The timescales of magmatic processes prior to a caldera-forming eruption
Gareth Nicholas Fabbro

To cite this version:

HAL Id: tel-01083645
https://tel.archives-ouvertes.fr/tel-01083645
Submitted on 17 Nov 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The timescales of magmatic processes prior to a caldera-forming eruption
Les échelles de temps des processus magmatiques avant d’un éruption caldierique
Abstract

Large, explosive, caldera-forming eruptions are amongst the most destructive phenomena on the planet, but the processes that allow the large bodies of crystal-poor silicic magma that feed them to assemble in the shallow crust are still poorly understood. Of particular interest is the timescales over which these reservoirs exist prior to eruption. Long storage times—up to 10^5 y—have previously been estimated using the repose times between eruptions and radiometric dating of crystals found within the eruptive products. However, more recent work modelling diffusion within single crystals has been used to argue that the reservoirs that feed even the largest eruptions are assembled over much shorter periods—10^1–10^2 y.

In order to address this question, I studied the >10 km3, 22-ka, dacitic Cape Riva eruption of Santorini, Greece. Over the ~18 ky preceding the Cape Riva eruption a series of dacitic lava dome and coulées were erupted, and these lavas are interspersed with occasional dacitic pumice fall deposits (the Therasia dome complex). These dacites have similar major element contents to the dacite that was erupted during the Cape Riva eruption, and have previously been described as “precursory leaks” from the growing Cape Riva magma reservoir. However, the Cape Riva magma is depleted in incompatible elements (such as K, Zr, La, Ce) relative to the Therasia magma, as are the plagioclase crystals in the respective magmas. This difference cannot be explained using shallow processes such as fractional crystallisation or crustal assimilation, which suggests that the Cape Riva and Therasia magmas are separate batches. Furthermore, there is evidence that the Therasia dacites were not fed from a long-lived,
melt-dominated reservoir. There are non-systematic variations in melt composition, plagioclase rim compositions, and plagioclase textures throughout the sequence. In addition, high-temperature residence times of plagioclase and orthopyroxene crystals from the Therasia dacites estimated using diffusion chronometry are 10^{1}–10^{2} y. This is short compared to the average time between eruptions (\sim1,500 y), which suggests the crystals in each lava grew only shortly before eruption. The different incompatible element contents of the Cape Riva and Therasia magmas and plagioclase crystals suggest that a new batch of incompatible-depleted silicic magma arrived in the shallow volcanic plumbing system shortly before the Cape Riva eruption. This influx must have taken place after the last Therasia eruption, which 40Ar/39Ar dates show occurred less than 2,800 ± 1,400 years before the Cape Riva eruption.

The rims of the plagioclase crystals found in the Cape Riva dacite are in equilibrium with a rhyodacite, with a similar composition to the Cape Riva glass. However, the major and trace element zoning patterns of the crystals record variations in the melt composition during their growth. The compositions at the centre of most crystals are the same as the rims; however, these crystals are often partially resorbed and overgrown by more calcic plagioclase. The plagioclase then grades normally back to rim compositions. This cycle is repeated up to three times. The tight relationships between the anorthite, Sr and Ti contents of the different zones suggests that the composition of the plagioclase crystals correlates with the composition of the melt from which they grew. The different plagioclase compositions correspond to dacitic and rhyodacitic melt compositions. The orthopyroxene crystals reveal a similar sequence, although they only record one cycle. These zoning patterns are interpreted to document the assembly of the Cape Riva reservoir in the shallow crust through the amalgamation of multiple batches of compositionally diverse magma. Models of magnesium diffusion in plagioclase and Fe–Mg interdiffusion in orthopyroxene suggest that this amalgamation took place within 10^{1}–10^{2} y of the Cape Riva eruption.
Keywords: calderas, Santorini, diffusion, magma chambers, crystal residence times
Résumé

Les grandes éruptions calderiques sont parmi les phénomènes les plus destructeurs de la Terre, mais les processus à l’origine des grands réservoirs de magma siliceux et pauvre en cristaux qui alimentent ces éruptions ne sont pas bien compris. Le temps de stockage de ces réservoirs dans la croûte supérieure a un intérêt particulier. De longs temps de stockage—jusqu’à 10^5 ans—ont été estimés en utilisant les temps de repos entre les éruptions et les âges radiométriques des cristaux qui se trouvent dans les produits éruptifs. Par contre, des travaux récents sur la diffusion dans des cristaux suggèrent que les réservoirs qui alimentent même les plus grandes éruptions peuvent se mettre en place pendant une période beaucoup plus courte—$10^1–10^2$ ans.

Afin de répondre à cette question, j’ai étudié l’éruption dacitique de Cape Riva de Santorin, Grèce (>10 km3, 22 ka). Pendant les \sim18,000 ans précédant cette éruption, une série de dômes et de coulées dacitiques a été émise, alternant avec des dépôts de ponce dacitique (le complexe de dômes de Therasia). Ces dacites ont des compositions similaires à celle qui a été émise pendant l’éruption de Cape Riva, et ont été décrites précédemment comme des « fuites » provenant du réservoir de Cape Riva pendant sa croissance. Cependant, le magma de Cape Riva est appauvri en éléments incompatibles (tels que K, Zr, La, Ce) par rapport au magma de Therasia, une différence qui apparaît également dans les cristaux de plagioclase. Cette différence ne peut pas être expliquée par des processus peu profonds, tels que la cristallisation fractionnée ou l’assimilation de la croûte, ce qui suggère que les magmas de Cape Riva et Therasia ont des origines différentes. En outre, il existe des arguments tendant à montrer que les dacites
de Therasia n’ont pas été alimentées par un réservoir majoritairement liquide ayant eu une longue durée de vie. Il y a des variations non systématiques dans la composition du magma, les compositions des bords ainsi que les caractéristiques des cristaux de plagioclase tout au long de la séquence. De plus, les temps de résidence à haute température des cristaux de plagioclase et d’orthopyroxène estimés par des modèles de diffusion sont $10^{1}–10^{2}$ ans. Ces temps sont courts par rapport au temps moyen entre éruptions (\sim1.500 ans), ce qui suggère que les cristaux observés dans chaque coulée ne se sont formés que peu de temps avant l’éruption. Les différentes teneurs en éléments incompatibles indiquent qu’un nouveau magma s’est mis en place dans le système volcanique superficial peu de temps avant l’éruption de Cape Riva. Cet apport de magma a eu lieu après la dernière éruption de Therasia, qui s’est produite $<2.800 \pm 1.400$ ans avant l’éruption de Cape Riva selon les âges $^{40}\text{Ar}/^{39}\text{Ar}$.

Les périphéries des cristaux de plagioclase présents dans la dacite de Cape Riva sont en équilibre avec une rhyodacite, avec une composition similaire à celui du verre de l’éruption. Cependant, les zonations dans les éléments majeurs et traces enregistrent des changements dans la composition du liquide magmatique pendant la croissance des cristaux. La composition du centre de la plupart des cristaux de plagioclase est la même que celle des bords ; toutefois ces cristaux sont souvent partiellement résorbés, et la croissance a repris avec du plagioclase plus calcique. Ces cycles se répètent jusqu’à trois fois. La relation étroite entre la teneur en anorthite, Sr et Ti des différentes zones suggère que la composition des plagioclases est corrélée avec la composition du liquide, allant de liquides dacitiques à rhyodacitiques. Des cristaux d’orthopyroxène révèlent une séquence similaire. Les motifs de zonation sont interprétés comme un témoin de la formation du réservoir de Cape Riva dans la croûte supérieure par le mélange de plusieurs magmas ayant des compositions diverses. Des modèles de diffusion de Mg dans le plagioclase et de Fe–Mg dans l’orthopyroxène suggèrent que ce mélange a eu lieu $10^{1}–10^{2}$ ans avant l’éruption.
Mots clés : caldeira, Santorin, diffusion, chambres magmatiques, temps de résidence de cristaux
Acknowledgements

I would like to thank my supervisors, Tim Druitt and Fidel Costa, for all their support and advice over the past three and a half years.

Stéphane Scaillet (ISTO, Université de Orléans) is thanked for providing $^{40}\text{Ar}/^{39}\text{Ar}$ ages for the Therasia lavas; Mhammed Benbakkar (LMV, Université Blaise Pascal, Clermont-Ferrand) and Cathérine Chauvel (ISTerre, Grenoble) for the for running the AES and ICP-MS analyses of the whole rock and groundmass samples. Thanks also go to Jean-Luc Devidal (LMV) for aiding me with the EMP and LA ICP-MS analyses, and to Jean-Marc Henot (LMV) for help with the SEM.

Financial support was provided by the Auvergne Region, as well as the French Agence Nationale de la Recherche (ANR) and Centre National de la Recherche Scientifique (CNRS).

Finally, I would like to thank all my friends, who welcomed me to a new country and made my stay thoroughly enjoyable. I would also like to thank my family, without whom I would not be where I am today.
Contents

Abstract i
Résumé v
Acknowledgements ix
Contents xiii
List of Figures xix
List of Tables xxv

Introduction 1
Thesis objectives ... 2
Approach and thesis outline 2

1 Large, silicic magma reservoirs 5
1.1 Introduction ... 5
1.2 Terminology .. 6
1.3 Evidence of storage timescales of silicic magma from plutons 7
1.4 Radiometric crystal residence times 8
1.5 Crystal mushes .. 10
1.6 “Precursory leaks” .. 12
1.6.1 Glass Mountain and the Bishop Tuff, Long Valley, California 13
1.6.2 Mount Mazama, Crater Lake, Oregon 16
1.6.3 The Oruanui eruption, Taupo Volcano, New Zealand 18
1.7 Diffusion chronometry 19
1.8 Modelling magma chamber stability 23
1.9 Possible mechanisms for rapid generation of large silicic melt reservoirs 25

2 Geological setting 29
2.1 Regional Tectonics of the Aegean and the Hellenic subduction zone 29
2.2 Volcanism along the Hellenic Arc 33
2.2.1 Crommyonia ... 34
2.2.2 Aegina .. 34
2.2.3 Methana ... 35
2.2.4 Milos ... 35
2.2.5 Kos-Yali-Nisyros 36
2.3 The local tectonic setting of Santorini 38
2.4 The volcanic history of Santorini 40
 2.4.1 Early activity: Akrotiri and Peristeria centres (650–340 ka) 40
 2.4.2 Thera pyroclastics (<360 ka) 43
 2.4.3 The build-up to the Cape Riva eruption (67–22 ka) 46
 2.4.4 Cape Riva eruption (22 ka) 49
 2.4.5 Post-Cape Riva activity 51
2.5 Chemistry and petrology 53
 2.5.1 Major and trace element chemistry 53
 2.5.2 Isotopic variation 55
 2.5.3 Decrease in incompatibles with time 56

