 1, the first microscopic bond will break after time

τ1 =
1
n

exp
(

β
Ey − E

n

)
,

and the load it used to bear will then be distributed among the surviving bonds,
so that the second rupture will occur after a time

τ2 =
1

n− 1
exp

(
β

(
Ey

n
− E

n− 1

))
.

It immediately follows that total failure will occur at time

T = ∑ τi =
n−1

∑
i=0

1
n− i

exp
(

β

(
Ey

n
− E

n− i

))
.
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Approximating the sum with an integral gives

T − τn−1 ∼
∫ n−1/2

x=1/2

1
n− x

exp
(

β

(
Ey

n
− E

n− x

))
dx.

∼ exp
(

β
Ey

n

) ∫ n−1/2

y=1/2

exp
(
−β E

y

)
y

dy

∼ exp
(

β
Ey

n

) ∫ 2

z= 1
n−0.5

exp (−βEz)
z

dz.

Finally,

T ∼ exp
(

β
Ey

n

) ∫ βE

βE
n−0.5

exp (−ζ)

ζ
dζ.

� exp
[
β
(
Ey − E

)]
for large n.

In conclusion, failure can be enormously accelerated if it is mediated by irre-
versible “microscopic” processes.
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8
M E T H O D S

In the previous chapter, we have highlighted key processes in the flow of
glassy or jammed materials. These key processes should be the building blocks
of any realistic mesoscopic model. Among them, the non-local phenomenon of
stress redistribution is at the origin of avalanches of plastic events and corre-
lations. In this chapter, the elastic propagator G(r) introduced in Eq. 7.7 and

governing stress redistribution in a uniform elastic medium is derived, follow-
ing (and extending) the calculations of Ref. [Picard et al., 2004]. In addition,
technical details pertaining to the implementation of a lattice-based elastoplastic
model are provided.

8.1 general algorithm

First, we summarise the general algorithm.

The material is discretised into a regular square lattice of N = L× L elastoplas-
tic blocks, labelled (i, j), of the typical size of an elementary shear rearrangement.
In a time step of duration dt, each block receives a stress increment comprising a
contribution Σ̇appdt from the macroscopic drive and a contribution from plastic
events, viz.,

∂tσ(i, j; t) = Σ̇app + 2µ
L

∑
i′=1

L

∑
j′=1
G
(
i− i′, j− j′

)
· ε̇pl(i′, j′; t), (8.1)

where Σ̇app is the contribution from the macroscopic drive (in simple shear, the
only nonzero component of Σ̇app will be µγ̇), and ε̇pl(i, j; t) = σ(i, j; t)/2µτ if
block (i,j) is plastic, 0 otherwise. The second term on the rhs accounts for (both
local and non-local) stress redistribution during plastic events. Regarding the
local term, note that G(0, 0) will have negative eigenvalues, leading, as expected,
to the relaxation of stress during plastic events; also note that, during these
events, the local stress is of dissipative nature (see Eqs. 7.4 and 7.6).

The dynamical rules governing the alternation between the elastic regime and
the plastic phase shall be specified later.
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Figure 8.1: Modelling of a plastic event on a lattice.

8.2 derivation of the elastic propagator in a two-
dimensional uniform elastic medium

8.2.1 Unbounded medium

From Section 7.4.3, the elastic propagator G(r) is defined by the relation

ε(1)(r) = G(r)ε̇in,

which solves the problem




2ηeff∇ · ε̇in −∇p = 0 in region S ,

2µ∇ · ε −∇p = 0 outside S

2ηeffε̇in = 2µε∂S ,

(8.2)

where region S deforms with strain rate ε̇in and ε∂S = ε
(0)
∂S + ε

(1)
∂S . This decom-

position highlights the fact that the “spontaneous” deformation of the boundary
∂S at a rate ε̇pl ≡ ε(0)

∂S/τ is countered by the elastic reaction of the medium ε̇(1).

To a large extent, the problem formulated in Eqs. 8.2 is similar to Eshelby
[1957]’s inclusion problem, except that the latter features an eigenstrain ε�, i.e.,
the spontaneous deformation that the inclusion would endure were it not con-
strained (hence, σ = 2µ(ε − ε�)), whereas the problem under consideration in-

volves a plastic strain rate ε̇pl. 1 To proceed, we resort once more to the linear-
ity of the equations and the approximate circular symmetry of the inclusion to
claim that, up to a hypothetical scalar factor that may anyway be absorbed in the
timescale τ, the strain increments ε(1)dt during time interval dt can be obtained

1. More rigorously, at any time, the strain field in the outer domain is the solution of an elastic
problem with Neumann boundary conditions along ∂S , namely, 2µε∂S · n = σ · n, where n is the

normal vector to ∂S and σ is the (uniform) stress in the inclusion. Therefore, it has a unique

solution, regardless of the nature of the stress σ.
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by replacing the plastic inclusion with an Eshelby-like inclusion of eigenstrain
ε̇pldt, viz., 

2µ∇ ·
[
ε̇(1) (r)− ε̇plΘS (r)

]
−∇ ṗ(1)(r) = 0

∇ · u̇(1) = Tr
[
ε̇(1)
]

= 0,
(8.3)

where the characteristic function ΘS takes the value of 1 inside the inclusion and
0 outside.

At this stage, let us remark that we can condense the notations for the stress
and strain tensors as follows:

ε ≡
(

εxx εxy

εxy εyy

)
−→ ε ≡

(
εxx−εyy

2

εxy

)
,

σ ≡
(

σxx σxy

σxy σyy

)
−→ σ ≡

(
σxx−σyy

2

σxy

)
and p ≡ −σxx + σyy

2
.

Picard et al. [2004] solved the scalar version of Eqs. 8.3, thus obtaining the

strain ε
(1)
xy induced by an eigenstrain ε̇pl =

(
0

ε
pl
xy

)
aligned along the macrosopic

shear direction, in the limit of a pointwise inclusion centred on the origin, i.e.,
ΘS (r) → a2δ(r), in an incompressible medium. Here, we extend the derivation
to tensorial strains and stresses.

Let us first drop the dots indicating time derivatives and the “(1)” superscripts
denoting increments to the built-in elastic field, and recast Eqs. 8.3 as

µ∇2u−∇p + f = 0

∇ · u = 0,
(8.4)

where we have used the shorthand f ≡ −2µ∇ ·
[
εpla2δ (r)

]
and the equality

∇ ·
[
∇u>

]
= ∂i∂jui = ∂j∂iui = 0 in the first line. Equations 8.4 define a well-

known problem in hydrodynamics [Barthès-Biesel, 2010], whose solution is most
conveniently expressed in Fourier space q =

(
qx, qy

)
with the help of the Oseen-

Burgers tensor O (q) = 1
µq2

(
I− 1

q2 q⊗ q
)

, viz.,

u(q) = O(q) · f (q) =
1

2µq2

(
I− 1

q2 q⊗ q
)
· f (8.5)

Finally, using σ(q) = µi (q⊗ u + u⊗ q)− 2µεpl, we arrive at(
σxx

σxy

)
= 2µG ·

(
ε

pl
xx

ε
pl
xy

)
(8.6)
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Figure 8.2: Colour maps of the redistributed stress induced by a unit plastic strain along
xy, localised at the origin. N = 32× 32. (The central block is artificially coloured).

where

G ≡ 1
q4

[
−(q2

x − q2
y)

2 −2qxqy(q2
x − q2

y)

−2qxqy(q2
x − q2

y) −4q2
xq2

y

]
. (8.7)

The redistributed stress following a unit plastic event along xy, σ = 2µG ·
(0 1)>, is shown in Fig. 8.2. As expected, the σxy-stress increment, G22, is identical
to the scalar elastic propagator derived by Picard et al. [2004]. In real space, the
elastic propagator coincides with the solution of Eshelby’s inclusion problem in
the limit of a pointwise inclusion, in an incompressible medium.

Incidentally, the assumption of isotropic elasticity could be questioned in the
case of sheared granular media, which exhibit (anisotropic) force chains [Torde-
sillas et al., 2012] ; however, experimental observations support the existence of
an Eshelby-like field [Le Bouil et al., 2014].

8.2.2 Implementation

At each time step, the redistributed strain ε(1) given in Eq. 8.6 needs to be
computed afresh.

To do so in a numerically efficient way, the (discretised) convolution in Eq. 8.1,
i.e., the second term on the rhs, is computed in Fourier space, with the expression
of the elastic propagator G given in Eq. 8.7. It is worth noting that, on a discrete
lattice, only wavenumbers in the first Brillouin zone, viz., qx, qy ∈]−π, π], will be
relevant. In addition, periodicity will further restrict the nonzero Fourier modes
to multiples of π/L.

For accuracy, 2 we resolve the stresses on a finer mesh, in which each elasto-
plastic block is made of four subcells. This refinement of the grid somewhat

2. If the grid is not refined, the response field to ε
pl
xx exhibits some numerical instability, with

alternating blocks of “stronger” and “weaker” response, like a checkerboard.
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affects stress redistribution in the near-field, also for the xy-component, but over-
all the effect on, e.g., the flow curve (with the dynamical rules which will be
introduced in Section 9.3) is relatively minor, albeit perceptible (data not shown).
Also note that the computation of the elastic propagator in discrete space may
slightly violate the equality of the streamline-averaged shear stresses imposed
by static mechanical equilibrium. To recover strict mechanical equilibrium, we
add a small ad hoc offset to each streamline at every time step. We checked that
this procedure has only little impact on both the flow curve and the correlation
functions.

The use of a Fast Fourier Transform routine leads to an algebraic speed up of
the routine, insofar as each loop will only involve O (N ln(N)) operations.

It should be pointed out that, because blocks have a finite size, the computa-
tion of the elastic response field based on Eq. 8.6 and the underlying assumption
of pointwise plastic events actually miss some near field terms. We cannot ex-
clude that this, in addition to the choice of a regular lattice, may induce numeri-
cal artifacts [Budrikis and Zapperi, 2013].

8.3 how to account for convection

Although in reality shearing a material obviously leads to the displacement
of material volumes, in our quest for minimalism we are tempted to discard
these displacements and only consider the associated strains in each block. This
crude simplification leads to a first class of models, called static here, in which
elastoplastic blocks are pinned to a fixed position in space.

Convected models allow us to go beyond this simplification by accounting for
the mechanically expected motion of the the blocks, albeit in a coarse manner,
more precisely, only in the direction of the macroscopic flow. Because, to the best
of my knowledge, we were the first to implement convection in an elastoplastic
model, I will take the liberty to delve into the technical details of this aspect.

8.3.1 Relative displacements of the streamlines

In the continuum-mechanics based approach adopted here, notably in Sec-
tion 8.2, the displacement (or velocity) field can be rigorously calculated at any
position in space. However, in order to preserve the integrity of the lattice, blocks
will not be displaced individually, but along with all other blocks on the same
streamline, i.e., at equal y = y0. In other words, we shall incrementally shift
streamlines in the flow direction x. Therefore, we can settle with the calculation
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of the average (non-affine) displacement along x on streamline y0 that is induced
by plastic events, viz.,

〈ux〉x (y0) ≡ L−1
∫

ux (x, y0) dx

= ∑
qy

ux(qx = 0, qy)eiqyy0

= ∑
qy

−2i
qy

ε
pl
xy
(
qx = 0, qy

)
eiqyy0 ,

where the sums run over all relevant wavenumbers qy = 2πn/L, n ∈ Z? and we
have dropped the (1)-superscripts and the hats denoting Fourier transforms. To
obtain the last equality, we have made use of Eq. 8.5. Finally, one arrives at,

〈ux〉x (y0) = ∑
qy

−2i
qy

eiqyy0

×
[

L−1 ∑
yev

〈
ε

pl
xy(x, yev)

〉
x

e−iqyyev

]

=
−2i

L ∑
yev

〈
ε

pl
xy

〉
x
(yev)∑

qy

eiqy(y0−yev)

qy

= ∑
yev

sign(y0 − yev)

×
(

1− 2 |y0 − yev|
L

)〈
ε

pl
xy

〉
x
(yev) ,

where the sum runs over all streamlines yev and, to get the last line, we have
summed the second series over all qy = 2πn/L.

Whenever the cumulative displacement of a streamline in the flow direction
reaches the size of a block, it is shifted. As a technical detail, note that we also
regularly add a random displacement offset to all lines. Otherwise, lines with
lower average velocities will be shifted less often than others and thus artificially
pinned: they will tend to conserve their neighbours (in the velocity gradient
direction) for a longer time - whereas the motion with respect to neighbouring
lines should, in principle, be exclusively controlled by the local shear rate. It
turns out that, in a simple shear situation, the system is quite sensitive to such a
bias, which may lead ’pinned’ lines to concentrate more plastic activity, and we
have indeed observed this propensity of the plastic activity to localise on nearly
immobile lines. The artifact vanishes when random displacement offsets are
added to all lines, as explained above, and translational invariance is restored.

8.3.2 Frame deformation

There is an issue with the implementation of convection via incremental shifts
of the streamlines, in the way that it has just been presented. Indeed, it creates a
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spurious discontinuity at the edge of the (periodic) simulation cell, because the
“top” and “bottom” streamlines are shifted much more frequently with respect
to one another than any other neighbouring streamlines. To remedy this, the
whole simulation cell must to be deformed, in a fashion equivalent to Lees-
Edwards boundary conditions in atomistic simulations: periodic replicas of the
system in the velocity gradient-direction shall be displaced along the flow, while
replicas in the flow direction remain unaffected. At a given time, the elastic
propagator shall then be expressed in a deformed frame, with (contravariant)
coordinates (x′, y′) = (x− γy, y), where γ is the average shear strain experienced
by the cell. Here, unprimed quantities refer to the initial orthonormal frame.
The corresponding transformation of the (covariant) Fourier wavenumbers reads
q′ ≡

(
q′x, q′y

)
=
(
qx, qy + γqx

)
.

The metric tensor,

(
gij
)
≡ ∂sk

∂s′i
∂sl

∂s′j
δkl =

(
1 γ

γ 1 + γ2

)
, (8.8)

where s = q or s = (x, y), is a convenient tool to compute distances in the
deformed frame; it relates covariant and contravariant quantities, x′j = gijx′i as
well as q′j = gijq′i, for i, j ∈ {x, y}. When γ 6= 0, the metric tensor gij differs from
identity, so that q′i 6= q′ i. Nevertheless, provided that this difference is accepted,
Eq. 8.5 still holds, viz.

u′i(q′) =
−2i
q′4

[
q′2q′kε′pl ki(q′)− q′iq′kq′lε

′pl kl(q′)
]

, (8.9)

from which the strain tensor ε′ij = q′ iu′j+q′ ju′i
2 and the elastic (deviatoric) stress

σ′ij = 2µ
(
ε′ij − εpl ij) readily follow. Finally, the components of the stress tensor
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(and not the coordinates of the points at which it is evaluated) are to be expressed
in the original, orthogonal basis (x, y) , as follows:

σij(q′) =
∂xi

∂x′r
∂xj

∂x′s
σ′rs(q′)

=
2µ

q′4
[
q′2
(
AuP jεpl ui(q′) +AuP iεpl uj(q′)

)
− 2P iP jAuAvεpl uv(q′)

]
− 2µεpl ij(q′). (8.10)

Note that we have used the shorthands q′2 = q′kq′k = q2, P i ≡ ∂xi

∂x′r qr, and
Au ≡ ∂x′k

∂xu qk =
(
qx, qy − γqx

)
.

Explicit evaluation of Eq. 8.10 with the metric tensor (Eq. 8.8) leads to our final
result: (

σxx

σxy

)
(q′) = 2µG∞ ·

(
εpl xx

εpl xy

)
(q′), (8.11)

with

G∞ ≡ 1
q′4

[
−(q′2x − q(γ) 2

y )2 −2q′xq(γ)y (q′2x − q(γ) 2
y )

−2q′xq(γ)y (q′2x − q(γ) 2
y ) −4q′2x q(γ) 2

y

]
(8.12)

and q(γ)y ≡
(

q′y − γq′x
)

.
With biperiodic boundary conditions, this propagator results in periodic im-

ages of the plastic events that are not aligned along the velocity gradient direc-
tion, but tilted with an “angle” γ.

Besides the (long-range) effect of these periodic images, the shape of the elas-
tic propagator in real space should in principle be insensitive to the frame in
which it is computed. However, we would like to indicate that the discrete na-
ture and the symmetries of the meshgrid that we use introduce some near-field
dependence of G∞ on γ, up to a distance of few meshes away from the origin of
the plastic event. It is therefore important to keep γ within a relatively narrow
range, here, [−1/2, 1/2], which is achieved thanks to the periodicity of the system
in the flow direction.
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A
8.4 appendix

8.4.1 Elastic propagator in three dimensions

All the numerical work presented in this manuscript has been performed in
two dimensions. Some of the scalings that we have observed, for instance that
of the four-point stress susceptibility introduced in Chapter 12, would deserve
to be checked in three dimensions (3D). But this extension naturally requires the
derivation of the elastic propagator in 3D.

Here, I simply present the formulae associated therewith. 3

Applying Eq. 8.5 to a 3D orthonormal frame, equipped with Fourier coordi-
nates q ≡ (qx, qy, qz), one gets

u(q) =
−2i
q2


qxε

pl
xx + qyε

pl
xy + qzε

pl
xz − qx

q2A
qxε

pl
xy + qyε

pl
yy + qzε

pl
yz − qy

q2A
qxε

pl
xz + qyε

pl
yz + qzε

pl
zz − qz

q2A


where

A ≡ q2
xε

pl
xx + q2

yε
pl
yy + q2

zε
pl
zz + 2qxqyε

pl
xy + 2qxqzε

pl
xz + 2qyqzε

pl
yz.

Using σ = µi (q⊗ u + u⊗ q)− 2µεpl, we get, in condensed form,



σxx

σyy

σzz

σxy

σxz

σyz


= 2µ


G1111 G1122 G1133 G1112 G1113 G1123

G2211
...

G2311 · · · G2323





ε
pl
xx

ε
pl
yy

ε
pl
zz

ε
pl
xy

ε
pl
xz

ε
pl
yz


,

3. Massively parallel 3D simulations are currently being performed by other members of my research
group, namely, Chen Liu and Dr. Luca Marradi, along with Dr. Kirsten Martens.
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where, for i 6= j 6= k,

Giiii =
2q2

i
q2

(
1− q2

i
q2

)
− 1

Giikk =
−2q2

i q2
k

q4

Giijk =
−4q2

i qjqk

q4

Giiik =
2qiqk

q2 −
4q3

i qk

q4

Gikii =
qiqk

q2 −
2q3

i qk

q4

Gikik =
−q2 + q2

i + q2
k

q2 − 4q2
i q2

k
q4

Gikjj =
−2qiqkq2

j

q4

Note that the qz = 0-modes, i.e., G(qx, qy, 0), boil down to the two-dimensional
propagator of Eq. 8.7.

With Einstein’s summation conventions, the above formulae can be condensed
into

σij (q) = 2µ

(
qjqlδk

i + qiqkδl
j

q2 − 2qiqjqkql

q4 − δk
i δl

j

)
ε

pl
kl (q)

with σ̂ij (q = 0) = −2µε
pl
ij (q = 0) .

The effect of a localised shear transformation εpl(r = 0) is presented in Fig. 8.3.
It appears that most of the redistributed stress is contained in the plane of the
shear transformation, and, in this plane, the redistributed stress profile is similar
to that observed in 2D.
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Figure 8.3: Colour maps of the redistributed stress σxy, in different cross sections, after
a shear transformation localised at the origin and directed along xy. (The
central block is artificially coloured).
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Part III

N U M E R I C A L I N V E S T I G AT I O N O F T H E F L O W
P R O P E RT I E S U S I N G A N E L A S T O P L A S T I C M O D E L





Qu’importe que la conscience soit vivante,
si le bras est mort ?

Alfred de Musset, Lorenzaccio, act III, scene 3

Armed with the theoretical framework established in Chapter 7 and the nu-
merical tools presented in Chapter 8, we are now in a position to assess the
descriptive power of the model by investigating specific observables and differ-
ent flow geometries.

In this endeavour, the paramount inquiry as to whether the model reproduces
the physical behaviours observed in nature should be complemented with a
question regarding the minimal framework required to reproduce such physical
behaviour. In other words, to each considered observable must be assigned the
model ingredients and the physical processes on which it hinges. For example,
the importance of a tensorial description of the stress and of the inclusion of
convection deserves to be assessed.

On the other hand, the pitfalls associated with such aspirations to simplicity
and generality must be borne in mind. Danger lurks in the disconnection be-
tween the model and reality: indeed, models may be trimmed to such an extent
that their building blocks can lose all connection with the deformation of real
materials, despite some superficial similarity in the phenomenology. In order to
avoid this snag, two chapters of this section are dedicated to direct quantitative
comparisons with experiments and atomistic simulations.

To start with, in Chapter 9, we probe general flow properties, with the flow
curve on the front line. Chapter 10 is concerned with effective temperatures
and notably questions the idea of an effective activation temperature associated
with mechanical noise. Closer attention is paid to the spatial organisation of the
flow in Chapter 11, with an emphasis on the origin of strain localisation. This
naturally leads to the study of correlations in the flow and correlation lengths,
which is the topic of Chapter 12. Chapter 13 is centred on the effects of these
correlations in a heterogeneous flow geometry, more precisely, in a microchannel
flow, and offers a direct comparison with recent experimental results. Chapter 14

closes this part with a quantitative comparison with atomistic simulations at
zero temperature, in which dynamical correlations between plastic events are
exposed.
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9
G E N E R A L F L O W P R O P E RT I E S

In this chapter, we explore general flow properties such as the flow curve,
yield angles, and stress overshoots, and we introduce new dynamical rules for
the elastoplastic model, which, we claim, are more realistic than Picard’s ones.

In addition, the impact of convection and stress tensoriality on these observ-
ables is to be discussed. Indeed, coarse-grained models are very generally scalar,
insofar as they only retain one component of the stress tensor, σxy, if the macro-
scopic shear is directed along εxy, e.g., if the material is confined between parallel
plates at y = 0 and y = Ly and one of these plates is moved in the x-direction.
Besides the scalar approximation, lattice-based models usually neglect convec-
tion, i.e., the fact that the mesoscopic blocks should be displaced as the material
is sheared. On top of that, they are two-dimensional. It has been remarked that
the vast technical simplifications involved in the models might jeopardise their
validity [Barrat and Lemaître, 2011], insofar as the three aforementioned approx-
imations are not bolstered by any rigorous justification. We choose to leave the
third approximation, i.e., the issue of spatial dimensionality, for future work, and
only study the impact of the first two here, using the simple Picard model as a
benchmark so as to facilitate the comparison,

9.1 flow curve within picard’s model : assessment

of the importance of stress tensoriality and

convection

We start by investigating the flow curve in strain-controlled simulations, in
line with what is frequently done experimentally.

9.1.1 Picard’s dynamical rules

A trivial extension of Picard’s dynamical rules to tensorial stresses is used,
namely, a constant yield rate l(σ) when the maximal local shear stress σ =

‖σ‖ ≡
√

σ2
xx + σ2

xy is larger than the yield stress σy = 1, and a constant rate of

elastic recovery e(σ) = τ−1
res . These rules can be summarised as follows, with the

Heaviside function Θ,

elastic
Θ(σ−1)τ−1

liq


τ−1

res

plastic,

and τliq is set to unity. At each time step, the probability of failure is l(σ)dt,
while the probability of elastic recovery is e(σ)dt.
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Figure 9.1: Dependence of the macroscopic shear stress Σ on the applied shear rate, for
two distinct values of τres. (Open diamonds) Static scalar model; (cyan triangles)
static tensorial model; (blue dots) convected tensorial model. N = 64× 64.
(Solid black line) mean-field approximation of the model [Martens et al., 2012].
The dashed lines are guides for the eye.

9.1.2 Numerical flow curves

The model is simulated numerically by combining these stochastic rules with
the elastoplastic master equation (Eq. 8.1), as explained in Chapter 8. The scalar
model is straightforwardly obtained by focusing only on the xy-component of
stresses and strains (in other words, σxx = 0 throughout the simulation). When
needed, convection is implemented, with the protocol presented in Section 8.3.

The simulations generate the flow curves plotted on Fig. 9.1; the simulated
system is large enough for finite-size effects to be negligible. Two observations
are in order. First, the flow curve is hardly affected at all by the extension from
a scalar stress to a tensorial one. Second, the inclusion of convection alters it
perceptibly, but only to a very moderate extent.

The relative insensitivity of the flow curve to these technical refinements vali-
dates the use of a static scalar approach to describe the average flow in a simple
geometry. In the light of this success of minimalism, an even more parsimonious
approach can be envisioned: since Σ is a macroscopic, “one-point, one-time” ob-
servable, wouldn’t a mean-field approximation of the problem be satisfactory?

In fact, this question was addressed by Martens et al. [2012]. In a typical mean-
field spirit, these researchers averaged the local tress evolution equation (Eq. 8.1)
over time and space and discarded fluctuations in the non-local stress redistribu-
tions; details of the calculations will be given in Section 11.1.1. The expression
that they obtained is plotted in Fig. 9.1. Deviations from the numerical data are
clearly visible but, overall, the agreement is reasonably good.
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(a) Without convection (b) With convection

Figure 9.2: Distribution of yield angles θ (in degrees) for τres = 1 and γ̇ = 6.2 · 10−3

in the (a) static, (b) convected tensorial versions of the model. System size:
N = 64 × 64.

9.2 yield angles

In the scalar description, plastic events occur exclusively along the macro-
scopic shear direction (xy). The tensorial model relaxes this constraint and fea-
tures a distribution P(θ) of angles of yield θ ∈ [−90◦, 90◦]. This angle corre-
sponds to the principal direction of plastic events, i.e., cos (2θ) =

σxy
σ , sin (2θ) =

−σxx
σ ; θ = 0◦ thus corresponds to a plastic event along (xy).
P(θ) is shown in Fig. 9.2 for a restructuring time τres = 1, in the static and

convected versions of the model. In both cases, P(θ) is well fit by a Gaussian
distribution. To interpret the data, one should remark that, in the absence of
cooperativity, plastic events would aligned along the macroscopic shear, hence
P(θ) = δ(θ). But cooperativity broadens the distribution P (θ). Indeed, as τres

increases from 1 to 10 time units, the standard deviation of the distribution, at a
given shear rate, approximately doubles, which indicates enhanced cooperative
effects. On the other hand, at a fixed restructuring time, say, τres = 1, the breadth
of P (θ) does not vary much when the shear rate is changed, as long as the latter
remains moderate (γ̇ ≤ 0.1).

Switching on convection also leads to the doubling of the standard deviation
of P (θ). We ascribe this to the enhancement of fluctuations due to convection.
At first sight, this feature could be an artifact rooted in our specific implementa-
tion of convection, insofar as the latter involves a deformation of the simulation
cell, whose symmetries no longer coincide with those of the elastic propagator.
However, we have observed a similar broadening of P(θ) with a different imple-
mentation of convection, presented in Chapter 13, in which the simulation cell
is not deformed. Moreover, the standard deviations measured with both imple-
mentations of convection are close, with a relative difference lower than 10% on
the batch put under test. We are thus led to the conclusion that the enhancement
of fluctuations, as reflected by the broadening distribution of yield angles, is a
robust consequence of the inclusion of convection.
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Figure 9.3: Elastic domain and yield surface of an elastoplastic block, with a von Mises
yield criterion. The in-plane axes represent the deviatoric stress components
σxy and σxx; the yield surface is invariant by translation along the out-of-
plane axis (pressure).
Since ε̇pl ∝ σ, the “normality rule”, which states that ε̇pl must be orthogonal
to the yield surface, is clearly obeyed.

9.3 realistic dynamical rules in the athermal

regime

So far, the discussion has been centred on the simple Picard model in order
to assess the importance of technical aspects. However, we have already pointed
out the weak points of such a model for the description of the rheology and the
difficulty to root it in a PEL perspective. Accordingly, let us now propose more
realistic dynamical rules.

The first step is to get rid the latency time τliq. From now on, the onset of a
plastic event on a given block shall be determined by a von Mises yield criterion:
as soon as the maximal shear stress ‖σ(i, j)‖ ≡

√
σ2

xx(i, j) + σ2
xy(i, j) grows larger

than the local yield stress, defined below, the block yields. The yield surface of
a block is depicted in Fig. 9.3.

In addition, we introduce a distribution of yield stresses σy, or, equivalently,
of energy barriers Ey ≡ σ2

y /4µ, and we modify the criterion for elastic recov-
ery. To do so, we reason on the basis of a schematic vision of the PEL of a
rearranging region. This landscape is composed of metabasins of exponentially
distributed depths Ey, as suggested by some experimental results on colloidal
glasses [Zargar et al., 2013] and as in the SGR model. For practical reasons,
we neglect small jumps between PEL basins and focus on the larger jumps be-
tween metabasins, which correspond to the irreversible jumps at low enough
temperature [Doliwa and Heuer, 2003, Heuer, 2008]; this is done by cutting off
the energy barrier distribution at Emin

y = µγ2
c /4 with the help of a Heaviside

function Θ, viz.,

P
(
Ey

)
= Θ

(
Ey − Emin

y

)
λeλ(Emin

y −Ey), (9.1)
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Figure 9.4: Schematic representation of the physical meaning of the typical “distance”
γc between metabasins.

where λ is chosen so that the average yield strain
〈
γy

〉
takes a realistic value,

say, 10% for concentrated emulsions [Hébraud et al., 1997]. In order to describe
elastic recovery, we further assume that there is some typical distance (measured
in terms of strain) between metabasin minima. This distance is related to the
parameter γc used to define Emin

y ; for simplicity, we set it to γc exactly. The
physical interpretation of this parameter is sketched in Fig. 9.4. A block will then
remain plastic until the strain cumulated during plasticity reaches the value γc,
that is, as long as

γpl ≡
∫

dt ‖2ε̇(i, j) (t)‖ < γc, (9.2)

where the local rate of deformation ε̇(i, j) is the sum of the plastic strain rate,
ε̇pl(i, j), and an elastic component, ∂tσ(i, j)/2µ, which includes the reaction of
the medium and external loading (see Eq. 8.1). Finally, at the end of the plastic
event, the local energy barrier is renewed.

The criterion for elastic recovery is somewhat arbitrary, but it provides a con-
venient way to implement the crucial disruption of plastic events by the drive,
as discussed in Section 7.2.1. Moreover, it captures the observed decrease of
the rearrangement (T1 event) time at high enough strain rates in bubble clusters
[Biance et al., 2009].

Incidentally, if the stress initally borne by a plastic block was large at the time
of yield and the newly picked yield stress upon elastic recovery is relatively low,
nothing prevents the block from yielding again immediately. In other words,
several energy barriers may be crossed in a single plastic event, if the first el-
ementary rearrangement does not dissipate (or transfer) enough energy. In a
foam, this would simply correspond to a series of successive T1 events.

Apart from the time and stress units, τ and µ, the only parameter left free in the
model is the ratio γc/〈γy〉, which we set to 0.7.

Besides the dynamical rules, the backbone of the model is not altered: stress
redistribution is still described by the elastic propagator G, and the evolution of
the local stress tensor is still governed by Eq. 8.1.

In accordance with the discussion in Section 7.2.1, these new dynamical rules
provide a more faithful reflection of the physical processes at work in a sheared
amorphous solid. But do they yield a flow curve that better matches the widely
observed Herschel-Bulkley behaviour, Σ = Σ0 + Aγ̇n, with n ≈ 0.5 (see Sec-
tion 5.4 and references therein).
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(a) γc/〈γy〉 =(cyan) 0.4, (blue) 0.55, (green) 0.7,
(red) 0.9. Solid lines are Herschel-Bulkley fits
with exponents n = 0.53, 0.60, 0.57, 0.52, re-
spectively. No structural ageing.

(b) Effect of short-term ageing: (blue dots) k = ∞,
i.e., no ageing, (red triangles) k = 10−3.

Figure 9.5: Flow curves obtained with the new dynamical rules, in the tensorial con-
vected version of the model. The system size is at least N = 48× 48 (negligi-
ble finite size effects).
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Figure 9.6: Flow curve for γc = 0.7〈γy〉 in the (dots) static and (diamonds) convected
versions of the tensorial model. (Inset) Same, plotted with linear-linear axes.
N = (red dots) 64× 64, (pink dots and fuchsia diamonds) 128× 128. The solid
line is a fit to the Herschel-Bulkley equation Σ = 0.07+ 0.19γ̇n, with n = 0.56.
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The flow curves are plotted in Fig. 9.5a for various model parameters γc/〈γy〉.
Quite interestingly, at reasonably low shear rates γ̇ < 10−2, the curve is nicely
fit by a Herschel-Bulkley equation with exponent n ≈ 0.5− 0.6. At higher shear
rates, for γ̇τ >

〈
γy
〉
, one enters a regime dominated by the dissipative stress

during plastic events, which was assumed linear in the strain rate here.

Regarding the importance of convection, let us point out (although we might
just be stating the obvious) that it should depend on the value of the average
yield strain

〈
γy
〉
, which sets the relative shift of neighbouring streamlines caused

by a plastic event. Indeed, should this value decrease towards zero, then an in-
creasingly large number of plastic events will have occurred by the time two
neighbouring streamlines are shifted with respect to one another, thereby lim-
iting the potential impact of convection. It is therefore a wise precaution to
set

〈
γy
〉

to a realistic value for the materials under consideration. Here, we
had materials akin to dense micrometric emulsions in mind [Mason et al., 1996,
Hébraud et al., 1997]; had we instead focused on hard colloidal glasses,

〈
γy
〉

would have been reduced by approximately one order of magnitude and set to
approximately one percent [Schall et al., 2007].

'

&

$

%

Summary of the Refined Athermal Model

Master equation (unaltered)

∂tσ(i, j; t) = µγ̇ + 2µ
L

∑
i′=1

L

∑
j′=1
G
(
i− i′, j− j′

)
· ε̇pl(i′, j′; t)

Dynamical rules

elastic
σ>σy



γpl>γc

plastic

Distribution of yield stresses
Yield stress (σy) renewal after each plastic event, from the
distribution

P
(
Ey
)

= Θ
(

Ey − Emin
y

)
λeλ(Emin

y −Ey),

with σy ≡ 2
√

µEy and Emin
y = µγ2

c /4.

9.4 extension to thermal materials ; ageing

The refined athermal model does not describe ageing, i.e., the exploration of
deeper and deeper energy basins on average by the system at rest. However,
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ageing and the associated phenomenon of shear rejuvenation 1 are prominent in
a broad class of materials, encompassing glasses and gels, as well as (arguably
and more surprisingly) granular matter.

Two types of ageing processes can be envisioned:
(i) ageing within a given metabasin (“short-term ageing”), and
(ii) ageing through hops between metabasins (“long-term ageing”).
In practice, in our modelling framework, ageing of type (ii) will be mediated

by plastic events, whereas short-term ageing will not require a significant rear-
rangement of the particles.

For sure, the frontier between the two types of ageing may be somewhat ill-
defined. Nevertheless, we suggest some examples of physical processes that can
be classified as type (i) or (ii), and we explore the consequences of each type
within the model.

9.4.1 Short-term ageing

When a plastic event terminates, the mesoscopic region may not have reached
its (locally) most stable configuration yet. In that case, the energy minimisation
within the metabasin, which proceeds via hops between basins, is still ongoing
at the end of the plastic event. Consequently, the inception of the elastic regime
is accompanied by a phase of short-term ageing.

Hypothetical physical candidates for short-term ageing are the reorientation of
particles in a Laponite suspension so as to maximise the electrostatic or van der
Waals interactions or the ion exchanges with the solvents. For foams, it might be
the time of recovery of the optimal angles between bubble walls at the Plateau
borders, or, for high surface modulus foams, the relaxation of the surface tension
of the liquid films upon a sudden variation of their area, which coincides with
the chemical equilibration of the surfactants in the films [Denkov et al., 2009].
In granular matter, moisture-induced ageing has been reported at rest[Bocquet
et al., 1998]. More generally, there is some nascent literature about ageing pro-
cesses at granular nanocontacts, without the failure of the “macroscopic” contact;
this is experimentally explored by means of nonlinear acoustic methods, for in-
stance [Zaitsev et al., 2014]. It is noteworthy that this type of ageing does not
require the particles to be significantly affected by thermal fluctuations.

