Skip to Main content Skip to Navigation

Multiexcitons in semiconductor quantum dots

Abstract : The studies of energy levels and of recombination processes of single quantum dots, optically filled with up to four electron-hole pairs are the subject of this work. The dots used in the present experiments, formed out of the Ga(Al)As matrix, represent relatively strongly confined zero-dimensional systems, and display several, atomic-like s-, p-,. . . shells. Single dots can be easily selected in our structures as they exhibit an extremely low surface density. Experimental techniques applied in this work include the methods of single dot spectroscopy, polarization resolved techniques, application of magnetic fields and photon correlation measurements. Distinct, below- and above-dot-barrier laser excitation has been used for photoluminescence experiments. Importantly, the photoluminescence excitations experiments (in magnetic fields) have been carried out, as well.Depending on excitation conditions (power and wavelength of laser), the investigated dots show a multitude of relatively sharp lines, each dot displaying the same, characteristic pattern of lines, grouped into distinct clusters corresponding to subsequent atomic-like shells. Spectral range covering the s- and p-shells region has been explored in the present studies. The assignment of spectral lines has been at large provided by the results of polarization resolved micro-photoluminescence and photon correlation experiments. Those experiments depict three distinct families of emission lines, each related to recombination of, correspondingly, neutral, positively charged and negatively charged electron-hole (excitonic) complexes. The emission lines observed within a four step cascade of a neutral quadexciton down to the recombination of a neutral exciton and two step cascades of positively charged biexcitons down to the recombination of a singlet and triplet state of positively charged excitons have been studied in details. The fine structure, induced by exchange interactions and preliminarily seen in (linear) polarization resolved emission experiment at zero magnetic field, has been studied for various emission lines (related to s- and p- shells). The evolution of this splitting has been then investigated as a function of the magnetic field. The results are interpreted in terms of the shape anisotropy of dots and an interplay between spin- and orbital-mediated effects, characteristic of different recombination processes. A significant portion of this work has aimed to compare the emission spectra measured at a relatively high excitation power (which include the recombination processes of up to quadexciton complexes) with photoluminescence excitation spectra (which probe the excited states of a single exciton). Such experiments have been also carried out as a function of the magnetic field. As expected the emission spectra of high order excitonic complexes are indeed greatly affected by Coulomb interactions between carriers and in consequence are in general very different from the photoluminescence excitation spectra (quasi absorption) of a neutral and charged exciton. Two types of the magnetic field evolution of detected absorption lines (resonant peaks), the s- and p-shell related, have been measured. The s-shell like resonant peaks were attributed to the transition between the excited hole levels in the valence band and the ground s-shell level in the conduction band. Nevertheless, there exists an emission line which is observed within the p-shell cluster, and which coincides with the absorption line. That "coinciding resonance" is concluded to be an excited excitonic state which recombines radiatively due to efficient blocking of its relaxation towards the ground state.
Document type :
Complete list of metadata

Cited literature [106 references]  Display  Hide  Download
Contributor : Abes Star :  Contact Connect in order to contact the contributor
Submitted on : Monday, September 12, 2016 - 7:09:09 PM
Last modification on : Wednesday, October 20, 2021 - 12:08:47 AM
Long-term archiving on: : Tuesday, December 13, 2016 - 3:53:30 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01085178, version 2


Maciej Molas. Multiexcitons in semiconductor quantum dots. Condensed Matter [cond-mat]. Université de Grenoble; Uniwersytet Warszawski, 2014. English. ⟨NNT : 2014GRENY041⟩. ⟨tel-01085178v2⟩



Record views


Files downloads