3 Diffusion chronometry 61
 3.1 Introduction 61
 3.2 Diffusion theory 62
 3.2.1 Basic Theory 62
 3.2.2 Trace element diffusion in plagioclase 64
 3.3 Application to magmatic systems 66
 3.3.1 Initial conditions 68
 3.3.2 Boundary conditions 72
 3.3.3 Picking a diffusion coefficient 72
 3.4 Diffusion coefficients used in this thesis 77
 3.4.1 Plagioclase 78
 3.4.2 Orthopyroxene 84
 3.5 Previous studies 87
 3.5.1 Magmatic recharge 87
 3.5.2 Mush rejuvenation 87
 3.5.3 Vapour fluxing 88
 3.5.4 Crustal assimilation 88
 3.5.5 Magma ascent 90

4 Fieldwork and age constraints 93
 4.1 Introduction 93
 4.2 Methods ... 94
 4.3 Results .. 94
 4.3.1 Field and stratigraphic relationships 94
 4.3.2 Age constraints 102
 4.4 Discussion .. 106
 4.4.1 Reconstruction of events leading up to the Cape Riva eruption ... 106
 4.5 Summary .. 109
5 Chemistry and petrology 111
 5.1 Introduction .. 111
 5.2 Methodology .. 112
 5.3 Results ... 114
 5.3.1 Mineral chemistry and assemblages 114
 5.3.2 Whole rock chemistry and mixing systematics 123
 5.3.3 Magmatic temperatures 131
 5.4 Discussion .. 132
 5.4.1 Origin of the magma series 132
 5.5 Summary ... 135

6 Plagioclase 137
 6.1 Introduction .. 137
 6.2 Methods ... 138
 6.2.1 Analytical techniques 138
 6.2.2 Partition coefficients 141
 6.3 Zoning patterns ... 142
 6.3.1 Anorthite zoning 142
 6.3.2 Trace element zoning 152
 6.4 Using fast and slow diffusing elements to elucidate magmatic processes 152
 6.5 Reconstructing melt compositions from plagioclase compositions 156
 6.5.1 Major element composition of the melt 157
 6.5.2 Distinguishing fractionated melts from hybrid melts 162
 6.5.3 Incompatible element concentrations of the melt 165
 6.6 Estimating timescales with diffusion modelling 168
 6.6.1 Initial Mg concentration of the plagioclase crystals ... 168
 6.6.2 Equilibrium profiles 170
 6.6.3 Numerical modelling 170
 6.6.4 Diffusion coefficient 174
 6.6.5 Results .. 174
 6.6.6 Uncertainties .. 184
 6.7 Combining petrological and timescale information 188
 6.8 Summary ... 189

7 Orthopyroxene 195
 7.1 Introduction .. 195
 7.2 Analytical techniques 196
 7.3 Zoning patterns ... 198
 7.3.1 Mg–Fe zoning .. 198
 7.3.2 Trace element zoning in the Cape Riva dacite 201
 7.4 Using fast and slow diffusing elements to elucidate magmatic processes 207
 7.5 Estimating melt compositions from orthopyroxene compositions 209
 7.6 Estimating timescales with diffusion chronometry 211
Contents

7.6.1 Method .. 211
7.6.2 Results .. 213
7.6.3 Uncertainties .. 223

7.7 Comparison of plagioclase and orthopyroxene timescales 232

7.8 Summary .. 237

8 Conclusions .. 241

8.1 Introduction ... 241

8.2 Summary of the Therasia–Cape Riva sequence 243
 8.2.1 The Therasia dome complex 243
 8.2.2 The Cape Riva eruption 246

8.3 Constraints on the volcanic plumbing system 247
 8.3.1 Magma reservoir depths 247
 8.3.2 Magma ascent and storage during the Therasia period 249
 8.3.3 The ascent and storage of the Cape Riva magma 253

8.4 Constraints on the growth of the phenocrysts 255
 8.4.1 Cause of the zoning in the phenocrysts 255
 8.4.2 Triggering crystal growth 256

8.5 The evolution of the volcanic plumbing system prior to the Cape Riva .. 258
 8.5.1 Skaros–Upper Scoria 2 (67–54 ka) 258
 8.5.2 Early Therasia period (54–39 ka) 259
 8.5.3 The Therasia dacites (39–25 ka) 259
 8.5.4 The build-up to the Cape Riva eruption (25–22 ka) 260

References .. 263

Appendices ... 291

A Sample locations .. 291

B Whole rock and groundmass chemical analyses 293

C LA ICP-MS data ... 303

D Plagioclase diffusion model code 327
 D.1 1 Stage model .. 327
 D.2 2 stage model .. 333

E Plagioclase diffusion model results 341

F Orthopyroxene diffusion model results 355
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1</td>
<td>Abstract</td>
<td>369</td>
</tr>
<tr>
<td>G.2</td>
<td>Introduction</td>
<td>370</td>
</tr>
<tr>
<td>G.3</td>
<td>Geological Setting</td>
<td>373</td>
</tr>
<tr>
<td>G.4</td>
<td>Methodology</td>
<td>376</td>
</tr>
<tr>
<td>G.5</td>
<td>Results</td>
<td>379</td>
</tr>
<tr>
<td>G.5.1</td>
<td>Field and stratigraphic relationships</td>
<td>379</td>
</tr>
<tr>
<td>G.5.2</td>
<td>Age constraints</td>
<td>384</td>
</tr>
<tr>
<td>G.5.3</td>
<td>Mineral chemistry and assemblages</td>
<td>388</td>
</tr>
<tr>
<td>G.5.4</td>
<td>Whole rock chemistry and mixing systematics</td>
<td>396</td>
</tr>
<tr>
<td>G.6</td>
<td>Discussion</td>
<td>403</td>
</tr>
<tr>
<td>G.6.1</td>
<td>Origin of the magma series</td>
<td>403</td>
</tr>
<tr>
<td>G.6.2</td>
<td>Reconstruction of events leading up to the Cape Riva eruption</td>
<td>406</td>
</tr>
<tr>
<td>G.6.3</td>
<td>Constraints on magma reservoir development</td>
<td>408</td>
</tr>
<tr>
<td>G.7</td>
<td>Conclusions</td>
<td>411</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Simplified geological map of Long Valley 13
1.2 Conceptual schematic illustrations of mush model of rhyolite melt extraction from plutonic crystal mush of intermediate to silicic hybrid composition .. 15
1.3 Simplified geologic map of Crater Lake, Oregon 17
1.4 Schematic illustration of the evolution of a mushy magma reservoir and the extraction of silicic melt through hindered settling 27

2.1 Map of the southern Aegean Sea .. 30
2.2 Velocity field in a Eurasia fixed reference frame, and kinematics sketch. 31
2.3 Crustal thickness from from gravity measurements 33
2.4 Bathymetry of the Christia–Santorini–Colomou volcanic zone 39
2.5 Sketch geological map of Santorini 42
2.6 Morphological evolution of Santorini between 70 and 21 ka 47
2.7 Distribution of the Cape Riva ash in marine and lake-bed sediment cores .. 50
2.8 Schematic section through the Cape Riva deposits 51
2.9 Variation diagrams for major elements in Santorini magmas 54
2.10 Variation diagrams for trace elements in Santorini magmas 55
2.11 87Sr/86Sr and 143Nd/144Nd variation for Santorini pumices and Aegean basement ... 56
2.12 87Sr/86Sr and 143Nd/144Nd variation with stratigraphic height for Santorini pumices and lavas .. 57
2.13 Selected variation diagrams showing the decrease in incompatible element concentrations throughout the volcanic history of Santorini 58

3.1 The evolution of an initial step function in an infinite slab by diffusion 64
3.2 A schematic example of the progressive modification of the zoning patterns of a crystal by diffusion ... 67
3.3 Diffusion coefficients for Mg in plagioclase 78
3.4 Diffusion coefficients for Sr in plagioclase 80
3.5 Diffusion coefficients for K, NaSi–CaAl and La in plagioclase 82
3.6 Diffusion coefficients of Fe–Mg and Al in orthopyroxene 85

4.1 Photos of the cliffs of Therasia, and the sketches drawn from them ... 96
4.2 Photos of the cliffs at Oia and Fira, and the sketches drawn from them 97
4.3 Schematic representation of the different lava flows from the Therasia dome complex 98
4.4 Schematic representation of the pumice fall deposits 99
4.5 Photos of the Therasia dome complex 100
4.6 Probability density plots and Gauss plots of $^{40}\text{Ar}/^{39}\text{Ar}$ data obtained on the four lava flows dated in the Therasia sequence 103
4.7 Summary of magma compositions and ages between 70 and 20 ka 105
4.8 Chemical discrimination plots for the Cape Tripiti pumice and Y-4 ash layer 106

5.1 Mineral compositions from the different rock units 114
5.2 Summary of plagioclase populations in the Cape Riva and Therasia rocks 121
5.3 Variation diagrams of major elements and selected highly compatible trace elements 127
5.4 Incompatible element variation diagrams 130
5.5 Temperature and oxygen fugacities of the three Therasia pumice fall units analysed 132

6.1 Typical calibration curve for a BSE image of a plagioclase crystal 140
6.2 Sketches of plagioclase crystals from the Therasia dacites, showing the characteristic features of the phenocrysts 142
6.3 A calibrated BSE image of a plagioclase from the Cape Riva dacite with sawtooth zoning 145
6.4 A calibrated BSE image of a plagioclase from the a Therasia dacite with a calcic core 146
6.5 Histograms of the compositions of plagioclase crystals in the Therasia dacites 147
6.6 Sketches of plagioclase crystals from the Cape Riva dacites, showing the characteristic features of the phenocrysts 148
6.7 Schematic sketches of the plagioclase crystals found in the Therasia and Cape Riva dacites 151
6.8 Characteristic diffusion distance against time, calculated at 880 °C 153
6.9 Liquid equivalent compositions for plagioclase crystals from the Therasia and Cape Riva eruptions 157
6.10 Sr and Ti liquid compositions calculated to be in equilibrium with plagioclase compositions 160
6.11 Ti concentrations in melts in equilibrium with the composition of plagioclase crystals in lavas from the Therasia dome complex and pumices from the Cape Riva eruption, and Ti concentrations in whole rock, groundmass separates, and mafic enclaves from the Skaros, Upper Scoria 2, Cape Riva and Therasia dome complex 162
6.12 Melt evolution paths determined from Ti contents of plagioclase crystals from the Therasia dacites 164
6.13 Melt evolution paths determined from Ti contents of plagioclase crystals from the Cape Riva dacite 166
6.14 Whole rock and groundmass compositions of the Therasia, Cape Riva, Skaros and Upper Scoria 2 eruptions, and liquid equivalent compositions for plagioclases from the Cape Riva and Therasia eruptions 171
6.15 The estimate of the initial Mg concentration of the crystals 171
6.16 The results of one-stage diffusion models of plagioclase crystals from the Therasia dacites .. 175
6.17 The results of two-stage diffusion models of plagioclase crystals from the Therasia dacites .. 176
6.18 The results of one-stage diffusion models of plagioclase crystals from the Cape Riva dacite .. 177
6.19 The results of two-stage diffusion models of plagioclase crystals from the Cape Riva dacite .. 179
6.20 A plagioclase crystal from the Cape Riva dacite (GS11-34 XL14) 180
6.21 A plagioclase crystal from the Cape Riva dacite (GS11-30b XL15) 182
6.22 A plagioclase crystal from the Therasia dacites (GS10-14 XL32) 184
6.23 Residence times of plagioclase crystals from the Therasia and the Cape Riva dacites .. 191

