
HAL Id: tel-01086358
https://theses.hal.science/tel-01086358

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring consistency in partially replicated data stores
Masoud Saeida Ardekani

To cite this version:
Masoud Saeida Ardekani. Ensuring consistency in partially replicated data stores. Databases [cs.DB].
Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT : 2014PA066234�. �tel-01086358�

https://theses.hal.science/tel-01086358
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Masoud SAEIDA ARDEKANI

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Le maintien de la cohérence dans les systèmes de stockage
partiellement repliqués

soutenue le 16 Septembre 2014

devant le jury composé de :

M. Marc SHAPIRO Directeur de thèse
M. Pierre SUTRA Encadrant de thèse
M. Willy ZWAENEPOEL Rapporteur
M. Roberto BALDONI Rapporteur
M. Douglas B. TERRY Examinateur
Mme. Maria POTOP-BUTUCARU Examinateur
M. Nuno PREGUIÇA Examinateur

ABSTRACT

Cloud-based applications, such as social networking or eCommerce, require to replicate data
across several sites to provide responsiveness, availability, and disaster tolerance. Ensuring
consistency over a large scale system with slow, and failure prone WANs has become of a
paramount importance. This thesis studies this issue.

In the first part, we study consistency in a transactional systems, and focus on reconciling
scalability with strong transactional guarantees. We identify four scalability properties as being
critical for scalability: (i) only replicas updated by a transaction T make steps to execute T;
(ii) a read-only transaction never waits for concurrent transactions and always commits; (iii) a
transaction may read versions committed after it started; and (iv) two transactions synchronize
with each other only if their writes conflict. We show that none of the strong consistency criteria
ensure all four. We define a new scalable consistency criterion called Non-Monotonic Snapshot
Isolation (NMSI), while is the first that is compatible with all four properties. We also present
a practical implementation of NMSI, called Jessy, which we compare experimentally against
a number of well-known criteria. Our last contribution in the first part is a framework for
performing fair, and apples-to-apples comparison among different transactional protocols. Our
insight is that a large family of distributed transactional protocols have a common structure,
called Deferred Update Replication (DUR). Protocols of the DUR family differ only in behaviors of
few generic functions. We present a generic DUR framework, called G-DUR, along with a library
of finely-optimized plug-in implementations of the required behaviors. Our empirical study shows
that: (i) G-DUR allows developers to implement various transactional protocols in less than few
hundreds lines of code; (ii) It provides a fair, apples-to-apples comparison between transactional
protocols; (iii) By replacing plugs-ins, developers can use G-DUR to understand bottlenecks in
their protocols; (iv) This in turn enables the improvement of existing protocols; and (v) Given a
protocol, G-DUR allows to evaluate the cost of ensuring various degrees of dependability.

In the second part of this thesis, we focus on ensuring consistency in non-transactional data
stores. We introduce Tuba, a replicated key-value store that dynamically selects replicas in
order to maximize the utility delivered to read operations according to a desired consistency
defined by the application. In addition, unlike current systems, it automatically reconfigures
its set of replicas while respecting application-defined constraints so that it adapts to changes
in clients’ locations or request rates. We implemented Tuba on top of Windows Azure Storage
(WAS). While providing similar API, Tuba extends WAS with a broad set of consistency choices,
consistency-based SLAs, and a geo-replication configuration service. Compared with a system
that is statically configured, our evaluation shows that Tuba increases the reads that return
strongly consistent data by 63% and improves average utility up to 18%.

iii

To my beloved wife, Niloofar,

to my kind and encouraging parents, Fatemeh and Saeid,

and to my wonderful siblings, Maryam and Mohammad

v

ACKNOWLEDGEMENT

I am heartily grateful to my adviser, Marc Shapiro, for giving me the opportunity of working
under his supervision. This thesis would not exist without his support, patience, and invaluable
guidance over the last four years.

I would like to show my sincerest gratitude to Pierre Sutra. He helped me with every bit of
my research, and contributed significantly to many algorithms and theorems in the first part of
this thesis. Thank you Pierre for your excellent guidance, support, and caring.

I owe many thanks to Doug Terry, my internship adviser. I learned many practical aspects
of distributed systems from him. Thank you Doug for trusting me. I had a chance to work
closely with Nuno Preguiça during his visit of our team in 2011. Our discussions with him
resulted in some impossibility results presented in this thesis. Thank you Nuno for the Nuno’s
counter-example.

I would also like to thank all my thesis juries, especially Willy Zwaenepoel and Roberto
Baldoni, for accepting to be in my jury without hesitation, and for their precious time, and
comments on this work.

I would also like to thank all my fellow graduate students in the Regal team, specially Marek
Zawirski, Pierpaolo Cincilla, Corentin Mehat, Lisong Guo, Florian David, Maxime Lorrillere, and
Tyler Crain. Thank you Marek for all helpful and inspiring conversations during coffee breaks.
Thank you Pierpaolo, for your friendship, and all your helps in developing early version of Jessy,
and most importantly, thank you for all translations.

I am very grateful to Marcos Aguilera, Mahesh Balakrishnan, Jiaqing Du, Sameh Elnikety,
Ramakrishna Kotla, Gilles Muller, Vivien Quéma, and many other researchers who spent some
of their time to help me with this research.

I would like to thank my parents, my sister and my brother for encouraging me all these
years. Finally, I am most grateful to my wife, Niloofar, for all her patience and understanding.

vii

TABLE OF CONTENTS

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Contributions . 1

1.1.1 Part I . 2
1.1.2 Part II . 4

1.2 Outline of the thesis . 4

Part I: Ensuring Consistency in Transactional Data Stores 5

2 Background 7
2.1 Model . 9

2.1.1 Objects & transactions . 9
2.1.2 Histories . 9
2.1.3 Distributed System . 10

2.1.3.1 Failure Models . 11
2.1.3.2 Synchrony Assumptions . 11
2.1.3.3 Failure Detectors . 11

2.1.4 Replication . 11
2.1.5 Transactional Commitment . 12

2.1.5.1 Atomic Commitment Approach . 13
2.1.5.2 Total Ordering Approach . 13
2.1.5.3 Partial Ordering Approach. 14

2.2 Strong Consistency Criteria . 15
2.2.1 Strict Serializability (SSER) . 16
2.2.2 Full Serializability (SER) . 17
2.2.3 Update Serializability (US) . 18
2.2.4 Snapshot Isolation (SI) . 18

2.2.4.1 Generalized Snapshot Isolation (GSI) 20

ix

TABLE OF CONTENTS

2.2.5 Parallel Snapshot Isolation (PSI) . 20
2.2.6 Causal Serializability (CSER) . 20
2.2.7 Consistency Criteria for Software Transactional Memory 21
2.2.8 Anomaly Comparison . 21

2.3 Liveness and Progress . 21

3 Catalog of Transactional Protocols Supporting Partial Replication 25
3.1 Scalability Properties . 26

3.1.1 Wait-Free Queries (WFQ) . 26
3.1.2 Genuine Partial Replication (GPR) . 26
3.1.3 Minimal Commitment Synchronization . 27
3.1.4 Forward Freshness . 28

3.2 Review of Transactional Protocols Supporting Partial Replication 28
3.2.1 SSER . 31
3.2.2 SER . 31
3.2.3 US . 33
3.2.4 SI . 33
3.2.5 PSI . 34

4 Scalability of Strong Consistency Criteria 35
4.1 Decomposing SI . 36

4.1.1 Absence of Cascading Aborts (ACA) . 37
4.1.2 Consistent and Strictly Consistent Snapshots (SCONS) 37
4.1.3 Snapshot Monotonicity (MON) . 38
4.1.4 Write-Conflict Freedom . 39
4.1.5 The Decomposition . 39

4.2 The impossibility of SI with GPR . 40
4.3 Discussion . 44

4.3.1 SSER and Opacity . 44
4.3.2 SER . 44
4.3.3 PSI . 44
4.3.4 Circumventing The Impossibility Result . 45

4.4 Conclusion . 45

5 NMSI : Non-monotonic Snapshot Isolation 47
5.1 Definition of NMSI . 48
5.2 Jessy: a Protocol for NMSI . 49

5.2.1 Taking Consistent Snapshots . 50
5.2.2 Transaction Lifetime in Jessy . 53

x

TABLE OF CONTENTS

5.2.3 Execution Protocol . 54
5.2.4 Termination Protocol . 55
5.2.5 Sketch of Proof . 56

5.2.5.1 Safety Properties . 56
5.2.5.2 Scalability Properties . 57

5.3 Ensuring Obstruction-Freedom . 57
5.4 Empirical study . 58

5.4.1 Implementation . 58
5.4.2 Setup and Benchmark . 58
5.4.3 Experimental Results . 60

5.5 Conclusion . 62

6 G-DUR: Generic Deferred Update Replication 65
6.1 Overview . 68
6.2 Execution . 70

6.2.1 Version Tracking . 71
6.2.2 Picking a Version . 72

6.3 Termination . 72
6.3.1 Group Communication . 73
6.3.2 Two-Phase Commit . 75
6.3.3 Fault-Tolerance . 76

6.4 Realizing Protocols . 77
6.4.1 P-Store . 77
6.4.2 S-DUR . 77
6.4.3 GMU . 78
6.4.4 Serrano07 . 78
6.4.5 Walter . 79
6.4.6 Jessy2pc . 79

6.5 Implementation . 80
6.6 Case Study . 80

6.6.1 Setup and Benchmark . 81
6.6.2 Comparing Transactional Protocols . 82
6.6.3 Understanding Bottlenecks . 84
6.6.4 Pluggability Capabilities . 84
6.6.5 Dependability . 85

6.6.5.1 Disaster Prone . 85
6.6.5.2 Disaster Tolerant . 86

6.7 Related Work . 87
6.8 Conclusion . 89

xi

TABLE OF CONTENTS

Part II: Ensuring Consistency in Non-Transactional Data Stores 91

7 Tuba: A Self-Configurable Cloud Storage System 93
7.1 Introduction . 95
7.2 System Overview . 96

7.2.1 Tuba Features from Pileus . 96
7.2.2 Tuba’s New Features . 97

7.3 Configuration Service (CS) . 98
7.3.1 Constraints . 99
7.3.2 Cost Model . 99
7.3.3 Selection . 100
7.3.4 Operations . 101

7.3.4.1 Adjust the Synchronization Period 101
7.3.4.2 Add/Remove Secondary Replica . 102
7.3.4.3 Change Primary Replica . 102
7.3.4.4 Add Primary Replica . 103
7.3.4.5 Summary . 104

7.4 Client Execution Modes . 104
7.5 Implementation . 106

7.5.1 Communication . 106
7.5.2 Client Operations . 107

7.5.2.1 Read Operation . 107
7.5.2.2 Single-primary Write Operation . 107
7.5.2.3 Multi-primary Write Operation . 108

7.5.3 CS Reconfiguration Operations . 109
7.5.4 Fault-Tolerance . 110

7.6 Evaluation . 112
7.6.1 Setup and Benchmark . 112
7.6.2 Macroscopic View . 113
7.6.3 Microscopic View . 115
7.6.4 Fast Mode vs. Slow Mode . 116
7.6.5 Scalability of the CS . 117

7.7 Related Work . 118
7.8 Conclusion . 119

8 Conclusion 121
8.1 Future Work . 123

Part III: Appendix 125

xii

TABLE OF CONTENTS

A Proof of SI Decomposition 127

B Correctness of Jessy 133
B.1 Safety . 133
B.2 Liveness and Progress . 134

C Résumé de la thèse 137
C.1 Résumé . 139
C.2 Introduction . 140

C.2.1 Contributions . 141
C.2.1.1 Partie I . 141
C.2.1.2 Partie II . 144

C.3 Passage à l’échelle du Critère de Cohérence Forte . 145
C.3.1 Décomposition SI . 145

C.3.1.1 Annulation en cascade (Absence of Cascading Aborts) 145
C.3.1.2 Instantanés cohérents et strictement cohérents 146
C.3.1.3 Instantané monotone . 147

C.3.2 Write-Conflict Freedom . 147
C.3.3 La décomposition . 147
C.3.4 L’impossibilité de SI avec GPR . 148

C.4 Non-monotonic Snapshot Isolation . 149
C.5 Generic Deferred Update Replication . 152
C.6 Un Système de Stockage Cloud Auto-Configurable 155

Bibliography 157

xiii

LIST OF TABLES

2.1 Useful Notations . 10
2.2 Anomaly Comparison of Strong Consistency Criteria . 22
2.3 Conflict Table of Consistency Criteria . 22
2.4 Progress Properties . 24

3.1 Comparison of Assumptions of Partial Replication Protocols 29
3.2 Comparison of Properties of Partial Replication Protocols 30

5.1 Comparing Consistency Criteria . 49

6.1 Notations . 68
6.2 Source lines of code . 81
6.3 Experimental Settings . 81

C.1 Comparaison des critères de consistance . 150

xv

LIST OF FIGURES

5.1 Experimental Settings . 59
5.2 Update Transaction Termination Latency (on 4 sites) . 60
5.3 Maximum Throughput of Consistency Criteria . 62
5.4 Comparing the throughput and termination latency of update transactions for different

protocols . 63

6.1 G-DUR Architecture . 69
6.2 Timeline of Atomic Commitment with Group Communication 74
6.3 Timeline of Atomic Commitment with Two-phase Commit 75
6.4 Performance Comparison with Disaster Prone Configuration 82
6.5 Performance Comparison with Disaster Tolerant Configuration 83
6.6 Study of Bottlenecks in GMU - . 84
6.7 Throughput improvement of P-Store . 85
6.8 2PC vs. AM-Cast with Disaster Prone Configuration . 86
6.9 2PC vs. AM-Cast with Disaster Tolerant Configuration 87

7.1 SLA Example . 97
7.2 SLA of a Social Network Application . 101
7.3 SLA of an online multiplayer game . 102
7.4 Password Checking SLA . 103
7.5 Summary of Common Reconfiguration Operations, Effects on Hit Ratios, and Costs. . 104
7.6 Clients Fast and Slow Execution Modes . 105
7.7 Client Distribution and Latencies (in ms) . 112
7.8 SLA for Evaluation . 113
7.9 Utility improvement with different reconfiguration rates 113
7.10 Hit Percentage of subSLAs . 114
7.11 Tuba with Reconfigurations Every 4 hour . 115
7.12 Average Latency (in ms) of Read/Write Operations in Fast and Slow Modes 116
7.13 Scalability of the CS . 117

C.1 Architecture G-DUR . 153

xvii

C
H

A
P

T
E

R 1
INTRODUCTION

Cloud applications are accessed from many distributed end-points. In order to improve
responsiveness and availability, and to tolerate disasters, cloud storage systems replicate
data across several sites (data centers) located in different geographical locations (called

geo-replication).

Many authors argue that geo-replicated systems should provide only eventual consistency
[1, 144], because of the CAP impossibility result (in the presence of network faults, either
consistency or availability must be forfeited [58]), and because of the high latency of strong
consistency protocols in wide-area networks. However, eventual consistency is confusing for
developers, and is too weak for implementing some applications (e.g., banking systems).

Unfortunately, classical strong consistency criteria do not scale well to high load in the wide
area. Therefore, several previous works aim at designing consistency criteria that both provide
meaningful guarantees to the application, and scale well [3, 22, 57, 63, 68, 90, 106, 136]. However,
the performance and scalability implications of these consistency criteria, and protocols ensuring
them are still not well understood.

1.1 Contributions

Our contributions in this thesis are divided into two parts. In the first part, we focus on ensuring
consistencies in transactional systems. We take a systematic approach to investigate scalability
limitations of current transactional consistencies (i.e., isolation levels), and to reconcile scalability
with strong transactional guarantees.

In the second part, we focus on ensuring consistency in non-transactional cloud storage
systems. In particular, we investigate automatically reconfiguration of storage systems while

1

CHAPTER 1. INTRODUCTION

maintaining consistencies. In the remainder of this section, we review in more details our
contributions in Part I, and Part II.

1.1.1 Part I

Catalog of Transactional Protocols Supporting Partial Replication Full replication
(i.e., all processes store all objects) does not scale since all replicas must execute all updates.
In addition, storing and managing large data sets at all processes require tremendous storage
capacity at every process. Partial replication addresses these issues by replicating subset of data
at each process. Therefore, different subset of data can be accessed, and modified concurrently.

Our first contribution is to compare the transactional protocols supporting partial replication.
Our comparison is based on classical metrics (failure model, synchrony assumption, or consistency
criterion), and scalability properties. To this end, we first identify the following four crucial
scalability properties:

(i) Wait-Free Queries: a read-only (query) transaction never waits for concurrent transactions
and always commits. In workloads with a high portion of read-only transactions, this property is
crucial for the scalability of the system.

(ii) Forward Freshness: a transaction may read object versions that have been committed
after the transaction started. This property decreases staleness of reads, and hence the abort
rate.

(iii) Genuine Partial Replication (GPR): only replicas updated by a transaction T make steps
to execute T. This property ensures that non-conflicting transactions do not interfere with each
other, hence the intrinsic parallelism of a workload can fully be exploited.

(iv) Minimal Commit Synchronization: two transactions synchronize with each other only if
their writes conflict. Therefore, synchronization is avoided unless absolutely necessary.

We then review various transactional protocols, and show that none of the surveyed protocols is
able to ensure all four properties.

Scalability of Strong Consistency Criteria Our second contribution is to study scalability
limitations of various consistency criteria in more details. We focus on Snapshot Isolation (SI)
since it is a popular approach in both distributed databases, and software transactional memories.
We first decompose SI into a set of necessary and sufficient properties. We then investigate
scalability implications of every property to see if it can be ensured in a GPR system, and
show that it is impossible to guarantee some of these properties under some reasonable progress
assumptions. As corollaries, we also show that other well-known consistencies (e.g., Serializability)
are also subjected to our impossibility results, and hence are not scalable.
These results are published in Europar’13 [118] and WTTM’11 [114].

2

1.1. CONTRIBUTIONS

Non-monotonic Snapshot Isolation To sidestep our impossibility results, we introduce a
new consistency criterion called Non-monotonic Snapshot Isolation (NMSI). Under NMSI, a
transaction must read a committed version of an object, and always take consistent snapshots. In
addition, no two concurrent write-conflicting transactions can both commit. NMSI is the strongest
consistency criterion that can ensure all the four aforementioned scalability properties. We also
introduce a protocol ensuring NMSI, called Jessy. Jessy uses dependence vectors, a novel data
type that enables efficient computation of consistent snapshots. Finally, we perform an empirical
evaluation of the scalability of NMSI, along with a careful and fair comparison against a number
of classical criteria, including SER, US, SI and PSI. Our experiments show that NMSI is close
to RC (i.e, the weakest criterion) with disaster-prone configurations, and up to two times faster
than Parallel Snapshot Isolation PSI.
These results are published in SRDS’13 [117] and HotCDP’12 [115].

Generic Deferred Update Replication Finding one’s way in the jungle of consistency crite-
ria and transactional protocols is not easy. Although literature is abundant, papers use different
vocabulary, formalisms, and perspectives. Because they assume different environments, the
implementations themselves are not comparable. It thus remains difficult to understand what
are the important differences, and to make an objective, scientific comparison of their real-world
behavior.

To address these challenges, we propose a new approach. Our insight is that many deferred
update replication (DUR) protocols share a common structure, and differ only by specific instanti-
ations of a few generic functions (e.g., [12, 100, 103, 104, 106, 117, 125, 127, 129–131, 136]). We
express this insight as a common algorithmic structure, with well-identified realization points.
This generic structure is instantiated into a specific protocol by selecting appropriate plug-ins
from a library. By mixing-and-matching the appropriate plug-ins, it is relatively easy to obtain a
high-performance implementation of a protocol.

(1) We tailor G-DUR to implement, and compare empirically six prominent transactional
protocols [106, 117, 127, 129, 131, 136].

(2) We show how a developer can use G-DUR to finely understand the limitations of a protocol.
We take a recently published protocol [106], and identify its bottlenecks by methodically replacing
its plugs-ins by weaker ones.

(3) The previous approach also helps a developer to enhance existing protocols. We illustrate
this point by presenting a variation of P-Store [127] that leverages workload locality to perform
up to 70% faster than the original protocol.

(4) In our last set of experiments, we evaluate the cost of various degrees of dependability. To
that end, we take a protocol ensuring serializability and we study the price of tolerating failures
by varying the replication degree and the algorithm in use during commitment.

These results are published in Middleware’14 [119].

3

CHAPTER 1. INTRODUCTION

1.1.2 Part II

A Self-Configurable Cloud Storage System Automatically reconfiguring a cloud storage
system can improve its overall service. Tuba is a replicated key-value store that, like some
previous systems, allows applications to select their desired consistency and dynamically selects
replicas that can maximize the utility delivered to read operations. Additionally, unlike current
systems, it automatically reconfigures its set of replicas while respecting application-defined
constraints so that it adapts to changes in clients’ locations or request rates. Tuba is built on top of
Windows Azure Storage (WAS) and provides a similar API. It extends WAS with broad consistency
choices, consistency-based SLAs, and a geo-replication configuration service. Compared with a
system that is statically configured, our evaluation shows that Tuba increases the reads that
return strongly consistent data by 63% and improves average utility up to 18%.
These results are published in OSDI’14 [113].

1.2 Outline of the thesis

This thesis is organized as follows. We begin Part I by introducing our system model, notations,
and reviewing some strong consistency criteria in Chapter 2. In Chapter 3, we identify the four
crucial scalability properties for partial replicated systems, and survey some recent transactional
systems. Chapter 4 studies the scalability limitations of strong consistency criteria. We introduce
our new consistency criterion in Chapter 5. Chapter 6 introduces the generic deferred update
replication protocol as our last contribution for Part I. In Part II (Chapter 7), we introduce our
self-configurable cloud storage system. We conclude this thesis in Chapter 8, and introduce future
research directions.

4

Part I: Ensuring Consistency in
Transactional Data Stores

C
H

A
P

T
E

R 2
BACKGROUND

Contents

2.1 Model . 9

2.1.1 Objects & transactions . 9

2.1.2 Histories . 9

2.1.3 Distributed System . 10

2.1.3.1 Failure Models . 11

2.1.3.2 Synchrony Assumptions . 11

2.1.3.3 Failure Detectors . 11

2.1.4 Replication . 11

2.1.5 Transactional Commitment . 12

2.1.5.1 Atomic Commitment Approach . 13

2.1.5.2 Total Ordering Approach . 13

2.1.5.3 Partial Ordering Approach. 14

2.2 Strong Consistency Criteria . 15

2.2.1 Strict Serializability (SSER) . 16

2.2.2 Full Serializability (SER) . 17

2.2.3 Update Serializability (US) . 18

2.2.4 Snapshot Isolation (SI) . 18

2.2.4.1 Generalized Snapshot Isolation (GSI) 20

2.2.5 Parallel Snapshot Isolation (PSI) . 20

2.2.6 Causal Serializability (CSER) . 20

2.2.7 Consistency Criteria for Software Transactional Memory 21

7

CHAPTER 2. BACKGROUND

2.2.8 Anomaly Comparison . 21
2.3 Liveness and Progress . 21

8

2.1. MODEL

In this chapter, we first describe our model, and define the notations used throughout this
thesis. Then we review some well-known strong consistency criteria, which have received
attention in both academia and industry. We also define and explain some anomalies,

which are observable in each criterion. Finally, we compare consistency criteria based on these
anomalies.

2.1 Model

In this section, we define elements in our model such as objects, transactions and histories. Our
model is very similar to the models of Adya [3] and Bernstein et al. [24]. We also define formally
the concept of a replication system used throughout this thesis.

2.1.1 Objects & transactions

Let Objects be a set of objects, and T be a set of transaction identifiers. Given an object x and
a transaction identifier i, xi denotes version i of x written by Ti. A transaction Ti2T is a finite
sequence of read and write operations followed by a terminating operation, commit (ci) or abort
(ai). Throughout this thesis, a read-only transaction is specified with an alphabetic subscript,
and an update transaction with a numeric subscript. We use wi(xi) to denote transaction Ti

writing version i of object x, and ri(xj) to mean that Ti reads version j of object x. We assume
that the initial transaction T0 installs the initial versions of all objects. Without loss of generality,
we assume that in a given transaction, every write is preceded by a read to the same object,
and every object is read or written at most once. 1 We note ws(Ti) the writeset of Ti, i.e., the
set of objects written by transaction Ti. Similarly, rs(Ti) denotes the readset of transaction Ti.
Two transactions conflict when they access the same object and at least one of them modifies
it (i.e., rs(Ti)\ws(T j) 6= ?); they write-conflict when they both write to the same object (i.e.,
ws(Ti)\ws(T j) 6=?).

2.1.2 Histories

A complete history h is a partially ordered set of operations such that:
1. For any operation oi appearing in h, transaction Ti terminates in h,
2. For any two operations oi and o0i appearing in h, if oi precedes o0i in Ti, then oi <h o0i,
3. For any ri(xj) in h, there exists a write operation wj(xj) such that wj(xj)<h ri(xj), and
4. Any two write operations over the same objects are ordered by <h.

A history is a prefix of a complete history. For some history h, order <h is the real-time order
induced by h. Transaction Ti is pending in history h if Ti does not commit, nor abort in h. We note
øh the version order induced by h between different versions of an object, i.e., for every object x,

1 These restrictions ease the exposition of our results but do not change their validity.

9

CHAPTER 2. BACKGROUND

Notation Meaning
x, y, . . . Object

Ta,Tb, . . . Read-only transaction
T1,T2, . . . Update transaction

xi Version of x written by Ti

wi(xi) Transaction Ti writes x
ri(xj) Transaction Ti reads x, written by T j

rs(Ti) / ws(Ti) Read-set / write-set of transaction Ti

h Transactional history (partially ordered)
oi <h o0j Operation oi appears before o0j in h
xi øh xj Version order wi(xi)<h wj(xj) holds
Ti “ T j Ti and T j are concurrent

Table 2.1: Useful Notations

and any two transactions Ti and T j, xi øh xj = wi(xi)<h wj(xj). Following Bernstein et al. [24],
we depict a history as a graph. We illustrate this below with history h in which transaction Ta

reads the initial versions of objects x and y, while transaction T1 (respectively T2) updates x
(resp. y).

h = ra(x0) r1(x0).w1(x1).c1

ra(y0).ca r2(y0).w2(y2).c2

We say transaction Ti precedes transaction T j if the commit of Ti is before the first operation
of T j (denoted as s j) in h: ci <h s j . Two transactions Ti and T j are called concurrent (denoted
as Ti “ T j) if neither Ti precedes T j nor T j precedes Ti. For example, in the above history, Ta

precedes T2, whereas Ta and T1 are concurrent.

When order <h is total, we shall write the history as a permutation of operations, e.g.,
h = r1(x0).r2(y0).w2(y2).c1.c2. Table 2.1 summarizes our notation.

2.1.3 Distributed System

We consider a message-passing distributed system of n processes ¶= {p1, . . . , pn}. We shall define
our synchrony assumptions later. Following Fischer et al. [54], an execution is a sequence of steps
made by one or more processes. During an execution, processes may fail by crashing. A process
that does not crash is said correct; otherwise it is faulty. We note F the refinement mapping
[2] from executions to histories, i.e., if Ω is an execution of the system, then F(Ω) is the history
produced by Ω. A history h is acceptable if there exists an execution Ω such that h = F(Ω). We
consider that given two sequences of steps U and V , if U precedes V in some execution Ω, then
the operations implemented by U precedes (in the sense of <h) the operations implemented by V

10

2.1. MODEL

in the history F(Ω). 2

2.1.3.1 Failure Models

In this thesis, we consider the following failure models:
1. Crash-stop: in this model, a correct process never crashes. A faulty process crashes, and

does not perform any computation, nor send any message to other processes.
2. Crash-recovery: in this model, a correct process can crash and later recover a finite number

of times. A faulty process either crashes and never recovers, or crashes and recovers an infinite
number of times. We note that if processes have access to a stable storage, then this model is
equivalent to (asynchronous) failure-free model.

2.1.3.2 Synchrony Assumptions

Depending on communication delays and speeds of processes, a distributed system is classified as
follows:

1. Asynchronous: no assumption is made on either communication delays or relative speeds
of processes.

2. Synchronous: there is a known upper bound on communication delays and processing time.
3. Partially Synchronous: after some unknown time, there is an upper bound on communica-

tion delays and processing time.

2.1.3.3 Failure Detectors

In order to encapsulate the synchrony assumptions of some system, every process in the system
is augmented with an oracle, called a failure detector [33]. The oracle maintains a list of pro-
cesses that it suspected to have crashed. Failure detectors are categorized into different classes
depending on accuracy and completeness. In this thesis, we are particularly interested in the
following two classes:

1. Perfect Failure Detector (P). A failure detector is P if (1) eventually, all correct processes
suspect all crashed processes (strong completeness); and (2) no process is suspected before it
crashes (strong accuracy).

2. Eventually Strong Failure Detector (¶S). A failure detector is ¶S if (1) eventually, all correct
processes suspect all crashed processes (strong completeness); and (2) there is a time after which
no correct process is suspected by another correct process (eventual strong accuracy).

2.1.4 Replication

A data store D is a finite set of tuples (x,v, i) where x is an object (data item), v a value, and
i 2T a version. Initially every object x has version x0. Given a data store D, a system is called

2 Notice that since steps to implement operations may interleave, <h is not necessarily a total order.

11

CHAPTER 2. BACKGROUND

full replication when each process in ¶ holds the whole data store D. It is called partial if some
process in ¶ holds a proper subset of D.

For an object x, replicas(x) (or group gx) denotes the set of processes, or replicas, that hold
a copy of x; we assume that replicas(x) 6=?. By extension, for some set of objects X , replicas(X)
(or group gX) denotes union of the replicas of x 2 X . Given a transaction Ti, replicas(Ti) equals
replicas(rs(Ti)[ws(Ti)). Groups are called partitions, if they store disjoint subsets of Objects

The coordinator of Ti, denoted coord(Ti), is in charge of executing Ti on behalf of some client
(not modeled). We assume that transactions are interactive: the coordinator does not know in
advance the readset or the writeset of Ti. To model this, we consider that every prefix of a
transaction (followed by a terminating operation) is a transaction with the same id.

In a partially-replicated system, a transaction is said local, if there exists some replica holding
all the objects read or written by the transaction; otherwise, it is said global.

Wiesmann et al. [146] classify replication techniques based on the following three parameters:

1. Server Interaction: degree of communication among replicas for executing a transaction.
This parameter is either constant or linear. In the former case, a constant number of messages is
used to synchronize a transaction, and in the latter one, each operation in a given transaction is
propagated.

2. Server Architecture: it states where transactions are submitted and executed. The following
two cases exist for this parameter: primary copy, and update everywhere.

3. Transaction Termination: it expresses how transactions are terminated. Termination can
either contain voting, or can be done without any voting.

In this thesis, we focus on update everywhere replication with constant interaction. In
addition, we solely focus on the optimistic execution technique (or Deferred Update Replication):
a transaction is executed optimistically at its coordinator, and it is only during its commit time
that replicas synchronize with each other, and decide to commit or abort it. In the next section,
we review various techniques to synchronize replicas, and commit a transaction.

2.1.5 Transactional Commitment

A commitment protocol allows replicas to reach an agreement on whether to commit or abort a
given transaction. Commitment protocols can be classified into the following classes: (i) Atomic
Commitment (Section 2.1.5.1), (ii) Total Ordering (Section 2.1.5.2), and (iii) Partial Ordering
(Section 2.1.5.3). In the remainder of this section, we review some widely used transactional
commitment techniques based on the above classification. In the next chapter, we study how
different transactional protocols mix and use variations of the these approaches to atomically
commit transactions. We also generalize these approaches into a common algorithmic structure
in Chapter 6.

12

2.1. MODEL

2.1.5.1 Atomic Commitment Approach

In this approach, given a transaction, every replica votes to commit or abort it. It commits only if
all replicas vote to commit it.

Two-phase Commit (2PC) The classical two-phase commit [59] is a widely-used atomic
commitment protocol. A transaction’s coordinator first tries to prepare replicas: it sends a prepare
message for a transaction Ti to the replicas that are interested in Ti. Upon receiving the prepare
message, replicas reply either yes (if they can commit Ti), or no (if they cannot commit Ti). If
the coordinator receives yes from all participating replicas, it sends the commit message to all
replicas; otherwise, if it receives a no, it sends abort; The main issue with 2PC is that it blocks if
the coordinator of the transaction fails.

Paxos Commit To side step the blocking problem of 2PC, Gray and Lamport [60] introduce
Paxos Commit. It runs a Paxos consensus to commit or abort a transaction. Instead of relying
on one coordinator (a single point of failure), Paxos Commit uses a fault-tolerant decentralized
consensus algorithm. Hence, it uses 2 f +1 coordinators, and is able to progress as long as f +1
are correct. Paxos Commit has the same message delay as 2PC in failure-free cases, but it uses
more messages to reach an agreement.

2.1.5.2 Total Ordering Approach

In Total Ordering approach, an agreement protocol is used to ensure that all transactions are
delivered in the same order, and hence, a commit/abort algorithm will execute identically at all
replicas. In other words, every replica will reach the same commit/abort decision deterministically,
independently, and locally. This approach has been used in many Deferred Update Replication
protocols with full replications [78, 87, 101, 102].

Atomic Broadcast Atomic Broadcast (or Total-Order Broadcast) delivers all messages, in the
same order, to all processes. A process invokes the primitive AB-Cast to send a message m to all
processes, and AB-Deliver atomically delivers the message m to every process. Since messages
are delivered in the same order, and hence processed in the same order, it is an easy approach for
ensuring consistency (like serializability) among replicas.

A uniform Atomic Broadcast guarantees the following properties [35]:
(i) Validity: if a correct process atomic-broadcasts message m, then it eventually atomic-

delivers m.
(ii) Uniform Integrity: every process atomic-delivers message m at most once, and only if m

was atomic-broadcast previously.
(iii) Uniform Agreement: if some process atomic-delivers m, then eventually all correct pro-

cesses atomic-deliver m.

13

CHAPTER 2. BACKGROUND

(iv) Uniform Total Order: if some process p atomic-delivers m1 before m2, then every process
q also atomic-delivers m1 before m2.

2.1.5.3 Partial Ordering Approach.

Ordering transactions globally is expensive, specially in large scale systems because all replicas
should be involved in the execution of some agreement protocol that orders messages globally. In
addition, protocols based on atomic broadcast cannot fully leverage the benefits of partial repli-
cation since all processes are still involved in processing each transaction. Hence, an emerging
alternative is to order transactions partially for partial replication protocols [117, 127, 129, 130].
In this approach, transactions are totally ordered within some replica groups (or some partitions),
but they are not totally ordered globally.

Atomic Multicast Atomic Multicast sends a message m to ∞ groups of processes using
AM-Cast primitive, and atomic-delivers m to all processes in ∞ using AM-Deliver primitive.

Uniform Atomic Multicast ensures the following properties [122]:

(i) Validity: if a correct process atomic-multicasts m, then eventually all correct processes in
∞ atomic-deliver m.

(ii) Uniform Integrity: a process p atomic-delivers message m at most once, and only if m was
previously atomic-multicast.

(iii) Uniform Agreement: if a process atomic in ∞ atomic-delivers message m, then eventually
all correct processes in ∞ atomic-delivers m.

(iv) Uniform Prefix order: for any two process p and q that are the recipients of m1 and m2,
if p atomic-delivers m1 and q atomic-delivers m2, then either p atomic-delivers m2 before m1 or
q atomic-delivers m1 before m2.

(v) Uniform Acyclic Order: noting m1 < m2 if and only if m1 is delivered before m2 by a
process, the relation < is acyclic.

Note that the uniform prefix order disallows holes in the sequence of messages delivered by
processes. For instance, consider that three messages m1,m2 and m3 are atomic-multicast to a
group g containing process p and q. Process p delivers all messages as follows: m1 < m2 < m3.
Without this property, a faulty process q would be allowed to deliver only m1 and m3 in the same
order, and to skip the delivery of m2. Uniform prefix order precludes this.

In addition, uniform acyclic order ensures a global partial order of messages without cycles.
For instance, consider messages m1 sent to groups gx and gz, message m2 that is atomic-multicast
to groups gx and gy, and finally m3 that targets groups gz and gy. Without the acyclic ordering
properties, groups would be able to deliver messages in the following orders: 1. group gx: m1 < m2;
2. group gy: m2 < m3; 3. group gz: m3 < m1.

14

2.2. STRONG CONSISTENCY CRITERIA

All the above reviewed approaches provide the same functionality: they are used to commit or
abort a transaction atomically at all replicas. Hence, we use the term atomic commitment to refer
to any protocol providing this functionality.

2.2 Strong Consistency Criteria

In this section, we first define a consistency criterion, and a strong consistency criterion concepts.
Then we review some of the main strong consistency criteria, along with the anomalies that they
expose to clients. Finally, we compare the criteria reviewed in terms of their undesirable effects.

A (transactional) consistency criterion is a safety property that constraints how transactions
interleave. Roughly speaking, a safety property ensures that nothing bad happens [79]. In the
database community, this safety property is named isolation level (I in ACID) because they ensure
different levels of non-interference between transactions [3], and the term consistency is used to
specify the application-level consistency (C in ACID). In the first part of this thesis, we use the
term consistency criterion as Adya [3] to refer to isolation levels (such as serializability).

Definition 2.1 (Consistency Criterion). A consistency criterion C is a prefix-closed subset of H,
where H is the set of all histories.

Depending on how transactions are interleaved in each consistency (i.e., deviate from se-
quential execution), some undesirable observations called anomalies are observable in each
consistency. Some of these anomalies are tractable: they can be precluded easily.

Tractable Anomalies In what follows, we review three tractable anomalies, and briefly ex-
plain different ways to preclude them.

Dirty Write happens when a modification to an object is overwritten with the changes made
by another unfinished transaction.

Definition 2.2 (Dirty Write). Dirty Write happens in a history h when transaction Ti modifies
an object x, and before committing or aborting, another transaction T j also modifies x. If either
Ti or T j aborts, then it is not clear what should be the final value of object x.

Berenson et al. [22] consider that any consistency criterion should prevent the dirty write
anomaly. In practice, it is easy to prevent this anomaly either by using locks, or by using a
multi-version scheme and making changes visible once the transaction commits.

The second tractable anomaly is Dirty Read anomaly. For instance, consider the following
history: hdr = r1(x0).w1(x1).ra(x1).ca.a1. In this history, transaction Ta reads an uncommitted
value from T1, and commits; transaction T1 later aborts, and does not install x1.

Definition 2.3 (Dirty Read). Dirty read happens in a history h when a transaction T j reads a
value of the object modified by an uncommitted transaction Ti, and Ti may later abort or change
again the value of the object.

15

CHAPTER 2. BACKGROUND

Like Dirty Write, this anomaly can be prevented by making a transaction’s changes visible
only once it commits.

The third tractable anomaly is called Non-Repeatable Read. For instance, consider the
following history hnrr = ra(x0).w2(x2).c2.ra(x2). In this history, transaction Ta first reads version
x0, and later reads x2 which is installed by a committed transaction T2.

Definition 2.4 (Non-repeatable Read). A Non-Repeatable Read happens in a history h when
a transaction Ti reading an object twice (before and after a committed transaction) obtains
different values.

It is also easy to disallow this anomaly. For instance, caching the read values, and returning
the cached values upon subsequent reads to the same objects.

Strong Consistency Criteria Our focus in this thesis is solely on strong consistency criteria.
Roughly speaking, a strong criterion ensures that replica divergence never occurs.

Definition 2.5 (Strong Consistency Criterion). A consistency criterion C is strong if it disallows
two concurrent committed transactions to modify the same object.

Thus, any strong criterion precludes the anomaly called Lost Update: concurrent transactions
modifying the same object such that the update of one transaction is lost. For instance, in the
following history hlu = r1(x0).r2(x0).w1(x1).c1.w2(x2).c2, the outcome of transaction T1 (i.e., x1) is
lost.

Definition 2.6 (Lost Update). Lost update anomaly occurs in a history h when a transaction Ti

reads an object x, and subsequently another transaction T j update the object x. Transaction Ti

then modifies x based on its earlier read, and commits.

We note that the above definition of strong consistency is different from the one given in the
CAP theorem [58]. However, both of them imply similar results. The CAP theorem considers
atomic objects, and it uses the term strong consistency to refer to linearizability [70]. We, on the
other hand, use the term strong consistency to refer to any criterion C which precludes the Lost
Update anomaly. Bailis et al. [17] demonstrate that preventing Lost Update inherently requires
forgoing high availability guarantees. A system ensures high availability if a client eventually
receives a response from a correct replica, even in the presence of network partitions.

We now review, and formally define some well-known consistency criteria for distributed
transactional systems. We note that all the criteria reviewed in the following precludes all the
three tractable anomalies along with the Lost Update.

2.2.1 Strict Serializability (SSER)

Strict serializability [98] (SSER) is the strongest consistency criterion: it ensures that every
transaction appear to execute at a single point in time between its first operation, and its

16

2.2. STRONG CONSISTENCY CRITERIA

commit point. Hence, clients observe no anomaly under SSER. More precisely, a transactional
system ensures SSER when the following two conditions hold: (i) every concurrent execution
of committed transactions is equivalent to some serial execution of the same transactions, and
(ii) Non-overlapping transactions in real-time are serialized in the order in which they are
executed in real-time.

The combination of the above two properties provide SSER with a unique feature called
external consistency [86]. Under external consistency, consistency is guaranteed even when
communication happens outside the system boundaries. For instance, Alice can deposit $100 into
Bob’s account. Upon committing the transaction, she can call Bob over phone, and give him the
confirmation that $100 is transferred to his account. At this point, Bob will definitely observe
$100 in his account. As we shall see later, external consistency is not easily provided by weaker
consistency criteria.

2.2.2 Full Serializability (SER)

Full Serializability (SER), or Serializability for short, is the classical consistency criterion imple-
mented by transactional systems. A transactional system ensures full serializability when every
concurrent execution of committed transactions is equivalent to some serial execution of the same
transactions. Unlike SSER, SER does not necessarily respect the real-time ordering between
transactions. Hence, executions under SER may observe an anomaly called real-time violation.
For example, consider the following history hrtv = r1(x0).w1(x1).c1.r2(x0).c2, and assume that c1

executes before r2(x0) in real-time. This history is SER (but not SSER) since T2.T1 is a correct
serial execution of the two transactions.

Definition 2.7 (Real-time Violation Anomaly). Real-time violation happens when a transaction
Ti does not observe the effect of some transaction that committed in real-time before Ti ’s first
operation.