In our approach, the diversity of these microscopic processes will be advan-
tageously subsumed under a general recovery process, whereby, after a plastic
event, the energy barrier Ey (t) needs a finite time to reach its final value, viz.,

Ėy (t) = k
Ey − Ey (t)
Ey − Emin

y
, (9.3)

where k is a rate of recovery and stability is supposed to be minimal at the end
of a plastic event, that is, Ey (tend) = Emin

y . Note that the shear-induced lowering

1. Shear rejuvenation corresponds to the shear-induced loss of the enhanced structural stability
acquired through ageing: the sheared material lands in shallower energy basins [Rodney and
Schuh, 2009, Rodney and Schrøder, 2011].
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of the energy barriers has received at least numerical confirmation [Rodney and
Schrøder, 2011].

Qualitatively, the rate of recovery k is analogous to the inverse of the restruc-
turing time τres in Picard’s model. When k is lowered, the macroscopic drive
γ̇ starts to compete with the recovery process, and a plateau develops in the
flow curve (see Fig. 9.5b). A growing propensity to shear localisation is then
observed. But this will be the topic of Chapter 11.

9.4.2 Long-term ageing

Long-term ageing is, presumably, of paramount importance for the compre-
hension of the solidity of a quiescent glass. Bouchaud’s celebrated trap model
notably runs along these lines [Bouchaud, 1992].

Here, we follow the trap model (or SGR) description of long-term ageing. To
do so, we simply allow thermally activated plastic events by generalising the
local yield rate to

l (σ) = τ−1 exp
(

E (σ)− Ey

kBT

)
, (9.4)

where, as usual, σ is the maximal local shear stress, E (σ) ≡ σ2/4, and kBT is the
thermal energy. This generalised Arrhenius-like yield rate is adequate as long
as the kinetic energy remains low, i.e., at low temperatures and small shear rates.
Beyond this limit, the local stress at yield (as determined by Eq. 9.4) will often
significantly differ from σy, although both should theoretically coincide for the
block to yield. A more rigorous way to account for thermal fluctuations in that
case is presented in Appendix 9.5.1.

To highlight ageing effects, we let the quiescent system age and then investi-
gate the transient rheological properties of the aged system.

Some technicalities, connected with the aforementioned discrepancy between
the real local stress at yield and σy, force us to slightly modify the criterion for
elastic recovery, in the quiescent system. Indeed, should we keep the previous
criterion, some blocks would yield at very small stress because of thermal activa-
tion and the strain accumulation phase (ending only when γpl = γc) would take
extremely long times. Consequently, we change it to a stress-based (rather than
strain-based) criterion, viz.,

e(σ) = τ−1e
−‖σ‖2

α〈γy〉2 .

On account of the sparsity of plastic events in the quiescent system, the value
of α is expected to have but a minor role in the system at rest.

Structural ageing and shear-rejuvenation

We simulate a system at temperature kBT = 2.5 · 10−3 in model units, with
α = 0.3. At rest, ageing transpires in the smooth rise of the average local yield
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Figure 9.7: Structural ageing and stress overshoot.

stress
〈
σy
〉

(or, equivalently,
〈

Ey
〉
), as shown in Fig. 9.7a for t 6 10, 000. From

time t = 10, 000 (corresponding to an energy barrier ∆E ' 9kBT) onwards, shear
is applied to the system. Shear rejuvenation is then clearly observed, in the form
of a shear-rate-dependent decrease of

〈
σy
〉

(see inset of Fig. 9.7a).

Stress overshoot

Experimentally, the value of
〈
σy
〉

is not directly accessible. However, it is
reflected in the magnitude of the stress overshoot σm of the sheared material, i.e.,
the maximum in the stress vs. strain curve. Indeed, because up to the stress
overshoot the deformation is in large part reversible, σm mirrors the stability of
the aged structure of the material, prior to its rejuvenation by the flow.

Interestingly, Divoux et al. [2011b] reported that σm, defined as the maximum
of the stress, follows a power-law scaling with the applied shear rate, σm ∼ γ̇β,
where β is a material-dependent exponent, of order 0.15. Our simulations also
support a power-law dependence, rather than a logarithmic dependence (see
Fig. 9.8). In addition, we find an exponent β quite similar to the aforementioned
value: we get β ∼ 0.11.

Although these results suggest that some kind of ageing is well accounted
for in the model, a more exhaustive study would be required to get a more
comprehensive view. In particular, the dependence on the waiting time reported
by Divoux and co-workers,

σm ∝

cst for twγ̇ ≤ 2,

(twγ̇)β otherwise,
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Figure 9.8: Dependence of the stress overshoot σm on the applied shear rate. In subfigure
(a), the dashed line represents σm = 0.18γ̇0.115.

would very much deserve further investigation. Also worth investigating are
the hysteretic loops observed by Divoux et al. [2013] when sweeping the applied
shear rate downards and upwards. The hysteretic loop is maximised for a given,
finite sweep rate ν ≡ dln(γ̇)

dt , which is interpreted as the inverse of a material time
scale. On the contrary, in the model, hysteresis grows monotonically with ν (see
Fig. 9.9), and the model counterpart of the time scale ν−1 remains mysterious to
the present day.

We conclude these remarks about transient rheology by noting the expected
inadequacies of the model when it comes to oscillatory rheology: experimentally,
a fraction of the particles undergo reversible plastic rearrangements, with no net
motion over one oscillation [Keim and Arratia, 2014]; this relies on the memory
of the previous reference configuration or energy barrier, which is missing in the
current version of the model.

Flow curves

Regarding steady-state rheology, the flow curves at low temperatures (not
shown) feature large fluctuations that make them look erratic. This echoes Field-
ing et al. [2009]’s remark that, in an extended SGR model, “[n]umerical difficul-
ties also impede detailed study of the limit x → 0, which might be the realistic
limit when true thermal noise is negligible”.
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Figure 9.9: (solid lines) Downward and (dashed lines) upward strain rate sweeps. The

system is prepared at a high shear rate γ̇ ∼ 1. Then the applied shear
rate is decreased incrementally (solid lines), with logarithmically spaced steps
γ̇n+1 = 0.9γ̇n+1. When reaching γ̇ = 5 · 10−5, it is increased (dashed lines)
following the same protocol. The time spent at each point, i.e., shear rate is
δt = (blue) 0.2τ, (green) τ, (red) 8τ, (black) 16τ.

Key Points of the Chapter

– The flow curves are unaltered by the extension to a
tensorial stress, and only moderately affected by the
inclusion of convection.

– Convection enhances fluctuations in the angles of
yield.

– Refined athermal dynamical rules yield the desired
Herschel-Bulkley behaviour, with an exponent close
to 0.5.

– Some (but not all) effects associated with structural
ageing are reproduced by a thermal extension of the
model.
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A
9.5 appendix

9.5.1 A better account of kinetic energy?

In Section 9.4, thermal fluctuations were included in the model by allowing
activated plastic events below the yield stress σy, via an Arrhenius-like activation
process. However, this might be problematic, insofar as the stress carried by a
block at yield will then generally differ from σy, although in reality this should
not be.

This inadequacy is benign at low temperatures, or, more rigourously, at low
dressed Péclet numbers, when thermal activation takes much longer than shear-
induced hops. However, it might undermine any attempt to bridge the gap
between the low-temperature, solid regime and the liquid phase.

One could hope to remedy the defect by increasing the local stress to σy at the
onset of plasticity, but this contrivance would require the regular input of energy
into the system and create discontinuities in the evolution of local stresses.

Alternatively, one may wish to implement thermal fluctuations directly in
the local stresses. But doing so while maintaining mechanical equilibrium has
proved to result in considerable difficulties.

Further insight into the problem can be gained by more theoretical considera-
tions. In the energy density of a mesoscopic region, we isolate a slowly evolving
potential part V̄ ({r̄i}), where r̄i refers to the average position over a time win-
dow much longer than a molecular vibration but much shorter than the inverse
shear rate γ̇−1. The complementary part is denoted by erem and includes (but is
not limited to) the kinetic/vibrational contribution. Accordingly,

e = V̄ ({r̄i}) + erem ({ri, pi} , Λ) , (9.5)

where ri (resp., pi) is the instantaneous position (momentum) of particle i, , and
Λ refers to a set of internal degrees of freedom. Note in particular that, for a
system trapped in a metabasin, V̄ ({ri}) cannot get larger than the local energy
barriers Ey, whereas the total energy e can.

Considering erem first, we suppose that the potential energy V̄ evolves on much
longer timescales than erem, so that, on short timescales, we can write the follow-
ing conservation equation,

∂erem

∂t
+∇ · je

rem = C , (9.6)

where je
rem is the energy current associated with erem and C is a volumic source

term. Because energy is created and dissipated durings collisions and via the
coupling to the bath, it is reasonable to assume that C ≈ −Γ

(
erem − e0

rem (T)
)
,
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where Γ is a coupling constant and e0
rem (T) is the complementary energy den-

sity in the quiescent system. Regarding the energy current je
rem, we tentatively

approximate it to je
rem ≈ −D∇erem, where the diffusivity D is positive, on the

grounds that excitations in amorphous solids are notably more localised than
their counterparts in crystals, namely, phonons.

Equations applying to the stress σrem ≡ ∂erem/∂ε are obtained by deriving
Eq. 9.6 with respect to the strain ε, viz.,

∂σ
(d)
rem

∂t
≈ D∇2σ

(d)
rem︸ ︷︷ ︸

diffusion

− Γσ
(d)
rem︸ ︷︷ ︸

dissipation

,

where σ
(d)
rem is the deviatoric component of the stress and we have used the fact

that σ0
rem ≡ ∂e0

rem/∂ε is purely isotropic, for symmetry reasons, and therefore has
no deviatoric component.

As for the slowly evolving elastic part, we suppose that the system in configu-
ration {r̄i} is in pseudo-static mechanical equilibrium at all times, viz.,

∇ · σel ≈ 0,

where σel ≡ ∂V̄/∂ε. It follows that the elastic stress redistribution when a plastic
event occurs can still be described by the instantaneous elastic propagator G.

To conclude, the dynamics of the two stress components are treated separately
and the macroscopic drive is naturally borne by σel if the block is elastic, or σrem

otherwise, viz.,  ∂σel
∂t = µγ̇(1− npl)+2µG ? ε̇pl

∂σ
(d)
rem

∂t = µγ̇npl+D∇2σ
(d)
rem − Γσ

(d)
rem,

(9.7)

where npl = 0 if the block is in the elastic regime, 1 otherwise, and ε̇pl =

nplσel/2µτ. It should once again be recalled that G(0) is negative, so that the
local stress σel decays exponentially upon yield.

Equations 9.7 exhibit two salient features. First, they include a diffusive pro-
cess, which, to some extent, is similar to the diffusion of the effective temper-
ature χ in the STZ theory, for instance. Secondly, unlike the low temperature
equations (Eq. 9.4), part of the stress is constantly damped, not only via the local
component G(0) in the first line but above all via the term −Γσ

(d)
rem in the second

line, which reflects the dissipative processes acting in a liquid. The fact that dis-
sipation of the “complementary” energy erem occurs at all times, and not only
during plastic events, stabilises a system that might otherwise turn unstable at
high temperatures.
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10
O F E F F E C T I V E T E M P E R AT U R E S

The distinction made between thermal systems and athermal ones in Chap-
ter 9 should not blur the fact that fluctuations are always present in the flow
of these materials, even in the athermal case. In a system out of equilibrium,
these fluctuations can be quantified by an effective temperature. This chapter aims
to clarify this concept and its ramifications (effective fluctuation-dissipative tem-
perature, effective activation temperature, etc.) with the help of elastoplastic
models.

10.1 various definitions of effective temperatures

It is relatively customary to introduce the theory of General Relativity by point-
ing out the accepted, but remarkable, coincidence between the inertial mass
minert and the gravitational mass mgrav: the motion of an object freely falling
in a gravity field g, with acceleration a, is suitably described by the equation
minerta = mgravg, with minert = mgrav. This provides a first clue that a gravity
field is nothing but an acceleration field.

Similarly, a naive introduction to Statistical Physics could invite the reader to
muse over the surprising coincidence between the various notions of tempera-
ture, say, the kinetic temperature, the fluctuation-dissipation temperature, and
the activation temperature. To be concrete, consider an isolated colloidal particle
of mass m in a solvent of viscosity η. Its velocity v obeys the Langevin equation
of motion,

m
dv
dt

= −ζmv + f th,

where
〈

f th
α (t) f th

β (t′)
〉

= 2mζkBTδαβδ(t − t′), α, β ∈ {x, y, z}. For convenience,
we set kB = 1.

Temperature appears in at least three types of equalities:

À T is a measure of the kinetic energy of the particle,

1
2

m
〈
v2〉 = Td, (10.1)

where d is the dimension of space. This is a microscopic quantity, but what can
be measured macroscopically is the osmotic pressure Π, which scales with cT
for a dilute dispersion of concentration c.

123



Á T relates equilibrium fluctuations of the position of the particle, quantified
by a diffusion coefficient D, to its response to a body force Fext, measured by its
mobility µ, where v = µFext, via the Stokes-Einstein-Smoluchowksi relation

D = Tµ. (10.2)

Â Now, suppose that the particle is trapped in a simple, e.g., isotropic, energy
basin U (r), by means of optical tweezers, for instance. The escape time τ (Ea)
needed to overcome a potential barrier of height Ea then follows an Arrhenius
law, viz.,

dlnτ

dT
∼ −Ea

T2 . (10.3)

10.1.1 Convergence of the definitions at equilibrium

Well established theories guarantee that these diverse temperatures match in
a classical system at equilibrium, essentially because detailed balance is satis-
fied and the probability distribution in phase space depends only on a single
parameter (the temperature T).

More precisely, Eq. 10.1 results from the equipartition theorem.

The Stokes-Einstein-Smoluchowksi (Eq. 10.2) is one of the many possible ap-
plications of the fluctuation-dissipation (FD) theorem, which relates the correla-
tions of the fluctuations of observables A and B to the susceptibility χAB (∆t) of
B to a perturbation imposed by the conjugate field of A, viz.,

χBA (∆t) =
−1
T

d
d∆t
〈A(t)B(t + ∆t)〉t . (10.4)

The theorem is most easily understood in the light of Onsager’s fluctuation re-
gression hypothesis: the average regression of thermal fluctuations at equilib-
rium is similar to the linear response of the system to a “macroscopic” perturba-
tion of magnitude kBT. In this perspective, the factor kBT in Eq. 10.4 just sets the
scale of equilibrium fluctuations.

Finally, the Arrhenius law (Eq. 10.3) has been theoretically bolstered by the
works of Eyring, Christensen, and Kramers [Eyring, 1935, Kramers, 1940].

10.1.2 Indeterminacy of the out-of-equilibrium case

Contrary to the equilibrium situation, nothing guarantees the convergence of
these definitions out of equilibrium. Worse still, there may not be a constant
parameter T that sets the scale of fluctuations, via Eq. 10.4, at all time scales, and,
even if there is, it may vary with the chosen observables A and B.
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Successes of the notion of effective temperature

In the past two decades, the perspective of finding an effective temperature Teff
that could replace the bath (“room”) temperature in Eqs. 10.1, 10.4, and 10.3 in
ageing (or sheared) glasses has ignited intense research efforts.

Schematic mode-coupling approximations support the existence of an observable-
independent effective temperature in FD relations (Eq. 10.4) at long lag times [Berthier
et al., 2000]. At short times, on the other hand, the system is thermalised at
room temperature, in accordance with the everyday expectation that a sheet of
glass, or a mildly sheared emulsion, is not warmer by the touch than its environ-
ment [Cugliandolo et al., 1997].

This two-time-scale, two-temperature scenario was successfully tested by Bar-
rat and Berthier [2000], Berthier and Barrat [2002b,a] on more realistic numerical
models of supercooled and glassy materials. Along with others [Ono et al., 2002,
Haxton and Liu, 2007], these researchers showed that a variety of observables
yield the same long-time FD temperature, which grounds its use as a true ther-
modynamic (effective) temperature. In addition, the FD based effective tempera-
ture appeared to satisfy the equipartition theorem (Eq. 10.1) for tracer particles:
the kinetic energy of light tracers, i.e., particles with high vibrational frequency,
is given by the bath temperature, or, equivalently, the short-time FD based
temperature, whereas the kinetic energy of heavy particles, i.e., low-vibrational-
frequency tracers, reaches the long-time-scale effective temperature [Berthier and
Barrat, 2002a].

Regarding Definition Â, numerical work indicates that an activation tempera-
ture such as that used in Eq. 10.3 does indeed exist; its value may be consistent
with the other temperature definitions [Ilg and Barrat, 2007]. To reach this con-
clusion, Ilg and Barrat simulated the shear flow of a glassy material and seeded
it with dimers connected with a double-well potential and maintained aligned in
the neutral direction of the flow. The inversion rate of the dimer follow an Arrhe-
nius law (Eq. 10.3) with a shear-rate-dependent effective temperature. Haxton
and Liu [2007] then propounded the view that the macroscopic stress of glassy
systems sheared at different temperatures is a function, not of T or γ̇ alone, but
of Teff. To some extent, this lends support to mean-field models which offer a
leading role to a (so far speculative) effective temperature: the mechanical noise
temperature in the SGR model, or the effective temperature quantifying disorder
fluctuations in the STZ model.

Issues

But, for all these successes, some contradictory results jeopardise the quest for
the unification of effective temperatures. Indeed, not all observables yield the
same FD temperature, and there is no clear reason to favour one definition over
the others [O’Hern et al., 2004, Mizuno and Yamamoto, 2012]. Even in mean-
field-like models for ageing glasses, and more specifically in the SGR model, the
extraction of a FD temperature can be problematic, with parametric correlation-
versus-reponse plots whose shape strongly depends on the observable [Fielding
and Sollich, 2002].
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Encouraged by the major role of simple spin-glass and/or mean-field models
in the emergence and development of the concept of an effective temperature in
sheared glasses, we hope that elastoplastic models can help clarify the situation
and offer a new viewpoint.

10.2 effective temperatures based on the fluctuation-
dissipation theorem

10.2.1 Green-Kubo relation

First, let us investigate effective temperatures based on the FD theorem. On
account of the few degrees of freedom in elastoplastic models, the choice of
observables is limited. We choose the stress and strain observables; the relevant
FD relation is the (out-of-equilibrium extension of the) Green-Kubo equation:

G (τ) =
N

Teff
〈δΣ (t) δΣ (t + τ)〉 , (10.5)

where N is the number of blocks, the δΣ’s are the macroscopic stress fluctuations
around the mean value Σ, viz., δΣ (t) ≡ Σ(t)− Σ, and the dynamic shear mod-
ulus G (τ) is the susceptibility to strain: δΣ (t) =

∫ t
−∞ G (τ) δγ̇ (t− τ) dτ, with

δγ̇(t) ≡ γ̇(t)− γ̇. Because of ergodicity in the sheared system, the average can
be performed over time t.

10.2.2 Dynamic shear modulus

G (τ) is obtained numerically by perturbing the sheared system with a small
extra strain increment δγ′ at time t = 0 and measuring the response at t > 0,γ̇′(t) = γ̇ + δγ′ δ(t)

G(t) = δγ′−1 〈Σ′ (t)− Σ〉Γ
(10.6)

where the primes refer to the perturbed system and the average is performed
over realisations Γ, i.e., more pragmatically, over different values of the seed of
the random number generator.

10.2.3 Proposed generic scaling with the shear rate

The path to an effective FD temperature is strewn with the following ques-
tions:

(i) Is there a linear response regime that allows the definition of G?
(ii) Is Onsager’s fluctuation regression principle obeyed?
(iii) If it is, what sets the scale of stress fluctuations in the steady state?
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In Appendix 10.4.1, we address these questions in a generic mean-field model,
which slightly extends the frameworks proposed in Refs. [Hébraud and Lequeux,
1998, Bocquet et al., 2009]. Albeit approximate, the derivation suggests the fol-
lowing scaling for the magnitude of stress fluctuations, thus for the effective
temperature (taking its existence for granted), in the shear-dominated regime:

Teff ∼
√

Nact ∼
√

γ̇,

where Nact is the number of simultaneous plastic rearrangements per unit vol-
ume.

10.2.4 Numerical study

Let us now turn to a numerical study of these questions.
With the realistic athermal model introduced in Section 9.3, I was unfortu-

nately unable to access the linear regime: 1 I never observed a response propor-
tional to δγ′. This difficulty nips in the bud the quest for an effective temperature.
As an alternative, I turned to a model featuring different dynamical rules, which
will be presented in Chapter 13:l(σ) = τ−1Θ

(
σ− σµy

)
exp

(
σ−σy
xloc

)
e(σ) = τ−1 exp

(
σµy−σ

xres

)
,

where Θ is the Heaviside function. The parameters of the model, xloc, xres, and
σµy, were fit to the experimental flow curve for a concentrated oil-in-water emul-
sion (see Chapter 13).

Within this model, the existence of a linear response regime is demonstrated
by measuring the response to spikes of different magnitudes δγ′ in Eqs .10.6. In
Fig. 10.1a, we see that the responses to distinct δγ′, averaged over many reali-
sations 2, collapse onto a master curve, the dynamic shear modulus G(t), when
properly rescaled with (δγ′)−1.

To check the validity of the FD relation, we draw a parametric plot of G(t)
versus the stress correlation function CΣΣ(t) ≡ N 〈δΣ (·) δΣ (·+ t)〉. Bearing in
mind that G may not have been measured exactly in the linear regime, we find
that the data agree reasonably well with a linear relation between the two quan-
tities, thus pointing to a single effective temperature over all relevant time scales,
according to Eq. 10.5. We choose to evaluate Teff through the value of the instan-
taneous correlation CΣΣ(t = 0), rather than the slope of the parametric plot, on
account of the imperfections of the linear fit.

In the nonsaturated regime, in which plastic events do not invade the whole
simulation box, the predicted scaling Teff ∼

√
γ̇ is consistent with the numerical

1. This problem might be connected with the sharp transition, at σ = σy, from the elastic regime
to the plastic one, which is then violated if a spike δγ′ is applied.

2. On a technical note, computational costs impose a compromise between the signal-to-noise
ratio and the use of δγ′ values that are small enough to be strictly within the linear regime.
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Figure 10.1: Dynamic shear modulus G(t) and stress autocorrelation function CΣΣ(t) for
γ̇ = 0.015. N = 128 × 128. (G(t) is obtained by averaging over ∼ 200
realisations.)
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Figure 10.2: FD effective temperature Teff as a function of the shear rate γ̇. The dashed
line is the curve Teff = 0.185

√
γ̇.

data. However, a more exhaustive study would be necessary to firmly establish
this scaling.

10.3 an effective activation temperature due to

mechanical noise?

10.3.1 A mechanical noise temperature?

The foregoing study shows that the macroscopic drive generates stress fluc-
tuations that can be captured by an effective FD temperature in the sense of
Definition Á above. Do these fluctuations also lead to an effective activation
temperature (Definition Â)?
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More precisely, a mesoscopic region, considered as a subsystem, needs to over-
come a potential barrier in order to undergo a rearrangement, whether it be a
shear transformation in the sense of Argon and Kuo [1979] or the failure of a
force chain in granular matter [Tordesillas et al., 2012]. Can the local mesoscopic
fluctuations induced by the macroscopic drive, termed mechanical noise, activate
such a rearrangement, in the same fashion as thermal fuctuations would?

Since mechanical noise can either stabilise or destabilise a region, the analogy
with random thermal “kicks” is indeed tempting, and it lies at the heart of the
SGR model (see Section 6.4) and of its extensions to granular matter [Pouliquen
and Gutfraind, 1996, Pouliquen et al., 2001, Behringer et al., 2008, Bi and Chakraborty,
2009, Reddy et al., 2011]. One should recall that, in these models, energy barri-
ers are deprimed to a lower energy E(γ) by the homogeneous macroscopic shear,
and mechanical noise then induces hops over the lowered barriers (particle rear-
rangements), which occur at an Arrhenius-like rate,

ω = ω0exp
(−E(γ)

x

)
,

where x is a putative effective activation temperature associated with mechanical
noise and ω0 is an attempt frequency.

The present section runs counter to this idea and claims that the parallel be-
tween mechanical noise and thermal fluctuations is flawed at the theoretical level,
because energy barriers couple to the former, whereas the latter operate in a fixed
PEL, with fixed barriers.

10.3.2 Numerical investigation

Let us first address the question in the framework of the refined elastoplastic
model presented in Section 9.3, before propounding more general arguments.
We consider the static tensorial version, but we have gathered some evidence
that both staticity and stress tensoriality are largely irrelevant when it comes to
the picture presented here.

In the stress evolution equation, i.e.,

∂tσ (i, j) = µγ̇ + 2µ ∑
i′ , j′
Gi−i′ , j−j′ ε̇

pl (i′, j′
)

, (10.7)

the mechanical noise is unambiguously defined: it is the contribution from dis-
tant plastic events to the local stress, i.e., the non-local part,

∂tσnl (i, j) = µγ̇ + 2µ ∑
(i′ ,j′) 6=(i,j)

Gi−i′ , j−j′ ε̇
pl (i′, j′

)
. (10.8)

Incidentally, if we could only access information relative to a given block (i, j),
we would not be able to distinguish between the two terms on the rhs of Eq. 10.8:
both are transmitted by the surrounding medium through the boundaries of the
region of interest and both have finite time-averages, the sum of which we shall
write 〈σ̇〉 ≡ µγ̇eff. This effective shear rate γ̇eff acts on σ as a drift term, and not
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Figure 10.3: Autoorrelations of the mechanical noise fluctuations (top row) δσ̇xy and (bot-
tom row) δσ̇xx, for various shear rates, as indicated in the legend. (Left)
Semi-logarithmic plot, (right) logarithmic plot.

as “random kicks”. Therefore, only the fluctuating part of the mechanical noise
may be analogous to thermal fluctuations. Thus, for a randomly selected block,
we keep track of the mechanical noise fluctuations that it experiences

δσ̇ ≡ ∂tσnl − µγ̇eff.

The two-time autocorrelation function Cxy (resp., Cxx) of the steady-state fluc-
tuations δσ̇xy (δσ̇xx) of σxy (σxx) are plotted in Fig. 10.3. The magnitude of δσ̇

naturally increases with the number of simultaneous plastic events, and there-
fore with γ̇. Besides, its components display a fast initial decay, with a decay time
similar to the plastic event lifetime. For δσ̇xy, a small fraction, however, remains
correlated over much longer times, which we tentatively ascribe to long-lived
correlations in the yield stresses of nearby blocks, and, thus, in the surround-
ing plastic activity, the yield stresses being renewed only every γ̇γ̇−1

y . A clue in
this direction is given by the fact that, when the distribution of yield stresses is
replaced by a single yield stress, long-lived correlations are no longer observed.
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Figure 10.4: Yielding time τ(Ey) of a fictitious block with an energy barrier Ey, subject
only to mechanical noise fluctuations.

Let us now study the yielding time τ(Ey) of a fictitious block subject only
to such mechanical noise fluctuations, as a function of its energy barrier Ey, by

measuring how long one has to wait before its elastic energy, 1
4µ

∥∥∥∫ t
0 δσ̇(t′)dt′

∥∥∥,
grows larger than Ey. The data plotted in Fig. 10.4 rule out the Arrhenius law
characteristic of activated processes, i.e.,

τ
(
Ey
)

∝ e
Ey
x , (10.9)

for any effective activation temperature x. Instead, they are in favour of a power
law dependence, τ(Ey) ∼ En/2

y ∼ σn
y , with n ' 1.5, which is associated with a

hyperdiffusive process (1 < n < 2).

Before turning to more general arguments to support these findings, we would
like to point out that the model used here boils down to a spatially resolved,
athermal version of SGR if plastic events are made instantaneous and allow a
complete relaxation of the local stress. In this limit, the evolution of the stress
carried by a block as a function of time only consists of phases of elastic loading
up to the local yield stress, followed by instantaneous resets of the local stress
to zero. Thus, varying the applied shear rate γ̇ is equivalent to rescaling time,
t → γ̇t. The macroscopic stress is then clearly independent of γ̇, contrary to the
predictions of SGR at any finite temperature x; in other words, in the regime of
negligible thermal fluctuations, the origin of the stress increase hypothesised in
the mean-field SGR theory is inconsistent with a lattice-based implementation of
the model. It must however be said that Sollich [1998] had explicitly identified
the need for a time scale independent of the driving rate in SGR, and suggested
that it might emerge from thermally induced hops.
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Figure 10.5: Schematic representation of the difference between thermal fluctuations and
mechanical noise fluctuations. The sketch on the left depicts the PEL of the
whole system being tilted by the application of a macroscopic stress. The
rhs is the corresponding picture for a mesoscopic region.

10.3.3 General arguments

The results obtained with our model clearly conflict with the idea of a mechan-
ical noise activation temperature. But what is the scope of these results? How
general are they?

Let us recall that, in the theory of activated processes, a transition is completed
when thermal fluctuations have pushed the system all the way up a potential
barrier, in a fixed PEL V(Γ) [Kramers, 1940]. Recall that Γ ≡ (r1, . . . , rN) is a
high-dimensional vector containing the positions of all particles. The exponential
dependence in the Arrhenius law (Eq. 10.3) hinges on the presence of recoil
forces −∇ΓV that constantly oppose the uphill motion.

In contrast, consider a mesoscopic region S . Mechanical noise fluctuations
due to irreversible rearrangements cause persistent changes to its boundary con-
ditions. These changing boundary conditions durably alter the effective PEL (see
Section 1.5.1) of the mesoscopic region, along with its minima. (Of course, tran-
sient effects, such as temporary dilation, e.g., in metallic glasses [Spaepen, 1977,
Bokeloh et al., 2011], or inertial vibrations [Salerno et al., 2012, Salerno and Rob-
bins, 2013], may also occur during plastic events, but, being temporary, they will
be subdominant, at least in the limiting case of large energy barriers.)

The disparity between thermal fluctuations and mechanical noise fluctuations
is schematically illustrated in Fig. 10.5, in which Γ is substituted by a scalar
reaction coordinate, the shear strain γ. In this picture, mechanical noise acts
as a “random” external stress, which effectively tilts the PEL of the region of
interest. Under its influence, energy barriers wax and wane. 3 Therefore, the
flattening out of the barrier, which signals a plastic event, is similar to a first
passage time problem in a simple diffusion process over a flat landscape, rather
than to thermal activation.

3. ... unless they are located in a direction strictly orthogonal to the tilt, which is unrealistic
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10.3.4 Formalisation of the general arguments in a mesoscopic PEL

More formally, consider the overdamped Langevin equation of a thermal sys-
tem 4 (Eq. 2.2),

0 = −mζ
dri

dt
(t)− ∂ri V(Γ) + f th

i (t), (10.10)

where ζ is a friction coefficient, 〈 f th
i (t)〉 = 0, and 〈 f th

i (t)⊗ f th
j (t′)〉 = 2mζkBTδ(t−

t′)δijI (where I is the 3D identity matrix). Following Section 1.5.1, mechanical
noise effectively tilts the potential V(γ) of the region, supposed of unit volume,
into

Ṽ(γ, t) = V(γ)− γσ(t), (10.11)

where σ(t) = 〈σ̇〉t + fmec(t) is the stress applied at the boundary of the re-
gion. Here, the shorthand fmec(t) ≡

∫ t
0 δσ̇(τ)dτ refers to the time integral of

mechanical noise fluctuations. We examine the effect of fmec(t), i.e., the fluctua-
tions around the drift term 〈σ̇〉t. Inserting Eq. 10.11 into the Langevin equation
(Eq. 10.10), we get

0 = −mζ
dγ

dt
(t)− dV

dγ
[γ(t)] + 〈σ̇〉t + fmec(t) + fth(t).

Mechanical noise and thermal fluctuations differ in that 〈 fth(t) fth(t′)〉 ∝ δ(t−
t′), whereas 〈 fmec(t) fmec(t′)〉 =

∫ t
0 dτ

∫ t′

0 dτ′C(τ − τ′). If the autocorrelation
function C(∆t) ≡ 〈δσ̇(t)δσ̇(t + ∆t)〉 decays to zero quickly, that is to say, dis-
plays neither a fat tail nor strongly negative portions, then 〈 fmec(t) fmec(t′)〉 ∼
min(t, t′), and, in particular, 〈 fmec(t)2〉 ∼ t. It follows from Eq. 10.11 that an
average time τ ∼ (max dV/dγ)2 ≡ σ2

y elapses before the energy barrier flattens
out under the sole influence of fmec, i.e., max dṼ/dγ→ 0.

This purely diffusive case is encountered in Picard’s model (data not shown),
in which the further assumption of linear elasticity implies τ ∼ σ2

y ∼ Ey. For
the model that we introduced previously, the process was in fact hyperdiffusive,
owing to the presence of slowly decaying correlations of the noise. In any case,
the escape occurs much faster than in an activated process. In Appendix 10.4.2,
we explain why this does not conflict with the numerical simulations of Ilg and
Barrat [2007]

Although the reasoning is based on a one-dimensional PEL for convenience,
in fact, it does not rely on dimensionality.

4. Note that, despite analogies in the considered mechanisms and the wording, the discussion
presented here differs from the investigation of Bouchaud et al. [1995], performed in the context
of Bouchaud’s trap model, in that the latter considered the impact of hops of caging particles on
the trajectory of a (caged) particle in the PEL, in terms of the equilibrium distribution (if it exists!)
of the traps it explores, whereas we focus on the effect of non-local events on the single barrier-
crossing statistics of a mesoscopic region. Nevertheless, formally, both processes can be described by
a diffusive term (or assimilated).

133



10.3.5 Hierarchy of processes in the limit of very large barriers

It should be clear that the foregoing discussion focuses on mechanical noise
fluctuations, i.e., corrections to the effect of the drift term µγ̇eff. The SGR model is
centred on the idea that the flow curve of soft glasses (a priori, without restriction)
can be explained by these corrective terms. On the contrary, we claim that the
flow curve of athermal materials results from the interplay between the drive and
(cascades of) rearrangements, as explained in Section 7.2.1, and independently
of the corrective terms.

To conclude, we can draw a more comprehensive picture of the hierarchy of
processes involved in the escape from a (meta)basin in the mesoscopic PEL. The
leading order term, µγ̇eff, is ballistic; the (hyper)diffusive corrective term due to
persistent mechanical noise fluctuations comes next. Then, transient effets oc-
curring during plastic events, for instance, dilation and inertial vibrations, along
with true thermal fluctuations, yield exponentially weak corrections. This hierar-
chy of terms is presented in Table 10.1. Nevertheless, it is crucial to bear in mind
that the hierarchy only holds in the asymptotic limit of large barriers or small
fluctuations. It most surely breaks down for a high-temperature glass.

As a final word on the topic, we should note that there exists yet another
effective temperature definition, used for instance in the Shear Transformation
Zone (STZ) theory. The STZ temperature, usually denoted χ, does not control
the local temporal fluctuations of an observable, but rather its variations in space,
i.e., the probability of finding, say, a given free volume at some position in space
[Bouchbinder et al., 2007a,b], even though the distinction was originally misty
(see Section III.A of Ref. [Falk and Langer, 1998]). In this respect, it is a measure
of disorder in the system. It is therefore not incidental if it shares the same
notation as the compactivity introduced by Edwards and Oakeshott [1989] for
granular matter, and defined as the derivative of the volume V with respect to
the entropy S, viz. χ ≡ ∂V/∂S.

Key Points of the Chapter
a

– A fluctuation-dissipation based effective temperature
quantifying the magnitude of stress fluctuations can
be measured in one version of the elastoplastic model.