7.1 Typical calibration curve for a BSE image of an orthopyroxene crystal . 197
7.2 Calibrated BSE images of pyroxene crystals 199
7.3 Sketch of the typical zoning pattern of Therasia and Cape Riva orthopyroxenes .. 200
7.4 Element maps of a weakly zoned orthopyroxene from the Cape Riva eruption (S12-05 PYX26) .. 202
7.5 Element maps of an orthopyroxene with a Mg-rich core from the Cape Riva eruption (S12-05 PYX12) .. 202
7.6 Element maps of an orthopyroxene with a Mg-rich mantle from the Cape Riva eruption (GS11-30b PYX08) .. 203
7.7 Element maps of an orthopyroxene with sector zoning or skeletal growth (S12-06 PYX17) .. 203
7.8 Compositions of the weakly zoned orthopyroxenes, and the different zones of the strongly zoned crystals .. 204
7.9 Sketches of the Al zoning patterns in typical Cape Riva orthopyroxenes, alongside EMP Al maps .. 204
7.10 Characteristic diffusion distance against time, calculated at 880 °C 208
7.11 #Mg of orthopyroxenes plotted against the SiO₂ contents coexisting glasses produced in the experiments of Cadoux et al. (2014) 210
7.12 The results of models of Mg-Fe diffusion in orthopyroxenes from flow 5 of the Therasia dacites (GS10-17). ... 214
7.13 The results of models of Mg-Fe diffusion in orthopyroxenes from flow 8 of the Therasia dacites (GS10-14). ... 215
7.14 The results of models of Mg-Fe diffusion in orthopyroxenes from flow 9 of the Therasia dacites (GS10-16). ... 216
7.15 The results of models of Mg-Fe diffusion in orthopyroxenes from phase A of the Cape Riva eruption (GS11-34a). 217
7.16 The results of models of Mg-Fe diffusion in orthopyroxenes from phase B of the Cape Riva eruption (S12-06). ... 220
7.17 The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (GS11-30b). 222
7.18 The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (S12-05). ... 224
7.19 The results of models of Mg-Fe diffusion in orthopyroxenes from phase D of the Cape Riva eruption (GS11-39b). 227
7.20 An orthopyroxene crystal from the Cape Riva dacite (S12-06 PYX17). 228
7.21 Profiles of Fe, Mg Ca and Al counts ... 229
7.22 An orthopyroxene crystal from the Cape Riva dacite (GS11-03b PYX08). 230
7.23 High-temperature residence times of plagioclase crystals from the Therasia and the Cape Riva dacites ... 236
7.24 An orthopyroxene crystal from the Cape Riva dacite and an orthopyroxene from the experiments of Schwandt and McKay (2006), showing possible sector zoning ... 237

8.1 Schematic interpretative illustration of the Santorini-Coloumbo magma plumbing system ... 248
8.2 Isobaric phase relationships of the Cape Riva dacite 250

E.2 GS10-14 XL66 ... 343
E.3 GS10-16 XL148 ... 344
E.4 GS10-17 XL60 ... 345
E.5 GS10-17 XL71 ... 346
E.6 GS11-30b XL15 ... 347
E.7 GS11-30 XL18 ... 348
E.8 GS11-34a XL09 ... 349
E.9 GS11-34a-XL14 ... 350
E.10 GS11-34a XL23 ... 351
E.11 GS11-39b XL29 ... 352
E.12 S12-05 XL03 ... 353
E.13 S12-06 XL24 ... 354

F.1 Therasia dacite flow 5 (GS10-17) .. 356
F.2 Therasia dacite flow 8 (GS10-14) ... 357
F.3 Therasia dacite flow 9 (GS10-16) ... 358
F.4 Cape Riva A (GS11-34a) ... 359
F.5 Cape Riva B (S12-06) .. 361
F.6 Cape Riva C (GS11-30b) .. 362
F.7 Cape Riva C (S12-05) ... 363
F.7 Cape Riva D (GS11-39b) .. 365

G.1 Simplified geological map of Santorini 374
G.2 Morphological evolution of Santorini between 70 ka and 21 ka 375
G.3 Photos of the cliffs of Therasia, and the sketches drawn from them ... 380
G.4 Schematic representation of the different lava flows from the Therasia dome complex .. 381
G.5 Photos of the Therasia dome complex 382
G.6 Probability density plots and Gauss plots of $^{40}\text{Ar}/^{39}\text{Ar}$ data obtained on four lava flows dated in the Therasia sequence 385
G.7 Summary of magma compositions and ages between 70 and 20 ka ... 386
G.8 Chemical discrimination plots for the Cape Tripiti pumice and Y-4 ash layer ... 388
G.9 Mineral compositions from the different rock units 390
G.10 Summary of plagioclase populations in the Cape Riva and Therasia rocks 393
G.11 Variation diagrams of major elements and selected highly compatible trace elements ... 399
G.12 Incompatible element variation diagrams 400
xxiv List of Figures
List of Tables

2.1 Summary of the volcanic history of Santorini ... 41

4.1 $^{40}\text{Ar}/^{39}\text{Ar}$-ages for the Therasia dacites 104

4.2 Published ages for the Cape Riva eruption. The average of these ages is
$21.8 \pm 0.4 \text{ ka (}2\sigma\text{)}$... 107

5.1 Total and modal crystal contents for the Therasia dome complex. Modal
mineral compositions given as a percentage of the total crystal content. 117

5.2 Average glass compositions inside glass-bearing clusters and groundmass
compositions, measured using a defocused electron microprobe beam . 119

5.3 Representative whole rock analyses of the Therasia and Cape Riva
products ... 125

5.4 Representative groundmass analyses of the Therasia and Cape Riva
products ... 126

5.5 Calculation for the mixing of (1) Therasia dacite plus Therasia basalt
(mafic enclave) to produce the upper Therasia hybrid andesite, and (2)
Cape Riva dacite plus Skaros basalt to produce the Cape Riva hybrid
andesite. ... 129

5.6 Temperatures, T, and oxygen fugacities, fO_2, of the three Therasia
pumice fall units analysed, calculated using Fe–Ti oxide compositions
using the two formulations discussed in the text. 131

6.1 Plagioclase compositions in different Therasia dacite lavas 148

6.2 Estimated melt compositions in equilibrium with the different plagio-
clase zones ... 163

6.3 High-temperature residence times, in years, calculated in diffusion mod-
els of Mg in plagioclase. ... 190

7.1 Residence times, in years, calculated in diffusion models of Fe–Mg in
orthopyroxene from the Therasia dacites. 233

7.2 Residence times, in years, calculated in diffusion models of Fe–Mg in
orthopyroxene from the Cape Riva dacite. 234

7.2 Residence times, in years, calculated in diffusion models of Fe–Mg in
orthopyroxene from the Cape Riva dacite. 235
<table>
<thead>
<tr>
<th></th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>GS10-14 XL32 Profile 1</td>
<td>304</td>
</tr>
<tr>
<td>C.2</td>
<td>GS10-14 XL32 Profile 2</td>
<td>305</td>
</tr>
<tr>
<td>C.3</td>
<td>GS10-14 XL66 Profile 1</td>
<td>306</td>
</tr>
<tr>
<td>C.4</td>
<td>GS10-14 XL66 Profile 2</td>
<td>307</td>
</tr>
<tr>
<td>C.5</td>
<td>GS10-16 XL148 Profile 1</td>
<td>308</td>
</tr>
<tr>
<td>C.6</td>
<td>GS10-16 XL148 Profile 2</td>
<td>309</td>
</tr>
<tr>
<td>C.7</td>
<td>GS10-17 XL60 Profile 1</td>
<td>310</td>
</tr>
<tr>
<td>C.8</td>
<td>GS10-17 XL71 Profile 1</td>
<td>311</td>
</tr>
<tr>
<td>C.9</td>
<td>GS10-17 XL71 Profile 2</td>
<td>311</td>
</tr>
<tr>
<td>C.10</td>
<td>GS11-30b XL15 Profile 1</td>
<td>312</td>
</tr>
<tr>
<td>C.11</td>
<td>GS11-30b XL18 Profile 1</td>
<td>313</td>
</tr>
<tr>
<td>C.12</td>
<td>GS11-34a XL09 Profile 1</td>
<td>314</td>
</tr>
<tr>
<td>C.13</td>
<td>GS11-34a XL09 Profile 2</td>
<td>315</td>
</tr>
<tr>
<td>C.14</td>
<td>GS11-34a XL14 Profile 1</td>
<td>316</td>
</tr>
<tr>
<td>C.15</td>
<td>GS11-34a XL14 Profile 2</td>
<td>317</td>
</tr>
<tr>
<td>C.16</td>
<td>GS11-34a XL23 Profile 1</td>
<td>318</td>
</tr>
<tr>
<td>C.17</td>
<td>GS11-34a XL23 Profile 2</td>
<td>319</td>
</tr>
<tr>
<td>C.18</td>
<td>GS11-34c XL06 Profile 1</td>
<td>320</td>
</tr>
<tr>
<td>C.19</td>
<td>GS11-39b XL29 Profile 1</td>
<td>321</td>
</tr>
<tr>
<td>C.20</td>
<td>GS11-39b XL29 Profile 2</td>
<td>321</td>
</tr>
<tr>
<td>C.21</td>
<td>S12-05 XL03 Profile 1</td>
<td>322</td>
</tr>
<tr>
<td>C.22</td>
<td>S12-06 XL24 Profile 1</td>
<td>324</td>
</tr>
<tr>
<td>C.23</td>
<td>S12-06 XL24 Profile 2</td>
<td>325</td>
</tr>
<tr>
<td>G.1</td>
<td>New 40Ar/39Ar ages for the Therasia dacites</td>
<td>384</td>
</tr>
<tr>
<td>G.2</td>
<td>Published ages for the Cape Riva eruption</td>
<td>389</td>
</tr>
<tr>
<td>G.3</td>
<td>Representative whole rock and groundmass analyses of the Therasia and Cape Riva products</td>
<td>397</td>
</tr>
<tr>
<td>G.5</td>
<td>Mixing calculations for the upper Therasia and Cape Riva andesites</td>
<td>402</td>
</tr>
</tbody>
</table>
Introduction

Silicic eruptions can be highly explosive, and can erupt over 1,000 km3 of magma (Mason et al., 2004; Miller and Wark, 2008). The magma that feeds these eruptions is generally believed to be stored in a single, large body of magma prior to eruption (Bachmann and Bergantz, 2008a; Hildreth, 1981; Smith, 1979). There is, however, considerable debate over the form these magma bodies take, the processes that produce them, and importantly, the timescales over which they are active. On the one hand, individual volcanoes can remain active for up to several million years, and there is a loose relationship between repose time and eruption size (Reid, 2008). This suggests that magma may accumulate over long periods before being erupted, up to a million years in extreme cases. However, there is increasing evidence that large, melt-dominated bodies of eruptible magma are ephemeral, and may exist for less than a few centuries before their eruption (e.g. Allan et al., 2013; Druitt et al., 2012; Sutton et al., 2000; Wilson and Charlier, 2009).