As long as clients do not communicate outside the system boundary, and as long as the
transactional system does not behaves trivially (i.e., always returning the initial version of
objects), this anomaly is not considered harmful. For instance, consider the above history hrtv.
If Alice issues transaction T1, and Bob issues transaction T2, then history hrtv can be expected
from a non-trivial transactional system. However, if both T1 and T2 are issued by the same client,
then the above history is not acceptable. For instance, in a social-network like application, Alice
may update her profile status in T1, but unable to see her status in T2. By enforcing certain
session guarantees for clients namely read-my-write and monotonic-read [139], we can disallow
this this anomaly for each client.

17

CHAPTER 2. BACKGROUND

2.2.3 Update Serializability (US)

Update serializability, introduced by Garcia-Molina and Wiederhold [57], guarantees that update
transactions are serialized with respect to other update transactions. Read-only transactions only
need to take consistent snapshots, and always commit unilaterally. Thus, unlike SER, US does
not guarantee a serial order among read-only transactions. This leads to the anomaly called long
fork [136] or non-monotonic snapshot for read-only transactions. Consider the following history
hnms. Read-only transaction Ta takes snapshot {x0, y2}, and Tb takes snapshot {x1, y0}, where
x0 ø x1 and y0 ø y2.

hnms = ra(x0) r1(x0).w1(x1).c1 rb(x1).cb

rb(y0) r2(y0).w2(y2).c2 ra(y2).ca

Alice executing Ta observes the effect of transaction T2 but not T1. Bob, is executing Tb,
observes the effect of T1 but not T2. By using session guarantees, one can easily disallow this
anomaly in for a client.

The rationale behind US is that read-only transactions dominate updates in many workloads,
and that ensuring consistent snapshots is usually enough for many read-only transactions.

US is also extended to aborted transactions called Extended Update Serializability (EUS)
by Hansdah and Patnaik [68]. Therefore, aborted transactions should also observe consistent
snapshots. In Section 2.2.7, we explain in detail the rationale of reading a consistent snapshot for
aborted transactions.

2.2.4 Snapshot Isolation (SI)

Snapshot isolation (SI) introduced by Berenson et al. [22] is one of the most famous consistency
criteria supported by many DBMSes (e.g., Oracle [110], PostgreSQL [108], and Microsoft SQL
Server [95]). In Snapshot isolation (SI), a transaction reads its own consistent snapshot, and
aborts only if it write-conflicts with a previously-committed concurrent transaction. A read-
only transactions never conflicts with any other transaction and always commits. Moreover,
unlike SSER, SER or US, update transactions abort only if they write-conflict with a concurrent
transaction. This allows some transactions to commit while they would have aborted if they were
serialized.

Unlike previous consistencies, SI also considers a start point for a transaction. A start point
of a transaction Ti (denoted as si) is the first operation invoked by Ti. The start point of a
transaction is then used to order the transaction with all other transactions.

A history h ensures SI iff it satisfies the following rules:

18

2.2. STRONG CONSISTENCY CRITERIA

D1 (Read Rule)
8ri(xj 6=i),wk 6= j(xk), ck 2 h :
c j 2 h (D1.1)
^ c j <h si (D1.2)
^ (ck <h c j _ si <h ck) (D1.3)

D2 (Write Rule)
8ci, c j 2 h :
ws(Ti)\ws(T j) 6=?
)

°
ci <h s j _ c j <h si

¢

Roughly speaking, the read rule ensures that a transaction Ti observes the effect of all update
transactions committed before its start point. The write rule ensures that no two concurrent
conflicting transactions both commit. Adya [3] also noted that: transaction Ti’s start point need not
be chosen after the most recent commit when Ti started, but can be selected to be some (convenient)
earlier point.

Unlike SER, SI only disallows two concurrent write-conflicting transactions to commit. Thus, a
new anomaly called Write Skew is observable in SI. A write skew anomaly can violate an invariant
if two none write-conflicting transactions concurrently execute in a system. For example, consider
two linked bank accounts for Alice and Bob. The bank allows one of Alice’s or Bob’s account
balance to be negative, as long as the total balance is never negative. Now suppose each Alice
and Bob have $100 in their account. If they both spend $150 concurrently with their credit
cards, and even if each transaction correctly checks the invariant, the following history can occur.
hwsk = r1(alice = 100).r1(bob = 100).r2(alice = 100).r2(bob = 100).w1(alice = °50).w2(bob =
°50).c1.c2 In the beginning, two concurrent transactions first take a consistent snapshot from
their accounts. They then check whether the sum of the account’s balances minus $150 is still
greater than zero, and if so, the transactions proceed to subtract $150 from each account and
commit. This results in -$50 balance for each account, violating the invariant.

Definition 2.8 (Write Skew Anomaly). A write skew anomaly takes place when two concurrent
transactions T1 and T2 concurrently commit such that:

1. rs(Ti)\rs(T j) 6=?
2. ws(Ti)\ws(T j)=?

Several proposals [50, 51, 75] ensure serializable execution under SI. The main idea behind
all these work is analysis of the whole workload at design-time, and modifying it to avoid the
anomaly. For example, Fekete et al. [51] propose the following techniques to prevent potential
inconsistencies arisen from the write skew anomaly: (i) Materializing the conflict: add a conflicting
object such that both transactions update it, or (ii) Promotion: force one of the transactions to
update a read-only object. Both techniques make ws(Ti)\ws(T j) non-empty; hence the anomaly
does not happen anymore.

Cahill et al. [29] propose to modify the concurrency control algorithm in order to automatically
detect and prevent the anomaly. To this end, conflict patterns that must occur for an SI execution
to be non-serializable are detected at run-time, and a sufficient number of involved transactions
is aborted.

19

CHAPTER 2. BACKGROUND

2.2.4.1 Generalized Snapshot Isolation (GSI)

Elnikety et al. [49] generalize SI, under the name Generalized Snapshot Isolation (GSI). GSI
distinguishes between a transaction’s start point (i.e., the time of the transaction’s first operation),
and an abstract snapshot point. The read rules are then defined with respect to the snapshot
points and not start points. Therefore, the start point in Adya’s definition plays the same role as
snapshot point in Elnikety’s one, and they are considered equivalent [43].

2.2.5 Parallel Snapshot Isolation (PSI)

With the emergence of new Internet based applications, like social networks, the need for highly
scalable yet geographically replicated transactional systems has increased substantially over
the past few years. Sovran et al. [136] note that SI requires snapshots to form a total order,
which does not scale well. To address this problem, Sovran et al. [136] define Parallel Snapshot
Isolation (PSI), a new consistency criterion suitable for geo-replicated systems. It allows the
relative commit order of non-conflicting transactions to vary between replicas. Thus, PSI does
not totally order transactions’ snapshots. Under PSI, both read-only and update transactions
might observe non-monotonic snapshots. Moreover, since PSI is weaker than SI, it also has the
write-skew anomaly.

Based on the formal model given in [136], a history h guarantees PSI if the following proper-
ties hold:

(i) Site Snapshot Read. All read operations should read the most recent committed version at
the transaction’s site (i.e., a data center that the transaction starts its execution), and before the
time the transaction started.

(ii) No write-write Conflict. No two concurrent write-conflicting transactions both commit.

(iii) Commit Causality Across Sites. Causality between transactions is maintained at all sites.

2.2.6 Causal Serializability (CSER)

Causal serializability (CSER) [109] is very similar to PSI. It ensures the following properties:

• Transactions from the same client are sequential.
• Transactions respect read-from dependency.
• Transactions updating the same objects are observed in the same order by all replicas of

those objects.

However, unlike PSI, CSER is not a multi-version consistency criterion, and does not re-
quire reading committed values. Hence some anomalies defined previously (like non-monotonic
snapshots) are not observable with CSER.

20

2.3. LIVENESS AND PROGRESS

2.2.7 Consistency Criteria for Software Transactional Memory

To make concurrent programming easier, and to provide developers with a convenient abstraction,
Shavit and Touitou [133] introduce a new method called Software Transactional Memory (STM).
With STM, threads of an application synchronize with each other via transactions. Although some
STMs ensure conventional consistency criteria (like SER or SI), Guerraoui and Kapalka [63]
argue that these criteria are not suitable for STMs because these consistencies are applied only to
committing transactions. Thus, they do not preclude a transaction from reading an inconsistent
state as long as it later aborts. Behaviors of the transactions that abort are not considered
harmful in managed environments (such as databases) since transactions can run in isolation
through sandboxing techniques. However, executing a transaction in unmanaged environments is
harmful, and can cause a whole application to crash [63, 137]. For instance, an STM transaction
that reads an inconsistent state would cause a divide-by-zero exception.

For the sake of completeness, in the remainder of this section, we briefly review consistency
criteria introduced for STMs.

Opacity: Guerraoui and Kapalka [63] introduce Opacity as the strongest consistency criterion a
transactional system can provide. It strengthens SSER by considering also aborting transactions.
A transaction system ensures Opacity if: (i) every concurrent execution of committed transactions
along with read-prefixes of aborted transactions3 is equivalent to some serial execution, and
(ii) this serial execution respects real-time orderings among transactions.

Virtual World Consistency (VWC): Opacity requires that all read prefixes of aborted trans-
actions observe exactly the same causal path. Imbs and Raynal [73] argue that it is more conser-
vative than needed. They introduce a weaker consistency criterion called VWC. VWC requires
that: (i) all committed transactions be SSER; (ii) every read-prefix of an aborted transaction
reads values that are consistent with respect to its causal past.

2.2.8 Anomaly Comparison

Table 2.2 summarizes all the consistency criteria that we reviewed in this section, and compare
them in terms of observed anomalies.

2.3 Liveness and Progress

In the previous section, we introduced various consistency criteria as safety properties for
transactional systems. In this section, we specify liveness and progress properties. A liveness
property states that eventually something useful occurs [79]. Such a property is a progress
property when it states that, at all point in time, some action is eventually executed.

3a read-prefix of an aborted transaction contains all read operations of the aborted transaction until it aborts.

21

CHAPTER 2. BACKGROUND

Consistency Criteria

Anomalies
SSER

Opacity
VWC

SER US
SI

GSI
PSI CSER

Dirty Write x x x x x x

Dirty Read x x x x x x

Non-repeatable Reads x x x x x x

Lost Update x x x x x x

Real-time Violation x - - - - -

Non-monotonic Snapshot among R-O
transactions

x x - x - x

Non-monotonic Snapshot among R-O and
UP transactions

x x x x - x

Write Skew x x x - - -

Table 2.2: Anomaly Comparison of Strong Consistency Criteria
(x:disallowed)

SSER SER US SI PSI CSER
Ti C°conflict T j rs(Ti)\ws(T j) 6=? _ ws(Ti)\rs(T j) 6=? ws(Ti)\ws(T j) 6=?

Table 2.3: Conflict Table of Consistency Criteria

In the context of transactional systems, the liveness property of Schiper et al. [127], called
termination, requires that if the coordinator of a transaction is correct, the system should
eventually terminates the transaction, either by committing or aborting it.

Definition 2.9 (Termination). For every submitted transaction Ti, if coord(Ti) is correct, then
Ti eventually terminates.

Unfortunately, this property is not enough, and fails to rule out a system that always abort
submitted transactions. The progress properties that we introduce next constraint when the
system may abort a transaction due to interleaving [65].

Our progress properties rely on the classical notion of conflict, called C°conflict, that captures
the interleaving allowed by a criterion. Table 2.3 depicts the definition of C°conflict for the
reviewed consistency criteria. Two transactions conflict in serializability-based consistencies (i.e.,
SSER, SER, and US) when they exhibit read-write conflict. On the opposite, in snapshot isolation
based consistencies (SI, PSI, and CSER), two transaction conflict solely when their writesets
intersect.

The first progress property we consider is wait-freedom [65]. This property captures the
maximal progress a transactional system may offer, i.e., that a transaction always commits.

22

2.3. LIVENESS AND PROGRESS

Definition 2.10 (Wait-freedom). A transactional system is wait-free when in every execution Ω,
for every transaction Ti in h =F(Ω), if Ti is not pending in h then Ti commits in h.

Wait-freedom is ensured for transactions in systems implementing weak consistency models
(e.g., Causal+ [90, 91, 151]). However in general, it is not possible to ensure this progress
property for update transactions, since two concurrent updates transactions cannot both commit
under strong consistency. On the other hand, as we shall see shortly, wait-freedom for read-only
transactions is usually attainable (e.g., in SI, PSI, or US).

The second progress property of interest we consider is obstruction-freedom. This property
is weaker than wait-freedom, and it states that a transaction must commit when it does not
encounter a conflicting transactions during its execution.

Definition 2.11 (Obstruction-freedom). A transactional system implementing a consistency C is
obstruction-free when in every execution Ω, for every transaction Ti in h =F(Ω), if Ti aborts in h
then Ti C-conflicts with some concurrent transaction in h.

For example, consider a transactional system where all conflicting transactions with a trans-
action Ti have terminated. If at this time, a transaction Ti in h executes, it must commit. As
another example, obstruction-freedom guarantees that if a transaction Ti is the only transaction
being executed in the system, it must commit.

Since obstruction-freedom requires a non-conflicting transaction Ti to always commit in all
possible execution, obstruction-freedom might be considered too strong. Hence, we introduce
non-triviality as our weakest progress property. In a common sense, non-triviality necessitates
that there should be at least one way to execute and commit a transaction if all other transactions
have terminated. This progress property is ensured in many transactional systems (e.g., [48, 104,
106, 127]).

Definition 2.12 (Non-triviality). A transactional system implementing a consistency C provides
non-triviality if in every execution Ω such that h = F(Ω) is quiescent (i.e., no transaction is
pending), for every transaction Ti 62 h, there exists an extension Ω0 of Ω such that transaction Ti

commits in history F(Ω0).

23

CHAPTER 2. BACKGROUND

Wait-freedom Obstruction-freedom Non-triviality
Read-only Transaction Wait-free Queries

(WFQ)
Update Transaction Obstruction-free Updates Non-trivial Updates

(OFU) (NTU)

Table 2.4: Progress Properties

Table 2.4 summarizes the progress properties that we use throughout this thesis. For read-
only transactions, we are interested in wait-free queries. We focus on obstruction-free, and
non-trivial updates as progress properties of update transactions.

24

C
H

A
P

T
E

R 3
CATALOG OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL

REPLICATION

Contents

3.1 Scalability Properties . 26
3.1.1 Wait-Free Queries (WFQ) . 26
3.1.2 Genuine Partial Replication (GPR) . 26
3.1.3 Minimal Commitment Synchronization . 27
3.1.4 Forward Freshness . 28

3.2 Review of Transactional Protocols Supporting Partial Replication 28
3.2.1 SSER . 31
3.2.2 SER . 31
3.2.3 US . 33
3.2.4 SI . 33
3.2.5 PSI . 34

25

CHAPTER 3. CATALOG OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL
REPLICATION

In this chapter, we first identify the four properties of interest (Section 3.1) that increase
scalability of a transactional system. We then review some well-known partially-replicated
transactional protocols, and compare them in terms of: (i) conventional assumptions (such

as failure model, or synchrony assumptions) (ii) commitment protocol, and (iii) the four identified
scalability properties.

3.1 Scalability Properties

Ensuring a consistency criterion through a commitment protocol is costly, especially in large
scale or geo-replicated settings. To better understand, and minimize this cost, in this section, we
identify the following essential scalability properties: (i) a read-only transaction never waits for
concurrent transactions and always commits; (ii) only replicas updated by a transaction T make
steps to execute T; (iii) a transaction may read object versions committed after it started; and
(iv) two transactions synchronize with each other only if their writes conflict. These properties
amplify scalability by increasing parallelism, and slashing abort rate.

3.1.1 Wait-Free Queries (WFQ)

Since most workloads exhibit a high proportion of read-only transactions, WFQ is a crucial scala-
bility property as it ensures that a read-only transaction is not slowed down by synchronization,
and always commits.

3.1.2 Genuine Partial Replication (GPR)

Replication improves both locality and availability. In full replication, every replica must perform
all updates, therefore it does not scale. Partial replication addresses this problem, by replicating
only a subset of the data at each replica. The idea is that if transactions would communicate
only over the minimal number of replicas, synchronization and computation overhead would be
reduced. However, in the general case, the overlap of transactions cannot be predicted; therefore,
many partial replication protocols in fact perform system-wide global consensus [15, 131] or
communication [136]. This approach negates the potential advantages of partial replication.

To address this issue, Schiper et al. [127] introduce genuine partial replication: a transaction
communicates only with the replicas that store some object read or written in the transaction.
GPR is also called the minimality property by Fritzke and Ingels [55]. We call the set of replicas
storing objects read or written by transaction Ti, the replicas concerned by Ti.

With GPR, non-conflicting transactions do not interfere with each other, and the intrinsic
parallelism of a workload can be exploited, ensuring that throughput scales linearly with the
number of nodes.

26

3.1. SCALABILITY PROPERTIES

Definition 3.1 (Genuine Partial Replication). A transactional system ensures Genuine Partial
Replication if, for any transaction Ti, only processes that replicate objects concerned by Ti make
steps to execute Ti.

In addition to scalability advantages, GPR also improves availability of a transactional
system. Failures of a replica that is not concerned by a transaction does not halt the execution of
that transaction. This improves the availability of the system. For instance, consider a banking
application, in which accounts of American branches are replicated in the US, and accounts
of European branches are stored in the EU. Under GPR, transactions among EU accounts can
execute and finish even when EU and US sites are partitioned.

We note that GPR is equivalent to the concept of strictly disjoint access parallelism in an
STM. An STM is strictly disjoint-access-parallel when non-conflicting transactions never contend
on the same base object, that is on any object in use at the implementation level [64].

In order to have a more fine-grained comparison among transactional protocols that are not
GPR, we define two additional properties of interest in what follows:

Definition 3.2 (Committing Replicas). The set of replicas that is involved in commitment of
transaction Ti is called the committing replicas of Ti.

Some transactional protocols (such as Walter [136]) perform asynchronous propagation to all
replicas once a transaction commits. To capture these attributes, we define affected replicas as
the set of all replicas that are affected (either by sending or receiving a message) due to execution
of a transaction. Note that the set of committing replicas of Ti is always subset of the set of
replicas affected by Ti.

Definition 3.3 (Affected Replicas). The set of replicas that send or receive a message due
commitment of transaction Ti is called replicas affected by Ti.

3.1.3 Minimal Commitment Synchronization

Because of its direct cost, and the convoy effects and oscillations that it causes [27, 127], synchro-
nization should be avoided, unless absolutely necessary. Hence, our third scalability property
focuses on minimizing the synchronization between transactions (to alleviate their cost) while
keeping the consensus power of transactions.

Definition 3.4 (Minimal Commitment Synchronization). A consistency criterion C supports Min-
imal Commitment Synchronization if during commitment, transaction Ti waits for transaction
T j only if Ti and T j write-conflict.

27

CHAPTER 3. CATALOG OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL
REPLICATION

3.1.4 Forward Freshness

Some criteria (such as SI, and PSI) freeze the set of object versions that a transaction may read
as soon as the transaction starts; a version that is committed afterwards cannot be used. These
criteria requires base freshness.

However, it is desirable that a consistency criterion provides forward freshness: a transaction
be allowed to read the most recent versions of objects available. Otherwise, abort probability
increases (because the transaction reads a stale version), and even read-only transactions observe
stale data.

Definition 3.5 (Base Freshness). A consistency criterion C ensures Base Freshness if for any
history h 2C, and for any two read operations ri(xj) and ri(yl) in h, ri(xj) 6<h cl .

Definition 3.6 (Forward Freshness). A consistency criterion C supports Forward Freshness if
there exists a history h 2C such that ri(xj)<h cl for some read operations ri(xj) and ri(yl).

In case of a global transaction that touches several geographical sites, forward freshness is
essential to prevent stale reads, and to decrease the abort rate.

In this section, we identified four properties that can boost scalability by increasing par-
allelism, and decreasing the abort rate. In Chapter 4, we focus more on these properties, and
investigate whether strong consistency criteria can ensure these properties or not.

3.2 Review of Transactional Protocols Supporting Partial
Replication

In this section, we compare and review transactional protocols ensuring strong consistencies. To
have a more coherent review, our focus in this section is solely on partial replication protocols
providing general purpose transactions. Hence, we do not consider protocols with the following
assumptions:

1. Transactions or workloads are known in advance [39, 41, 42, 71, 74, 83, 152].
2. Certain treatments are required for executing transactions that are not known in advance

[141].
3. There is at least one replica holding all data accessed by a transaction [31, 40, 124, 125,

135].
Table 3.1 compare the protocols based on their assumptions, and Table 3.2 compare their

scalability properties.

28

3.2.
R

E
V

IE
W

O
F

T
R

A
N

S
A

C
T

IO
N

A
L

P
R

O
T

O
C

O
L

S
S

U
P

P
O

R
T

IN
G

PA
R

T
IA

L
R

E
P

L
IC

A
T

IO
N

Opt. for Multi-

Protocol Cons. Lan/Wan master Failure Model Synchrony Assumption Commitment Failure Detector

Spanner [38] SSER WAN yes Crash-recovery Synchronous Intra-group Paxos [81] + Inter-group 2PC -

P-Store [127] SER WAN yes Crash-stop Asynchronous AM-Cast [123] + Inter-group Voting ¶S

S-DUR [129] SER LAN yes Crash-stop Partially Synchronous Intra-group AB-Cast [93] + Inter-group Voting -

Sciascia13 [130] SER WAN yes Crash-stop Partially Synchronous Intra-group AB-Cast [81] + Inter-group Voting -

SCORe [104] SER LAN yes Crash-stop Asynchronous Inter-process 2PC -

Scalaris [121] SER WAN yes Crash-stop Partially Synchronous Inter-process Enhanced Paxos Commit [121] -

Fritzke [55] SER LAN yes Crash-stop Asynchronous AM-Cast [56] + Inter-group Voting ¶S

GMU [106] EUS LAN yes Crash-stop Asynchronous Inter-process 2PC -

Serrano07 [131] SI LAN yes Crash-stop ? AB-Cast [?] -

Serrano08 [132] SI WAN no Crash-recovery ? Intra-site AB-Cast [112] ?

Clock-SI [48] SI WAN no Crash-stop Asynchronous Inter-partition 2PC -

SIPRe [15] GSI LAN yes Crash-recovery Partially Synchronous AB-Cast [112] -

Walter [136] PSI WAN yes Crash-recovery Asynchronous Inter-site 2PC P (conf. service)

Site: data center;
Inter-group protocol p: consider a group as a correct entity and perform protocol p among them;
Intra-site protocol p: perform protocol p among processes in one site;
Inter-process protocol p: perform protocol p among processes;
?: unknown

Table 3.1: Comparison of Assumptions of Partial Replication Protocols

29

C
H

A
P

T
E

R
3.

C
A

T
A

L
O

G
O

F
T

R
A

N
S

A
C

T
IO

N
A

L
P

R
O

T
O

C
O

L
S

S
U

P
P

O
R

T
IN

G
PA

R
T

IA
L

R
E

P
L

IC
A

T
IO

N

Scalability Committing Replicas of Ti Affected Replicas of Ti

Protocol WFQ GPR FF MCS Read-only Transaction Update Transaction Read-only Transaction Update Transaction

Spanner yes yes no no ? replicas(rs(Ti)[ws(Ti)) ? replicas(rs(Ti)[ws(Ti))

P-Store no yes yes no replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti))

S-DUR yes yes no no ? replicas(rs(Ti)[ws(Ti)) ? replicas(rs(Ti)[ws(Ti))

Sciascia13 no yes yes no replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti))

SCORe yes yes no no ? replicas(rs(Ti)[ws(Ti)) ? replicas(rs(Ti)[ws(Ti))

Scalaris no yes yes no replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti))

Fritzke no yes yes no replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti)) replicas(rs(Ti)[ws(Ti))

GMU yes yes yes no ? replicas(rs(Ti)[ws(Ti)) ? replicas(rs(Ti)[ws(Ti))

Serrano07 yes no no yes ? ¶ ? ¶

Serrano08 yes no no yes ? replicas(certifierSite) ? replicas(certifierSite) [

replicas(rs(Ti)[ws(Ti))

Clock-SI yes yes no yes ? replicas(ws(Ti)) ? replicas(ws(Ti))

SIPRe yes no no yes ? ¶ ? ¶

Walter yes no no yes ? replicas(primarySites(ws(Ti))) ? ¶

WFQ: Wait-free Queries
GPR: Genuine Partial Replication
FF: Forward Freshness
MCS: Minimal Commitment Synchronization

Table 3.2: Comparison of Properties of Partial Replication Protocols

30

3.2. REVIEW OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL REPLICATION

3.2.1 SSER

Spanner: Spanner is a large scale and temporal multi-version database ensuring SSER. Due
to its large synchronization overhead, SSER was not used at large-scale until its recent imple-
mentation by Google in Spanner [38]. It assigns a globally meaningful timestamp to a transaction.
Timestamps specify serialization order of transactions globally. Spanner uses a TrueTime API
which provides clocks with bounded uncertainty. To this end, it uses low-latency, low-jitter net-
work connections. Spanner’s correctness relies on an upper bound on the actual message delay: if
TrueTime does not guarantee bounded clock drift, external consistency is violated. Read-only
transactions always commit in Spanner, hence it ensures WFQ. Spanner guarantees OFU as
the progress property of update transactions. In order to commit an update transaction, and
guaranteeing SSER, Spanner relies on two-phase locking, and 2PC. Update transactions commit
using a 2PC among the replica groups storing objects, and Paxos inside each replica group. Thus,
it also guarantees GPR.

3.2.2 SER

P-Store: P-Store [127] is a partially replicated system based on deferred update replication:
a transaction is executed optimistically at the transaction’s coordinator, and upon executing
a commit request, it is certified and commits at concerned replicas. It is a GPR algorithm
that ensures SER by leveraging genuine atomic multicast. Read operations are performed
optimistically, and write operations are cached locally at the transaction’s coordinator. A replica
simply returns the latest committed version of an object upon receiving a read request for that
object. During the termination phase, the readset and writeset of transaction Ti is multicast
atomically to all the replicas holding some object in ws(Ti)[rs(Ti). A transaction commits if all
the versions read by the transaction are the latest committed versions. Since only the replica
holding objects read or written by a transaction are involved in its certification and termination,
P-Store is a GPR protocol. However, P-Store does not provide WFQ since a read-only transaction
should also be certified, and can abort. This leads to relatively poor performance for read-only
transactions compared to other similar protocols. Moreover, unlike Spanner, P-Store guarantees
NTU as the progress property of update transactions.

S-DUR: S-DUR [129] is also based on deferred update replication. It ensures that every transac-
tion reads a consistent snapshot during its optimistic execution, and commits locally without any
synchronization, hence ensures WFQ. To commit an update transaction Ti, S-DUR atomically
multicasts Ti (i.e., its readset, writeset, and its snapshot) to every replica group replicating an
object in ws(Ti)[rs(Ti). Thus, it is a GPR protocol. However, unlike P-Store, S-DUR only requires
to ensure total ordering inside each replica group. In other words, ordering is not required across
replica groups. For example, consider two update transactions T1 and T2, and assume that they
both modify objects x and y. In S-DUR, all the processes holding objects x can deliver T1 before

31

CHAPTER 3. CATALOG OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL
REPLICATION

T2, and all the processes holding object y can deliver T2 before T1. By only ordering transactions
inside each replica group, S-DUR increases the scalability of the atomic multicast primitive, but
this comes at a price: the certification test is more involved, and it needs to ensure that two global
transactions Ti and T j can be serialized in any order with respect to each other. Like P-Store,
S-DUR also ensures NTU.

Sciascia13: Although S-DUR provides good performance in LAN environments, its perfor-
mance is not acceptable in geo-replicated environment because a local transactions that is
delivered after some global transaction must be delayed until the global transaction commits.
This increases the latency of local transactions by up to 10 times. Sciascia and Pedone [130]
propose a GPR protocol that is similar to S-DUR. It addresses the above issue by reordering a
local transaction, and executing it before a global transaction even if it is delivered after a global
transaction. Unlike S-DUR, both read-only and update transactions are certified in this protocol,
hence it does not ensure WFQ.

SCORe: Peluso et al. [104] describe a GPR protocol under SER ensuring WFQ and NTU. In
SCORe, when a transaction starts (i.e., upon its first read), the system assigns a scalar timestamp
as the transaction snapshot. This timestamp is the maximum of last timestamps given to
an update transaction at the transaction’s coordinator, and the node replicating the object. A
subsequent read operations must read a version committed before the transaction snapshot. This
approach, disallows SCORe from ensuring Forward Freshness. An update transaction commits
using a combination of 2PC and Skeen’s total order multicast [26].

Scalaris: Scalaris [121] is a GPR protocol on top of a DHT. Operations are performed on the
majority of replicas, and an Enhanced Paxos commit ensures both atomicity and SER. Like
previous protocols, Scalaris also employs an optimistic execution approach. A read request
requires a majority read quorum on the replicas to obtain the latest committed version. A write
request must be preceded by a read request in the same transaction. Hence, a write request also
needs to first read from majority of replicas. Both read-only and update transactions commit with
Paxos Commit algorithm. Like P-Store, Scalaris does not read consistent snapshots, and does not
ensure WFQ. However, unlike P-Store, it guarantees OFU.

Fritzke: Fritzke and Ingels [55] propose a GPR protocol based on atomic multicast that ensures
SER. Unlike all previous protocols, a read operations for object x is atomic multicast to a group
replicating object x, and delivered by all processes. Write operations are stored locally until the
commit time. Like P-Store, at commit time, the transaction is atomic multicast to all groups
replicating an object read or written by the transaction. To commit a transaction, the protocol
uses a voting phase similar to the non-blocking two phase commit protocol. Like Scalaris, this
protocol does not provide WFQ, but guarantees OFU.

32

3.2. REVIEW OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL REPLICATION

3.2.3 US

GMU: The GMU transactional system of Peluso et al. [106] guarantees EUS, and ensures both
GPR and WFQ. GMU relies on a particular vector clock to ensure consistent snapshots for read
operations. Read-only transactions commit locally, and GMU commits update transactions with
2PC; all replicas holding an object read or written by the transaction participate in the 2PC
protocol. Notice that the certification test of GMU is much more simpler than the one employed in
protocols ensuring SER. GMU also ensures NTU as the progress property of update transactions.

3.2.4 SI

Serrano07: The protocol of Serrano et al. [131] offers non-genuine partial replication under
SI. Read-only transactions commit locally and update transactions are atomic broadcast to all
replicas. Upon delivering of an update transaction, each replica performs a certification test and
decides locally to commit or abort the transaction. Therefore, and unlike the typical approach
employed by partially replicated transactional systems, Serrano does not perform a distributed
voting phase. Bypassing this phase comes at the cost of maintaining at each replica the last
version number of each object.

In order to take a consistent snapshot, each replica creates several dummy transactions upon
committing an update transaction. These dummy transactions represents different snapshots.
Hence, once a new transaction starts at a replica, a dummy transaction with a particular sequence
number is associated with it. The transaction uses this dummy transaction for taking consistent
snapshots when contacting different sites in the system. This protocol guarantees NTU as the
progress property of update transactions.

Serrano08: Serrano et al. [132] propose a partially replicated system ensuring SI for Internet-
based services. All read-only transactions commit locally at their originating sites. However,
unlike Serrano2007, there is only one site (called certifier) that is responsible for certifying
update transactions. Therefore, this protocol does not ensure GPR. In order to guarantee the
same outcome at all processes in the certifier site, all transactions are delivered in the same order
in all processes of the certifier site using atomic broadcast primitives. Moreover, all processes at
the certifier site needs to store keys, and last versions of all modified objects in the system to be
able to certify all update transactions.

Like the previous protocol, this protocol also relies on dummy transactions for taking consis-
tent snapshot in a partially replicated system.

The authors assume that the atomic broadcast is offered by a group communication systems,
and cite [112] as the reference. Hence, the exact assumptions for synchrony and failure detector
cannot be inferred.

33

CHAPTER 3. CATALOG OF TRANSACTIONAL PROTOCOLS SUPPORTING PARTIAL
REPLICATION

SIPRe: Armendáriz-Iñigo et al. [15] propose a partially replicated transactional system called
SIPRe ensuring GSI. At the start of a transaction Ti, SIPRe atomically broadcasts Ti to all
processes. This message is used for defining a consistent snapshot for Ti. Like other SI protocols,
read-only transaction commit locally without any synchronization. An update transaction is
atomic broadcast to all replicas, and certify in all of them. SIPRe guarantees OFU as the progress
property of update transactions. Because both committing replicas of a transaction Ti and the
replicas affected by Ti are ¶, SIPRe does not ensure GPR. Like [131], SIPRe also requires
all replicas (whether they are concerned by the transaction or not) to store write-set of all
transactions along with their commit timestamp.

Clock-SI: Du et al. [48] introduce a fully decentralized implementation of SI based on loosely
synchronized clocks. Unlike previous protocols, it solely partitions data into a set of servers, and
does not support replication. The synchronized clocks are used to assign snapshot and commit
timestamps to transactions. To side step the problems of clocks skew, Clock-SI delays transactions
until assigned timestamps to transactions become available. Like previous protocols, read-only
transactions commit locally without any additional certification. Local update transactions
commit at the updated partition without any global synchronization. To commit a global update
transaction, a 2PC is performed among the partitions holding modified objects. Clock-SI ensures
NTU as the progress property of update transactions.

3.2.5 PSI

Walter: Walter is the transactional system proposed by Sovran et al. [136] to implement PSI.
This system relies on a single master replication schema per object and 2PC. Thus, each object
has a primary site, called preferred site. Like SI, PSI also requires that an operation has to read
the most recent versions at the time the transaction starts. Hence, when a transaction starts,
the coordinator assigns a vector timestamps to the transaction. A read-only transaction commits
without any synchronization, thus Walter ensures WFQ. Walter employs either a fast or a slow
commit protocol to commit an update transaction. If an update transaction only modifies the
objects replicated at one preferred site, it uses the fast commit. In the fast commit protocol, a
transaction commits if the objects modified by it have not been modified, and are not locked. If
an update transaction modify the objects replicating at different preferred sites, it uses 2PC to
commit the transaction. Once a transaction is committed, Walter must propagate the transaction
in the background to all the replicas in the system before it becomes visible. Hence, the replicas
affected by a transaction Ti is ¶, and Walter is not a GPR protocol.

34

C
H

A
P

T
E

R 4
SCALABILITY OF STRONG CONSISTENCY CRITERIA

Contents

4.1 Decomposing SI . 36
4.1.1 Absence of Cascading Aborts (ACA) . 37
4.1.2 Consistent and Strictly Consistent Snapshots (SCONS) 37
4.1.3 Snapshot Monotonicity (MON) . 38
4.1.4 Write-Conflict Freedom . 39
4.1.5 The Decomposition . 39

4.2 The impossibility of SI with GPR . 40
4.3 Discussion . 44

4.3.1 SSER and Opacity . 44
4.3.2 SER . 44
4.3.3 PSI . 44
4.3.4 Circumventing The Impossibility Result . 45

4.4 Conclusion . 45

35

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

In this chapter, we study the scalability cost of different consistency criteria with respect
to Genuine Partial Replication (GPR) and Wait-free Queries (WFQ). As we shall see in
Chapter 5, these two properties play a crucial role in scalability of a system.

We start this chapter by focusing on SI because it is supported by many DBMSs (e.g., Microsoft
SQL Server, Oracle, or PostgreSQL), and also due to the fact that SI is a popular consistency
criterion in software transactional memories [25, 45, 89, 111]. Moreover, by design, SI ensures
WFQ. Therefore, we investigate whether we can ensure SI and GPR together or not.

We first prove in Section 4.1 that SI is equivalent to the conjunction of the following properties:
(i) absence of cascading aborts, (ii) strictly consistent snapshots, i.e., a transaction observes a
snapshot that coincides with some point in (linear) time, (iii) two concurrent write-conflicting
update transactions never both commit, and (iv) snapshots observed by transactions are monoton-
ically ordered. As we explained in Section 2.2.4, previous definitions of SI [3, 49] extend histories
with abstract snapshot points, or start times (when it is selected to be some earlier point in time).
Our decomposition shows that in fact, like serializability, SI can be defined on plain histories
comprising read, write, commit and abort operations.

In Section 4.2, and based on this decomposition, we show that a system ensuring SI cannot
guarantee both GPR and obstruction-free updates (OFU). In particular, we prove that an asyn-
chronous GPR system guaranteeing OFU, even if it is failure-free, cannot compute monotonically
ordered snapshots, nor strictly consistent ones.

Finally, in Section 4.3, we extend our results to other strongly consistent criteria (such as
Opacitiy, SSER, SER, and PSI), and introduce some additional corollaries.

We recall that, in our model, objects accessed by a transaction are not known in advance (i.e.,
transactions are interactive), and every write is preceded by a read on the same object.

4.1 Decomposing SI

Before introducing four properties whose conjunction is equivalent to SI, we define SI based on a
history comprising read, write, commit and abort operations.

Let us consider a function S that takes as input a history h, and returns an extended history
hs by adding a snapshot point to h for each transaction in h. Given a transaction Ti, the snapshot
point of Ti in hs, denoted si, precedes every operation of transaction Ti in hs. A history h is in SI
if, and only if, there exists a function S such that hs = S(h) and hs satisfies the following rules:

D1 (Read Rule)
8ri(xj 6=i),wk 6= j(xk), ck 2 hs :
c j 2 hs (D1.1)
^ c j <hs si (D1.2)
^ (ck <hs c j _ si <hs ck) (D1.3)

D2 (Write Rule)
8ci, c j 2 hs :
ws(Ti)\ws(T j) 6=?
)

°
ci <hs s j _ c j <hs si

¢

In the remainder of this section, we define four properties, and prove that the conjunction

36

4.1. DECOMPOSING SI

of these properties is necessary and sufficient to attain SI. We later use these properties in
Section 4.2 to derive our impossibility result.

4.1.1 Absence of Cascading Aborts (ACA)

Intuitively, a read-only transaction must abort if it observes the effects of an uncommitted
transaction that later aborts. Thus, criteria that require wait-free queries (WFQ) (such as SI and
PSI) need to make sure that a transaction never reads an uncommitted value. In case of SI, rules
D1.1 and D1.2 ensure this requirement, called absence of cascading aborts. We formalize this
property below:

Definition 4.1 (Absence of Cascading aborts). History h exhibits no without cascading aborts,
if for every read ri(xj) in h, c j precedes ri(xj) in h. ACA denotes the set of histories that are
without cascading aborts.

4.1.2 Consistent and Strictly Consistent Snapshots (SCONS)

Consistent and strictly consistent snapshots are defined by refining causality into a dependency
relation as follows:

Definition 4.2 (Dependency). Consider a history h and two transactions Ti and T j. We note
Ti ⇤ T j when ri(xj) is in h. Transaction Ti depends on transaction T j when Ti ⇤

§ T j holds. 1

Transaction Ti and T j are independent if neither Ti ⇤
§ T j, nor T j ⇤

§ Ti hold.

This means that a transaction Ti depends on a transaction T j if Ti reads an object modified
by T j, or such a relation holds by transitive closure. To illustrate this definition, consider history
h1 = r1(x0).w1(x1).c1.ra(x1).ca.rb(y0).cb. In h1, transaction Ta depends on T1. Moreover, observe
that Tb does not depend on T1 in h1 although T1 causally precedes Tb (i.e., c1 precedes rb(y0) in
h1).

We now define consistent snapshots according to the above dependency relation. A transaction
has a consistent snapshot iff it observes the effects of all transactions it depends on [32]. For
example, consider the history h2 = r1(x0).w1(x1).c1.r2(x1).r2(y0).w2(y2).c2.ra(y2).ra(x0).ca In this
history, transaction Ta does not have a consistent snapshot: Ta depends on T2, and T2 also
depends on T1, but Ta does not observe the effect of T1 (i.e., x1). Formally, consistent snapshots
are defined as follows:

Definition 4.3 (Consistent snapshot). A transaction Ti in a history h sees a consistent snapshot
iff, for every object x, if (i) Ti reads version xj, (ii) Tk writes version xk, and (iii) Ti depends on
Tk, then version xk is followed by version xj in the version order induced by h (xk øh xj). We
write h 2CONS when all transactions in h have a consistent snapshot.

1 We note R§ the transitive closure of some binary relation R.

37

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

SI requires that a transaction observes the committed state of database at some time in the
past. This requirement is stronger than consistent snapshot. For some transaction Ti in a history
h, it implies that:

1. SCONSa2: a transaction Ti is not allowed to read the object committed after it starts
(i.e., its first operation). To illustrate this, consider the following history that SCONSa forbids:
h3 = r1(x0).w1(x1).c1.ra(x1).r2(y0).w2(y2).c2.ra(y2).ca where all the operations are totally ordered.
In this history, transaction T1 (resp. T2) modifies object x (resp. y), and transaction Ta reads
objects x1 and y2. Because ra(x1) precedes c2 in h3, y2 could have not been observed when Ta

took its snapshot. As a consequence, the snapshot of transaction Ta is not strictly consistent.
Moreover, observe that history h3 is SER because transactions can be serialized as T1.T2.Ta.
However, it is violating the rule D1.2 of SI.

2. SCONSb: if transaction Ti observes the effects of transaction T j, it must also observe the
effects of all transactions that precede T j in history h. For instance, consider the following history
that SCONSb forbids: h4 = r1(x0).w1(x1).c1.r2(y0).w2(y2).c2.ra(x0).ra(y2).ca where all operations
are totally ordered. Like the previous example, transactions T1 and T2 modify objects x and y,
and transaction Ta wants to read objects x and y. Since c1 precedes c2 in h4 and transaction Ta

observes the effect of T2 (i.e., y2), it should also observe the effect of T1 (i.e., x1). Note that like
history h3, history h4 is also serializable: T2.Ta.T1. However, it is not in SI because: (i) if we
consider the snapshot of Ta before the commit of T1 or between the commit of T1, and T2, then it
violates the rule D1.2; and (ii) if we consider the snapshot of Ta after the commit of T2, then it
violates the rule D1.3.

A history is called strictly consistent if both SCONSa and SCONSb hold. Formally:

Definition 4.4 (Strictly consistent snapshot). Snapshots in history h are strictly consistent,
when for any committed transactions Ti, T j, Tk 6= j and Tl , the following two properties hold:

- 8ri(xj), ri(yl) 2 h : ri(xj) 6<h cl (SCONSa)

- 8ri(xj), ri(yl),wk(xk) 2 h : ck <h cl) ck <h c j (SCONSb)

We note SCONS the set of strictly consistent histories.