– Mechanical noise fluctuations lead to barrier-crossing
statistics that differ in essence from those induced by
thermal fluctuations (in the limit of large barriers), be-
cause the former are persistent whereas the latter in-
duce recoil forces.

a. A paper presenting these findings has been submitted to Euro-
physics Letters [Nicolas et al., 2014a].
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Material time scales Driving time scales Nature of
hops

Descent τpl Macroscopic driving γ̇
ballistic

Uniform
Thermally

activated hop τT

Average contribution from
non-local plastic events

γ̇eff − γ̇

Persistent mechanical noise δγ̇ “diffusive” Spatial

Transient effects during
plastic events (e.g., inertial

vibrations, dilation). Can be
interpreted as zero-average

mechanical noise.

activated

Table 10.1: Hierarchy of processes in the flow, sorted by the associated yield time τ(σy) of
a block of yield stress σy. Ballistic hops refer to τ(σy) ∼ σy, “diffusive” hops
refer to τ(σy) ∼ σn

y with n > 1, and activated hops refer to τ(σy) ∼ exp(σn
y ),

n > 0. “Uniform” processes are those which are independent of the spatial
position of the block.

A
10.4 appendices

10.4.1 Scale of stress fluctuations in a generic elastoplastic model

We propose to consider a generic model in which the number P of sites having
a local stress σ and the number A of plastically active sites with stress σ evolve as


∂P
∂t (σ, t) = ∂

∂σ

{
µγ̇P + jpl [A]

}
∂A
∂t (σ, t) =

∂

∂σ

{
µγ̇A+ jpl [A]

}
︸ ︷︷ ︸

drift

+ [P(σ, t)−A(σ, t)] l(σ)︸ ︷︷ ︸
yield

−A(σ, t) e(σ)︸ ︷︷ ︸
el. recovery

,

(10.12)
where µγ̇P is the (constant) stress flux due to the macroscopic drive and the un-
specified functional jpl is the stress flux induced by plastic events. As usual, l and
e are the rates of plastic yield and elastic recovery, respectively. Equations 10.12

can be derived from the master equation of our elastoplastic model (Eq. 8.1) by
discarding all spatial information. To allow for a distribution of yield stresses,
instead of a unique local yield stress, we replace σ with the distance to the local
yield stress, x ≡ σy − σ in Eqs. 10.12 , viz.,
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 ∂P
∂t (x, t) = − ∂

∂x

{
µγ̇P + jpl [A]

}
∂A
∂t (x, t) = − ∂

∂x

{
µγ̇A+ jpl [A]

}
+ [P(x, t)−A(x, t)] l(x)−A(x, t) e(x).

(10.13)

Regarding the validity of Onsager’s hypothesis (Question (ii) of Section 10.2.3),
it is clear that the response to a given perturbation δP (σ, t = 0) is independent
of the microscopic or macroscopic nature of this perturbation. On the other hand,
the perturbation that is artificially created in order to measure G in Section 10.2.4,
namely, a global shift of P at t = 0, is most probably atypical in the unperturbed
evolution of the system, so it is yet unclear whether the response to these atypical
fluctuations will reflect the regression of steady-state fluctuations.

To assess the scale of the macroscopic stress fluctuations δΣ (t) ≡
∫

σδP(σ, t)dσ

(Question (iii) of Section 10.2.3), let us first consider the fate of a spontaneous
perturbation δP (x, t = 0) = αδ (x− x0). Following Eqs. 10.13, in the shear-
dominated regime, the perturbation δP is first advected by the drift term −µγ̇ ∂P

∂x
to a region close to yield (x = 0), where the yield rate l(x) is large. Plastic yield
creates a perturbation δA, which obeys (see second line of Eqs. 10.13),

∂δA
∂t

(0, t ≈ x0/µγ̇) ' α l(0). (10.14)

This excess/dearth of plastic activity helps relax δP , thanks to the term jpl [A]
in the first line of Eqs. 10.13.

Let us assume that the relaxation is essentially achieved after only one such
cycle of yield. Considering that the fluctuations δP are more or less homoge-
neously distributed in x, Eq. 10.14 turns into

∂δA
∂t

(0, t ≈ x0/µγ̇) ≈ ‖δP‖ l(0).

Since ∂δA
∂t (0, t) scales with the fluctuations in Nact(t) ≡

∫
A(σ, t)dσ, the total

number of instantaneous plastic events, divided by the life time τ of a plastic
event, we can assess the magnitude

√
δP2 of spontaneous perturbations by mea-

suring the fluctuations in the plastic activity, that is,

√
δP2 ≈ Nact(t)

τ
l(0)−1.

To conclude, the scale of macroscopic stress fluctuations is given by

√
δΣ2 =

√∫
σ2δP(σ, t)dσ

∼
√

δP2,

∼
√

Nact(t),
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with naturally very crude approximations. Nevertheless, recalling that in the
shear-dominated regime Nact(t) ∝ γ̇, we reach the following conclusion:

√
δΣ2

scales with
√

γ̇, ergo, Teff ∼
√

γ̇.

Note that this result is relatively intuitive in the light of the central limit theo-
rem.

Also note that the central role played here by the distribution of stresses close
to the yield stress, i.e., P(x ≈ 0), echoes its importance in Refs. [Karmakar et al.,
2010, Lin et al., 2014b,a].

In the former article, Karmakar et al. [2010] showed on the basis of atomistic
simulations that the scaling 5 P(x) ∼ xθ when x → 0 differs qualitatively be-
tween the isotropic quenched state prior to shear, where θ > 0 so that P(x)→ 0,
and the sheared steady state, where θ≪ 1. In other words, the system needs to
be destabilised by shear for a finite time before the distribution of x self-organises
into a critical state capable of sustaining power-law avalanches [Bak et al., 1987],
i.e., in which enough regions have been brought on the brink of yielding (x ≈ 0).

On their side, Lin et al. [2014b] studied the steady-state scaling exponent θ

with a coarse-grained model similar to ours, and reported on its apparent inde-
pendence with respect to the choice of dynamical rules. On the other hand, θ

depends on the interaction range of the elastic propagator. In Ref. [Lin et al.,
2014a], some of these authors insist that θ should be strictly positive for a prop-
agator of non-constant sign, because, under the influence of the interactions,
blocks then perform a random walk close to the “absorbing” boundary at x = 0,
while a finite density of sites near x = 0, implying θ = 0, is expected when
the interaction is of constant sign, i.e., always destabilising, as in the case of the
depinning of a front line on a disordered substrate.

10.4.2 Activation temperature measured with a two-state system

We have shown that the hopping statistics do not obey the Arrhenius depen-
dence characteristic of activated events, if the reaction coordinate that describes a
hopping event is coupled to the mechanical noise. This is typically the case if the
hop is a plastic event that is governed by the local stress or strain, presumably.
On the other hand, an Arrhenius law is recovered when the equation of motion
of the reaction coordinate (or equivalently the potential energy of the system as
a function of the reaction coordinate) is not durably altered by mechanical noise
fluctuations.

For instance, Ilg and Barrat [2007] performed molecular dynamics simulations
of the shear flow of a glassy system and introduced bead-and-spring dumbbells
in the flow. The dumbbells were maintained aligned in the neutral direction. The
inversion rate of the dumbbells was measured, and it was observed to follow
an Arrhenius law. To understand this point, one can argue that the frequent
realignment of the dumbbells along the neutral direction erases the memory of

5. This scaling is inferred from the distribution of the minimal strain increments required to
trigger a plastic event.
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(a) Hopping time as a function of barrier height V0
for γ̇ = 2 · 10−4, 5 · 10−4, 10−3, 4 · 10−3, fitted with
exponential functions ω0exp

(
V0
x

)
.

(b) (Red dots) Effective activation temperature x and
(blue crosses) attempt frequency Γ0 = τω0 as a
function of the applied shear rate γ̇.

Figure 10.6: Effective activation temperature of the dumbbell systems.

the effect of the mechanical noise on the reaction coordinate, namely, the distance
between the beads, thereby turning it into a non-persistent fluctuation.

As a matter of fact, a similar attempt can be carried out in the framework of our
coarse-grained model: In every elastoplastic block, we dispose a two-state dumb-
bell in the crosswise direction. The potential energy of the dumbbell only de-

pends on the distance u between the beads and reads, V (u) = V0

(
(u−u0)

2−ε2

ε2

)2
,

with ε � u0. Thus, the dumbbell has two ground states, at u = u0 − ε (L) and
u = u0 + ε (R), separated by a barrier of height V0. During the simulation, each of
the beads is advected by the velocity field v(ext)

y (r, t) =
∫

P (r− r′) · ε̇pl (r′, t) d2r′

created by plastic events, so that,

ζ
(

u̇−∇v(ext)
y (t) · u0

)
' dV

du
(u) ,

where ζ is a friction coefficient. To measure the dumbbell L-R inversion rate, we
define the exclusive attraction basins of the ground states L and R as u− u0 ∈
] − ∞,−δ · ε] and u − u0 ∈ [δ · ε, ∞[, respectively with 0 < δ ≈ 0.5 < 1 (the
precise value of δ hardly affects the results).

In Fig. 10.6a, we show the resulting hopping times between the basins as a
function of the potential V0, measured in units of ζ, for a given ε. Note that the
measured hopping times actually depend on ε, which controls the curvature of
the potential. An Arrhenius law nicely fits their dependence on V0, consistently
with the findings of Ilg and Barrat. In Fig. 10.6b, the effective activation temper-
ature associated with the Arrhenius law is plotted as a function of the applied
shear rate γ̇. Consistently with the expectations, it increases with the shear rate.
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11
S H E A R L O C A L I S AT I O N

The investigation of spatially averaged quantities in Chapters 9 and 10 has left
aside the prominent question of spatial heterogeneities in the flow of disordered
solids. To compensate, this chapter is concerned with the study of the spatial
organisation of the flow on the macroscale; the specific aim is to determine the
model ingredients (and the associated physical parameters) that give rise to the
widely observed phenomenon of shear localisation.

11.1 analytical approach to shear localisation

in picard’s model

In some parameter range, Picard’s scalar model (exposed in Section 9.1.1) was
reported to display shear localisation [Martens et al., 2012]. Accordingly, for a
start, we carry on and deepen the analysis within this model, and its tensorial
and convected extensions.

11.1.1 Mean-field analysis

Martens et al. [2012] performed a mean-field analysis of Picard’s model in a
simple shear setup. The starting point is the (scalar) stress evolution equation
(equivalent to Eq. 8.1):

∂tσ(i, j; t) = γ̇ +
L

∑
i′ ,j′=1

G
(
i− i′, j− j′

)
n(i′, j′; t)σ(i′, j′; t), (11.1)

where we have set µ = 1 and τ = 1. and n(i, j; t) is the plastic activity of block
(i, j), i.e., n = 1 if the block is plastic, 0 otherwise. First, Eq. 11.1 is averaged over
time and space, viz.,

〈∂tσ〉 =
〈

γ̇eff
〉
+ G (0, 0) 〈nσ〉

where γ̇eff(r; t) ≡ γ̇ + ∑
r′ 6=r

G
(
r− r′

)
(nσ)

(
r′; t
)

.

Here, r stands for (i, j) and we have separated the non-local interactions, in-
cluded in γ̇eff, from the local ones. In the steady state, using the shorthand
g0 ≡ −G (0, 0) > 0, we obtain

0 =
〈

γ̇eff
〉
− g0 〈nσ〉 . (11.2)
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Finally, in a mean-field spirit, the fluctuations of γ̇eff are neglected, i.e.,
〈
γ̇eff〉→

γ̇eff. With the help of Picard’s dynamical rules, this leads to the desired rela-
tion 〈σ〉 = f (γ̇eff), where the function f depends on τres, τliq, and g0. Interest-
ingly, when the restructuring time is long, f becomes non-monotonic, with a
decreasing part at low shear rates. For τliq = 1 and g0 = 0.57, this occurs when
τres > τc

res ' 3.3.

Such non-monotonicity signals the occurrence of shear-banding. Indeed, de-
creasing parts in the constitutive curve f are unstable, in the sense that, in this
range of shear rates, the system will lose its homogeneity and split into a re-
gion of low (here, zero) shear rate and a region subject to high shear rates, both
having equal stresses. The qualitative effect of τres is in line with the scenario
described by Coussot and Ovarlez [2010], whereby long rearrangements imply
long periods of low stress and therefore, since the number of rearrangements
increases with the shear rate, lead to drastic shear-thinning, climaxing in non-
monotonicity of the constitutive curve.

11.1.2 Linear stability analysis

In order to determine the spatial profile of the instabilities that can alter the
mean-field picture, we perform a linear stability analysis of the homogeneous
mean-field solution

(
〈σ〉 , 〈n〉 ,

〈
γ̇eff〉) with respect to a space-dependent pertur-

bation
[
δσ(r; t), δn(r; t), δγ̇eff(r; t)

]
. After a transformation to Fourier space and

a linearisation of the equations, we find that the q-Fourier mode of the perturba-
tion grows at an initial rate

αq =
〈n〉 G (q)

1− ν 〈σ〉 G (q) ,

where ν is a strictly positive scalar and G (q) = −4q2
xq2

y

(q2
x+q2

y)
2 6 0, with q =

(
qx, qy

)
, is

the Fourier-transform of the elastic propagator. Consequently, all perturbation
modes decay, except bands, i.e., perturbations with either qx = 0 or qy = 0, which
have a zero growth rate and, therefore, an undetermined fate. This is compatible
with numerical observations, where, in unstable situations, shear localises in
bands (see below).

11.1.3 Fluctuations and interface width

The mean-field constitutive curve, complemented with the stability analysis,
predicts the destabilisation of the system into solid bands and liquid bands, for
long enough restructuring times and low enough shear rates. However, this
analysis does not specify the number of such bands. Indeed, interfaces between
bands are not assigned any “cost” nor any width. On the other hand, in the
steady state, numerical simulations of the model as well as experiments rarely
contain more than one band, whose interface has a finite width.
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This discrepancy is reminiscent of Radulescu and Olmsted’s observation that
interfaces are infinitely sharp in reaction models if the stress equations are not
complemented with a diffusive term of the form D∇2σ [Olmsted, 2008]. After
inclusion of this term, interfaces scale with

√
Dτ, where τ is the characteristic

time for stress relaxation. However, Eq. 11.1 features no diffusive term, but only
a convolution with G, which merely produces a uniform stress contribution when
bands coexist. 1 What sets the finite width of the interface, then?

There are serious reasons to believe that the answer lies with the fluctuations
of plastic activity in the sheared band. These fluctuations are always present in
the model because of the dynamical rules. Were the interface between bands in-
finitely sharp, the propagation of these fluctuations with G would trigger plastic
events outside the shear band, thereby rendering the interface more diffuse.

Accordingly, in this scenario, stress fluctuations play a major role in smooth-
ing discontinuities between shear bands. Interestingly, they are also central in
the fluidisation process of carbopol gels, which occurs after a long-lived shear-
localised state: in the transient regime, shear is confined to a thin lubrication
layer close to the rotor (of a Taylor-Couette apparatus), and erosion drives the
bulk of the material into a critical state, presumably via the creation of stress fluc-
tuations, until the whole sample finally (more or less) suddenly fluidises [Divoux
et al., 2011a].

11.2 numerical investigation of shear-banding in

picard’s model

Let us now move on to a numerical study of the model. We fix τliq = 1.

11.2.1 Qualitative picture

We simulate Picard’s model in the static scalar version, the static tensorial
version, and the convected tensorial version (see Section 9.1 and Chapter 8 for
details). The system is prepared by pre-shearing at γ̇ = 1.

Figure 11.1 shows the localisation of the plastic activity in a band for τres = 10
and γ̇ = 10−2. The band widens linearly with the applied shear rate until ho-
mogeneity is restored [Martens et al., 2012]. Even though full shear localisation
is observed in the steady state, the band(s) may diffuse over long times, because
they are not pinned by a heterogeneity in the drive, as they would be in an ex-
perimental Taylor-Couette geometry owing to the larger stress at the rotor. The
diffusivity is reduced when the system size is increased, so that one may expect
a pinning of the band in the limit of an infinite system.

These general observations hold for all versions of the model, whether static
or convected, scalar of tensorial. However, a major difference between static
versions and tensorial ones should be noted. In the former, bands are observed

1. This is due to the fact that G (q) = 0 for qx = 0 or (exclusive or) qy = 0.
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Figure 11.1: Cumulated plastic activity (arbitrary units) over a strain window ∆γ = 2,
close to the steady state, in the static tensorial model with τres = 10, at
γ̇ = 10−2. System size: N = 512 × 512.

both in the velocity direction and the velocity gradient direction, these directions
being equivalent in the equations, because the deformation tensor is symmetric.
Convection breaks this spurious equivalence through the displacement of the
streamlines; as a result, shear bands are exclusively in the flow direction (and
not perpendicular to it), in accordance with experimental observations.

Regarding the transient regime, as the shear rate is applied after pre-shear, we
first observe the gradual emergence of thin “slip” bands throughout the system;
longer-lived bands then appear. The final coalescence of these bands into a
unique shear band occurs after a system-size-dependent shear strain ∆γss. For
instance, for τres = 10 and γ̇ = 10−2, ∆γss � 6 for a relatively small system of
N = 64 × 64 blocks, ∆γss � 36 for N = 256 × 256.

11.2.2 The shear-banding observable

To quantify to what extent shear localises, we introduce the shear-banding
observable κ (∆γ) ≡ (nmax − nmin)/(nmax + nmin), where nmax and nmin denote
the maximum and minimum of the line-averaged cumulated plastic activities
over strain windows ∆γ , i.e., the total time spent in the plastic state in that
strain interal. To smooth out fluctuations, line averages are further averaged with
the first neighbouring lines. With this definition, a vanishing value of κ signals
homogeneous flow, whereas κ = 1 indicates full shear localisation. A finite value
of the strain interval ∆γ, in the range 10 to 30, is chosen, small enough to avoid
significant shear band diffusion but long enough to wipe out the short-lived slip
lines that are observed even in the absence of shear localisation. The picture is
nevertheless robust to moderate variations of ∆γ.

The shear-banding observable κ is shown in Fig. 11.2a for various τres and γ̇

and confirms the enhanced propensity to shear-banding at low γ̇ and large τres.
The apparent decrease of κ at very low shear rates is most probably due to shear
band diffusion, since the strain interval ∆γ corresponds to increasingly large
time intervals as γ̇ decreases.
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A comparison between the different versions of the model for a strain window
∆γ = 30 reveals that the tensorial, instead of scalar, description of stress in the
static model has virtually no effect on the shear-banding diagram (Fig. 11.2a). On
the other hand, convection curtails shear-localisation to some extent (Fig. 11.2b).
We ascribe this to enhanced stress fluctuations outside the potential shear band
in the convected model, which results in an increased band mobility. The static
vs. convected discrepancy vanishes when the strain window is reduced, for
instance, to ∆γ = 5 (data not shown). For smaller system sizes (N = 64× 64),
shear-banding profiles tend to be more diffuse, and shear bands are more mobile,
owing to larger fluctuations, but the qualitative picture remains identical.
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(a) (Filled circles) Static scalar model. (Open
circles) Static tensorial model.
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(b) (Filled circles) Static scalar model. (Open
circles) Convected tensorial model..

Figure 11.2: Dependence of the shear-banding observable κ on the shear rate γ̇app and
τres, for a strain interval ∆γ = 30, N = 128× 128. Circles are all the larger
as κ is (proportionally) large.

11.3 shear-localisation in the refined model

Let us now consider the athermal model with the more realistic dynamical
rules introduced in Sections 9.3-9.4.

In the absence of short-term ageing (“structural relaxation”) after a plastic
event, i.e., for a rate of recovery k = ∞ of the maximal yield stress in Eq. 9.3,
the model does not display shear localisation, as expected on account of the
Herschel-Bulkley flow curve. As in Ref. [Jagla, 2007] (also see Section 6.3), struc-
tural ageing, obtained by taking a finite value of k, is therefore a prerequisite to
shear localisation in this model.

Figure 11.3 presents the extent of shear localisation as a function of γ̇ and k.
Consistently with the observation of a plateau in the flow curve at low values of
k in Fig. 9.5b, shear localisation is observed in these cases. Indeed, when k is too
low, the driving rate γ̇ competes with the recovery process: rupture in a region
makes it durably weaker. Shear bands develop considerably faster than in Pi-
card’s model and tend to be very thin (acute shear localisation). When the shear
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rate is reduced to extremely low values, γ̇ � k, one would expect to recover a
homogeneous flow in the steady state, similar to that for k = ∞ [Chikkadi et al.,
2011]; this still needs to be confirmed.

Qualitatively, the rate of recovery k is thus analogous to the inverse of the re-
structuring time τres in Picard’s model. It is worth recalling that Vandembroucq
and Roux [2011], too, have studied a spatially-resolved elastoplastic model with
permanent strain weakening, which boils down to k = 0 with our notations.
They also reported shear localisation in the shear weakening case (also see Sec-
tion 6.2.3).

Figure 11.3: Dependence of the shear-banding parameter κ on the applied shear rate γ̇
and the recovery time k−1. The largest circle corresponds to κ = 1. The
system consists of 128× 128 blocks.

11.4 speculative general criterion for shear lo-
calisation

The related, but distinct, conditions for shear localisation in Picard’s model
and in the refined model elicit a more general criterion determining the onset of
shear localisation.

We suggest to put the concept of healing time at the core of the criterion.
Indeed, there is now growing evidence that the longer the material needs to

heal back to its pristine state after a plastic event, the more prone it is to shear
localisation. The healing time following rupture-induced “damage” can take
diverse forms in practice; it can be, for instance,

- the duration of the rearrangement itself as reported by Coussot and Ovarlez
[2010], Martens et al. [2012],

- the thermally activated rebinding of failed contacts, e.g., in fibre bundle mod-
els [Kun et al., 2008],

- the chemical relaxation time of the local mechanical (e.g., surface tension in
foams) properties towards their equilibrium values after a plastic event (which
Denkov et al. [2009] argue results in a flatter flow curve for foams with high
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surface modulus surfactants, as compared to their low surface modulus counter-
parts),

- the time to relax the local free-volume increase created by a rearrangement,
in metallic glasses [Schuh et al., 2007], or

- the time to dissipate the induced heat [Shimizu et al., 2006].
Alternatively, in its initial state, the material may have been stabilised by age-

ing or a careful preparation protocol involving a slow cooling rate, the benefits
of which are lost locally upon the occurrence of a plastic event [Shimizu et al.,
2006].

In this vein, Kumar et al. [2013] recently reported that the lower the fictive
temperature of a metallic glass, the more brittle it is.

Also, attractive interactions are often reported to enhance the heterogeneity
of the flow, which may be connected to long timescales to form stable aggre-
gates [Irani et al., 2014].

But the enhanced tendency to shear localisation upon increasing the healing
time appears to transcend the variety of the mechanisms that are involved.

Key Points of the Chapter

– Shear localisation is observed in elastoplastic models
for long restructuring times (Picard’s model) or in-
tense shear rejuvenation (refined model), regardless
of the scalar or tensorial nature of the model.

– Convection aligns shear bands along the flow direc-
tion only (suppressing the situations of perpendicular
alignment observed in static models).

– The overarching concept of long healing times ac-
counts for the propensity to shear localise of very di-
verse materials.
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12
C O R R E L AT I O N L E N G T H S

Even when the flow of amorphous solids is not permanently shear-banded on
the macroscale, some of its average macroscopic properties cannot be described
by the theory based on independent collisions or hopping events that is used for
simple fluids. Before we address a situation which exemplifies this inadequacy
in the next chapter, let us here examine the origin of this difference, namely,
the existence of spatial correlations in the flow. These correlations should be
particularly extended in a slow flow, while, at high shear rates, we expect them
to be suppressed and a mean-field, simple-fluid-like picture to be restored.

How do the correlations quantitatively scale with the shear rate? In the limit of
vanishing shear rates, is this scaling sensitive to the specific definition of the cor-
relation length? Is it robust to changes in the dynamical rules of the elastoplastic
model?

As in the previous chapter, we use Picard’s model (see Section 9.1.1) as a
benchmark and study different correlation lengths, before turning to the refined
model. Throughout the chapter, we shall only consider macroscopically homo-
geneous flows, so that the observed correlations reflect the properties of the bulk
flow and the ’hybridisation’ effects that arise when shear bands co-exist in the
system are avoided.

12.1 scalings of the correlation lengths in pi-
card’s model

12.1.1 Picard’s correlation length definition

Picard et al. [2005] introduced a characteristic length ξP based on macroscopic
stress drops. It stems from the observation that, below a γ̇-dependent system
size, macroscopic stress drops in the jerky stress vs. strain curve (normalised
by the average stress) saturate due to finite-size effects. Since stress drops are
caused by avalanches of plastic events, ξP (γ̇) is defined as the linear system size
below which saturation occurs. It was found to scale with γ̇−1/2.

After an examination of the values of ξP, it seems to us that saturation actually
occurs when the applied shear rate is decreased to such an extent that there is
at most one plastic event in the simulation cell at any time. In that case, the
characteristic length is but a measure of the spacing between plastic events. In
the athermal regime, the number of plastic events grows linearly with the shear
rate, hence the scaling ξP ∼ γ̇−1/2.
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12.1.2 Instantaneous cooperative disk

Definition

Let us now propose an alternative protocol to define a correlation length,
rooted in the interpretation of the onset of flow in an amorphous solid as a
dynamic phase transition (see, e.g., Ref. [Bocquet et al., 2009]). Setting the macro-
scopic shear stress σxy as a control parameter, we view the steady-state strain-rate
tensor ε̇ as an order parameter, which goes to zero below the yield stress and
continuously increases above it.

One may then wonder whether a mean-field approach is applicable, or whether
it breaks down because of (spatiotemporal) fluctuations. To answer this question,
we assess how large the standard deviation of the fluctuations

√
〈‖δε̇‖ 2〉 expe-

rienced at an arbitrary point M in the system is, compared to the mean value
‖〈ε̇〉‖ of the order parameter. Except at very large shear rates, this ratio is always
large, because plastic events occurring close to M cause very large fluctuations.
But should we only consider the effect of distant plastic events, would the fluctu-
ations then be negligible, and a mean-field treatment applicable to them?

Concretely, at arbitrary points, we compute the mechanical noise ε̇ (ξ) due
to plastic events taking place farther than some distance ξ from M. The use
of a Ginzburg-Landau criterion

√
〈‖δε̇‖2〉/‖〈ε̇〉‖ (ξ) < 1 allows us to distinguish a

cooperative disk of radius ξ? around M, from an outer region which is amenable
to a mean-field treatment, i.e., which satisfies the criterion. With regard to the
instantaneous mechanical noise at M, the details of the individual plastic events
occurring within the cooperative disk will matter, whereas outside the disk they
will not.

In addition, the comparison between the cooperative length ξ? and the size
of a structural rearrangement (the unit size, here) will be a valuable hint as to
whether our model gives credence to mean-field analyses [Dahmen et al., 2009],
possibly complemented with a diffusion term to account for spatial fluctuations
[Bocquet et al., 2009, Fielding et al., 2009, Kamrin and Koval, 2012].

Measurements

Figure 12.1 shows that the data collapse onto a master curve,√
〈‖δε̇‖ 2〉
‖〈ε̇〉‖ (ξ) ∼ 1

ξ
√

γ̇
. (12.1)

We have checked that this scaling is not marred by finite-size effects. It imme-
diately follows from Eq. 12.1 that ξ? ∼ γ̇−1/2, which is confirmed by Fig. 12.2 for
all versions of the model. The assumption 1 that plastic events should be only
weakly interacting in a slow flow, at low temperature may therefore seriously be
called into question.
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Figure 12.1: Ratio of fluctuations over mean value of the mechanical noise due to plastic
events taking place farther than ξ, rescaled with

√
γ̇, as a function of ξ, in

the convected tensorial model. System size: N = 256× 256. Data include
points at γ̇ = 5.4 · 10−4, 8.1 · 10−4, 1.2 · 10−3, 1.8 · 10−3, 2.7 · 10−3, 3.5 · 10−3,
4.0 · 10−3, 6.0 · 10−3, 9.0 · 10−3, 1.3 · 10−2, 1.4 · 10−2, 2.0 · 10−2, 1.3 · 10−2,2.0 ·
10−2, 5.6 · 10−2, 2.0 · 10−2, 0.23. The dashed black line represents y = 1.5/ξ.
Inset: Same data, not rescaled with

√
γ̇. The yellow (γ̇ < 10−2), green

(10−1 < γ̇ < 10−2), and blue (γ̇ > 10−1) lines are guides to the eye. The

dashed red line marks the limit

√
〈‖δε‖2〉
‖〈ε〉‖ = 1.

Figure 12.2: Dependence of the cooperative length ξ? on γ̇. The dashed line has slope
−1/2. (Open diamonds) static scalar model; (triangles) static tensorial model;
(dots) convected tensorial model. N = 128× 128, except for dark blue dots
(N = 256× 256).
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Rationalisation

Although the large values of ξ? point to the sensitivity to the details of even
rather distant plastic events , a simple calculation discarding static spatial corre-
lations between these events already provides a satisfactory explanation of the
scaling behaviour of ξ? (Eq. 12.1). Indeed, under the assumption of randomly
located plastic events, we recover the desired scaling law (Eq. 12.1), as detailed
in Appendix 12.3.1. The derivation is based on the following: the typical me-
chanical noise ‖ε̇‖ created by a plastic event at a distance r amounts to ε̇pl

rd in d
dimensions, whereas its mean value, for all possible relative positions, is only
of order ε̇pl

Ld , where L ≡
√

N is the linear system size, because of the compensa-
tion between the positive and negative lobes of the elastic propagator; lastly, the
average number of simultaneous plastic events is proportional to the shear rate.

We would like to emphasise that the scope of the derivation extends far beyond
the present model; in fine, we simply find that the cooperative length scales with
the spacing between homogeneously-distributed, simultaneous plastic events,
although perhaps in a less crude way than Picard’s definition. In other words,
ξ? is not sensitive to the presence of correlated “slip lines” in the flow and, more
generally, other deviations from a homogeneous distribution of plastic events.

It is therefore not a surprise to find the same scaling of the correlation length
as that used by Lemaître and Caroli [2009] to interpret the transverse diffusivity
in their molecular dynamics simulations, namely a dependence on γ̇−1/d. Note
that Lemaître and Caroli had rationalised it by secluding the non-overlapping
near-field “flips” (plastic events) from an incoherent background of “flips”. In
many respects, our cooperative disk approach comes in the wake of theirs.

12.1.3 Four-point stress correlator

Definition

In glassy systems, instantaneous one-point observables hardly differ from
their counterparts in the fluid state, and the search for an observable whose static
correlations would distinguish the two states has not borne much fruit so far. On
the other hand, time correlations of local observables have proven of great use
as order parameters [Toninelli et al., 2005]. Here, we study the stress autocorre-
lation function c (r, ∆t) ≡ δσxy (r, 0) δσxy (r, ∆t) , where δσxy ≡ σxy − σ̄xy. Spatial
correlations are probed with the four-point correlator

G4 (∆r, ∆t) ≡ 〈c (O, ∆t) c (∆r, ∆t)〉 − 〈c (O, ∆t)〉2 , (12.2)

where the brackets denote an average over time, or, equivalently, configurations
(since the system is stationary). Note that the above definition is independent of
the choice of origin O. If G4 (∆r, ∆t) for a given ∆r is large, it means that regions
separated by ∆r are dynamically strongly correlated.

1. This assumption is explicit in Ref. [Langer, 2008] and implicit in all mean-field-like ap-
proaches.
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The precise definition of c (r, ∆t) deserves a comment in the presence of con-
vection, in which case blocks may move over ∆t. In line with the definition of c
as the stress autocorrelator, we adopt a Lagrangian description and compute c
as

〈
δσxy (r, 0) δσxy (r′, ∆t)

〉
, where r′ is the convected position at ∆t of the block

that was initally at position r. Note that the same idea prevailed in Furukawa
et al. [2009]’s definition of the four-point susceptibility of a system under shear.

Measurements

Figure 12.3 shows the spatial profile of G4 at γ̇ = 10−3 for a time lag ∆t = 0.37
of the order of the stress autocorrelation time. The profiles for the static versions
of the model are indistinguishable with the naked eye, and remain identical
if one substitutes

√
σxx + σxy for σxy in the definition of the time correlator c.

They display long branches in the velocity and velocity gradient directions, in
accordance with the directions of the positive lobes of the xy-component of the
elastic propagator G∞. The large spatial extent of these branches is in part due
to the periodicity of the system in the two directions.

Adding convection radically changes the picture. Most notably, the symmetry
between the (Ox) (i.e., flow) and (Oy) (i.e., velocity gradient) directions is broken.
The streamline going through the origin keeps a forward-backward (x → −x)
symmetry, but outside this line no such symmetry is preserved. In particular,
the branch approximately along (Oy) direction is tilted, so that a block initially
located at position −x in this branch will be convected to position x after the
lag strain ∆γ, meanwhile passing through the (Oy)-lobe of the stress propaga-
tor. The distinction between the generic features of G4 and those specific to the
present model shall be addressed in Section 12.2.2,

(a) Static tensorial model. (b) Convected tensorial model. G4 is represented
as a function of the initial positions of the con-
vected blocks.

Figure 12.3: Spatial profile of the four-point correlator G4 at ∆γ = 0.37 ≈ ∆γ�, γ̇app =

10−3. System size: N = 128 × 128. Because of the comparatively very
large value of the stress autocorrelator G4(0, ∆t), the central cell has been
artificially coloured.
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12.1.4 Four-point stress susceptibility

Definition

The integral of G4 over space, at fixed ∆t, yields the four-point susceptibility
χ4, that is, the variance of the two-time correlation function with time, χ4 (∆t) =
V ·Var (C (∆t)), where V is the volume of the system, C(∆t) ≡ V−1

∫
c (r, ∆t) dr,

and the variance operator Var has its usual definition, Var (·) ≡
〈
·2
〉
− 〈·〉2. If

the integral is normalised by the value at the origin [Toninelli et al., 2005], viz.,
χ̃4(∆t) ≡ χ4(∆t)/G4(O,∆t), it then gives an estimate of the spatial volume in which
the stress evolves in a correlated fashion with that at the origin. To illustrate this
schematically, suppose that the system consists of V/Vcoop entirely correlated, but
mutually decorrelated, regions of volume Vcoop each. A simple application of
the central limit theorem yields

χ̃4(∆t) =
V ·Var (C (∆t))
G4 (0, ∆t)

(12.3)

≈ Vcoop
Var (c (O, ∆t))
G4 (O, ∆t)

≈ Vcoop.

Measurements and scalings

The peak χ̃?
4 of χ̃4(∆t), which is reached at a time lag ∆t? close to the stress

autocorrelation time, thus provides a measure of the maximal cooperativity in
the flow. Here, ∆t? is such that γ̇∆t? ≈ 0.3− 0.5 is of the order of the yield strain.
The value of G4 (O, ∆t?) depends even less on the shear rate.

We turn to a more detailed analysis of the variations of the cooperative volume
χ̃?

4 with the applied shear rate γ̇, starting with the static models. At rather high
shear rates, χ̃?

4 is independent of the system size and exhibits the following shear
rate dependence:

χ̃?
4 ∼ γ̇−β, (12.4)

with β ≈ 0.9 for both the scalar and the tensorial models 2. When the shear rate
is decreased, the cooperative volume increases, and finally saturates at a value
proportional to L3/2 when the whole simulation cell becomes correlated. The
transition takes place around a shear rate γ̇c such that γ̇

−β
c ∼ L3/2. Therefore,

following Ref. [Martens et al., 2011], we propose the scaling

χ̃?
4 ∼ L3/2 f

(
γ̇−βL−3/2

)
, (12.5)

2. On a technical note, in order to get accurate measurements of χ4, the variance of C (∆t) must
be calculated over long single-run simulations. It seems that averaging over many simulations of
duration, say, ∆γ = 20, sometimes leads to inaccuracies, perhaps because some unidentified
structures take a long time (strain) to develop.
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where f (x) ∼ x when x → 0 and f (x) ∼ 1 when x → ∞. Figure 12.5 shows that
a nice collapse can then be achieved.