There is often a distinction made between crystal-rich and crystal-poor ignimbrites, and the processes that bring about their eruption (Bachmann and Bergantz, 2004; Hildreth, 1981). Crystal-rich ignimbrites are believed to be re-mobilised crystal mushes, that can be stored for long periods in the crust in a partially crystalline state. The assembly of large bodies of melt-dominated, crystal-poor silicic magmas, on the other hand, requires that the melt is segregated from its crystals prior to eruption. Understanding the processes that assemble large reservoirs of eruptible magma and the timescales over which they occur is of crucial importance for monitoring restless caldera
Introduction

systems.

Thesis objectives

In this thesis I explore the formation of large bodies of crystal-poor silicic magma in the shallow crust. In particular, I focus on the following three questions:

1. How are large, shallow crustal bodies of volatile-rich, crystal-poor magma assembled?

2. How and where do the crystals in these eruptions form, and what do the zoning patterns of the crystals record?

3. What are the associated timescales of these processes?

Approach and thesis outline

I chose to focus on the 22-ka, caldera-forming Cape Riva eruption of Santorini, Greece. Santorini currently is the most active volcano in the Aegean, and has a history of large, explosive eruptions. One of the advantages of the Cape Riva eruption is that in was preceded by about 17 ky of dacitic extrusion, the lavas from which are exposed in the cliffs of the caldera. This allows us to track the evolution of the magma reservoir in the build-up to a large silicic eruption. This study aims to integrate the results from multiple different techniques used on the same sequence, in order to build up a more complete picture of the assembly of a crystal poor magma reservoir in the shallow crust.

Chapter 1 is a review of the literature relating to the storage of large, silicic bodies of eruptible magma. It looks at evidence gathered from silicic plutons; radiometric residence times of crystals with high closure temperatures, such as zircon; effusive eruptions of magma chemically similar to the magma erupted during the climactic
events, often interpreted to be “precursory leaks” from a growing magma reservoir; and numerical models of magma chamber stability.

The geological setting of the study is presented in Chapter 2. This includes the wider tectonic context of the Hellenic Arc, as well as the volcanic history of Santorini. Particular attention is paid to the history since \(\sim 67 \text{ ka} \), which includes the Cape Riva and Therasia eruptions.

Chapter 3 looks at diffusion chronometry, a technique I use extensively in this thesis. I discuss the theory behind it, as well as the practical considerations required to apply it to magmatic systems. I review the experimental determinations of the diffusion coefficients that I use later in this thesis, and provide an overview of previous studies that have used diffusion chronometry to investigate volcanic systems.

I then go on, in Chapter 4, to present the results of my field study. In particular, I present the detailed stratigraphy of the Therasia dome complex. This is combined with \(^{40}\text{Ar} / ^{39}\text{Ar} \) dates provided by Dr Stéphane Scaillet (Institut des Sciences de la Terre d’Orléans), in order to provide a tight chronological framework in which to place the results of the following work.

Chapter 5 describes the chemistry and mineralogy of the Therasia lavas and the products of the Cape Riva eruption. Whole rock analyses are supplemented with analyses of groundmass separates. The groundmass represents the liquid portion of the magma immediately before eruption. Major element compositions and textural features of the different minerals present are also discussed. Combined with the stratigraphy from Chapter 4, this allows me to track the evolution of the volcanic plumbing system at Santorini through time.

Chapter 6 looks in more detail at the zoning patterns of the plagioclase phenocrysts in the Therasia and Cape Riva dacites. Plagioclases are imaged using the scanning electron microscope (SEM), and major elements are measured by electron microprobe. Trace elements are measured using the laser ablation ion coupled plasma mass spectrometer (LA ICP-MS). Melt compositions are deduced from the concentrations of
slowly diffusing elements, which allows zoning patterns to be matched up to magmatic processes. The timing of these processes is estimated by modelling the diffusion of Mg. This timescale is compared to those found from the fieldwork and $^{40}\text{Ar} / ^{39}\text{Ar}$ dates presented in Chapter 4.

Orthopyroxene phenocrysts are studied in detail in Chapter 7, in a similar fashion to the plagioclase crystals in Chapter 6. Back-scattered electron (BSE) images of the orthopyroxenes from the Cape Riva eruption were made using the SEM and semi-quantitative maps of the Mg, Fe, Ca and Al distributions are made on the electron microprobe. The zoning patterns of the different elements are used to deduce the crystals’ histories, and these are compared to the histories inferred for the plagioclase phenocrysts in Chapter 6. Mg–Fe diffusion is modelled to estimate timescales, and these are compared to those found for the plagioclases in Chapter 6 and from the $^{40}\text{Ar} / ^{39}\text{Ar}$ dates and fieldwork in Chapter 4.

All these results are then summarised in Chapter 8, and an integrated model for the evolution of the plumbing system of Santorini during the build-up to the Cape Riva is proposed.
Chapter 1

Large, silicic magma reservoirs

1.1 Introduction

Petrological studies of the deposits from large, explosive eruptions show that silicic magma is usually stored in the shallow crust immediately prior to eruption, generally at less than \(\sim 15 \text{ km depth} \) (e.g. Arce et al., 2012; Cadoux et al., 2014; Gertisser et al., 2012; Hildreth and Wilson, 2007; Liu et al., 2005; Scaillet and Evans, 1999). However, the magma is not necessarily produced at these depths. Silicic magma could be produced in the lower crustal hot zones by fractional crystallisation and partial melting of the lower crust, before being transferred to shallow crustal storage reservoirs (Allan et al., 2013; Andújar et al., 2010; Annen et al., 2006; Cadoux et al., 2014; Solano et al., 2012).

Investigations into the processes and timescales of the assembly of large, silicic magma reservoirs have principally followed three main avenues: the study of plutons, the study of the products of large silicic eruptions, and theoretical modelling of the thermal and mechanical properties of magma reservoirs. Recent discussions of the timescales of large, silicic magma bodies have been given by Costa (2008) and Reid (2008), although in the intervening years many additional studies have been published. The timescales revealed vary from \(10^1 \) to \(10^6 \text{ yr} \), with a lot of variation caused by the different magmatic processes that different techniques relate to. The following section
Chapter 1. Large, silicic magma reservoirs

focuses on the timescales related to the assembly of a large, eruptible body of silicic magma in the shallow crust.

1.2 Terminology

There are many terms in igneous petrology that mean subtly different things to different people. For clarity, I have defined below the sense in which I use the terms in bold throughout this thesis.

Magma may be stored in a variety of different forms, either as completely crystal-free melt or as a rigid framework of crystals with a small amount of melt in the pores, or anywhere between these two endmembers. The viscosity of silicic magma increases dramatically if it contains more than 40–60 vol% crystals (Lejeune and Richet, 1995), making it difficult for crystal-rich magmas to convect or erupt. A single body of magma may have different properties in different volumes: for example, a liquid-dominated cap above a crystal-rich mush. It is therefore important to distinguish magma reservoirs, bodies of eruptible magma, from the wider plumbing system of the volcano, which includes any crystalline mush or plutons as well as any magma reservoirs present beneath the volcano.

When looking at the crystals found in these magmas, the rim is defined as the outermost part of the crystal to have grown within the magma chamber. These are distinguished from the thin (typically 10–100 µm overgrowths that grew during the ascent to the surface and eruption of the magma, and which are compositionally identical to the groundmass microlites.

Phenocrysts (sensu stricto) are those crystals which grew from the magma in which they are found. These should be differentiated from antecrysts, crystals that grew in a different, but but genetically related, magma and xenocrysts, crystals that grew from an unrelated melt. However, in practice it is often difficult to discriminate between true phenocrysts and antecrysts, as they often have very similar chemistry.
and appearance. Individual crystals also often have complex histories, and can be transferred between different magmas before their eruption. In this study, the term “Phenocryst”, therefore, is defined as any crystal with rims that are in chemical equilibrium with their host melt. This definition includes any antecrysts that grew from a compositionally similar melt to their host, as well as crystals that have a xenocrystic core, as long as the rims are in equilibrium with their host melt.

1.3 Evidence of storage timescales of silicic magma from plutons

We cannot directly observe the plumbing systems of active volcanoes. Plutons, however, can sometimes be matched to contemporaneously erupted tuffs, suggesting that they represent the exhumed plumbing systems of extinct volcanoes (e.g. Barth et al., 2012; Lipman, 2007; Zimmerer and McIntosh, 2012, 2013). Plutons can, therefore, be used to gain insight into the processes that occur prior to large, silicic eruptions.

Early work often assumed that individual plutons were emplaced in single events (e.g. Bowen, 1915; Daly, 1914), however recent work is changing this view. Large age ranges, up to 12 My, are reported for the crystallisation of individual plutons (Barth et al., 2012; Bolhar et al., 2010; Coleman et al., 2004; Davis et al., 2011; Glazner et al., 2004; Lipman, 2007; Miller et al., 2007). It is unlikely that magma could remain molten in the shallow crust for this length of time, which suggests that the construction of large plutons requires repeated injections of magma. This is supported by field evidence and analogue modelling that suggests that plutons are constructed by the incremental stacking of sills (Brown et al., 2000; Coleman et al., 2004; Menand, 2008; Wiebe, 1993; Wiebe and Collins, 1998). Detailed work on the San Juan Volcanic Region, Colorado, shows intrusion rates of between 10^{-4}–10^{-2} km3y (Lipman, 2007). These intrusion rates are of a similar magnitude to the long-term eruptive rates for other large silicic provinces (Mason et al., 2004).
These long durations reflect, however, the lifetime of the overall volcanic system. The low intrusion rates are time-averaged rates, and do not necessarily reflect the transient intrusion rate during the construction of large magma reservoirs.

