Discrete event modeling and analysis for systems biology models

Abstract : A general goal of systems biology is to acquire a detailed understanding of the dynamics of living systems by relating functional properties of whole systems with the interactions of their constituents. Often this goal is tackled through computer simulation. A number of different formalisms are currently used to construct numerical representations of biological systems, and a certain wealth of models is proposed using ad hoc methods. There arises an interesting question of to what extent these models can be reused and composed, together or in a larger framework. In this thesis, we propose BioRica as a means to circumvent the difficulty of incorporating disparate approaches in the same modeling study. BioRica is an extension of the AltaRica specification language to describe hierarchical non-deterministic General Semi-Markov processes. We first extend the syntax and automata semantics of AltaRica in order to account for stochastic labeling. We then provide a semantics to BioRica programs in terms of stochastic transition systems, that are transition systems with stochastic labeling. We then develop numerical methods to symbolically compute the probability of a given finite path in a stochastic transition systems. We then define algorithms and rules to compile a BioRica system into a stand alone C++ simulator that simulates the underlying stochastic process. We also present language extensions that enables the modeler to include into a BioRica hierarchical systems nodes that use numerical libraries (e.g. Mathematica, Matlab, GSL). Such nodes can be used to perform numerical integration or flux balance analysis during discrete event simulation. We then consider the problem of using models with uncertain parameter values. Quantitative models in Systems Biology depend on a large number of free parameters, whose values completely determine behavior of models. Some range of parameter values produce similar system dynamics, making it possible to define general trends for trajectories of the system (e.g. oscillating behavior) for some parameter values. In this work, we defined an automata-based formalism to describe the qualitative behavior of systems’ dynamics. Qualitative behaviors are represented by finite transition systems whose states contain predicate valuation and whose transitions are labeled by probabilistic delays. We provide algorithms to automatically build such automata representation by using random sampling over the parameter space and algorithms to compare and cluster the resulting qualitative transition system. Finally, we validate our approach by studying a rejuvenation effect in yeasts cells population by using a hierarchical population model defined in BioRica. Models of ageing for yeast cells aim to provide insight into the general biological processes of ageing. For this study, we used the BioRica framework to generate a hierarchical simulation tool that allows dynamic creation of entities during simulation. The predictions of our hierarchical mathematical model has been validated experimentally by the micro-biology laboratory of Gothenburg
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01086140
Contributor : Documentaliste Labri <>
Submitted on : Saturday, November 22, 2014 - 2:36:12 PM
Last modification on : Thursday, January 11, 2018 - 6:20:17 AM
Long-term archiving on : Monday, February 23, 2015 - 10:15:43 AM

Identifiers

  • HAL Id : tel-01086140, version 1

Citation

Hayssam Soueidan. Discrete event modeling and analysis for systems biology models. Informatique [cs]. Université Sciences et Technologies - Bordeaux I, 2009. Français. ⟨tel-01086140⟩

Share

Metrics

Record views

161

Files downloads

626