Using the fractal dimension 3/2 for the cooperative region, one can assess
the four-point correlation length, ξ4 ∼ χ̃?2/3

4 ∼ γ̇2β/3. Interestingly, the expo-
nent 2β/3 ≈ 0.6, for both scalar and tensorial models, is close to the exponent
1/2 extracted in Ref. [Lemaître and Caroli, 2007] from the transverse diffusion
coefficient in their 2D molecular dynamics simulations (although, admittedly,
Lemaître and Caroli found linear avalanches in 2D, instead of our 3/2 fractal ex-
ponent). On the other hand, it differs from the exponent 1/4 predicted by the
kinetic elastoplastic theory of Ref. [Bocquet et al., 2009]. More surprisingly, it
also differs from the exponent reported in Ref. [Martens et al., 2011] for a slightly
different rescaling of the observable, but with a model identical to the present
one. We have checked that the scaling proposed in Ref. [Martens et al., 2011]
provides a poorer fit to our more extensive data set (see Fig. 12.6).

The insertion of convection modifies the scaling thoroughly. Consistently
with 2D atomistic simulations [Maloney and Lemaître, 2004, Lemaître and Car-
oli, 2009], linear correlations (referred to as “slip lines” in Ref. [Maloney and
Lemaître, 2004], see Fig. 12.3) then dominate and χ̃?

4 saturates at a value appar-
ently almost proportional to the linear system size L (see Fig.12.7). The non-
saturated regime in which the cooperative volume depends solely on γ̇ is never
truly reached in our simulations: finite-size effects are always dominant, which
hampers our search for a scaling law.

Figure 12.4: Four-point susceptibility as a function of strain delay ∆γ = γ̇∆t, for various
shear rates (increasing γ̇ from top to bottom), in the convected tensorial
system. Red triangles indicate maximal values.

12.2 scalings of the correlation lengths in the

refined athermal model

All correlation lengths that have been measured in Picard’s model, in the pre-
vious section, are approximately proportional to the inverse square root of the
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(a) Static scalar model.
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(b) Static tensorial model.

Figure 12.5: Scaling of the maximal cooperative volume χ̃?
4 as a function of γ̇ in the static

models. The vertical axis is L−1.5χ?
4 , and the horizontal axis is the rescaled

shear rate γ̇−βL−1.5, with β = 0.93 for the scalar model and β = 0.94 for
the tensorial model. Various linear sizes of the (square) system are studied:
L = (cyan dots) 32, (yellow dots) 64, (blue triangles) 128., (green squares) 192,
(red stars) 256, (green stars) 384. As a guide to the eye, we have plotted a
dashed line with slope 1.

Figure 12.6: Test of the scaling of χ̃4 proposed in Ref. [Martens et al., 2011], i.e., χ̃4
L3/2 =

f
(

γ̇−3/2

L3/2

)
, for the static scalar model. Various linear sizes of the system

are studied: L = (cyan dots) 32, (yellow dots) 64, (blue triangles) 128., (green
squares) 192, (red stars) 256. As a guide to the eye, we have plotted a dashed
line with slope 1. Data have been averaged over ∆γ ≈ 300.
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Figure 12.7: Maximal cooperative volume χ̃?
4 in the convected tensorial model. Various

linear sizes of the (square) system are studied: L = (cyan dash-dotted line)
32, (yellow triangles) 64, (green hexagons) 96, (blue triangles) 128, (green squares)
192, (red stars) 256, (green stars) 384, (black star) 512.

shear rate, with the exception of the four-point correlation length in the con-
vected system, whose scaling remains elusive for us. How universal is this γ̇−1/2-
scaling (in 2D)? Spurred on by this question, we pursue the study in the model
featuring more realistic dynamical rules introduced in Section 9.3. Here, we fix
k = ∞, i.e., short-term ageing is precluded; the flow is then macroscopically
homogeneous; in addition, we choose the model parameter γc = 0.7

〈
γy
〉
.

12.2.1 Cooperative disk

As with the previous model, we determine, at an arbitrary point M in the sys-
tem, the radius ξ? of the cooperative disk outside which plastic events contribute
to the instantaneous mechanical noise perceived at M essentially in a mean-field
manner.

The inset of Fig. 12.8 shows that the scaling
√
〈‖δε̇‖2〉
‖〈ε̇〉‖ (ξ) ∼ 1

ξ
√

γ̇
is also entirely

satisfactory in this case. It follows that the scaling of the cooperative radius
ξ? with γ̇−1/2 is conserved, although a departure from this scaling is observed
when ξ? & 20, due to finite-size effects (see Fig. 12.8). This supports the idea that
the arguments developed above to ground the scaling of the cooperative radius
with the spacing between simultaneous plastic events are not model-specific. We
hypothesise that they may also be relevant in the thermal regime.

12.2.2 Four-point susceptibility

The spatial profiles of the four-point stress correlator G4 (r, ∆t?) (not shown) re-
tain the symmetry described above, although in the convected version the cross-
wise lobe is now less skewed, owing to the lower yield strain. However, the
integrals of G4 (r, ∆t?) over growing disks centered at the origin scale differently
with the disk radii R; here they scale with Rα for 1 � R � L, with α ≈ 0.6
roughly in the static case.
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Figure 12.8: Cooperative radius ξ? as a function of the applied shear rate γ̇. Linear sys-
tem size L =(black triangles) 128, (pink circles) 256, (green diamonds) 384. The
dashed line has slope -0.5. (Inset) Rescaled fluctuation over mean value ratio
√

γ̇

√
〈‖δε̇‖2〉
‖〈ε̇〉‖ as a function of ξ, for various γ̇. The dashed line represents

0.39/ξ.

To carry on with the quantitative study, we turn to the maximal cooperative
volume χ̃?

4 . Since no obvious scaling was found in the convected case with the
previous model, only the static tensorial model is studied here. For a given
system size, say, L = 128, at relatively high shear rates, the exponent β in χ̃?

4 ∼
γ̇−β is of order 0.2-0.3, that is, significantly lower than its counterpart for the
simplistic model. In spite of the scatter of the data, we clearly see that the
scaling law used above is no longer valid for this model, as illustrated in Fig.12.9;
universality in the variations of the cooperative volume with the system size and
the shear rate is thus ruled out. In fact, the scaling form χ̃4

Lα = f
(

γ̇−β

Lα

)
in general

does not seem to provide any nice collapse of the data here.
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Figure 12.9: Maximal cooperative volume χ̃?
4 , rescaled according to χ̃4

Lα = f
(

γ̇−β

Lα

)
, for

two distinct pairs (α, β): the exponents measured in the previous section,
(α = 1.5, β = 0.94), and better suited exponents, (α = 0.65, β = 0.25). Vari-
ous linear sizes of the (square) system are studied: L = (large green dots)16,
(cyan dots) 32, (large cyan dots) 48, (yellow triangles) 64, (blue triangles) 128, (red
stars) 256. As a guide to the eye, we have plotted a dashed line with slope 1.
Data have been averaged over ∆γ ≈ 400

〈
γy
〉

.

Key Points of the Chapter
a

– A class of correlation lengths simply scale as the
spacing between homogeneously distributed, simul-
taneous plastic events, i.e., ξ ∼ γ̇−1/d in the shear-
dominated regime. These correlation lengths are
insensitive to avalanche shapes and are robust to
changes in the elastoplastic model.

– On the other hand, the scaling of the cooperative vol-
ume assessed with the four-point stress susceptibility
is model-dependent, thus ruling out universality in
this respect.

– Scalar and tensorial models have identical scalings.
– Nevertheless, some aspects of structural disorder may

be underestimated in the elastoplastic line of mod-
elling, which would then overestimate cooperative
lengths.

a. These results, along with those of Chapter 11, have been col-
lected in a publication [Nicolas et al., 2014b]
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A
12.3 appendix

12.3.1 Estimation of the cooperative length ξ?

Simple arguments based on the crude assumption of randomly distributed
plastic events explain the importance of the mechanical noise fluctuations mea-
sured at an arbitrary point, say the origin M, and the scaling law in d = 2
dimensions (Eq. 12.1), which is recalled here:√

〈‖δε̇‖ 2〉
‖〈ε̇〉‖ (ξ) ∼ 1

ξ
√

γ̇
. (12.6)

Denoting by p ∈ [0, 1] the average surface fraction covered by plastic events at
a given shear rate and calling ε̇pl ∼ γy

τ the typical plastic strain rate, the mean
value of the mechanical noise due to plastic events occurring farther than ξ is:

‖〈ε̇〉‖ ≈
∫ L

ξ

∫
Sd

pε̇pl

Ld rd−1drdθ

∼ pε̇pl (Ld − ξd)
Ld .

Here, Sd denotes the unit sphere in d dimensions, and we have used that the
spatially averaged contribution of a plastic event to the stress field is of order ε̇pl

Ld .
Numerical prefactors are omitted.

Let us now turn to the fluctuations and start by computing δε̇ (r), the contri-
bution of plastic events taking place in a shell [r, r + 1] centred at M :

δε̇ (r)2 =

(∫ r+1

r
dr′
∫
Sd

r′d−1dθG
(
r′, θ

)
n
(
r′, θ

)
ε̇pl
)2

∼ 0 +
∫ r+1

r
dr′
∫
Sd

r′d−1dθ

(
cos (4θ)

rd n (r, θ) ε̇pl
)2

∼ p ·
(
ε̇pl)2

rd+1 ,

where n (r′, θ) = 0 or 1 is the plastic activity at point (r′, θ), and, crudely, we
have assumed the absence of static spatial correlations between plastic events
outside a fully correlated unit volume r′d−1dr′dθ = 1, i.e., the volume of a single
plastic event.
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The sum δε̇ of the contributions of the concentric shells of radius r > ξ then
reads:

δε̇2 ∼
[

L

∑
r=ξ

δε̇ (r)

]2

∼
L

∑
r=ξ

δε̇ (r)2

∼ p ·
(

ε̇pl
)2
[

Ld − ξd

Ldξd

]
.

Finally, the fluctuations-to-average ratio can be computed, in the limit ξ � L,
√

δε̇2

‖〈ε̇〉‖ ∼ 1
ξd/2
√

p
. (12.7)

To conclude, one just has to recall that, when thermal fluctuations are negligi-
ble, the density of plastic events is proportional to γ̇, because the typical stress
release per plastic event εpl shows no significant dependence on the applied
shear rate.
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13
F L O W I N A M I C R O C H A N N E L

In the previous chapter, spatial correlations in the flow have been evidenced
in a simple shear setup, which features a unique macroscopic shear rate γ̇. But
the effect of these correlations is magnified in intrinsically inhomogeneous flow
geometries, displaying a continuum of shear rates. In this chapter, we investigate
such a highly heterogeneous geometry, namely, flow in a microchannel. The in-
terest of this geometry notably resides in its industrial relevance for the design of
labs-on-a-chip or die extrusion of complex fluids. Moreover, recent experiments
have revealed striking manifestations of cooperativity in this setup, as we shall
see. Therefore, the study will afford a direct comparison between the model and
experimental data, which is rare in the field.

13.1 simulation of a genuine 2d microchannel

To our knowledge, the elastoplastic modelling of a channel flow is unprece-
dented. In fact, the simulation of a genuine microchannel in 2D requires two
major changes with respect to simple shear flow. First, the shear stress applied
on different streamlines will no longer be uniform, but linear in the crosswise
coordinate. Second, channel walls need to be implemented.

13.1.1 Implementation of the stress profile across the channel

Let us recall the elastoplastic equation of evolution of the local stress (Eq. 8.1):

∂tσ(i, j; t) = Σ̇app + 2µ
L

∑
i′=1

L

∑
j′=1
G
(
i− i′, j− j′

)
· ε̇pl(i′, j′; t). (13.1)

Quite generally, the loading rate Σ̇app corresponds to the response of a purely
elastic solid, for which ε̇pl = 0. For the specific case of a channel, the defor-
mation of this purely elastic material is pressure driven and, on account of the
symmetries, momentum conservation reads, in the steady state,

σxy = ∇p (y− Ly/2) ,

where x and y are the streamwise and crosswise coordinates, respectively. It
follows that Σ̇app = 0, and the initial state of the material should coincide with
that of the purely elastic solid, viz.,

σxy(x, y; t = 0) = ∇p (y− Ly/2) .
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(a) Sketch of the duplicated system.

x

y

(b) Displacement field in the “real half” induced by a single
plastic event, located in the white square.

Figure 13.1: Modelling a plastic event in a geometry confined by walls.
(b) The white arrows show the direction of the field, while the colour code
represents the displacement amplitude (brighter colours indicate higher am-
plitude). Walls, drawn as red lines, are present at the top and at the bottom
of the system.

The streamline-averaged stress conserves a linear profile throughout the simu-
lation, because plastic events induce a homogeneous streamline-averaged stress,
owing to mechanical equilibrium.

13.1.2 Inclusion of confining walls

In addition to changing the initial stress profile, the boundary conditions (BC)
need to be adapted to account for the presence of two infinite parallel walls,
directed along ex, bounding the flow, while keeping the periodicity along ex.
The effect of the walls is modelled by imposing a no-slip BC at their locations, in
line with what is commonly done in fluid mechanics.

To implement the no-slip BC, we extend the treatment of Ref. [Picard et al.,
2004]: the system is duplicated in the direction perpendicular to the walls, so that
the region y ∈

[
0, Ly

]
describes the real system, while the region y ∈

[
−Ly, 0

]
is

fictitious. Now, the contrivance consists in adding appropriate “forces” outside
the domain of interest to have the BC satisfied while still fulfilling the equations
of elasticity in the real domain. With this objective in mind, for each plastic event
(in the real system), a symmetric “image plastic event” is created in the fictitious
half (see Fig. 13.1a). The y-component of the velocity field is thereby cancelled at
the walls. To remove the x-component of the velocity, adequate forces directed
along ex are added at the walls. These (fictitious) forces add a corrective term
εcorr to the deformation field ε∞ obtained for periodic BC (whose derivation can
be found in Section 8.2.1):
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Figure 13.2: Decrease
∣∣∣ε(1)xy

∣∣∣ of the local elastic strain induced by a given plastic strain ε
pl
xy

as a function of the distance y to the wall (expressed in block units, which
is the only relevant length scale). Values have been normalised to the ’bulk’
value, that is, the quantity measured infinitely far from the wall.

ε (q) = ε∞ (q) + εcorr (q) .

The calculation of εcorr (q) , which I defer to Appendix 13.5.1 because it is
rather technical and lengthy, yields the following result:

(
εcorr

xx
(
qx, qy

)
εcorr

xy
(
qx, qy

) ) =


−2qxq2

y

q4

[
i∑

y
ζδ (X) Fxε

pl
xy(qx, y) + 2∑

y
ξδ(X)Fxε

pl
xx(qx, y)

]
qy(q2

x−q2
y)

q4

[
i∑

y
ζδ (X) Fxε

pl
xy(qx, y) + 2∑

y
ξδ(X)Fxε

pl
xx(qx, y)

]
 ,

(13.2)
where ∑y denotes an integral over all streamlines y = cst and Fx indicates a

Fourier transformation along direction x. X is used as a shorthand for
(

πy
Ly

, qx Ly
π

)
and the analytical expressions of the functions ζδ (X) and ξδ (X) can be found in
Appendix 13.5.1.

Note that the corrective term couples distinct Fourier modes so that the trans-
lational invariance of the propagator G is broken (in the y-direction). In par-
ticular, for a given plastic strain, the local strain response now depends upon
the distance to the wall. The dependence on the distance for a plastic event{

ε
pl
xx = 0, ε

pl
xy 6= 0

}
is presented in Fig. 13.2, in the discrete system, with blocks

of unit size. In particular, one can see that the local strain relaxation induced by
a given plastic strain is around 35% higher in the direct vicinity of a wall than in
the bulk case, owing to the vicinity of a solid boundary.

13.1.3 Coarse-grained convection

The implementation of (a coarse-grained version of) convection is consider-
ably streamlined in comparison with the unbounded medium. Indeed, owing to
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the confinement in the crosswise direction and the absence of interactions with
periodic replicas in that direction, there is no need to deform the simulation cell.
It is therefore sufficient to incrementally shift individual streamlines whenever
their average displacement 〈ux〉x (y0) grows larger than a multiple of the block
size, with

〈ux〉x (y0) ≡
1
Lx

∫ Lx/2

−Lx/2
ux (x, y0) dx

= ∑
yev

[
sign (y0 − yev) ·

(
1− |y0 − yev|

Ly

)
+ 1− yev

Ly
− y0

Ly

]
Fxε

pl
xy(m = 0, yev).

Details of the algebra are provided in Appendix 13.5.2. As explained in Sec-
tion 8.3.1, a homogeneous random displacement is also regularly added to all
streamlines, in order to avoid the artificial “pinning” of lines with low average
velocities.

13.2 simulation of the flow

13.2.1 Model

For chronological reasons mainly, we resort to somewhat different dynamical
rules in this chapter.

The rates l (σ) and e (σ) still govern the transition from the elastic to the plastic
regime and the recovery of elastic behavior after initiation of the plastic event,
respectively, i.e.,

elastic regime
l(σ)


e(σ)

plastic event.

But the distribution of yield stresses is reduced to a single value, σy, and, as
in the Eyring model, the potential energy is supposed linear in the local stresses,
instead of quadratic, viz., Ṽ = V − σ 〈γ〉, where 〈γ〉 is a macroscopic strain and
the activation volume has been set to unity. The yield rate then reads

l (σ) = τ−1Θ
(
σ− σµy

)
exp

(
σ− σy

xloc

)
,

where xloc is a material-dependent activation temperature of non-cooperative ori-
gin: it accounts for local microscopic effects, but not for the mechanical noise. Note
that the limit xloc → 0 coincides with the usual von Mises yield criterion. The
Heaviside function, Θ

(
σ− σµy

)
with a critical stress σµy � σy, is a convenient

means to obtain a finite macroscopic yield stress in a thermal system without
explicitly accounting for structural ageing (the issue associated with this was
discussed in Section 7.3). Incidentally, Amon et al. [2012a], in a paper investi-
gating the behaviour of granular matter on a tilted plane, recently called for a
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model displaying two critical stresses, with a microfailure stress in addition to
the macroscopic one, although with a distinct definition.

Regarding the duration of a plastic event, set by e(σ), it was fixed on a per
T1 event (or per rearrangement) basis in the previous refined model. The present
choice of e(σ) is premised on the idea that after the onset of a plastic event
rearrangements will be taking place as long as the local stress σ remains large.
Consequently, we define a threshold for the recovery of elastic stability, whose
value is set to σµy in order to limit the number of parameters. Introducing a new
intensive parameter xres, this allows us to write

e (σ) = τ−1 exp
(

σµy − σ

xres

)
.

The definition of the rates e and l completes the description of the model.

13.2.2 Parameter fitting

As usual, we use units of time and stress such that τ = 1 and σy = 1. We set
µ = σy (note that this only comes down to rescaling the shear rate if convection
is omitted). Three parameters still need to be determined: σµy, xloc, and xres.

In the following, our numerical simulations are compared to experimental
data for concentrated oil-in-water emulsions collected by two different groups,
Goyon et al. [2010] and Jop et al. [2012]. The experimental systems are concen-
trated emulsions made of 6− 7µm silicon oil droplets in a water-glycerol mixture.
The oil volume fraction is φ ∼ 0.75, a value significantly larger than the jamming
volume fraction. Both groups report a Herschel-Bulkley dependence of the shear
stress on the shear rate, that is, σ = σd

[
1 + (τHBγ̇)n

app

]
, with an exponent n ' 0.5

in both cases.
This Herschel-Bulkley law allows us to fit the remaining model parameters.

To do so, we simulate a simple shear flow (Σ̇app = µγ̇ in Eq. 13.1). By varying
the parameters, we find that the combination

{
σµy = 0.17, xl = 0.249, xe = 1.66

}
provides quite a satisfactory fit to the flow curve, as shown in Fig. 13.3. Note that
model units of time and stress have been appropriately rescaled in the figure, to
allow for comparison with the experimental values. Of course, one may argue
that the fitting to the flow curve only loosely constrains the parameters, implying
that other combinations of parameters could yield the same result. Nevertheless,
we would like to mention that, when starting with a moderately different set
of parameters and fine-tuning it to better match the data, we have recovered
parameters similar to those selected.

13.2.3 General observations

Having set the model, we now turn to the specific case of channel flow.
Conspicuous is, in the first place, the presence of a ”plug” in the centre of

the channel, i.e., a solid-like region in which the material is convected, but not
sheared. The plug is clearly seen in Fig. 13.4a, which demonstrates a nice agree-
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Figure 13.3: (×) Experimental and (•) simulated flow curve. The experimental were
obtained by Goyon et al. for an emulsion of ∼ 6.5 µm silicon oil droplets
in a water-glycerin mixture at volume fraction φ = 75%. The solid line is a
guide to the eye.

ment between the numerical and the experimental (time averaged) velocity pro-
files across the channel. Note that showing the velocity differences with respect
to the maximal velocity across the channel obviates the experimental issue of the
determination of wall slip.

However, averaging over time masks the temporal fluctuations of the flow. If
one heeds the variations of the maximal streamline velocity of the simulated flow
with respect to time, flow intermittency becomes evident. 1 This phenomenon is
more acute for narrow channels (data not shown), in agreement with results from
numerical simulations regarding the effect of confinement [Chaudhuri et al.,
2012]. Note that flow intermittency, or “stick-slip” behaviour, has often been
reported experimentally, but it has been interpreted in various ways depending
on the particular system under study: the creation and failure of force chains
is put forward in the case of granular matter [Pouliquen and Gutfraind, 1996,
Gutfraind and Pouliquen, 1996], while variations in the local concentrations of
colloids and erosion by the solvent have been reported for concentrated colloidal
suspensions [Isa et al., 2009].

The spatial distribution of plastic events is also of interest. Indeed, although
the plug remains virtually still on average, sparse plastic events are clearly seen
in that region (where |σ(y)| 6 σy) especially for narrow channels, and, conse-
quently, below the bulk yield stress. Therefore, these plastic events essentially
originate in cooperative effects, via stress redistribution. Being of cooperative
nature, the principal direction of their stresses at the yielding point (the ’angle
of yield’ of the plastic event) is broadly dispersed, since it is not strongly biased
by a fixed applied shear (see Fig. 13.4b).

13.2.4 Cooperative effects in a microchannel flow

Cooperativity is a general feature of the flow of amorphous solids, regardless
of the flow geometry and the drive. Channel flow, however, is specific in that

1. However, these fluctuations would presumably vanish in our model if the channel were of
infinite length.
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(a) Velocity profiles. (b) Angles of yield.

Figure 13.4: (a) (×) Experimental and (•) simulated velocity profiles, for stresses at the
wall σw = 141 Pa, 188 Pa, 235 Pa, 282 Pa, corresponding to σw=0.36, 0.48,
0.60, 0.72 in model units, from top to bottom. The experimental data are a
courtesy of Jop et al. The model time and stress units have been rescaled to
match the experimental data.
(b) Principal direction θ ∈ [−45◦, 45◦] of plastic events as a function of the
position in the simulated channel. Channel width: 12. σw=0.6 in model
units. The vertical dashed lines delimit the ’plug’, i.e., the region where
|〈σxy〉| 6 σd. The bars give the standard deviation, ±〈〈θ2〉 − 〈θ〉2〉.

(i) the non-locality of the stress redistribution couples streamlines subject to
different shear stresses.

(ii) the presence of a wall, whether it be rough or smooth, may create a specific
surface rheology, different from that in the bulk.

In practice, these effects are of primary importance for confined flows in mi-
crochannels, but they are not intrinsically caused by confinement.

In the following, we attempt to disentangle them in the experimental manifes-
tations of cooperativity.

13.3 cooperativity in the bulk flow : a manifesta-
tion of the coupling between heterogeneous

regions

13.3.1 Origin and description of the non-locality in the flow

Since streamlines subject to different stresses are coupled in the microchannel,
one may then expect the behaviour of a given region to differ from that it would
have in homogeneous flow. This is a serious issue, since it undermines the
paradigm that there exists a constitutive equation relating the local shear rate to
the local shear stress, as explained by Goyon and colleagues [Goyon et al., 2008,
2010].
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To rationalise the deviations that they observed experimentally, Goyon et al.
made use of a diffusion equation (Eq. 6.4) operating on the local fluidity f (r) ≡

γ̇(r)
σxy(r)

, which we recall here:

ξ2∆ f − ( f − fbulk [σ (y)]) = 0, (13.3)

where fbulk (σ) denotes the fluidity measured in a homogeneous flow at applied
stress σ. The length scale ξ is a cooperative length, that scales with the particle
diameter [Goyon et al., 2008, Kamrin and Koval, 2012].

Although the theoretical derivation of Eq. 13.3 by Bocquet et al. [2009] required
strong approximations, namely, cutting off the propagator beyond the first neigh-
bours and considering the limit of vanishing shear rate, the equation was found
to provide a very satisfactory description of experimental and numerical data in
several cases [Goyon et al., 2008, 2010, Jop et al., 2012, Chaudhuri et al., 2012,
Geraud et al., 2013, Kamrin and Koval, 2012], provided that the parameters, that
is, the cooperativity length ξ and the value fwall of the fluidity at the wall, are
carefully fitted.

Assuming that this equation offers a valid first-order approximation of the
flow, we use it to assess the amplitude of the expected deviations from bulk
behaviour.

To do so, we quantify the extent of the coupling by estimating the relative
deviations δ f (y) ≡ f (y) − fbulk of the fluidity. This defines a dimensionless
number, the Babel number Ba ≡ δ f

f . In Appendix 13.5.3, we show that, under the

assumption of a Herschel-Bulkley constitutive equation, Ba is of order
(

ξ ‖∇σ‖
σ−σd

)2
,

that is,
(

ξ
‖∇p‖
σ−σd

)2
for a channel flow.

Noteworthy is the (quadratic) dependence of the Babel number on the stress
gradient, i.e., the pressure gradient in a Poiseuille flow. Indeed, it is generally
several orders of magnitude larger in microchannels than in their larger coun-
terparts, which explains why striking manifestations of cooperativity have been
observed only in the former. The Babel number is also negligible in wide-gap
Taylor-Couette geometry. For instance, a rough estimation yields Ba ∼ 10−9 at
most in the wide-gap setup used in Ref. [Ovarlez et al., 2008], where no devia-
tions from macroscopic rheology were reported.

The denominator of Ba, (σ− σd)
2, also deserves a comment: at high applied

stresses, when the material is more fluid-like, relative deviations become less
significant. We should however say that, to measure relative deviations, the
absolute fluidity deviations are divided by the fluidity, which gets large as σ

gets large.

13.3.2 Non-local effects in the velocity profiles

Following the above considerations, we expect deviations from macroscopic
rheology to increase with confinement, at fixed wall stress.
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Indeed, Goyon’s experiments on emulsions confined in microchannels with
smooth walls tend to indicate that the deviations of the velocity with respect to
the bulk predictions follow such a trend. However, overall, these deviations were
found to be rather small. The mentioned effect of confinement is also confirmed
by Chaudhuri et al. [2012] with atomistic simulations of a Poiseuille flow with
biperiodic BC with atomistic simulations.

Figure 13.5a shows a comparison between the actual velocity profile obtained
with simulations of the mesoscopic model and the predictions from the (bulk)
flow curve. As in experiments, small deviations can be observed. For the extent
of these deviations to roughly match that in the experiments, the channel width
must be of order 7-10 block units. From this we deduce a first estimate for the
linear size a of a mesoscopic block in terms of particle diameters: a ≈ 2, which
is comparable to experimental values found in the literature [Schall et al., 2007].

Let us now investigate how compatible our simulation results are with the
fluidity diffusion equation (Eq. 13.3). To solve Eq. 13.3, two BC are required: for
symmetry reasons, we impose f (y = 0) = f

(
y = Ly

)
, and we set the fluidity

at a point close to the wall to the value measured in simulations. In addition,
the shear-rate dependence of the cooperativity length ξ must be specified. Two
possibilities are considered in Fig. 13.5b:

- either, following Ref. [Goyon et al., 2008], ξ is supposed independent of the
shear rate, i.e., ξ = ξ0,

- or a power-law dependence is assumed, ξ (γ̇) = ξ0 (γ̇τ)−
1/4, where γ̇ is the

product of the local shear stress and fluidity, as derived by Bocquet et al. [2009]
in the limit γ̇→ 0, and in reasonable agreement with the data of Jop et al. [2012].

In both cases, ξ0 is adjusted by a least square minimization. Both cases give a
reasonable fit, but neither matches our data accurately over the whole range of
applied pressures. We ascribe this defect, among other details, to the approxima-
tion of long-range interactions by a diffusive term, and to the neglect of fluidity
fluctuations.

In Figure 13.6, we assess the predictive capability of the theoretically derived
Babel number for our channel flow simulations by plotting the δ f

f obtained in

our simulations as a function of Ba =
(

ξ ‖∇σ‖
σ−σd

)2
. It shows a global trend towards

larger relative deviations from macroscopic rheology for larger Ba, but the corre-
lations are poor. Nevertheless, one may expect Ba to still be a valid predictor in
practice, when widely different situations are considered.

13.3.3 Shear rate fluctuations in the plug

Quite recently, Jop et al. [2012] showed experimentally that the seemingly qui-
escent plug in the centre of the microchannel actually sustains finite shear rate
fluctuations. This observation is obviously consistent with the occurrence of
sparse plastic events in the plug, in our simulations.

To go further than this qualitative agreement, we directly compare the lo-

cal shear rate fluctuations δγ̇ (x, y) =

√〈
γ̇ (x, y)2

〉
− 〈γ̇ (x, y)〉2 to experimen-
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(a) Velocity profiles across the channel. (b) Fluidity profiles.

Figure 13.5: (a) Velocity profiles for σw = 45, 60, 75, 91 Pa, i.e., σw = 0.75, 1.0, 1.25, 1.52
in model units, from top to bottom: (dashed line) simulation results, (solid
line) predictions based on the numerical bulk flow curve. The crosses are
experimental data obtained by Goyon et al.
(b) Fluidity profiles for Ny = 12, for σw = 0.20, 0.28, 0.36, 0.48, 0.60, 0.72 in
model units. (Filled circles) numerical results, dashed green line: solution of
Eq. 13.3 with ξ (γ̇) /Ly = 0.03702, (solid blue line) solution of Eq. 13.3 with
ξ (γ̇) /Ly = 0.01146 γ̇−0.25. The thin dash-dotted lines represent the bulk
fluidity fbulk.
Note that the curves in both subfigures have been shifted with respect to
each other for clarity.

Figure 13.6: Relative deviations δ f
f of the local fluidity f from the bulk fluidity fbulk (σ)

measured in simulations, where σ is the local shear stress, as a function

of the estimated Babel number Ba =
(

ξ0
∇σ

σ−σd

)2
. We have set ξ0 to 0.037

(see Fig. 13.5b). Data only include regions where σ > σd, but cover various
applied pressures and channel widths: (H) 6 blocks, (N) 10 blocks, (�) 16

blocks, (•) 24 blocks.
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(a) Shear rate fluctuations δγ̇ (y) (av-
eraged along the x-direction), for
σw = 141 Pa, 188 Pa, 235 Pa, 282 Pa
(identical to Fig. 13.4a), from bottom to
top. (×) Experimental data from Ref. Jop
et al. [2012], (solid lines) numerical results for
Ly = 16.

(b) Shear rate fluctuation profiles for a given
stress at the wall, σw = 0.48 in model units,
for different channel widths: (fuchsia) 6, (red)
10, (green) 16, and (blue) 24 blocks, in de-
scending order of minimal values.

Figure 13.7: Shear rate fluctuations.

tal data 2, with the parameters used to fit the associated velocity profiles (see
Fig.13.5a). Here, γ̇ (x, y) is the local shear rate at point (x, y); it is given by
γ̇ (x, y) = 2

(
ε̇

pl
xy (x, y) + ε̇

(1)
xy (x, y)

)
in the model and is therefore obtained di-

rectly, that is, without deriving the velocity with respect to space. Figure 13.7a
presents the experimental shear rate fluctuation profiles and their numerical
counterparts for Ly = 16 blocks crosswise. Semi-quantitative agreement is ob-
served in regions far from the walls - apart from the large discrepancy at the
highest applied pressure. The discrepancies in the highly-sheared regions near
the walls will be considered below. It is interesting to note that the fitted chan-
nel size provides another estimate for the size a of an elastoplastic block, which
agrees with the first one, a ≈ 2. Figure 13.7b shows the dependence of the shear
rate fluctuations on the channel size for a given stress at the wall. As expected
from the expression of the Babel number, fluctuations in the plug decay when
the channel width is increased.

Let us note that the data collected by Jop and co-workers suggested a propor-
tionality between the shear rate fluctuations and the local fluidity, implying that
both are indicators of the intensity of the plastic activity. Figure 13.8 shows that
the line-averaged plastic activity does indeed depend linearly on the local flu-
idity in our channel flow simulations, despite some discrepancies at low values
of the fluidity, that is, probably in the plug. However, the relation between the
shear rate fluctuations and the mean fluidity is much less clear (data not shown).

2. Note that we have discarded the two curves corresponding to the lowest applied pressures,
which seem to plateau in the centre, because we were not entirely sure of the accuracy of these
measurements.
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Figure 13.8: Time-averaged fraction of plastic blocks
〈

nplast

〉
on a given streamline as a

function of the mean fluidity 〈 f 〉 on that line, for diverse applied pressures
and various channel widths: (H) 6 blocks, (N) 10 blocks, (�) 16 blocks, (•)
24 blocks. Inset:

〈
nplast

〉
vs. the mean shear rate 〈γ̇〉 on the line. (Same

symbols).

13.4 a specific rheology near the walls?

In the previous section, we have dealt with the flow cooperativity associated
with the coupling of heterogeneous streamlines, leaving aside another poten-
tially significant difference with bulk homogeneous flow: the presence of walls
bounding the flow, which is known to affect the flow of diverse complex flu-
ids: wormlike micellar solutions [Masselon and Colin, 2010, Bécu et al., 2004],
laponite [Gibaud et al., 2008], dense colloidal suspensions [Isa et al., 2007], etc.
Indeed, Goyon et al. [2008] provided experimental evidence of the occurrence
of ample changes when rough walls are substituted for smooth walls. Then,
much larger deviations from bulk rheology are observed, especially at high ap-
plied pressures, and these deviations are maximal close to the walls, contrary to
predictions based on the Babel number.

13.4.1 Weak deviations due to no slip boundary condition

Remember that walls are described by a no-slip boundary condition in our
model. This condition results in a significantly larger dissipation during plastic
events in their vicinity. Is this sufficient to capture the very large deviations
observed experimentally?

Figure 13.9 shows the local flow curve for the simulations. To decouple to a
certain extent the problem of wall rheology from the inhomogeneous drive, a
relatively large channel is considered here. For each value of the wall stress, the
points with the highest local shear rates in Fig. 13.9 are closest to the walls. We
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Figure 13.9: Local shear stress as a function of the local shear rate, for various applied
pressures for a channel width of 24 blocks. The corresponding stresses at
the walls are: (purple rhombs) σw = 0.2, (cyan dots) σw = 0.2, (red squares)
σw ' 0.4, (green upper triangles) σw ' 0.5, (blue lower triangles) σw = 0.6.

do observe some slight deviations, 3 but they are clearly much weaker than in
Goyon’s observations (see Fig. 6 of Ref. [Goyon et al., 2010] for instance). In this
respect, they much better describe the situation for smooth walls, which, at first,
might seem surprising given the no-slip BC. Yet, in reality, the large slip observed
at smooth walls should not give rise to significant changes: it only adds a simple
global translation to the complex velocity field obtained with no-slip BC.

13.4.2 Physical effect of rough walls

As the deviations observed for rough walls are not captured by a simple no-
slip BC, we discuss here some physical mechanisms that may be responsible for
the observed behaviour.