1.4 Radiometric crystal residence times

Magmatic residence times are often estimated by dating crystals radiometrically. Radiometric dating relies on comparing the ratio of parent to daughter isotopes. At high temperatures, diffusion can act to reset this ratio. Below a certain temperature, referred to as the closure temperature T_c, diffusion is slow enough that it does not affect the calculated age. Radiometric ages are, therefore, the time since the crystal temperature dropped below its closure value. A commonly used equation to estimate the closure temperature is that formulated by Dodson (1973):

$$\frac{E}{RT_c} = \ln \left(-\frac{AD_0RT_c^2}{x_cEs} \right)$$

where R is the molar gas constant, A is a constant relating to the shape of the crystal and the decay of the parent isotope, x_c is the characteristic distance over which diffusion acts, s is the cooling rate, and E and D_0 are, respectively, the activation energy and pre-exponential factor from the Arrhenius equation for the diffusion coefficient (discussed in more detail in Chapter 3):

$$D = D_0 \exp \left(-\frac{E}{RT} \right)$$

Different radiometric systems have diverse closure temperatures, and therefore will give varying ages. The radiometric clock in systems with low closure temperatures will only start after eruption. This contrasts with systems with higher closure temperatures, which will give ages that reflect crystallisation rather than eruption. Comparing eruption ages to crystallisation ages gives an estimate of the residence time of the
crystals. K–Ar in feldspars and micas can be used to estimate eruption ages, as they have low closure temperatures; Rb–Sr in feldspar and U–Pb in zircon have higher closure temperatures, and are suitable for evaluating crystallisation ages (Cherniak and Watson, 1992, 2001; Foland, 1994; Giletti and Casserly, 1994; Grove and Harrison, 1996).

Some of the earliest attempts to estimate residence times of crystals in large silicic magma reservoirs focused on Long Valley, and the >600 km3, \sim770 ka Bishop Tuff eruption (Hildreth, 1979, 1981). Rb–Sr isochrons from the pre-caldera Glass Mountain rhyolites gave ages of up to 360 ky older than K–Ar ages (Davies and Halliday, 1998; Davies et al., 1994; Halliday et al., 1989). Rb–Sr isochrons were also used to suggest the sanidine crystals in the Bishop Tuff itself started growing 300–500 ky before their eruption (Christensen and DePaolo, 1993). Ar–Ar isochrons from glass inclusions in quartz crystals suggested even longer residence times (up to 1.1 My; van den Bogaard and Schirnack, 1995), although this apparent age has since been attributed to excess 40Ar in the melt inclusions (Winick et al., 2001).

An issue arises, however, with interpreting apparent isochrons as crystallisation ages. True isochrons are produced by the radioactive decay of the parent isotope in a closed system, but mixing between magmas with different isotopic ratios can produce similar variations in isotopic ratios. If mixing lines are interpreted as isochrons, then spurious ages are calculated. In addition to Rb and Sr isotopes, Wolff and Ramos (2003) looked at Pb isotope ratios in the Otowi member of the Bandelier Tuff, Valles Caldera, New Mexico (1.6 Ma, \sim350 km3). The range of 206Pb/204Pb ratios observed in the sanidine crystals cannot be produced by radioactive decay on a geologically reasonable timescale, and therefore must instead indicate that mixing occurred. This suggests that apparent Rb-Sr isochrons in the Bandelier Tuff are also due to mixing, rather than radioactive decay. If this is also true of the Bishop Tuff, then the apparent ages from Rb–Sr isochrons would be not reflect the residence times of the Bishop magma.
More recently, secondary high resolution ion mass spectrometry (SHRIMP) has allowed multiple ages to be determined from different zones of single crystals. Zircon is commonly used, as its high U content makes it an ideal target for U–Pb dating. Although dating single crystals leads to less precise ages than dating bulk separates, the extra petrological context that can be gained makes single crystal (and especially single zone) ages less ambiguous. U–Pb ages indicate that zircon crystallisation began in the Bishop Tuff less than 80ky before eruption, which is much later than the estimates for sanidine crystallisation using Rb–Sr isochrons (Chamberlain et al., 2014; Reid and Coath, 2000; Simon and Reid, 2005). This suggests that the apparent Rb–Sr isochrons are caused by open system processes, rather than reflecting the residence time of the Bishop magma.

In general, residence times of accessory minerals from large silicic eruptions are of the order of 10^4–10^5 years (e.g. Brown and Fletcher, 1999; Folkes et al., 2011; Vazquez and Reid, 2004; Wilson and Charlier, 2009; Wotzlaw et al., 2013). These crystal residence times only relate to the amount of time that the zircons have been stored in the crust, however, as opposed to the amount of time that the zircons were stored in an eruptible body of magma. The zircons could be stored in a rigid crystal mush for much of their life, for example, in which case the time over which an eruptible body of magma exists is much shorter than the residence times of the crystals within it.

1.5 Crystal mushes

The crystal mush model was first proposed to explain the apparent longevity of the Bishop Tuff magma chamber (Mahood, 1990; Sparks et al., 1990), and has more recently been used to explain the high crystallinity of crystal-rich ignimbrites (the monotonous ignimbrites of Hildreth, 1981; e.g. Bachmann and Bergantz, 2008b). Latent heat buffering could keep magmas above their solidus but with low melt fractions for long periods with little heat input (Huber et al., 2009). High crystal contents will also pre-
vent convection, which would slow the loss of heat from the magma reservoir to the surrounding crust (Koyaguchi and Kaneko, 1999, 2000).

Some of the longest zircon residence times are, in fact, found in crystal-rich ignimbrites. For example, zircons up to 440 ky older than the age of the eruption are found in the Cerro Galán ignimbrite, and up to 600 ky older than the age of the eruption in the Fish Canyon Tuff (Bachmann et al., 2007b; Folkes et al., 2011; Wotzlaw et al., 2013). These ignimbrites appear to have spent large periods of time close to their solidus, and show signs of being rejuvenated only shortly before eruption. High Yb/Dy ratios in some of the zircons found in the Fish Canyon Tuff suggest that during their growth the crystallinity of the magma reached 75–80% (Wotzlaw et al., 2013). Many of the crystals in the Fish Canyon Tuff show resorption textures or reverse zoning, suggesting a late-stage heating event reduced the crystallinity to ∼45% (Bachmann et al., 2002).

A similar story is found in the crystal-rich Kos Plateau Tuff (25–35% crystals), where a highly crystalline intrusion was remelted before eruption. The Kos Plateau Tuff contains crystal-rich pumices alongside highly crystalline granitic clasts. These granitic clasts have a range of textures; some are holocrystalline but most show varying degrees of remelting (Keller, 1969). The chemical and mineralogical similarities for all the clasts suggests that they have a shared origin. Zircons from both the granitic clasts and the crystal rich pumices have the similar, continuous age spectra (from 340 ka to eruption age, 160 ka, with one older zircon dated at ∼500 ka), which show both the granite and the pumice crystallised over the same period (Bachmann et al., 2007a). Partially resorbed crystals in the pumice and the textures of the granite clast show that the entire reservoir was reheated shortly before eruption.

Evidence for the prolonged storage of magma in a crystal mush is not restricted to crystal-rich ignimbrites; many crystal-poor silicic eruptions also exhibit features suggestive of storage in a crystal mush. For example, at Tarawera volcano, within the Okatania Volcanic Centre (New Zealand), 30 km³ of rhyolitic magma has been erupted in four episodes over the last 22 ky. Zircons from these deposits have residence times
of over \(\sim 100\text{ky} \), and often show discontinuous growth histories with hiatuses of up to \(\sim 40\text{ky} \) (Storm et al., 2011). Some zircons have high U and Th, suggesting that they grew during periods of high crystallinity. There are also zircons that have different ages on different crystal faces, and some that have crystal faces significantly older than the eruption age. These zircons could represent crystals that were partially or wholly enclosed as inclusions in other minerals but were released shortly before eruption.

Even relatively small-volume silicic eruptions can contain zircons with long residence times. Claiborne et al. (2010) sampled different units spanning the entire known eruptive history of Mount St. Helens and consistently found that the oldest zircons were at least 150ky older than their eruption ages. Zircons from the Devils Kitchen record residence times of up to \(\sim 200\text{ky} \), and some have high Th and U that require crystallinities of over 95% (Miller and Wooden, 2004). Crystalline mushes appear to be common features of silicic volcanoes.

1.6 “Precursory leaks”

Before many large, explosive silicic eruptions there are often series of smaller, usually effusive eruptions of magma that has a similar composition to the magma from the climactic event. These smaller eruptions are frequently interpreted as leaks from a growing body of melt-dominated, eruptible magma (e.g. Bacon, 1985; Bacon and Druitt, 1988; Druitt, 1985; Metz and Mahood, 1991). The diffuse vent patterns that many of these “leaks” have has been used to argue that locally the stress field is dominated by the presence of a magma chamber rather than regional tectonics (Bacon, 1985). Regardless of the genetic relationship that any particular set of precursory leaks have with their climactic event, their close temporal and spacial relationships means that they should provide information on the evolution of the plumbing system in the build-up to a large, explosive eruption.
1.6. “Precursory leaks”

1.6.1 Glass Mountain and the Bishop Tuff, Long Valley, California

A classic example of a series of precursory leaks is the Glass Mountain rhyolites, which were erupted before the Bishop Tuff eruption of Long Valley, California (Figure 1.1). Between 2.1 Ma and the eruption of the Bishop Tuff 0.77 My ago, >50 km3 of rhyolite

Figure 1.1: Simplified geological map of Long Valley, after Hildreth and Wilson (2007). The Bishop Tuff vent labelled on the map is that inferred for the first phase of the eruption from isopach maps.
erupted as a series of domes and intercalated pyroclastic units (Metz and Mahood, 1985, 1991). It was the preservation of Rb–Sr isochrons in lavas erupted over up to 700 kyr that first led to the suggestion that a long-lived melt reservoir existed under Long Valley in the run up to the Bishop Tuff eruption (Davies and Halliday, 1998; Davies et al., 1994; Halliday et al., 1989).

It was also noted that the younger lavas from Glass Mountain have a restricted range of chemical compositions and of Sr, Nd and Pb isotopic ratios. These chemical and isotopic compositions are similar to those of the Bishop Tuff rhyolite, which implies that the younger Glass Mountain rhyolites were tapping the growing Bishop Tuff magma reservoir (Halliday et al., 1989; Hildreth, 2004; Hildreth and Wilson, 2007; Metz and Mahood, 1985, 1991). The older Glass Mountain rhyolites, however, have a greater range of trace element and isotopic compositions.

The model that Hildreth and Wilson (2007) proposed for the growth of the Bishop Tuff magma chamber is shown in Figure 1.2. In this model, much of the plumbing system beneath Long Valley consisted of crystalline mush. During the early Glass Mountain phase, there was not a single, integrated magma reservoir. Instead, each eruption tapped a discrete lens of crystal-poor melt from within the mushy zone. Different magma reservoirs for each eruption would explain the chemical variability of the older Glass Mountain rhyolites. Mafic magma ascending from depth would have supplied heat, but the dense recharge magmas would have been trapped beneath the growing mush body. Fractional crystallisation of these mafic magmas would have produced rhyolitic melt, which could have segregated and risen in to the upper, more crystal-poor portions of the plumbing system. Starting at about 1.1 Ma, however, these lenses began to coalesce into a single, large body of melt. A unified melt reservoir would lead to less chemical variation between the products of eruptions, and was eventually expelled during the Bishop Tuff eruption.