4.1.3 Snapshot Monotonicity (MON)

In addition, SI requires what we call monotonic snapshots, or partially ordered snapshots. For
instance, although history h5 below satisfies SCONS, this history does not belong to SI: since Ta

reads {x0, y2}, and Tb reads {x1, y0}, there is no extended history that would guarantee the read
rule of SI.

2 SCONSa is equivalent to the base freshness. Because of historical reasons, we use the term SCONSa in this
chapter.

38

4.1. DECOMPOSING SI

h5 = ra(x0) r1(x0).w1(x1).c1 rb(x1).cb

rb(y0) r2(y0).w2(y2).c2 ra(y2).ca

While SI requires monotonic snapshots, the underlying reason is intricate enough that some
previous works [25, for instance] do not ensure this property, while claiming to be SI. Below, we
introduce an ordering relation between snapshots to formalize snapshot monotonicity.

Definition 4.5 (Snapshot precedence). Consider a history h and two distinct transactions Ti

and T j. The snapshot read by Ti precedes the snapshot read by T j in history h, written Ti ! T j,
when ri(xk) and r j(yl) belong to h and either (i) ri(xk)<h cl holds, or (ii) transaction Tl writes x
and ck <h cl holds.

For more illustration, consider histories h6 = r1(x0).w1(x1).c1.r2(y0).w2(y2).ra(x1).c2.rb(y2).ca.cb

and h7 = r1(x0).w1(x1).c1.ra(x1).ca.r2(x1).r2(y0).w2(x2).w2(y2).c2.rb(y2).cb. In history h6, Ta !
Tb holds because ra(x1) precedes c2 and Tb reads y2. In h7, c1 precedes c2 and both T1 and
T2 modify object x. Thus, Ta ! Tb also holds. We define snapshot monotonicity using snapshot
precedence as follows:

Definition 4.6 (Snapshot monotonicity). Given some history h, if the relation !§ induced by h
is a partial order, the snapshots in h are monotonic. We note MON the set of histories that satisfy
this property.

According to this definition, both Ta ! Tb and Tb ! Ta hold in history h7. Thus, history h7

does not belong to MON.
As we saw in Chapter 2, Non-monotonic snapshots are also observed under US, and PSI.

4.1.4 Write-Conflict Freedom

Rule D2 of SI forbids two concurrent write-conflicting transactions from both committing. Since
we assume that every write is preceded by a read on the same object, every update transaction
depends on a previous update transaction (or on the initial transaction T0). Therefore, under SI,
concurrent conflicting transactions must be independent:

Definition 4.7 (Write-Conflict Freedom (WCF)). A history h is write-conflict free if two indepen-
dent transactions never write to the same object. We denote by WCF the histories that satisfy
this property.

4.1.5 The Decomposition

Theorem 4.1 below proves that the conjunction of the above four properties is necessary and
sufficient to attain SI. In other words, a history h is in SI iff (1) every transaction in h sees a

39

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

committed state, (2) every transaction in h observes a strictly consistent snapshot, (3) snapshots
are monotonic, and (4) h is write-conflict free. A detailed proof appears in Appendix A.

Theorem 4.1. SI=ACA\SCONS\MON\WCF

To the best of our knowledge, this is the first result showing that SI can be split into simpler
properties. Theorem 4.1 also establishes that SI is definable on plain histories that consist of read,
write, commit, and abort operations. This has two interesting consequences: (i) a transactional
system does not have to explicitly implement snapshots to support SI, and (ii) one can compare SI
to other consistency criterion without relying on Adya’s phenomena based characterization [3, 4].

4.2 The impossibility of SI with GPR

This section leverages our previous decomposition result to show that SI is inherently non-
scalable. In more detail, we show that none of MON, SCONSa or SCONSb is obtainable in an
asynchronous failure-free GPR system ¶ when updates are obstruction-free (OFU) and queries
are wait-free (WFQ).

We first characterize in Lemmata 4.1 and 4.2 histories acceptable by ¶.

Lemma 4.1 (Positive-freshness Acceptance). Consider an acceptable history h and a transaction
Ti pending in h such that the next operation invoked by Ti is a read on some object x. Note xj the
latest committed version of x prior to the first operation of Ti in h. Let Ω be an execution satisfying
F(Ω)= h. If h.ri(xj) belongs to SI and there is no concurrent transaction write-conflicting with Ti,
then there exists an execution Ω0 extending Ω such that in history F(Ω0), transaction Ti reads at
least (in the sense of øh) version xj of x.

Proof. By contradiction. Assume that in every execution extending Ω, transaction Ti reads a
version xk øh xj. Let Ω0 be such an extension in which (i) no other transaction than Ti makes
steps, (ii) we extend Ti after its read upon x by a write on x, then (iii) coord(Ti) tries committing
Ti. Since Ti reads version xk in F(Ω0), transaction Ti should abort. However in history F(Ω0)
there is no concurrent write-conflicting transaction with Ti. Hence, this execution contradicts the
assumption that updates are obstruction-free. Á

Lemma 4.2 (Genuine Acceptance). Let h =F(Ω) be an acceptable history by a GPR system ¶ such
that a transaction Ti is pending in h. Note X the set of objects accessed by Ti in h. Only processes
in replicas(X) make steps to execute Ti in Ω.

Proof. (By contradiction.) Consider that a process p › replicas(X) makes steps to execute Ti in Ω.
Since the prefix of a transaction is a transaction with the same id, we can consider an extension
Ω0 of Ω such that Ti does not execute any additional operation in Ω0 and coord(Ti) is correct in
Ω0. The progress requirements satisfied by ¶ imply that Ti terminates in Ω0. However, process
p › replicas(X) makes steps to execute Ti in Ω0. A contradiction to the fact that ¶ is GPR. Á

40

4.2. THE IMPOSSIBILITY OF SI WITH GPR

We now state that monotonic snapshots are not constructable by ¶. Our proof holds because
objects accessed by a transaction are not known in advance.

Theorem 4.2. No asynchronous failure-free GPR system implements MON

Proof. (By contradiction.) Let us consider (i) four objects x, y, z and u such that for any two
objects in {x, y, z,u}, their replica sets do not intersect; (ii) four queries Ta, Tb, Tc and Td

accessing respectively {x, y}, {y, z}, {z,u} and {u, x}; and (iii) four updates T1, T2, T3 and T4

modifying respectively x, y, z and u.
Obviously, history rb(y0) is acceptable, and since updates are obstruction-free, there is

a run such that rb(y0).r2(y0).w2(y2).c2 is also acceptable. Applying that Lemma 4.1, we ob-
tain that history rb(y0).r2(y0).w2(y2).c2.ra(x0).ra(y2) is acceptable. Since Ta is wait-free, h =
rb(y0).r2(y0).w2(y2).c2.ra(x0).ra(y2).ca is acceptable as well. Using a similar reasoning, h0 =
rd(u0).r4(u0).w4(u4).c4.rc(z0).rc(u4).cc is also acceptable. We note Ω and Ω0 respectively two
sequences of steps such that F(Ω)= h and F(Ω0)= h0.

The system ¶ is GPR. Therefore, Lemma 4.2 tells us that only processes in replicas(x,y) make
steps in Ω. Similarly, only processes in replicas(u,z) make steps in Ω0. By hypothesis, replicas(x,y)
and replicas(u,z) are disjoint. Applying a classical indistinguishably argument [54, Lemma 1],
both Ω0.Ω and Ω.Ω0 are admissible by ¶. Thus, histories h0.h = F(Ω0.Ω) and h.h0 = F(Ω.Ω0) are
acceptable.

Since updates are obstruction-free, there is a run such that history h0.h.r3(z0).w3(z3).c3 is
acceptable. Note U the sequence of steps following Ω0.Ω with F(U) = r3(z0).w3(z3).c3. Observe
that by Lemma 4.2 Ω0.Ω.U is indistinguishable from Ω0.U .Ω. Then consider history F(Ω0.U .Ω). In
this history, Tb is pending and the latest version of object z is z3, As a consequence, by applying
Lemma 4.1, there exists an extension of Ω0.U .Ω in which transaction Tb reads z3. From the
fact that queries are wait-free and since Ω0.Ω.U is indistinguishable from Ω0.U .Ω, we obtain that
history h1 = h0.h.r3(z0).w3(z3).c3.rb(z3).cb is acceptable.

We note U1 the sequence of steps following Ω0.Ω such that F(U1) equals r3(z0).w3(z3).c3.rb(z3).cb.
With a similar reasoning, history h2 = h0.h.r1(x0).w1(x1).c1.rd(x1).cd is acceptable. Note U2

the sequence satisfying F(U2)= r1(x0).w1(x1).c1.rd(x1).cd.
Executions Ω0.Ω.U1 and Ω0.Ω.U2 are both admissible. Because ¶ is GPR, only processes in

replicas(y,z) (resp. replicas(x,u)) make steps in U1 (resp. U2). By hypothesis, these two replica
sets are disjoint. Applying again an indistinguishably argument, Ω0.Ω.U1.U2 is an execution of ¶.
Therefore, the history ĥ =F(Ω0.Ω.U1.U2) is acceptable. In this history, relation Ta ! Tb ! Tc !
Td ! Ta holds. Thus, ĥ does not belong to MON. Contradiction. Á

Our next theorem states that SCONSb is not feasable with GPR. Similarly to Attiya et al.
[16], our proof builds an infinite execution in which a query Ta on two objects never terminates.
We first define a finite execution during which we interleave, between any two consecutive steps
to execute Ta, a transaction updating one of the objects read by Ta. We show that during such an

41

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

execution, transaction Ta does not terminate successfully. Then, we prove that asynchrony allows
us to continuously extend such an execution, contradicting the fact that queries are wait-free.

Definition 4.8 (Flippable execution). Consider two distinct objects x and y, a query Ta over
both objects, and a set of updates T j2Ç1,mÉ accessing x if j is odd, and y otherwise. An execution
Ω =U1V2U2 . . .VmUm is called flippable if:

• transaction Ta reads in history h =F(Ω) at least version x1 of x,

• for any j in Ç1,mÉ, Uj is the execution of transaction T j by processes Q j,

• for any j in Ç2,mÉ, Vj are steps to execute Ta by processes P j, and

• both (Q j \P j =?)© (P j \Q j+1 =?) and Q j \Q j+1 =? hold,

Lemma 4.3. Let Ω be an execution admissible by ¶. If Ω is flippable and histories accepted by ¶
satisfy SCONSb, query Ta does not terminate.

Proof. Let h be the history F(Ω). In history h transaction T j precedes transaction T j+1, it follows
that h is of the form h = w1(x1).c1.§ .w2(y2).c2.§ . . . , where each symbol § corresponds to either
no operation, or to some read operation by Ta on object x or y.

Because Ω is flippable, transaction Ta reads at least version x1 of object x in h. For some odd
natural j ∏ 1, let xj denote the version of object x read by Ta. Similarly, for some even natural
l, let yl be the version of y read by Ta. Assume that j < l holds. Therefore, h is of the form
h = . . .wj(xj) . . .wl(yl)

Note k the value l +1, and consider the sequence of steps Vk made by Pk right after Ul

to execute Ta. Applying the definition of a flippable execution, we know that (F1) (Ql \Pk =
?)© (Pk \Qk =?), and (F2) Ql \Qk =?. Consider now the following cases:

(Case Ql \Pk =?.) It follows that Ω is indistinguishable from the execution Ω00 = . . .Uj . . .VkUlUk
Then from fact F2, Ω is indistinguishable from execution Ω0 = . . .Uj . . .VkUkUl

(Case Pk \Qk =?) With a similar reasoning, we obtain that Ω is indistinguishable from Ω0 =
. . .Uj . . .UkUlVk

(Case Pk \ (Ql [Qk)=?.) This case reduces to any of the two above cases.

Note h0 the history F(Ω0). Observe that since Ω0 is indistinguishable from Ω, history h0 is acceptable.
In history h0, ck <h0 cl holds. Moreover, c j <h0 ck holds by the assumption j < l and the fact that
k equals l +1. Besides, operations ri(xj), ri(yl) and wk(xk) all belong to h0. According to the
definition of SCONSb, transaction Ta does not commit in h0. (The case j > l follows a symmetrical
reasoning to the case l > j we considered previously.) Á

Theorem 4.3. No asynchronous failure-free GPR system implements SCONSb.

42

4.2. THE IMPOSSIBILITY OF SI WITH GPR

Proof. (By contradiction.) Consider two objects x and y such that replicas(x) and replicas(y) are
disjoint. Assume a read-only transaction Ta that reads successively x then y. Below, we exhibit an
execution admissible by ¶ during which transaction Ta never terminates. We build this execution
as follows:

[Construction.] Consider some empty execution Ω. Repeat for all i >= 1: Let Ti be an update
of x, if i is odd, and y otherwise. Start the execution of transaction Ti. Since no concurrent
transaction is write-conflicting with Ti in Ω and updates are obstruction-free, there must exist
an extension Ω.Ui of Ω during which Ti commits. Assign to Ω the value of Ω.Ui. Execution Ω is
flippable. Hence, Lemma 4.3 tells us that transaction Ta does not terminate in this execution.
Consider the two following cases: (Case i = 1) Because of Lemma 4.1, there exists an extension Ω0

of Ω in which transaction Ta reads at least version x1 of object x. Notice that execution Ω0 is of the
form U1.V2.s. . . . where (i) all steps in V2 are made by processes in replicas(x), and (ii) s is the
first step such that F(U1.V2.s.)= r1(x0).w1(x1).c1.ra(x1). Assign U1.V2 to Ω . (Case i > 2) Consider
any step Vi+1 to terminate Ta and append it to Ω.

Execution Ω is admissible by ¶. Hence F(Ω) is acceptable. However, in this history transaction
Ta does not terminate. This contradicts the fact that queries are wait-free. Á

Our last theorem shows that SCONSa cannot be maintained under GPR.

Theorem 4.4. No asynchronous failure-free GPR system implements SCONSa.

Proof. (By contradiction.) Consider two distinct objects x and y such that replicas(x) and
replicas(y) are disjoint. Let T1 be an update accessing y, and Ta be a query reading both objects.

Obviously, history h = ra(x0) is acceptable. Note Ua a sequence of steps satisfying Ua =
F(ra(x0)). Because ¶ supports obstruction-free updates, we know the existence of an extension
Ua.U1 of Ua such that F(U1) = r1(y0).w1(y1).c1. By Lemma 4.2, we observe that Ua.U1 is indis-
tinguishable from U1.Ua. Then by Lemma 4.1, there must exist an extension U1.Ua.Va of U1.Ua

admissible by ¶ and such that F(Va)= ra(y1).ca. Finally, since Ua.U1 is indistinguishable from
U1.Ua and U1.Ua.Va is admissible, Ua.U1.Va is admissible too. The history F(Ua.U1.Va) is not in
SCONSa. Contradiction. Á

Each of the above three theorems independently shows that no asynchronous system, even if
it is failure-free, can support both GPR and SI. In particular, even if the system is augmented with
failure detectors [33], a common approach to model partial synchrony, SI cannot be implemented
under GPR. This fact strongly hinders the usage of SI at large scale. In the following sections,
we further discuss implications of this impossibility result. In Chapter 5, we introduce a novel
consistency criterion to overcome it.

43

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

4.3 Discussion

In this section, we discuss the consequences of our impossibility results, with an emphasis on
other consistency criteria than SI.

4.3.1 SSER and Opacity

Observe that Theorem 4.4 also holds if we consider read-write and write-write conflicts (as
showed in Table 2.3) for C°conflict in the definition of obstruction-free updates.

As a consequence, neither SSER, nor Opacity (which is stronger than SSER) is attainable
under GPR. In the case of opacity, this answers negatively to a problem posed by Peluso et al.
[105].

4.3.2 SER

Permissiveness A transactional system ¶ is permissive with respect to a consistency crite-
rion C when every history h 2 C is acceptable by ¶. Permissiveness [67] measures the optimal
amount of concurrency a system allows. If we consider again histories h1 and h2 in the proof of
Theorem 4.2, we observe that both histories are serializable. Hence, every system permissive
with respect to SER accepts both histories. By relying on the very same argument as the one we
exhibit to close the proof of Theorem 4.2, we conclude that no transactional system is both GPR
and permissive with respect to SER. For instance, P-Store [127], a GPR protocol that ensures
SER, does not accept history h8 = r1(x0).w1(x1).c1.r2(x0).r2(y0).w2(y2).c2.

Wait-free Queries. Because of WFQ progress property of SI, a query never forces an update
transaction to abort. This key feature of SI greatly improves performance. Most recent transac-
tional systems that support SER (e.g., [104, 129]) also offer such a progress property. In the case
of SER, this property is a feature of the input acceptance of the protocol.

Our impossibility result also applies to SER as follows. We note that Lemma 4.1 proves
positive-freshness acceptance for SI under standard assumptions (i.e., OFU and WFQ)). If
we assume that Lemma 4.1 holds for conflicting transactions, then Theorem 4.2 applies to
transactional systems ensuring SER. This implies a choice between WFQ, OFU, and GPR.

4.3.3 PSI

In Section 2.2.5, we reviewed PSI as a weaker consistency criterion than SI. PSI allows snapshots
to be non-monotonic, but still requires them to ensure SCONSa. Our impossibility result estab-
lishes that, in order to scale by having a GPR system, a transactional system needs supporting
both non-monotonic and non-strictly consistent snapshots. Thus, while being more scalable than
SI, PSI yet cannot be implemented in a GPR system that also ensures OFU.

44

4.4. CONCLUSION

4.3.4 Circumventing The Impossibility Result

We can sidestep the impossibility result in a transactional system while still ensuring the desired
scalability properties (i.e., GPR and WFQ) as follows:

1. Assuming a synchronous system. The first way of circumventing our impossibility result is
to assume a synchronous system: there exists an upper bound on message delays or speeds of
processes. For example, Pacitti et al. [97] introduce a preventive replication protocol ensuring
GPR and SER. They assume an upper bound on the time required to multicast a message, and
an upper bound on the clock drift between any two processes in the system.

2. Declaring readsets in advance. When a transaction declares objects it accesses as it starts
(before executing a read), a GPR system can install a strictly consistent and monotonic snapshot
just at the start of the transaction. Therefore, such an assumption sidesteps our impossibility
result. This is the approach employed for example in SIPRe [15]. Although the published SIPRe
protocol makes use of atomic broadcast to install a snapshot, we obtain a GPR system that
supports SI by replacing atomic broadcast by a genuine atomic multicast.

3. Weakening the progress property of update transactions. To allow update transactions to
abort even if no other conflicting and pending transaction exists in the system. Clock-SI [48],
and SCORe [104] employ this technique. For instance, authors of SCORe have proposed a GPR
algorithm that supports both SER and WFQ in the failure-free case.
SCORe sidesteps the impossibility result by dropping obstruction-freedom for updates in certain
scenarios. In more detail, this algorithm numbers every version with a scalar. If a transaction Ti

first reads an object x then updates an object y, in case the version of x is smaller than the latest
version of y, say yk, Ti will not be able to read yk, and it will thus abort.
In case of Clock-SI, if clocks of processes are not synchronized, an update transaction Ti can
abort several times even if it is the only transaction being executed in the system. In more detail,
consider transaction Ti that first reads an object x from a process p with a slow clock, and assigns
a time tp as its snapshot timestamp. If it later tries to read an object y, and modify y that is
stored on a process q with an advanced clock, it cannot read versions of objects committed after
tp at process q. Hence, it needs to abort Ti and retries. Transaction Ti can commit only when the
commit timestamp of the latest version of object y becomes smaller than the clock of process p.

4. Weakening consistency. Another technique is to sidestep the impossibility results by weak-
ening consistency guarantees. In the next chapter, we investigate this approach, and introduce a
new consistency criterion that is weakened just enough to circumvent the impossibility results.

4.4 Conclusion

In this chapter, we showed that ensuring snapshot isolation (SI) in a genuine partial replication
system is impossible. To state this impossibility result, we proved that SI is decomposable into a
set of simpler properties, and proved that two of these properties, namely snapshot monotonicity

45

CHAPTER 4. SCALABILITY OF STRONG CONSISTENCY CRITERIA

and strictly consistent snapshots cannot be ensured. As a corollary, we also showed that a GPR
system with obstruction-free updates cannot support SSER, nor Opacity. Moreover, a GPR system
ensuring OFU and WFQ cannot ensure PSI.

46

C
H

A
P

T
E

R 5
NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

Contents

5.1 Definition of NMSI . 48
5.2 Jessy: a Protocol for NMSI . 49

5.2.1 Taking Consistent Snapshots . 50
5.2.2 Transaction Lifetime in Jessy . 53
5.2.3 Execution Protocol . 54
5.2.4 Termination Protocol . 55
5.2.5 Sketch of Proof . 56

5.2.5.1 Safety Properties . 56
5.2.5.2 Scalability Properties . 57

5.3 Ensuring Obstruction-Freedom . 57
5.4 Empirical study . 58

5.4.1 Implementation . 58
5.4.2 Setup and Benchmark . 58
5.4.3 Experimental Results . 60

5.5 Conclusion . 62

47

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

As we studied in Chapter 3, and Chapter 4, none of the previously published strong
consistency criteria is able to ensure the following four scalability properties: (i) WFQ,
(ii) GPR, (iii) forward freshness, and (iv) minimal commitment synchronization. In this

chapter, we introduce a new consistency criterion, named Non-Monotonic Snapshot Isolation
(NMSI), that both satisfies strong safety properties and ensures the above scalability properties.

We also introduce Jessy, a key-value store ensuring NMSI. Jessy uses dependence vectors, a
novel data type that enables the efficient computation of consistent snapshots.

At the end of this chapter, we present our empirical evaluation results regarding the scalability
of NMSI, along with a careful and fair comparison against a number of classical criteria, including
SER, US, SI and PSI .

5.1 Definition of NMSI

NMSI retains the most important properties of SI and PSI, namely snapshots are consistent, a
read-only transaction can commit locally without synchronization, and two concurrent conflicting
updates do not both commit. But, NMSI does not need to respect strictness for consistent
snapshots (i.e., SCONSa or SCONSb), or to ensure monotonicity of snapshots (i.e., MON). More
formally:

Definition 5.1 (Non-monotonic Snapshot Isolation (NMSI)). A history h is in NMSI iff h belongs
to ACA\CONS\WCF.

Applicative Anomalies Table 5.1(a) compares NMSI to other criteria based on the anomalies
that an application might observe. We also include Read-Committed consistency criterion [22]
(RC): a weak criterion (unlike the rest) that is widely used in industrial databases as a default
criterion (e.g., SAP HANA [120], Oracle 11g [110], Microsoft SQL Server 2008 through 2014 [95],
Azure SQL Database [95], and PostgreSQL 8.4 through 9.3 [108]). RC only disallows Dirty Read,
and Dirty Write anomalies.

Write skew, the classical anomaly of SI, is observable under all criteria that ensure minimal
commitment synchronization; thus histories in NMSI also observe this anomaly. Real-time
violation happens when a transaction Ti observes the effect of some transaction T j, but does not
observe the effect of all the transactions that precede T j in real-time. This issue occurs under
serializability as well; this argues that it is not considered a problem in practice. Non-monotonic
snapshots also occur in US (among read-only transactions) and in PSI; following Garcia-Molina
and Wiederhold [57], Sovran et al. [136], we believe that this is a small price to pay for improved
performance.

Scalability Properties With Table 5.1(b), we turn our attention to the scalability properties
of each criterion in a transactional system. To make our comparison fair, we consider that the

48

5.2. JESSY: A PROTOCOL FOR NMSI

Consistency Criteria
Anomalies SSER SER US SI PSI NMSI RC

Dirty Reads x x x x x x x
Non-Repeat. Reads x x x x x x -

Read Skew x x x x x x -
Dirty Writes x x x x x x x
Lost Updates x x x x x x -
Write Skew x x x - - - -

Non-monotonic Snapshot among R-O txns x x x - - - -
Non-monotonic Snapshot among R-O and UP txns x x - - - - -

Real-time Violation x - - - - - -
(a) Disallowed Anomalies (x:disallowed)

Scalability Properties SSER SER US SI PSI NMSI RC
Genuine Partial Replication † † - † † - -

Forward Freshness Snapshot - - - ‡ ‡ - -
Min. Commitment Synchronization ‡ ‡ ‡ - - - -

(b) Scalability Properties (†:Not Possible with OFU and WFQ, ‡:Not Possible)

Table 5.1: Comparing Consistency Criteria

system ensuring each criterion also ensures OFU, and WFQ.

In the previous chapter, we showed that none of SSER, SER, SI and PSI are implementable
under GPR when queries are wait-free and update transactions are obstruction-free.

Peluso et al. [106] show that EUS, and consequently US, can combine GPR and WFQ. NMSI
can also conjointly satisfy these two properties.

As pointed out in Chapter 4, both PSI and SI requires SCONSa (base freshness), thus
disallowing forward freshness. However, NMSI does not have this requirement, hence it allows
forward freshness. Observe that NMSI is weaker than PSI in term of acceptable histories, and
not in term of anomalies.

To avoid the write-skew anomaly, SSER, SER, and US need to certify update transactions with
respect to read-write and write-write conflicts. Hence, they do not provide minimal commitment
synchronization.

In the next section, we introduce Jessy with the NTU progress property (called Jessy). In
Section 5.3, we extend Jessy such that it ensure obstruction-free update.

5.2 Jessy: a Protocol for NMSI

We now describe Jessy, a scalable transactional protocol that ensures NMSI and guarantees the
four scalability properties above. Because distributed locking policies do not scale [61, 145], Jessy
employs deferred update replication: transactions are executed optimistically, then certified by a

49

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

termination protocol. Jessy uses a novel clock mechanism to ensure that snapshots are both fresh
and consistent, while preserving wait-freedom of queries and genuineness. We describe it in the
next section. To help the readability, we defer some proofs to Appendix B.

5.2.1 Taking Consistent Snapshots

Constructing a shared snapshot object, and database checkpointing (i.e., taking consistent
snapshots) are classical problems in distributed system literature [5, 19, 20, 53, 85]. Nevertheless,
in our context, two difficulties arise: (i) multiple updates might be related to the same transaction,
and (ii) the construction should be both genuine and wait-free. This problem has been addressed
in several protocols [106, 129] previously. In this section, we propose another solution. To achieve
the above properties, Jessy uses a novel data type called dependence vectors. Each version of an
object is assigned its own dependence vector. Therefore, the dependence vector of some version xi

reflects all the versions read by Ti, or read by the transactions on which Ti depends, as well as
the writes of Ti itself:

Definition 5.2 (Dependence Vector). A dependence vector is a function V that maps every read
(or write) operation o(x) in a history h to a vector V(o(x)) 2N|Objects| such that:

V(ri(x0))= 0|Objects|

V(ri(xj))=V(wj(xj))
V(wi(xi))=max {V(ri(yj)) | yj 2 rs(Ti)} + ßzi2ws(Ti) 1z

where max V is the vector containing for each dimension z, the maximal z component in the set
V, and 1z is the vector that equals 1 on dimension z, and 0 elsewhere.

To illustrate this definition, consider history h5 below. In this history, transactions T1 and T2

update objects x and y respectively, and transaction T3 reads x then updates y. The dependence
vector of w1(x1) equals h1,0i, and it equals h0,1i for w2(y2). Since transaction T3 reads x1 then
updates y after reading version y2, the dependence vector of w3(y3) equals h1,2i.

h = r1(x0).w1(x1).c1

r2(y0).w2(y2).c2

r3(x1).r3(y2).w3(y3).c3

Consider a transaction Ti and two versions xj and yl read by Ti. We shall say that xj and
yl are compatible for Ti, written compat(Ti, xj, yl), when both V(ri(xj))[x] ∏ V(ri(yl))[x] and
V(ri(yl))[y]∏V(ri(xj))[y] hold. Using the compatibility relation, we can prove that dependence
vectors fully characterize consistent snapshots. To this end, we first prove a technical lemma,
then we state our main theorem.

Lemma 5.1. Consider a history h in WCF, and two transactions Ti and T j in h. Then,

Ti ⇤
§ T j ,8x, y 2Ob jects :8w(x),w(y) 2 Ti £T j : V(wi(xi))>V(wj(yj))

50

5.2. JESSY: A PROTOCOL FOR NMSI

Proof. The proof goes as follows:
• ()) First consider that Ti ⇤ T j holds. By definition of relation ⇤, we know that for some

object z, operations ri(z j) and wj(z j) are in h. According to definition of function V we
have: V(wi(xi)) ∏ V(ri(z j))+ 1x. Besides, always according to the definition of V, it is
true that the following equalities hold: V(ri(z j)) = V(wj(z j)) = V(wj(yj)). Thus, we have:
V(wi(xi)) > V(wj(yj)). The general case Ti ⇤

§ T j is obtained by applying inductively the
previous reasoning.

• (() From the definition of function V, it must be the case that ri(y0j0) is in h with j0 6= 0. We
then consider the following two cases: (Case j0 = j) By definition of relation ⇤, Ti ⇤ T j holds.
(Case j0 6= j) By construction, we have that: Ti ⇤ T j0 . By definition of function V, we have
that V(r j0(yj0))=V(wj0(yj0)). Since V(wi(xi))>V(wj(yj)) holds, V(wj0(yj0))[y]∏V(wj(xj))[y]
is true. Both transactions T j and T j0 write y. Since h belongs to WCF, it must be the case
that either T j ⇤

§ T j0 or that T j0 ⇤
§ T j holds. If T j ⇤

§ T j0 holds, then we just proved that
V(wj(yj)) > V(wj0(yj0)) is true. A contradiction. Hence necessarily T j0 ⇤

§ T j holds. From
which we conclude that Ti ⇤

§ T j is true.
Á

Theorem 5.1. Consider a history h in WCF and a transaction Ti in h. Transaction Ti sees
a consistent snapshot in h iff every pair of versions xl and yj read by Ti is compatible (i.e.,
V(ri(xl))[x]∏V(ri(yj))[x] holds).

Proof. The proof goes as follows:
• ()) By contradiction. Assume the existence of two versions xl and yj in the snapshot of Ti

such that V(ri(xl))[x]<V(ri(yj))[x] holds. By definition of function V, we have V(ri(xl))=
V(wl(xl)) and V(ri(yj)) = V(wj(yj)). Hence, V(wl(xl))[x] < V(wj(yj))[x] holds. Again from
the definition of function V, there exists a transaction Tk 6=0 writing on x such that (i)
V(wj(yj)) ∏ V(wk(xk)) and (ii) V(wj(yj))[x] = V(wk(xk))[x]. Applying Lemma 5.1 to (i), we
obtain T j ⇤

§ Tk. From which we deduce that Ti ⇤
§ Tk. Now since both transactions

Tl and Tk write x and h belongs to WCF, Tl ⇤
§ Tk or Tk ⇤§ Tl holds. From (ii) and

V(wl(xl))[x]<V(wj(yj))[x], we deduce that V(wl(xl))[x]<V(wk(xk))[x]. As a consequence of
Lemma 5.1, Tk ⇤

§ Tl holds. Hence xl øh xk. But Ti ⇤
§ Tk and ri(xl) is in h. It follows that

Ti does not read a consistent snapshot. Contradiction.
• (() By contradiction. Assume that there exists an object x and a transaction Tk on which

Ti depends such that Ti reads version xj, Tk writes version xk, and xj øh xk. First of
all, since h is in WCF, one can easily show that Tk ⇤§ T j. Since Tk ⇤§ T j, Lemma 5.1
tells us that V(wk(xk)) > V(wj(xj)) holds. Since Ti ⇤

§ Tk holds, a short induction on the
definition of function V tells us that V(ri(xj))[x]∏V(wk(xk))|x] is true. Hence, V(ri(xj))[x]∏
V(wk(xk))[x]>V(wj(xj))[x]=V(ri(xj))[x]. Contradiction.

Á

51

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

Despite that in the common case dependence vectors are sparse, they might be large for
certain workloads. For instance, if transactions execute random accesses, the size of each vector
tends asymptotically to the number of objects in the system. To address the above problem,
Jessy employs a mechanism to approximate dependencies safely, by coarsening the granularity,
grouping objects into disjoint partitions and serializing updates in a group as if it was a single
larger object. We cover this mechanism in what follows.

Consider some partition P of Objects. For some object x, note P(x) the partition x belongs to,
and by extension, for some S µObjects, note P(S) the set {P(x) | x 2 S}. A partition is proper for a
history h when updates inside the same partition are serialized in h, that is, for any two writes
wi(xi), wj(yj) with P(x)=P(y), either wi(xi)<h wj(yj) or the converse holds.

Now, consider some history h, and for every object x replace every operation oi(x) in h by
oi(P(x)). We obtain a history that we note hP. The following result links the consistency of h to
the consistency of hP:

Proposition 5.1. Consider some history h. If P is a proper partition of Objects for h and history
hP belongs to CONS, then h is in CONS.

Proof. We observe that for any two transactions Ti and T j:

- If Ti ⇤
§ T j holds in h then Ti ⇤

§ T j holds in hP.
Proof. If Ti ⇤ T j holds in h, then ri(xj) is in h. Thus ri(P(xj)) is in hP. It follows that Ti ⇤ T j

holds in hP. If Ti ⇤
§ T j in h then there exist a set of transactions {T1, . . . ,Tm} such that:

Ti ⇤ T1 . . .⇤ Tm ⇤ T j hold in h. From the result above, we deduce that Ti ⇤ T1 . . .⇤ Tm ⇤ T j

hold in hP. Hence, Ti ⇤
§ T j holds in hP.

- If xi ø xj holds in h then P(xi)øP(xj) holds in hP(x).

For the sake of contradiction, assume that hP is in CONS while h is not in CONS. It follows
that there exist a transaction Ti, some object x and a transaction Tk on which Ti depends such
that in h, Ti reads version xj, Tk writes version xk, and xj øh xk. From the two observations
above, we obtain that Ti ⇤ T j, Ti ⇤

§ Tk and P(xj)øh P(xk) hold in hP. Hence, hP is not consistent.
Contradiction.

Á

Given two operations oi(xj) and ok(yl), let us introduce relation oi(xj)∑P
h ok(yl) when oi(xj)=

ok(yl), or oi(xj)<h ok(yl)^P(x)=P(y) holds. Based on Proposition 5.1, we define below a function
that approximates dependencies safely:

Definition 5.3 (Partitioned Dependence Vector). A function PV is a partitioned dependence
vector when PV maps every read (or write) operation o(x) in a history h to a vector PV(o(x)) 2N|P|

52

5.2. JESSY: A PROTOCOL FOR NMSI

such that:

PV(ri(x0))= 0|P|

PV(ri(xj))=max {PV(wl(yl)) | wl(yl)∑P
h ri(xj)^

°
8k : xj øh xk) wl(yl)∑P

h wk(xk)
¢
}

PV(wi(xi))=max {PV(ri(yj)) | yj 2 rs(Ti)} [{PV(wk(zk)) : wk(zk)∑P
h wi(xi)}+ ßX2P(ws(Ti)) 1X

The first two rules of function PV are identical to the ones that would give us function V on
history hP. The second part of the third rule serializes objects in the same partition

When Jessy uses partitioned dependence vectors and P is a proper partition for h, Theorem 5.1
holds for the following definition of compat(Ti, xj, yl):

Case P(x) 6=P(y). This case is identical to the definition we gave for function V. In other words,
both PV(ri(xj))[P(x)]∏PV(ri(yl))[P(x)] and PV(ri(yl))[P(y)]∏PV(ri(xj))[P(y)] must hold.

Case P(x)=P(y). This case deals with the fact that inside a partition writes are serialized. We
have (i) if PV(ri(xj))[P(y)]>PV(ri(yl))[P(y)] holds then yl =max {yk | wk(yk)∑P

h wj(xj)}, or
symmetrically (ii) if PV(ri(yl))[P(x)]>PV(ri(xj))[P(x)] holds then xj =max {xk | wk(xk)∑P

h
wl(yl)}, or otherwise (iii) the predicate equals true.

We prove next that the “if” part of Theorem 5.1 holds for the above definition of compatibility:

Proposition 5.2. Consider a history h in NMSI and a transaction Ti in h. If every pair of
versions xj and yl read by Ti is compatible, then transaction Ti sees a consistent snapshot in h

Proof. Using a reasoning identical to the one we depicted in the proof of Theorem 5.1, we can
prove that hP belongs to CONS. Then, from Proposition 5.1, we know that if hP belongs to CONS,
then h belong to CONS. Á

5.2.2 Transaction Lifetime in Jessy

Jessy is a distributed system of processes which communicate by message passing. Each process
executing Jessy holds a local data store denoted as ds. A data store contains a finite set of tuples
(x,v, i), where x is an object (data item), v a value, and i a version. Jessy supports GPR, and
consequently two processes may store different set of objects. We recall that for an object x, we
note replicas(x) the processes that store a copy of x, and by extension, replicas(X) the processes
that store one of the objects in X .

When a client (not modeled) executes a transaction Ti with Jessy, Ti is handled by a coordi-
nator, denoted coord(Ti). The coordinator of a transaction can be any process in the system. In
what follows, replicas(Ti) denotes the replica set of Ti, that is replicas(rs(Ti)[ws(Ti)).

A transaction Ti can be in one of the following four states at some process:
• Executing: Each non-termination operation oi(x) in Ti is executed optimistically (i.e.,

without synchronization with other replicas) at the transaction coordinator coord(Ti). If
oi(x) is a read, coord(Ti) returns the corresponding value, fetched either from the local

53

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

Algorithm 1 Execution Protocol of Jessy

1: Variables:
2: ds, submitted, committed, aborted
3:
4: execute(READ, x,Ti)
5: eff: if 9(x,v, i) 2 up(Ti) then return v
6: else
7: send

≠
REQ,Ti , x

Æ
to replicas(x)

8: wait until received hREPLY,Ti , x,vi
9: return v

10:
11: execute(WRITE, x,v,Ti)
12: eff: up(Ti)√ up(Ti)[{(x,v, i)}
13:

14: remoteRead(x,Ti)
15: pre: received hREQ,Ti , xi from q
16: 9(x,v, j) 2 ds : 8yl 2 rs(Ti) : compat(Ti , x j , yl)

17: eff: send
≠

REPLY,Ti , x,v
Æ

to q
18:
19: execute(TERM,Ti)
20: eff: submitted√ submitted[{Ti}
21: wait until Ti 2 decided
22: if Ti 2 committed then return COMMIT

23: return ABORT

24:

replica or a remote one. If oi(x) is a write, coord(Ti) stores the corresponding update value
in a local buffer, enabling (i) subsequent reads to observe the modification, and (ii) a
subsequent commit to send the write-set to remote replicas.

• Submitted: Once all the read and write operations of Ti have executed, Ti terminates, and
the coordinator submits it to the termination protocol. The protocol applies a certification
test on Ti to enforce NMSI. This test ensures that if two concurrent conflicting update
transactions terminate, one of them aborts.

• Committed/Aborted: When Ti enters the Committed state at r 2 replicas(Ti), its updates (if
any) are applied to the local data store. If Ti aborts, Ti enters the Aborted state.

5.2.3 Execution Protocol

Algorithm 1 describes the execution protocol in pseudocode. These protocols are explained as a set
of atomic actions guarded by pre-conditions. An action is executed when its precondition becomes
true. Logically, the protocol can be divided into two parts: action remoteRead(), executed at some
process, reads an object replicated at that process in a consistent snapshot; and the coordinator
coord(Ti) performs actions execute() to execute Ti and to buffer the updates in up(Ti).

The variables of the execution protocol are: ds, the local data store; submitted contains locally-
submitted transactions; and committed (respectively aborted) stores committed (respectively
aborted) transactions. We use the shorthand decided for committed[aborted.

Upon a read request for x, coord(Ti) checks against up(Ti) if x has been previously updated
by the same transaction; if so, it returns the corresponding value (line 5) 1. Otherwise, coord(Ti)
sends a read request to the processes that replicate x (lines 8 to 9). Conversely, when a process

1This mechanism is to ensure that every object is read at most once for every transaction in a history h.

54

5.2. JESSY: A PROTOCOL FOR NMSI

Algorithm 2 Termination Protocol of Jessy

1: Variables:
2: ds, submitted, committed, aborted, Q
3:
4: submit(Ti)
5: pre: Ti 2 submitted
6: ws(Ti) 6=?
7: eff: AM-Cast(Ti) to replicas(ws(Ti))
8:
9: deliver(Ti)

10: pre: Ti =AM-Deliver()
11: eff: Q√Q±hTii
12:
13: vote(Ti)
14: pre: Ti 2Q\decided
15: 8T j 2Q, T j <Q Ti) T j 2 decided
16: eff: v √ certify(Ti)
17: send

≠
VOTE,Ti ,v

Æ
to replicas(ws(Ti))[{coord(Ti)}

18:

19: commit(Ti)
20: pre: outcome(Ti) 6=?
21: eff: foreach (x,v, i) in up(Ti) do
22: if x 2 ds then ds√ ds[{(x,v, i)}
23: committed√ committed[{Ti}
24:
25: abort(Ti)
26: pre: ¬outcome(Ti)
27: eff: aborted√ aborted[{Ti}
28:

receives a read request for object x that it replicates, it returns a version of x which complies with
Theorem 5.1 (lines 15 to 17).

Upon a write request of Ti, the process buffers the update value in up(Ti) (line 12). During
commitment, the updates of Ti will be sent to all replicas holding an object that is modified by Ti.

When transaction Ti terminates, it is submitted to the termination protocol (line 20). The
execution protocol then waits until Ti either commits or aborts, and returns the outcome.

5.2.4 Termination Protocol

Algorithm 2 depicts the termination protocol of Jessy. It accesses the same four variables ds,
submitted and committed, along with a FIFO queue named Q.

In order to satisfy GPR, the termination protocol uses a genuine atomic multicast primitive
[66, 126]. This requires that either (i) we form non-intersecting groups of replicas, and an
eventual leader oracle is available in each group, or (ii) that a system-wide reliable failure
detector is available. The latter setting allows Jessy to tolerate a disaster [122].