First, the static structure near walls is known to differ from that in the bulk.
For smooth, or not too rough, boundaries, stratification in layers is often reported
over a distance of a few particle diameters [Ballesta et al., 2008, Mansard, 2012],
though not systematically: the experiments of Ref. [Goyon et al., 2010], however,
exhibited no such layering. Besides, the vicinity of a solid boundary hinders the
mobility of Brownian particles [Pagac et al., 1996]. But these structural changes
for the material at rest imply a decrease of the fluidity at the wall, as opposed to
the enhancement that is experimentally observed by Goyon [Goyon et al., 2008]
and Géraud [Geraud et al., 2013] at high enough stresses, i.e., where the largest
deviations occur. Alternatively, the specific behaviour at the wall is often ratio-
nalised by the existence of a depleted ’lubrication layer’ close to the wall, as is
often found in sheared dispersions [Yoshimura and Prud’homme, 1988, Barnes,
1995, Franco et al., 1998, Meeker et al., 2004a,b, Salmon et al., 2003, Bécu et al.,

3. Nevertheless, replacing the no-slip BC with a periodic BC will play a role if the Babel number
is large enough. See Ref. Chaudhuri et al. [2012] for the effect of confinement on the observed
yield stress in a biperiodic Poiseuille flow.
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2005]. This phenomenon is more acute for deformable particles [Franco et al.,
1998] undergoing high shear rates and/or high shear gradients; it generates an
apparent wall slip. However, at the very high concentrations investigated here,
owing to the large osmotic pressure, such a lubricating layer would have a thick-
ness of order 100 nm or less [Salmon et al., 2003, Bécu et al., 2005, Goyon et al.,
2010] (if the lubricating layer is composed of pure solvent). Effectively, Goyon
directly measured the concentration profile across the channel and was not able
to detect any significant variation. This finding is corroborated by the absence
of radial droplet migration for a similar material in a Taylor-Couette cell, even
at high shear rates, as reported in Ref. [Ovarlez et al., 2008]. Adding that soft
particle suspensions have a much weaker viscosity dependence on concentration
than their hard particle counterparts, effects of concentration variations could be
ruled out as regards Goyon’s experiments. Nevertheless, we attempted to sim-
ulate a less viscous layer close to the wall by decreasing the yield stress of the
associated mesoscopic blocks, but this only had little effect on the rest of the
system. Therefore, one is led to seek another explanation.

An aspect that has been overlooked so far is the reported observation of wall
slip in Goyon’s, Geraud’s and Jop and Mansard’s works, both with smooth and
rough walls. In order to extract information that is relevant for the bulk flow,
the authors measured the local velocities and shear rates in the channel by micro-
scopic observation, so that the occurrence of slippage should not affect their re-
sults a priori. Indeed, in presence of smooth surfaces, where wall slip accounts for
around 30% of the maximal velocity at the typical pressures applied by Goyon
et al., slip only results in a global translation of the system, that leaves the local
flow curve strictly unaltered. For rough surfaces, let us first remark that the
presence of wall slip is more surprising, since roughened surfaces 4 are often
used to strongly suppress, or eliminate, slip for the very same type of materials,
which is monitored by rheological measurements, and then used as benchmarks
for a system without slip [Barnes, 1995, Sanchez et al., 2001, Mason et al., 1996,
Meeker et al., 2004b, Meeten, 2004]. However, in several cases, measurements of
local velocities in the flow, either with microvelocimetry with fluorescent tracers
[Goyon et al., 2010, Goyon, 2008, Geraud et al., 2013] or through direct visuali-
sation with confocal microscopy [Jop et al., 2012, Mansard, 2012], demonstrate
that concentrated emulsions may slip along rough surfaces in microchannels. A
seemingly quadratic [Goyon, 2008, Geraud et al., 2013], or linear [Mansard, 2012],
dependence of the slip velocity on the shear stress at the wall in reported in these
cases.

Now, when particles slide along a rough wall, they are expected to bump into,
and be deformed by, the surface asperities. In the case of asperities that are large
as compared to the “particle” size (∼ 60 microns vs. from a few to 20 microns),
this phenomenon is best exemplified by the spatiotemporal diagram acquired
with ultrasonic velocimetry for a carbopol microgel, Fig. 6 of Ref. [Divoux et al.,
2011a], where one can see a large deformation of the material that originates at

4. Diverse methods are available for roughening a surface, such as sandblasting, covering it
with sandpaper, or coating it with particles.
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the rotor and propagates almost instantaneously into the bulk; this signal was
interpreted by the authors as the signature of a “bump” into a surface protu-
berance. Albeit less visible, the effect should also appear for smaller asperities:
slip along rough walls should then create mechanical noise near the walls and
cause deviations from bulk rheology. This tentative scenario has the potential to
explain why deviations may, or may not, be observed in the vicinity of rough
surfaces: for instance, Goyon et al. and Ovarlez et al., as well as Seth et al. [2012],
have reported that the local flow curves obtained in wide gap Taylor-Couette or
plate-plate geometries with rough walls could be mapped onto the macroscopic
flow curves; yet, they also indicated that, in those cases, no evidence of wall slip
could be found. Very recently, Mansard endeavoured to investigate the impact
of wall roughness by combining experiments and molecular dynamics simula-
tions [Mansard, 2012, Mansard et al., 2014]. Non-monotonic variations of the
wall fluidity as a function of the roughness were reported in the experiments,
but the data did not allow for the extraction of the parameters responsible for
the deviations from from macroscopic rheology. Nevertheless, he noted that
“the particles must jump over the patterns [on the walls]. This effect induces the
rearrangements and increases the wall fluidity”.

Naturally, this prompts the following question: what determines the occur-
rence of slip along rough walls? This question lies far beyond the scope of the
present study. Let us simply note that in Refs. [Goyon et al., 2008, 2010, Jop et al.,
2012, Geraud et al., 2013] the size of surface asperities was a couple of microns
at most, that is, significantly less than the typical “particle” size, which plausi-
bly favours slip, as well as the high shear rates experienced at the microchan-
nel walls. Nevertheless, recent theories of slip along smooth walls involved, in
addition, parameters such as the deformability of the droplets [Meeker et al.,
2004a,b] and the particle-wall interactions [Seth et al., 2008], not to mention the
presumably significant impact of Brownian motion in cases where it is relevant
[Besseling et al., 2009, Ballesta et al., 2012]. As far as we know, the somewhat
daunting challenge to extend these theories to the case of rough walls still awaits
a successful accomplisher. 5

In the foregoing discussion, we have carefully eluded the question of the sur-
face chemistry and its interactions with the particles. However, Seth and co-
workers showed that they can play a signifiant role; in particular, for the yield
stress fluid they studied, smooth attractive surfaces were observed to induced de-
viations from macroscopic rheology relatively far into the bulk, whereas smooth
repulsive induced none at all.

Finally, we would like to mention another possible impact of the confinement
of the material between walls. The channel may be so narrow that the layers
where the specific wall rheology dominates start overlapping. This situation,
which is described as strong confinement, is expected to occur when the channel
width becomes of the order of, or smaller than, the cooperativity length ξ. For

5. A preliminary step in this direction has very recently been published by Mansard et al.
[2014].
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the data of Refs. [Goyon et al., 2008, 2010, Jop et al., 2012] discussed above, this
mechanism is therefore not relevant.

13.4.3 Artifical plastic events along the wall as mechanical noise sources

As we have already noted, non-local effects leading to deviations from the
macroscopic flow curve are often rationalised in terms of the fluidity diffusion
equation (Eq. 13.3). In this approach, the fluidity at the wall is needed as an
input parameter, whose precise value turns out to be determinant. Most likely,
the suggested mechanical noise at the walls would be hidden in that value.

Our mesoscopic model is also oblivious to the microscopic details of the flow
near a boundary and therefore cannot describe the effect of wall slip along a
rough wall without further input. Nevertheless, since bumps generate mechani-
cal noise in the system, one can attempt to account for their occurrence by adding
artificial plastic events along the walls. Note that this ad hoc treatment is similar
to imposing a wall fluidity larger than the bulk fluidity as a boundary condition
when solving the fluidity diffusion equation (Eq. 13.3).

More precisely, we modify the implementation of the model slightly, so that a
wall is now described as a line of plastically inert blocks: the bottom wall will,
for instance, occupy the portion of space 0 6 y 6 1, and the no-slip BC are
imposed at its centre, i.e., y = 0.5. On this line, a fraction of blocks is selected
at random to act as sources of mechanical noise, that is, to mimic, e.g., bumps
of particles into surface asperities. To do so, they shall release a constant plastic
strain ε̇

pl
fict per unit time, along the direction of macroscopic shear (for simplicity).

This does not violate mechanical equilibrium.

Figure 13.10a shows the local flow curves obtained with this protocol. The
observed deviations are qualitatively similar to those reported by Goyon et al.
[2010] (see Fig. 7 of that reference in particular). However, we must note that
a rather intense mechanical noise is required to get such deviations

(
ε̇

pl
f ict ≈ 5

)
.

(As the value of ε̇
pl
fict is arbitrary, we do not seek quantitative agreement with the

experimental data here). In addition, these artificial plastic events also alter the
shear rate fluctuation profile, as shown in Fig. 13.10b. Besides a global increase
of the fluctuations, the profile no longer flattens in the vicinity of the walls,
which renders it more consistent with the experimental results of Jop et al. [2012]
(collected in a channel with rough walls).
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(a) Local shear rate σ (y) vs local shear rate
γ̇ (y) (averaged on streamlines y = cst), for
σw=(�) 0.36, (•) 0.48, (�)0.8, (N)1.0, (H)1.1
in model units. (Solid line) macroscopic flow
curve.

(b) Shear rate fluctuation profile.

Figure 13.10: Effect of artificial plastic events at the wall, designed to account for particle
bumps. Artificial mechanical noise sources of intensity ε̇

pl
fict xy = ±4.5 are

added on a fraction (1/3) of blocks on the wall lines.

Key Points of the Chapter
a

– The elastoplastic model reproduces most features of
experimental microchannel flows.

– In particular, spatial cooperativity associated with
the coupling between streamlines subject to different
stresses is well accounted for.

– The much larger deviations occurring in channels
with rough walls can be assigned to a specific rheol-
ogy near the walls.

– Pending experimental or theoretical confirmation, our
hypothesis is that bumps of the particles against wall
asperities cause these deviations.

a. These findings have found their way into two publications
[Nicolas and Barrat, 2013a,b].
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A
13.5 appendices

13.5.1 Derivation of the corrective terms to the propagator for a system bounded
by walls

The system covers the domain (x, y) ∈ [0, Lx]×
[
−Ly, Ly

]
and is periodically

replicated throughout space. The region y ∈
[
0, Ly

]
, bounded by walls at y = 0

and y = Ly represents the real system, whereas the other half is a fictitious region
introduced for the calculations.

For any plastic event εpl =
(

ε
pl
xx, ε

pl
xy

)>
occurring at position (x, y) in the real

half, a symmetric plastic event εpl ′ =
(

ε
pl
xx,−ε

pl
xy

)>
is created at location (x,−y)

in the fictitious region. For symmetry reasons, the y-component of the velocity
field is thereby cancelled on lines y = 0 and y = Ly (bear in mind that the
2Ly-wide system is periodically replicated).

Corrective forces to cancel u∞
x at the walls

Let us now introduce forces fx
(y=0) and fx

(y=Ly) along ex at the bottom (y = 0)
and top

(
y = Ly

)
walls, respectively, to cancel the x-components. The Fourier

transform of the force field reads:

fx(m, n) = fx
(y=0)(m) + (−1)n fx

(y=Ly)(m)

Here, we have simplified notations by using the shorthand g (m, n) for g (q), for
any function g, where q ≡ (pm, qn) ≡

(
2πm

Lx
, 2πn

2Ly

)
is the Fourier wave vector.

(Note the convenient change of notations: qx → pm, qy → qn.)

With these forces, the Fourier-transformed displacement field turns into:

u(1) (m, n) = G∞ (m, n) ·
(

εpl (m, n) + εpl ′ (m, n)
)

︸ ︷︷ ︸
≡u?∞(m,n)

+O (m, n) · fx (m, n)︸ ︷︷ ︸
≡ucorr(m,n)

(13.4)

where ucorr is the contribution from the wall forces and O is the Oseen-Burgers
tensor introduced in Section 8.2.1. The star in u?∞ only indicates that this sym-
bol represents the velocity field induced by both the real plastic event and its
symmetric counterpart.

Remarking that the condition of zero velocity at the bottom and top walls
reads, in terms of Fourier components,

∀m, ∑
n

u(1)
x (m, n) = 0
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and ∀m, ∑
n
(−1)nu(1)

x (m, n) = 0,

respectively, we obtain two equations on the fx after substitution from Eq. 13.4.
Adding and subtracting these equations yields, for any m:

∑
n∈O

u?∞
x (m, n) +Oxx(m, n) ·

((
f (y=0)
x − f (

y=Ly)
x

)
(m)

)
= 0

∑
n∈E

u?∞
x (m, n) +Oxx(m, n) ·

((
f (y=0)
x + f (

y=Ly)
x

)
(m)

)
= 0

where O ≡ 2Z + 1 is the set of odd integers, and E ≡ 2Z is the set of even
integers.

Solution of the equations on the corrective forces

The solution of this linear system of equations is:

fx(m 6= 0, n ∈ δ) =
−µ

eδ(m) ∑
n′∈δ

u?∞
x (m, n′), (13.5)

where the symbol δ stands for either E (even n’s) or O (odd n’s) and µ is the
shear modulus (it comes from the Oseen-Burgers tensor). The expressions for
m = 0 are written separately:

fx(0, n ∈ 2Z) = 0

fx(0, n ∈ O) =
−4µ

L2
y

∑
n′∈O

u?∞
x (m, n′).

In Eq. 13.5, we have introduced auxiliary functions eE (m) and eO (m), which
satisfy: 6

e(m) ≡ ∑
n∈Z

q2
n

(p2
m + q2

n)
2 =

L2
y

2π

 −π

sinh2
(

2πLym
Lx

) +
Lx

2mLy

1

tanh
(

2πLym
Lx

)


eE(m) ≡ ∑
n∈E

q2
n

(p2
m + q2

n)
2 = 1/4 e(

m
2
)

eO(m) ≡ ∑
n∈O

q2
n

(p2
m + q2

n)
2 = e(m)− 1/4 e(

m
2
)

Now, the infinite summation in Eq. 13.5 needs to be calculated. For a single

plastic event located at (xev, yev), that is, εpl (m, n) = e−ipmxev e−iqnyev

(
ε

pl
xx, ε

pl
xy

)>
,

6. The analytical calculations leading to the second part of the equality involve the decompo-
sition into simple elements and the use of well established summation results [Gradshteyn and
Ryzhik, 1994].
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expressing u?∞
x with the help of Eq. 8.5 and inserting the result into Eq. 13.5

leads to

∑
n′∈δ

u?∞
x (m, n′) = 4e−ipmxev

[
ε

pl
xy

(
p2

m
L3

y

π3 jδ(X)− Ly

π
kδ(X)

)
− 2iεpl

xx pm
L2

y

π2 sδ(X)

]
,

(13.6)
where the δ-subscript stands for either E or O, and X ≡ (x, α) ≡

(
πyev

Ly
, pm Ly

π

)
.

Inserting Eq. 13.6 into Eq. 13.5, summing the plastic activity of all lines y,
i.e., 7 y = 0.5, . . . , Ly − 0.5

(
Ly ∈N?

)
in the discretised version, and Fourier-

transforming the results along direction x via the operator Fx, defined by Fxσ =
L−1

x
∫

σ(x)e−ipmxdx, one finally arrives at:

ucorr(m, n ∈ δ) =



≡ ζδ(X) ≡ ξδ(X)

−4q2
n

4µq4 ·
[
∑
y

︷ ︸︸ ︷(
p2

mL2
y jδ(X)

eδ(m)π3 − kδ(X)

π

)
Fxσ

pl
xy(m, y) −2i∑

y

︷ ︸︸ ︷(
pmLysδ(X)

eδ(m)π2

)
Fxσ

pl
xx(m, y)

]
4pmqn
4µq4

[
∑
y

(
p2

m L2
y jδ(X)

eδ(m)π3 − kδ(X)
π

)
Fxσ

pl
xy(m, y) −2i∑

y

pm Lysδ(X)

eδ(m)π2 Fxσ
pl
xx(m, y)

]


,

where new summations appear and can be expressed analytically via a decom-
position into simple elements and the use of known summation formulae [Grad-
shteyn and Ryzhik, 1994]:

j(x, α) ≡
+∞

∑
k=−∞

k sin (kx)

(k2 + α2)2 =
π

2α2
sinh (α (π − x))

sinh (απ)
− 1

2α2H(x, α)

jE(x, α) =1/8 j (2x, α/2)

H(x 6= 0, α) ≡
+∞

∑
k=−∞

k sin (kx)
(k− iα)2 =

h(x, α) + h(x,−α)

2

h(x 6= 0, α) ≡− i
+∞

∑
k=−∞

k exp (ikx)
(k− iα)2 =

π exp (−xα)

1− cosh (2πα)

[
xα
(
e2πα − 1

)
+ 2πα−

(
e2πα − 1

)]
k(x, α) ≡

+∞

∑
k=−∞

k3 sin (kx)

(k2 + α2)2 =
π

2
sinh (α (π − x))

sinh (απ)
+
H(x, α)

2

kE(x, α) =1/2 k (2x, α/2)

s(x, α) ≡
+∞

∑
k=−∞

k2 exp (ikx)

(k2 + α2)2 =
π

2
cosh (α (π − x))

α sinh (απ)
+

π

4
u(x, α)

sE(x, α) =1/4s(2x, α/2)

u(x, α) ≡2x cosh (α (x− 2π)) + (2π − x) · 2 cosh (αx)
(1− cosh (2πα))

The function jO is obtained by writing j(x, α) = jO(x, α) + jE(x, α); the same
applies to the other functions with subscripts O.

7. The +0.5 term comes from the fact that the y-coordinate of a block (of unit size) is evaluated
at its centre.
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The coincidence of the infinite summations and their analytical expressions
has been verified numerically for particular values of the parameters.

As a technical remark, we would like to mention that the preceding formulae
are difficult to evaluate numerically for |α| � 1, on account of the large argu-
ments of the hyperbolic functions. Nevertheless, the following approximations
provide very satisfactory results in the limit of large positive α:

sinh [α (π − x)]
sinh (απ)

≈ exp (−xα)− exp (α (x− 2π))

cosh [α (π − x)]
sinh (απ)

≈ exp (−xα) + exp (α (x− 2π))

h(x, α) ≈ −2π exp (−xα) [xα− 1]

u (x, α) ≈ −2 [x exp [α (x− 4π)] + x exp (−αx) + (2π − x) · exp [α (x− 2π)]]

Our final result is:

(
σcorr

xx (m, n)

σcorr
xy (m, n)

)
=


−2pmq2

n
q4

[
i∑

y
ζδ(X)Fxσ

pl
xy(m, y) + 2∑

y
ξδ(X)Fxσ

pl
xx(m, y)

]
qn(p2

m−q2
n)

q4

[
i∑

y
ζδ(X)Fxσ

pl
xy(m, y) + 2∑

y
ξδ(X)Fxσ

pl
xx(m, y)

]
 ,

(13.7)
where one should note that ζ(0, n ∈ O) = −2

L2
y

.

As a computational detail, the y-coordinates are here integers shifted by half
unity, i.e., of the form p + 1/2, p ∈ N, whereas computational routines for Fast
Fourier Transform take as input an array with integer indices. It is therefore
easier to suppose that the walls are at positions y = −1/2 and y = Ly − 1/2.
This translation is readily achieved by multiplying the Fourier components of
the corrective term, as given above, by prefactors exp

(
iqn
2

)
.

Computational cost

Assuming a complexity O (N ln N) for the Fast Fourier Transform of an array
of N cells, the number of operations performed at each time step of our algorithm
is of orderO

(
LxL2

y ln Lx

)
for large integers Ly and Lx, as is evident from Eq. 13.7.

The numerical routine is easily parallelised.

13.5.2 Calculation of the line-averaged velocity

The line-averaged velocity on streamline y = y0 reads:
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〈ux〉x (y0) ≡
1
Lx

∫ Lx/2

−Lx/2
ux (x, y0) dx

=
+∞

∑
n=−∞

ux(m = 0, n)eiqny0

=
+∞

∑
n=−∞

n 6=0

u?∞
x (0, n)eiqny0 + u?∞

x (0, 0)−
(

1− 2 |y0|
Ly

)
∑
O

u?∞
x (0, ·) + ∑

E

0︷ ︸︸ ︷
ucorr

x (0, ·)eiqny0

= ∑
yev

a
2µ

[
sign (y0 − yev) ·

(
1− |y0 − yev|

Ly

)
+ 1− yev

Ly
− y0

Ly

]
Fxσ

pl
xy(m = 0, yev),

where the last summation is performed over all streamlines yev, and u?∞
x is the

bulk contribution in the duplicated system.

13.5.3 Estimation of the deviations due to bulk cooperativity

Assume the fluidity diffusion equation is a valid approximation,

ξ2∆ f − ( f − fbulk) = 0

where f = γ̇
σ is the local fluidity, and ξ is a cooperativity length that may vary

with the shear rate.
Let δ f = f − fbulk be the deviation from the expected fluidity profile owing to

cooperative effects between regions subject to different driving forces.
One now assumes δ f � fbulk and ∆δ f � ∆ fbulk.
To leading order, the fluidity diffusion equation reads

ξ2∆ fbulk = δ f

The amplitude of the deviations due to cooperativity is given by the Babel num-
ber Ba ≡ δ f

f ≈ ξ2 ∆ fbulk
fbulk

If the flow curve follows a Herschel-Bulkley law: σ (γ̇) = σd + Aγ̇n,

f ′′bulk =
σ′

2

A1/n

σn−1 (σ− σd)
1/n−1

n

[
(1/n− 1)

σ−n

σ− σd

(
(1− n) + n

σd
σ

)2
− nσ−n−1

(
1− n + (1 + n)

σd
σ

)]
Here, the primes denote derivatives with respect to the space coordinate. Then,

f ′′bulk
fbulk

=
σ′

2

n (σ− σd)

[
(1/n− 1)

σ− σd

(
(1− n) + n

σd

σ

)2
− n

σ

(
1− n + (1 + n)

σd

σ

)]

To leading order, one finally arrives at δ f
f ∼ ξ2 σ′

2

(σ−σd)
2 .
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14
S PAT I O T E M P O R A L C O R R E L AT I O N S B E T W E E N P L A S T I C
E V E N T S

After a first direct comparison with experimental data in the case of a mi-
crochannel flow, we come back to the study of simple shear flow and propose
a comparison with athermal molecular dynamics (MD) simulations. Beyond the
general flow properties, correlations will, once again, be at the core of this chap-
ter. But, in comparison with Chapter 12 and recent independent works [Chikkadi
et al., 2012, Mandal et al., 2013, Varnik et al., 2014, Chattoraj and Lemaître, 2013,
Benzi et al., 2014], here, we shall measure dynamical correlations between the
plastic events themselves, resolved both in space and in time, and study the in-
fluence of the applied shear rate. The comparison between atomistic simulations
and the coarse-grained model will notably help us ascertain the origin of the
prominent features of the correlations.

The MD simulations have been performed by Prof. Joerg Rottler (University of
British Columbia).

14.1 comparative study of general flow proper-
ties obtained in molecular dynamics (md) and

with the elastoplastic model

Before delving into the study of plastic correlations, we need to make sure
that the (properly fitted) elastoplastic model can reproduce the general flow
properties observed in MD, i.e., the macroscopic rheology and the statistics of
individual plastic events.

14.1.1 MD simulations at zero temperature: Method

We simulate the shear flow of a binary mixture of A and B particles, with
NA = 32500 and NB = 17500, of respective diametersσAA = 1.0 and σBB = 0.88,
confined in a square box of dimensions 205× 205, with periodic BC. The system
is at reduced density 1.2. The particles, of mass m = 1, interact via a pairwise
Lennard-Jones potential,

Vαβ (r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6
]

,

where α, β = A, B, σAB = 0.8,εAA = 1.0, εAB = 1.5, and εBB = 0.5. The potential
is truncated at r = 2.5σAA and shifted for continuity. Simple shear γ is imposed
at rate γ̇ by deforming the box dimensions and remapping the particle positions.
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We conduct our study in the athermal limit, by thermostatting the system to a
zero temperature, so that no fluctuating force appears in the equations of motion,
viz.,

m dri
dt = pi

dpi
dt = −∑i 6=j

∂V(rij)
∂rij

− pi
τd

(14.1)

where (pi, ri) are the momentum and position of particle i in the deforming
frame. Besides the interparticle forces, the motion of particle i is subject to a
damping force − pi

τ , that models friction against solvent molecules in a mean-
field way. Here, τd = 1 is the Langevin damping time. The relevance of this
specific implementation of friction shall be discussed in Section 14.3.4. Equa-
tions 14.1 are integrated with the velocity Verlet algorithm with δt = 0.005. In

the following, we shall use τLJ ≡
√

mσ2
AA/ε as the unit of time and σAA as the

unit of length.

To obtain the initial glassy states, we quenched the system at constant volume
from the liquid state T = 1 down to zero temperature at a fast rate, 2 · 10−3τ−1

LJ .
Note that, before any data were collected, the system was always pre-sheared for
γ = 0.2 to ensure that the steady state had been reached. We have checked that
pre-shearing the material over a longer strain window, γ = 1.2, leads to identical
results.

14.1.2 Elastoplastic model and model parameters

With regard to the elastoplastic model, we shall employ the refined athermal
dynamical rules introduced in Section 9.3. As a short reminder, they involve an
exponential distribution of energy barriers with a lower cut-off at Ey ≡ µγ2

c /4,
viz.,

P
(
Ey
)

= Θ
(

Ey − Emin
y

)
λeλ(Emin

y −Ey), (14.2)

a von Mises yield criterion for every block, and a plastic event lasts until a strain
γc has been cumulated in the plastic phase.

14.1.3 Flow curve

The dependence of the macroscopic shear stress Σ on γ̇ in MD is shown in
Fig. 14.1; it is well described by the Herschel-Bulkley law Σ = 0.73 + 2.9γ̇0.48.

Regarding the bulk mechanical properties of the system, plotting the stress as
a function of strain at a given shear rate yields an MD shear modulus µ ' 17
for the system (prior to deformation) and a macroscopic yield strain γy of order
5-10%.
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Figure 14.1: Dependence of the macroscopic shear stress Σ on the applied shear rate
γ̇. (Black stars) MD simulation; (blue triangles) coarse-grained model. The
dashed black line is a fit to the Herschel-Bulkley equation, Σ = 0.73 +
2.9γ̇0.48.

Determination of the model parameters

Consequently, with respect to the parameters of the elastoplastic model, we
adjust λ in the energy barrier distribution so that the ensemble average of the
yield strain is

〈
γy
〉
= 0.1.

To fit the flow curve, we choose γc = 0.085
〈
γy
〉

and the units of time and stress
are set to τ = 1.5τLJ and µ = 12.5, a value comparable to the shear modulus
of the atomistic system prior to deformation (µMD = 17). As can be seen in
Fig. 14.1, this provides a satisfactory agreement between the elastoplastic and
MD flow curves. In addition, their best fits by Herschel-Bulkley equations have
very similar exponents n.

14.1.4 Stress autocorrelation function

Turning to a more local viewpoint, in Fig. 14.2a we plot the MD autocorrelation
function

Cσ (∆γ) ≡
〈
δσxy (γ) δσxy (γ + ∆γ)

〉〈
δσ2

xy

〉 (14.3)

of the local shear stress fluctuations δσxy ≡ σxy −
〈
σxy
〉

experienced by each par-
ticle. The averages are performed over time t. We observe a nice collapse of the
data for the different shear rates. This confirms that the applied strain ∆γ, and
not the absolute time t, causes the decorrelation in this driven athermal system,
in line with the idea of periods of elastic accumulation of stress interspersed
with shear-induced plastic events. The master curve is reasonably well fit by a

stretched exponential exp
[(
−∆γ
∆γ?

)β
]

, with an exponent β = 0.68 and a critical

strain ∆γ? = 0.11 close to the macroscopic yield strain.
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Figure 14.2: Autocorrelation function Cσ (∆γ) of the local shear stress fluctuations at ap-
plied shear rates (red dots) γ̇ = 10−5, (blue triangles) γ̇ = 10−4, and (green
stars) γ̇ = 10−3. The dashed lines represent a fitting to a stretched exponen-

tial Cσ (∆γ) = exp
[(
−∆γ
∆γ?

)β
]

, with (β = 0.68, ∆γ? = 0.11) for the MD data

and (β = 0.65, ∆γ? = 0.07) for the elastoplastic model. (Inset) Same data,
plotted with a logarithmic horizontal axis.

The stress autocorrelations at different strain rates also collapse onto a master
curve in the elastoplastic model, as shown in Fig. 14.2b. Interestingly, fitting
this curve with a stretched exponential also yields β = 0.65, very close to the
exponent used to fit the MD data, although the precise value of the critical strain
obtained here, ∆γ? = 0.07, differs by 50%.

14.1.5 Indicator of plastic activity in the atomistic simulations

Let us now focus on plastic events. In order to detect them in the atomistic sim-
ulations, we make use of the D2

min quantity presented by Falk and Langer [1998],
which evaluates deviations from an affine deformation on a local scale. This
quantity has been used with noted success to characterise plasticity [Chikkadi
et al., 2011, 2012, Chikkadi and Schall, 2012, Mandal et al., 2013, Varnik et al.,
2014, Keim and Arratia, 2014]; in particular, it was shown to yield results con-
sistent with other measures of non-affinity [Chikkadi and Schall, 2012]. D2

min is
defined locally, around a particle labelled i, as the minimum over all possible
linear deformation tensors ε of

D2 (i; t, δt) = ∑
j

[
rij (t + δt)− (I + ε) · rij (t)

]2 , (14.4)

where the sum runs over all neighbours j of i, and I denotes the identity ma-
trix. The value of the time lag δt (δt = 4τd) was fine-tuned to provide a good
signal over noise ratio while still being short enough to allow a temporal reso-
lution of the plastic events. Figure 14.3 presents a snapshot of D2

min values in
the system: one clearly sees localised plastic regions embedded in an affinely-
deforming medium.
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Figure 14.3: Snapshot of the D2
min field at an applied shear rate γ̇ = 10−4.

Interestingly, the regions with large D2
min systematically coincide with the re-

gions exhibiting large velocities relative to the average solvent flow. This coinci-
dence between the non-locally-affine displacement field and the singular velocity
confirms that a large local energy dissipation is the hallmark of a plastic event.

14.1.6 Distribution of durations, magnitudes, and sizes of individual plastic
events

With a reliable tool to measure plastic activity in our hands, we can now study
the properties of individual plastic events in detail.

First, by scrutinising a number of D2
min snapshots such as that presented in

Fig. 14.3, we observe that the size of plastic regions is typically a few particle
diameters; this size does not depend dramatically on the shear rate. This point
shall be confirmed in Section 14.3 by a detailed analysis of the spatial correlations
of the D2

min field.
Further insight is gained by computing the overall distribution of the mea-

sured D2
min values, in Fig. 14.4a. All distributions exhibit an exponential tail, and

they collapse upon rescaling with the inverse shear rate. Because of the cut-off
introduced in the elastoplastic yield stresses (see Eq. 14.2), the distribution of
plastic event magnitudes naturally differs between the two simulation methods,
at least for small magnitudes. Nevertheless, the elastoplastic distribution is also
roughly independent of the applied shear rate (data not shown).

Finally, the typical lifetime of a plastic event can be extracted from the tem-
poral decay of the D2

min autocorrelation function plotted in Fig. 14.4b. For the
damping time used in this study, regardless of the shear rate, it is of the order of
3 time units. Turning to the elastoplastic model, the average life time of a single
plastic event is of order a couple of τ’s, too, (remember that we set τ to 1.5) at
all shear rates. Paying a closer look at the distribution of life times, one may
however notice a visible decrease of this quantity as the shear rate is increased,
from 8.4 at γ̇ = 10−5 to 4.2 at γ̇ = 10−3. This is not unexpected, because the
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Figure 14.4: Properties of the plastic event indicator D2
min.

criterion determining the duration of a plastic event (Eq. 9.2) involves the total
local deformation rate.

14.1.7 Surface coverage of plastic rearrangements

To quantify the global plasticity of the system, we compute the instantaneous
surface density of plastic events, i.e., the fraction of blocks which are plastic at
a given time. In the absence of thermally-activated plastic events, this quantity
increases linearly with the shear rate, from 0.05% at γ̇ = 10−5 to 0.36% at γ̇ =

10−4 and 2.8% at γ̇ = 10−3, in the elastoplastic model. These values are similar to
those obtained from the atomistic simulations by integrating the tails of the D2

min
distributions, in Fig. 14.4a, down to a reasonable (but arbitrary) lower threshold:
0.07%, 0.3%, and 0.8%, respectively.

Thus, the elastoplastic model reproduces the MD macroscopic rheology and
statistics of plastic events satisfactorily.

14.2 conceivable protocols for the detection of

plastic event avalanches

Having verified the agreement of the coarse-grained model with the atomistic
simulations with regard to the general flow properties, we can now move on to
the study of the correlations in the flow. Ideally, we would like to compare the
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avalanches of plastic events in both types of simulations. However, this requires
to set up a protocol for the detection of avalanches.

14.2.1 Fuzziness of the concept of avalanche at finite shear rates

The definition of an avalanche in the quasi-static limit is self-evident: it is sim-
ply the succession of plastic events that follows an infinitesimal strain increment
[Baret et al., 2002, Maloney and Lemaître, 2004, Maloney and Lemaître, 2006, Bu-
drikis and Zapperi, 2013]. The stress vs. strain curve then displays long periods
of stress accumulation interspersed by distinct unloading events corresponding
to avalanches.

On the other hand, at any finite shear rate γ̇ > 0, the definition of an avalanche
is more problematic. Indeed, avalanches are no longer incompatible with periods
of macroscopic stress increase in the stress vs. strain curve, as they do not cover
the whole system.. Moreover, the system may accommodate distinct avalanches
occurring in parallel, which it is not straightforward to disentangle.

As a matter of fact, the very concept of avalanche becomes fuzzy γ̇ > 0. Sup-
pose that n avalanches are occurring in parallel in a system. Consider a block
that has just yielded. Over time, this block has received stress contributions from
the macroscopic drive as well as from plastic events from the n avalanches. How
should one then decide to which avalanche it should be assigned, or perhaps
whether it is the source of a new avalanche?

14.2.2 Salerno et al.’s protocol

Salerno et al. made use of the following protocol to compute avalanche sizes
in atomistic simulations, at vanishing shear rate, but with inertia [Salerno et al.,
2012, Salerno and Robbins, 2013]: during the loading phases, the strain is in-
creased at a finite (albeit small) strain rate, but, as soon as some plastic rear-
rangement is detected, the macroscopic drive is cut off and the avalanche is left
free to develop.

A comparable approach could be undertaken in our simulations at finite shear
rates: at a randomly chosen time t0 in the simulation, γ̇ can be switched to zero.
It follows that all the blocks that yield thereafter are part of an avalanche that
was active at t0.

Nevertheless, disentangling the possibly many avalanches at t0 would remain
an issue.

14.2.3 Plastic event removal

Taking even greater advantage of the flexibility of numerical simulations, we
suggest an alternative protocol. Suppose that a fictitious simulation (S f ) is run
exactly identically to a reference simulation (Sr), i.e., with the same parameters
and the same set of random numbers, except that one randomly selected plastic
event (P) in Sr is inhibited in S f (and impose that plastic events may occur in S f
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only if they also occur in Sr). Then, the plastic events in Sr that have not taken
place in S f due to the non-occurrence of P belong to the avalanche triggered (or
passed on) by P.

I have implemented this protocol, but it has encountered only little success:
the avalanches thus detected were mostly limited to P only.