Despite the chemical similarities between the Glass Mountain rhyolites and the Bishop Tuff, the zircons found in the Bishop Tuff are different to those found in both
Figure 1.2: Conceptual schematic illustrations of mush model of rhyolite melt extraction from plutonic crystal mush of intermediate to silicic hybrid composition, from Hildreth and Wilson (2007). Scaled roughly to late Glass Mountain (below) and mature Bishop (above) evolutionary stages. Phenocryst contents of zoned mobile magma are proportional to stipple density: xp, crystal-poor (0–6%); xm, intermediate crystal content; xr, crystal-rich (12–25%; mush = 25–55%).
16 Chapter 1. Large, silicic magma reservoirs

the early and late Glass Mountain rhyolites. The Glass Mountain zircons can be distinguished from the Bishop Tuff zircons both texturally, and in terms of their U–Pb ages (Chamberlain et al., 2014; Reid and Coath, 2000; Simon and Reid, 2005). If the Glass Mountain rhyolites tapped the same reservoir as the Bishop Tuff, then earlier crystals must have been completely resorbed before the Bishop Tuff zircons first started crystallising (~850 ka). There is also uncertainty in dating the end of the Glass Mountain eruptive activity. The K–Ar age for the youngest Glass Mountain dome (YA) determined by Metz and Mahood (1985) is 790 ± 20 ka, close to the 767.4 ± 2.2 ka Ar–Ar eruption age of the Bishop Tuff (Rivera et al., 2011). However, Chamberlain et al. (2014) found that the youngest zircons from this dome dated from 862 ± 23 ka, which they suggested meant that Glass Mountain activity ceased before the large Bishop Tuff magma reservoir began to form.

1.6.2 Mount Mazama, Crater Lake, Oregon

Another well-studied series of precursory leaks occurs at Crater Lake, Oregon. An andesitic to dacitic stratovolcano, Mount Mazama, was constructed at the present location of Crater lake between 420 and 35 ka (Bacon and Lanphere, 2006). Then, starting at about 27 ka, rhyodacite started to be erupted from diffuse vents across the edifice (Figure 1.3). This activity culminated with the eruption of ~50 km³ of rhyodacite at ~7.7 ka, and the collapse of Mount Mazama to form the present-day caldera. The similar chemistry and petrology of the pre-climactic and climactic rhyolites suggests that they were erupted from the same magma reservoir (Bacon and Druitt, 1988; Druitt and Bacon, 1989).

An early pre-climactic rhyodacite lava, erupted ~27 ka, was studied by Bacon and Lowenstern (2005). Comparison of the plagioclases with those found in the plutonic granodiorite blocks found in the climactic deposit shows that at least 80% of the plagioclases in this dome were recycled from the plutonic rocks that underlay Mount Mazama (Bacon et al., 1989). Other crystals in the pre-climactic rhyodacite are also probably
derived from the granodiorite blocks, including zircon. The zircon ages from both the pre-climactic rhyodacite and the granodiorite blocks show that they crystallised between $\sim20\text{ ka}$ and $\geq300\text{ ka}$, and record pulses of growth $50–70$, ~110 and $\sim200\text{ ka}$ which coincide with periods of dacitic volcanism (Bacon and Lowenstern, 2005; Bacon et al., 2000).

The model that emerges for the climactic reservoir at Crater Lake is similar to that proposed for the Bishop Tuff. The climactic reservoir is inferred to have started growing shortly before the first eruption of rhyodacitic magma at Mount Mazama, at $\sim27\text{ ka}$ (Bacon and Druitt, 1988; Druitt and Bacon, 1989). The growth of a long-lived, melt-dominated magma reservoir at Mount Mazama coincided with a pulse of increased mafic volcanism that affected the whole region and that would have supplied increased melt and heat to Mount Mazama (Bacon and Lowenstern, 2005). Prolonged magmatic activity prior to this had built up a large volume of plutonic mush. This plutonic material started to defrost and liberate crystals, including plagioclase and zircon into the rhyodacite (Bacon and Lowenstern, 2005). Zircon is undersaturated in
the pre-climactic rhyodacite, and the survival of zircons in this magma suggest that they could only have been incorporated a few tens of years before eruption. The magma reservoir continued to grow, mainly through fractional crystallisation of mafic magma supplied from depth, but incorporating up to 25% partial melt from plutonic rocks (Bacon and Druitt, 1988; Bacon and Lowenstern, 2005; Druitt and Bacon, 1989). The climactic rhyodacite lacks zircon, despite containing the partially molten granodiorite blocks that are inferred to have supplied zircon to the pre-climactic rhyodacites. This implies that the residence time of the climactic rhyolite was long enough to resorb the zircons released from the plutonic mush (Bacon and Lowenstern, 2005).

1.6.3 The Oruanui eruption, Taupo Volcano, New Zealand

The 26.5 ka Oruanui eruption from Taupo Volcano, New Zealand, discharged ∼530 km3 of crystal-poor (8–13% crystallinity) rhyolite (Lowe et al., 2008; Sutton et al., 1995; Wilson, 2001). In the ∼20 ky that preceded the Oruanui eruption, several small volume (<1.5 km3) magmatic and phreatomagmatic explosive rhyolitic eruptions occurred, along with the emplacement of rhyolitic domes from widespread vents. Many of these, including the ∼45 ka Tihoi and ∼30 ka Okaia eruptions, are chemically very similar to the Oruanui rhyolite (the “Oruanui-type” of Sutton et al., 1995). However, when the ages of the zircons from the different units are examined, the Oruanui is found to lack some of the zircons found in the Tihoi and Okaia eruptions. All three eruption deposits have zircon population with a peak at 86–95 ka, alongside and another, younger population with a peak age that varies between eruptions (Charlier et al., 2005; Wilson and Charlier, 2009). The lack of Tihoi and Okaia zircons in the Oruanui cannot be explained by dissolution, because if that was the case then the older population should also have been resorbed. The Tihoi and Okaia cannot be leaks from the growing Oruanui magma reservoir. The similar ages of the older zircons in all of the Oruanui-type rhyolites does, however suggest a genetic link between them. The different eruptions probably represent different batches of melt that were extracted
from the same long-lived deep crystal mush (along with the 86–95 ka zircons), and then stored separately in the shallow crust in a holding reservoir for a shorter period of time before their eruption (Charlier et al., 2005; Wilson and Charlier, 2009).

There is also evidence that many post Ouanui rhyolite and dacite eruptions have short residence times in a shallow holding reservoir. Sutton et al. (1995, 2000) found sudden jumps in chemical and isotopic compositions between different groups of eruptions, which they interpreted as the arrival of a new batch of magma into the shallow reservoir. The time gaps between different magma batches range from 600 to 6000 years, with the 1.77 ka, 15–35 km\(^3\) eruption Y inferred to have resided in its holding reservoir for less than \(\sim 1,000\) years.

1.7 Diffusion chronometry

When there is disequilibrium between a crystal and its host melt, or between two different zones of the same crystal, the crystal will try to re-equilibrate by diffusion. This will set up compositional gradients within the crystal. The rate at which diffusion occurs is strongly dependent on temperature, therefore when the crystal cools these compositional gradients can become “frozen in”. We can measure these compositional gradients, and model to diffusion in order to estimate the high-temperature residence times of the crystals after disequilibrium was established. The practical details of this technique are discussed in detail in the next section; here I discuss how the results of diffusion chronometry studies impact our understanding of the longevity of large, silicic magma reservoirs.

An early study by Hervig and Dunbar (1992) found zoning in Sr concentrations in two sanidine crystals, one from the Bishop Tuff and one from the Bandelier Tuff. They argued that the zoning was caused by pre-eruptive mixing between different rhyolites, and used diffusion modelling to estimate high-temperature residence times of \(\sim 10^4\) years for the two crystals in their respective reservoirs after the mixing event. Sr
diffusion in another sanidine crystal modelled by Anderson et al. (2000) and Morgan and Blake (2005) gave a high-temperature residence time of 114–136 ky at 800°C. These timescales are similar to the duration of zircon crystallisation in the Bishop Tuff estimated by radiometric dating (∼80 ky). However, more recent work has suggested shorter high-temperature residence times for crystals in the Bishop Tuff. Wark et al. (2007) used Ti diffusion in quartz, and found that the growth of the rims occurred less than ∼100 years before eruption. Gualda et al. (2012b) used Ti diffusion and melt inclusion faceting in quartz crystals, and calculated that all the quartz crystals they studied had residence times of less than 10,000 years: typically 500–3,000 years.

If we assume that the longer residence times calculated by radiometric dating are a better reflection of the true residence times of the magma, then there are two possible explanations for the shorter diffusion timescales. The first is that the diffusion models are not measuring the residence times of the whole crystal. This is clearly the case for the quartz crystals of Wark et al., which actually date the growth of the rims. These rims are richer in Ti, and similar rims are also seen in the Bishop Tuff zircons. The high-Ti rims are more common and thicker in the middle- and late-erupted pumice interpreted to have come from deep in the magma reservoir. This all suggests that the high-Ti rims grew as a hotter magma invaded the Bishop Tuff reservoir from below (Chamberlain et al., 2014; Roberge et al., 2013; Wark et al., 2007). The diffusion results of Wark et al., therefore, tell us that this magma arrived less than 100 y before the Bishop Tuff eruption, but they do not tell us how long the quartz resided in the Bishop Tuff magma reservoir before that. Similar Ti-rich rims are found on quartz crystals from the ∼1,000 km³ Whakamaru eruption in the Taupo Volcanic Zone and the ∼2,000 km³ Younger Toba Tuff in Sumatra, as well as in other, smaller (10–120 km³) ignimbrite eruptions from the Taupo Volcanic zone (Matthews et al., 2012a,b; Saunders et al., 2010; Smith et al., 2010). Diffusion modelling of Ti across the boundaries of these rims gives similarly short ages, less than a few hundred years. Slightly longer timescales of 1,000–7,000 y are found for Ti-rich rims on quartz crystals from the Bandelier Tuff.
The other way that short diffusion timescales can be consistent with long radiometric residence times is if the crystals spent significant time at low temperature. Because the rate of diffusion is strongly dependent on the temperature, crystals can sit at low temperatures for long periods without diffusion significantly modifying their zoning profiles. For example, plagioclase crystals from two andesitic eruptions of Mount Hood were found to have a minimum residence time of 21,000 y, based on U–Th and Th–Ra ages (Eppich et al., 2012). When these same crystals are dated using Sr diffusion at 750 °C, they have apparent ages of only 140–2,800 y (Cooper and Kent, 2014). These apparent ages drop to only a few decades at 900 °C. The only way the two different residence times are consistent is if plagioclase crystals spent at least 88% of their time (and probably much more) at low temperature. Although this result is for an andesitic eruption, there are no studies that have directly compared radiometric and diffusion based residence times for the same minerals in a silicic system. However, similar arguments should apply to silicic systems. If the Bishop Tuff magma was stored as a low-temperature mush for most of its lifetime, then it would explain both the apparent long residence times of the zircons and the apparent short residence times of the quartz crystals. The up to 80 ky U–Pb residence times of the zircons would date their crystallisation, as the Bishop Tuff magma reservoir was forming, while the <10 ky diffusive residence times of the quartz would measure only the time spent at high temperature.