To terminate an update transaction Ti, coord(Ti) atomic-multicasts it to every process that
holds an object written by Ti. Every such process p certifies Ti by calling function certify(Ti)
(line 16). This function returns true at process p, iff for every transaction T j committed prior to
Ti at p, if T j write-conflicts with Ti, then Ti depends on T j. Formally:

certify(Ti)
4= 8T j 2 committed : ws(Ti)\ws(T j) 6=?) Ti ⇤

§ T j

55

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

Under partial replication, a process p might store only a subset of the objects written by Ti,
in which case p does not have enough information to decide on the outcome of Ti. Therefore,
we introduce a voting phase where replicas of the objects written by Ti send the result of their
certification test in a VOTE message to every process in replicas(ws(Ti))[{coord(Ti)} (line 17).

A process can safely decide on the outcome of Ti when it has received votes from a voting
quorum for Ti. A voting quorum Q for Ti is a set of replicas such that for every object x 2ws(Ti),
the set Q contains at least one of the processes replicating x. Formally, a set of processes is a
voting quorum for Ti iff it belongs to vquorum(Ti), defined as follows:

vquorum(Ti)
4= {Q µ¶ | 8x 2ws(Ti) : 9 j 2Q\replicas(x)}

A process p makes use of the following (three-values) predicate outcome(Ti) to determine
whether some transaction Ti commits, or not:

outcome(Ti)
4=

if ws(Ti)=?
then true

else if 8Q 2 vquorum(Ti),9q 2Q,
¬received hVOTE,T, i from q

then ?
else if 9Q 2 vquorum(Ti),8q 2Q,

received hVOTE,T, truei from q
then true

else false

Observe that as long as the predicate outcome(Ti) equals ?, actions of commit(Ti) cannot be
executed. To commit transaction Ti, process p first applies Ti ’s updates to its local data store,
then p adds Ti to variable committed (lines 20 to 23). If instead Ti aborts, p adds Ti to aborted
(lines 26 to 27).

5.2.5 Sketch of Proof

This section shows that every history accepted by Jessy is in NMSI. Then, it proves that Jessy
satisfies the four scalability properties we listed in Section 3.1. Both explanations are given in
the broad outline, and a complete treatment is deferred to Appendix B.

5.2.5.1 Safety Properties

Since transactions in Jessy always read committed versions of the shared objects, Jessy ensures
ACA. Theorem 5.1 states that transactions observe consistent snapshots, hence CONS is also
satisfied. It remains to show that all the histories accepted by Jessy are write-conflict free (WCF).

56

5.3. ENSURING OBSTRUCTION-FREEDOM

Assume by contradiction that two concurrent write conflicting transactions Ti and T j both
commit. Note pi (resp. p j) the coordinator of Ti (resp. T j), and let x be the object on which the
conflict occurs (i.e., x 2ws(Ti)\ws(T j)). According to the definition of function outcome, pi (resp.
p j) has received a yes vote from some process qi (resp. q j). Hence, Ti (resp. T j) is in variable Q

at process qi (resp. q j) before it sends its vote message. One can show that either once qi sends
its vote, T j <Q Ti holds, or once q j sends its vote, Ti <Q T j holds. Assume the former case holds
(the proof for the latter is symmetrical). Because of line 15 in Algorithm 2, process qi waits until
T j is decided before sending a vote for Ti. Due to the properties of atomic multicast, and the
fact that Q is FIFO, T j should be committed at qi. Thus, certify(Ti) returns false at process qi;
contradiction.

5.2.5.2 Scalability Properties

We observe that in the case of a read-only transaction Jessy does not execute line 7 of Algorithm 2,
and that the function outcome always returns true. Hence, such a transaction is wait-free. As
previously mentioned, a transaction is atomic-multicast only to the replicas holding an object
written by the transaction. Hence, the system ensures GPR. Forward freshness is reached by the
compat() function, and the fact that we can read the most recent committed version of an object as
long as it is consistent with previous reads. Finally, since only replicas holding objects modified by
a transaction participate in its commitment, Jessy has minimum commitment synchronization.

5.3 Ensuring Obstruction-Freedom

In Jessy, a transaction Ti commits once its coordinator receives a voting quorum from all
participating groups (i.e., replicas of ws(Ti)). However, some replica p inside a group may be slow,
and commit Ti later. Therefore, some transaction T j can read from p an older version of an object
x that is modified by Ti. If transaction T j later tries to update x, it must abort. Hence, Jessy
cannot ensure OFU.

In this section, we introduce a variant of Jessy that also ensures OFU, called Jessyofu. The
idea is that we modify Jessy such that once a transaction Ti commits at its coordinator, its effects
become visible to every other transaction in the system.

We can transform Jessy to Jessyofu with the following changes:

1. coord(Ti) should read from a quorum. In Jessy, a coordinator returns as long as the first
replica holding an object replies back (see line 8). In Jessyofu, it must wait to receive read replies
from a quorums qr of replicas holding an object.

2. coord(Ti) should write to a quorum. In Jessy, a coordinator returns as soon as it receives a
vote from a replica in each replica group (see definition of outcome(Ti)). In Jessyofu, a coordinator
must wait to receive votes from a quorums qw of replicas holding an object such that qr \ qw 6=?.

57

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

3. instead of also sending votes to coord(Ti) once Ti is certified (line 17), replicas should send
their votes to the coordinator when the outcome of Ti is known (i.e., after line 23).

5.4 Empirical study

5.4.1 Implementation

Jessy is written in Java inside our framework called (G-DUR), which we will explain in details in
Chapter 6. We implemented Jessy as a middleware based on Algorithms 3 and 4. To minimize
noise, and to focus on the scalability and synchronization costs in our experiments, the database
is an in-memory concurrent hashmap, even though Jessy normally uses BerkeleyDB.

We also implemented a number of replication protocols that are representative of different
consistency criteria (SER, SI, US and PSI). The protocols all support partial replication; further-
more the US and SER implementations ensure GPR. The following table summarizes the criteria
and the corresponding protocols:

Criterion Protocol Difference with the original protocol
SER P-Store [127] -
US GMU [106] AM-Cast instead of 2PC
SI Serrano07 [131] -

PSI Walter [136] AM-Cast instead of 2PC

Our implementations closely follow the published specification of each protocol and are highly
optimized. As they are all based on deferred update, their structure is very similar, and we were
able to use the Jessy framework with relatively small variations. All our implementations use
genuine atomic multicast [66, 126], even when the original used 2PC. The common structure, the
use of the same multicast, and careful optimization ensure that the comparison is fair.

The protocols all support wait-free queries, except for SER, which trades it for GPR. Since the
performance of US represents an upper bound on the performance of SER with wait-free queries,
this decision allows us to isolate the cost of not ensuring the property. We also implemented a
(weakly-consistent) deferred-update RC, to show the maximum achievable performance.

5.4.2 Setup and Benchmark

Figure 5.1 sums-up our experimental settings. All experiments are run on different sites of the
French Grid’5000 experimental testbed [62], as illustrated in Figure 5.1(a). We always use four
cores of machines with 2.2 GHz to 2.6 GHz processors, and a maximum heap size of 4 GB. For
each server machine, two additional client machines generate the workload. Thus, there is no
shared memory between clients and servers.

58

5.4. EMPIRICAL STUDY

Bordeaux

Toulouse

Rennes

Sophia

Nancy

20
11

18

20

21

15

18

20

22

18

(a) Sites and Latencies (in ms)

Key Selection Operations
Distribution Read-Only Transaction Update Transaction

A Zipfian 4 Reads 2 Reads, 2 Updates
B Uniform 4 Reads 3 Reads, 1 Update
C Uniform 2 Reads 1 Read, 1 Update

(b) Workload Types

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

Number of Sites Involved in Each Transaction

Workload A
Workload B (2 Sites)
Workload B (3 Sites)
Workload B (4 Sites)
Workload B (5 Sites)

Workload C

(c) CDF of Number of Sites Involved in Each Transaction

Figure 5.1: Experimental Settings

Every object is replicated across a multicast group of three replicas. We assume that each
group as a whole is correct, i.e., it contains a majority of correct replicas. Every group contains
105 objects, replicated at each replica in the group, and each object has a payload size of 1 KB.
Every group is replicated at a single site (no disaster tolerance). To study the scalability effects of
consistency criteria in geo-replication, all our experiments are performed with global transactions.
Clients are simply distributed uniformly way between the sites.

We use the Yahoo! Cloud Serving Benchmark (YCSB) [37], modified to generate transactional
workload. This benchmark is used for evaluations in several other transactions protocols (such as

59

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

 0
 100
 200
 300
 400

Update Transaction Termination Latency (ms)

 0
 0.05
 0.1

 0.15
 0.2

 0.25

Update Transaction Abort Ratio

 0

 4

 8

 12

10%
20%

30%
40%

50%
10%

20%
30%

40%
50%

10%
20%

30%
40%

50%
10%

20%
30%

40%
50%

10%
20%

30%
40%

50%
10%

20%
30%

40%
50%

Commitment Synchronization Ratio

RCNMSIPSIUSSISER

Figure 5.2: Update Transaction Termination Latency (on 4 sites)

[9, 48, 104, 106, 150]). Figure 5.1(b) describes the workloads used. For each workload, one client
machine emulates multiple client threads in parallel, each being executed in closed loop. In all
our experiments, a client machine executes at least 106 transactions. Figure 5.1(c) plots the CDF
of the number of sites involved in each transaction.

The code of all the protocols, benchmarks, and scripts we used in the experiments are publicly
available [116].

5.4.3 Experimental Results

We first study the impact of freshness and commitment synchronization on the latency of update
transactions. Figure 5.2 depicts our results for workload A. The experiment is performed by
varying the proportion of update/read-only transactions from 10%/90% (left) to 50%/50% (right).
The load is limited so that the CPU of each replica is never saturated. The zipfian distribution is
scrambled in order to scatter popular keys across different sites.

Forward Freshness: The abort ratio of update transactions, in the second graph of Figure 5.2,
shows the effect of forward freshness. As expected, NMSI and US have the smallest abort rate,
thanks to their fresher snapshots. The abort rate of US is one or two percent better than NMSI.
This is mainly because NMSI is faster than US, and therefore it processes more transactions. In
contrast, PSI and SI both take snapshots at the start of a transaction (SCONSa), resulting in an
almost identical abort ratio, higher than NMSI and US. SER has the highest abort rate because

60

5.4. EMPIRICAL STUDY

in our implementation only the certification test ensures that a transaction reads a consistent
snapshot.

Minimal Commitment Synchronization: The third graph of Figure 5.2 studies the effect
of commitment synchronization. We measure here the ratio of termination latency over solo
termination latency, i.e., the time to terminate a transaction in the experiment divided by the
time to terminate a transaction without contention. The ratio for RC equals 1, the optimum.
This means that increasing concurrency does not increase the latency of update transactions.
NMSI also has a small commitment synchronization cost. It is slightly higher for PSI, because
PSI is non-genuine, and propagates when committing. This, along with its higher abort ratio,
results in a termination latency increase of approximately 10 ms. SI has the highest termination
latency, due to a high commitment convoy effect (because it is non-genuine), and a high abort
ratio. A convoy effect occurs when the certification of a global transaction Ti is delayed by another
transaction, even though Ti can be certified [127]. SER low termination latency is explained by
the fact that SER synchronizes both read-only and update transactions, resulting in lower thread
contention than the criteria that support wait-free queries.

We now turn our attention to the impact of wait-free queries and genuine partial replication
on performance. To this goal, we measure the maximal throughput of each criterion as the number
of sites increases. Figure 5.3 depicts our results for workload B with 90% read-only transactions,
and 10% update transactions.

Wait-Free Queries: According to Figure 5.3, ensuring WFQ have a great performance impact.
Recall that our implementation of SER favors GPR over WFQ. Observe that the maximum
throughput of SER is at least two times lower than the other criteria. This emphasizes how
crucial this property is for scalability.

Genuine Partial Replication: To see the effects of GPR on system performance, we first
compare PSI and NMSI. If the system consists in a single site, their throughput is almost
identical. However, PSI does not scale as well as NMSI as the number of sites increases: NMSI
scales as linearly as RC; with five sites, its throughput is almost double of PSI. Although SI
outperforms US up to three sites, it falls behind with four sites or more, and with five sites, its
throughput drops substantially due to non-genuineness. Under four sites the effect is small, but
with four or more sites, genuineness pays off, and US outperforms SI. Since US does not minimize
commitment synchronization, its synchronization cost becomes high at 5 sites, decreasing its
throughput.

We close this empirical evaluation by a detailed comparison of the scalability performance of
NMSI with respect to other criteria.

61

CHAPTER 5. NMSI: NON-MONOTONIC SNAPSHOT ISOLATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SER
SI U

S
PSI

N
M

SI

R
C

SER
SI U

S
PSI

N
M

SI

R
C

SER
SI U

S
PSI

N
M

SI

R
C

SER
SI U

S
PSI

N
M

SI

R
C

SER
SI U

S
PSI

N
M

SI

R
C

T
h
ro

u
g
h
p
u
t

(K
tp

s)

5 Sites4 Sites3 Sites2 Sites1 Site

Figure 5.3: Maximum Throughput of Consistency Criteria

Overall Scalability: Figure 5.3 shows that performance of NMSI is comparable to RC, and
between two to fourteen times faster than well-known strong consistency criteria. Our last
experiment addresses the scalability of NMSI when the number of sites is constant. To this
goal, we use workload C and four sites. Figure 5.4 shows our results. The load increases from
left to right. We also vary the proportion of update/read-only transactions, between 10%/90%
to 30%/70% (bottom to top). Since workload C has few reads, SER and US do not suffer much
from non-minimal commitment synchronization. For a given criterion, termination latency varies
from a low end, with 10% of update transactions, to a high end with 30% of update transactions.
The throughput of NMSI is similar to RC, with excellent termination latency, thanks to the
combination of GPR and forward freshness. Similarly, these same properties help US to deliver
better performance than PSI with a lower termination latency, when the proportion of updates
reaches 30%.

5.5 Conclusion

This chapter introduces Non-Monotonic Snapshot Isolation (NMSI). NMSI is the strong consis-
tency criterion gathering the following four properties: Genuine Partial Replication, Wait-Free
Queries, Forward Freshness Snapshot, and Minimal Commitment Synchronization. The conjunc-
tion of the above properties ensures that NMSI completely leverages the intrinsic parallelism of
the workload and reduces the impact of concurrent transactions on each others. We also assess
empirically these benefits by comparing our NMSI implementation with the implementation of

62

5.5. CONCLUSION

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000

T
e

rm
in

a
tio

n
 L

a
te

n
cy

 o
f
U

p
d

a
te

 T
ra

n
sa

ct
io

n
s

(m
s)

Throughput (tps)

SER

US

PSI

RC

NMSI

Figure 5.4: Comparing the throughput and termination latency of update transactions for differ-
ent protocols

several replication protocols representative of well-known criteria. Our experiments show that
NMSI is close to RC (i.e, the weakest criterion) and up to two times faster than PSI.

63

C
H

A
P

T
E

R 6
G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Contents

6.1 Overview . 68
6.2 Execution . 70

6.2.1 Version Tracking . 71
6.2.2 Picking a Version . 72

6.3 Termination . 72
6.3.1 Group Communication . 73
6.3.2 Two-Phase Commit . 75
6.3.3 Fault-Tolerance . 76

6.4 Realizing Protocols . 77
6.4.1 P-Store . 77
6.4.2 S-DUR . 77
6.4.3 GMU . 78
6.4.4 Serrano07 . 78
6.4.5 Walter . 79
6.4.6 Jessy2pc . 79

6.5 Implementation . 80
6.6 Case Study . 80

6.6.1 Setup and Benchmark . 81
6.6.2 Comparing Transactional Protocols . 82
6.6.3 Understanding Bottlenecks . 84
6.6.4 Pluggability Capabilities . 84

65

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

6.6.5 Dependability . 85
6.6.5.1 Disaster Prone . 85
6.6.5.2 Disaster Tolerant . 86

6.7 Related Work . 87
6.8 Conclusion . 89

66

In the previous chapters, we introduced several consistency criteria, along with the protocols
ensuring them, and performed an anomalistic comparison (i.e., comparison in terms of
anomalies) between them. It still remains difficult to understand what are the important

differences between protocols, and to make an objective, scientific comparison of their real-world
behavior.

In this chapter, we propose an approach to this issue between empirical and formal: we
compare them by using implementation variants. Our insight is that many deferred update
replication (DUR) protocols (such as [12, 100, 103, 104, 106, 117, 125, 127, 129–131, 136]) share
a common structure, and differ only by specific instantiations of a few generic functions. For
instance, they all have a read phase, differing by their choice of which specific object version
to read; and a termination phase, differing only by how they detect and resolve concurrency
conflicts.

We express this insight as a common algorithmic structure, with well-identified realization
points. This generic structure is instantiated into a specific protocol by selecting appropriate
plug-ins from a library. For instance, for a serializable protocol, the read plug-in will select the
most recent committed version of an object, and the termination plug-in will abort any transaction
if it is concurrent with an already-committed conflicting transaction.

We implement this structure as a generic transactional middleware, called Generic DUR
(G-DUR). G-DUR implements the generic structure, and offers a library of highly-optimized plug-
ins. In particular, G-DUR supports the following customizations: (i) Different optimistic read
protocols, differing by their versioning mechanisms and their freshness guarantees. (ii) Various
certification procedures, differing by the amount of transactions they handle in parallel and the
way they manage concurrency conflicts. (iii) Different commitment protocols, based on the group
communication (atomic broadcast or multicast), Two-Phase commit, or Paxos Commit.

By mixing-and-matching the appropriate plug-ins, it is relatively easy to obtain a high-
performance implementation of a protocol. We leverage this capability in an extensive experimen-
tal evaluation that we conduct in a geo-replicated environment.

(1) We tailor G-DUR to implement six prominent transactional protocols [106, 117, 127, 129,
131, 136]. Implementation of these protocols in G-DUR require only 200 to 600 lines of code. We
also evaluate them empirically in an apples-to-apples comparison, which clearly brings out the
differences between the protocols, and between the consistency criteria they implement. Our
study shows that they have well-separated performance domains and, it enables us to precisely
identify their respective limitations.

(2) We show how a developer can use G-DUR to understand finely the limitations of a protocol.
We take a recently published protocol [106], and identify its bottlenecks by methodically replacing
its plugs-ins by weaker ones.

(3) The previous approach also helps a developer to enhance existing protocols. We illustrate
this point by presenting a variation of P-Store [127] that leverages workload locality to perform

67

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Notation Meaning Notation Meaning
x, y object Ti, i 2N transaction
xi version of x written by Ti oi(x) Ti reads or writes object x

coord(Ti) coordinator of Ti rs(Ti), ws(Ti) read and write set of Ti

Ti “ T j Ti and T j are concurrent ¶ set of all replicas

Table 6.1: Notations

up to 70% faster than the original protocol.
(4) In our last set of experiments, we evaluate the cost of various degrees of dependability.

Based on a protocol ensuring serializability, we study the price of tolerating failures by varying
the replication degree and the commitment algorithm.

The remainder of this chapter is organized as follows: We give an overview of the transactional
middleware at core of G-DUR in Section 6.1. Section 6.2 details the execution phase of G-DUR,
and we explain its termination, and atomic commitment protocols in Section 6.3. In Section 6.4,
we show how to realize various protocols in G-DUR. The implementation of G-DUR is covered in
Section 6.5. In Section 6.6, we conduct our experimental evaluation. We review related work in
Section 6.7, and we conclude in Section 6.8.

6.1 Overview

Deferred Update Replication (DUR) is a widely used approach to build a fault-tolerant transac-
tional datastore. Under the hood, this store is distributed and replicated across multiple replicas.
Replicas synchronize each other to offer clients a consistent and live access to the datastore.

G-DUR is designed as a generic, tailorable, implementation of DUR. Figure 6.1 presents the
global architecture of the middleware. Clients submit their transactions to G-DUR instances. A
client may execute a transaction interactively, i.e., G-DUR does not require all the transactional
code to be submitted at once. Certain optimizations are nevertheless possible if such an assump-
tion holds. A transaction starts by a begin operation, followed by one or more CRUD operations
(i.e., Create, Read, Update, or Delete) , and ends with commit or abort. Create, update, and delete
operations are called write operations in what follows.

A G-DUR instance coordinates the transactional requests it receives from a client. To that
end, an instance (i.e., a replica) holds a local datastore containing a subset of the globally
available data, and it executes two customizable execution and termination protocols (see bottom
of Figure 6.1). The execution protocol is responsible for reading data and for buffering after-values.
The termination protocol handles the propagation of the transaction side effects, its commitment
and the persistence of after-values.

At some G-DUR instance, a transaction Ti, can be in four distinct states: Executing, Submitted,
Committed or Aborted. We comment on each of these states below. Table 6.1 recalls a summary
of the notations used in the remainder of this chapter.

68

6.1. OVERVIEW

!"#$%&
!!!!"#$%!&'()*+,-./!

'())$*&

01%$#!

2./+*.3(!
4!

!"#$%&'(

56(37+,-.!

ͻ#(*8!*'')-'),*+(!9()/,-./!
ͻ:7;;()!*;+()19*<7(/!

=()>,.*+,-.!

ͻ?)-'*@*+(!!
ͻ"->>,+A*B-)+!

ͻ?()/,/+!*;+()19*<7(/!

56(37+,-.

ͻ#(*8!*'')-'),*+(!9()/,-./
ͻ:7;;()!*;+()19*<7(/

=()>,.*+,-.

ͻ?)-'*@*+(!
ͻ"->>,+A*B-)+

ͻ?()/,/+!*;+()19*<7(/

%C!

"
#
$
%
!

01%$#!

2./+*.3(!

01%$#!

2./+*.3(!

Figure 6.1: G-DUR Architecture

- Executing: Each operation oi(x) in Ti is executed speculatively at the coordinator, i.e., at
the replica that receives the transaction from the client. If oi(x) is a read, the coordinator returns
the corresponding value, fetched either from the local replica or a remote one. If oi(x) is a write,
the coordinator stores the corresponding update value in a local buffer, enabling (i) subsequent
reads to observe the modified value, and (ii) the subsequent commit to send the after-values to
remote replicas.

- Submitted: Once all the read and write operations of Ti have executed, the coordinator
submits it for termination. This includes synchronizing with the concerned replicas, and a
certification check to satisfy the safety conditions of the implemented consistency criterion.

- Committed/Aborted: If certification is successful, Ti enters the Committed state, and every
process q 2 replicas(Ti) applies the transaction’s after-values (if any) to its copy of the datastore.
Otherwise, Ti aborts, and enters the Aborted state. Consequently, its after-values are discarded.

Building upon the work of Wiesmann et al. [147], our key insight in the design of G-DUR is
that all the DUR protocols satisfy the above description. In the next sections, we give additional
detail on our generic execution and termination protocols. These protocols are explained as a set

69

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Algorithm 3 Execution protocol - code at process p

1: Variables:
2: ds, committed, aborted, executing, submitted
3:

4: execute(BEGIN,Ti)
5: pre: Ti › executing[executed
6: eff: executing√ executing[{Ti}
7: init(Ti)
8:

9: execute(READ,Ti, x)
10: pre: Ti 2 executing
11: eff: if 9xi 2ws(Ti) then return xi

12: else if isLocal(x) then
13: return localRead(x)
14: else
15: send hREQ,Ti, xi to q 2 replicas(x)
16: wait until
17: received hREPLY,Ti, xji from q
18: return xj

19:

20: execute(WRITE,Ti, x)
21: pre: Ti 2 executing
22: eff: ws(Ti)√ws(Ti)[{xi}
23:

24: execute(COMMIT,Ti)
25: pre: Ti 2 executing
26: eff: submit(Ti)
27:

28: localRead(Ti, x)
29: pre: choose(x,Ti) 6=?
30: eff: let xj 2 choose(x,Ti)
31: return xj

32:

33: remoteRead(Ti, x, q)
34: pre: received hREQ,Ti, xi from q
35: choose(x,Ti) 6=?
36: eff: let xj 2 choose(x,Ti)
37: send

≠
REPLY,Ti, xj

Æ
to q

38:

of atomic actions guarded by pre-conditions. The customizable points (called realization points)
appear as functions whose names are underlined and in blue in the algorithms, e.g., choose().
Concretely, a realized protocol will define the set of plug-ins to be called in lieu of the realization
points.

6.2 Execution

Algorithm 3 shows the pseudo-code of the execution protocol from the perspective of a G-DUR
instance (replica p). The description refers to the following variables: We note ds the local (partial)
copy of the datastore. Variable committed, aborted, executing and submitted refer to four sets
that serve to log the transactions that the replica executes.

A transaction Ti starts when action execute(BEGIN,Ti) is invoked at a replica p. In such
a case, we say that p is the coordinator of Ti, denoted coord(Ti). Action execute(READ,Ti, x)
describes how Ti reads some object x. First, coord(Ti) checks against the buffer ws(Ti) in case
Ti previously updated x. Otherwise, if the local datastore contains a copy of x, coord(Ti) reads
it (lines 12 to 13). If none of the previous cases hold, coord(Ti) sends an (asynchronous) read
request to some replica holding x (line 15). Such a request is re-iterated to another replica, in
case no answer is returned after some time (not covered in Algorithm 3).

Local (i.e., the coordinator is p) and remote reads (when the coordinator has requested a read

70

6.2. EXECUTION

from p) are handled by the actions localRead and remoteRead respectively. In both cases, the
plug-in for choose selects a version that complies with the consistency criterion’s versioning rules.
We shall detail shortly how.

Action execute(WRITE,Ti, x) describes the processing of a write request by Ti at the coordinator
coord(Ti). The middleware buffers the update value in ws(Ti) (line 22).

When the execution reaches the end of the transaction, action execute(COMMIT,Ti) submits Ti

to the termination protocol line 26). The execution algorithm then waits until Ti either commits
or aborts, and returns the outcome.

When the termination protocol commits a transaction, it stores its modifications in the
datastore. Depending on the protocol realized, one or more versions of an object may exist
simultaneously in ds. The realization point choose (line 29 in Algorithm 3) abstracts which
version is selected when the replica resolves a read request. G-DUR provides a convenient and
generic support for tracking and choosing versions. We detail it in the next sections.

6.2.1 Version Tracking

G-DUR supports a generic mechanism for numbering, and selecting different versions of objects.
The choice of a version depends on the versioning mechanism of a datastore. Recall that when
a transaction Ti writes to object x, we say that it creates version xi. Given some history h, we
abstract a versioning mechanism £ as a mapping that associates to each version xi 2 h, a version
number £(xi) taken from some partially ordered set (V,<).

Several versioning mechanisms have been proposed in the past. Their implementations often
rely on timestamps (TS) [80], vector clocks (VC) [94] or version vectors (VV) [8, 99]. More recently,
Sovran et al. [136] and Sciascia and Pedone [129, Section E] discovered independently the concept
of vector timestamps (VTS) that allows the computation of partially consistent snapshots at the
cost of communicating in the background with all replicas. The GMU vectors (GMV) of Peluso
et al. [106] do not have this drawback, but they do not guarantee the monotonicity of snapshots.
In Chapter 5, we also introduced Partitionable dependence vectors (PDV) that offers a mechanism
close to GMV. In the current state of the implementation, G-DUR supports the VV, VTS, GMV
and PDV versioning mechanisms, but more can be added.

Workload contention, liveness of read-only transactions and storage cost, all influence the
choice of a versioning mechanism. For instance, some particular DUR protocol may use a central
sequencer that assigns timestamps for its simplicity even though the sequencer can become a
potential bottleneck. The dimension of V usually varies from one to the size of the data set or the
number of storage nodes. Recently, Peluso et al. [107] prove an ≠(min(m,n)) lower bound on the
dimension of V with n = |¶| when the datastore is strictly disjoint access parallel.1

1 We recall that a datastore is strictly disjoint access parallel when two non-conflicting transactions never contend
on the same base object, that is on any object in use at the implementation level [64]. This definition generalizes the
concept of genuine partial replication.

71

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

6.2.2 Picking a Version

The realization of function choose by a DUR protocol fits in two the following categories:
(i) chooselast: it returns the latest version of the object in the sense of <.
(ii) choosecons: it returns a version consistent with the previous reads.

The first mechanism is straightforward, but requires to abort transactions that did not read a
consistent snapshot. In the second case, G-DUR abstracts the dynamic construction of consistent
snapshots, on the course of an execution, with a version compatibility test. This test takes as input
two version numbers £(xi) and £(yj), and it outputs true iff {xi, yj} forms a consistent snapshot
according to the versioning mechanism £. Upon executing a read request from transaction Ti on
some object x, choosecons returns the latest version of x that is compatible with all the versions
read previously by Ti.

6.3 Termination

Algorithm 4 depicts the pseudo-code of the termination protocol in G-DUR. It accesses the same
variables as the execution protocol, along with a FIFO queue named Q and a variable called AC.
This latter variable specifies a particular atomic commitment algorithm; we shall detail its role
shortly. When a transaction Ti is submitted for termination, the coordinator first computes the
set of objects required to certify Ti. Depending on the protocol that is realized, certifying_obj(Ti)
at line 13 returns one of the following sets of objects;

- ?: an empty set allows a transaction Ti to commit without synchronization in the protocol
under construction. A typical use case is to ensure that a read-only transaction is wait-free.

- ws(Ti): in this case, the objects modified by transaction Ti are certified.
- ws(Ti)[rs(Ti): both the readset and the writeset of Ti are involved in certification. Protocols

ensuring serializability (or above) usually return this value.
- Objects: this last case represents a scenario where all replicas must participate in certifica-

tion.
In the case where certifying_obj(Ti) returns an empty set, Ti commits locally (line 14). Other-

wise, Ti is sent to all replicas concerned by Ti: holding some objects in the set certifying_obj(Ti).
This is up to the atomic commitment of the protocol under construction to choose an ap-

propriate primitive for xcast (line 17). For example, some protocols [103, 131] employ atomic
broadcast, while others [117, 127] use atomic multicast (see [44] for complete specifications, and
explanations). When Ti is delivered for termination (action xdeliver(Ti)), Ti is added to queue Q.
The atomic commitment algorithm (variable AC) then decides upon Ti, and eventually commits
or abort its.

Once the atomic commitment algorithm has taken its decision regarding Ti, the transaction
is flagged either COMMIT or ABORT. If it is COMMIT, the transaction is removed from Q, added to
committed, and its updates are applied to the local datastore. Otherwise, it is added to aborted,

72

6.3. TERMINATION

Algorithm 4 Termination protocol - code at process p

1: Variables:
2: ds, committed, aborted, executing, submitted,

Q, AC

3:

4: initialize()
5: eff: if AC= GC then start Algorithm 5
6: else if AC= 2PC then
7: start Algorithm 6
8:

9: submit(Ti)
10: pre: Ti 2 executing
11: eff: executing√ executing\{Ti}
12: submitted√ submitted[{Ti}
13: obj√ certifying_obj(Ti)
14: if obj=? then
15: committed√ committed[{Ti}
16: else
17: xcast(TERM,Ti) to replicas(obj)

18:

19: xdeliver(Ti)
20: pre: received hTERM,Tii
21: eff: Q√Q±Ti

22:

23: commit(Ti)
24: pre: decide(Ti)= COMMIT

25: eff: Q√Q\{Ti}
26: committed√ committed[{Ti}
27: ds√ ds [{xi 2ws(Ti) : x0 2 ds}
28: post_commit(Ti)
29:

30: abort(Ti)
31: pre: decide(Ti)= ABORT

32: eff: Q√Q\{Ti}
33: aborted√ aborted[{Ti}
34: post_abort(Ti)
35:

and its updates are discarded. In both cases, and once a transaction is terminated, an event
(post_commit() or post_abort()) is triggered. These events can be used to perform operations
outside the critical path (e.g., garbage collection).

G-DUR contains several atomic commitment plugins, and supports all the three approaches
that we explained in Chapter 2 (i.e., 2PC, total ordering using atomic broadcast, and partial
ordering using atomic multicast). In the remainder of this section, we explain in details these
plugins.

6.3.1 Group Communication

Figure 6.2 presents an overview of atomic commitment with group communication (GC). Concep-
tually, this approach is divided into the following steps: Transaction Ti is first sent to a set of
voting replicas, and are delivered in total or partial order. These replicas certify Ti, then send
the results of their certification tests to another group of replicas. The latter contains at least
the coordinator and the replicas of ws(Ti), but it might be larger in some cases. After receiving
enough votes, these processes decide locally upon the outcome of Ti.

Algorithm 5 details the internals of the approach. This realization requires that function
xcast ensures a partial order property over the set of submitted conflicting transactions. Hence,
depending on the protocol under construction, xcast can be replaced with atomic broadcast or
multicast. A transaction Ti is certified at a replica once it is added to Q, and it commutes with all

73

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

!""#$%&'()

*+)

*,)

!"#$%&'())-"))
#.*/'!01%"23()

"*++,%-&).
4)і)"-/%(01&'().
"23)і)2*%-3/-"23*45&'().

"23)і)"-/%(01(673*45&'().

1.,$%4()-"))
#.*/'!01%"23()
)5)!""#$)%&!()

!"#$%&'('(')()(-")
#.*/'!01%"23(

1.,$%4()-")
#.*/'!01%"23(
5 !""#$ %&!(

2*%-3$683*45&'().
"6-!"7.%'(()
2*%-3$683*45&'(&'(&')()(
"6-!"7.%'('(' (

Figure 6.2: Timeline of Atomic Commitment with Group Communication

Algorithm 5 Atomic Commitment with GC - code at p

1: vote(Ti)
2: pre: Ti 2Q
3: 8T j ∑Q Ti : commute(Ti,Tj)
4: eff: v √ certify(Ti)
5: send hVOTE,Ti,vi to
6: replicas(vote_recv_obj(Ti)) [
7: {coord(Ti)}
8:

9: decide(Ti)
10: pre: outcome(Ti) 6= ?
11: eff: if outcome(Ti) then
12: wait until Ti = head(Q)
13: return COMMIT

14: else
15: return ABORT

16:

the transactions that precede it in Q (lines 2 to 3), Commutativity is crucial to minimize convoy
effect during certification [28, 127], that is when the certification of one transaction slows down
the certification of another one. The definition of commutativity is a function of the consistency
model implemented by the realized protocol.

Once a replica certifies Ti locally (line 4), it sends the result of its vote to the coordinator and
to the processes in replicas(vote_recv_obj(Ti)). In most cases, vote_recv_obj(Ti) equals ws(Ti); i.e.,
the set of objects updated by the transaction. However, in some protocols, all replicas receive the
certification votes.

A process can safely decide upon the outcome of Ti once it has received votes from a voting
quorum for Ti. A voting quorum Q for Ti is a set of replicas such that for every object x 2
vote_snd_obj(), the set Q contains at least one replica of x. Formally:

vquorum(Ti)
4= {Q µ¶ | 8x 2 vote_snd_obj() : 9 j 2Q\replicas(x)}

A process p uses the following (three-values) predicate outcome(Ti) to determine whether
some transaction Ti commits, or not:

74

6.3. TERMINATION

!"#$%&'()!"#!!
$%&'()*+,#-./!

"*++,%-&).
0!і!"-/%(01&'().

#-.!і!"-/%(01(234*56&'().

+%12,0/!"#!!
)##$2!,3!/!

!"#$%&'('(')()("#!
$%&'()*+,#-./

'(('(')()(

+%12,0/!"#!
)##$2 ,3!/

)

7*%-4$284*56&'()!
#!і!#4")#5%,3(/.
56!і.7%-4/-"74*56&'().&'('(')()(

+%12,#/!"#!!
$%&'()*+!,#-./!

#4")#5%,3(/.#4")#5%,3(/

7*%-4$284*56&'(&'(&')()(
і #4")#5%,3(/
56 і 7%-4/-"74*567*%-4/-"74*567*%-4/-"74*56&

Figure 6.3: Timeline of Atomic Commitment with Two-phase Commit

outcome(Ti)
4=

if vote_snd_obj(Ti)=?
then true

else if 8Q 2 vquorum(Ti),9q 2Q,
¬received hVOTE,T, i from q then ?

else if 9Q 2 vquorum(Ti),8q 2Q,
received hVOTE,T, truei from q then true

else false

Once the result of outcome(Ti) equals true, and Ti is at the beginning of Q, Ti is flagged
COMMIT (lines 11 to 13). Otherwise, if outcome(Ti) equals false, it is flagged ABORT (line 15).
Algorithm 5 waits that Ti reaches the head of the queue before committing it to ensure replicas
apply updates in the same order. This property is mandatory for consistency criteria equal or
stronger than Serializability [128]. For weaker consistency models (e.g., Read Committed), we
can suppress this constraint. However, in our experience, such a modification has a small impact
on performance.

6.3.2 Two-Phase Commit

Figure 6.3 plots the timeline of termination with two-phase commit (2PC) for some transaction
Ti. The core difference between GC and 2PC is in the way 2PC uses the coordinator. Whereas
with GC, all processes receive the certification votes and decide locally to whether commit or
abort the transaction, in 2PC, the coordinator receives all the votes, decides on the outcome of
the transaction, and notifies other participants about its decision.

We give more details in Algorithm 6. Our 2PC plugin overrides function xcast with a multicast
primitive. When a replica delivers a transaction Ti, it aborts Ti in case a concurrent conflicting

75

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Algorithm 6 Atomic Commitment with 2PC - code at p

1: vote(Ti)
2: pre: Ti 2Q
3: eff: if 9T j 2Q :¬commute(Ti,Tj) then
4: send hVOTE,Ti, falsei to coord(Ti)
5: else
6: v √ certify(Ti)
7: send hVOTE,Ti,vi to coord(Ti)
8:

9: vote_coordinator(Ti)
10: pre: p = coord(Ti)
11: eff: send hVOTE,Ti,outcome(Ti)i to
12: vote_recv_obj(Ti)
13:

14: decide(Ti)
15: pre: outcome(Ti) 6= ?
16: eff: if outcome(Ti) then return COMMIT

17: else return ABORT

18:

transactions precedes it in Q. Otherwise, the transaction is certified. In both cases, the outcome
is sent to coord(Ti), which will decide upon the outcome; other replicas only receive the final vote
from coord(Ti). We reflect this by modifying the definition of a voting quorum. More precisely:

vquorum(Ti) at coord(Ti)
4= {Q µ¶ | 8x 2 vote_snd_obj() : replicas(x)µQ}

vquorum(Ti) at other replicas 4= {coord(Ti)}

6.3.3 Fault-Tolerance

The approach based on two-phase commit works either when perfect failure detectors are avail-
able [21], or in a crash-recovery model. In the first case, the coordinator preemptively aborts the
transaction when a replicas fails in the middle of the termination phase. In the later, (i) every
time the state of Algorithm 6 changes, the modification must be logged, and (ii) when a replica
crashes, Algorithm 6 has to wait that it comes back online to pursue the execution.

A commitment protocol based on group communication can cope more easily with failures if
it internally relies on a dependable consensus protocol. In more details, if Algorithm 5 employs
atomic broadcast to order transactions, it needs inaccurate failure detection and tolerates up to
f < n/2 replica crashes, where n is the total number of replicas. Now, if only replicas concerned
by the transaction make steps to commit it, Algorithm 5 should use a genuine atomic multicast
primitive [66]. In the general case, this requires perfect failure detection [122]. Nevertheless, with
an appropriate replicas placement, e.g., in a geo-replicated scenario, inaccurate failure detectors
can implement a non disaster-tolerant atomic multicast (see Schiper et al. [126] for more detail).

The difference in terms of dependability between the two approaches translates into a differ-
ence in time and message complexity. Let us note r the average cardinality of replicas(ws(T)[rs(T)).
Algorithm 6 requires ≠(r) messages and its message delay is 2. On the other hand, an optimal
atomic broadcast protocol [47, 82] costs 3 message delay with≠(n) messages, and the best genuine

76

6.4. REALIZING PROTOCOLS

Algorithm 7 P-Store [127]

1: £
4=TS

2: choose 4= chooselast

3: AC
4= GC

4: xcast 4=AM-Cast
5: certifying_obj(Ti)

4=ws(Ti)[rs(Ti)
6: commute(Ti,Tj)

4= rs(Ti)\ws(T j)=?^ rs(T j)\ws(Ti)=?
7: certify(Ti)

4=8xi, xj 2 rs(Ti)£db :£(xj)∑£(xi)

fault-tolerant atomic multicast known to date needs 6 message delays with ≠(r2) messages [122].
This makes fault-tolerance expensive at first glance. In Section 6.6.5, we further investigates this
cost in the context of geo-replicated data.

6.4 Realizing Protocols

This section illustrates how to implement a protocol in the G-DUR middleware. We consider five
different consistency criteria: Serializability, Snapshot Isolation, Update Serializability, Parallel
Snapshot Isolation and Non-Monotonic Snapshot Isolation. For each criterion, we pick at least
one state-of-the-art protocol, and explain how to implement it with G-DUR. As we shall see, we
can express the core aspects of a protocol in fewer than 10 lines of pseudo-code.

In all the implementations we cover next, unless specified otherwise, vote_recv_obj(Ti) returns
ws(Ti), and the realization of vote_snd_obj() is the same as the realization of certifying_obj().

6.4.1 P-Store

Algorithm 7 depicts our realization of P-Store [127]. This protocol relies on a timestamping
mechanism to version objects (line 1). Every read operation retrieves asynchronously the latest
version of the corresponding object (line 2). A transaction commits iff no new versions of the
objects it read were created concurrently (line 7); such a certification test is typical of DUR
protocols that ensure SER. An alternative classical approach [138] is to rely on cycle detection in
the serializability graph; however, as pointed by Guerraoui et al. [67], this is expensive.

6.4.2 S-DUR

Unlike P-Store, S-DUR [129] (Algorithm 8) ensures that every read operates on a consistent
snapshot (line 2). This implies that queries are wait-free (line 5). Upon the termination of
an update transaction Ti, S-DUR atomic multicasts Ti to the replicas holding an object in
ws(Ti)[rs(Ti). In that case, however, the group communication primitive only ensures a pair-
wise ordering of the transactions [44], i.e., two processes only deliver transactions that they have
in common in the same order (line 4). This design tends to increase the scalability of the multicast

77

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Algorithm 8 S-DUR [129]

1: £
4=VTS

2: choose 4= choosecons

3: AC
4= GC

4: xcast 4=AMpw-Cast
5: certifying_obj(Ti)

4= if |ws(Ti)| = 0 then ?
else ws(Ti)[rs(Ti)

6: commute(Ti,Tj)
4= rs(Ti)\ws(T j)=?^ rs(T j)\ws(Ti)=?

7: certify(Ti)
4=8T j “ Ti 2 committed : ws(Ti)\rs(T j)=?^rs(Ti)\ws(T j)=?