14.2.4 Plastic correlator

Jettisoning our hope to detect whole avalanches, we will in fact measure cor-
relations between two plastic events. This is done with the following plastic
correlator:

C2 (∆r, ∆t) ≡ α
(〈

n (r, t) n (r + ∆r, t + ∆t)
〉
−
〈

n (r, t) · n (r, t + ∆t)
〉)

,(14.5)

where the brackets denote an average over time t, the bars represent an aver-
age over spatial coordinate r, and, as usual, n(r, t) = 1 if the block at position

r = (i, j) is plastic at time t, 0 otherwise. The prefactor α ≡
[ 〈

n(r, t)2
〉
−〈

n(r, t)
2〉 ]−1

is chosen such that C2 (∆r = 0, ∆t = 0) = 1.

An MD counterpart can straightforwardly be defined, viz.,

C2 (∆r, ∆t) ≡ α
(〈

D2
min (r, t) D2

min (r + ∆r, t + ∆t)
〉
−
〈

D2
min (r, t) · D2

min (r, t + ∆t)
〉)

where α ≡
[ 〈

(D2
min(r, t))2

〉
−
〈
(D2

min(r, t))
2
〉 ]−1

.

Clearly, the two-point, two-time observable C2 measures the (enhanced or re-
duced) likelihood that a plastic event occurs at r +∆r if a plastic event was active
at position r some prescribed time ∆t ago. Accordingly, it measures the extent
to which the position of the next plastic event is influenced by that of its pre-
decessors. We hold out hope that extensive information about the dynamical
organisation of the flow will thus be revealed, even if we are unable to predict
exactly where the next plastic event will occur in the material without detailed
knowledge of the current, static configuration of the system [Widmer-Cooper
et al., 2008, Tsamados et al., 2009].

14.3 correlations between plastic events

14.3.1 Correlated plastic events

Before probing the simulated flows with the plastic correlator C2 that has just
been introduced, let us briefly recall existing pieces of evidence pointing to cor-
relations between plastic events.

In the athermal, quasi-static limit, Maloney and Lemaître showed numerically
that they are essentially organised in strongly correlated avalanches [Maloney
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and Lemaître, 2004]. By investigating the transverse particle diffusivity, Lemaître
and colleagues then showed that these correlations persist at finite shear rates
[Lemaître and Caroli, 2009] and at finite temperatures [Chattoraj et al., 2010,
2011]. The spatial structure of these correlations was revealed by Chikkadi, Man-
dal, Varnik, et al. [Chikkadi et al., 2012, Mandal et al., 2013]; these researchers
provided convincing experimental and numerical evidence that the correlations
between flow heterogeneities, quantified by D2

min, are long-ranged and all the
more anisotropic as shear prevails over thermal effects, i.e., at larger Peclet num-
bers. To do so, they monitored particle displacements in a driven “hard sphere”
colloidal glass with confocal microscopy and were able to reproduce their exper-
imental observations qualitatively with molecular dynamics simulations. Quan-
titatively, some discrepancies were found between simulations and experiments,
the latter displaying longer correlations, with a power law decay in space.

Here, we purport to extend these studies and unveil the full dynamical picture.

14.3.2 Decay of the intensity of the correlation with time

Plastic correlations are expected to fade away with the time lag ∆t, but one
may wonder whether their decay is more appropriately described in terms of
the absolute time t or the strain γ. Quite interestingly, in the atomistic simula-
tions as well as in the coarse-grained model, absolute time turns out to be the
adequate unit of measurement, as evidenced by comparing the evolution of the
correlations at different shear rates.

It should be pointed out that this does not conflict with the decay of stress
correlations as a function of the strain. The difference comes from the fact that
plastic correlations are conditional probabilities, hinging on the occurrence of a
first plastic event at (r, t). On the contrary, stress correlations involve all pairs
of instants separated by a given ∆t; therefore, one generally has to wait for the
whole elastic regime to observe a decorrelation.

14.3.3 Maps of plastic correlations at various shear rates

The plastic correlations obtained in the atomistic simulations are shown in
Figs. 14.6, 14.7, and 14.8 at different time lags for three distinct shear rates:
γ̇ = 10−5 (very low, quasi-static), γ̇ = 10−4 (moderate) and γ̇ = 10−3 (mod-
erately high). The counterparts for the coarse-grained simulations are presented
directly opposite to them so as to allow an easy comparison, but they will only
be discussed later.

The presence of a spatial structure in the correlations is evident, which is
strong evidence that plastic rearrangements are indeed interdependent, and not
fully isolated events. The positive correlations in the streamwise and crosswise
directions are strongly reminiscent of the positive lobes of the elastic propagator
G, which supports the idea of interactions via an elastic coupling. In diagonal
directions, there tend to be anticorrelations. The (anti)correlations decay grad-
ually, over approximately the same (absolute) time scale as the autocorrelation
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function, i.e., their value at the origin. These features are common to the various
shear rates studied here.

A closer investigation of the plots shows that the decay time tends to decrease
with increasing shear rate, thereby reflecting the shear-induced decorrelation
of the system. Moreover, while the streamwise and crosswise lobes are hardly
distinguishable at high shear rates, at lower shear rates there is clearly an asym-
metry between them. The propensity to shear localisation of the plastic activity
is therefore enhanced at lower shear rates. This is more visible in Fig. 14.9a,
where the correlations are integrated along the radial direction in different di-
rections. An enhanced propensity to shear localisation, or, more generally, flow
heterogeneities, with decreasing shear rates has already been reported in the lit-
erature [Picard et al., 2005, Martens et al., 2012, Divoux et al., 2011a], although,
here, some artifact associated with the use of Lees-Edwards-like BC cannot be
strictly excluded [Chattoraj and Lemaître, 2013].

An additional effect of the shear rate is that the anticorrelated lobes in the
diagonal directions appear stronger at higher shear rates.

To assess the strength of the correlations, that is, to what extent they deviate
from a random distribution of plastic events, we compare the probabilities that
two plastic events, separated by a distance ∆r and a time lag ∆t, are aligned, on
the one hand, along the velocity gradient direction e⊥ and, on the other hand,
along the diagonal direction ediag with respect to the macroscopic shear. The
anistropy ratio,

α⊥(∆r, ∆t, γ̇) ≡
〈

D2
min(r, t)D2

min(r + ∆r e⊥, t + ∆t)
〉〈

D2
min(r, t)D2

min(r + ∆r ediag, t + ∆t)
〉 , (14.6)

is plotted in Fig. 14.5a. We observe an enhancement of the probabilities of stream-
wise alignment (versus diagonal alignement) by, at most, 10 to 20%.

We now turn to the spatial extent of the correlations. In panel (a) of Fig. 14.10,
we show how they decay along the flow direction, for distinct time lags. The
decay, which is not purely exponential, depends only weakly on the shear rate,
except at long time lags. Besides, it spreads over larger and larger distances as
the time lag is increased; it should however be noted that the correlations have
been rescaled so as to be equal to one close to the origin at all time lags, so that
a slower spatial decay does not necessarily imply a larger absolute value far from
the origin. This rescaling also entails that small fluctuations will be magnified
when the correlations near the origin are small, e.g., for the long time lag ∆t = 20,
notably in the moderately high shear rate case.

At this stage, we should mention an extremely recent study by Varnik and co-
workers, who reported that the spatial decay of the D2

min correlations was highly
contingent on the specific implementation of the friction force in the equations
of motion [Varnik et al., 2014]. 1 More precisely, only a friction force based on

1. Note that, although these researchers have computed nominally “static” correlations, that is
to say, at ∆t = 0, the time δt which they used to compute D2

min is very large, so that their data
actually correspond to an integral of our dynamical correlations C2 (∆r, ∆t) over a wide range of
time lags ∆t.)
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(a) MD simulations. (Blue) ∆t = 4, (green) ∆t =
12, (red) ∆t = 20.
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(b) Coarse-grained model. (Blue) ∆t = 1, (green)
∆t = 8, (red) ∆t = 16.

Figure 14.5: Anisotropy ratio α⊥(∆r, ∆t, γ̇) for the different shear rates: (solid line) γ̇ =
10−5, (dash-dotted line) γ̇ = 10−4, and (dotted line) γ̇ = 10−3. Various time
lags ∆t are considered (see subfigure captions).
To allow direct comparison, we have set the size of one coarse-grained block
to r̃ = 5.

the relative velocity of a particle with respect to its neighbours (“contact dynam-
ics”) could reproduce the power law decay observed in experiments on colloidal
suspensions and immersed granular matter, whereas a mean-field dissipation
scheme predicted a faster, exponential decay. Actually, the effect of the specific
implementation of the frictional force has been the subject of a wider debate:
Tighe et al., for instance, reported that using a friction term based on relative par-
ticle displacements is key to finding suitable correlation functions in the vicinity
of the jamming point [Tighe et al., 2010], while Vagberg et al. claimed that a
critical behaviour is found with both schemes [Vågberg et al., 2013]. Here, we
have used a mean-field friction force; accordingly, some quantitative discrepan-
cies may be expected between the extent of the correlations that we have found
and those measured in the experimental setups of Ref. [Chikkadi et al., 2012,
Varnik et al., 2014]. However, our choice of friction force is, arguably, the more
adequate one for confined two-dimensional geometries in which particles slide
along a fixed plate, for instance, bubble rafts confined in between parallel glass
plates [Debregeas et al., 2001].

14.3.4 Successes and limitations of the coarse-grained model

In the previous section, we have seen that the coarse-grained model gives a
rather satisfactory description of the macroscopic properties, as well as the local
ones. Here, we enquire how well it fares with respect to C2.

As shown in Figs.14.6 through 14.8, the correlation maps for the two models
do bear some resemblance, but the agreement is at best very qualitative.

Among the satisfactory aspects, the coarse-grained model also indicates a de-
cay of the correlations with absolute time and correlations display a four-fold
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A’ B’ C’

Figure 14.6: Colour maps of the plastic correlator C2 at very low shear rate γ̇ = 10−5 for
time lags (A) ∆t = 0, (A’) ∆t =1, (B and B’) ∆t = 8, (C and C’) ∆t = 20 .
Top row: MD simulations. Bottom row: coarse-grained model. Note that for
the coarse-grained model, we restrict the view to a region of the size (40x40

blocks) of the MD simulation cell. The colour code ranges from dark blue,
for values below −5 · 10−4, to dark red, for all values � 5 · 10−3.
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A’ B’ C’

Figure 14.7: Colour maps of the plastic correlator C2 at the intermediate shear rate γ̇ =
10−4. Refer to Fig. 14.6 for the rest of the caption.

angular symmetry. One should however admit that excessive correlations are
predicted along the flow direction, especially in the near field. This is an artifact
associated with the use of a regular lattice: as the frame is deformed, the positive
lobe of the elastic propagator in the flow direction remains aligned with one axis
of the lattice, while the alignment of the perpendicular lobe with the other axis
is lost.

Moreover, the coarse-grained simulations are able to describe the anti-correlated
lobes in the diagonal directions and their enhancement at higher shear rates.

On the downside, it is obvious that salient features of the plastic correlations
are amiss. This discrepancy is interesting, because it is a hint that plastic correla-
tions reveal some physical processes that may otherwise be left unnoticed, and
that these processes have been omitted in the model.

First, the gradual growth with time of the correlations observed in MD is in
stark contrast with the maximal extent of the correlations at vanishing time lag
in the coarse-grained model. This indicates that the MD correlations do not
grow because more and more shear stress is redistributed as the rearrangement
proceeds, but because shear waves need a finite time to propagate (whereas
instantaneous equilibration was assumed in the model). In other words, the
acoustic delay for the propagation of strain-waves within an avalanche slows
down the emergence of spatial correlations. Indeed, the initial growth of the
correlations is consistent with the propagation of shear waves at the transverse
sound velocity (of the undamped system), viz., ct =

√
µ/ρ � 4. More details

195



A’ B’ C’

Figure 14.8: Colour maps of the plastic correlator C2 at the moderately high shear rate
γ̇ = 10−3. Refer to Fig. 14.6 for the rest of the caption. Note that, for the
bottom row, we have used a sightly smaller lower bound for the colour code,
−1.5 · 10−3 instead of −5 · 10−4 in the other cases.

(a) MD simulations.

0 50 100 150 200 250 300 350

θ (◦)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C̄ 2
(θ

)

(b) Coarse-grained model.

Figure 14.9: Angular dependence of the correlations C̄2 (θ) ≡ α
∫ L/2

0 C2 (r, θ; ∆t) dr, where
L is the system size and ∆t = 20 is the time lag, at shear rates (solid green)γ̇ =
10−5, (dashdotted blue line)γ̇ = 10−4, and (dotted red line)γ̇ = 10−3. The
prefactor α is chosen such that C̄2 (θ) has a maximum of 1.
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(a) MD simulations.
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Figure 14.10: Correlations along the stream direction, c‖2(r, ∆t) ≡ C2(r, ∆t)/C2(ε, ∆t),
where the postfactor rescales the correlations to unity close to the origin,
ε = 2 (5 for panel (b)). Data are shown for various time lags: (blue) ∆t = 0
(1 for panel (b)), (green) ∆t = 8, (red) ∆t = 16, and for the different shear
rates: (solid line) γ̇ = 10−5, (dash-dotted line) γ̇ = 10−4, and (dotted line)
γ̇ = 10−3. To allow direct comparison, we have set the size of one coarse-
grained block to r̃ = 5. To reduce the statistical noise, we have averaged
the correlations over the three streamlines closest to the origin for the MD
simulations.

abou the gradual expansion of the strain field created by a plastic event can be
found in Refs. [Idema et al., 2013, Puosi et al., 2014, Chattoraj and Lemaître,
2013]. Note that, in this last reference, the authors also observed some advanced
frontline moving at the longitudinal sound velocity cl > ct.

The second major difference lies in the spatial extent of the correlations, which
is much larger in the coarse-grained approach. Of course, following Ref. [Varnik
et al., 2014], the use of a frictional force based on relative velocities may have
yielded larger correlations in MD: the mean-field damping scheme, which as-
sumes the presence of a homogeneous solvent flow, tends to suppress correla-
tions. However, the large deviation between the predictions of the atomistic
and coarse-grained models does point to an additional source of discrepancy.
We believe that the underestimation of structural disorder in the coarse-grained
model is at the core of the divergence. Indeed, broadening the distribution of
energy barriers in the model results in somewhat shorter correlations, at the ex-
pense of a poorer fitting of the macroscopic flow properties by our essentially
one-parameter model. Of probably equal relevance is the questionable use of
an ’ideal’ elastic propagator. This propagator describes stress redistribution in a
perfectly uniform elastic medium. Such a description is justified on average, but
is inaccurate for a specific plastic event [Puosi et al., 2014], because elastic het-
erogeneities in the surrounding medium, i.e., the spatial variations of the local
elastic constants, induce deviations from the ideal case. The insufficient account
of structural disorder in the model is also reflected in the vastly overestimated
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anisotropy of the correlations that it predicts, as measured by the directional
probability enhancement (see Fig. 14.5b ).

To our knowledge, neither of these points has ever been taken into account in a
coarse-grained model. To what extent they may alter the organisation of the flow,
in particular the potential onset of shear-localisation, is therefore undoubtedly
an open question.

Key Points of the Chapter
a

– The elastoplastic model and the MD simulations agree
satisfactorily with respect to the general flow proper-
ties.

– The spatiotemporal correlations measured in both
models bear some qualitative resemblance.

– But the elastoplastic model vastly overestimates these
correlations and does not describe their emergence in
time. This points to an underestimation of structural
disorder and to the neglect of the finite velocity of
shear waves.

a. These findings were gathered in an article [Nicolas et al., 2014c].

Key Points of this Part

– The extension to a tensorial stress has no effect on the flow
curve, the correlation lengths, or the propensity to shear lo-
calise.

– Convection enhances fluctuations and breaks the spurious
symmetry between the velocity and the velocity gradient di-
rections.

– The generic concept of healing time overarches diverse physi-
cal processes leading to shear localisation.

– The model can describe the flow of an amorphous solid in a
microchannel and the associated cooperative effects.

– In comparison to atomistic simulations, the model overesti-
mates the correlations between plastic events and does not
describe their emergence in time.
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Part IV

E L A S T O P L A S T I C M O D E L L I N G B A S E D O N A
S I M P L I F I E D F I N I T E E L E M E N T R O U T I N E





Souvent l’art se transforme qu’ils [les grands édifices] pendent en-
core ; pendent opera interrupta ; ils se continuent paisiblement selon
l’art transformé. L’art nouveau prend le monument où il le trouve, s’y
incruste, se l’assimile, le développe à sa fantaisie et l’achève s’il peut.

Victor Hugo, Notre-Dame de Paris, Book III, Chapter 1.

Although glasses are macroscopically isotropic and homogeneous, they dis-
play marked heterogeneities at the microscopic scale. In particular, the compar-
ison between atomistic simulations and our elastoplastic model conducted in
Chapter 14 suggests that the neglect of elastic heterogeneities may lead to an
incorrect description of spatial correlations in the flow.

However, the elastoplastic model has so far been implemented with a (com-
putationally very efficient) Fast Fourier Transform routine, relying on the ideal
elastic propagator derived in Chapter 8. This method does not allow us to go
beyond the assumption of uniform isotropic elasticity throughout the medium,
nor does it provide a way to add inertial effects explicitly.

To overcome these deficiencies, I have chosen to turn to an implementation
based on a much more flexible routine, namely, a (simplified version of) Finite
Elements 2 (FE). The model ingredients, i.e., the master equation and the dynam-
ical rules, will mostly be similar to those used in the previous implementation,
but the flexibility of the FE routine will afford a better account of structural dis-
order and inertial effects in the material. Accordingly, we expect a more accurate
description of correlations and avalanche statistics within this new framework.

Our simplified FE routine is presented and tested in Chapter 15. To further
validate the method, the time-dependent elastic response to a single shear trans-
formation is investigated in Chapter 16 and compared to molecular dynamics
simulations. Having ascertained the adequacy of the elastic part, we start prob-
ing the flow properties and the correlations between plastic events in Chapter 17.
Finally, Chapter 18 discusses some specificities of granular media and reports on
an early-stage endeavour to model the anisotropic force chains that have been
observed in these materials.

2. In its present implementation, our simplified Finite Element routine is actually closer to a
“Finite Volume” method [Rappaz et al., 2010].
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15
F I N I T E E L E M E N T S ( F E ) : M E T H O D S

The Finite Element (FE) approach emerged in the 1960s as an innovative and
efficient way to solve complex problems, mostly in the fields of civil or aeronau-
tical engineering. This technique can be regarded as an extension of the Finite
Difference approach, in which spatial derivatives are discretised at the nodes of

a regular lattice {(i, j)}, viz., d f
dx

∣∣∣
i,j
≈ fi+1,j− fi−1,j

xi+1−xi−1
, with transparent notations. In

FE, space is tiled into an arbitrary set of polygonal elements, i.e., a mesh; in each
element, a given number of nodes (shared with neighbouring elements) are used
to interpolate the local displacement and stress fields. Since these fields should
obey a given constitutive equation, the displacements and forces at the nodes of
each element are constrained.

Extensive work has been dedicated to refining the technique, establishing cri-
teria for its convergence, and implementing it in diverse configurations. In com-
parison with the finest developments of the art, our implementation is extremely
crude. However, it is crucial to bear in mind the fundamental difference between
customary uses of FE and its present status.

Traditionally, FE are used as a tool to solve a well-defined, often complex
constitutive equation in a potentially complex geometry. The objective is then to
develop a robust algorithm that yields an exact solution to the problem in the
limit of an infinitely fine mesh.

On the other hand, we resort to (simplified) FE because, as far as we know, it
is the minimal framework that can account for elastic heterogeneity and describe
shear waves. Importantly, the elements are not pure mathematical constructs
here, but they have a physical meaning, as elementary units of rearrangements.
For the sake of clarity, let us anticipate the presentation of the dynamical rules in
Chapter 17 and already mention that, in the FE-based approach, plastic events
will be modelled by cancelling the elastic constants of plastic blocks, so that only
their viscous (and inertial) forces can counter the elastic forces exerted by the
surrounding medium on the region.

15.1 the finite element method in a glance

Let us start with a concise and partial introduction to FE.
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Figure 15.1: Linear interpolation function ψ
(e)
n on a one-dimensional mesh, with nodes

numbered from 1 to 4 and elements labelled from A to D.

15.1.1 Interpolation functions

Formally, it is convenient to view the discretisation of a continuous (e.g., dis-
placement, velocity, or pressure) field g(r) onto a mesh as a projection onto a
subspace of interpolation functions ψn (r), viz.,

g(r) → g̃(r) = ∑
n

gnψn(r),

where the gn’s are interpolation coefficients. In FE, all interpolation functions
are local, i.e., their support is limited to a single element, and associated with a
node [Rappaz et al., 2010]. For instance, ψ

(e)
n will be the interpolation function

of element (e) associated with node n. It follows that

g̃(r) = ∑
el’ts

e

∑
nodes
n of e

gnψ
(e)
n (r),

where it should be recalled that the nodes (n), ergo, the coefficients gn, are shared
by neighbouring elements. As an example, a trivial set of interpolation functions
on a one-dimensional mesh is illustrated in Fig. 15.1.

15.1.2 A simple static example: linear elasticity

To explain the principle of FE, let us consider a linear elastic problem over a
2D domain U :




σ(r) = Cε(r) for r ∈ U
div (σ) = 0

σ(r) · n(r) = T(r) for r ∈ ∂U ,

(15.1)

where T denotes the force (per unit area) applied on the boundary ∂U of the
domain, of normal n(r) at r ∈ ∂U , and C is the fourth-rank (stiffness) tensor
relating strain ε and stress σ. Solving this elastic problem is equivalent to finding
the displacement field u� that minimises the virtual work
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W [u] ≡
∫
U

1
2
(Cε [u]) : ε [u] d2r−

∫
∂U

T · u dr,

where ε [u] is the strain field derived from u. This directly leads to the saddle
point equation:

for all fictive displacement field u,
∫
U

1
2
(Cε [u?]) : ε [u] d2r =

∫
∂U

T · u dr.

(15.2)
The FE approximation consists in enforcing this condition, not on all conceivable
fields u, but only on the interpolated fields

ũα(r) = ∑
el’ts

e

∑
nodes
n of e

uαnψ
(e)
αn (r), where α ∈ {x, y} and uαn ∈ R. (15.3)

Inserting Eq. 15.3 into the integral formulation (Eq. 15.2) and imposing that the
coefficients in front of the uαn’s should vanish, one gets a set of coupled linear
equations with the u?

i coefficients as unknowns, which schematically reads

K



u?
xN

u?
yN
...

u?
x1

u?
y1


=



fxN

fyN
...

fx1

fy1


, (15.4)

where K is a mesh-dependent N × N matrix 1 and the external force field T at
the boundary is included in the fi’s. Equation 15.4 is no more than the force
balance equation at each node i.

15.1.3 Brezzi-Babushka condition

Unfortunately, the convergence of the nodal displacements (u1
?, . . . , uN

?) solv-
ing Eq. 15.4 to the continuous solution u(r) of the initial problem (Eq. 15.1), when
the element size tends to zero, is not guaranteed for all meshes and interpolation
functions. The convergence is controlled by a condition, established by Brezzi
and Babushka [Fortin and Brezzi, 1991], which I will not present here.

1. Here, incompressibility may be enforced via the so called penalty method: if the bulk modu-
lus included in C (Eq. 15.1), and therefore in K, tends to infinity, then the ui’s will be constrained
to satisfy incompressibility. An alternative method, generally used in Stokes’ problem, is to in-
troduce an explicit Lagrange multiplier to constrain the volume change, i.e., div(u): this is the
pressure p.
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15.2 spatial discretisation

In Section 15.1.2, the FE method was illustrated with a static linear elastic
problem. However, the elastoplastic line of modelling requires to solve more
complex problems.

15.2.1 Continuum Mechanics formulation of the problem

At all times, the effects of the macroscopic drive and of the current plastic
events need to be computed. If inertial effects and dissipative forces (in particu-
lar, in rearranging regions) are taken into account, the momentum conservation
equation in the bulk reads

ρ
Du̇
Dt

(r,t)︸ ︷︷ ︸
inertial force

= ∇ · [C(r,t)ε(r,t)]︸ ︷︷ ︸
elasticity

+ η∇2u̇(r,t)︸ ︷︷ ︸
viscosity

, (15.5)

where u and ε are the displacement and strain fields, respectively, D•/Dt ≡ ∂•/∂t +

v · (∇•) denotes the convected derivative, ρ is the (area) density of the material,
C denotes a local stiffness matrix, and η is the microscopic viscosity. Here, ρ

and η will be assumed constant; accordingly, viscous forces will be operative in
plastic blocks as well as in elastic blocks, even though they will be dominated
by the elastic forces in the latter. On the other hand, the stiffness matrix C(r,t)
is allowed to vary in time and in space, depending on the plastic activity of the
blocks.

Below, we detail the steps and approximations that bridge the gap between the
Continuum Mechanics formulation of Eq. 15.5 and the following FE problem,

M



ü(N−1)
x

ü(N−1)
y

...

ü(0)
x

ü(0)
y


︸ ︷︷ ︸

inertial force

= K



u(N−1)
x

u(N−1)
y

...

u(0)
x

u(0)
y


︸ ︷︷ ︸

elasticity

+H



u̇(N−1)
x

u̇(N−1)
y

...

u̇(0)
x

u̇(0)
y


︸ ︷︷ ︸

viscosity

, (15.6)

where the u(i)
x ’s and u(i)

y ’s are the displacements at the nodes i ∈ {0, . . . , N − 1}
of a regular mesh. M, K, and H are 2N × 2N real matrices that are to be
specified.

15.2.2 Simple mesh and interpolation functions

First, we need to select a convenient FE mesh.
Bearing in mind our pursuit of minimalism, but also practilities such as the

finite duration of a PhD, I have chosen the simplest mesh possible, namely, the
regular square grid sketched in Fig. 15.2, combined with bilinear interpolation
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Figure 15.2: Sketch of the FE mesh. The system is periodic in the x-direction, so that
column Nx coincides with column 0. There are N = Nx × Ny nodes, and
Nx ×

(
Ny − 1

)
elements.

functions for the displacements
(
ux, uy

)
and forces

(
f el
x , f el

y

)
. This mesh is sim-

ply the two-dimensional extension of the one-dimensional mesh whose interpo-
lation functions are sketched in Fig. 15.1.

Let us number the nodes of each element from 0 to 3 counter-clockwise, start-
ing from the bottom left corner, viz., 3

0�
2
1 , and denote by u(0)

x the displacement
along x at the (0) node, etc. In each element, the interpolated strain and stress
fields are then given by

 εxx

εyy√
2εxy

 = B> ·



u(0)
x

u(0)
y
...

u(3)
x

u(3)
y


and


σel

xx

σel
yy√

2σel
xy

 = −B> ·



f el (0)
x

f el (0)
y

...

f el (3)
x

f el (3)
y


, (15.7)

where

B> ≡ 1/2

 −1 1 1 −1

−1 −1 1 1
−1/
√

2 −1/
√

2 −1/
√

2 1/
√

2 1/
√

2 1/
√

2 1/
√

2 −1/
√

2

 .

Notice in particular that the strain and stress fields are uniform within each
element ; in other words, our simplified FE method is close to a Finite Volume
method, in practice. The

√
2 prefactors have been introduced with foresight (see

Section 15.2.3) and the “minus” sign preceding B> in Eq. 15.7 should not come
as a surprise if one understands that f el (i) is the force exerted by the element on
node i.

A straightforward and symmetric (but on no account unique) way to invert
Eq. 15.7 is
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

u(0)
x

u(0)
y
...

u(3)
x

u(3)
y


= B ·


εel

xx

εel
yy√

2εel
xy

 and



f el (0)
x

f el (0)
y

...

f el (3)
x

f el (3)
y


= −B ·


σel

xx

σel
yy√

2σel
xy

 . (15.8)

15.2.3 Elastic force-displacement matrix

To relate the nodal displacements and the nodal forces in each element, we
make use of the constitutive equation of the material.

To start with, the elastic contribution is governed by Hooke’s law. Its tra-
ditional expression with tensorial notations, i.e., σel

ij = Cijklεkl , is conveniently
replaced by the following condensed notations [Tsamados et al., 2009],

σel
xx

σel
yy√

2σel
xy

 = C

 εxx

εyy√
2εxy

 , (15.9)

where C is a 3× 3 real matrix. Substituting from Eq. 15.7, one obtains the local
relation between the forces exerted on the nodes by the material element under
consideration and the displacements at the nodes, viz.,

f el (0)
x

f el (0)
y

...

f el (3)
x

f el (3)
y


= −BCB> ·



u(0)
x

u(0)
y
...

u(3)
x

u(3)
y


. (15.10)

To proceed, the local elastic force-displacement matrices K ≡ −BCB> are as-
sembled into a global elastic force-displacement matrix K, viz.,

f el (N−1)
x

f el (N−1)
y

...

f el (0)
x

f el (0)
y


= K ·



u(N−1)
x

u(N−1)
y

...

u(0)
x

u(0)
y


,

where the bold superscripts refer to the global labels used in Fig. 15.2, by oppo-
sition with the elemental labels used in Eq. 15.10. Here, K is a sparse 2N × 2N
matrix.
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15.2.4 Viscous force-velocity matrix

The foregoing derivation relies on the linear relation connecting local strains
and elastic stresses. Thus, it can straightforwardly be extended to the viscous
stresses, insofar as they are linearly related with the local strain rates, viz.,

σdiss
xx

σdiss
yy√

2σdiss
xy

 = Cdiss

 ε̇xx

ε̇yy√
2ε̇xy

 . (15.11)

Globally, the viscous force-velocity relation reads



f diss (N−1)
x

f diss (N−1)
y

...

f diss (0)
x

f diss (0)
y


=H ·



u̇(N−1)
x

u̇(N−1)
y

...

u̇(0)
x

u̇(0)
y


,

where the 2N × 2N matrix H has been assembled from elemental matrices of
the form −BCdissB>.

15.2.5 Inertial force-acceleration matrix

Finally, we must express the inertial forces, that is to say, the matrix M in
Eq. 15.6. The convected part of the material derivative of the velocity, namely,
v · (∇v) , which scales with v2 for elements of unit size, is neglected.

One could consider calculating the inertial forces acting on a given element
and then distributing them among its nodes. However, this leads to unphysi-
cal behaviour, as is easily understood for a plane shear wave: As soon as the
wave front would hit one row of nodes, the inertial forces experienced by these
nodes would be shared with the next row, so that the wave would propagate
instantaneously over the size of an element.

To overcome this erratic behaviour, we compute the inertial forces directly at
the nodes. In other words, each node is assigned a mass m0 ≡ ρV0, where V0

is the elemental volume (i.e., area). Accordingly, the matrix M connecting the
accelerations at the nodes to the inertial forces at the nodes is a 2N × 2N matrix
with m0 on the diagonal, i.e.,

M =


m0

. . .

m0

 .
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15.3 discretisation of the dynamics

In the previous section, we have spatially discretised the Continuum Mechan-
ics problem, Eq. 15.5, and we have arrived at a matricial equation whose struc-
ture is recalled here,

M · ü = K · u +H · u̇, (15.12)

where all variables depend on time and u is a shorthand for the nodal displace-

ments
(

u(N−1)
x u(N−1)

y . . . u(0)
x u(0)

y

)>
.

Equation 15.12 is an ordinary differential equation with respect to time. To
solve it numerically, the continuous time interval [t0, ∞[ (with t0 the initial time)
is replaced by the discrete time interval {tn ≡ t0 + nδt, n ∈N}, with fixed time
step δt; hence, Eq. 15.12 turns into

∀n ∈N,M · ü (tn) = K (tn) · u (tn) +H · u̇ (tn) . (15.13)

Here, we have highlighted the time-dependence of K, owing to changes in the
elastic properties of the elements, to contrast it with the constancy of both M
andH.

Because keeping track of the cumulated displacements u(tn) is inconvenient
(and all the more so as we intend to keep the grid fixed), we choose to compute
only the incremental displacements δu(tn) ≡ u(tn) − u(tn−1) at each time step.
Comparing the evaluations of Eq. 15.13 at time steps tn−1 and tn, one gets

M · δü (tn) = K (tn) · δu (tn)− δ f pl (tn) +H · δu̇ (tn) . (15.14)

Here, we have used the shorthand δ f pl (tn) for the elastic force [K (tn−1)−K (tn)] ·
δu (tn−1) released due to plasticity (and the ensuing vanishment 2 of some elastic
moduli in K).

To conclude, the time derivatives δu̇ and δü are discretised with the following
central difference scheme,

δu̇ (tn) =
δu (tn+1)− δu (tn−1)

2δt
+O(δt2)

δü (tn) =
δu (tn+1) + δu (tn−1)− 2δu (tn)

δt2 +O(δt). (15.15)

The central difference scheme conserves time reversibility and is more accurate
than a forward difference method.

By inserting this numerical scheme into Eq. 15.14, one finally arrives at

2. As mentioned in the introduction, the shear moduli of plastic regions (contained in the local
stiffness matrix C) will vanish for the whole duration of the plastic events. The reader is referred
to Section 17.2.2 for details.
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(
M− δt

2
H
)

︸ ︷︷ ︸
M

· δu (tn+1)

δt
= δtK (tn) · δu (tn)− δt δ f pl (tn)−H ·

δu (tn−1)

2

+M · 2δu (tn)− δu (tn−1)

δt
. (15.16)

In practice, the problem is solved iteratively, i.e., the displacement increments
δu of the previous two time steps, tn−1 and tn, are stored and δu (tn+1) is ob-
tained from Eq. 15.16 through the inversion of the lhs matrix M. The initial
conditions for the problem are chosen as δu (t0) = δu (t1) = 0.

With regard to numerical efficiency, it should already be pointed out that M

is constant and can therefore be inverted 3 once and for all at the beginning of
the simulation.

15.4 boundary conditions

To conclude the presentation of our FE routine, let us specify the two types
boundary conditions (BC) that will be used, alternatively.

15.4.1 Semi-periodic system bounded by parallel walls

The first BC involve periodicity along the flow direction x and infinite parallel
walls bounding the crosswise direction y, at positions y = 0 and y = Ly.

Periodicity is readily implemented by welding the leftmost and rightmost
columns of the system, that is to say, imposing that the left-hand neighbours
of the first column be the nodes of the last column, and vice versa, as sketched in
Fig. 15.2.

Walls are modelled with no-slip BC by controlling the displacements of the
nodes along the wall (W), i.e., the first 2Nx and the last 2Nx nodes. This is
achieved by replacing the associated rows in the lhs matrix M (in Eq. 15.16) with
BC prescriptions, viz.,

∀l ∈ W , ∀k ∈ {0, . . . , 2Nx − 1} , Mkl ← δkl ,

where δkl is the Kronecker symbol, and replacing the corresponding cells on the
rhs vector (in Eq. 15.16) with the prescribed (x- or y-)displacements.

15.4.2 Biperiodic system

For the second type of BC, the system is periodic in both directions.

3. On a technical note, the inversion is computed with the Multifrontal Massively Parallel
Solver (MUMPS) package (http://graal.ens-lyon.fr/MUMPS/), designed for sparse matrices.
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The implementation of periodicity in the flow direction has already been dis-
cussed in the previous section (Section 15.4.1), but periodicity in the transverse
direction y deserves closer attention, since periodic replicas in the y-direction
must be shifted along the flow direction x with respect to each other, similarly
to the Lees-Edwards BC used in atomistic simulations.

To simplify notations, we denote the displacements on a given row, i.e., at
y = cst, by 

Top row

Penult row
...

Second row

Bottom row


Because of periodicity along the transverse direction y, the nodes of the top and
bottom rows should be interconnected. Due to these interconnections, if the
periodic replicas along y are unfolded, one gets



Top row

Penult row
...

Second row

Bottom row


−→ δũx =



...

Bottom row

Top row

Penult row
...

Second row

Bottom row

Top row
...



.

However, as mentioned earlier, we would like these replicas to be shifted at each
time step because of the flow, by a distance γ̇Lydt along ex , viz.,

δux =



...

Bottom row + γ̇LytΘ (t)

Top row

Penult row
...