Magma mixing is a common way of creating disequilibrium between crystals and their melt, therefore most diffusion chronometry studies estimate the timing of these mixing events. Often the mixing events are interpreted as late-stage recharge, which triggered the eruption. These recharge events are estimated to have occurred within a few decades of eruption, often as short as a few months before (e.g. Coombs et al., 2000; Costa and Chakraborty, 2004; Costa et al., 2009; Gioncada et al., 2005; Martí et al., 2013; Martin et al., 2008; Morgan et al., 2006; Nakamura, 1995; Ruprecht and Cooper, 2012; Saito et al., 2010). Sometimes, however, these mixing events can include
the addition of a significant proportion of the magma that is eventually erupted at the surface. For example, Druitt et al. (2012) found that prior to the Minoan eruption of Santorini a dacitic and rhyolitic magma mixed to produce a hybrid rhyodacite, and that the injected dacite must have made up at least 15% of the $\sim 60 \text{ km}^3$ that was erupted. Diffusion modelling of Mg in plagioclase demonstrated that this mixing must have started a few decades before the eruption, and continued up to at least a few months before eruption. This implies recharge rates of $>5 \times 10^{-2} \text{ km}^3 \text{ y}^{-1}$.

The zoning patterns of phenocrysts in the Oruanui are also thought to record a large influx of magma into the shallow magma reservoir shortly before eruption (Allan et al., 2013). The amphibole crystals from the Oruanui are interpreted to record a drop in pressure during their growth. Coexisting orthopyroxene crystals underwent a period of dissolution, followed by renewed growth. This is consistent with a transfer from a deep source region to a shallow holding chamber. Modelling Fe–Mg diffusion in the orthopyroxenes suggests that this transfer happened less than 3,000 y before eruption, with most of the crystals recording timescales of less than 1,000 y. This is consistent with the the zircon age spectra discussed above, which demonstrate that the Oruanui could not have resided in the shallow crust during the Okaia eruption, $\sim 3,000 \text{ y}$ earlier (Charlier et al., 2005; Wilson, 2001). These ages give accumulation rates of $>0.33 \text{ km}^3 \text{ y}^{-1}$, possibly reaching $>1 \text{ km}^3 \text{ y}^{-1}$.

Not all chemical disequilibrium is interpreted as resulting from mixing between different magmas. Disequilibrium in oxygen isotopes, either between crystals and the melt or between different minerals, is often thought to be produced by assimilation or remelting of hydrothermally altered plutonic rocks. Zonation in oxygen isotopes in zircons from the Ammonia Tanks Tuff gives crystal residence times of $\sim 10^4 \text{ years}$ (Bindeman and Valley, 2003), while in zircons from Yellowstone, residence times of $\sim 10^3$ are found (Bindeman and Valley, 2001). Disequilibrium between oxygen isotope ratios in quartz and feldspars from the Bandelier Tuff and Cerro Toledo rhyolite could not be maintained without diffusive re-equilibration for more than 10^2–10^3 y (Wolff
et al., 2002). Individual quartz crystals from the Bishop Tuff often show large variations in δ18O that could not have persisted for more than 10^2–10^4 years (Bindeman and Valley, 2002). In this interpretation, the diffusion models do not reveal the total residence time of the crystals in the crust, but rather their residence in the magma at high temperature after the assimilation or remelting of the pluton.

In summary, crystal residence times estimated from diffusion modelling are shorter than those measured using radiometric dating. However, these two techniques often measure different things. Radiometric ages of minerals with high closure temperatures, such as zircon, give residence times of these crystals. These radiometric ages are generally unaffected by the thermal histories of the crystals. In the other hand, diffusion chronometry only measures the residence of the crystals at high-temperature. Diffusion models also do not measure the total time between the growth of a crystal and its eruption. Instead, the diffusion clock is initiated when the crystals are placed in an environment where they are in disequilibrium with their melt, or an environment where they grow rims that are not in equilibrium with their cores. Typical magmatic processes that can create this disequilibrium include magma mixing, crustal assimilation, heating or changing the pressure.

1.8 Modelling magma chamber stability

Various attempts have been made to integrate the evidence for magma reservoir longevity discussed above with theoretical models. These models generally assume that large magma reservoirs are constructed incrementally, by the repeated injection of hot, fresh magma. Producing a large magma reservoir requires preventing both the freezing of the magma before it has the chance to erupt, and the eruption of the magma before the chamber has a chance to grow large. A key parameter determining the fate of magma chambers is the magma supply rate. If the supply rate is below a certain threshold, then each intrusion freezes before the next one arrives (Gelman et al., 2013; Schöpa and
Annen, 2013). However, too high a supply rate is likely to lead to high overpressure and trigger eruption (Caricchi et al., 2014; Karlstrom et al., 2010).

Annen (2009) modelled the evolution of a pluton as the intrusion of a series of sills at 5 to 15 km depth in the continental crust. She found that in order to produce a growing reservoir of liquid-dominated magma, sill accretion rates need to be above 10^{-2} my^{-1} and magma fluxes needed to exceed 10^{-2} km$^3y^{-1}$. Schöpa and Annen (2013) refined this model, to show that high transitory fluxes also could produce large, shallow-crustal magma chambers, although this transitory flux still has to be higher than 10^{-2} km$^3y^{-1}$. When Gelman et al. (2013) included the effects of a non-linear crystallisation-temperature relationship and temperature-dependent thermal conductivity they found that liquid-dominated magma reservoirs larger than 500 km3 could be maintained in the shallow crust at injection rates as low as 5×10^{-3} km$^3y^{-1}$.

On the other hand, high magma flux into the reservoir will lead to high overpressures, which increases the chance of dyke propagation and eruption (Rubin, 1995). The viscosity of the country rock into which the magma reservoir is emplaced has an effect on the overpressure that is produced by magmatic input. More ductile country rock can relax faster, dissipating overpressure and making eruption less likely (Jellinek and DePaolo, 2003; Karlstrom et al., 2010). Warmer crust is less viscous than colder crust, which has two consequences. Firstly, deeper magma reservoirs tend to be more stable than shallow reservoirs. Secondly, a period of thermal preparation, through repeated magmatic intrusion, is probably necessary before large magma reservoirs can develop in the shallow crust. Warmer crust will also make the injected magma less likely to freeze before it has the chance to be erupted. Magmatic injection is also less likely to trigger the eruption of large magma reservoirs (Gregg et al., 2013). The eruption of large magma reservoirs may be triggered by buoyancy, or may be triggered tectonically (Allan et al., 2012; Caricchi et al., 2014).
1.9 Possible mechanisms for rapid generation of large silicic melt reservoirs in the shallow crust

If silicic magmas spend much of their time stored in crystal mushes, and these crystal mushes are too viscous to erupt, then some process is needed to reactivate the magma and allow its eruption. Two broad mechanisms have been proposed: rejuvenation and remelting of the mush, or segregation of melt into crystal-poor magma reservoirs.

Crystal-rich ignimbrites are thought to be remobilised crystal mushes. Their crystals often record long residence times (e.g. up to 600 kyr in the Fish Canyon Tuff; Bachmann et al., 2007b), often show evidence of growth in a highly crystalline state (e.g. Wotzlaw et al., 2013), and often have resorption textures and reverse zoning typical of late-stage reheating (e.g. Bachmann et al., 2002). The remobilisation of a mush could be triggered by the influx of hotter magma, that is typically assumed to be mafic (e.g. Bachmann et al., 2002), although examples of recharge by silicic magma have also been found (e.g. Eichelberger and Izbekov, 2000; Smith et al., 2004). This would underplate the mush, and heat would then be transferred upwards into the overlying crystal mush. Conduction of heat would be slow, but heat could also be advected by volatiles released by the crystallising mafic magma (“gas sparging”; Bachmann and Bergantz, 2006). Other mechanisms have been suggested to remobilise magma mushes more rapidly, such as “unzipping” by convection (Burgisser and Bergantz, 2011) or by melt-induced over-pressurisation (Huber et al., 2011). The presence of gas bubbles would also reduce the viscosity of the magma, and might aid remobilisation of the mush (Pistone et al., 2013). Once the magma is remobilised, it can be homogenised by convection prior to eruption (Huber et al., 2012).

Mush remobilisation has been suggested as the trigger for several recent, well constrained eruptions. These include andesitic eruptions such as Soufrière Hills, Montserrat and Eyjafjallajökull, Iceland, as well as the dacitic 1991 eruption of Pinatubo, the Philippines. At Soufrière Hills, long radiometric residence times coupled with short
diffusive residence times suggest long-term storage of magmas in a cool crystal mush (Zellmer et al., 2003), and thermal models of a mushy storage region can be compared to seismic velocity anomalies measured in surveys of the volcano (Annen et al., 2014; Paulatto et al., 2012). At Eyjafjallajökull, geodetic and seismic monitoring, as well as high temporal resolution sampling of the eruptive products of the 2010 summit eruption revealed it was triggered when ascending basalt intersected a partially crystalline intrusion left over from previous eruptions (Sigmarsson et al., 2011; Sigmundsson et al., 2010). Similarly, geophysical monitoring and comparison of the products of the pre-climactic extrusive eruptions with those of the Plinian phase of the 1991 Pinatubo eruption suggest it was also a rejuvenated mush (Pallister et al., 1992).

Melt segregation is the other mechanism that can produce large bodies of eruptible magma in the shallow crust, and it is generally though to be responsible for the formation of large bodies of crystal-poor silicic magma. The rate at which silicic melt can separate from crystals is limited by its high viscosity (Bachmann and Bergantz, 2008a; McKenzie, 1985). Possible processes include gravitational separation through hindered settling of individual crystals, or compaction of a porous crystal network (Figure 1.4; Bachmann and Bergantz, 2004). Melt migration driven by shear or gas filter pressing may generate small, local segregations (Brown and Solar, 1998; Pistone et al., 2013; Sisson and Bacon, 1999; Stevenson, 1989) that are subsequently concentrated into large melt lenses. This melt then accumulates at a particular crustal level—either in situ within the mush (e.g. Bachmann and Bergantz, 2004), or at higher levels in the plumbing system (e.g. Allan et al., 2013). Fast transfer of silicic magma from deep mush zone to shallow crustal magma chambers may also be triggered by tectonic stresses (Rowland et al., 2010).