8: vote_recv_obj(Ti)
4=ws(Ti)

9: post_commit(Ti)
4=M-Cast(£(Ti)) to (¶\replicas(certifying_obj(Ti)))

Algorithm 9 GMU [106]

1: £
4=GMV

2: choose 4= choosecons

3: AC
4= 2PC

4: certifying_obj(Ti)
4= if |ws(Ti)| = 0 then ?

else rs(Ti)[ws(Ti)
5: commute(Ti,Tj)

4= rs(Ti)\ws(T j)=?^ rs(T j)\ws(Ti)=?
6: certify(Ti)

4=8xi, xj 2 rs(Ti)£db :£(xj)∑£(xi)

primitive, but comes at the price of the following drawbacks: (i) More aborts because an update
transaction commits only if there is no concurrent conflicting committed transaction (line 7), and
(ii) As we showed in Chapter 4, no GPR system under SER can ensure WFQ. Thus, S-DUR needs
to perform some background propagation to all replicas (line 9) in order to ensure NTU. This
propagation consists of sending £(Ti)=max {£(xi) : xi 2 rs(Ti)[ws(T j)} to all replicas in order to
advance the vector clock maintained at each replica.

6.4.3 GMU

The GMU transactional system of Peluso et al. [106] (see Algorithm 9) ensures EUS. Hence, it
commits queries locally (line 4), and provides WFQ. In the case of update transactions, GMU
makes use of 2PC (line 3). All replicas holding an object read or written by the transaction
participate in the 2PC. We note here that the certification test of GMU (line 6) is similar to
P-Store, but unlike P-Store, it ensures both GPR and WFQ. Moreover, since GMU ensures EUS,
non-monotonic snapshots are observable for read-only transactions.

6.4.4 Serrano07

Serrano et al. [131] introduce a non-genuine partial replication protocol under SI. We depict
its pseudo-code in Algorithm 10. Queries commit locally and update transactions are atomic-

78

6.4. REALIZING PROTOCOLS

Algorithm 10 Serrano07 [131]

1: choose 4= choosecons

2: £
4=TS

3: AC
4= GC

4: xcast 4=AB-Cast
5: certifying_obj(Ti)

4= if |ws(Ti)| = 0 then ?
else Objects

6: commute(Ti,Tj)
4=ws(Ti)\ws(T j)

7: certify(Ti)
4=8xi, xj 2ws(Ti)£db :£(xj)∑£(xi)

8: vote_snd_obj(Ti)= vote_recv_obj(Ti)
4=LocalObjects

Algorithm 11 Walter [136]

1: choose 4= choosecons

2: £
4=VTS

3: AC
4= 2PC

4: certifying_obj(Ti)
4=ws(Ti)

5: commute(Ti,Tj)
4=ws(Ti)\ws(T j)=?

6: certify(Ti)
4=8xi, xj 2ws(Ti)£db :£(xj)∑£(xi)

7: post_commit(Ti)
4=M-Cast(£(Ti)) to (¶\replicas(certifying_obj(Ti)))

broadcast to all replicas (lines 4 and 5). When a replica delivers an update transaction, it performs
a certification test to check for concurrent updates (line 7). This protocol need to maintain the
latest version number of every object at each replica. Hence, every replica decides independently
on the outcome of a transaction, and a distributed voting phase is not required. We capture this
behavior by the fact that both vote_snd_obj() and vote_recv_obj() equal the local objects (line 8).

6.4.5 Walter

Walter (shown in Algorithm 11) is the transactional system proposed by Sovran et al. [136] to
implement PSI. This protocol relies on a two-phase commit among the replicas that hold an
object written by the transaction (lines 3 and 4). To satisfy PSI, the certification of Walter ensures
that no two concurrent write-conflicting transactions both commit (line 6). Once a transaction is
committed, Walter propagates £(Ti) in the background to all the replicas in the system (line 7).
As in the case of S-DUR, this background propagation is crucial to ensure progress.

6.4.6 Jessy2pc

The Jessy protocol presented in the previous chapter guarantees NMSI. In this chapter, we shall
be considering a 2PC-based variation of Jessy. This protocol, denoted Jessy2pc , is presented in
Algorithm 12. Jessy2pc relies on the PDV versioning mechanism to compute consistent snapshots
(line 2), and it uses two-phase commit during termination (line 3). Like Serrano and Walter,

79

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Algorithm 12 Jessy2pc

1: choose 4= choosecons

2: £
4=PDV

3: AC
4= 2PC

4: certifying_obj(Ti)
4=ws(Ti)

5: commute(Ti,Tj)
4=ws(Ti)\ws(T j)=?

6: certify(Ti)
4=8xi, xj 2ws(Ti)£db :£(xj)∑£(xi)

Jessy2pc checks for concurrent write-conflicting transactions (line 6) during the certification.
Note that, because Jessy2pc is GPR, no background propagation is needed by this protocol after
the commitment of a transaction.

6.5 Implementation

We implemented G-DUR, and the realized transactional protocols in Java. Our implementations
closely follow the published specification of each protocol. We also implemented a DUR protocol
ensuring read-committed consistency criterion (RC). As we explained in the previous chapter, RC
is a weak consistency criterion ensuring that a transaction reads a committed version of an object
without any additional guarantee. RC plays as a baseline, and shows the maximum achievable
performance in our experiments.

G-DUR can work either with a data persistence layer (i.e., BerkeleyDB), or without (i.e., an in-
memory concurrent hashmap). To minimize noise, and to focus on scalability and synchronization,
our experiments in this paper are done using the latter case. Should the user decide to use the
data persistence layer, she can easily implement an interface, and attach any other data store.

The implementation of G-DUR and the six protocols takes approximately 104 source lines of
code (SLOC). The communication layer also takes an additional 104 source lines of code. Table 6.2
details the number of SLOC for each protocol. Observe that the G-DUR implementations take an
order of magnitude fewer LOC than the monolithic originals. This code, the benchmarks, as well
as the scripts we used in our experiments are publicly available [116].

6.6 Case Study

This section shows some practical uses of G-DUR: (i) a comparison of the protocols realized in
Section 6.4, (ii) an analysis of the bottlenecks of the GMU protocol, (iii) a demonstration of the
pluggability capabilities of G-DUR, and (iv) an assessment of the cost of dependability.

80

6.6. CASE STUDY

Source Lines of Code
Protocol Total

Exec.† Term.† G-DUR† Original
P-Store‡ 45 134 179 6000
S-DUR 199 288 397 N/A
GMU‡ 184 292 476 6000

Serrano 104 247 351 N/A
Walter 322 277 599 30000

Jessy2pc
‡ 155 197 352 6000

Table 6.2: Source lines of code

†: excluding comments ‡: open source

Key Selection Operations
Workload Distribution Read-only Transaction . Update Transaction

A Uniform 2 Read 1 Read, 1 Update
B Uniform 4 Read 2 Read, 2 Update
C Zipfian 2 Read 1 Read, 1 Update

Table 6.3: Experimental Settings

6.6.1 Setup and Benchmark

As in Chapter 5, all our experiments are run on sites of the French Grid’5000 experimental
testbed [62]. Latencies between sites are between 10 to 20 ms (see Figure 5.1.a). We use 4-core
machines running between 2.2 and 2.6 GHz with a maximum heap size of 4 GB.

We performed our experiments under different configurations and using various numbers
of sites. Although G-DUR can take care of intra-site replication as well, our experiments are
considering a single replica per site (similarly to Sovran et al. [136]). For each replica, two
additional client machines generate the workload. We perform our experiments in either a
Disaster Prone (DP), or Disaster Tolerant (DT) configuration. In case of DP, every object is stored
in a single site, whereas DT replicates every object in two sites.

Every replica contains 105 objects, and each object has a payload size of 1 KB. We employ
the Yahoo Cloud Serving Benchmark (YCSB) [37], modified to generate transactions. Table 6.3
describes the workloads we use during our experiments, which were already used by previous
papers [117, 129]. A client machine emulates multiple client threads in parallel, each running in
closed loop. During an experiment, a client machine executes at least 106 transactions. Every
transactions is (i) interactive: none of the objects it accesses is known in advance, and (ii) global:
no replica holds all the objects read or written by the transaction. We chose this last setting to
emphasize the geo-replicated performance of the protocols.

81

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

Workload A on 4 sites with DP (90% Read-only Transactions)

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000T
e
rm

.
L
a
t.

 o
f

U
p
d
.

tx
n
 (

m
s)

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000T
e
rm

.
L
a
t.

 o
f

U
p
d
.

tx
n
 (

m
s)

Throughput (tps)

Workload A on 4 Sites with DP (70% Read-only Transactions)

Serrano
RC

P-Store
Walter

GMU
S-DUR

Jessy2pc

Figure 6.4: Performance Comparison with Disaster Prone Configuration

6.6.2 Comparing Transactional Protocols

This section compare the realizations of Section 6.4 in order to bring out differences between the
protocols, as well as between the consistency criteria they implement.

In Figure 6.4, we depict the performance of each protocol under Workload A, when using four
sites in a DP configurations. We use either 90% (top) or 70% (bottom) of read-only transactions.
Each point plots the termination latency of update transactions, that is, the average time between
the termination request of an update transaction and the reception of the response by the client,
as a function of the throughput. The termination latency of the update transactions is the most
meaningful metric to observe differences between the realized protocols since (i) all protocols
(except P-Store) implement wait-free queries, and (ii) they all follow the DUR approach with the
same execution phase (except Serrano).

Jessy2pc is the fastest protocol by being a genuine protocol, and requiring minimal synchro-
nization: only replicas holding modified objects are included in transaction certification. Although
Walter also enjoys minimal synchronization, being non-genuine results in smaller throughput
compared to Jessy2pc . In GMU, the replicas of both read and modified objects are involved in
the certification. Yet the performance of GMU and Walter are the same with 90% read-only
transactions. With 70% of read-only transactions, Walter requires more global propagation (due
to its non-genuineness), and starts degrading before GMU.

In P-Store, queries are not wait-free and they have to go through AM-Cast. This design choice
greatly impacts performance and explains that the throughput of P-Store is the worst among the
studied protocols with 90% of read-only transactions. On the other hand, P-Store compensates

82

6.6. CASE STUDY

Workload B on 4 Sites with DT (90% Read-only Transactions)

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000

 0
 50

 100
 150
 200
 250
 300

 0 5000 10000 15000 20000 25000 30000

Throughput (tps)

Workload B on 4 Sites with DT (70% Read-only Transactions)

RC Walter GMU Jessy2pc

Figure 6.5: Performance Comparison with Disaster Tolerant Configuration

this gap with 70% of read-only transaction, and overtakes Serrano. This observation underlines
again the importance of supporting GPR for a transactional system. This also shows that as
pointed out by Lin et al. [88], the protocol of Serrano et al. is more oriented for LAN environments.

S-DUR always delivers a better throughput than Serrano. This difference points out that,
unlike the general credence and for certain workloads, SER can be faster than SI, provided the
protocol implementing SER ensures wait-free queries. Finally, the performance gap between
Serrano and Walter clearly motivates the use of PSI over SI in a geo-replicated setting. This
assesses empirically the original argument of Sovran et al. [136].

We note that while PSI is weaker than SI [136] and US is weaker than SER [3], neither
US and PSI nor SI and SER are mutually comparable (see Section 5.1). Thus, an anomalistic
comparison between the two criteria would not explain their performance differences. This is
the realization of the protocols inside G-DUR which allows us to fairly compare them in terms of
throughput and latency.

To better understand the differences among the protocols ensuring weaker consistency criteria,
we evaluate them in Figure 6.5 using Workload B and in a disaster tolerant configuration. Under
90% of read-only transactions, the performance of Walter, and Jessy2pc are similar. This is due
to the fact that transactions contain more operations in Workload B, hence the non-genuineness
of Walter does not impact performance in comparison to Jessy2pc . The performance of GMU also
degrades with Workload B. This is mainly due to the abort rate. With 1024 client threads, and
90% read-only transactions, the abort rate of GMU reaches 12% while the abort rates of Walter
and Jessy2pc stay below 0.1%. With 30% update transactions, the abort rate of GMU deteriorates

83

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

 45

 50

 55

 60

 65

 70

 0 2000 4000 6000 8000 10000 12000 14000A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload B on 4 Sites with DP (90% Read-only Transactions)

GMU
GMU*

GMU**
RC

Figure 6.6: Study of Bottlenecks in GMU -

GMU: Consistent Snapshot & Certification, GMU*: Trivial Snapshot & Certification, GMU**: Trivial

Snapshot & Trivial Certification

to 48%, and the abort rate of Jessy2pc and Walter reach around 1%.

6.6.3 Understanding Bottlenecks

In this section, we explain how a developer can study the costs of the different components
implementing a transactional protocol in order to locate its bottlenecks. Our approach consists in
a careful substitution of the versioning and certification plug-ins with trivial ones. We plot our
results for the GMU protocol in Figure 6.6.

As depicted in Algorithm 9, GMU takes consistent and fresh snapshots during the execution
phase. In GMU*, we turned off this versioning component, replacing it with chooselast. However,
metadata required for taking consistent snapshots is still sent during the execution phase. We
observe in Figure 6.6 that both GMU and GMU* follow the same trend, and that the overhead of
taking consistent snapshots in GMU is around 5%. With GMU**, we turn off the certification
test, and all the transactions now pass the certification test. The resulting protocol follows the
trend of RC, while still exhibiting a small performance gap. This difference is explained by the
overhead of marshaling and sending metadata related to snapshots that GMU** inherits from
the original protocol. Thus, at the light of the results depicted in Figure 6.6, we can conclude that
the certification test is the main bottleneck of the algorithm of Peluso et al. [106].

6.6.4 Pluggability Capabilities

G-DUR allows a developer to replace the plug-ins that compose a transactional protocol. Such
a feature helps to finely understand a protocol and in turn paves the way to improve it. In this
section, we demonstrate its usage with P-Store [127].

In P-Store, read-only transactions have to go through a certification test. Following an
analysis similar to the one we conducted in the previous section for GMU, we can show that this
mechanism is an important bottleneck of the protocol. In general, as explained in Section 6.4, this

84

6.6. CASE STUDY

 0
 2
 4
 6
 8

 10
 12
 14

10% local txns 50% local txns 90% local txns

M
a

x.
 T

h
ro

u
g

h
p

u
t

(K
tp

s) Workload A on 4 Sites with DP (90% Read-only Transactions)

P-Store
P-Storela

Figure 6.7: Throughput improvement of P-Store

bottleneck cannot be overcome since P-Store is a genuine algorithm. However, P-Store can safely
commit a read-only transaction without certifying it when the transaction accesses a single data
partition (typically a single site). We implement this feature as follows: (i) Instead of reading the
latest committed value during the execution phase, we take a consistent snapshot. We achieve
this in G-DUR by using the choosecons component implemented with partitioned dependency
vectors (PDV). (ii) We change the realization of certifying_obj(Ti) such that it returns ? in the
case where Ti is a query accessing a single partition. Figure 6.7 plots the throughput of our
locality aware P-Store, denoted P-Storela, in comparison to the original algorithm of Schiper et al.
[127]. We can observe that, depending on the ratio of local read-only transactions, P-Storela is 20
to 70% faster than the original protocol.

6.6.5 Dependability

As pointed out in Section 6.3, termination based on group communication primitives orders a
priori conflicting transactions, whereas the use of 2PC relies on a spontaneous ordering of the
network. The two approaches also differ in terms of fault-tolerance. The former requires either
a crash-recovery model or perfect failure detection to ensure liveness, whereas the later can
accommodate with faults. In this section, we compare them empirically in our geo-replicated
environment.

To this goal, we picked P-Store and changed its atomic commitment protocol from AM-Cast to
2PC. The rationale of this choice is that the versioning mechanism of P-Store has the smallest
overhead compared to other protocols, and that this protocol certifies both read-only and updates
transactions. Both features reduce noise during our measurements since we limit the amount
metadata used by the system, and all the transactions go through the termination phase.

6.6.5.1 Disaster Prone

In a disaster-prone scenario, every object is replicated at a single site. Hence, when a site goes
down, the system has to wait that it becomes available again. Figure 6.8 compares the 2PC and
AM-Cast variations of P-Store in this configuration. With Workload A, the abort ratio of both

85

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

 0
 20
 40
 60
 80

 100
 120

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload A on 4 Sites with DP (90% Read-only Transactions)

SER + AM-Cast
SER + 2PC

 0
 20
 40
 60
 80

 100
 120

 0 500 1000 1500 2000 2500 3000 3500 4000

Throughput (tps)

Workload C on 4 Sites with DP (90% Read-only Transactions)

 0

 2

 4

 6

 8

 0 50 100 150 200 250 300

A
b

o
rt

 r
a

tio
 (

%
)

Concurrent Transactions

Workload C on 4 Sites with DP (90% Read-only Transactions)

Figure 6.8: 2PC vs. AM-Cast with Disaster Prone Configuration

protocols is almost null and 2PC outperforms AM-Cast by a factor of at least two. Under a highly
contended workload (Workload C), the abort ratio of both protocols increases similarly, and 2PC
still outperforms AM-Cast. As a consequence, in such a scenario, ordering transactions a priori
has a limited positive effect on the abort ratio. and it does not pay off.

6.6.5.2 Disaster Tolerant

In a disaster-tolerant setting, every object is replicated at two sites. Therefore, the system can
tolerate a complete site failure. The results of this experiment are shown in Figure 6.9. Like the
previous scenario, 2PC still outperforms AM-Cast with Workload A. However, under Workload C,
once the sites become saturated, the abort ratio of 2PC increases drastically, due to the preemptive
aborts (line 4 in Algorithm 6). Thus, in such a situation, pre-ordering the transactions in the
commitment phase pays off.

86

6.7. RELATED WORK

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload A on 6 Sites with DT (90% Read-only Transactions)

SER + AM-Cast
SER + 2PC (Multi-master)

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

Throughput (tps)

Workload C on 6 Sites with DT (90% Read-only Transactions)

 0
 10
 20
 30
 40
 50
 60
 70

 0 50 100 150 200 250 300

A
b
o
rt

 R
a
tio

Concurrent Transactions

Workload C on 6 Sites with DT (90% Read-only Transactions)

Figure 6.9: 2PC vs. AM-Cast with Disaster Tolerant Configuration

6.7 Related Work

In general, application workloads exhibit a large portion of non-conflicting transactions. Under
such an assumption, the interest of the DUR approach, i.e., an optimistic phase followed by a
termination phase, was underlined by Alonso [10]. Wiesmann and Schiper [145] compare several
replication protocols and confirm that DUR is better than distributed locking and primary copy
under full replication. The work of Schmidt and Pedone [128] provides a formal analysis of DUR,
focusing on serializability and full replication. The DUR approach is also a de facto standard for
software transactional memories (e.g., [25, 52]).

Several works aim at understanding and classifying full replication techniques. Wiesmann
et al. [147] provide a classification of different replication mechanisms, for both transactional and
non-transactional systems. Subsequently, the authors propose a three parameters classification
of transactional protocols [146]. They classify protocols according to the server architecture
(primary copy versus update-everywhere), the server interaction (constant versus linear), and
the transaction termination (voting versus non-voting). The present work continues their study,

87

CHAPTER 6. G-DUR: GENERIC DEFERRED UPDATE REPLICATION

focusing on DUR protocols under partial replication. According to their terminology, this means
that we shall be interested in passive replication with either update-everywhere or primary-copy,
and both voting and linear interaction.

An abundant literature (see [96] for a detailed survey) provides analytical models and
simulations of distributed database systems. These works focus on evaluating throughput or
latency as a function of workload, replication factor and network characteristics, and provide
a useful insight on how transactional protocols behave under low conflict rate. However, by
oversimplifying the management of conflicting transactions, they do not give a completely accurate
figure. In particular, the impacts of (i) versioning mechanism, (ii) consistency criteria, (iii) convoy
effects during certification, and (iv) genuineness2 on a protocol are largely under-evaluated. Our
experiments show that these parameters strongly influence the performance of a transactional
protocol.

Commercial database products [95, 110] usually allow the client to pick a consistency criterion
when executing transactions. Several researchers have studied, and compared multiple criteria.
Berenson et al. [22] show that the phenomena-based definition of ANSI SQL-92 does not properly
characterize the differences between SI and SER. They propose new anomalies and compare
most well-known criteria based on this characterization. Adya et al. in [3, 4] present the first
implementation-independent specification of ANSI levels. This specification is not limited to
pessimistic implementations, that is based on an a priori ordering of the transactions (e.g., [101],
or more recently [39]), but is also applicable to optimistic and multi-version schemes. To achieve
this, the authors define different read/write conflicts, and specify different graphs based on these
conflicts. Subsequently, most of the well-known criteria are formally defined, and compared.
The above specifications are yet hard to understand, especially in the context of distributed
transactional systems.

A few works study and compare different family of transactional protocols. Bernabé-Gisbert
et al. [23] introduce a middleware that ensures different levels of consistency. They use an
update everywhere approach, and certify transactions with the help of atomic broadcast. Each
transaction can declare separately a consistency criterion of its choice. It is then the job of
the underlying database to certify transactions, and to execute the concurrency control. No
comparison or evaluation is given in this paper. Kemme and Alonso [77] introduce a family
of eager replication protocols using group communication primitives. They compare various
consistency criteria (SER, SI and Cursor Stability) with simulations, but do not provide a unified
protocol.

2 A protocol is genuine when only the replicas of the objects accessed by a transaction make computational steps
to execute it.

88

6.8. CONCLUSION

6.8 Conclusion

Deferred update replication (DUR) is a classical technique to construct transactional datastores.
Protocols that follow the DUR approach share a common algorithmic structure consisting in a
speculative execution phase followed by a termination phase, and at core, they only differ by
instantiating a few generic functions in each phase. This chapter presents G-DUR, a generic
deferred update replication middleware built upon this insight. G-DUR brings several benefits to
practitioners and researchers in the field of transactional storage:

• It allows to easily fast prototype a transactional protocol following the DUR approach.
In Section 6.4, we presented the implementation of six state-of-the-art replication protocols
published in the past few years [106, 117, 127, 129, 131, 136]. Each protocol in our middleware
requires less than 600 lines of code.

• G-DUR fosters apples-to-apples comparison of transactional protocols. We illustrated this in
Section 6.6.2 by presenting an empirical evaluation in a geo-replicated environment. To the best
of our knowledge, such a fair comparison never appears elsewhere in literature. The key reason
is that it is either hard (or impossible) to be performed with the original implementations as
source codes are generally not comparable, nor always publicly available. In addition, mastering
each protocol requires a large amount of time.

• With G-DUR, a developer can study in details the limitations and overheads of her protocol.
In Section 6.6.3, we illustrated this point with the protocols of Peluso et al. [106]. Then, we
presented in Section 6.6.4 a variation of P-Store [127] that leverages workload locality. Our
variation performs up to 70% faster than the original protocol.

• Finally, G-DUR allows us to study the cost of various degrees of dependability. In Sec-
tion 6.6.5, we evaluated in practice the difference between commitment based on group communi-
cation primitives and 2PC in a disaster-prone and a disaster-tolerant setting.

89

Part II: Ensuring Consistency in
Non-Transactional Data Stores

C
H

A
P

T
E

R 7
TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

Contents

7.1 Introduction . 95
7.2 System Overview . 96

7.2.1 Tuba Features from Pileus . 96
7.2.2 Tuba’s New Features . 97

7.3 Configuration Service (CS) . 98
7.3.1 Constraints . 99
7.3.2 Cost Model . 99
7.3.3 Selection . 100
7.3.4 Operations . 101

7.3.4.1 Adjust the Synchronization Period 101
7.3.4.2 Add/Remove Secondary Replica . 102
7.3.4.3 Change Primary Replica . 102
7.3.4.4 Add Primary Replica . 103
7.3.4.5 Summary . 104

7.4 Client Execution Modes . 104
7.5 Implementation . 106

7.5.1 Communication . 106
7.5.2 Client Operations . 107

7.5.2.1 Read Operation . 107
7.5.2.2 Single-primary Write Operation . 107
7.5.2.3 Multi-primary Write Operation . 108

93

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

7.5.3 CS Reconfiguration Operations . 109
7.5.4 Fault-Tolerance . 110

7.6 Evaluation . 112
7.6.1 Setup and Benchmark . 112
7.6.2 Macroscopic View . 113
7.6.3 Microscopic View . 115
7.6.4 Fast Mode vs. Slow Mode . 116
7.6.5 Scalability of the CS . 117

7.7 Related Work . 118
7.8 Conclusion . 119

94

7.1. INTRODUCTION

In Part I, we focused on ensuring consistency criteria in transactional data stores. In
the second part, we shift our attention, and study the problem of ensuring consistency
criteria for data stores with read and write operations. In particular, we investigate how

to automatically reconfigure a storage system while maintaining consistency guarantees, and
respecting user defined constraints so that it adapts to changes in users locations or request
rates.

7.1 Introduction

Cloud storage systems can meet the demanding needs of their applications by dynamically
selecting when and where data is replicated. An emerging model is to utilize a mix of strongly
consistent primary replicas and eventually consistent secondary replicas. Applications either
explicitly choose which replicas to access or let the storage system select replicas at run-time
based on an application’s consistency and performance requirements [140]. In either case, the
configuration of the system significantly impacts the delivered level of service.

Configuration issues that must be addressed by cloud storage systems include: (i) where to
put primary and secondary replicas, (ii) how many secondary replicas to deploy, and (iii) how
frequently secondary replicas should synchronize with the primary replica. These choices are
complicated by the fact that Internet users are located in different geographical locations with
different time zones and access patterns. Moreover, systems must consider the growing legal,
security, and cost constraints about replicating data in certain countries or avoiding replication
in others.

For a stable user community, static configuration choices made by a system administrator may
be acceptable. But many modern applications, like shopping, social networking, news, and gaming,
not only have evolving world-wide users but also observe time-varying access patterns, either on
a daily or seasonal basis. Thus, it is advantageous for the storage system to automatically adapt
its configuration subject to application-specific and geo-political constraints.

Tuba is a geo-replicated key-value store based on Pileus [140]. It addresses the above chal-
lenges by configuring its replicas automatically and periodically. While clients try to maximize the
utility of individual read operations, Tuba improves the overall utility of the storage system by
automatically adapting to changes in access patterns and constraints. To this end, Tuba includes
a configuration service that periodically receives from clients their consistency-based service level
agreements (SLAs) along with their hit and miss ratios. This service then changes the locations of
primary and secondary replicas to improve the overall delivered utility. A key property of Tuba is
that both read and write operations can be executed in parallel with reconfiguration operations.

We have implemented Tuba as middleware on top of Microsoft Azure Storage (MAS) [30]. It
extends MAS with broad consistency choices as in Bayou [139], and provides consistency-based
SLAs like Pileus. Moreover, it leverages geo-replication for increased locality and availability. Our

95

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

API is a minor extension to the MAS Blob Store API, thereby allowing existing Azure applications
to use Tuba with little effort while experiencing the benefits of dynamic reconfiguration.

An experiment with clients distributed in datacenters (sites) around the world shows that
reconfiguration every two hours increases the fraction of reads guaranteeing strong consistency
from 33% to 54%. This confirms that automatic reconfiguration can yield substantial benefits
which are realizable in practice.

The outline of this chapter is as follows. We review Pileus and Tuba in Section 7.2. We look
under the hood of Tuba’s configuration service in Section 7.3. Section 7.4 describes execution
modes of clients in Tuba. In Section 7.5, we explain implementation details of the system. Our
evaluation results are presented in Section 7.6. We review related work in Section 7.7 and
conclude the chapter in Section 7.8.

7.2 System Overview

In this section, we first briefly explain features that Tuba inherits from Pileus. Since we do not
cover all technical issues of Pileus, we encourage readers to read the original paper [140] for
more detail. Then, we overview Tuba and its fundamental components, and how it extends the
features of the Pileus system.

7.2.1 Tuba Features from Pileus

Storage systems cannot always provide rapid access to strongly consistent data because of the
high network latency between geographical sites and diverse operational conditions. Clients are
forced to select less ideal consistency/latency combinations in many cases. Pileus addresses this
problem by allowing clients to declare their consistency and latency priorities via SLAs. Each
SLA comprises several subSLAs, and each subSLA contains a desired consistency, latency and
utility.

The utility of a subSLA indicates the value of the associated consistency/latency combination
to the application and its users. Inside a SLA, higher-ranked subSLAs have higher utility than
lower-ranked subSLAs. For example, consider the SLA shown in Figure 7.1. Read operations
with strong consistency are assigned utility 1 as long as they complete in less than 50 ms.
Otherwise, the application tolerates eventually consistent data and longer response times though
the rewarded utility is very small (0.01). Pileus, when performing a read operation with a given
SLA, attempts to maximize the delivered utility by meeting the highest-ranked subSLA possible.

The replication scheme in Pileus resembles that of other cloud storage systems. Like BigTable
[34], each key-value store is horizontally partitioned by key-ranges into tablets, which serve as
the granularity of replication. Tablets are replicated at an arbitrary collection of storage sites.
Storage sites are either primary or secondary. All write operations are performed at the primary
sites. Secondary sites periodically synchronize with the primary sites in order to receive updates.

96

7.2. SYSTEM OVERVIEW

Rank Consistency Latency(ms) Utility
1 Strong 50 1
2 Eventual 1000 0.01

Figure 7.1: SLA Example

Depending on the desired consistency and latency as specified in an SLA, the network delays
between clients and various replication sites, and the synchronization period between primary
and secondary sites, the Pileus client library decides on the site to which a read operation is
issued. Pileus provides six consistency choices that can be included in SLAs:

• Strong: a read operation on an object returns the value of the last preceding write operation
that is performed on the object by any client.

• Eventual: a read operation on an object returns the value of some write operation performed
on the object.

• Read-my-writes (RMW): a read operation on an object returns the value of the last preceding
write operation that is performed on the object by the same client, or it returns some later versions.

• Monotonic reads: a read operation on an object returns the same or later versions of the
object compared to the previous read operation issued by the same client.

• Bounded(t): a read operation on an object returns a value that is stale by at most t seconds.

• Causal: a read on an object returns a value of the latest write operation that causally
precedes it, or it returns some later versions.

Consider again the SLA shown in Figure 7.1. A Pileus client reads the most recent data and
hits the first subSLA as long as the round trip latency between that client and a primary site is
less than 50ms. But, the first subSLA misses for clients with a round trip latency of more than
50ms to primary sites. For these clients, Pileus reads data from any replica site and hits the
second subSLA.

Pileus helps developers find a suitable consistency/latency combination given a fixed configu-
ration of tablets. Specifically, the locations of primary and secondary replication sites, the number
of required secondary sites, and the synchronization period between secondary and primary sites
need to be specified by system administrators manually. However, a world-wide distribution of
users makes it extremely hard to find an optimal configuration where the overall utility of the
system is maximized with a minimum cost. Tuba extends Pileus to specifically address this issue.

7.2.2 Tuba’s New Features

The main goal of Tuba is to periodically improve the overall utility of the system while respecting
replication and cost constraints. To this end, it extends Pileus with a configuration service (CS)
delivering the following capabilities:

1. performing a reconfiguration periodically for different tablets, and

97

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

2. informing clients of the current configuration for different tablets.

We note that the above capabilities do not necessarily need to be collocated at the same service.
Yet, we assume they are provided by the same service for the sake of simplicity.

In order for the CS to configure a tablet’s replicas such that the overall utility increases, it
must be aware of the way the tablet is being accessed globally. Therefore, all clients in the system
periodically send their observed latency and the hit and miss ratios of their SLAs to the CS.

The observed latency is a set comprising the latency between a client (e.g., an application
server) and different datacenters. The original Pileus system also requires clients to maintain
this set. Since the observed latency between datacenters does not change very often, this set is
only sent every couple of hours, or when it changes by more than a certain threshold.

Tuba clients also send their SLAs’ hit and miss ratios periodically. It has been previously
observed that placement algorithms with client workload information (such as the request rate)
perform two to five times better than workload oblivious random algorithms [84]. Thus, every
client records aggregate ratios of all hit and missed subSLAs for a sliding window of time,
and sends them to the CS periodically. The CS then periodically (or upon receiving an explicit
request) computes a new configuration such that the overall utility of the system is improved, all
constraints are respected, and the cost of the migrating to and maintaining the new configuration
remains below some threshold.

Once a new configuration is decided, one or more of the following operations are performed
as the system changes to the new configuration: (i) changing the primary replica, (ii) adding or
removing secondary replicas, and (iii) changing the synchronization periods between primary
and secondary replicas. In the next section, we explain in more detail how the above operations
are performed with minimal disruption to active clients.

7.3 Configuration Service (CS)

The CS is responsible for periodically improving the overall utility of the system by computing
and applying new configurations. The CS selects a new configuration by first generating all
reasonable replication scenarios that satisfy a list of defined constraints.

For each configuration possibility, it then computes the expected gained utility and the cost of
reconfiguration. The new chosen configuration is the one that offers the highest utility-to-cost
ratio. Once a new configuration is chosen, the CS executes the reconfiguration operations required
for making a transition from the old configuration to the new one.

In the remaining of this section, we first explain the different types of constraints and the
cost model used by the CS. Then, we introduce the algorithm behind the CS to compute a new
configuration. Finally, we describe how the CS executes different reconfiguration operations to
install the new configuration.

98

7.3. CONFIGURATION SERVICE (CS)

7.3.1 Constraints

Given the simple goal of maximizing utility, the CS would have a greedy nature: it would generally
decide to add replicas. Hence, without constraints, the CS could ultimately replicate data in all
available datacenters. To address this issue, a system administrator is able to define constraints
for the system that the CS respects.

Through an abstract constraint class, Tuba allows constraints to be defined on any attribute
of the system. For example, a constraint might disallow creating more than three secondary
replicas or disallow a reconfiguration to happen if the total number of online users is greater
than 1 million. Tuba abides by all defined constraints during every reconfiguration.

Several important constraints are currently implemented and ready for use including: (i) Geo-
replication factor, (ii) Location, (iii) Synchronization period, and (iv) Cost.

With geo-replication constraints, the minimum and maximum number of replicas can be
defined. For example, consider an online music store. Developers may set the maximum geo-
replication factor of tablets containing less popular songs to one, and set the minimum geo-
replication factor of a tablet containing top-ten best selling songs to three. Even if the storage
cost is relatively small, limiting the replication factor may still be desirable due to the cost of
communication between sites for replica synchronization.

Location constraints are able to explicitly force replication in certain sites or disallow them
in others. For example, an online social network application can respond to security concerns of
European citizens by allowing replication of their data only in Europe datacenters.

With the synchronization period constraint, application developers can impose bounds on how
often a secondary replica synchronizes with a primary replica.

The last and perhaps most important constraint in Tuba is the cost constraint. As mentioned
before, the CS picks a configuration with the greatest ratio of gained utility over cost. With a cost
constraint, application developers can indicate how much they are willing to pay (in terms of
dollars) to switch to a new configuration. For instance, one possible configuration is to put sec-
ondary replicas in all available datacenters. While the gained utility for this configuration likely
dominants all other possible configurations, the cost of this configuration may be unacceptably
large. In the next section, we explain in more detail how these costs are computed in Tuba.

Should the system administrator neglect to impose any constraint, Tuba has two default
constraints in order to avoid aggressive replication and to avoid frequent synchronization between
replicas: (1) a lower bound for the synchronization period, and (2) an upper bound on the recurring
cost of a configuration.

7.3.2 Cost Model

The CS considers the following costs for computing a new configuration:
• Storage: the cost of storing a tablet in a particular site.
• Read/Write Operation: the cost of performing read/write operations.

99

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

• Synchronization: the cost of synchronizing a secondary replica with a primary one.

The first two costs are computed precisely for a certain period of time, and the third cost is
estimated based on read and write ratios.

Given the above categories, the cost of a primary replica is the sum of its storage and read and
write operation costs, and the cost of a secondary replica is the sum of storage, synchronization,
and read operation costs. Since Tuba uses batching for synchronization to a secondary replica
and only sends the last write operation on an object in every synchronization cycle, the cost of a
primary replica is usually greater than that of secondary replicas.

In addition to the above costs, the CS also considers the cost of creating a new replica; this
cost is computed as one-time synchronization cost.

7.3.3 Selection

Potential new configurations are computed by the CS in the following three steps:

Ratios aggregation. Clients from the same geographical region usually have similar observed
access latencies. Therefore, as long as they use the same SLAs, their hit and miss ratios can be
aggregated to reduce the computation. We note that this phase does not necessarily need to be in
the critical path, and aggregations can be done once clients send their ratios to the CS.

Configuration computation. In this phase, possible configurations that can improve the
overall utility of the system are generated and sorted. For each missed subSLA, and depending
on its consistency, the CS may produce several potential configurations along with their corre-
sponding reconfiguration operations. For instance, for a missed subSLA with strong consistency,
two scenarios would be: (i) creating a new replica near the client and making it the solo primary
replica, or (ii) adding a new primary replica near the client and making the system run in
multi-primary mode.

Each new configuration has an associated cost of applying and maintaining it for a certain
period of time. The CS also computes the overall gained utility of every new configuration that
it considers. Finally, the CS sorts all potential configurations based on their gained utility over
their cost.

Constraints satisfaction. Configurations that cannot satisfy all specified constraints are
eliminated from consideration. Constraint classes also have the ability to add configurations
being considered. For instance, the minimum geo-replication constraint might remove low-replica
configurations and create several new ones with additional secondary replicas at different
locations.

100

7.3. CONFIGURATION SERVICE (CS)

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.9
3 Eventual 1000 0.01

Figure 7.2: SLA of a Social Network Application

7.3.4 Operations

Once a new configuration is selected, the CS executes a set of reconfiguration operations to
transform the system from the current configuration. In this section, we explain various reconfig-
uration operations and how they are executed abstractly by the CS, leaving the implementation
specifics to Section 7.5.

7.3.4.1 Adjust the Synchronization Period

When a secondary replica is added to the system for a particular tablet, a default synchronization
period is set, which defines how often a secondary replica synchronizes with (i.e., receives updates
from) the primary replica. Although this value does not affect the latency of read operations
with strong or eventual consistency, the average latency of reads with intermediary consistencies
(i.e., RMW, monotonic reads, bounded, and causal) can depend heavily on the frequency of
synchronization. Typically, the cost of adjusting the synchronization period is smaller than the
cost of adding a secondary replica or of changing the locations of primary/secondary replicas.
Hence, it is likely that the CS will decide to decrease this period to increase the hit ratios of
subSLAs with intermediary consistencies.

For example, consider a social network application with the majority of users located in Brazil
and India accessing a storage system with a primary replica located in Brazil, initially, and a
secondary replica placed in South Asia with the synchronization period set to 10 seconds. Assume
that the SLA shown in Figure 7.2 is set for all read operations. Given the fact that the round trip
latency between India and Brazil is more than 350 ms, the first subSLA will never hit for Indian
users. Yet, depending on the synchronization period and frequency of write operations performed
by Indian users, the second subSLA might hit. Thus, if the CS detects low utility for Indian users,
a possible new configuration would be similar to the old one but with a reduced synchronization
period.

In this case, the chosen operation to apply the new configuration is adjust_sync_period.
Executing this operation is very simple since the value of the synchronization period need only
be changed in the secondary replica. Clients do not directly observe any difference between the
new configuration and the old one, but they benefit from a more up-to-date secondary replica.

101

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

Rank Consistency Latency(ms) Utility
1 RMW 50 1
2 Monotonic Read 50 0.5
3 Eventual 500 0

Figure 7.3: SLA of an online multiplayer game

7.3.4.2 Add/Remove Secondary Replica

In certain cases, the CS might decide to add a secondary replica to the system. For example,
consider an online multiplayer game with the SLA shown in Figure 7.3 and where the primary
replica is located in the East US region. In order to deliver a better user experience to gamers
around the globe, the CS may add a secondary replica near users during their peak times. Once
the peak time has passed, in order to reduce costs, the CS may decide to remove the added, but
now lightly used, secondary replica.

Executing add_secondary(sitei) is straight-forward. A dedicated thread is dispatched to copy
objects from the primary replica to the secondary one. Once the whole tablet is copied to the
secondary replica, the new configuration becomes available to clients. Clients with the old
configuration may continue submitting read operations to previously known replicas, and they
eventually will become aware of the newly added secondary replica at sitei.

Executing remove_secondary(sitei) is also simple. The CS removes the secondary replica from
the current configuration. In addition, a thread is dispatched to physically delete the secondary
replica.

7.3.4.3 Change Primary Replica

In cases where the system maintains a single primary site, the CS may decide to change the
location of the primary replica. For instance, consider the example given in Section 7.3.4.1. The
CS may detect that adjusting the synchronization period between the primary and secondary
replicas cannot improve the utility. In this case, the CS may decide to swap the primary and
secondary replica roles. During peak times in India, the secondary replica in South Asia becomes
the primary replica. Likewise, during peak times in Brazil, the replica in Brazil becomes primary.

The CS calls the change_primary(sitei) operation to make the configuration change. If a
secondary replica does not exist in sitei, the operation is performed in three steps. First, the
CS creates a new empty replica at sitei. It also invalidates the configuration cached in clients.
As we shall see later, when a cached configuration is invalid, a client needs to contact the CS
when executing certain operations. Second, once every cached configuration becomes invalid, the
CS makes sitei a WRITE_ONLY primary site. In this mode, all write operations are forwarded
to both the primary site and sitei, but sitei is not allowed to execute read operations. Finally,
once sitei catches up with the primary replica, the CS makes it the solo primary site. If a replica

102

7.3. CONFIGURATION SERVICE (CS)

Rank Consistency Latency(ms) Utility
1 Strong 50 1
2 Eventual 500 0.9

Figure 7.4: Password Checking SLA

exists in sitei, the first step is skipped. We will explain the implementation of this operation in
Section 7.5.3.

7.3.4.4 Add Primary Replica

For applications that require clients to read up-to-date data as fast as possible, the system may
benefit from having multiple primary sites that are strongly consistent. In multi-primary mode,
write operations are applied synchronously in several sites before the client is informed that the
operation has completed.

Consider the password checking SLA shown in Figure 7.4, and assume that the primary
replica is placed in the West US region initially, and two secondary replicas are placed in Asia
and Europe. Clients located in the West US always read from the local datacenter and check
their passwords with strong consistency, while clients located in the rest of the globe always read
eventually consistent password data. Of course, checking passwords with eventual consistency
has a major security drawback. If hackers gain access to a user’s password, then changing this
password is not enough to stop them since secondary replicas do not immediately receive the new
writes (containing the new password). Hackers can still login to the system (for some bounded
time) if passwords are read from a secondary site.