Second row

Bottom row + 0

Top row− γ̇LydtΘ (t)
...



= δũx +



...

γ̇LydtΘ (t)

0

0
...

0

0

−γ̇LydtΘ (t)
...


︸ ︷︷ ︸

δu(BC)
x (t)

.
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While δux is the desired physical field, in practice only δũx is periodic and com-
patible with the interconnections between the nodes of the top and bottom rows.
The problem is solved by substituting δũx + δu(BC)

x for δux in Eq. 15.16, which
leads to

M · δũ (tn+1)

δt
+M · δu(BC)

x (tn+1)

δt
= δtK (tn) · δũ (tn)− δt δ f pl (tn)

−H · δũ (tn−1)

2
+M · 2δũ (tn)− δũ (tn−1)

δt

+δtK (tn) · δu(BC)
x (tn)−H ·

δu(BC)
x (tn−1)

2

+M · 2δu(BC)
x (tn)− δu(BC)

x (tn−1)

δt
.

In the main system, the terms involving δu(BC)
x (in blue) build up a force δ f (BC)

that acts on the top and bottom rows.

In conclusion, the FE displacements δũx can be substituted for the physical
field δux in Eq. 15.16, provided that auxiliary forces δ f (BC) accounting for the
shift between replicas are applied to the top and bottom rows, viz., schematically,

M · δũ (tn+1)

δt
= . . . + δ f (BC)

x .

15.5 simple tests and appraisal of the algorithm

With our numerical FE routine in place, it is now time to test it and appraise
its capabilities. In this section, as a simple test, we probe the response of uniform
isotropic systems to shear.

15.5.1 Stiffness and viscosity matrices of uniform isotropic media

Let us first recall the expressions of the local stiffness and viscosity matrices,
C and Cdiss, introduced in Eqs. 15.9 and 15.11, in the case of uniform isotropic
media:

C =

 K + µ K− µ 0

K− µ K + µ 0

0 0 2µ

 and Cdiss =

 κ + η κ − η 0

κ − η κ + η 0

0 0 2η

 ,

where K and µ are the elastic bulk modulus and shear modulus in two dimen-
sions, and κ and µ are the bulk (or volume) viscosity and the shear viscosity,
respectively. Note that, for an incompressible material, both the bulk modulus
and the bulk viscosity diverge, i.e., K → ∞ and κ → ∞.
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Figure 15.3: Application of a shear strain step to a uniform incompressible, low-viscosity
elastic medium, with µ = 12, ρ = 3, η = 1, and K = κ ≈ 104, in a system
bounded by parallel walls (N = 80 × 20). The bottom wall is displaced
along the x-direction by u0

x at time t = 0, corresponding to a shear strain
γ = u0/20.

15.5.2 Simple tests

First, we consider a uniform, incompressible, almost inviscid, elastic medium,
characterised by K, κ → ∞, η → 0, µ = cst = 12, and ρ = cst = 3, with the
notations used in the previous section. A shear strain step is applied to this
material, and the results of the simulation are plotted in Fig. 15.3. These results
are consistent with the theoretical value of transverse sound velocity (Fig. 15.3a),
ct =

√
µ/ρ = 2 , and, as expected, the average shear stress Σ is proportional to

the applied strain γ, the proportionality coefficient being equal to µ (Fig. 15.3).

Secondly, we study the response of a purely viscous incompressible material,
of viscosity η = 10, to a constant shear rate γ̇, imposed by displacing the bottom
wall. As shown in Fig. 15.4, the shear stress measured in the steady state obeys
the expected relation Σ = ηγ̇.

Our sanity checks are thus satisfactory.

15.5.3 Assets of our Finite Element algorithm

Compared to the Fourier-Transform-based algorithms used in Parts II and III
of this thesis, the (simplified) FE method provides considerably greater versatil-
ity, at the expense of somewhat heavier numerical costs. 4

To begin with, more diverse flow geometries, e.g., curved geometries, could be
implemented with minimal efforts.

Furthermore, the FE routine better accounts for structural disorder, insofar as
elastic heterogeneities can be handled, as well as the softening of regions under-

4. The use of a fixed FE mesh does however reduce the numerical cost of the algorithm.
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Figure 15.4: Shear stress of a purely viscous material, with η = 10 ρ = 3, µ = 0, and
K = κ ≈ 104, in a system bounded by parallel walls (N = 80 × 20), in
response to a simple shear flow initiated at t = 0. The applied shear rates
are indicated in the legend.

going a plastic event. In addition, it allows us to go beyond the assumption of
pointwise rearrangements on which the ideal elastic propagator G was based.
The local anisotropy of the material can also be modelled, which may help de-
scribe the strongly anisotropic force chains in granular matter.

Finally, the FE framework paves the way for the study of the crossover between
overdamped and underdamped (inertial) dynamics. In particular, the presence
of inertia relaxes the former assumption of instantaneous mechanical equilibra-
tion.

15.5.4 Limitations: marginal stability, staticity of the mesh

Notwithstanding these assets, some serious limitations ought to be mentioned.

First and foremost, our routine is only marginally stable. Indeed, the regular
square (“Q1” in the FE literature) mesh that we use does not satisfy the Brezzi-
Babushka stability criterion (see Section 15.1.3) and is known to yield erratic
results when applied to Stokes problems.

In particular, a frequently encountered anomaly of major concern is the checker-
board issue, whereby high and low displacements/velocities alternate erratically
in neighbouring cells, hence the image of a checkerboard. In the context of the
(incompressible) Stokes problem, this is interpreted as a singularity of the matrix
that must be inverted (the counterpart of M in Eq. 15.16).

In our routine, we do indeed encounter the checkerboard issue when ρ =

0, hence M → 0. Somewhat counterintuitively, the code is stabilised by the
inclusion of inertial forces, probably because the matrix M =M− δt

2H (where
M is a multiple of the identity matrix) is more readily invertible than − δt

2H.
A similar problem arises when one probes the elastic response of the medium

to the imposed shear deformation of a single element. This elastic response is er-
ratic, as can be seen Fig. 15.5a. The problem fades away if the shear deformation
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(a) Shear transformation is limited to one ele-
ment.

(b) Shear transformation spans four elements.

Figure 15.5: Displacement field induced by applying a shear deformation to a region
comprising either (a) one element or (b) four elements. The displacement
arrows are coloured according to their norm.

covers four adjacent elements, i.e., if the mesh is refined. The ensuing displace-
ment field in the elastic medium is plotted in Fig. 15.5b but will be discussed at
length in the next chapter. Consequently, in the simulations, each elastoplastic
block will cover four elements.

One last issue should be mentioned: the implementation of convection is in-
convenient in our fixed-mesh FE routine. Indeed, were it implemented along the
same lines as in Chapter 13, i.e., by incrementally shifting lines of elements, it
would violate force balance, because elements would move along with the elastic
stress they bear. Otherwise, if force balance were restored by imposing a stress
redistribution whenever a line is convected, this would create spurious stress
waves in the system.

However, the neglect of convection can also be supported (at least, partly) on
a physical basis: we will mostly consider systems with low yield strains, say,
γy � 0.1; it follows that more than 10 plastic events will have occurred by the
time a block moves with respect to its first neighbours. In addition, unlike in
the Fourier-Transform-based code, the streamwise and crosswise coordinates are
never entirely symmetric here, because the FE routine computes displacements,
and not only strains.
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16
R E S P O N S E T O A S I N G L E P L A S T I C R E A R R A N G E M E N T

Very recently, Puosi et al. [2014] studied the time-dependent elastic response
to an artificially triggered shear transformation with Molecular Dynamics (MD)
simulations of a binary Lennard-Jones glass. With the objective of further vali-
dating the Finite Element (FE) routine presented in Chapter 15 and highlighting
the impact of elastic heterogeneities on the propagation of stress waves, we un-
dertake a similar study and compare the results to MD simulations.

16.1 md simulations with dissipative particle dy-
namics

Let us first present the MD system that will be used as a benchmark. It is the
same athermal binary Lennard-Jones mixture as that presented in Section 14.1.1
and also used in Ref. [Puosi et al., 2014], except that a different damping scheme
is employed. Indeed, instead of a mean-field dissipative force −pi

τd
, where pi is

the singular momentum of particle i with respect to an affine “solvent” flow and
τd is the Langevin damping time, here we resort to Dissipative Particle Dynamics
(DPD), whereby particles are damped on the basis of their relative velocities with
respect to their neighbours. More precisely, the dissipative force experienced by
particle i reads

fi
D = −∑

j 6=i
ζw2 (rij

) vij · rij

r2
ij

rij (16.1)

where w(r) ≡

1− r
rc

if r < rc,

0 otherwise.

Here, vij ≡ vi − vj denotes the relative velocity of particle i with respect to
j, rij ≡ ri − rj, the cut-off distance is set to rc = 3σAA (see Section 14.1.1 for
the definition of σAA), and ζ controls the damping intensity. The projection
of the force onto the radial vector rij is required in order to conserve angular
momentum. In addition, on the basis of the work of Varnik et al. [2014], the
use of relative particle velocities is expected to help overcome the deficiencies of
the mean-field damping when it comes to reproducing experimentally measured
correlations (the reader is referred to Section 14.3.3). Other virtues of DPD are
exposed in Ref. [Soddemann et al., 2003].

The MD simulations have been performed by Dr. Francesco Puosi, and the local
elastic constants (see below) have been computed by Dr. Hideyuki Mizuno.
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16.2 fitting of the model parameters

Before comparing the elastic response to a shear transformation obtained in
FE to that measured in MD, we need to fix the parameters of the FE system,
i.e., the density of the material, the size of an element, the local elastic constants
and the viscosity. The first two parameters are readily adjusted: the size of an
element is set to 2.5σAA, i.e., the approximate radius of a plastic rearrangement
(recall, from Section 15.5.4, that shear transformations in the FE routine must be
applied to macro-elements made of four adjacent sub-elements!), and the density
is ρ = 1.2/σ2

AA = 7.5 in FE units. The last two parameters, on the other hand,
deserve some more thoughts.

16.2.1 Viscosity

In MD, the damping magnitude is set by the coefficient ζ in the expression
of the dissipative force fi

D (Eq. 16.1), whereas it is set by the viscosity η in
FE. In order to match the damping in both simulations, we must connect the
MD dissipative force fi

D to the viscous stress in FE, namely, σdiss = 2ηε̇ (see
Eq. 15.5).

To this end, we consider a pure shear situation, in which particles are strictly
advected by the flow

v(r) = ε̇ · r
with ε̇ ≡ ε̇xy

(
ey ⊗ ex + ex ⊗ ey

)
.

On the one hand, in MD, the microscopic dissipative stress on particle i (of
volume V0) is obtained with the help of the Irving-Kirkwood formula, viz.,

σ(ri) = V−1
0 ∑

j
rij ⊗ f D

ij

= −ζV−1
0 ∑

j
w2 (rij

) vij · rij

r2
ij

rij ⊗ rij.
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Focusing on the xy-component of the stress and setting ri as the origin of the
frame, i.e., ri = 0, for convenience, we get

σxy(ri = 0) = ζV−1
0 ∑

j
w2 (rj

) vj · rj

r2
j

xjyj

= ζε̇xyV−1
0 ∑

j
w2 (rj

) 2yjxj

r2
j

xjyj

' 2ζε̇xyV−1
0

∫∫
ng(r)w2 (r)

x2y2

r2 d2r

= 2ζnε̇xyV−1
0

∫ 2π

0
cos2(θ) sin2(θ)dθ

∫ ∞

0
g(r)w2 (r) r3dr (16.2)

=
π

2
ζnε̇xyV−1

0

∫ ∞

0
g(r)w2 (r) r3dr.

Here, n is the average number density of the system and g(r) is the (alledgedly
isotropic) pair correlation function. Equation 16.2 expresses the stress in a vol-
ume of space occupied by a particle; elsewhere the stress is zero. Therefore, the
average stress in the material reads

σxy = (nV0) σxy(ri = 0)

=
π

2
ζε̇xyn2

∫ ∞

0
g(r)w2 (r) r3dr

On the other hand, in FE, the shear stress simply obeys σxy = 2ηε̇xy.
It immediately follows that

η =
π

4
ζn2

∫ ∞

0
g(r)w2 (r) r3dr. (16.3)

If w2 decreases fast (but smoothly) and the particles are hard and dense
enough, so that g (r) exhibits a sharp peak at r = a0, the viscosity in Eq. 16.3
can be further approximated as

η ' 1
8

ζn (2πn)
∫ a0+ε

a0−ε
g(r)w2 (r) r3dr.

' ζnw2 (a0)

8
(2πn)

∫ a0+ε

a0−ε
g(r)r3dr

' 1
8

ζnw2 (a0) a2
0zc,

where zc is the coordination number, i.e., the number of first neighbours (at a
distance r ∼ a0).

Equation 16.3 is valid for a one-component system, but the extension to binary
mixtures, of components A and B, is straightforward; with transparent notations,
the viscosity reads
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η =
π

4
ζ
∫ ∞

0

[
n2

AgAA(r) + 2nAnBgAB(r) + n2
BgBB(r)

]
w2 (r) r3dr. (16.4)

In the considered Lennard-Jones system, this leads to η = 0.726 ζ.

16.2.2 Local elastic constants

Having determined the dissipative coefficient of the model, we turn our atten-
tion to the elastic properties of the system. Since Puosi et al. [2014] showed that
structural disorder brings on large fluctuations of the elastic response of the ma-
terial, we cannot settle with global elastic constants; instead, we must also probe
the local elastic moduli.

The only relevant material lengthscale in the model being the typical size (a)
of a rearrangement, we tile the system into subregions of size a = 5σAA and
compute the local stiffness tensors on this “mesoscopic” scale, with the local
stress-affine strain method presented by Mizuno et al. [2013]. Details of this
protocol and issues related to the rather unfamiliar local stiffness tensors are
discussed in Appendix 16.8.1. With condensed notations, these tensors can be
written as 3× 3 real matrices in 2D, viz., σxx

σyy√
2σxy

 =

 Cxx,xx Cxx,yy Cxx,xy

Cyy,xx Cyy,yy Cyy,xy

Cxy,xx Cxy,yy Cxy,xy


︸ ︷︷ ︸

C

 εxx

εyy√
2εxy

 , (16.5)

where σxx, σyy, and σxy are the linear elastic contributions to the local stress.

Contrary to their macroscopic counterpart, the local C matrices are not sym-
metric a priori, for very small regions [Tsamados et al., 2009]. However, the coarse
grain a = 5σAA is large enough here so that the assumption of symmetry can
be a decent approximation. To limit the number of parameters, we further as-
sume that isotropic contraction/dilation of the region only generates an isotropic
stress, i.e., that (

εxx εyy
√

2εxy

)>
=

√
2/2
(

1 1 0
)>

is an eigenvector of C (these approximations are assessed in Appendix 16.8.1);
by analogy with the macroscopic case, the eigenvalue c3 associated with this
pure contraction is (twice) the bulk modulus K, viz., c3 = 2K. The other two
eigenvalues, c1 and c2, of the (symmetric) C matrix are then (twice) the shear
moduli µ1 and µ2, viz., c1 = 2µ1 and c2 = 2µ2 with c1 < c2, and are typically
considerably smaller than c3.
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Denomination Symbol Mean Std dev.

Shear modulus (weak direction) µ1 13.16 7.2

Shear modulus (strong direction) µ2 24.46 5.8

Average shear modulus µ ≡ µ1+µ2
2 18.81 5.3

Bulk modulus K 99.9 8.4

Table 16.1: Statistical properties of the elastic constant distributions: mean values and
standard deviations (std dev.).

These two assumptions, namely, tensorial symmetry and isotropy of the re-
sponse to contraction, imply that the stiffness tensor should be of the form

C =

 α δ β

δ α −β

β −β υ

 , where α, δ, β, υ ∈ R. (16.6)

Nevertheless, if we draw on the analogy with the macroscopic case, there exists
a frame

(
ex(θ), ey(θ)

)
, rotated by an angle θ with respect to the original frame,

in which the stiffness tensor reads K + µ2 K− µ2 0

K− µ2 K + µ2 0

0 0 2µ1

 , with µ1 6 µ2.

Consequently, if the local stiffness tensor is approximated by its projection onto
a matrix of the form given by Eq. 16.6, the following four local parameters suffice
to determine it completely: θ, µ1, µ2, and K.

Table 16.1 summarises the characteristics of the distributions of µ1, µ2, and
K measured in the Lennard-Jones glass under consideration; θ is uniformly dis-
tributed, in accordance with isotropy at the macroscale.

It is noteworthy that the local stiffness matrices exhibit significant anisotropy,
as indicated by the discrepancy between the mean value of the shear modulus in
the (locally) weaker direction, 〈µ1〉 = 13.16, and its strong counterpart, 〈µ2〉 =
24.46.

Some regions actually even display negative shear moduli µ1. This is not
unrealistic in the MD system, because these regions can be stabilised by the sur-
rounding medium, but, in the following, they will be discarded, and arbitrarily
set to zero, in the FE simulations, where they cause instabilities.

Lastly, the bulk modulus is much larger (by a factor of 5) than the shear mod-
uli, in line with expectations. In addition, its distribution is by far narrower than
the distributions of shear moduli, after rescaling by their respective mean values.
Consequently, we will henceforth always neglect spatial fluctuations of the bulk
modulus and set K = 99.9.
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Summary of the three FE systems under investigation

Common properties
Uniform bulk modulus K, bulk viscosity κ, and shear viscosity

K = κ = 99.9
η = 0.726 ζ

À Uniform system
µ1 = µ2 = 18.8

Á Heterogeneous system with isotropic blocks (“het. iso.”)

µ1 = µ2 = µ and µ = 18.8± 5.3,

i.e., µ is normally distributed, with mean value 18.8 and standard
deviation 5.3.
(Remember that each block is a macro-element made of four adjacent
finite elements.)

Â Heterogeneous system with anisotropic blocks (“het. aniso.”)

µ1 = 13.16± 7.2 and µ2 = 24.46± 5.8

The angle θ defining the principal direction associated with µ1 is
picked at random from uniform distribution over [0, 2π[.

Figure 16.1: Characteristics of the FE systems.

16.2.3 Finite Element Systems

The foregoing study of the visco-elastic properties of the MD system leads us
to choose a constant bulk modulus K = 99.9 and a constant viscosity η = 0.726 ζ

in the FE simulations. As for the distributions of shear moduli, three types of
systems will be considered:

À a uniform system
Á a heterogeneous system made of isotropic blocks (“het. iso.”)
Â a heterogeneous system made of anisotropic blocks (“het. aniso.”)
The characteristics of these systems are listed in Fig. 16.1.

The size of the FE system is adjusted to the MD simulation cell, and biperiodic
boundary conditions are used in both cases.
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Figure 16.2: Sketch of the displacements applied to a macro-element to model a pure
shear transformation.

16.2.4 Verification

By simulating an oscillatory plane shear wave, we have confirmed that the MD
sound velocity is correctly matched by the FE simulations and that the order of
magnitude 1 of the damping coefficient is correct (data not shown).

16.3 artificially triggered shear transformations

Following Ref. [Puosi et al., 2014], shear transformations are artificially created
in the MD system by applying a pure shear strain εxy to a disk centred at (x0, y0)

and of diameter a = 5σAA. To do so, particles whose initial position (xi, yi)

belongs to this region are displaced to a new position (x′i , y′i) at t = 0 , which
satisfies




xi → x′i = xi + εxy (yi − y0)

yi → y′i = yi + εxy (xi − x0) .

Their positions are then frozen for the whole simulation. In order to measure the
elastic, i.e., reversible, response of the medium, εxy never exceeds a few percent
strain.

A similar shear transformation is applied in the FE simulations to a macro-
element made of four adjacent elements (see Section 15.5.4), by controlling the
positions of the nodes of these elements (via BC-like prescriptions), as sketched
in Fig. 16.2.

16.4 disorder-averaged propagation

Let us first study the propagation of the waves induced by the shear trans-
formation, after averaging over disorder, i.e., over many (50) locations (x0, y0)
of the transformation in MD or over many (50) realisations of the elastic config-

1. These plane wave simulations have not allowed us to ascertain the accurate value of the
damping.
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uration of the system in FE. The average displacement at time t is denoted by
u (r; t) ≡

〈
u(d) (r; t)

〉
d
, where (d) refers to a particular disorder configuration..

Figures 16.3 and 16.4 show the cumulated displacement field at various time
lags, for two distinct damping magnitudes: ζ = 1 (relatively low damping), ζ =

100 (overdamped regime). The visual agreement between the MD simulations
and those obtained with the FE routine (het. iso.) is striking. In both cases, the
propagation is radial, with (apparently two) circular wavefronts, not unlike the
observations of Chattoraj and Lemaître [2013]. The maximal displacements are
found in lobes oriented at π

4 ± n π
2 , n ∈ Z, with respect to the x or y direction,

whereas vortices develop in the x and y directions, particularly conspicuously at
intermediate times (∆t = 10) for ζ = 1, and they clear the existing displacements
in these directions.

Turning to a quantitative study, we make use of the average propagation ra-
dius ∆r(t) introduced by Puosi et al. [2014] to measure the advance of the wave,

∆r(t) ≡
∫∫
|ur(r; t)|d2r,

where ur(t) is the radial displacement at time t. If the final displacement, ur(r; t =
∞) ∼ r−1 in any given direction θ in the far field, is essentially achieved as soon
as a region is reached by the wavefront, ∆r(t) will grow as the linear size of
the displaced region. The average propagation radius is plotted in Fig. 16.5 for
diverse values of the damping ζ. The initial growth is ballistic in MD, with
∆r(t) ∼ t , while, at long times, ∆r(t) saturates at its steady-state value. Con-
trary to the findings reported in Ref. Puosi et al. [2014] for a mean-field dissi-
pation scheme, here no clear diffusive regime ∆r(t) ∼ t1/2 is observed; in Ap-
pendix 16.8.2, we enquire into this difference. The evolution of ∆r(t) before the
steady state is reached strongly depends on ζ. With a low damping (ζ = 1), the
interaction with the waves generated by the periodic replicas of the shear trans-
formation leads to particularly long-lived oscillations of ∆r(t) (Fig. 16.5a), while
stronger damping (ζ = 100) completely suppresses these oscillations.

The FE simulations nicely capture this qualitative change, and the agreement
both in the limit of low damping (Fig. 16.5a) and in the limit of strong damp-
ing (Fig. 16.5c) is excellent, at relatively long times. This is true for all three
FE systems, including the uniform one, which supports the idea that the aver-
age propagation in elastically heterogeneous media is virtually identical to the
propagation in a uniform medium.

For an intermediate value of the damping, namely, ζ = 10 (Fig. 16.5b), the
agreement is reasonable, but not quite as good, insofar as the oscillations ob-
served in MD are damped perceptibly faster than their counterparts in FE, not
only in the uniform system, but also in the heterogeneous one (het. iso.). This
suggests that the FE viscosity is somewhat underestimated, or that, in MD, an-
harmonicities significantly contribute to the damping of the oscillations.

Finally, the short-time propagation is well described for low damping, but the
agreement declines when ζ increases, in which case the FE method overestimates
the propagation velocity over short distances.
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(a) ∆t = 2

(b) ∆t = 10

(c) ∆t = 1000

Figure 16.3: Average displacement field induced by a shear transformation (at the centre
of the cell), after a time lag ∆t, for relatively low damping, ζ = 1 (hence,
η = 0.726). The pink arrows represent the displacement vectors and the
background colour map is indicative of the norm of these vectors.
(Left) Finite Elements, het. iso.; (right) Molecular Dynamics.
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(a) ∆t = 2

(b) ∆t = 10

(c) ∆t = 1000

Figure 16.4: Average displacement field induced by a shear transformation, after a time
lag ∆t, for strong damping, ζ = 100 (hence, η = 72.6). Refer to Fig. 16.3 for
the legend.
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(c) ζ = 100 (η = 72.6)

Figure 16.5: Average propagation radius ∆r as a function of time, for different damping
magnitudes.
(Red stars) MD data; (inverted cyan triangles) FE, het. iso.; (blue triangles) FE,
het. aniso; (solid black line) FE, uniform system.
(Left) log-log plot, (right) same data, in semi-logarithmic plot.
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16.5 effect of structural disorder

The disorder-induced fluctuations with respect to the average response are
now examined.

The norm of the average displacement u (r; t) along a diagonal direction, at a
long time lag t = 1000, is plotted in Fig. 16.6 for ζ = 1 and ζ = 100, together
with the associated standard deviation δu, i.e.,

δu (r; t) =
√〈[

u(d) (r; t)− u (r; t)
]2
〉

d
.

One may notice that, for ζ = 1, the average displacements do not coincide satis-
factorily between MD and FE, which is mostly due to the fact that the oscillations
described in Section 16.4 have not died out yet at this time lag, and they are not
perfectly in phase in the different systems. The agreement of the average values
is much better for ζ = 100.

Regarding the fluctuations, the paramount result is that their order of magni-
tude is well reproduced by the FE simulations, both with isotropic blocks (het.
iso., µ1 = µ2) and with anisotropic blocks (het. aniso.), although, quite naturally,
het. aniso. displays larger fluctuations than het. iso. Moreover, it is noteworthy
that these corrections are roughly half as large as the mean reponse, e.g., at a
distance of 50σAA. It should however be recalled here that the centre of mass
of the MD simulation cell is kept fixed, to avoid the global translations of the
system that we have sometimes observed otherwise (and which then dominate
the fluctuations).

With regard to the distribution of δu in space, colour maps of the relative fluc-
tuations δu(r; t)/u(r; t) are presented in Fig. 16.7. In regions with non-negligible
displacements, i.e., u(r; t) > 10−2, the relative fluctuations are approximately
homogeneous and tend to increase slightly with time.

16.6 time-dependent response to a particular plas-
tic event

Even though the study of the propagation dynamics (Section 16.4) and of
disorder-induced fluctuations (Section 16.5) is sufficient to validate the FE ac-
count of elastic propagation in a model, we would like to know whether the
comparison can be pushed further. More precisely, can the FE routine describe
the details of the elastic response in a particular configuration?

To address this question, within the third type of FE mode, namely, het. aniso.,
the local shear moduli µ1 and µ2 and the angle θ of each macro-element (i.e., set
of four adjacent elements) are directly extracted from the corresponding region
in the MD system. Then, we compute the strain field 2 induced by shear trans-

2. In MD, local strains are computed after coarse-graining the displacement field on a grid
similar to the FE one.
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Figure 16.6: (Solid lines) mean value u and (dashed lines) standard deviation δu of the
displacement norm along a diagonal axis ediag =

√
2

2
(
ex + ey

)
, after a time

lag ∆t = 1000, as a function of the distance (in FE units).
(Red) MD; (cyan) FE, het. iso.; (blue) FE, het. aniso.

formations occurring at given positions in the sample, an example of which is
shown in Fig. 16.8.

Although the MD response and its FE counterpart look alike, we cannot assert
that, beyond the average quadrupolar structure, the disorder-induced fluctua-
tions are similar in MD and FE. The results are therefore inconclusive in this
respect.

16.7 shear rearrangement dynamics

Throughout this chapter, shear transformations have been arbitrarily imposed,
through an instantaneous displacement of particles (or FE nodes). However, in
a bona fide simulation, the dynamics of shear transformations are determined by
the system itself. Let me simply mention that at least two dynamical regimes
can be envisioned:

If inertia is negligible, the competitition between elasticity and viscosity sets
the timescale of the rearrangement, τ = η/µ, as discussed in Section 7.4.2.

If most of the rearrangement consists in the damping of the inertial force (ini-
tially generated by elasticity), then the duration of a rearrangement is set by the
inverse damping coefficient ζ−1.
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(a) ∆t = 10

(b) ∆t = 100

(c) ∆t = 1000

Figure 16.7: Colour map of the relative displacement norm fluctuations δu(r; t)/u(r; t)
for ζ = 1. The regions where u(r; t) < 10−2 are overlaid in light yellow.
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(a) ∆t = 1

(b) ∆t = 10

(c) ∆t = 100

Figure 16.8: Local strain field induced by a particular shear transformation at different
lag times, for ζ = 1.
(Left) FE, with an elastic configuration modelled on the MD system; (right)
MD.
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Key Points of the Chapter

– Local shear moduli are more broadly distributed (on
a relative basis) than local bulk moduli.

– The average time-dependent elastic response in a dis-
ordered medium is similar to the propagation in a uni-
form medium and it is well reproduced in the FE sim-
ulations.

– Fluctuations with respect to the average displacement
field are considerable, with relative fluctuations of a
few tens of percents.

– The order of magnitude of these fluctuations is cap-
tured by FE simulations on heterogeneous, but locally
isotropic systems. The local anisotropy of the blocks
does not play a major role in this respect.
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A
16.8 appendix

16.8.1 Determination of the local stiffness tensors

With our condensed notations for the stress and strain tensors (Eq. 16.5), the
macroscopic stiffness tensor of an isotropic material of bulk modulus K and
shear modulus µ reads (see Section 15.5.1)

C =

 K + µ K− µ 0

K− µ K + µ 0

0 0 2µ

 .

In comparison, local stiffness tensors display rather unusual properties. To
grasp the meaning of their (lack of) symmetries, some brief general considera-
tions about elasticity and deformation are in order.

Suppose that a small macroscopic strain ε̄ is applied to a sample and focus
on a mesoscopic region S . The local linear strain tensor ε is defined as the
symmetric tensor that best matches the displacements of the particles in S due
to the applied strain. Only if the deformation is strictly affine over the whole
sample do the local strain tensors equate to ε̄.

Because, for a given short-range interparticle potential, the local stress σ re-
sults from the local configuration of particles, it is reasonable (but not strictly
necessary) to suppose the existence of a function f such that

σ = f (ε) .

Let us write the first-order Taylor expansion of f , provided that it exists,

σαβ − σ
(0)
αβ = Cαβγδεγδ +O

(
‖ε‖2

)
, (16.7)

where α, β ∈ {x, y} and σ
(0)
αβ is the quenched stress in the original configuration.

With condensed notations, Eq. 16.7 turns into 3

 σxx

σyy√
2σxy

 =

 Cxx,xx Cxx,yy Cxx,xy

Cyy,xx Cyy,yy Cyy,xy

Cxy,xx Cxy,yy Cxy,xy


︸ ︷︷ ︸

C

 εxx

εyy√
2εxy

+O
(
‖ε‖2

)
. (16.8)

3. As a minor technical detail, note that, because the tensorial multiplication Cαβγδεγδ involves
a summation on both εxy and εyx, components Cαβ,γδ of the second-rank tensor C may not exactly
equate to their counterparts in the fourth-rank tensor Cαβγδ; for instance, Cxy,xy = 2Cxyxy.
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The affine strain-local stress approximation consists in replacing the components
of ε on the rhs of Eq. 16.8 with those of the affine strain ε̄, in order to determine
C more easily. For subregions of size larger than 5σAA, Mizuno et al. [2013]
showed that this approximation is quite reasonable, although it slightly under-
estimates the spatial fluctuations of the elastic constants. On the other hand,
should the local stress on the lhs be computed for a local deformation equal to ε̄,
i.e., should the system not be allowed to relax to the energy minimum after the
application of the affine strain ε̄, then we would obtain the so-called Born term
CB, which largely overestimates the stiffness of the disordered material [Mizuno
et al., 2013].

For the time being, all components of the second-rank stiffness tensor C are
independent. But, if the local stress derives from a (twice differentiable) local
strain-energy density e, i.e.,

σαβ ≡
∂e

∂εαβ
,

then

Cαβγδ =
∂2e

∂εαβ∂εγδ
.

It immediately follows that Cαβγδ = Cγδαβ; this symmetry property is transferred
to the second-rank tensor C (thanks to the carefully chosen

√
2 prefactors in

Eq. 16.8). Indeed, Tsamados et al. [2009] observed numerically that, for coarse-
graining regions larger than 5 Lennard-Jones particles in diameter, assuming a
symmetric stiffness matrix C creates an error of less than 1% on the local stress
evaluations. In the MD system under consideration, we quantify the asymmetry
of the mesoscopic stiffness matrices, computed over regions of size a = 5σAA,
with the following measure:

‖∆C‖ ≡
√√√√ ∑

i, j∈
{xx,yy,xy}

∆C2
i,j with ∆C ≡ C− C + C>

2
.

What should ‖∆C‖ be compared with? At first sight, the answer would be ‖C‖,
but the latter is dominated by large symmetric terms involving the bulk modulus
K ≈ 100. Thus, on second thoughts, it appears more informative to remove the
terms involving K; ‖∆C‖ should then be compared to, e.g., 〈Tr (C)− 2K〉 = 4 〈µ〉,
with 〈µ〉 = 18.8. From the histogram of ‖∆C‖ values plotted in Fig. 16.9a, it
transpires that deviations from symmetry in C are not strictly negligible, but
symmetry may nevertheless be a decent approximation.

To further reduce the number of local parameters, the isotropic contraction/di-
lation vector (

√
2/2
√

2/2 0)> is supposed to produce an isotropic compression and,
thus, to be an eigenvector of C, ergoCxy,xx = −Cxy,yy

Cxx,xx = Cyy,yy
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Eq. 16.9.

Figure 16.9: Histograms of the approximation errors made when supposing that the lo-
cal stiffness tensors C are (a) symmetric, (b) of the form given in Eq. 16.9.

The assumptions of tensorial symmetry and isotropic response to contraction
come down to projecting C onto a matrix of the form

C′ =

 α δ β

δ α −β

β −β υ

 with α, δ, β, υ ∈ R, (16.9)

where α and β will be the averages of the pairs
(
Cxx,xx, Cyy,yy

)
and

(
Cxy,xx,−Cxy,yy

)
,

respectively. The approximation error, quantified by ‖∆′C‖ ≡ ‖C− C′‖, is plot-
ted in Fig. 16.9b. As expected, the deviations are somewhat larger than were C
only symmetrised, but they remain under control.

For each matrix C′, we compute the eigenvalues c1 6 c2 6 c3 and define:
- the small local shear modulus µ1 ≡ c1/2,
- the large local shear modulus µ2 ≡ c2/2,
- and the bulk modulus is K ≡ c3/2.
The distributions of these local elastic constants are presented in Fig. 16.10

and their mean values and standard deviations are summarised in Table 16.1. It
should be noted that the average eigenvalues of the projected tensor C′ differ by
10% or less from the eigenvalues of the full local stiffness tensors C.

The components of C′ can then be rewritten as follows



α ≡ K + µ2 cos2 2θ + µ1 sin2 2θ

δ ≡ K− µ2 cos2 2θ − µ1 sin2 2θ

β ≡ sin 4θ√
2

(µ2 − µ1)

υ ≡ 2µ2 sin2 2θ + 2µ1 cos2 2θ

,
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Figure 16.10: Histograms (number of counts) of the measured values of the local elastic
constants µ1, µ2, and K in subregions of size 5σ× 5σ in the MD system.

where the angle θ has been defined in Section 16.2.2.

16.8.2 Propagative regimes

With a mean-field dissipative scheme, Puosi et al. [2014] observed a diffu-
sive regime of growth of the average propagation radius ∆r(t), i.e., ∆r(t) ∼ t1/2,
which is not apparent in the present DPD simulations. Can this difference be
explained?

Mean-field dissipation

With a mean-field damping force −pi/τd, where pi is the momentum in the
deforming frame, in the overdamped regime, force balance on particle i can
schematically be written as

pi(t)
τd

≈ k ∑
〈j|i〉

(
uj(t)− ui(t)

)
, (16.10)

where the sum runs over the neighbours j of i, k is a typical stiffness, i.e., the
order of magnitude of the relevant Hessian components ∂2V/∂ri∂rj, and the uj’s
are the displacements with respect to an equilibrium configuration. Let us now
introduce a continuous, coarse-grained displacement field u(r; t) and a typical
interparticle distance a0, and substitute the former into Eq. 16.10:

m
τ

∂u
∂t
≈ ka2

0∇2u.