One way of preventing this problem is to remove all secondary replicas in the system. Although
this approach works, the primary replica might become a bottleneck. Clients may observe high
latency during login time because all request would go to the West US replica. A better approach
is to change the utility of the second subSLA to zero, and then ask the CS for an explicit
reconfiguration (instead of waiting for the next reconfiguration round). In this case, the CS could
boost the overall utility by changing all secondary replicas into primary replicas. The CS might
also decide to add a primary replica in some datacenters where a secondary replica does not even
exist.

The operation that performs the configuration transformation is called add_primary(sitei). Its
execution is very similar to change_primary(sitei) with one exception. In the third step, instead
of making the WRITE_ONLY sitei the solo primary, sitei is added to the list of primary replicas,
thereby making the system multi-primary. In this mode, multiple rounds of operations are needed
to execute a write. The protocol that we use is described in Section 7.5.2.3.

103

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

Operation Effect Cost
Decrease
synchronization
period of secondary
replica at sitei

Increase hit ratios of subSLAs with
bounded, causal, or RMW consistencies for
clients near sitei

Increase in
communication

Add sitei as a
secondary replica

Increase hit ratios of subSLAs with eventual
or intermediary consistencies for clients
near sitei

Additional storage;
increased
communication

Upgrade sitei from
secondary to primary,
and downgrade site j

from primary to
secondary

Increase hit ratios of subSLAs with strong
or intermediary consistency for clients near
sitei; decrease hit ratios of subSLAs with
strong or intermediary consistency for
clients near site j

No change

Add sitei as a
primary replica
(upgraded from
secondary)

Increase hit ratios of subSLAs with strong
or intermediary consistency for clients near
sitei

Increased
communication;
increased write
latency

Figure 7.5: Summary of Common Reconfiguration Operations, Effects on Hit Ratios, and Costs.

7.3.4.5 Summary

Figure 7.5 summarizes the reconfiguration operations that are generally considered by the CS
(inverse and other less common operations are not shown). Note that the listed effects are only
potential benefits. Adjusting the synchronization period or adding a secondary replica to sitei

does not impact the observed consistency or write latency of clients that are not near this site.
These operation can possibly increase the hit ratios of subSLAs with intermediary consistencies
observed by clients close to sitei. Adding a secondary replica can increase the hit ratios of
subSLAs with eventual consistency. Making sitei the solo primary increases the hit ratios of
subSLAs with both strong and intermediary consistencies for clients close to sitei. However,
clients close to the previous primary replica now may miss subSLAs with strong or intermediary
consistencies. Adding a primary replica can boost strong consistency without having a negative
impact on read operations; but, it increases the cost of write operations for all clients.

7.4 Client Execution Modes

Since the CS may reconfigure the system periodically, clients need to be aware of possible changes
in the locations of primary and secondary replicas. Instead of clients asking the CS for the latest
configuration before executing each operation, Tuba allows clients to cache the configuration of a

104

7.4. CLIENT EXECUTION MODES

!"

!"!

#$%&" '()*"

+(,-.&"

+'"

#$%&"'()*"

/0" /1" /2"

!"

Figure 7.6: Clients Fast and Slow Execution Modes

tablet (called the cview) and use it for performing read and write operations. In this section, we
explain how clients avoid two potential safety violations: (i) performing a read operation with
strong consistency on a non-primary replica, or (ii) executing a write operation on a non-primary
replica.

Based on the freshness of a client’s cview, the client is either in fast or slow mode. Roughly
speaking, a client is in the fast mode for a given tablet if it knows that it has the latest
configuration. That is, it knows exactly the locations of primary and secondary replicas, and
it is guaranteed that the configuration will not change in the near future. On the other hand,
whenever a client suspects that a configuration may have changed, it enters slow mode until it
refreshes its local cache.

Initially, every client is in slow mode. In order to enter fast mode, a client requests the latest
configuration of a tablet (Figure 7.6). If the CS has not scheduled a change to the location of a
primary replica, the client obtains the current configuration along with a promise that the CS
will not modify the set of primary replicas within the next ¢ seconds. Suppose the duration from
when the client issues its request to when it receives the latest configuration is measured to be ±
seconds. The client then enters the fast mode for ¢°± seconds. During this period, the client is
sure that the CS will not perform a reconfiguration that compromises safety.

In order to remain in fast mode, a client needs to periodically refresh its cview. As long as it
receives the latest configuration within the fast mode window, it will remain in fast mode, and
its fast mode window is extended.

The CS can force all clients to enter slow mode at any time by preventing them from re-
freshing their configuration views. This feature is used before executing change_primary() and
add_primary() operations (see Section 7.5.3).

Fast Mode. When a client is in fast mode, read and single-primary write operations involve
a single round-trip to one selected replica. No additional overhead is imposed on these oper-

105

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

ations. Multi-primary write operations use a three-phase protocol in fast or slow mode (see
Section 7.5.2.3).

Slow Mode. Being in slow mode (for a given tablet) means that the client is not totally sure
about the latest configuration, and the client needs to take some precautions. Slow mode has no
affect on read operations with relaxed consistency, i.e., with any desired consistency except strong
consistency. Because read operations with strong consistency must always go to a primary replica,
when a client is in slow mode it needs to confirm that such an operation is indeed executed at a
current primary replica. Upon completion of a strong consistency read, the client validates that
the responding replica selected from its cview is still a primary replica. If not, the client retries
the read operation.

Unlike read operations, write operations are more involved when a client is in slow mode.
More precisely, any client in slow mode that wishes to execute a write operation on a tablet needs
to take a non-exclusive lock on the tablet’s configuration before issuing the write operation. On
the other hand, the CS needs to take an exclusive lock on the configuration if it decides to change
the set of primary replicas. This lock procedure is required to ensure the linearizability [70] of
write operations.

7.5 Implementation

Tuba is built on top of Microsoft Azure Storage (MAS) [30] and provides a similar API for
reading and writing blobs. Every MAS storage account is associated with a particular storage site.
Although MAS supports Read-Access Geo-Redundant Storage (RA-GRS) in which both strong and
eventual consistencies are provided, it lacks intermediary consistencies, and replication is limited
to a single primary site and a single secondary site. Our implementation extends MAS with:
(i) multi-site geo-replication (ii) consistency-based SLAs, and (iii) automatic reconfiguration.

A user of Tuba supplies a set of storage accounts. This set determines all available sites for
replication. The CS then selects primary and secondary replica sites by choosing storage accounts
from this set. Thus, a configuration is a set of MAS storage accounts tagged with PRIMARY or
SECONDARY.

In the rest of this section, we explain the communication between clients and the CS, and how
operations are implemented in Tuba. We ignore the implementation of consistency guarantees
and consistency-based SLAs since these aspects of Tuba are taken directly from the Pileus system
[140].

7.5.1 Communication

Clients communicate with the CS through a designated Microsoft Azure Storage container. Clients
periodically write their latency and hit/miss ratios to storage blobs in this shared container. The

106

7.5. IMPLEMENTATION

CS reads this information and stores the latest configuration as a blob in this same container.
Likewise, clients periodically read the latest configuration blob from the shared container and
cache it locally.

As we explained in Section 7.4, when a client reads the latest configuration, it enters fast
mode for ¢°± seconds. Since there is no direct communication between the client and the
CS, we also need to ensure that the CS does not modify a primary replica and install a new
configuration within the next ¢ seconds. Our solution is simple. When the CS wants to perform
certain reconfiguration operations (i.e., changing or adding a primary replica), it writes a special
reconfiguration-in-progress (RiP) flag to the configuration blob’s metadata. The CS then waits
for at least ¢ seconds before installing the new configuration. If a client fails to refresh its cview
on time or if it finds that the RiP flag is set, then the client enters slow mode. Once the CS
completes the operations needed to reconfigure the system, it overwrites the configuration blob
with the latest configuration and clears the RiP flag. Clients will re-enter fast mode when they
next retrieve the new configuration.

7.5.2 Client Operations

7.5.2.1 Read Operation

For each read operation submitted by an application, the client library selects a replica based
on the client’s latency, cview, and a provided SLA (as in Pileus). The client then sends a read
request to the chosen replica. Upon receiving a reply, if the client is in fast mode or if the read
operation does not expect strong consistency, the data is returned immediately to the application.
Otherwise, the client confirms that the contacted replica had been the primary replica at the
time it answered the read request. More precisely, when a client receives a read reply message in
slow mode, it reads the latest configuration and confirms that the timestamp of the configuration
blob has not changed.

7.5.2.2 Single-primary Write Operation

To execute a single-primary write operation, a client first checks that it is in fast mode and that
the remaining duration of the fast mode interval is longer than the expected time to complete
the write operation. If not, it refreshes its cview. Assuming the RiP flag is not set, the client
then writes to the primary replica. Once the client receives a positive response to this write
operation, the client checks that it is still in fast mode. If so, the write operation is finished. If the
write operation takes more time than expected such that the client enters slow mode during the
execution of the write operation, the client confirms that the primary replica has not changed.

When a client discovers a reconfiguration in progress and remains in slow mode, we considered
two approaches for performing writes. The simplest approach is for the client to wait until a new
configuration becomes available. In other words, it could wait until the RiP flag is removed from

107

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

the configuration blob’s metadata. The main drawback is that no write operation is allowed on
the tablet being reconfigured for ¢ seconds and, during this period, the CS does nothing while
waiting for all clients to enter slow mode.

Instead, Tuba allows a client in slow mode to execute a write operation by taking a lock. A
client acquires a non-exclusive lock on the configuration to ensure that the CS does not change
the primary replica before it executes the write operation. The CS, on the other hand, grabs an
exclusive lock on the configuration before changing it. This locking mechanism is implemented
as follows using MAS’s existing lease support. To take a non-exclusive lock on the configuration,
a client obtains a lease on the configuration blob and stores the lease-id as metadata in the
blob. Other clients wishing to take a non-exclusive lock simply read the lease-id from the blob’s
metadata and renew the lease. To take an exclusive lock, the CS breaks the client’s lease and
removes the lease-id from the metadata. The CS then acquires a new lease on the configuration
blob. Note that no new write is allowed after this point. After some safe threshold equal to the
maximum allowed leased time, the CS updates the configuration.

7.5.2.3 Multi-primary Write Operation

Tuba permits configurations in which multiple servers are designated as primary replicas. A
key implementation challenge was designing a protocol that atomically updates any number of
replicas on conventional storage servers and that operates correctly in the face of concurrent
readers and writers. Our multi-primary write protocol involves three phases: one in which a
client marks his intention to write on all primary replicas, one where the client updates all of
the primaries, and one where the client indicates that the write is complete. To guard against
concurrent writers, we leverage the concept of ETags in Microsoft Azure, which is also part of the
HTML 1.1 specification. Each blob has a string property called an ETag that is updated whenever
the blob is modified. Azure allows clients to perform a conditional write operation on a blob; the
write operation executes only if the provided ETag has not changed.

When an application issues a write operation to a storage blob and there are multiple primary
replicas, the Tuba client library performs the following steps.

Step 1: Acquire a non-exclusive lock on the configuration blob. This step is the same as
previously described for a single-primary write in slow mode. In this case, the configuration is
locked even if the client is in fast mode since the multi-primary write may take longer than
¢ seconds to complete. This ensures that the client knows the correct set of primary replicas
throughout the protocol.

Step 2: At the main primary site, add a special write-in-progress (WiP) flag to the metadata of
the blob being updated. The main primary site is the one listed first in the set of primary replicas.
This metadata write indicates to readers that the blob is being updated, and it returns an ETag
that is used later when the data is actually written. Updates to different blobs can take place in
parallel.

108

7.5. IMPLEMENTATION

Step 3: Write the WiP flag to the blob’s metadata on all other primary replicas. Note that
these writes can be done in any order or in parallel.

Step 4: Perform the write on the main primary site using the ETag acquired in Step 2. Note
that since writes are performed first at the main primary, this replica always holds the truth,
i.e. the latest data. Other primary replicas hold stale data at this point. This conditional write
may fail because the ETag is not current, indicating that another client is writing to the same
blob. In the case of concurrent writers, the last writer to set the WiP flag will successfully write
to the main primary replica; clients whose writes fail abandon the write protocol and possibly
retry those writes later.

Step 5: Perform conditional writes on all the other primary replicas using the previously
aquired Etags. These writes can be done in parallel. Again, a failed write indicates that a
concurrent write is in progress. In this case, this client stops the protocol even though it may
have written to some replicas already; such writes will be (or may already have been) overwritten
by the latest writer (or by a recovery process as discussed in section 5.4).

Step 6: Clear the WiP flags in the metadata at all non-main primary sites. These flags can be
cleared in any order or in parallel. This allows clients to now read from these primary replicas
and obtain the newly written data. To ensure that one client does not prematurely clear the flag
while another client is still writing, these metadata updates are performed as conditional writes
using the ETags obtained from the writes in the previous step.

Step 7: Clear the WiP flag in the metadata on the main primary using a conditional write
with the ETag obtained in Step 4. Because this is done as the final step, clients can check if a
write is in progress simply by reading the metadata at the main primary replica.

An indication that the write has been successfully completed can be returned to the caller at
any time after Step 4 where the data is written to the main primary. Waiting until the end of the
protocol ensures that the write is durable since it is held at multiple primaries.

If a client attempts a strongly consistent read while another client is performing a multi-
primary write, the reader may obtain a blob from the selected primary replica whose metadata
contains the WiP flag. In this case, the client redirects its read to the main primary replica who
always holds the latest data. Relaxed consistency reads, to either primary or secondary replicas,
are unaffected by writes in progress.

7.5.3 CS Reconfiguration Operations

In this section, we only explain the implementation of change_primary() and add_primary() since
the implementation details of adjusting a synchronization period and adding/removing secondary
replicas are straightforward.

As we explained before, change_primary(sitei) is the operation required for making sitei the
solo primary. If a secondary replica does not exist in sitei, the operation is performed in three
steps. Otherwise, the first step is skipped.

109

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

Step 1: The CS starts by creating a replica at sitei, and synchronizing it with the primary
replica.

Step 2: Before making sitei the new primary replica, the CS synchronizes sitei with the exist-
ing primary replica. Because write operations can run concurrently with a change_primary(sitei)
operation, sitei might never be able to catch up with the primary replica. To address this issue,
the CS first makes sitei a WRITE_ONLY replica by creating a new temporary configuration. As its
name suggests, write operations are applied to both WRITE_ONLY replicas and primary replicas
(using the multi-primary write protocol described previously).

The CS installs this configuration as follows:

(i) It writes the RiP flag to the configuration blob’s metadata, and waits ¢ seconds to force all
clients into slow mode.

(ii) Once all clients have entered the slow mode, the CS breaks the lease on the configuration
blob and removes the lease-id from the metadata.

(iii) It then acquires a new lease on the blob and waits for some safe threshold.

(iv) Once the threshold is passed, the CS safely installs the temporary configuration, and
removes the RiP flag.

Consequently, clients again switch to fast mode execution while the sitei replica catches up
with the primary replica.

Step 3: The final step is to make sitei the primary replica, once sitei is completely up-to-date.
The CS follows the procedure explained in the previous step to install a new configuration where
the old primary replica is downgraded to a secondary replica, and the WRITE_ONLY replica is
promoted to be the new primary. Once the new configuration is installed, sitei is the sole primary
replica.

Note that write operations are blocked from the time when the CS takes an exclusive lease
on the configuration blob until it installs the new configuration in both steps 2 and 3. However,
this duration is short: a round trip latency from the CS to the configuration blob plus the safe
threshold.

The add_primary() operation is implemented exactly like change_primary() with one excep-
tion. In the third step, instead of making sitei the solo primary, this site is added to the list of
primary replicas.

7.5.4 Fault-Tolerance

Replica Failure. A replica being unavailable should be a very rare occurrence since each of our
replication sites is a collection of three Azure servers in independent fault domains. In any case,
failed replicas can easily be removed from the system through reconfiguration. Failed secondary
replicas can be ignored by clients, while failed primary replicas can be replaced using previously
discussed reconfiguration operations.

110

7.5. IMPLEMENTATION

Client Failure. Most read and write operations from clients are performed at a single replica
and maintain no locks or leases. The failure of one client during such operations does not adversely
affect others. However, Tuba does need to deal explicitly with client failures that may leave a
multi-primary write partially completed. In particular, a client may crash before successfully
writing to all primary replicas or before removing the WiP flags on one or more primary replicas.

When a client, through normal read and write operations, finds that a write to a blob has been
in progress for an inordinate amount of time, it invokes a recovery process to complete the write.
The recovery process knows that the main primary replica holds the truth. It reads the blob from
the main primary and writes its data to the other primary replicas using the multi-write protocol
described earlier. Having multiple recovery processes running simultaneously is acceptable since
they all will be attempting to write the same data. The recovery process, after successfully writing
to every primary replica, clears all of the WiP flags for the recovered blob.

CS Failure. Importantly, the Tuba design does not depend on an active CS in continuous
operation. The CS may run only occasionally to check whether a reconfiguration is warranted.
Since clients read the latest configuration directly from the configuration blob, and do not rely
on responses from the CS, they can stay in fast mode even when the CS is not available as long
as the configuration blob is available (and the RiP flag is not set). Since the configuration blob
is replicated in MAS, it obtains the high-availability guarantees provided by Azure. If higher
availability is desired, the configuration blob could be replicated across sites using Tuba’s own
multi-primary write protocol.

The only troubling scenario is if the CS fails while in the midst of a reconfiguration leaving
the RiP flag set on the configuration blob. This is not a concern when the CS fails while adjusting
a synchronization period or adding/removing a secondary replica. Likewise, a failure before the
second step of changing/adding a primary replica does not pose any problem. Even if a CS failure
leaves the RiP flag set, clients can still perform reads and writes in slow mode.

Recovery is easy if the CS fails during step 2 or during step 3 of changing/adding a primary
replica (i.e., after setting the RiP flag and before clearing it). When the CS wants to performs a
reconfiguration, it obtains an ETag upon setting the RiP flag. To install a new configuration, the
CS writes the new configuration conditional on the obtained ETag.

A client clears the RiP flag upon waiting too long in slow mode. Doing so will prevent the CS
from writing a new configuration blob and abort any reconfiguration in progress in the unlikely
event that the CS had not crashed but was simply operating slowly. In other words, the CS cannot
write the new configuration if some client had impatiently cleared the RiP flag and consequently
changed the configuration blob’s ETag.

Finally, if the CS fails after step 2 of adding/changing a primary replica, clients can still enter
fast mode. In case the CS was executing change_primary() before its crash, write operations will
execute in multi-primary mode. Thus, they will be slow until the CS recovers and finishes step 3.

111

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

)" ((" (*" (+" (," ()" $(" $*" (" *" +" ,"

-.
/0

10
232
45
"

678"79:;"

6<" ;=./>?" @A21"

SUS WEU SEA
US Clients 53 153 190
(West US)

Europe Clients 132 <1 277
(West Europe)
Asia Clients 204 296 36
(Hong Kong)

Figure 7.7: Client Distribution and Latencies (in ms)

7.6 Evaluation

In this section, we present our evaluation results, and show how Tuba improves the overall utility
of the system compared with a system that does not perform automatic reconfiguration.

7.6.1 Setup and Benchmark

To evaluate Tuba, we used three storage accounts located in the South US (SUS), West Europe
(WEU), and South East Asia (SEA). We modeled the number of active clients with a normal
distribution, and placed them in the US West Coast, West Europe, and Hong Kong (Figure 7.7).
This is to mimic the workload of clients in different parts of the world during working hours. The
mean of the normal distribution is set to 12 o’clock local time, and the variance is set to 8 hours.
Considering the above normal distribution, the number of online clients at each hour is computed
as a total number of clients times the probability distribution at that hour. The total number of
clients at each site is 150 over a 24 hour period. Hence, each tablet is accessed by 450 distinct
clients in one day.

We used the YCSB benchmark [37] with workload B (95% Reads and 5% writes) to generate
the load. Each tablet contains 105 objects, and each object has a 1KB payload. Figure 7.8 shows
the SLA used in our evaluation, which resembles one used by a social networking application

112

7.6. EVALUATION

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.7
3 Eventual 250 0.5

Figure 7.8: SLA for Evaluation

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

," $$" $&" $(" $*" $," %$" %&" $" &" (" *"

-
./

01
22
"3
45
25
46
"

347"458/"

9:;0<=:>?@ABCD:>" /E<BF"'"G:AB" /E<BF")"G:AB" /E<BF"%"G:AB"

Reconf. Every
6h 4h 2h

AOU 0.76 0.81 0.85
AOU Impr. over No Reconf. 5% 12% 18%
AOU Impr. over Max. Ach. 20% 45% 65%

AOU: Averaged Overall Utility in 24 hours;
No Reconf. AOU: 0.72; Max. Ach. AOU: 0.92

Figure 7.9: Utility improvement with different reconfiguration rates

[140].
The initial setup places the primary replica in SEA and a secondary replica in WEU. We set

the geo-replication factor to two, allowing the CS to replicate a tablet in at most two datacenters.
Moreover, we disallowed multi-primary schemes during reconfigurations.

7.6.2 Macroscopic View

Figure 7.9 compares the overall utility for read operations when reconfiguration happens every
2, 4, and 6 hours over a 24 hour period, and when no reconfiguration happens. We note that
without reconfiguration Tuba performs exactly as Pileus. The average overall utility (AOU) is
computed as the average utility delivered for all read operations from all clients. The average
utility improvement depends on how frequently the CS performs reconfigurations. When no re-

113

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

!"#$%&'
(()'

*+,'
-.)'

/01%"234'
56)'

!"#$%&'&()*$&

!"#$%&'
(()'

*+,'
(()'

/01%"234'
(-)'

+),-#)./0*$12).&

!"#$%&'
-7)'

*+,'
(-)'

/01%"234'
68)'

!"#$%&3&()*$&

!"#$%&'
9-)'

*+,'
(9)'

/01%"234'
66)'

!"#$%&4&()*$&

Figure 7.10: Hit Percentage of subSLAs

configuration happens in the system, the AOU in the 24 hour period is 0.72. Observe that without
constraints, the maximum achievable AOU would have been 1. However, limiting replication to
two datacenters and a single primary decreases the maximum achievable AOU to 0.92.

Performing a reconfiguration every 6 hours improves the overall utility for almost 12 hours,
and degrades it for 8 hours. This results in a 5 percent AOU improvement. When reconfiguration
happens every 4 hours, the overall utility improves for 16 hours. This leads to a 12 percent AOU
improvement. Finally, with 2 hour reconfigurations, AOU is improved 18 percent. Note that this
improvement is 65 percent of the maximum possible improvement.

Interestingly, when no reconfiguration happens, the overall utility is better than other config-
urations around UTC midnight. The reason behind this phenomena is that at UTC midnight, the
original replica placement is well suited for the client distribution at that time.

Figure 7.10 shows the hit percentages of different subSLAs. With no reconfiguration, 34%
of client reads return eventually consistent data (i.e., hit the third subSLA). With 2 hour recon-
figurations, Tuba reduces this to 11% (a 67% improvement). Likewise, the percentage of reads
returning strongly consistent data increases by around 63%.

Although the computed AOU depends heavily on the utility values specified in the SLA,
we believe that the qualitative comparisons in this study are insensitive to the specific values.

114

7.6. EVALUATION

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

," $$" $&" $(" $*" $," %$" %&" $" &" (" *"

-
./

01
22
"3
45
25
46
"

347"458/"

9:;0<=:>?@ABCD:>" /E<BF"'"G:AB"

$

%
&

'

(

Epoch Primary Secondary Reconfiguration
0 SEA WEU change_primary(WEU)
1 WEU SEA add_secondary(SUS)

remove_secondary(SEA)
2 WEU SUS change_primary(SUS)
3 SUS WEU add_secondary(SEA)

remove_secondary(WEU)
4 SUS SEA change_primary(SEA)
5 SEA SUS

Figure 7.11: Tuba with Reconfigurations Every 4 hour

Certainly, the hit percentages in Figure 7.10 would be unaffected by varying utilities as long as
the rank order of the subSLAs is unchanged.

In addition to reduced utility, systems without support for automatic reconfiguration have
additional drawbacks stemming from the way they are manually reconfigured. A system admin-
istrator must stop the system (at least for certain types of configuration changes), install the
new configuration, inform clients of the new configuration, and then restart the system. Such
systems are unable to perform frequent reconfigurations. Moreover, the effect of a reconfiguration
on throughput can be substantial since all client activity ceases while the reconfiguration is in
progress.

7.6.3 Microscopic View

Figure 7.11 shows how Tuba adapts the system configuration in our experiment where reconfig-
uration happens every 4 hours. The first five reconfigurations are labeled on the plot. Initially,
the primary replica is located in SEA, and the secondary replica is located in WEU. Upon the
first reconfiguration, the CS decides to make WEU the primary replica. Though the number of
clients in Asia is decreasing at this time, the overall utility stays above 0.90 for two hours before

115

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

Fast Mode Slow Mode
Read Write Read Write

Client in Europe 54 143 270 785
Client in Asia 297 899 533 1598

Figure 7.12: Average Latency (in ms) of Read/Write Operations in Fast and Slow Modes

starting to degrade.
The second reconfiguration happens around 2PM (UTC time) when the overall utility is

decreased by 10%. At this time, the CS detects poor utility for users located in the US, and decides
to move the secondary replica from SEA to SUS. Since the geo-replication factor is set to 2, the
CS necessarily removes the secondary replica in SEA to comply with the constraint. At 6PM,
the third reconfiguration happens, and SUS becomes the primary replica. This reconfiguration
improves the AOU to more than 0.90. In the fourth reconfiguration, the CS decides to create a
secondary replica again in the SEA region. Like the second reconfiguration, in order to respect
the geo-replication constraint, the secondary replica in WEU is removed. Note that the fourth
reconfiguration is suboptimal since the CS does not predict clients’ future behavior and solely
focuses on their past behavior. A better reconfiguration would have been to make SEA the primary
replica rather than the secondary replica. After 4 hours, the CS performs another reconfiguration
and again is able to boost the overall utility of the system.

Although the CS performs adjust_sync_period() with two hour reconfiguration intervals, this
operation is never selected by the CS when reconfigurations happen every 4 hours. This is
because changing the primary or secondary replica boosts the utility enough that reducing the
synchronization period would result in little additional benefit.

7.6.4 Fast Mode vs. Slow Mode

In this experiment, we compare the latency of read and write executions in fast and slow modes.
Since the latency of read operations with any consistency other than strong does not change in
fast and slow modes, we solely focus on the latency of executing read operations with strong
consistency and write operations. We placed the configuration blob in the West US (WUS)
datacenter, a data tablet in West Europe (WEU), and clients in Central Europe and East Asia.
The latency (in ms) between the two clients and the two storage sites are as follows:

WEU WUS
Client in Europe 54 210

Client in Asia 296 230

Figure 7.12 compares the average latencies of read and write operations in slow and fast
modes. Executing strongly consistent read operations in slow mode requires also reading the

116

7.6. EVALUATION

!"
#!"
$!"
%!"
&!"

'!!"
'#!"
'$!"
'%!"
'&!"

'!" '!!" '!!!" '!!!!"

()
"(
*+

,-
./
01

*"
2/
.3
14
5"
67
34
8"

9-+:3;"*<"(=>31.7"

?").*;/@3")>.37" A").*;/@3")>.37" B").*;/@3")>.37"

Figure 7.13: Scalability of the CS

configuration blob to ensure that the primary replica has not changed. Therefore, the latency of a
read operation in slow mode is more than 200 ms longer than in fast mode.

Executing write operations in slow mode requires three additional RPC calls to the US
(where the configuration blob is stored) in the case where no client has written a lease-id to the
configuration’s metadata (as in this experiment). Specifically, slow mode writes involve reading
the latest configuration, taking a non-exclusive lease on the configuration blob, and writing the
lease-id to the configuration’s metadata. If a lease-id is already set in the configuration’s metadata,
the last phase is not needed, and two RPC calls are enough. We note that, with additional support
from the storage servers, the overhead of write operations in slow mode could be trimmed to only
one additional RPC call. This is achievable by taking or renewing the lease in one RPC call to the
server that stores the configuration.

7.6.5 Scalability of the CS

As we explained in Section 7.3.3, the CS considers a potentially large number of candidates when
selecting a new configuration. To better understand the limitations of the selection algorithm
used by our CS, we studied its scalability in practice. We put clients at four sites: East US, West
US, West Europe, and Southeast Asia. Each client’s SLA has three subSLAs, and all SLAs are
distinct; thus, no ratio aggregation is possible. Initially, the East US site is chosen as the primary
replica, and no secondary replica is deployed. We also impose the following three constraints:
(i) Do not replicate in East US, (ii) Replicate in at least two sites, and (iii) Replicate in a maximum
of three sites. We ran the CS on a dual-core 2.20 GHz machine with 3.5GB of memory.

Figure 7.13 plots the latency of computing a new configuration with 3, 5, and 7 available
storage sites when the CS performs an exhaustive search of all possible configurations. With
one hundred clients, it takes less than 3 seconds to compute the expected utility gain for every
configuration and to select the best one. With one thousand clients, the computation time for 3

117

CHAPTER 7. TUBA: A SELF-CONFIGURABLE CLOUD STORAGE SYSTEM

available storage sites is still less than 3 seconds, while it reaches 3.8 seconds for 7 sites. When
the number of clients reaches ten thousand, the CS computes a new configuration for 3 available
storage sites in 20 seconds, and for 7 available storage sites in 170 seconds.

This performance is acceptable for many systems since typically the set of cloud storage sites
(i.e., the datacenters in which data can be stored) is small and reconfigurations are infrequent.
For systems with very large numbers of clients and a large list of possible storage sites, heuristics
for pruning the search space could yield substantial improvements and other techniques like ILP
or constraint programming should be explored.

7.7 Related Work

Lots of previous work has focused on data placement and adaptive replication algorithms in
LAN environments (e.g., [13, 72, 92, 134, 148]). These techniques are not applicable for WAN
environments mainly because: (i) Intra-datacenter transfer cost is negligible compare to inter-
datacenter cost, (ii) Data should be placed in the datacenters that are closest to users, and
(iii) The system should react to users’ mobility around the globe. Therefore, in the remaining of
this section, we only review solutions tailored specifically for WAN environments.

Kadambi et al. [76] introduce a mechanism for selectively replicating large databases globally.
Their main goal is to minimize the bandwidth required to send updates and bandwidth required
to forward reads to remote datacenters while respecting policy constraints. They extend Yahoo!
PNUTs [36] with a per-record selective replication policy. Their dynamic placement algorithm
is based on [148] and responds to changes in access patterns by creating and removing replicas.
They replicate all records in all locations either as a full or as a stub. The full replica is a normal
copy of the replica while the stub contains only the primary-key and some metadata. Instead
of recording access patterns as in Tuba, they rely on a simple approach: a stub replica becomes
full when a read operation is delivered at its location, and a full replica demotes when a write
operation is observed in another location or if there has not been any read at that location for
some period. Unlike Tuba, changing the primary replica is not studied in this work. Moreover,
once data is inserted in a tablet, constraint changes are not allowed. In contrast, Tuba allows
modifying or adding new constraints, and they will be respected in the next reconfiguration cycle.

Tran et al. [142] introduce a key-value store called Nomad that allows migrating of data
between datacenters. They propose and implement an abstraction called overlays. These overlays
are responsible for caching and migrating object containers across datacenters. Nomad considers
the following three migration policies: (i) count, (ii) time, and (iii) rate. Hence, users can specify
the number of times, a certain period, and the rate that data is accessed from the same remote
location as migration policies. In comparison, Tuba focuses on maximizing the overall utility of
the storage system and respecting replication constraints.

Volley [6] relies on access logs to determine data locations. Their goal is to improve datacenter

118

7.8. CONCLUSION

capacity skew, inter-datacenter traffic, and client latency. In each round, Volley computes the data
placement for all data items, while the granularity in Tuba is a tablet. Unlike Tuba, Volley does
not take into account the configuration costs or constraints. Moreover, Volley does not propose
any migration mechanisms.

Venkataramani et al. [143] propose a bandwidth-constrained placement algorithm for WAN
environments. Their main goal is to place copies of objects at a collection of caches to minimize
access time. However, complex coordination between distributed nodes and the assumption of a
fixed size for all objects makes this scheme less practical.

7.8 Conclusion

Tuba is a replicated key-value store based on Pileus that allows applications to select their
desired consistency and dynamically selects replicas that can maximize the utility delivered to
read operations. Additionally, it automatically reconfigures itself while respecting user defined
constraints so that it adapts to changes in users locations or request rates. Tuba is built on top of
Windows Azure Storage (WAS), and extends WAS with broad consistency choices, consistency-
based SLAs, and explicit geo-replication configurations.

Our experiments with clients distributed in different datacenters around the world show that
Tuba with two hour reconfiguration intervals increases the reads that return strongly consistent
data by 63% and improves average utility up to 18%. This confirms that automatic reconfiguration
can yield substantial benefits which are realizable in practice.

119

C
H

A
P

T
E

R 8
CONCLUSION

In this thesis, we studied various issues related to consistency criteria in transactional, and
non-transactional data stores. In the first part, we focused on transactional data stores,
and studied: (i) what are the desired scalability properties of a consistency criterion, and

of a transactional system; (ii) how well-known consistency criteria (like Snapshot Isolation or
Serializability) behave with respect to these properties; (iii) whether it is possible to design
a more scalable strong consistency criterion without introducing additional anomalies, and
(iv) performing a fair apples-to-apples comparison among transactional protocols ensuring various
consistency criteria. We address the above problems with the following contributions:

Scalability properties. We first identified the following four scalability properties: Genuine
Partial Replication, Wait-Free Queries, Forward Freshness Snapshot, and Minimal Commitment
Synchronization. We also compared various transactional protocols in terms of their assumptions,
and the above scalability properties.

Scalability of Strong Consistency Criteria. We showed that ensuring snapshot isolation in
a genuine partial replication system is impossible with obstruction-free updates, and interactive
transactions in a failure-free asynchronous system. To state this impossibility result, we proved
that SI is decomposable into a set of simpler properties, and proved that two of these properties,
namely snapshot monotonicity and strictly consistent snapshots cannot be ensured under GPR.
As a corollary, we also showed that a GPR system with obstruction-free updates cannot support
SSER, nor Opacity. Moreover, a GPR system with obstruction-free updates and WFQ cannot
ensure PSI.

121

CHAPTER 8. CONCLUSION

NMSI & Jessy. To sidestep the above impossibility result, we introduced Non-monotonic Snap-
shot Isolation (NMSI). It requires: (i) transactions to always read committed versions of objects,
(ii) transactions to always take consistent snapshots, and (iii) no two concurrent write-conflicting
transactions both commit. NMSI is a strong consistency criterion that is able to ensure all four
scalability properties. Therefore, it completely leverages the intrinsic parallelism of a workload
and minimizes the impact of concurrent transactions on each other. We assessed empirically
these benefits by comparing our NMSI implementation (called Jessy) with several replication
protocols representative of well-known criteria. Our experiments show that performance of NMSI
is close to RC (i.e, the weakest criterion) in a disaster-prone configuration, and up to two times
faster than Parallel Snapshot Isolation PSI.

G-DUR. Deferred update replication (DUR) is a classical technique to construct transactional
data stores. Protocols that follow the DUR approach share a common algorithmic structure
consisting of a speculative execution phase followed by a termination phase. We leveraged the
above insight to introduce a generic framework called Generic Deferred Update Replication (G-
DUR). G-DUR brings several benefits to practitioners and researchers in the field of transactional
storage:

- It eases fast prototyping of a transactional protocol following the DUR approach. We
presented our implementations of six state-of-the-art replication protocols published in the past
few years [106, 117, 127, 129, 131, 136].

- G-DUR fosters apples-to-apples comparison of transactional protocols. We illustrated this
by presenting an empirical evaluation in a geo-replicated environment.

- With G-DUR, a developer can study in detail the limitations and overheads of her protocol.
We showed this point with the GMU protocol Peluso et al. [106]. We also presented a variation of
P-Store [127] that leverages workload locality. Our variant performs up to 70% faster than the
original.

In the second part of this thesis, we focused on the following problems: how to reconfigure
a non-transactional data store while ensuring consistencies, and respecting user defined cost
objectives, and constraints. To this end, we proposed the following system.

Tuba. Tuba is a replicated key-value store that allows applications to select their desired level
of consistency. It dynamically selects replicas to maximize the utility delivered to read operations.
In addition, it automatically reconfigures itself while respecting user defined constraints so that
it adapts to changes in users locations or request rates. Tuba is built on top of Windows Azure
Storage (WAS), and extends WAS with broad consistency choices, consistency-based SLAs, and
explicit geo-replication configurations.

Our experiments with clients distributed in different datacenters around the world show
that Tuba, with two hour reconfiguration interval, increases the reads that return strongly

122

8.1. FUTURE WORK

consistent data by 63% and improves average utility by up to 18%. This confirms that automatic
reconfiguration can yield substantial benefits which are practical.

8.1 Future Work

Decomposition of other strong consistencies In Chapter 4, we decomposed SI into a set
of necessary and sufficient properties. For the future work, it remains to decompose other
consistency criteria into a set of necessary and sufficient properties. We believe that it is easier to
understand, and reason about a consistency criteria using these decomposed properties. Moreover,
it is easier to prove a correctness of a transactional system by using these decomposed properties
compared to using the classical phenomena based definition of consistency criteria [3].

Impossibility of SER in GPR In Section 4.3, we discussed that if Lemma 4.1 holds for
concurrent conflicting transactions, then SER is not attainable in a GPR system with WFQ and
OFU. One future research direction is to prove that Lemma 4.1 always holds for concurrent
conflicting transactions when a system ensures OFU and WFQ.

Extending G-DUR. Currently, G-DUR is limited to several strong consistency criteria, and
does not support session guarantees. One future research direction is to extend the G-DUR
study, and add new criteria and protocols (e.g., Causal+ [90, 91], Read Atomicity [18]) along
with a support for session guarantees. Another direction of interest is the dynamic adaptation
of consistency to the workload. To that regard, we believe that G-DUR can greatly improve our
development and evaluation time thanks to its library of execution and termination plug-ins.

Geo-replicated Search Indexes. In this thesis, we assumed that an object is accessed via
its primary key. When accessing an object other than through its primary key, a request should
be sent to all replicas in the system, and a coordinator needs to wait for replies from all replica
groups. Hence, in a partially replicated system, this approach is very slow and not scalable. To
sidestep this problem, one solution is to build a distributed search index, for instance a distributed
B+Tree or a skip list, for every non-primary key of interest. The search index can later be used
for implementing sql-based query language on top of key-value stores for executing complex sql
queries. This problem has been studied in the context of single-site data stores (e.g., [7, 46, 149])
but not for geo-replicated systems. One direction of interest is to leverage non-monotonic snapshot
isolation for building search indexes.

Reconfigurable transactional store. Our work on Tuba system focuses on storage systems
with read/write operations. A future research direction is to extend it to transactional storage sys-
tems. Previous research on data allocation algorithms, and automatic configuration of database

123

CHAPTER 8. CONCLUSION

systems, targets mainly LAN environments, and is designed for databases with serializabil-
ity or snapshot isolation [14, 134, 148]. However, they are not well suited to a geo-replicated
transactional storage with high latency, and weaker consistency models.

124

Part III: Appendix

A
P

P
E

N
D

IX A
PROOF OF SI DECOMPOSITION

In Theorem 4.1, we claim that SI equals the intersection of ACA, SCONS, WCF and MON.
This section is devoted to a rigorous proof of this claim. Proposition A.1 states that SIµACA\
SCONS\WCF\MON holds. In Proposition A.2, we prove that the converse is true. We start our
proof by the three technical lemmata bellow.

Lemma A.1. Consider a history h 2 SI and two versions xi and xj of some object x. If xi øh xj

holds then T j ⇤
§ Ti is true.

Proof. Assume some history h 2SI such that xi øh xj holds. Let hs be an extended history for h
that satisfies rules D1 and D2. According to the model, transaction T j first reads some version
xk, then writes version xj.

First, assume that there is no write to x between wi(xi) and wj(xj). Since x belongs to
ws(Ti)\ws(T j), rule D2 tells us that either ci <hs s j, or c j <hs si holds. We observe that because
xi øh xj holds, it must be true that ci <hs s j. Since there is no write to x between wi(xi) and
wj(xj), xk ø xi holds, or k = i. Observe that in the former case rule D1.3 is violated. Thus,
transaction T j reads version xi.

To obtain the general case, we apply inductively the previous reasoning. Á

Lemma A.2. Let h 2SI be an history, and S be a function such that hs = S(h) satisfies D1 and D2.
Consider Ti,T j 2 h. If Ti ! T j holds then si <hs s j.

Proof. Consider two transactions Ti and T j such that the snapshot of Ti precedes the snap-
shot of T j. By definition of the snapshot precedence relation, there exist Tk,Tl 2 h such that
ri(xk), r j(yl) 2 h and either (i) ri(xk)<h cl , or (ii) wl(xl) 2 h and ck <h cl . Let us distinguish each
case:

127

APPENDIX A. PROOF OF SI DECOMPOSITION

(Case ri(xk)<h cl) By definition of function S, si precedes ri(xk) in hs. From r j(yl) 2 h and rule
D1.2, cl <hs s j holds. Hence, si <hs s j holds.

(Case ck <h cl) From (i) ri(xk),wl(xl) 2 h, (ii) ck <h cl and (iii) rule D1.3, we obtain si <hs cl .
From r j(yl) 2 h and rule D1.2, cl <hs s j holds. It follows that si <hs s j holds.

Á

Lemma A.3. Consider a history h 2 ACA\CONS\WCF, and two versions xi and xj of some
object x. If xi øh xj holds then ci <h c j.

Proof. Since both Ti and T j write to x and h belongs to WCF either T j ⇤
§ Ti or Ti ⇤

§ T j holds.
We distinguish the two cases below:
(Case T j ⇤

§ Ti) First, assume that T j ⇤ Ti holds. Note y an object such that r j(yi) is in h. Since
h belongs to ACA, ci <h r j(yi) holds. Because h is an history, r j(yi)<h c j must hold. Hence
we obtain ci <h c j. By a short induction, we obtain the general case.

(Case Ti ⇤
§ T j) Let us note xk the version of x read by transaction Ti. From the definition of

an history and since h belongs to to ACA, we know that wk(xk) <h ck <h ri(xk) <h wi(xi)
holds. As a consequence, xk øh xi is true. Since (i) h belongs to CONS, (ii) Ti ⇤

§ T j, and
(iii) T j writes to x, it must be the case that xj øh xk. We deduce that xj øh xi holds; a
contradiction.

Á

Proposition A.1. SIµACA\SCONS\WCF\MON

Proof. Choose h in SI. Note S a function such that history hs = S(h) satisfies rules D1 and D2.
(h 2ACA) It is immediate from rules D1.1 and D1.2.
(h 2WCF) Consider two independent transactions Ti and T j modifying the same object x. By

the definition of an history, xi øh xj , or xj øh xi holds. Applying Lemma A.1, we conclude
that in the former case T j depends on Ti, and that the converse holds in the later.

(h 2SCONSa) By contradiction. Assume three transactions Ti, T j and Tl such that ri(xj), ri(yl) 2
h and ri(xj) <h cl are true. In hs, the snapshot point si of transaction Ti is placed prior
to every operation of Ti in hs. Hence, si precedes ri(xj) in hs. This implies that si <hs

cl ^ ri(yl) 2 hs holds. A contradiction to rule D1.2.
(h 2SCONSb) Assume for the sake of contradiction four transactions Ti, T j, Tk 6= j and Tl such

that: ri(xj), ri(yl), wk(xk) 2 h, ck <h cl and ck 6<h c j are all true. Since transaction T j and
Tk both write x, by rule D2, we know that c j <hs ck holds. Thus, c j <hs ck <hs cl holds.
According to rule D1.2, since ri(yl) is in h, cl <hs si is true. We consequently obtain that
c j <hs ck < si holds. A contradiction to rule D1.3.

(h 2 MON) If !§ is not a partial order, there exist transactions T1, . . . ,Tn∏1 such that: T1 ! . . .!
Tn ! T1. Applying Lemma A.2, we obtain that the relation s1 <hs s1 is true. A contradiction.

Á

128

Proposition A.2. ACA\SCONS\WCF\MONµSI

Proof. Consider some history h in ACA\SCONS\WCF\MON. If history h belongs to SI then
there must exist a function S such that h0 = S(h) satisfies rules D1 and D2. In what follows, we
build such an extended history h0, then we prove its correctness.

[Construction] Initially h0 equals h. For every transaction Ti in h0 we add a snapshot point si in
h0, and for every operation oi in h0, we execute the following steps:

S1. We add the order (si, oi) to h0.
S2. If oi equals ri(xj) for some object x then

S2a. we add the order (c j, si) to h0,
S2b. and, for every committed transaction Tk such that wk(xk) is in h, if ck <h c j does not

hold then we add the order (si, ck) to h0.

[Correctness] We now prove that h0 is an extended history that satisfies rules D1 and D2.

• h0 is an extended history.

Observe that for every transaction Ti in h0, there exists a snapshot point si, and that
according to step S1, si is before all operations of transaction Ti. It remains to show that
order <h0 is acyclic. We proceed by contradiction.

Since h is a history, it follows that any cycle formed by relation <h0 contains a snapshot
point si. Furthermore, according to steps S1 and S2 above, we know that for some operation
c j 6=i, relation c j <h0 si <§

h0 c j holds.

By developing relation si <§
h0 c j, we obtain the following three relations. The first two

relations are terminal, while the last is recursive.

– Relation si <h0 c j holds. This relation has to be produced by step S2b. Hence, there
exist operations ri(xk),wj(xj) in h0 such that c j <h ck does not hold. Observe that since
h belongs to ACA\CONS\WCF, by Lemma A.3, it must be the case that ck <h c j

holds.
– Relation si <h0 oi <§

h c j holds for some read operation oi in Ti. (If oi <§
h c j with oi a

write or a terminating operation, we may consider a preceding read that satisfies the
same relation.)

– Relation si <h0 oi <§
h0 c j holds for some read operation oi in Ti, and oi <§

h0 c j does not
imply oi <§

h c j. (Again if oi is a write or a terminating operation, we may consider a
preceding read that satisfies this relation.) Relation oi <§

h0 c j cannot be produced by
steps S1 and S2. Hence, there must exist a commit operation ck and a snapshot point
sl such that si <h0 oi <h ck <h0 sl <§

h0 c j holds.

From the result above, we deduce that there exist snapshot points s1, . . . , sn∏1 and commit
points ck1 . . . ckn such that:

(A.1) s1 ¡ ck1 <h0 s2 ¡ ck2 . . . sn ¡ ckn <h0 s1

129

APPENDIX A. PROOF OF SI DECOMPOSITION

where si ¡ cki is a shorthand for either (i) si <h0 cki with ri(xj),wki (xki) 2 h and c j <h cki ,
or (ii) si <h0 oi <h cki with oi is some read operation.

We now prove that for every i, Ti ! Ti+1 holds. Consider some i. First of all, observe that
a relation cki°1 < si is always produced by step S2a. Then, since relation si ¡ cki <h0 si+1

holds we may consider the two following cases:

– Relation si <h0 cki <h0 si+1 holds with ri(xj),wki (xki) 2 h and c j <h cki . From cki <h0

si+1 and step S2a, there exists an object y such that ri+1(yki). Thus, by definition of
the snapshot precedence relation, Ti ! Ti+1 holds.

– Relation si ¡ cki equals si <h0 oi <h cki where oi is some read operation of Ti, Since
cki <h0 si+1 is produced by step S2a, we know that for some object y, ri+1(yki) belongs
to h. According to the definition of the snapshot precedence, Ti ! Ti+1 holds.

Applying the result above to Equation A.1, we obtain: T1 ! T2 . . . ! Tn ! T1. History h
violates MON, a contradiction.

• h0 satisfies rules D1 and D2.

(h0 satisfies D1.1) Follows from h 2ACA,
(h0 satisfies D1.2) Immediate from step S1.
(h0 satisfies D1.3) Consider three transactions Ti, T j and Tk such that operations ri(xj),

wj(xj) and wk(xk) are in h. The definition of an history tells us that either xk øh xj or
the converse holds. We consider the following two cases:
(Case xk øh xj) Since h belongs to ACA\CONS\WCF, Lemma A.3 tells us that ck <h c j

holds. Hence, ck <h0 c j holds.
(Case xj øh xk) Applying again Lemma A.3, we obtain that c j <h ck holds. Since <h is a

partial order, then c j <h ck does not hold. By step S2b, the order (si, ck) is in h0.
(h0 satisfies D2) Consider two conflicting transaction (Ti,T j) in h0. Since h belongs to WCF,

one of the following two cases occurs:
(Case Ti ⇤

§ T j) At first glance, assume that Ti ⇤
§ T j holds. By step S2a, si is in h0 after

every operation c j such that ri(xj) is in h0, and by step S1, si precedes the first
operation of Ti. Thus c j <h0 si holds, and h0 satisfies D2 in this case. To obtain the
general case, we applying inductively the previous reasoning.

(Case T j ⇤
§ Ti) The proof is symmetrical to the case above, and thus omitted.

Á

From the conjunction of Proposition A.1 and Proposition A.2, we deduce that:

Theorem 4.1. SI=SCONS\MON\WCF\ACA

This decomposition is well-formed in the sense that the four properties SCONS, MON, WCF and
ACA are distinct and that no strict subset of {SCONS,MON,WCF,ACA} attains SI.

130

Proposition A.3. For every S ({SCONS,MON,WCF,ACA}, it is true that \X2S X 6=SI.

Proof. For every set S ({SCONS,MON,WCF,ACA} containing three of the four properties, we
exhibit below an history in \X2S X \SI. Trivially, the result then holds for every S. (SCONS\
ACA\WCF) History h6 in Section 4.1. (MON\ACA\WCF) History h5 in Section 4.1 (SCONS\
MON\WCF) History r1(x0).w1(x1).ra(x0).c1.ca. (SCONS\MON\ACA) History r1(x0).r2(x0).w1(x1).w2(x2).c1.c2

Á

131

A
P

P
E

N
D

IX B
CORRECTNESS OF JESSY

In this section, we prove the correctness of Jessy. In the first section, we prove the safety of Jessy,
and show that Jessy generates NMSI histories in Proposition B.1. In the second section, we first
prove liveness of Jessy in Proposition B.2. We then show that Jessy ensures WFQ (Proposition B.3)
and NTU (Proposition B.4). Finally, we prove that Jessyofu guarantees OFU in Proposition B.5.

B.1 Safety

Lemma B.1. If a transaction Ti commits (respectively aborts) at some process in replicas(ws(Ti))[
coord(Ti), it commits (resp. aborts) at every correct process in replicas(ws(Ti))[coord(Ti).

Proof. This proposition follows from the properties of atomic multicast, the fact that the queue
Q is FIFO, the preconditions at lines 14 to 15 in Algorithm 4, and the definitions of vote() and
outcome(). Á

By using the above lemma, we now prove that Jessy ensures NMSI as its safety property.

Proposition B.1. Every history admissible by Jessy belongs to NMSI.

Proof. We first observe that transactions in Jessy always read committed versions of the objects
(line 16 in Algorithm 3). Moreover, we know by Theorem 5.1 that reads are consistent when Jessy
uses dependence vectors, and that this property also holds in case Jessy employs partitioned
dependence vectors (Proposition 5.2). It thus remains to show that histories generated by Jessy
are write-conflict free (WCF).

To prove that WCF holds, we consider two independent write-conflicting transactions Ti

and T j, and we assume for the sake of contradiction that they both commit. We note pi (resp.

133

APPENDIX B. CORRECTNESS OF JESSY

p j) the coordinator of Ti (resp. T j). Since Ti and T j write-conflict, there exists some object x in
ws(Ti)\ws(T j). One can show that the following claim holds:

(C1) For any two replicas p and q of x, denoting committedp (resp. committedq) the set {T j 2
committed : x 2ws(T j)}, at the time p (resp. q) decides Ti, it is true that committedp equals
committedq.

According to line 20 of Algorithm 4 and the definition of function outcome(), pi (respectively
p j) received a positive VOTE message from some process qi (resp. q j) replicating x. Observe that
Ti (resp. T j) is in variable Q at process qi (resp. q j) before this process sends its VOTE message. It
follows from claim C1 that either (1) at the time qi sends its VOTE message, T j <Q Ti holds, or (2)
at the time q j sends its VOTE message, Ti <Q T j holds. Assume that case (1) holds (the reasoning
for case (2) is symmetrical). From the precondition at line 15 in Algorithm 4, we know that
process qi must wait that T j is decided before casting a vote for Ti. From Lemma B.1, we deduce
that T j is committed at process qi. Hence, certify(Ti) returns false at process qi; a contradiction.

Á

B.2 Liveness and Progress

Lemma B.2. For every transaction Ti, if coord(Ti) executes Ti and coord(Ti) is correct, then
eventually Ti is submitted to the termination protocol at coord(Ti).

Proof. Transaction Ti executes all its write operations locally at its coordinator. Now, upon
executing a read request on some object x, if x was modified previously by Ti, the corresponding
value is returned. Otherwise, coord(Ti) sends a read request to replicas(x). To prove this lemma,
we have to show that eventually one of the replica replies to the coordinator.

According to our model, there exists one correct process replica of x. In what follows, we name
it p. Observe that since links are quasi-reliable, p eventually receives the read request from
coord(Ti). Upon receiving this request, process p tries returning a version of x compatible with
all versions previously read by Ti.

Consider that Jessy uses dependence vectors (the reasoning for partitioned dependence
vectors is similar), and assume, by contradiction, that p never finds such a compatible version.
From the definition of compat(Ti, xj, yl), this means that the following predicate is always true:

8(x,v, l) 2 ds : V(wl(xl))[x]<V(ri(yj))[x]
_ V(wl(xl))[y]>V(ri(yj))[y]

This means that there exists a version xk upon which transaction Ti depends, and such that
V(wk(xk))[x]=V(ri(yj))[x]. Transaction Tk committed at some site. As a consequence, Lemma B.1
tells us that eventually Tk commits at process p. We conclude by observing that since Jessy
satisfies both CONS and WCF, V(wk(xk))[y]>V(ri(yj))[y] cannot hold.

Á

134

B.2. LIVENESS AND PROGRESS

By leveraging the above lemma, we now prove the liveness of Jessy, and show that if the
coordinator of Ti is correct, Ti always terminates.

Proposition B.2. For every transaction Ti, if Ti is submitted at coord(Ti) and coord(Ti) is
correct, every correct process in replicas(ws(Ti))[coord(Ti) eventually decides, and terminates Ti.

Proof. According to Lemma B.2 and the properties of atomic multicast, transaction Ti is de-
livered at every correct process in replicas(ws(Ti))[coord(Ti). It is then enqueued in variable Q

(lines 10 to 11 in Algorithm 4).
Because Q is FIFO, processes dequeue transactions in the order they deliver them (lines 14 to 15).

The uniform prefix order and acyclicity properties of genuine atomic multicast ensure that no
two processes in the system wait for a vote from each other. It follows that every correct replica
in replicas(ws(Ti)) eventually dequeues Ti, and sends the outcome of function certify(Ti) to
replicas(ws(Ti))[coord(Ti) (lines 16 to 17).

Since there exists at least one correct replica for each object modified by Ti eventually every
correct process in replicas(ws(Ti))[coord(Ti) collects enough votes to decide upon the outcome of
Ti. Á

The following two proposition proves WFQ and NTU as the progress property for read-only
and update transactions in Jessy.

Proposition B.3. Jessy ensures wait-free queries.

Proof. Consider some read-only transaction Ti and assume that coord(Ti) is correct, Lemma B.2
tells us that Ti is eventually submitted at coord(Ti).

According to the definition of predicate outcome, outcome(Ti) always equals true. Hence, the
precondition at line 20 in Algorithm 4 is always true, whereas precondition at line 26 is always
false. It follows that Ti eventually commits. Á

Proposition B.4. Jessy ensures non-trivial updates.

Proof. We need to prove that: in every execution Ω such that h = F(Ω) is quiescent (i.e., no
transaction is pending), for every transaction Ti 62 h, there exists an extension Ω0 of Ω such that
transaction Ti commits in history F(Ω0).

Consider some update transaction Ti such that coord(Ti) is correct. Proposition B.2 proves
that transaction Ti eventually terminates.

At the time Ti starts its execution, there is no pending transaction in history h. This implies
that there exists a correct replica at every replica group that has committed all write-conflicting
transactions with Ti. Therefore, there exist an execution Ω0 such that Ti reads from these replicas.
Consequently, Ti depends on all write-conflicting transactions, and the outcome of certify(Ti) is
true.

Á

135

APPENDIX B. CORRECTNESS OF JESSY

In what follows, we prove that Jessyofu ensures OFU for update transactions.

Proposition B.5. Jessyofu ensures obstruction-free updates.

Proof. We need to prove that: in every execution Ω, for every transaction Ti in F(Ω), if Ti aborts
in h then Ti write-conflicts with some concurrent pending transaction in h.

Consider some update transaction Ti such that coord(Ti) is correct. Proposition B.2 proves
that transaction Ti eventually terminates.

Assume that at the time Ti starts its execution, every transaction write-conflicting with Ti

has terminated. This implies that there exists qw replicas that has committed write-conflicting
transactions with Ti. Observe that when coord(Ti) executes a read operation, it waits for qr

replicas to reply such that qr \ qw 6=?. Therefore, in any execution Ω0, Ti depends on all write-
conflicting transactions. Consequently, the outcome of certify(Ti) is true. Á

136

A
P

P
E

N
D

IX C
RÉSUMÉ DE LA THÈSE

Contents

C.1 Résumé . 139

C.2 Introduction . 140

C.2.1 Contributions . 141

C.2.1.1 Partie I . 141

C.2.1.2 Partie II . 144

C.3 Passage à l’échelle du Critère de Cohérence Forte . 145

C.3.1 Décomposition SI . 145

C.3.1.1 Annulation en cascade (Absence of Cascading Aborts) 145

C.3.1.2 Instantanés cohérents et strictement cohérents 146

C.3.1.3 Instantané monotone . 147

C.3.2 Write-Conflict Freedom . 147

C.3.3 La décomposition . 147

C.3.4 L’impossibilité de SI avec GPR . 148

C.4 Non-monotonic Snapshot Isolation . 149

C.5 Generic Deferred Update Replication . 152

137

APPENDIX C. RÉSUMÉ DE LA THÈSE

C.6 Un Système de Stockage Cloud Auto-Configurable 155

138

C.1. RÉSUMÉ

C.1 Résumé

Les applications basées sur l’informatique en nuage (cloud), comme celles de réseau social ou de

commerce électronique, nécessitent de répliquer les données sur plusieurs sites, afin d’améliorer

la réactivité, d’être disponibles, et de tolérer les désastres. Il est donc capital de savoir assurer la

cohérence sur un système de grande échelle, comportant des connexions WAN, lentes et soumises

à panne. C’est le sujet de la présente thèse.

Dans une première partie, nous étudions la cohérence dans les systèmes transactionnels, en

nous concentrant sur le problème de réconcilier la scalabilité (c-à-d la capacité à passer à l’échelle)

avec des garanties transactionnelles fortes. Nous identifions quatre propriétés critiques pour la

scalabilité : (i) seules les répliques mises à jour par une transaction T participent à l’exécution

de T ; (ii) une transaction en lecture seule n’attend jamais une transaction concurrente, et est

toujours confirmée (commit) ; (iii) une transaction peut lire des versions confirmées après son

démarrage ; et (iv) deux transactions se synchronisent uniquement si leurs écritures sont en

conflit. Nous montrons qu’aucun des critères de cohérence forte existants n’assurent l’ensemble de

ces propriétés. Nous définissons un nouveau critère, appelé Non-Monotonic Snapshot Isolation ou

NMSI, qui est le premier à être compatible avec les quatre propriétés à la fois. Nous présentons

aussi une mise en œuvre de NMSI, appelée Jessy, que nous comparons expérimentalement

à plusieurs critères connus. Notre dernière contribution, dans cette première partie, est un

canevas permettant de comparer de façon non biaisée différents protocoles transactionnels. Elle

se base sur la constatation qu’une large classe de protocoles transactionnels distribués est basée

sur une même structure, Deferred Update Replication ou DUR. Les protocoles de cette classe

ne diffèrent que par les comportements spécifiques d’un petit nombre de fonctions génériques.

Nous présentons donc un canevas générique pour les protocoles DUR, appelé G-DUR, avec

une bibliothèque de réalisations finement optimisées des comportements désirés. Notre étude

empirique montre que :

(i) G-DUR permet de développer différents protocoles transactionnels avec quelques centaines

de lignes de code ; (ii) il assure une comparaison équitable et non biaisée entre protocoles ; (iii) par

simple remplacement de comportements, un développeur peut utiliser G-DUR pour comprendre

les goulots d’étranglement de son protocole ; (iv) par conséquence, cela permet d’améliorer un

protocole existant ; et (v) pour un protocole donné, G-DUR permet d’évaluer le coût de divers

degrés de fiabilité.

139

APPENDIX C. RÉSUMÉ DE LA THÈSE

La seconde partie de la thèse a pour sujet la cohérence dans les systèmes de stockage non

transactionnels. C’est ainsi que nous décrivons Tuba, un stockage clef-valeur qui choisit dy-

namiquement ses répliques, afin de maximiser l’utilité perçue par les opérations de lecture, selon

un objectif de niveau de cohérence fixé par l’application. Ce système reconfigure automatiquement

son ensemble de répliques, tout en respectant les objectifs de cohérence fixés par l’application,

afin de s’adapter aux changements dans la localisation des clients ou dans le débit des requête.

Nous avons mis en œuvre Tuba au-dessus de Microsoft Azure Storage (MAS). Tout en fournissant

une API similaire, Tuba rajoute à MAS un large choix de types de cohérence, de SLA de cohérence,

et un service de configuration géo-répliquée. Notre évaluation montre que Tuba accroît le nombre

de lectures renvoyant une version fortement cohérente de 63%, et accroît l’utilité moyenne de

18%, par rapport à un système statiquement configuré.

C.2 Introduction

Les applications en nuage sont disponibles depuis de nombreux points d’accès distribués et

lointains. Pour améliorer leur réactivité, leur disponibilité, et pour être tolérant aux désastres,

les systèmes de stockage en nuage sont répliqués sur plusieurs sites (centres de calculs ou data

centers) géographiquements distincts (géo-replication).

Malheureusement, les critères classiques pour la cohérence forte ne passent pas bien à

l’échelle, sous forte charge et avec des distances élevées. Plusieurs travaux ont cependant déjà été

menés pour définir des critères de cohérence qui permettent de garantir à la fois des garanties

compréhensibles pour les applications, et qui réussissent à passer à l’échelle [3, 22, 57, 63, 68, 90,

106, 136]. Cependant, les implications en terme de performance et de passage à l’échelle de ces

critères de cohérence, ainsi que les protocoles qui les assurent ne sont toujours pas bien compris.

À contrario, plusieurs auteurs estiment que les systèmes géo-répliqués ne devraient fournir

que de la cohérence à terme (Eventual Consistency) [1, 144]. En effet, le résultat d’impossibilité

CAP nous apprend que, en cas de fautes réseau, il faut nécessairement faire un choix entre

la disponibilité (availability) et la cohérence (consistency) [58]). De plus, la cohérence forte

induit une latence élevée, d’autant plus dans les réseaux longue distance (Wide-Area Networks,

WAN). Malheureusement, la cohérence à terme est à la fois complexe à appréhender pour les

développeurs, et insuffisante pour certaines applications (par exemple, pour une application

bancaire).

140

C.2. INTRODUCTION

C.2.1 Contributions

Les contributions de cette thèse sont divisées en deux parties.

Dans la première, nous expliquons comment assurer la cohérence dans des systèmes transac-

tionnels. Nous utilisons une approche systématique, afin d’étudier les limites de la scalabilité

des systèmes de cohérence transactionnelle, et pour réconcilier les deux objectifs concurrents de

passage à l’échelle et de garantie forte.

Dans la seconde partie, nous expliquons comment assurer de la cohérence dans un système

de stockage de type nuage, non transactionnel. En particulier, nous expliquons comment procéder

pour effectuer de la reconfiguration automatique du système de stockage, tout en assurant la

cohérence.

C.2.1.1 Partie I

Étude des protocoles transactionnels en réplication partielle La réplication totale (full

réplication, où tous les processus ont une copies de chaque objet) ne passe pas à l’échelle,

puisque toutes les répliques doivent exécuter toutes les mises à jour. De plus, le stockage et

la gestion de grande quantités de données demandent des ressources de stockage importantes

sur chaque processus. La réplication partielle évite ces problèmes, en ne répliquant qu’une

fraction des données sur un processus donné. Cela permet au système d’accéder et modifier des

sous-ensembles indépendants des données de manière concurrente.

Notre première contribution est une étude des protocoles transactionnels en réplication

partielle. Notre étude comparative se base sur des métriques classiques (comme le modèle

de fautes, l’hypothèse de synchronisation, ou le critère de cohérence), et sur les propriétés de

scalabilité. Plus précisément, nous définissons dans un premier temps quatre propriétés cruciales

pour le passage à l’échelle.

(i) Wait-Free Queries : une requête (transaction en lecture seule n’attend jamais une transac-

tion concurrente, et est toujours confirmée. Cette propriété diminue fortement le surcoût de la

synchronisation, dans le cas (courant) où la charge contient une forte proportion de transactions

en lecture seule.

(ii) Forward Freshness : une transaction peut lire la version d’un objet qui aurait été confirmée

après le début de la transaction. Cette propriété permit de baisser la caducité des lectures, et

donc le taux d’annulations.

141

APPENDIX C. RÉSUMÉ DE LA THÈSE

(iii) Genuine Partial Replication (GPR) : seules les répliques mises à jour par une transac-

tion T effectuent des opérations pour exécuter T. Cette propriété assure que des transactions

qui n’entrent pas en conflit n’interfèrent pas les unes avec les autres. Ceci permet d’exploiter

pleinement le parallélisme de la charge de travail.

(iv) Minimal Commit Synchronization : deux transactions ne se synchronisent entre elles que

si leurs écritures sont en conflit. Il n’y a donc de synchronisation qu’en cas d’absolue nécessité.

Nous passons ensuite en revue un certain nombre de protocoles transactionnels, et nous

montrons qu’aucun d’entre eux ne permet d’assurer l’ensemble de ces quatre propriétés.

Passage à l’échelle des critères de cohérence forte Notre seconde contribution consiste à

étudier en détail les limitations de passage à l’échelle de plusieurs critères de cohérence. Nous

étudions en particulier Snapshot Isolation (SI), une approche très utilisée car elle donne de bons

résultats, tant dans le domaine des bases de données distribuées, que dans celui de la mémoire

transactionnelle.

Nous décomposons d’abord SI en une conjonction de propriétés nécessaires et suffisantes.

Ensuite, nous étudions les implications de chacune de ces propriétés sur la scalabilité, et en

particulier sur le critère GPR, et montrons que certaines d’entre elles sont impossibles à garantir,

si l’on s’impose des hypothèses de progrès raisonnables. Il s’ensuit que d’autres critères de

cohérence forte (p.ex. la sérialisabilité) sont également incompatibles avec GPR, et ne passent

donc pas non plus à l’échelle.

Non-Monotonic Snapshot Isolation (NMSI) Pour contourner ce résultat d’impossibilité,

nous introduisons un nouveau critère de cohérence, appelé Non-monotonic Snapshot Isolation

(NMSI). Pour respecter NMSI, toute transaction doit lire une version confirmée de tout objet, et

prendre un instantané cohérent. De plus, deux transactions concurrentes de peuvent pas être

toutes deux confirmées. NMSI est le critère de cohérence le plus fort assurant l’ensemble des

quatre propriétés de scalabilité. Nous présentons également un protocole asurant NMSI, appellé

Jessy. Jessy utilise des vecteurs de dépendance, une nouvelle structure de données qui permet le

calcul efficace d’instantanés cohérents. Enfin, nous effectuons une évaluation empirique de la

scalabilité de NMSI, par comparaison soignée et équitable face à plusieurs critères classiques,

dont SER, US, SI et PSI. Cette expérience montre que NMSI a des performances proches de

celles de RC (le critère le plus faible), même dans une configuration non tolérante aux pannes,

142

C.2. INTRODUCTION

et que nous obtenons dans certains cas des performances deux fois plus rapides que Parallel

Snapshot Isolation (PSI).

Generic Deferred Update Replication Il n’est pas facile de s’y retrouver dans la jungle des

critères de cohérence et des protocoles transactionnels. Malgré l’abondance de la littérature, les

article utilisent un vocabulaire, des formalismes et des points de vue différents. Les différentes

implémentations ne sont pas elles-même comparables en raisons des hypothèses différentes

posées sur les environnements. Il n’est donc pas aisé d’établir une comparaison objective et

scientifique de leurs comportements dans des cas réels.

Pour traiter ces défis, nous proposons une nouvelle approche. Notre analyse montre que

beaucoup des protocoles de mise à jour différées et répliquées (deferred update réplication) ont

une structure commune, et ne se différencient que par des instantiations de quelques fonctions

génériques (e.g., [12, 100, 103, 104, 106, 117, 125, 127, 129–131, 136]). Nous expliquons cette

analyse comme une structure algorithmique commune, avec quelques points de réalisation

bien identifiés. Cette structure générique est mise en œuvre dans un protocole spécifique en

sélectionnant les plug-in appropriés d’une librairie. Par le choix des plug-ins adaptés, il est alors

relativement aisé d’obtenir une implémentation d’un protocole avec de hautes performances.

(1) Nous avons donc configuré G-DUR pour implémenter et comparer empiriquement six

protocoles transactionnels parmi les plus communs : [106, 117, 127, 129, 131, 136].

(2) Nous montrons également comment un développeurs peut utiliser G-DUR pour compren-

dre finement les limitations d’un protocole donné. Nous prenons un protocole récemment publié

[106], et identifions ses points critiques en remplaçant méthodiquement ses plug-ins par d’autres

moins performants.

(3) Cette approche permet également d’aider un développeur à améliorer des protocoles déjà

existant. Nous illustrons ce point par une modification de P-Store [127] qui améliore la vitesse de

localité de la charge (workload locality) de près de 70%.

(4) Dans notre dernière expérience, nous évaluons le cout de plusieurs degrés de dépendance

(dependability). Pour ce faire, nous prenons un protocole qui assure la stérilisation, et nous étu-

dions le prix de la tolérance aux fautes en faisant varier le degré de réplication ainsi l’algorithme

utilisé pour les commit.

143

APPENDIX C. RÉSUMÉ DE LA THÈSE

C.2.1.2 Partie II

Un Système de Stockage Cloud Auto-Configurable Configurer automatique un système

de stockage sur cloud permet d’améliorer le service globalement rendu. Tuba est un système ré-

pliqué de stockage clef-valeur. Comme certains systèmes déjà existant, il permet aux applications

de sélectionner le degré de cohérence qu’elles souhaitent, tout en sélectionnant dynamiquement

les répliques pour maximiser l’utilisation des opérations de lecture. De plus, contrairement

aux systèmes actuels, il configure automatiquement le jeu de répliques tout en respectant des

contraintes définies par l’application, pour s’adapter aux localisations des clients et au taux de

requêtes. Tuba a été construit sur le Microsoft Azure Storage (MAS) et fourni une API similaire

Il permet d’ajouter à MAS un large choix de paramètres de cohérence, des SLAs basées sur la

cohérence ainsi qu’un service de configuration pour la géo-réplication. En comparaison avec un

système configuré statiquement, nos évaluation montrent que Tuba augmente de 63% le taux de

retour sur les lectures de données fortement cohérentes (strongly consistent data) et améliore

l’utilisation générale jusqu’à 18%.

144

C.3. PASSAGE À L’ÉCHELLE DU CRITÈRE DE COHÉRENCE FORTE

C.3 Passage à l’échelle du Critère de Cohérence Forte

Dans ce chapitre, nous étudions le coût du passage à l’échelle de plusieurs critères de cohérence.

Nous nous concentrons dans ce chapitre sur Snapshot Isolation (SI) car c’est une approche

populaire à la fois dans la réplication de bases de données distribuées et dans les mémoires

transactionnelles logicielles [25, 111].

C.3.1 Décomposition SI

Avant d’introduire quatre propriétés dans la conjonction est équivalente à SI, nous définissons SI

à partir d’un historique composé d’opérations de lecture, d’écriture et de commit.

Considérons une fonction S prenant en entrée un historique h et retournant un historique

étendu hs en ajoutant un snapshot point à h pour chaque transaction dans h. Étant donné

une transaction Ti, le snapshot point de Ti dans hs, dénoté si, précède chaque opération d’une

transaction Ti dans hs. Un historique h est dans SI si et seulement il existe une function S telle

que hs = S(h) et hs satisfasse les règles suivantes :

D1 (Règle de Lecture)

8ri(xj 6=i),wk 6= j(xk), ck 2 hs :

c j 2 hs (D1.1)

^ c j <hs si (D1.2)

^ (ck <hs c j _ si <hs ck) (D1.3)

D2 (Règle d’Écriture)

8ci, c j 2 hs :

ws(Ti)\ws(T j) 6=?

)
°
ci <hs s j _ c j <hs si

¢

Nous définissons maintenant 4 propriétés dont la conjonction est équivalente à SI.

C.3.1.1 Annulation en cascade (Absence of Cascading Aborts)

Intuitivement, une transaction en lecture seule doit s’annuler si elle observe les effets d’une

transaction non confirmée qui s’annule par la suite.

Definition C.1 (Éviter les annulations en cascade). L’historique h évite les annulations en

cascade si pour chaque lecture ri(xj) dans h, c j précède ri(xj) dans h. ACA indique l’ensemble

des historiques qui évite les annulations en cascade.

145

APPENDIX C. RÉSUMÉ DE LA THÈSE

C.3.1.2 Instantanés cohérents et strictement cohérents

Les instantanés cohérents (Consistent Snapshot) et strictement cohérents (Strictly Consistent

Snapshots) sont définis en raffinant la causalité en une relation de dépendance.

Definition C.2 (Dépendance). Considérons un historique h et 2 transactions Ti et T j. Nous

notons Ti ⇤ T j quand ri(xj) est dans h. La transaction Ti dépend de la transaction T j quand

Ti ⇤
§ T j est vérifié. Les transactions Ti et T j sont indépendantes si aucune des conditions

Ti ⇤
§ T j et T j ⇤

§ Ti n’est vérifiée.

Formellement, les instantanés cohérents sont définis comme suit :

Definition C.3 (Instantané cohérent). Une transaction Ti dans un historique h observe un

instantané cohérent si et seulement si, pour chaque objet x, si (i) Ti lit la version xj, (ii) Tk écrit

la version xk, et (iii) Ti dépend de Tk, alors la version xk est suivie par la version xj dans l’ordre

de version induit par h (xk øh xj). Nous écrivons h 2CONS quand toutes les transactions dans h

observent un instantané cohérent.

SI requiert qu’une transaction observe l’état confirmé des données à un point logique dans

le passé. Ce pré-requis est plus fort que l’instantané cohérent. Pour une transaction Ti, cela

implique (SCONSa) qu’il existe un snapshot point pour Ti, et (SCONSb) que si une transaction

Ti observe les effets d’une transaction T j, elle doit également observer les effets de toutes les

transactions qui précèdent T j selon une horloge logique. Un historique est appelé strictement

cohérent si les conditions SCONSa et SCONSb sont vérifiées.

Definition C.4 (Instantané Strictement cohérent). Les instantanés dans l’historique h sont

strictement cohérents quand pour toute transaction confirmée, Ti, T j, Tk 6= j et Tl , les deux

propriétés suivantes sont vérifiées :

- 8ri(xj), ri(yl) 2 h : ri(xj) 6<h cl (SCONSa)

- 8ri(xj), ri(yl),wk(xk) 2 h : ck <h cl) ck <h c j (SCONSb)

Nous notons SCONS l’ensemble des historiques strictement cohérents.

146

C.3. PASSAGE À L’ÉCHELLE DU CRITÈRE DE COHÉRENCE FORTE

C.3.1.3 Instantané monotone

De plus, SI exige ce que nous appelons Instantanés monotone (Monotonic Snapshots).

Par exemple, bien que l’historique h5 ci-dessous satisfasse SCONS, cet historique n’appartient

pas à SI. En fait, puisque Ta lit {x0, y2}, et Tb lit {x1, y0}, il n’y a pas historique étendu qui pourrait

garantir la Règle de Lecture de SI.

h5 = ra(x0) r1(x0).w1(x1).c1 rb(x1).cb

rb(y0) r2(y0).w2(y2).c2 ra(y2).ca

Bien que SI requiert des instantanés monotoniques, la raison sous-jacente est si complexe

que des travaux précédents [25, par exemple] ne garantissent pas cette propriété, bien que se

revendiquant d’être SI. Ci-dessous, nous introduisons une relation d’ordre entre les instantanés

pour formaliser les instantanés monotoniques.

Definition C.5 (Précédence des instantanés). Soit un historique h et 2 transactions distinctes

Ti et T j. L’instantané lu par Ti précède l’instantané lu par T j dans l’historique h, noté Ti ! T j,

quand ri(xk) et r j(yl) appartiennent à h et soit (i) ri(xk)<h cl est vérifiée, ou (ii) la transaction

Tl lit x et ck <h cl est vérifiée.

C.3.2 Write-Conflict Freedom

La règle D2 de SI interdit à deux transactions concurrentes en conflit d’écritures de confirmer

toutes les deux. Étant donné que dans notre modèle, nous supposons que chaque écriture est

précédée par une lecture équivalente sur le même objet, chaque transaction de mise-à-jour dépend

d’une transaction de mise-à-jour précédente (ou sur la transaction initiale T0). Par conséquent,

sous la propriété SI, les transactions concurrentes en conflit doivent être indépendantes :

Definition C.6 (Write-Conflict Freedom). Un historique h est write-conflict free si deux transac-

tions indépendantes n’écrivent jamais sur le même objet. Nous dénotons par WCF les historiques

qui satisfassent cette propriété.

C.3.3 La décomposition

Theorem 4.1 ci-dessous établit qu’un historique h est dans SI si et seulement si (1) chaque

transaction dans h voit un état confirmé, (2) chaque transaction dans h observe un instantané

147

APPENDIX C. RÉSUMÉ DE LA THÈSE

strictement cohérent, (3) les instantanés sont monotones, et (4) h est write-conflict free. Une

preuve détaillée est disponible dans Appendix A.

Theorem C.1. SI=ACA\SCONS\MON\WCF

C.3.4 L’impossibilité de SI avec GPR

Cette section tire profit de notre précédent résultat de décomposition pour montrer que SI ne

peut intrinsèquement pas passer à l’échelle. De façon plus détaillée, nous montrons qu’aucune

des prpriétés MON, SCONSa ou SCONSb n’est atteignable dans un système GPR asynchrone

sans fautes ¶ quand les mises-à-jour sont obstruction-free et les requêtes sont wait-free.

Theorem C.2. Aucun système asynchrone sans fautes GPR n’implémente MON.

Theorem C.3. Aucun système asynchrone sans fautes GPR n’implémente SCONSb.

Theorem C.4. Aucun système asynchrone sans fautes GPR n’implémente SCONSa.

En conséquence de ce qui précède, aucun système asynchrone, même s’il est sans fautes, peut

garantir à la fois GPR et SI. En particulier, même si le système est augmenté avec des détecteurs

de fautes [33], une approche classique pour modéliser un synchronisme partiel, SI ne peut pas

être implémenter sous GPR. Ce fait entrave fortement l’utilisation de SI à grande échelle.

148

C.4. NON-MONOTONIC SNAPSHOT ISOLATION

C.4 Non-monotonic Snapshot Isolation

Dans le chapitre précédent, nous avons montré que GPR ne peut pas été assuré par aucun critère

de cohérence forte. Dans ce chapitre, nous présentons un nouvel critère de cohérence, nommé

Non-monotone Snapshot Isolation (NMSI), qui satisfait les propriétés de sécurité forte et s’assure

les propriétés d’extensibilité suivant :

(i) WFQ, (ii) GPR, (iii) la fraîcheur avant (Forward Freshness) et (iv) la synchronisation avec

l’engagement minimal (Minimal Commitment Synchronization).

NMSI est le critère du moins de cohérence qui satisfait les propriétés de sécurité forte: il ne

permet pas la réplique divergente, et les transactions sous NMSI sont en dessus de la hiérarchie

de Herlihy[69].

En gros, en dessous de NMSI, les transactions doivent lire les versions commis, et prendre

les clichés cohérents.

En conséquence, contrairement à SI et PSI, NMSI n’est pas obligé de respecter les contraintes

pour les clichés cohérents (i.e., SCONSa ou SCONSb).

De plus, deux transactions qui ont des conflits d’écritures concomitants ne peuvent pas être

commis ensemble. Plus officiellement :

Definition C.7 (Non-monotone Cliché Isolation (NMSI)). Une histoire h est membre du NMSI

si et seulement si h est membre de ACA\CONS\WCF.

Anomalies Applicatives Table 5.1(a) compare NMSI avec les autres critères en fonction des

anomalies que une application peut observer. L’écriture faussée (write-skew), l’anomalie classique

de SI, peut être observé sous NMSI. (Cahill et al. [29] a montré comment une application peut

l’éviter facilement). La violation en temps réel arrive quand une transaction Ti observe les effets

de certain transaction T j, en même temps n’observe pas les effets de toutes les transactions qui

précédent T j. L’anomalie arrive sous le contrainte de la sérialisabilité. En réalité, elle ne pose pas

un problème. Sous NMSI, une application doit observer des clichés non-monotones. L’anomalie

arrive également sous US et PSI. Selon Garcia-Molina and Wiederhold [57], nous croyons que

c’est un petit prix à payer pour améliorer la performance.

Propriétés d’extensibilité Dans le Table 5.1(b), nous montrons les propriétés d’extensibilité

pour chaque critère. Pour une comparaison juste, nous considérons l’implémentation non-triviale

149

APPENDIX C. RÉSUMÉ DE LA THÈSE

SSER SER US SI PSI NMSI RC

Dirty Reads x x x x x x x

Non-Repeat. Reads x x x x x x -

Read Skew x x x x x x -

Dirty Writes x x x x x x x

Lost Updates x x x x x x -

Write Skew x x x - - - -

Non-monotonic Snapshot among R-O txns x x x - - - -

Non-monotonic Snapshot among R-O and UP txns x x - - - - -

Real-time Violation x - - - - - -
(a) Anomalies pas permis

SSER SER US SI PSI NMSI RC

Genuine Partial Replication x x - x x - -

Forward Freshness Snapshot - - - x x - -

Min. Commitment Synchronization x x x - - - -
(b) Propriétés de passage à l’échelle

Table C.1: Comparaison des critères de consistance

pour chaque critère, i.e. l’implémentation qui guaranti les mis-à-jour obstruction-free et donc

accepte les histoires fraîches positivement. Nous rappelons que une histoire est fraîche posi-

tivement quand cheque transaction est capable d’observer au moins le cliché le plus récent du

système avant elle commence.

La requête sans-attendre est une propriété cruciale, car la plupart de la charge de travail

se constitue une grande proportion des transactions lecture-seulement. En conséquence, nous

la prenons en compte dans le Table 5.1(b). Dans le chapitre précédent, nous avons montré que

aucune entre SSER, SER, SI et PSI est réalisable sous le contrainte GPR quand les requêtes

sont sans-attendre et les transactions mis-à-jours sont obstruction-free. Peluso et al. [106] a

montré qu’on peut combiner can combine GPR et les requêtes sans-attendre sous US. De plus,

NMSI peut aussi satisfaire les deux propriétés conjointement. Comme nous avons montré dans le

chapitre Chapter 4, PSI et SI s’appuient sur la fraîcheur base (base freshness) qui ne peut pas co-

exister avec la fraîcheur avant (forward freshness). Pour éviter les anomalies de l’écriture faussée,

SSER, SER, et US sont obligés de certifier les transactions mis-à-jour en fonction des conflits

lecture-écriture et écriture-lecture. Par conséquent, ils ne permettent pas la synchronisation des

150

C.4. NON-MONOTONIC SNAPSHOT ISOLATION

engagements minimals.

Nous présentons Jessy équipé de la propriété de progrès NTU (nommé Jessy). En Section 5.3,

nous augmentons Jessy afin de le permetter les mis-à-jours obstruction-free, (nommé Jessyofu).

151

APPENDIX C. RÉSUMÉ DE LA THÈSE

C.5 Generic Deferred Update Replication

Dans les chapitres précédents, nous avons introduit plusieurs critères de cohérence ainsi que les

protocoles qui permettent de les garantir, et nous les avons comparé entre eux. Cependant, il est

toujours difficile de comprendre quelles sont les différences les plus importantes et de comparer

de façon scientifique leur comportement réel.