In this regime of negligible inertia, we thus obtain a diffusive equation for the
particle displacements, consistently with the MD observations.
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Dissipative Particle Dynamics

Very crudely, the DPD equation of motion is approximated by

mü ≈ ζ̃ ∑
〈j|i〉

(
u̇j(t)− u̇i(t)

)
+ k ∑

〈j|i〉

(
uj(t)− ui(t)

)
mü ≈ ζ̃a2

0∇2u̇ + ka2
0∇2u, (16.11)

where ζ̃ ≡ ζw2 (a0).
Equation 16.11 is a diffusion equation (on u̇) only if the elastic force is neg-

ligible, which will not be the case in practice. This may explain why we have
not observed a diffusive regime in the simulations. (More generally, Eq. 16.11

can be solved with a space-time Fourier transform, or a joint Laplace-Fourier
transform).
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17
C O R R E L AT I O N S B E T W E E N P L A S T I C E V E N T S : A
P R E L I M I N A RY R E V I S I TAT I O N U S I N G T H E F E - B A S E D
A P P R O A C H

Chapter 16 has provided evidence that the Finite Element (FE) method satis-
factorily describes the elastic response of a model glassy material and properly
accounts for the heterogeneity-induced fluctuations with respect to the average
response. It behoves us now to test the FE-based elastoplastic model in a situa-
tion of flow and to compare it to atomistic simulations. Will the spatiotemporal
correlations that it predicts better match those measured in Molecular Dynamics
(MD) than the Fourier Transform-based model?

This chapter is but a preliminary study of these important aspects. The com-
parison between FE and MD, in particular, is still inchoate.

17.1 md simulations with dissipative particle dy-
namics

The MD simulations were performed by Prof. Joerg Rottler.
Let us first present some results of MD simulations with a Dissipative Particle

Dynamics (DPD) thermostat. The athermal Lennard-Jones glass under study has
already been presented (see Section 14.1.1), and details of the DPD scheme and
of its advantages can be found in Section 16.1. The damping coefficient ζ is set
to 1 here.

17.1.1 Flow curve

The DPD flow curve (not shown) is very similar to that obtained with a mean-
field dissipation scheme, with a Langevin damping time τd = 1, except that the
DPD yield stress is slightly lower.

17.1.2 Plastic correlations

As in Chapter 14, plastic rearrangements are detected with the D2
min observ-

able, with a time resolution (see Eq. 14.4) δt = 4τLJ , where τLJ is the Lennard-
Jones time unit.

Let us recall the expression of the plastic correlation function C2 (∆r, ∆t) from
Section 14.2.4:

C2 (∆r, ∆t) ≡ α
(〈

D2
min (r, t) D2

min (r + ∆r, t + ∆t)
〉
−
〈

D2
min (r, t) · D2

min (r, t + ∆t)
〉)

,
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Figure 17.1: Colour maps of the plastic correlator C2 measured in DPD-MD simulations
at γ̇ = 10−4 and ζ = 1 for time lags (A) ∆t = 0, (B) ∆t = 8, (C) ∆t = 20. Dark
blue regions are anticorrelated, while dark red ones are strongly correlated.

where α ≡
[ 〈

(D2
min(r, t))2

〉
−

〈
(D2

min(r, t))
2
〉 ]−1

.

Colour maps of the plastic correlator are shown in Fig. 17.1 at three time lags,
at an applied shear rate γ̇ = 10−4. As expected from the findings of Varnik et al.
[2014], spatial correlations appear to be more extended than with the mean-field
damping scheme, judging by the comparison of Fig. 17.1 with Fig. 14.7. In ad-
dition, the “instantaneous” correlations at ∆t = 0 are already spatially extended,
and apparently more than the shear wave propagation during either δt or the du-
ration of a rearrangement would allow. This suggests that C2 (∆r, ∆t = 0) does
not merely reflect the causal links between two plastic events, but, above all, the
spatial organisation of the flow. In other words, instead of being causally related,
the plastic events that are correlated via C2 may have been triggered by the same
(past) plastic event(s).

17.2 presentation of the elastoplastic model

We now turn to the elastoplastic model.

17.2.1 Elastic properties

As in Chapter 16, each elastoplastic block is a macro-element made of four
adjacent finite elements which share the same elastic constants. Regarding these
elastic properties, we study an elastically heterogeneous system with isotropic
blocks: this is the “het. iso.” model in the terminology of Fig. 16.1, except
that we have chosen a slightly broader distribution of shear moduli (standard
deviation of 7 instead of 5.3), because the fluctuations in the elastic response of
het. iso. observed in Chapter 16 were slightly smaller than the MD fluctuations.
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Figure 17.2: Mesoscopic PEL basis of the dynamical rules of the model. (Thin black lines)
Sketch of a complex mesoscopic PEL, inspired from Fig. 1.2a. (Thick brown
lines) Simplified PEL view used to establish the model rules. Dashed lines
indicate plastic events, during which the internal elastic stress of the region
is supposed to vanish; the event ends when the cumulated plastic strain
reaches γc. Solid lines represent the elastic loading periods, associated with
a yield strain γy.

17.2.2 Dynamical rules

The dynamical rules are closely connected to those of the refined athermal
model presented in Section 9.3, but they are actually easier to explain within the
present framework. The mesoscopic PEL perspective on which they are based is
depicted in Fig. 17.2.

The loading phase is still described by linear elasticity, but the elastic blocks
now also have a finite viscosity η and a finite density ρ 1 (see Eq. 15.5). A block
(i, j) yields (becomes plastic) as soon as its maximal shear strain

‖2ε̇‖ ≡
√[

εxx(i, j)− εyy(i, j)
]2

+
[
2εxy(i, j)

]2

exceeds the local yield strain γy. We choose an exponential distribution of yield
strains, with no cut-off, viz.,

P(γy) ∝ e−γy/〈γy〉. (17.1)

To match the macroscopic value of the yield strain, of order 5-10%,
〈
γy

〉
is set

to 0.05. The exponential distribution of yield strains of Eq. 17.1 differs from the
exponential distribution of energy barriers in the refined model of Section 9.3; the
change has only been prompted by our desire to use similar distributions for the
yield strains and the plastic strains (see below) and it may be reconsidered in the
future.

In the plastic regime, the internal elastic stress is dominated by the dissipative
stress (which opposes the external stress deforming the region). Therefore, we
neglect the former and set the shear modulus of the plastic block to zero, i.e.,
µ1 = µ2 = 0 in plastic blocks, so that a plastic region is only subject to viscous
(and inertial) forces. A plastic event ends when the total strain cumulated in the

1. Nevertheless, the viscous forces and the inertial forces are expected to be subdominant in
the elastic regime.
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plastic phase,
∫
‖2ε̇(t′)‖ dt′, reaches γc. Since Fig. 14.4a in Chapter 14 tentatively

suggested an exponential distribution of plastic strains in the MD system, γc is
assumed exponentially distributed, viz.,

P(γc) ∝ e−γc/〈γc〉.

The (unique) freely adjustable parameter of the model, the average plastic
strain 〈γc〉, is taken to be 0.015. Following Section 16.2, the viscosity is set to
η = 0.726 ζ, with ζ the MD damping coefficient, and the density ρ is set to 7.5
(per finite element).

This completes the presentation of the FE-based elastoplastic model.

17.3 flow simulations with the elastoplastic model

17.3.1 Flow curve

We simulate the elastoplastic model presented in Section 17.2.2 for a large
damping coefficient ζ = 100 (i.e., η = 72.6) and obtain a Herschel-Bulkley flow
curve, shown in Fig. 17.3, with an exponent around 0.60 (whose precise value,
however, depends on the fitted window of shear rates). The dynamical rules that
have been implemented may therefore suitably describe the overdamped regime.
But, for the time being, the flow curve has not been quantitatively adjusted to
the DPD-MD measurements.

On the other hand, the flow curves obtained for a lower damping coefficient,
e.g., ζ = 1, look erratic, insofar as they are either decreasing with the shear rate
or non-monotonic, contrary to their MD counterparts. The dynamical rules will
therefore need to be refined to also account for the inertial regime.

I would like to add that postulating instantaneous, fully relaxing plastic events
has not allowed me to recover the desired Herschel-Bulkley flow curve. This
suggests that the competition between the driving timescale γ̇−1 and the sig-
nal propagation time in plastic event avalanches, namely l(γ̇)/ct (where l (γ̇) is
the typical avalanche size and ct, the transverse sound velocity), alone does not
suffice to explain the flow curve.

17.3.2 Plastic event correlator

Coming back to the overdamped case ζ = 1 and considering an applied shear
rate γ̇ = 7 · 10−4, the plastic event autocorrelation function, plotted in Fig. 17.5a,
is indicative of rearrangements of duration ∆t ≈ 1, in accordance with the direct
measurement of the mean plastic event duration.

Shifting the focus to spatial correlations, in Fig. 17.4 we present colour maps of
the plastic correlator C2 (∆r, ∆t), defined in Eq. 14.5, at different time lags. These
plots display a distinct quadrupolar symmetry.
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Figure 17.3: Flow curve measured with the FE-based model, for
〈
γy

〉
= 0.05 and 〈γc〉 =

0.015 (blue triangles). System size: 32× 32 macro-elements. The dashed black
line represents the Herschel-Bulkley equation Σ = 1.8 + 14.7γ̇0.60.

Figure 17.4: Colour maps of the plastic correlator C2 obtained with the FE-based model
at γ̇ = 7 · 10−4 for

〈
γy

〉
= 0.05 and 〈γc〉 = 0.015. The time lags are (A′) ∆t =

0.5, (B′) ∆t = 20, (C′) ∆t = 60 . System size: 41 × 41 macro-elements. Dark
blue regions are anticorrelated, while dark red ones are strongly correlated.
Note that an upper threshold has been imposed; without it, short-range
correlations, at the centre, completely outshine the rest of the picture.
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(a) Dependence of the plastic autocorrelation
function C(∆t) ≡ C2 (0, ∆t) /C2 (0, 0.5) on
the time lag ∆t.
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(b) Directional probability enhancement factor
α⊥(∆r, ∆t, γ̇) for time lags ∆t =(blue) 1,
(green) 8, (red) 16.

Figure 17.5: Plastic event correlations in the model for γ̇ = 7 · 10−4,
〈
γy
〉
= 0.05 and

〈γc〉 = 0.015.
(b) To facilitate the comparison with Fig. 14.5b, r̃ is expressed in units of
σAA (as a reminder, the size of a finite element is 2.5σAA).

Particularly strong correlations are observed on streamlines and perpendic-
ularly to them, at short distances. This marked accumulation on thin lines is
probably a spurious effect due to the symmetry of the mesh. It is reflected in the
largely enhanced probability to have successive plastic events along streamlines
or perpendicular lines, as compared to a diagonal alignment. The probability
enhancement is quantified by the anisotropy ratio α⊥, defined in Eq. 14.6 and
plotted in Fig. 17.5b. Apparently, the short-range plastic event correlations in
the perpendicular direction are as overestimated in the FE implementation of
the model as in the Fourier transform implementation. However, this similar-
ity is somewhat misleading, because in the latter approach convection entailed
the use of a “deformed” elastic propagator, which curtailed correlations in the
perpendicular direction. Indeed, along streamlines, plastic correlations were even
more overestimated, 2 whereas in the present approach plastic correlations are
similar in both the streamwise and the crosswise directions (α‖ ≈ α⊥, data not
shown).

Nevertheless, these short-range correlations are most likely still largely overes-
timated. This problem could be circumvented, without changing the underlying
FE mesh, by introducing purely elastic defects in the grid, to break the symmetry
of the macro-element lattice, as sketched in Fig. 17.6.

On the other hand, at larger distance, where α⊥ ≈ 2 (see Fig. 17.5b), the
correlation results are not unrealistic, and a quantitative comparison between
the FE-based model and DPD-MD simulations with regard to the intensity of
the correlations will be very informative. This is ongoing work.

2. The parallel-versus-diagonal anisotropy ratio, α‖ , was about six times as large as its
perpendicular-versus-diagonal coutnerpart, α⊥, at short time lags and short distances.
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Figure 17.6: Introduction of purely elastic defects (in black) in the FE mesh in order
to break the symmetry of the macro-element (represented as four adjacent
element of the same colour) lattice. The defects would be purely elastic,
with a shear modulus equal to 〈µ〉.

Key Points of the Chapter

– In atomistic simulations, DPD generates longer corre-
lations than the mean field dissipation scheme, in ac-
cordance with the findings of Ref. [Varnik et al., 2014].

– In the elastoplastic model, the dynamical rules control-
ling the alternation between the elastic loading phases
and the viscous behaviour during plastic events yield
a realistic flow curve in the overdamped regime. In
the inertial regime, they need to be refined.

– The short-range plastic correlations are most likely
still largely overestimated in the FE-based model, pos-
sibly because of the symmetry of the mesh.
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18
F O R C E C H A I N S I N G R A N U L A R M E D I A

Throughout this thesis, the elastoplastic model has mostly been compared to
concentrated emulsions and Lennard-Jones glass models, with some allusions
to metallic glasses. Yet, in the introduction, we claimed that granular media
also belong to the class of amorphous solids that can be handled in a common
framework. Do elastoplastic models indeed describe the shear flow of (frictional)
granular matter?

At first sight, we are forced to admit that these materials feature several un-
usual properties, compared to soft glassy materials. For instance, interparticular
friction strongly impacts their rheology [Bi et al., 2011], and “force chains” (see
below) are observed; moreover, the systems are prone to dilation under shear, an
effect known as Reynolds’ dilatancy [Reynolds, 1885].

This elliptic chapter is mainly aimed at opening up new perspectives with re-
spect to the description of granular media by elastoplastic models. It suggests
some novel ideas for the modelling of, e.g., force chains and it highlights some
unsettled questions. However, the detailed investigation that these matters cer-
tainly deserve is left for future work.

18.1 basics about sheared granular media

18.1.1 Inertial and viscous numbers

In Section 7.2.1, thanks to a discussion of the relevant timescales for the rhe-
ology, we clarified that, in the slow flow of athermal amorphous solids, the de-
pendence of the stress on the shear rate γ̇ originates in an interplay between the
driving timescale γ̇−1 and (cascades of) localised rearrangements. In line with
this idea, the authors of Refs. [da Cruz et al., 2005, Jop et al., 2006, Boyer et al.,
2011] provided convincing experimental and numerical evidence that the ratio
of the rearrangement time and the inverse shear rate is the correct adimensional
number to describe the flow. In dry granular matter, this ratio is the inertial
number

I ≡ γ̇a0

√
ρ

p
,

where a0 is the grain diameter, ρ is the density of the material, and p is the
confining pressure, whereas in granular suspensions, it is called the viscous
number and it reads

Iv ≡ γ̇
η f

p
,

where η f is the viscosity of the suspension fluid.
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In both cases, the effective friction coefficients µ ≡ Σ/p, where Σ is the shear
stress and p is the pressure, collapse onto a master curve µ = f (I) (or µ =

f (Iv)) as a function of the inertial (or viscous) number, for diverse confining
pressures and diverse restitution coefficients. This collapse notably indicates that
experiments at constant applied pressure are easier to interpret than experiments
performed at constant volume, the difference between the two being connected
with Reynolds’ dilatancy effect.

18.1.2 Friction and force chains

In order to dig underneath the macroscopic surface properties, Majmudar and
Behringer [2005] used a two-dimensional (frictional) granular system made of
photoelastic disks. They were thus able to image the spatial distribution of
stresses in the material and observed linear filaments of grains connected by
strong contacts (see Fig. 18.1), i.e., contacts at which large forces are exerted,
standing out of a background of weaker contacts. These so called force chains
are isotropically oriented on average if the system is isotropically compressed.
But, under shear, they are mainly aligned in the compressional direction and get
visibly longer.

As had already been predicted theoretically by Cates et al. [1998], due to these
oriented force chains, the material can resist shear in a particular direction. For
the system to flow (in that direction), the chains must rupture. The buckling
process at the origin of force chain failure was evidenced and analysed by Torde-
sillas et al. [2012].

Further evidence of the prominent role of force chains for the rheology comes
from Azéma and Radjaï [2014]’s measurements of the local stress components
in a three-dimensional Taylor-Couette flow. These researchers found that “con-
tact anisotropy is the principal microstructural cause of the increase of effective
friction” with the inertial number. In addition, Bi et al. [2011] showed that ini-
tially unjammed systems could jam through the application of shear. Jamming
then coincides with the percolation of a network of force chains throughout the
system.

18.1.3 Gravity

Gravity is another aspect that has been neglected so far in elastoplastic mod-
els. Its role is brought to the forefront in free-surface granular flows along in-
clined planes. Micro-gravity experiments are also particularly suitable to reveal
the impact of granity; Murdoch et al. [2013] showed that secondary flows in
dense sheared granular materials are suppressed in micro-gravity conditions,
compared to high-gravity conditions.

To model gravity in the elastoplastic framework, body forces can be applied at
the nodes of the FE mesh. Nevertheless, this will have very limited impact, unless
we introduce some dependence of the shear moduli on the isotropic pressure p ≡
σxx+σyy

2 , because these two elements are so far decoupled. For instance, imposing

248



Figure 18.1: Observation of elongated force chains in sheared granular matter by means
of photoelastic disks. Image taken from Ref. [Majmudar and Behringer,
2005].

that the shear modulus µ should grow linearly with p, viz., µ ∝ p, while keeping
the yield strain criterion for the onset of local plasticity, essentially results in
the traditional Mohr-Coulomb criterion for cohensionless materials, whereby the
sample fails when the ratio Σ/Σn (i.e., the maximal shear stress divided by the
normal stress Σn) exceeds a critical value tan (φ), where φ is the Mohr-Coulomb
angle.

18.2 how to model force chains in the elasto-
plastic framework?

The main idea underlying the project emerged from a discussion with Prof. Mike
Cates.

18.2.1 “Shear polarisation”

Can the particularly anisotropic force chains be described in the elastoplastic
framework at minimal cost?

Our premise is that stress-carrying force chains are due to the anisotropic con-
tacts, in excess in the compressional direction. Since these chains resist further
compression in that direction, the local elastic properties must be coupled to the
fabric, the latter being here amalgamated with the local deformation ε. Leaving
aside isotropic contraction or dilation, we focus on the deviatoric part of ε and
call θε the rotated frame in which ε is diagonal, i.e, in which

(
‖ε‖ 0

0 −‖ε‖

)
.
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Figure 18.2: Anisotropy function f (x) = α
eα−1 eαx for two values of α, as indicated in the

legend.

Recalling from Chapter 16 that the local stiffness tensor C is fully determined
by a (constant, here) bulk modulus K, a weak shear modulus µ1 and a strong
shear modulus µ2, in addition to the angle θ associated with µ1, we postulate
that the principal directions of the deformation tensor and of the stiffness tensor
coincide, i.e., θε = θ, and that µ1 = µ f

(
‖2ε‖

γy

)
µ2 = µ f (0) .

Here, µ is a material constant (µ = 18.81) and f is an increasing function that
controls how much stiffer a shear direction becomes if the region is strained in
that direction. We posit

f (x) ≡ α

eα − 1
eαx,

where α is the “shear polarisability” of the material. The prefactor α/(eα − 1)
was chosen so that

∫ 1
0 f (x)dx is independent of α.

We will study two different shear polarisabilities: α = 0.01 and α = 3.0. The
dependence of the shear anisotropy function f on the rescaled deformation x is
plotted in Fig. 18.2 for these two values. Clearly, for α = 0.01, blocks are always
quasi-isotropic, whereas marked anisotropy is observed for α = 3.0 when the
block is deformed (x > 0).

Note that linear elasticity imposes that infinitesimal deformations ±δε pro-
duce the same stress increment, in magnitude, regardless of the sign (+ or -)
of the deformation. Nevertheless, the effects of these opposite deformations do
clearly differ: the one will reduce ‖ε‖ and relax the block anisotropy µ1/µ2, while
the other will further compress the block in one direction and further enhance
the local anisotropy.
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18.2.2 Dynamical rules and model parameters

We use dynamical rules that are similar to those described in Section 17.2.2,
except that the distributions of plastic strains γc and yield strains γy are modified.
(As a reminder, γc is the strain that needs to be cumulated during plasticity
before elasticity is recovered.)

More precisely, the yield strain γy is normally distributed around
〈
γy
〉
= 0.1,

with standard deviation 0.05, while γc is set as a constant, viz., γc =
〈
γy
〉
= 0.1.

In order to avoid numerical instabilities, a lower cut-off γcut−off
y = 0.01 �

〈
γy
〉

is introduced in the distribution of γy.

For convenience, we still consider the overdamped regime, with viscosity η =

72.6, corresponding to a DPD damping coefficient ζ = 100 (see Chapter 16). The
density remains equal to 7.5 (in FE units).

18.3 preliminary results

18.3.1 General observations

A portion of the stress versus strain curve of a system with high shear polar-
isability, α = 3, at very low shear rate γ̇ = 10−4, is shown in Fig. 18.3a. At
the strain positions indicated by the letters “a”, “b”, and “c” on the curve, we
extract the instantaneous elastic configurations of the system and draw them in
Fig. 18.4 by means of a colour map representing the local anisotropy ratio µ1/µ2

and short lines indicating the local compressional direction in each block. Sim-
ilar colour maps are drawn at a somewhat higher shear rate, γ̇ = 5 · 10−3 in
Fig. 18.5, whereas in Fig. 18.6 we show results for an almost isotropic system,
characterised by α = 0.01, at γ̇ = 10−4. Biperiodic boundary conditions were
used.

As expected, the density of plastic blocks increases with the shear rate, and
anisotropy ratios are much higher in the highly polarisable material (α = 3) than
in its quasi-isotropic counterpart. Besides, in the vast majority of blocks, the
local compressional direction is aligned with the compressional direction of the
macroscopic shear, although this is perceptibly less true for the low-polarisability
material.

These results are clearly very preliminary. They would deserve to be analysed
in much greater detail, and it is still unclear whether the considered systems (or
analogous ones with different parameters) exhibit linear groups of particularly
strong blocks (µ1 � µ2) similar to force chains in granular media. A careful
study of the influence of the shear polarisability α on the rheology would also
be of great interest.

251



(a) α = 3 (zoom).

0.00 0.02 0.04 0.06 0.08 0.10
γ

0.0

0.1

0.2

0.3

0.4

0.5

Σ

(b) α = 10.

Figure 18.3: Stress versus strain curves for shear polarisable materials at an applied shear
rate γ̇ = 10−4. Indicated in Subfigure (a) are the strains (a, b, c) at which
the snapshots of Fig. 18.4 were taken.
The systems consist of 24 × 24 macro-elements.

(a) γ = 1.26 (b) γ = 1.27 (c) γ = 1.28

Figure 18.4: Snapshots of the instantaneous configurations of the system at the strains
indicated in Fig. 18.3a, for α = 3 and γ̇ = 10−4. The colours represent
the local anisotropy ratio µ1/µ2, and the white line in each block indicates
the compressional direction of the block, i.e., the strong direction associated
with µ1. Blocks undergoing a plastic event are depicted in light yellow,
without white line.
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(a) γ = 3.95 (b) γ = 3.4

Figure 18.5: Snapshots of instantaneous configurations of the system, for α = 3 and at
an applied shear rate γ̇ = 5 · 10−3. Refer to Fig. 18.4 for the caption.

(a) γ = 1.26 (b) γ = 1.27 (c) γ = 1.28

Figure 18.6: Snapshots of instantaneous configurations of the system, for a tiny shear
polarisability α = 0.01, at γ̇ = 10−4. Refer to Fig. 18.4 for the caption.
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18.3.2 Shear-jamming?

Figure 18.3b presents the stress versus strain curve of a material with very
high shear polarisability, α = 10. It displays an effect akin to the shear-jamming
phenomenon reported by Bi et al. [2011], insofar as the effective shear modulus
of the material, which is almost zero initially, grows dramatically when shear is
applied, so that the material apparently solidifies at γ ≈ 0.05. Within the model,
the solidification simply originates in the increase of the shear modulus µ1 with
increasing block compression in the macroscopic shear direction. The response
of the material to shear in other directions is still pending.

18.4 some open questions

Open Questions

– Can the emergence and failure of individual force chains be
observed in our model?

– Very recently, Le Bouil et al. [2014] reported on an experimental
study of the homogeneous biaxial compression of a packing of
glass beads, probed with dynamic light scattering. Before global
failure of the material, i.e., before the appearance of macroscopic
shear bands, they observed a microstructure made of correlated
plastic events, i.e., in their terminology, transient micro-shear
bands. Particularly puzzling is the fact that, while the transient
micro-shear bands are oriented at an angle which is compati-
ble with the directions of maximal redistributed stress in an Es-
helby approach, the final macroscopic shear band is oriented at
a different angle, close to the Mohr-Coulomb angle. This puzzle
remains unsolved.
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C L O S I N G W O R D S

Contrary to the case of simple fluids, a finite stress is required to initiate the
flow of amorphous solids, a broad class of materials ranging from bulk metallic
glasses to foams and dense emulsions. Their solidity at rest, combined with
the absence of ordered structure, and therefore of easily identifiable defects, has
elicited the study of their rheology within a common framework.

In a first approach, the liquid regime is taken as a starting point. The mode-
coupling theory describes the emergence of rigidity when the temperature de-
clines or the density increases. Recently, the theory has been extended to situ-
ations of homogeneous flow. Since the flow becomes strongly inhomogeneous
deeper in the solid phase, we have investigated to what extent heterogeneities
can be accommodated within this framework. In particular, the physically ex-
pected advection term, which was absent in the homogeneous system, has been
recovered in the equations, and we have derived a generic equation for the evo-
lution of density fluctuations in the presence of heterogeneities. On the basis of
a schematic constitutive equation, we have studied the linear stability of the flow
of glassy materials in curved geometry and shown that, in this simple descrip-
tion, shear-thinning tends to suppress elastic instability.

At low temperatures, the flow consists of periods of elastic deformation inter-
spersed with localised rearrangements of particles, called plastic events, that in-
duce long-range elastic deformations and can thereby trigger new plastic events.
This scenario is the cornerstone of another approach, rooted in the solid regime,
namely, elastoplastic modelling.

A first aspect of my work has consisted in tightening the connection between
the building blocks of elastoplastic models and the physical processes at play
in reality. To this purpose, I have deepened the existing Continuum Mechanics
description of plastic events, on the one hand, and endeavoured to root the
dynamical rules of the model in a (very schematic) Potential Energy Landscape
perspective, on the other hand.

Besides, various properties of the flow have been studied with the help of
numerical simulations of these models.

With regard to the flow curve, general arguments indicate that it results from
an interplay between the external drive and the (cascades of) localised rear-
rangements. By incorporating this interplay in the model, the desired Herschel-
Bulkley relation between the shear stress and the strain rate, with an exponent
close to 0.5, was recovered.

It is not rare, however, that the experimental flow curve deviates from the
strictly monotonic Herschel-Bulkley behaviour at low shear rates. This is gen-
erally the hallmark of shear localisation. In different variants of the elastoplas-
tic model, this phenomenon is observed. More precisely, this occurs whenever
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blocks are durably weakened by plastic events. We have therefore proposed to
subsume the diverse mechanisms leading to shear localisation under the overar-
ching concept of long healing times.

Even when the flow is macroscopically homogeneous, strong correlations per-
sist at low shear rates and low temperatures. We have shown that the scalings
of these correlations are not universal in coarse-grained models, despite the exis-
tence of a broad class of correlation lengths that scale with the spacing between
homogeneously-distributed simulataneous plastic events, i.e., with γ̇−1/d in the
shear-dominated regime in d dimensions. In this respect as in many others, the
extension from a scalar description of the stress to a tensorial one hardly makes
any difference.

The aspiration to a direct comparison of model results with experimental data
has led us to study flows through microchannels. Some striking manifestations
of spatial cooperativity were recently observed in experiments on dense emul-
sions in this geometry, for instance deviations from bulk rheology and shear rate
fluctuations in the seemingly quiescent plug in the centre of the channel. Part
of these effects are rationalised by the existing coupling between streamlines
subject to different shear stresses in that geometry, and captured by the model,
at least semi-quantitatively. On the other hand, we pointed to another origin
for the large deviations from bulk rheology that are observed in microchannels
with rough walls. We hypothesised that they were caused by the mechanical
noise generated by bumps of the emulsion droplets into wall asperities, in the
(attested) presence of wall slip.

Further material for comparison came in the form of Molecular Dynamics
simulations at zero temperature. While the agreement between these atomistic
simulations and the elastoplastic description is good as far as the macroscopic
rheology and the statistics of individual events are concerned, marked discrep-
ancies are observed in the spatiotemporal correlations between plastic events,
although their (quadrupolar) symmetry is well captured by the elastic propaga-
tor used in the model. The discrepancies are the magnitude of the correlations,
which is vastly overestimated in the model, and the gradual growth of their
spatial extent with the time lag, which goes amiss in the model.

To remedy these deficiencies, we have introduced a much more flexible imple-
mentation based on a simplified Finite Element routine. This notably allows us
to better account for structural disorder in the material and to explictly include
inertia in the model. We have gathered evidence, by comparison with Molecular
Dynamics simulations, that the elastic response to a shear transformation is now
faithfully described in our model, in terms of both mean response and fluctua-
tions. The study of the spatiotemporal correlations between plastic events in this
new framework is ongoing, as are the efforts to reproduce the force chains ob-
served in granular media and, thus, adapt elastoplastic models to the description
of these systems.
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C O N C L U S I O N

À la différence des liquides simples, les solides amorphes, une vaste catégorie
de matériaux allant des verres métalliques aux mousses et aux émulsions con-
centrées, ne se mettent à s’écouler qu’au-delà d’une contrainte finie. Malgré
leur diversité, la solidité au repos de ces matériaux, conjuguée à l’absence de
structure ordonnée et donc de défauts aisément identifiables, permet d’étudier
certains aspects de leur rhéologie dans un cadre commun.

En premier lieu, le régime liquide a servi de point de départ. La théorie du
couplage de modes décrit alors l’émergence de la rigidité lorsque la température
décroît ou lorsque la densité augmente. Cette théorie a récemment été étendue
à la prise en compte d’écoulements homogènes. Étant donné que l’écoulement de-
vient fortement hétérogène à basse température ou à très haute densité, comme
cela a été établi expérimentalement, nous avons étudié dans quelle mesure ce
cadre théorique se prête au traitement des inhomogénéités. En particulier, nous
avons rétabli le terme d’advection dans les équations, lequel était appelé par des
considérations physiques simples, mais jusqu’à présent absent du formalisme,
et nous avons obtenu une équation générale pour l’évolution de fluctuations
de densité en présence d’hétérogénéités. À l’aide d’une équation constitutive
schématique, nous avons ensuite analysé la stabilité linéaire de l’écoulement de
matériaux vitreux dans une géométrie courbée et montré que, dans le cadre de
cette description, la rhéo-fluidification du matériau tend à étouffer le développe-
ment d’une instabilité élastique.

À basse température, l’écoulement se compose de phases de déformation
élastique entrecoupées de réarrangements de particules, brusques et localisés,
appelés événements plastiques et interagissant par le biais de la déformation
élastique de longue portée qu’ils génèrent dans le milieu. Ce scénario sert de
pierre angulaire à l’approche élasto-plastique, qui a donc pour point d’ancrage
le régime solide.

En second lieu, nous avons cherché à renforcer le lien entre les éléments consti-
tutifs de modèles élasto-plastiques et les processus physiques à l’œuvre dans la
nature. À cette fin, nous avons, d’une part, approfondi la description des événe-
ments plastiques par une approche de type mécanique du milieu continu et,
d’autre part, tenté d’ancrer les règles dynamiques du modèle dans un paysage
d’énergie potentielle, quand bien même fort simplifié.

Diverses propriétés de l’écoulement ont ensuite été étudiées à l’aide de simu-
lations numériques de tels modèles.

En ce qui concerne la courbe d’écoulement, sur la base d’arguments généraux,
on peut montrer qu’elle provient d’une compétition entre le cisaillement macro-
scopique imposé et les (cascades de) réarrangements locaux. L’inclusion d’un
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tel mécanisme de compétition dans la modélisation aboutit à une relation entre
contrainte et taux de cisaillement de type Herschel-Bulkley, avec un exposant
proche de 0.5, ce qui est conforme à des résultats expérimentaux et numériques
sur des systèmes très variés.

Cependant, il n’est pas rare que la courbe d’écoulement expérimentale dévie
de cette relation et perde sa stricte monotonie à faibles taux de cisaillement. Cela
signale généralement la présence de cisaillement localisé. Dans plusieurs vari-
antes de modèles élasto-plastiques, ce phénomène de localisation du cisaillement
est observé. Plus précisément, il se produit dès lors que les blocs sont durable-
ment endommagés par des événements plastiques. Nous avons donc proposé de
résumer les différents mécanismes microscopiques conduisant à la localisation
du cisaillement par le concept général de temps de guérison longs.

Même quand le cisaillement n’est pas macroscopiquement localisé, il existe
de fortes corrélations dans l’écoulement à faibles taux de cisaillement et basses
températures. Nous avons établi que les lois d’échelle que suivent ces corréla-
tions ne sont pas universelles pour tous les modèles mésoscopiques, en dépit
de l’existence d’une importante classe de longueurs de corrélation qui varient
comme la distance entre des événements plastiques simultanés qu’on suppose
distribués de manière à peu près homogène, c’est-à-dire comme γ̇−1/d dans le
régime dominé par le cisaillement, en d dimensions. Dans ce cas comme dans
bien d’autres, le passage d’une description scalaire à une description tensorielle
n’a quasiment aucun effet visible.

Afin de comparer directement les résultats du modèle à des expériences, nous
nous sommes intéressé à l’écoulement en microcanal. D’impressionnantes man-
ifestations de coopérativité spatiale ont récemment été relatées dans le cadre
d’expériences sur des émulsions confinées dans cette géométrie, à l’instar des
déviations observées entre rhéologie locale et rhéologie macroscopique du matériau,
ou encore des fluctuations de taux de cisaillement mesurées dans le bouchon
au centre du conduit, malgré l’apparente inactivité de ce dernier. Ces effets
s’expliquent en partie par le couplage à l’œuvre dans un micro-conduit entre
des lignes d’écoulement sujettes à des contraintes différentes, ce que permet de
décrire notre modèle, au moins semi-quantitativement. D’autre part, les larges
déviations par rapport à la rhéologie macroscopique, observées dans des canaux
à parois rugueuses, échappent selon nous à cette explication, et nous avons émis
l’hypothèse qu’elles seraient dues au bruit mécanique généré par les collisions
des gouttelettes avec les aspérités des parois, en la présence (expérimentalement
attestée) de glissement pariétal.

Des simulations de dynamique moléculaire à température nulle ont fourni
matière à une autre comparaison directe. Tandis que la rhéologie macroscopique
et les statistiques des événements plastiques individuels témoignent d’un bon
accord entre ces simulations atomistiques et la description élasto-plastique, les
corrélations spatio-temporelles entre événements plastiques font l’objet de di-
vergences marquées, même si leur symétrie (quadrupolaire) est bien reproduite
par le propagateur élastique utilisé dans le modèle. Les divergences concernent
l’amplitude des corrélations, largement surévaluée dans le modèle, et leur exten-
sion progressive dans l’espace, extension qui est instantanée dans le modèle.
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Pour parer à ces inconvénients, nous nous sommes tourné vers une implé-
mentation bien plus flexible, à partir d’une routine simplifiée d’Éléments Finis.
Celle-ci permet de bien mieux rendre compte du désordre structurel au sein du
matériau et d’inclure explicitement les effets inertiels. Nous avons établi, par
comparaison avec des simulations de dynamique moléculaire, que la réponse
élastique à une transformation de cisaillement localisée est alors (statistique-
ment) décrite avec précision, aussi bien en termes de moyenne que de fluctu-
ations. L’étude des corrélations spatio-temporelles entré événements plastiques
dans l’écoulement, dans ce nouveau cadre, est en cours de réalisation, ainsi que
l’est la tentative de modéliser les chaînes de force dans les matériaux granulaires,
et donc d’adapter la modélisation élasto-plastique à ce type de systèmes.
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