Dans ce chapitre, nous proposons une nouvelle approche : notre intuition est que les pro-

tocoles de Deferred Update Replication ou DUR partagent une structure commune, et dif-

fèrent uniquement par leurs instanciations spécifiques de quelques fonctions génériques (e.g,

[12, 100, 103, 104, 106, 117, 125, 127, 129–131, 136]). Par exemple, ils ont tous une phase de

lecture qui diffère par le choix de la version de l’objet à lire ; et une phase de terminaison, qui

diffère uniquement par la façon de détecter et résoudre les problèmes de concurrence.

Nous exprimons cette idée par une structure algorithmique commune, avec des points de

réalisation clairement identifiés. Cette structure générique est instanciée en un protocole spéci-

fique en sélectionnant les modules d’extension (plug-ins) adéquats depuis une bibliothèque. Par

exemple, pour un protocole sérializable, le module d’extension de lecture va choisir la plus récente

version validée de l’objet, et le module d’extension de terminaison annulera toute transaction si

elle est concurrente avec une autre transaction qui a déjà été validée.

L’objectif principal de DUR est de fournir des clients avec une abstraction pour le stockage

de données transactionnelles. Sous le capot, ce support de stockage est distribué et répliqué à

travers de multiples répliques. Les répliques sont synchronisés pour offrir aux clients un accès

disponible et cohérent aux données.

Generic Deferred Update Replication ou G-DUR est conçu comme une implémentation

générique et adaptable de DUR. Figure 6.1 présente l’architecture globale de l’intergiciel. Les

clients envoient leurs transactions aux instances G-DUR. Un client peut exécuter une transac-

tions de façon interactive, i.e., G-DUR ne requiert pas que tout le code d’une transaction soit

soumis d’un coup. Cependant, certaines optimisations ne sont possibles que dans ces cas là. Une

transaction commence par une opération begin, suivie par une ou plusieurs opérations CRUD (i.e.,

Create, Read, Update ou Delete), et termine par une instruction commit ou abort. Les opérations

create, update et delete sont implémentées comme des opérations d’écriture. Par la suite, nous

nous contenterons de faire allusion aux opérations de lecture et d’écriture.

Chaque instance G-DUR coordonne les requêtes transactionnelles reçues depuis un client.

152

C.5. GENERIC DEFERRED UPDATE REPLICATION

!"#$%&
!!!!"#$%!&'()*+,-./!

'())$*&

01%$#!

2./+*.3(!
4!

!"#$%&'(

56(37+,-.!

ͻ#(*8!*'')-'),*+(!9()/,-./!
ͻ:7;;()!*;+()19*<7(/!

=()>,.*+,-.!

ͻ?)-'*@*+(!!
ͻ"->>,+A*B-)+!

ͻ?()/,/+!*;+()19*<7(/!

56(37+,-.

ͻ#(*8!*'')-'),*+(!9()/,-./
ͻ:7;;()!*;+()19*<7(/

=()>,.*+,-.

ͻ?)-'*@*+(!
ͻ"->>,+A*B-)+

ͻ?()/,/+!*;+()19*<7(/

%C!

"
#
$
%
!

01%$#!

2./+*.3(!

01%$#!

2./+*.3(!

Figure C.1: Architecture G-DUR

Ainsi, une instance stocke localement un sous-ensemble des données disponibles globalement, et

exécute deux protocoles d’exécution et de terminaison personnalisables (voir le bas de Figure 6.1).

Le protocole d’exécution est responsable de la lecture des données et de leur mise en tampon. Le

protocole de terminaison s’occupe de la propagation des effets de bord de la transaction, de sa

validation et de la persistance des données.

Nous démontrons son potentiel à travers d’intensives expérimentations que nous avons

conduit dans un environnement géo-répliqué.

(1) Nous avons conçu G-DUR pour implémenter six protocoles transactionnels importants

[106, 117, 127, 129, 131, 136]. L’implémentation de chaque protocole dans G-DUR nécessite

seulement 200 à 600 lignes de code. Nous avons également évalué de façon empirique chacun

de ces protocoles. Nos comparaisons montrent clairement la différence entre ces protocoles, et

entre les différents critères de cohérence qu’ils implémentent. De plus, notre étude montre qu’ils

153

APPENDIX C. RÉSUMÉ DE LA THÈSE

ont des domaines de performances spécifiques ce qui nous permet d’identifier leurs limitations

respectives.

(2) Nous montrons comment un développeur peut utiliser G-DUR pour comprendre les

limitations d’un protocole. Nous avons utilisé un protocole récemment publié [106], et identifié

ses limitations en remplaçant méthodiquement ses modules d’extension par d’autres plus faibles.

(3) La précédente approche permet aussi à un développeur d’améliorer les protocoles existants.

Nous illustrons cet aspect en présentant une variation de P-Store [127] qui tire profit de la localité

du workload pour être jusqu’à 70% plus rapide que le protocole original.

(4) Dans nos dernières expérimentations, nous évaluons le coût de plusieurs degrés de

fiabilité. Pour cela, nous prenons un protocole qui garanti la sérializabilité et nous étudions le

coût de la tolérance au fautes en faisant varier le degré de réplication et l’algorithme utilisé

pendant les commit.

154

C.6. UN SYSTÈME DE STOCKAGE CLOUD AUTO-CONFIGURABLE

C.6 Un Système de Stockage Cloud Auto-Configurable

Les systèmes de stockage dans le cloud peuvent satisfaire mieux les nécessitées de leur ap-

plications en sélectionnant quand et où les données sont répliquées. Les applications Internet

ont souvent des besoins incompatibles. D’un cote, ils doivent être rapides et avec une grande

disponibilité. D’autre cote, les répliques doivent rester synchronisée pour maintenir la garantie

de consistance et pour fournir une illusion de sérialisabilité. Au lieu de favoriser un besoin sur les

autres (e.g., [38, 90, 91]) ou de choisir un compromis en développant l’application (e.g., SimpleDB

[11] de Amazon, ou PNUTs [36] de Yahoo!), un modèle émergent est de laisser le système de

stockage dans le cloud choisir pendant l’exécution un niveau de service appropriée [140]. Bien

que ce abord évite aux application de rester figées dans un compromis fixe entre la consistance et

la latence, il ignore des décisions de configuration importantes.

Les défies de configuration qui n’ont pas encore trouvé une réponse et doivent être abordé

par les systèmes de stockage dans le cloud comprennent: (i) ou mettre la réplique principal et

secondaire (ii) quant bien des répliques secondaires sont désirées, et (iii) avec quelle fréquence les

répliques secondaires doivent se synchroniser avec la réplique primaire. Ces défis sont exacerbés

par le fait que les utilisateurs Internet sont localises à des endroits géographiques différents avec

des différents fuseau horaires et modèle d’accès. En outre, les systèmes doivent considérer le

croissantes contraintes légales, de sécurité et de coût concernant la réplication dans certain pais

et d’éviter de répliquer dans des outres.

Pour une communauté d’utilisateurs stable, une configuration statique faite par un ad-

ministrateur de système peut être acceptable. Mais beaucoup d’applications modernes, comme

magasinage, réseaux sociaux, journaux, et jeux vidéo, n’ont pas seulement des utilisateurs en

évolution à échelle mondiale mais aussi ressentent des modèles d’accès qui changent dans le

temps, sur base journalière ou saisonnière. Par conséquent, il est avantageux pour le système

de stockage d’adapter automatiquement sa configuration soumise à des contraintes spécifique à

l’application et geo-politiques.

Tuba est un base de données clé-valeur basé sur [140]. Il s’occupe des défis susmentionnée en

configurant le système de stockage dans le cloud automatiquement et périodiquement. En plus

de maximiser l’utilité des opérations en écriture, Tuba améliore aussi l’utilité totale du système

de stockage en s’adaptant automatiquement au changes dans les pattern d’accès aux données et

des contraintes. À cette fin, Tuba inclue un service de configuration qui reçoit périodiquement

155

APPENDIX C. RÉSUMÉ DE LA THÈSE

par le client, avec les rapport de "hit" et de "miss", des accords de niveau de service (SLAs, pour

service level agreements) bases sur la consistance. Le service change par conséquence du SLA

l’emplacement des répliques primaire et secondaires pour améliorer l’utilité globale du système.

La nouveauté clef de Tuba est que les opérations en lecture ainsi que les opérations en écriture

peuvent être exécutées en parallèle aux opérations de reconfiguration.

Nous avons implémenté Tuba comme un intergiciel au dessus de Microsoft Azure Storage

(MAS) [30]. MAS fournis une consistance forte et réalise de la geo-réplication pour être tolérant

aux désastres. Puisque Tuba est basé sur Pileus, il fournis diffèrent choix de consistance ex-

primées à travers les SLAs. En outre, Tuba rentabilise la geo-réplication pour améliorer la

localité et la disponibilité. Notre interface de programmation (souvent désignée par le terme API

pour l’anglais Application Programming Interface) est une extension mineur de l’interface de

programmation de MAS Blob Store, par conséquent les applications Azure existante peuvent

bénéficier de la reconfiguration dynamique de Tuba avec peu de changements.

Un expérimentation avec des clients repartis dans de centres de calculs dans le monde entier

montrent que avec une réconfiguration toute les deux heures augmente la portion de lectures

que garantissent une consistance forte du 33% au 54%. Ceci confirme que la reconfiguration

automatique peut produire des bénéficies substantiels que sont réalisables en pratique.

156

BIBLIOGRAPHY

[1] Daniel J. Abadi. Consistency Tradeoffs in Modern Distributed Database System Design:
CAP is Only Part of the Story. Computer, 45(2):37–42, February 2012.

[2] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, May 1991.

[3] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for
Distributed Transactions. Ph.d., MIT, Cambridge, MA, USA, March 1999.

[4] Atul Adya, B Liskov, and Patrick O’Neil. Generalized isolation level definitions. In Int.
Conf. on Data Engineering (ICDE), number March, pages 67–78. IEEE Comput. Soc, 2000.

[5] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. Journal of the ACM, 40:873–890, 1993.

[6] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and
Harbinder Bhogan. Volley: automated data placement for geo-distributed cloud services.
In Networked Sys. Design and Implem. (NSDI), page 2. USENIX Association, April 2010.

[7] Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. A practical scalable distributed
B-tree. Int. Conf. on Very Large Data Bases (VLDB), 1(1):598–609, August 2008.

[8] JoséBacelar Almeida, PauloSérgio Almeida, and Carlos Baquero. Bounded Version Vectors.
In Rachid Guerraoui, editor, Distributed Computing, volume 3274 of Lecture Notes in
Computer Science, pages 102–116. Springer Berlin Heidelberg, 2004.

[9] Sérgio Almeida, João Leitão, and Luis Rodrigues. ChainReaction. In Euro. Conf. on Comp.
Sys. (EuroSys), page 85, New York, New York, USA, April 2013. ACM Press.

[10] Gustavo Alonso. Partial Database Replication and Group Communication Primitives
(Extended Abstract). In European Research Seminar on Advances in Distributed Systems
(ERSADS), pages 171—-176, 1997.

[11] Amazon Web Services. Amazon SimpleDB. URL https://aws.amazon.com/simpledb/.

157

https://aws.amazon.com/simpledb/

BIBLIOGRAPHY

[12] Yair Amir and Ciprian Tutu. From total order to database replication. In Int. Conf. on
Distributed Comp. Sys. (ICDCS), pages 494–503, Washington, DC, USA, 2002. IEEE.

[13] Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic function
placement for data-intensive cluster computing. In Usenix Annual Tech. Conf. (Usenix-ATC).
USENIX Association, June 2000.

[14] Peter M. G. Apers. Data allocation in distributed database systems. Trans. on Database
Sys., 13:263—-304, 1988.

[15] J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. González de Mendívil, and F. D. Muñoz
Escoí. SIPRe: a partial database replication protocol with SI replicas. In Symp. on Applied
Computing (SAC), pages 2181—-2185, New York, New York, USA, 2008. ACM Press.

[16] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access
parallel implementations of transactional memory. In Symp. on Parallelism in Algorithms
and Architectures (SPAA), page 69, New York, New York, USA, August 2009. ACM Press.

[17] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. Highly Available Transactions : Virtues and Limitations. In Int. Conf. on Very
Large Data Bases (VLDB), 2014.

[18] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. Scalable
atomic visibility with RAMP Transactions. In Int. Conf. on the Mgt. of Data (SIGMOD),
2014.

[19] Roberto Baldoni, Francesco Quaglia, and Michel Raynal. Distributed Database Checkpoint-
ing. In Euro. Conf. on Parallel and Dist. Comp. (Euro-Par), volume 1685, pages 450–458,
Berlin, Heidelberg, August 1999. Springer Berlin Heidelberg.

[20] Roberto Baldoni, Giacomo Cioffi, Jean-Michel Hélary, and Michel Raynal. Direct
dependency-based determination of consistent global checkpoints. Comput. Syst. Sci.
Eng., 16(1):43–49, 2001.

[21] Sam Basu, Anindya and Charron-Bost, Bernadette and Toueg. Simulating reliable links
with unreliable links in the presence of process crashes. In Keith Babaoğlu, Özalp and
Marzullo, editor, Distributed Algorithms, Lecture Notes in Computer Science, pages 105–
122. Springer Berlin Heidelberg, 1996.

[22] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.
A critique of ANSI SQL isolation levels. In Int. Conf. on the Mgt. of Data (SIGMOD), pages
1–10, New York, New York, USA, 1995. ACM Press.

158

BIBLIOGRAPHY

[23] JosepM. Bernabé-Gisbert, Raúl Salinas-Monteagudo, Luis Irún-Briz, and FrancescD.
Muñoz Escoí. Managing Multiple Isolation Levels in Middleware Database Replication
Protocols. In Minyi Guo, LaurenceT. Yang, Beniamino Martino, HansP. Zima, Jack Don-
garra, and Feilong Tang, editors, Parallel and Distributed Processing and Applications,
volume 4330 of Lecture Notes in Comp. Sc., pages 511–523. Springer, 2006.

[24] Philip Bernstein, Vassos Radzilacos, and Vassos Hadzilacos. Concurrency Control and
Recovery in Database Systems. Addison Wesley Publishing Company, 1987.

[25] Annette Bieniusa and Thomas Fuhrmann. Consistency in hindsight: A fully decentralized
STM algorithm. In Int. Parallel Dist. Processing Symposium (IPDPS), pages 1–12. IEEE,
2010.

[26] Ken Birman and Thomas A. Joseph. Reliable communication in the presence of failures.
Trans. on Computer Sys., 5(1):47–76, January 1987.

[27] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a cloud computing
research agenda. ACM SIGACT News, 40(2):68, June 2009.

[28] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. The convoy phenomenon. Operating
Systems Review, 13(2):20–25, April 1979.

[29] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable isolation for snapshot
databases. In Int. Conf. on the Mgt. of Data (SIGMOD), page 729, New York, New York,
USA, June 2008. ACM Press.

[30] Brad Calder, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, An-
drew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim
ul Haq, Ju Wang, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas
Rigas, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, and Jiesheng Wu. Windows Azure Storage. In Symp. on Op. Sys.
Principles (SOSP), pages 143—-157, New York, New York, USA, October 2011. ACM Press.

[31] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepole. C-JDBC: flexible database
clustering middleware. In Usenix Annual Tech. Conf. (Usenix-ATC), page 26, Boston, MA,
June 2004. USENIX Association.

[32] A. Chan and R. Gray. Implementing Distributed Read-Only Transactions. IEEE Transac-
tions on Software Engineering, SE-11(2):205–212, February 1985.

[33] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, March 1996.

159

BIBLIOGRAPHY

[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. Trans. on Computer Sys., 26(2):1–26, June 2008.

[35] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication,
volume 5959 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2010.

[36] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

[37] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In Symp. on Cloud Computing (SoCC),
pages 143—-154, New York, NY, USA, 2010. ACM.

[38] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J J
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s
Globally-Distributed Database. In Symp. on Op. Sys. Design and Implementation (OSDI),
pages 251—-264, Hollywood, CA, USA, 2012. USENIX Association.

[39] R. Correia, A., Jr. and Pereira, J. and Oliveira. AKARA: A Flexible Clustering Protocol
for Demanding Transactional Workloads. In Robert Meersman and Zahir Tari, editors,
On the Move to Meaningful Internet Systems: OTM 2008, volume 5331 of Lecture Notes in
Computer Science, pages 691–708. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[40] Cedric Coulon, Esther Pacitti, and Patrick Valduriez. Consistency Management for Partial
Replication in a High Performance Database Cluster. In Int. Conf. on Parallel and Dist.
Sys. (ICPADS), volume 1, pages 809–815. IEEE, July 2005.

[41] James Cowling and Barbara Liskov. Granola: Low-Overhead Distributed Transaction
Coordination. In Usenix Annual Tech. Conf. (Usenix-ATC), Boston, MA, USA, June 2012.
USENIX Association.

[42] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: A Scalable Data Store for
Transactional Multi key Access in the Cloud. In Symp. on Cloud Computing (SoCC), page
163, New York, New York, USA, June 2010. ACM Press.

[43] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation.
In Int. Conf. on Very Large Data Bases (VLDB), pages 715–726. VLDB Endowment, 2006.

160

BIBLIOGRAPHY

[44] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, December
2004.

[45] Ricardo J Dias, João M Lourenço, and Nuno Preguiça. Efficient and Correct Transactional
Memory Programs Combining Snapshot Isolation and Static Analysis. In W. on Hot Topics
in Parallelism (HotPar), 2011.

[46] Nuno Diegues and Paolo Romano. STI-BT : A Scalable Transactional Index. In Int. Conf.
on Distributed Comp. Sys. (ICDCS), number September, pages 104—-113, 2014.

[47] Danny Dolev and Christoph Lenzen. Early-deciding consensus is expensive. In Symp. on
Principles of Dist. Comp. (PODC), page 270, New York, New York, USA, July 2013. ACM
Press.

[48] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-SI: Snapshot Isolation for
Partitioned Data Stores Using Loosely Synchronized Clocks. In Symp. on Reliable Dist.
Sys. (SRDS), pages 173–184. IEEE, 2013.

[49] Sameh Elnikety, W. Zwaenepoel, and Fernando Pedone. Database Replication Using
Generalized Snapshot Isolation. In Symp. on Reliable Dist. Sys. (SRDS), pages 73–84.
IEEE, October 2005.

[50] Alan Fekete. Allocating isolation levels to transactions. In Symp. on Principles of Dist.
Comp. (PODC), pages 206—-215, New York, New York, USA, June 2005. ACM Press.

[51] Alan D. Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making snapshot isolation serializable. Trans. on Database Sys., 30(2):492–528, June 2005.

[52] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-Based Software
Transactional Memory. IEEE Trans. on Parallel and Dist. Sys. (TPDS), 21(12):1793–1807,
December 2010.

[53] FaithEllen Fich. How Hard Is It to Take a Snapshot? In Ondrej Vojtáš, Peter and Bieliková,
Mária and Charron-Bost, Bernadette and Sýkora, editor, SOFSEM 2005: Theory and
Practice of Computer Science, Lecture Notes in Computer Science, pages 28–37. Springer
Berlin Heidelberg, 2005.

[54] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[55] Udo Fritzke and Philippe Ingels. Transactions on partially replicated data based on reliable
and atomic multicasts. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages 284–291.
IEEE Comput. Soc, 2001.

161

BIBLIOGRAPHY

[56] Udo Fritzke, Philippe Ingels, Achour Mostéfaoui, and Michel Raynal. Fault-tolerant Total
Order Multicast to asynchronous groups. In Symp. on Reliable Dist. Sys. (SRDS), pages
228–234. IEEE, 1998.

[57] Hector Garcia-Molina and Gio Wiederhold. Read-only transactions in a distributed
database. Trans. on Database Sys., 7(2):209–234, June 1982.

[58] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51, June 2002.

[59] Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced
Course, Lecture Notes in Comp. Sc., pages 393–481. Springer, 1978.

[60] Jim Gray and Leslie Lamport. Consensus on transaction commit. Trans. on Database Sys.,
31(1):133–160, March 2006.

[61] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of replication and
a solution. ACM SIGMOD Record, 25(2):173–182, 1996.

[62] Grid’5000. Grid’5000, a scientific instrument designed to support experiment-driven
research in all areas of computer science related to parallel, large-scale or distributed
computing and networking. \url{https://www.grid5000.fr/}, 2013.

[63] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory. In
Symp. on Principles and Practice of Parallel Prog. (PPoPP), pages 175–184, New York, NY,
USA, 2008. ACM.

[64] Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions. In Symp. on
Parallelism in Algorithms and Architectures (SPAA), pages 304—-313, New York, New
York, USA, June 2008. ACM Press.

[65] Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory. Morgan and
Claypool Publishers, 2010.

[66] Rachid Guerraoui and André Schiper. Genuine atomic multicast in asynchronous dis-
tributed systems. Theoretical Computer Science, 254(1-2):297–316, March 2001.

[67] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in Transactional
Memories. In Int. Symp. on Dist. Comp. (DISC), pages 305–319, Berlin, Heidelberg, 2008.
Springer.

[68] R C Hansdah and Lalit M. Patnaik. Update serializability in locking. In Giorgio Ausiello
and Paolo Atzeni, editors, Lecture Notes in Comp. Sc., volume 243 of Lecture Notes in
Computer Science, pages 171–185. Springer, 1986.

162

BIBLIOGRAPHY

[69] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, January 1991.

[70] Maurice Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):
463—-492, 1990.

[71] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. Partial database replication
using epidemic communication. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages
485–493. IEEE, 2002.

[72] Galen C. Hunt and Michael L. Scott. The Coign automatic distributed partitioning sys-
tem. In Symp. on Op. Sys. Design and Implementation (OSDI), pages 187–200. USENIX
Association, February 1999.

[73] Damien Imbs and Michel Raynal. Virtual world consistency: A condition for STM systems
(with a versatile protocol with invisible read operations). Theoretical Computer Science,
444:113–127, July 2012.

[74] Ricardo Jiménez-Peris, Marta Patino-Martinez, Bettina Kemme, and Gustavo Alonso.
Improving the scalability of fault-tolerant database clusters. In Int. Conf. on Distributed
Comp. Sys. (ICDCS), pages 477–484. IEEE Comput. Soc, 2002.

[75] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. Automating the
detection of snapshot isolation anomalies. In Int. Conf. on Very Large Data Bases (VLDB),
VLDB ’07, pages 1263–1274. VLDB Endowment, September 2007.

[76] Sudarshan Kadambi, Jianjun Chen, Brian F. Cooper, David Lomax, Adam Silberstein,
Erwin Tam, and Hector Garcia-molina. Where in the World is My Data ? In Int. Conf. on
Very Large Data Bases (VLDB), pages 1040–1050, 2011.

[77] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing
eager database replication protocols. Trans. on Database Sys., 25(3):333–379, September
2000.

[78] Bettina Kemme and Gustavo Alonso. Don’t Be Lazy, Be Consistent: Postgres-R, A New
Way to Implement Database Replication. In Int. Conf. on Very Large Data Bases (VLDB),
VLDB ’00, pages 134–143, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc.

[79] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transactions on
Software Engineering, SE-3, 1977.

163

BIBLIOGRAPHY

[80] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July 1978.

[81] Leslie Lamport. The part-time parliament. Trans. on Computer Sys., 16(2):133–169, 1998.

[82] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, July 2006.

[83] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguic, and Rodrigo
Rodrigues. Making Geo-Replicated Systems Fast as Possible , Consistent when Necessary.
In Symp. on Op. Sys. Design and Implementation (OSDI), volume abs/1203.6, 2012.

[84] Geoffrey M. Voelker Lili Qiu, Venkata N. Padmanabhan. On the placement of web server
replicas. In Int. Conf. on Computer Communications (INFOCOM), pages 1587—-1596,
2001.

[85] Jun-Lin Lin and Margaret H. Dunham. A Survey of Distributed Database Checkpointing.
Distributed and Parallel Databases, 5:289–319, 1997.

[86] Kwei-Jay Lin. Consistency issues in real-time database systems. In Annual Hawaii
International Conference on System Sciences, volume 2 of Volume II: Software Track, pages
654–661. IEEE Comput. Soc. Press, 1989.

[87] Yi Lin, Bettina Kemme, Marta Patiño Martínez, and Ricardo Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In Int. Conf. on the Mgt. of Data
(SIGMOD), page 419, New York, New York, USA, 2005. ACM Press.

[88] Yi Lin, Bettina Kemme, Marta Patiño Martínez, and Ricardo Jiménez-Peris. Consistent
Data Replication: Is It Feasible in WANs? In Euro. Conf. on Parallel and Dist. Comp.
(Euro-Par), volume 3648, pages 633–643, 2005.

[89] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and John P. Stevenson.
SI-TM: reducing transactional memory abort rates through snapshot isolation. In Int. Conf.
on ArchiṠupport for Prog. Lang. and Systems (ASPLOS), pages 383–398, New York, New
York, USA, February 2014. ACM Press.

[90] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. In
Symp. on Op. Sys. Principles (SOSP), pages 401—-416, New York, NY, USA, 2011. ACM.

[91] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Networked Sys. Design and Implem.
(NSDI), pages 1–14, Lombard, IL, USA, 2013.

164

BIBLIOGRAPHY

[92] Rajmohan Rajaraman Madhukar R. Korupolu, C. Greg Plaxton. Placement Algorithms
for Hierarchical Cooperative Caching. pages 586–595. Society for Industrial and Applied
Mathematics, 1999.

[93] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. Ring Paxos: A
high-throughput atomic broadcast protocol. In Int. Conf. on Dependable Sys. and Networks
(DSN), pages 527–536. IEEE, June 2010.

[94] Friedemann Mattern. Virtual Time and Global States of Distributed Systems. Parallel
and Distributed Algorithms, pages 215–226, 1989.

[95] Microsoft Corporation. Transact-SQL Reference, 2014. URL http://msdn.microsoft.

com/en-us/library/ms173763.aspx.

[96] Matthias Nicola and Matthias Jarke. Performance modeling of distributed and replicated
databases. IEEE Transactions on Knowledge and Data Engineering, 12(4):645–672, 2000.

[97] Esther Pacitti, Cédric Coulon, Patrick Valduriez, and M. Tamer Özsu. Preventive Replica-
tion in a Database Cluster. Distributed and Parallel Databases, 18(3):223–251, November
2005.

[98] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, October 1979.

[99] Douglas Stott Parker Jr., Gerald J. Popek, Gerard Rudisin, Allen Stoughton, Bruce J.
Walker, Evelyn Walton, Johanna M. Chow, David A. Edwards, Stephen Kiser, and Charles S.
Kline. Detection of Mutual Inconsistency in Distributed Systems. IEEE Transactions on
Software Engineering, SE-9(3):240–247, May 1983.

[100] Marta Patiño Martínez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
Scalable Replication in Database Clusters. In Int. Symp. on Dist. Comp. (DISC), pages
315–329. Springer, October 2000.

[101] Marta Patiño Martinez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
MIDDLE-R: Consistent database replication at the middleware level. Trans. on Computer
Sys., 23(4):375–423, November 2005.

[102] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exploiting atomic broadcast in
replicated databases. In Jeff Pritchard, David and Reeve, editor, Euro. Conf. on Parallel
and Dist. Comp. (Euro-Par), Lecture Notes in Comp. Sc., pages 513–520. Springer, 1998.

[103] Fernando Pedone, Rachid Guerraoui, and André Schiper. The Database State Machine
Approach. Distributed and Parallel Databases, 14(1):71–98–98, July 2003.

165

http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx

BIBLIOGRAPHY

[104] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. SCORe: a scalable one-copy
serializable partial replication protocol. In Int. Conf. on Middleware (MIDDLEWARE),
pages 456–475. Springer, December 2012.

[105] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. Genuine replication, opacity and
wait-free read transactions: can a STM get them all? In W. on the Theory of Transactional
Memory (WTTM), Madeira, Portugal, July 2012.

[106] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luis Rodrigues.
When Scalability Meets Consistency: Genuine Multiversion Update-Serializable Partial
Data Replication. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages 455–465, Macau,
China, 2012. IEEE.

[107] Sebastiano Peluso, Roberto Palmieri, Paolo Romano, Inesc-id Ist, and Francesco Quaglia.
On Breaching the Wall of Impossibility Results on Disjoint-Access Parallel STM. Technical
report, Virginia Tech, 2014.

[108] PostgreSQL. PostgreSQL Documentation, 2014. URL http://www.postgresql.org/

docs/9.4/static/transaction-iso.html.

[109] Michel Raynal, G. Thia-Kime, and Mustaque Ahamad. From serializable to causal trans-
actions for collaborative applications. In EUROMICRO Conference: New Frontiers of
Information Technology, pages 314–321. IEEE, 1997.

[110] Richard Strohm. Oracle Database Concepts, 11g Release 1 (11.1), January 2011.

[111] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for software transac-
tional memory. In first ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, 2006.

[112] Danny Dolev Roman Vitenberg, Idit Keidar, Gregory V. Chockler. Group Communication
Specifications: A Comprehensive Study. ACM Computing Surveys, 33, 1999.

[113] Masoud Saeida Ardekani and Douglas B Terry. A Self-Configurable Geo-Replicated Cloud
Storage System. In Symp. on Op. Sys. Design and Implementation (OSDI), pages 367—-381,
Broomfield, CO, October 2014. USENIX Association.

[114] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. The Impossibility of Ensuring
Snapshot Isolation in Genuine Replicated STMs. In W. on the Theory of Transactional
Memory (WTTM), Rome, Italy, September 2011.

[115] Masoud Saeida Ardekani, Marek Zawirski, Pierre Sutra, and Marc Shapiro. The space
complexity of transactional interactive reads. In Int. W. on Hot Topics in Cloud Data
Processing (HotCDP), pages 1–5, New York, New York, USA, April 2012. ACM Press.

166

http://www.postgresql.org/docs/9.4/static/transaction-iso.html
http://www.postgresql.org/docs/9.4/static/transaction-iso.html

BIBLIOGRAPHY

[116] Masoud Saeida Ardekani, Pierre Sutra, and Pierpaolo Cincilla.
https://github.com/msaeida/jessy, 2013. URL https://github.com/msaeida/jessy.

[117] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot
Isolation: scalable and strong consistency for geo-replicated transactional systems. In
Symp. on Reliable Dist. Sys. (SRDS), pages 163–172. IEEE, October 2013.

[118] Masoud Saeida Ardekani, Pierre Sutra, Marc Shapiro, and Nuno Preguiça. On the Scala-
bility of Snapshot Isolation. In Felix Wolf, Bernd Mohr, and Dieter Mey, editors, Euro. Conf.
on Parallel and Dist. Comp. (Euro-Par), volume 8097, pages 369–381, Aachen, Germany,
August 2013.

[119] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. G-DUR: A Middleware for
Assembling, Analyzing, and Improving Transactional Protocols. In Int. Conf. on Middleware
(MIDDLEWARE), Bordeaux, France, December 2014.

[120] SAP. SAP HANA SQL and System Views References, 2014. URL https://help.sap.com/

saphelp_hanaone/helpdata/en/20/fdf9cb75191014b85aaa9dec841291/content.

htm.

[121] Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten Schütt. Enhanced Paxos
Commit for Transactions on DHTs. In Int. Conf. on Cluster, Cloud and Grid Computing
(CCGrid), pages 448–454, Washington, DC, USA, May 2010. IEEE.

[122] Nicolas Schiper. On Multicast Primitives in Large Networks and Partial Replication
Protocols presented by. PhD thesis, University of Lugano, 2009.

[123] Nicolas Schiper and Fernando Pedone. On the Inherent Cost of Atomic Broadcast and
Multicast Algorithms in Wide Area Networks. In Int. Conf. on Distributed Comp. and Net.
(ICDCN), number 4904 in Lecture Notes in Comp. Sc., pages 147–157. Springer, 2008.

[124] Nicolas Schiper, Rodrigo Schmidt, and Fernando Pedone. Brief Announcement: Optimistic
Algorithms for Partial Database Replication. In Int. Symp. on Dist. Comp. (DISC), volume
4305 of Lecture Notes in Comp. Sc., pages 557–559. Springer, 2006.

[125] Nicolas Schiper, Rodrigo Schmidt, and Fernando Pedone. Optimistic algorithms for partial
database replication. In Int. Conf. on Principles of Dist. Sys. (OPODIS), pages 81–93,
Berlin, Heidelberg, December 2006. Springer.

[126] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. Genuine versus Non-Genuine Atomic
Multicast Protocols for Wide Area Networks: An Empirical Study. In Symp. on Reliable
Dist. Sys. (SRDS), pages 166–175. IEEE, September 2009.

167

https://github.com/msaeida/jessy
https://help.sap.com/saphelp_hanaone/helpdata/en/20/fdf9cb75191014b85aaa9dec841291/content.htm
https://help.sap.com/saphelp_hanaone/helpdata/en/20/fdf9cb75191014b85aaa9dec841291/content.htm
https://help.sap.com/saphelp_hanaone/helpdata/en/20/fdf9cb75191014b85aaa9dec841291/content.htm

BIBLIOGRAPHY

[127] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-Store: Genuine Partial Replication
in Wide Area Networks. In Symp. on Reliable Dist. Sys. (SRDS), pages 214–224. IEEE,
October 2010.

[128] Rodrigo Schmidt and Fernando Pedone. A formal analysis of the deferred update technique.
In Int. Conf. on Principles of Dist. Sys. (OPODIS), pages 16–30. Springer, December 2007.

[129] Daniele Sciascia and Fernando Pedone. Scalable Deferred Update Replication. In Int. Conf.
on Dependable Sys. and Networks (DSN), pages 1–12. IEEE, 2012.

[130] Daniele Sciascia and Fernando Pedone. Geo-replicated storage with scalable deferred
update replication. In Int. Conf. on Dependable Sys. and Networks (DSN). IEEE, 2013.

[131] Damián Serrano, Marta Patiño Martínez, Ricardo Jiménez-Peris, and Bettina Kemme.
Boosting Database Replication Scalability through Partial Replication and 1-Copy-
Snapshot-Isolation. In Pacific Rim Int. Symp. on Dependable Comp. (PRDC), pages 290–297.
IEEE, December 2007.

[132] Damián Serrano, Marta Patiño Martínez, Ricardo Jiménez-Peris, and Bettina Kemme. An
Autonomic Approach for Replication of Internet-based Services. In Symp. on Reliable Dist.
Sys. (SRDS), pages 127–136. IEEE, October 2008.

[133] Nir Shavit and Dan Touitou. Software transactional memory. In Symp. on Principles of
Dist. Comp. (PODC), pages 204–213, New York, New York, USA, August 1995. ACM Press.

[134] Gokul Soundararajan, Cristiana Amza, and Ashvin Goel. Database replication policies for
dynamic content applications. In Euro. Conf. on Comp. Sys. (EuroSys), number 4, page 89,
New York, New York, USA, October 2006. ACM.

[135] António Sousa, Pinto Ferreira, Fernando Pedone, Rui Oliveira, and Francisco Moura.
Partial replication in the Database State Machine. In Int. Symp. on Network Computing
and Applications (NCA), pages 298–309, 2001.

[136] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyuan Li. Transactional storage for
geo-replicated systems. In Symp. on Op. Sys. Principles (SOSP), pages 385—-400, New
York, NY, USA, 2011. ACM.

[137] Michael F Spear, Virendra J Marathe, William N Scherer, and Michael L. Scott. Conflict
Detection and Validation Strategies for Software Transactional Memory. In Int. Symp. on
Dist. Comp. (DISC), pages 179–193, Berlin, Heidelberg, 2006. Springer.

[138] Pierre Sutra and Marc Shapiro. Fault-Tolerant Partial Replication in Large-Scale Database
Systems. In Euro. Conf. on Parallel and Dist. Comp. (Euro-Par), pages 404–413. Springer,
2008.

168

BIBLIOGRAPHY

[139] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and
Brent W. Welch. Session Guarantees for Weakly Consistent Replicated Data. In Int. Conf.
on Para. and Dist. Info. Sys. (PDIS), pages 140–149. IEEE, September 1994.

[140] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements for
cloud storage. In Symp. on Op. Sys. Principles (SOSP), pages 309–324, New York, New
York, USA, November 2013. ACM Press.

[141] Alexander Thomson, Thaddeus Diamond, Philip Shao, and Daniel J. Abadi. Calvin : Fast
Distributed Transactions for Partitioned Database Systems. In Int. Conf. on the Mgt. of
Data (SIGMOD), pages 1–12. ACM, 2012.

[142] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online migration for geo-
distributed storage systems. In Usenix Annual Tech. Conf. (Usenix-ATC), Berkeley, CA,
USA, 2011. USENIX Association.

[143] Arun Venkataramani, Phoebe Weidmann, and Mike Dahlin. Bandwidth constrained
placement in a WAN. In Symp. on Principles of Dist. Comp. (PODC), pages 134–143, New
York, New York, USA, August 2001. ACM Press.

[144] Werner Vogels. Eventually Consistent. ACM Queue, 6(6):14–19, October 2008.

[145] Matthias Wiesmann and André Schiper. Comparison of database replication techniques
based on total order broadcast. IEEE Transactions on Knowledge and Data Engineering,
17(4):551–566, 2005.

[146] Matthias Wiesmann, Fernando Pedone, André Schiper, Matthias Wiesmann Fern, Bettina
Kemme, and Gustavo Alonso. Database Replication Techniques: a Three Parameter
Classification. In Symp. on Reliable Dist. Sys. (SRDS), pages 206—-. IEEE, 2000.

[147] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo
Alonso. Understanding replication in databases and distributed systems. In Int. Conf. on
Distributed Comp. Sys. (ICDCS), pages 464–474. IEEE, 2000.

[148] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algorithm.
Trans. on Database Sys., 22(2):255–314, June 1997.

[149] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung Wu. Efficient B-tree based indexing
for cloud data processing. Int. Conf. on Very Large Data Bases (VLDB), 3(1-2):1207–1218,
September 2010.

[150] Maysam Yabandeh and Daniel Gómez Ferro. A critique of snapshot isolation. In Euro.
Conf. on Comp. Sys. (EuroSys), page 155, New York, New York, USA, April 2012. ACM
Press.

169

BIBLIOGRAPHY

[151] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero, Marc
Shapiro, and Nuno Preguiça. SwiftCloud: Fault-Tolerant Geo-Replication Integrated all
the Way to the Client Machine. Technical Report RR-8347, Inria, August 2013. URL
http://fr.arxiv.org/abs/1310.3107.

[152] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang
Li. Transaction chains. In Symp. on Op. Sys. Principles (SOSP), pages 276–291, New York,
New York, USA, November 2013. ACM Press.

170

http://fr.arxiv.org/abs/1310.3107

	List of Tables
	List of Figures
	Introduction
	Contributions
	Part I
	Part II

	Outline of the thesis

	Part I: Ensuring Consistency in Transactional Data Stores
	Background
	Model
	Objects & transactions
	Histories
	Distributed System
	Failure Models
	Synchrony Assumptions
	Failure Detectors

	Replication
	Transactional Commitment
	Atomic Commitment Approach
	Total Ordering Approach
	Partial Ordering Approach.

	Strong Consistency Criteria
	Strict Serializability (SSER)
	Full Serializability (SER)
	Update Serializability (US)
	Snapshot Isolation (SI)
	Generalized Snapshot Isolation (GSI)

	Parallel Snapshot Isolation (PSI)
	Causal Serializability (CSER)
	Consistency Criteria for Software Transactional Memory
	Anomaly Comparison

	Liveness and Progress

	Catalog of Transactional Protocols Supporting Partial Replication
	Scalability Properties
	Wait-Free Queries (WFQ)
	Genuine Partial Replication (GPR)
	Minimal Commitment Synchronization
	Forward Freshness

	Review of Transactional Protocols Supporting Partial Replication
	SSER
	SER
	US
	SI
	PSI

	Scalability of Strong Consistency Criteria
	Decomposing SI
	Absence of Cascading Aborts (ACA)
	Consistent and Strictly Consistent Snapshots (SCONS)
	Snapshot Monotonicity (MON)
	Write-Conflict Freedom
	The Decomposition

	The impossibility of SIwith GPR
	Discussion
	SSERand Opacity
	SER
	PSI
	Circumventing The Impossibility Result

	Conclusion

	NMSI: Non-monotonic Snapshot Isolation
	Definition of NMSI
	Jessy: a Protocol for NMSI
	Taking Consistent Snapshots
	Transaction Lifetime in Jessy
	Execution Protocol
	Termination Protocol
	Sketch of Proof
	Safety Properties
	Scalability Properties

	Ensuring Obstruction-Freedom
	Empirical study
	Implementation
	Setup and Benchmark
	Experimental Results

	Conclusion

	G-DUR: Generic Deferred Update Replication
	Overview
	Execution
	Version Tracking
	Picking a Version

	Termination
	Group Communication

	Realizing Protocols
	P-Store
	S-DUR
	GMU
	Serrano07
	Walter
	Jessy2pc

	Implementation
	Case Study
	Setup and Benchmark
	Comparing Transactional Protocols
	Understanding Bottlenecks
	Pluggability Capabilities
	Dependability
	Disaster Prone
	Disaster Tolerant

	Related Work
	Conclusion

	Part II: Ensuring Consistency in Non-Transactional Data Stores
	Tuba: A Self-Configurable Cloud Storage System
	Introduction
	System Overview
	Tuba Features from Pileus
	Tuba's New Features

	Configuration Service (CS)
	Constraints
	Cost Model
	Selection
	Operations
	Adjust the Synchronization Period
	Add/Remove Secondary Replica
	Change Primary Replica
	Add Primary Replica
	Summary

	Client Execution Modes
	Implementation
	Communication
	Client Operations
	Read Operation
	Single-primary Write Operation
	Multi-primary Write Operation

	CS Reconfiguration Operations
	Fault-Tolerance

	Conclusion
	Future Work

	Part III: Appendix
	Proof of SI Decomposition
	Correctness of Jessy
	Safety
	Liveness and Progress

	Résumé de la thèse
	Résumé
	Introduction
	Contributions
	Partie I
	Partie II

	Passage à l'échelle du Critère de Cohérence Forte
	Décomposition SI
	Annulation en cascade (Absence of Cascading Aborts)
	Instantanés cohérents et strictement cohérents
	Instantané monotone

	Write-Conflict Freedom
	La décomposition
	L'impossibilité de SIavec GPR

	Non-monotonic Snapshot Isolation
	Generic Deferred Update Replication
	Un Système de Stockage Cloud Auto-Configurable

	Bibliography