These two mechanisms are not mutually exclusive. Indeed, sometimes crystal-poor rhyolite caps are erupted alongside more crystal-rich mush zones. The Ammonia Tanks Tuff is chemically zoned from trachyandesite to high-silica rhyolite (59 to 78 wt% SiO₂; Deering et al., 2011). The rhyolite end-member is crystal poor (<10 vol%), and is
1.9. Possible mechanisms for rapid generation of large silicic melt reservoirs

Figure 1.4: Schematic illustration of the evolution of a mushy magma reservoir and the extraction of silicic melt through hindered settling, from Bachmann and Bergantz (2008a). (A) Low-crystallinity stage (<45 vol% crystals): most crystals are kept in suspension by convection currents. (B) Medium-crystallinity stage (∼45-60 vol% crystals): the absence of convection and the high permeability provide a favourable window for crystal-melt separation through hindered settling. (C) High-crystallinity stage (>60 vol% crystals): the permeability is too low for high-viscosity melt to be extracted efficiently by compaction.

thought to represent the liquid extracted from a crystallising trachydacite magma. The trachyandesite is thought to represent the cumulate, although the relatively low crystal content (15–25 vol%) requires it to have been reheated before eruption. Abundant glomerocrysts suggest that the trachyandesite once contained a touching framework of crystals, while partially resorbed crystals support the idea that the trachyandesite was reheated. At La Pacana, in Chile, there is also evidence for the eruption of both an evolved cap and the residual mush, although in two separate eruptions (Lindsay et al., 2001). The Toconao ignimbrite is crystal poor and rhyolitic (76–77 wt% SiO₂), and it is overlain by the dacitic Atana ignimbrite (66–70 wt% SiO₂). The Atana ignimbrite is crystal-rich (30–40 % crystals), and the interstitial glass in the Atana pumices has a
similar composition to the Toconao pumices. This suggests that the Toconao ignimbrite segregated from an underlying body of Atana-like magma, which was itself evacuated in the Atana eruption.
Chapter 2

Geological setting

2.1 Regional Tectonics of the Aegean and the Hellenic subduction zone

Santorini is part of the Hellenic volcanic arc, stretching between Greece and Turkey through the Aegean (Figure 2.1). The cause of the volcanism is the subduction of Ionian oceanic lithosphere. The subducted slab dips at a shallow angle of about 10–20° from the Mediterranean Ridge towards the north, as shown by seismic tomography and the focal mechanisms of the earthquakes between the slab and the overriding Aegean lithosphere (Papazachos and Nolet, 1997; Pearce et al., 2012; Piromallo and Morelli, 2003; Shaw and Jackson, 2010). The steeper faults at the Hellenic Trench form part of the accretionary wedge. There is a well defined Benioff zone, which shows that the upper surface of the descending slab lies about 110 km beneath Santorini (Papazachos et al., 2000).

The current dynamics of the collision between Africa and Eurasia in the Eastern Mediterranean is somewhat complex. It is usually described using a series of rigid blocks, or micro-plates (Jackson, 1994; McKenzie, 1970; Nyst and Thatcher, 2004), however the fact that some deformation occurs within these blocks shows that this model is not strictly valid (Benetatos et al., 2004; Floyd et al., 2010). Deformation in
the Aegean is principally driven by two forces: the westwards extrusion of Anatolia along the North Anatolian Fault (McKenzie, 1972), and the southward retreat of the subduction zone by slab roll-back (Le Pichon and Angelier, 1979). Although Africa is currently only converging with Eurasia at about 5 mm/yr, slab roll-back means that there is 35 mm/yr of convergence at the Hellenic trench (Nocquet, 2012; Reilinger et al., 2010, 2006).

Figure 2.2 shows the velocity field for the eastern Mediterranean calculated by Nocquet (2012) using GPS measurements. This motion leads to deformation along three dominant trends (Benetatos et al., 2004): (1) north-south extension of the Aegean caused by slab roll-back; (2) trench-parallel extension close to the subduction zone, due to the curvature of the trench; (3) right-lateral strike-slip motion, due to the motion of Anatolia and the Aegean relative to the Eurasian plate. The principal faults

![Figure 2.1](image-url)
Figure 2.2: (A) Velocity field in a Eurasia fixed reference frame. (B) Kinematics sketch. Dashed double-arrow lines show integrated relative motion over a given area. Thin black arrows are velocities at selected locations. Taken from Nocquet (2012).
accommodating this deformation are shown in Figure 2.1. Large earthquakes can occur on these faults, such as the 1956 M$_s$ 7.4 Amorgos earthquake that devastated much of Santorini (Okal et al., 2009; Papadopoulos and Pavlides, 1992).

The locations of the volcanoes of the Hellenic arc are controlled by the tectonic structure of the Aegean, lying on lines of weakness in the Aegean crust (Papazachos and Panagiotopoulos, 1993). Milos, Santorini and Nisyros all lie within pull-apart basin along major strike-slip faults (Kokkalas and Aydin, 2013). These same faults are interpreted to have played an important role in controlling the location of plutons from the Middle Miocene, by provided an easy path for their emplacement. The tectonic control on the spatial distribution of volcanoes is further shown by the way most vents on Santorini fall along two lines: the Coloumbo line in the north of Thera, and the Kameni line that runs through the Kameni islands in the centre of the caldera (discussed in more detail below).

The extension of the Aegean started \sim36–25 Ma, and slowed after a tectonic reorganisation that took place in the Pliocene (Jackson, 1994; Jolivet and Faccenna, 2000; Walcott and White, 1998). There was another, short pulse of extension that occurred along the Hellenic Arc between 5.0-4.4 Ma, which lead to rapid subsidence of 900 m at Milos, and similar subsidence at Aegina (van Hinsbergen et al., 2004). The continental crust of the Aegean has been thinned from about 50 km to 20–30 km as a result of this extension, and is now roughly 25 km thick under Santorini (Figure 2.3; Karagianni et al., 2005; Tirel et al., 2004).

The rocks revealed by this extension record two metamorphic events. There is a first stage of high-pressure–low-temperature metamorphism, related to convergence at the subduction zone. This is followed by a stage of low-pressure–high-temperature metamorphism, as the lithosphere is stretched due to slab roll-back (Avigad and Garfunkel, 1991; Jolivet et al., 2013; Lister et al., 1984; Trotet et al., 2001). The age of these two metamorphic events gets younger as you travel south through the Aegean, as a result of the progressive retreat of the subduction zone. In the Cycladic isles
just north of Santorini, the high-pressure–low-temperature metamorphism took place during the Eocene. The low-pressure–high-temperature metamorphism here occurred during the Oligocene and the Miocene. The metamorphic rocks in the Cycladic isles can reach into the blueschist and eclogite facies, as well as containing granites from crustal melting.

2.2 Volcanism along the Hellenic Arc

Volcanic activity in the Aegean started in the Oligocene, and occurred in two main phases with volumetrically smaller volcanism in between (Fytikas et al., 1984). The first phase ran from the Oligocene until the Middle Miocene, and the second began in the Middle Pliocene and continues today. Volcanism has migrated to the south with time, due to the retreat of the subduction zone (Jolivet and Brun, 2010; Jolivet et al.,
Chapter 2. Geological setting

The type of volcanism along the Hellenic arc varies. The western volcanoes are dominantly andesitic to rhyolitic dome swarms, while central and eastern volcanoes are composites, often with large calderas. This, along with lower Eu/Eu* values for western volcanoes, suggests that shallow magma chambers play a larger role in the evolution of the western volcanoes (Innocenti et al., 1981). Crustal thickness ranges from 34 km under the western end of the arc to 24 km under the eastern end (Tirel et al., 2004), showing extension has been greater in the east. This may go some way to explaining these differences (Innocenti et al., 1981). Below are descriptions of the volcanoes that make up the currently active volcanic arc. Their locations are shown on Figure 2.1.

2.2.1 Crommyonia

Crommyonia is the westernmost volcano of the Hellenic arc, and is one of the oldest volcanic centres in the Hellenic arc, active between 3.9–2.7 Ma (Fytikas et al., 1984). The volcanic rocks consist of scattered dacitic flows and domes, and is far less voluminous than the volcanoes further east along the arc (Pe-Piper and Hatzipanagiotou, 1997). Their geochemistry falls within the volcanic arc field. Currently there is still low-level geothermal activity taking place around Sousaki, with water temperatures at depth only 50-80°C (D’Alessandro et al., 2006). There is diffuse and focused CO₂ flux, at a rate of about 0.63 kg s⁻¹.

2.2.2 Aegina

Aegina was active contemporaneously with Crommyonia, between 4.4 Ma and 2.1 Ma (Pe-Piper et al., 1983). With the possible exception of the earliest, hydrothermally altered volcanic rocks there is no evidence for submarine volcanism. The volcanic rocks mostly form endogenous domes and lava flows, and can be split into at least four differentiation series, ranging from basaltic andesite to rhyodacite (Pe, 1973).
2.2.3 Methana

Methana is a basaltic to rhyodacitic lava dome complex (Simkin and Baker, 2014). The older part of the volcano has been dated with K-Ar at 900–550 ka, and the most recent confirmed eruption was a lava flow and explosive activity in 258 ± 18 B.C.E.

There are currently only low levels of unrest, in the shape of thermal springs and CO$_2$ emissions. The low temperature of the thermal springs (less than 40°C) and geochemical modelling of the fluid compositions suggests only a cool geothermal reservoir at about 150°C, with a contribution of 23% from arc-type magmatic water (Dotsika et al., 2010). The CO$_2$ output is also an order of magnitude lower than other volcanoes in the Hellenic such as Santorini and Nisyros, at 0.03 kg s$^{-1}$ (D’Alessandro et al., 2008). δ^{13}C values suggest that 90% of this CO$_2$ is from the decomposition of limestone, and although the isotopic composition of the He emitted indicates that up to 40% of it comes from a mantle source, it is clear that there is little current magmatic activity under Methana.

2.2.4 Milos

Milos and some of the surrounding small islands are a collection of stratovolcanoes (Simkin and Baker, 2014). Four main cycles of activity were recognised by Fytikas et al. (1986), starting about 3 My ago (Stewart and McPhie, 2006). Initial submarine and subaerial volcanism was dominantly andesitic and basaltic, but more recent subaerial volcanism is more evolved and, is predominantly rhyolitic.

The earliest sequence mainly contains products of submarine eruptions, including pyroclastic flows and submarine tuffs with subordinate pillow lavas and breccias (Fytikas et al., 1986; Stewart and McPhie, 2006). The second cycle was subaerial, producing domes and flows with small explosive episodes producing local pyroclastic flows. After about 2 Ma activity shifted eastwards, and produced a submarine pyroclastic sequence associated with rhyolitic domes. The final cycle was concentrated in two centres, one on the north and one on the south of Milos. In both centres this final
phase is characterised by eruptions that begin phreatically, then are phreatomagmatic and finally end with the extrusion of lavas. The youngest known magmatic activity took place about 90 ky ago, however phreatic activity has continued since then. The last known phreatic explosion produced a lahar which destroyed a town or harbour on the island, and has been dated with 14C at between 80–205 C.E (Traineau and Dalabakis, 1989). There is currently a hydrothermal system on the island, releasing fluids at temperatures of up to 115°C (Valsami-Jones et al., 2005).

Early erupted products are found to be compatible with a model of deep fractionation, while modelling the more recent, more evolved products suggests a large plagioclase contribution to the fractionation Fytikas et al. (1986). This suggests the more recent eruptions were fed from shallow magma chambers.

2.2.5 Kos-Yali-Nisyros

Kos, Yali and Nisyros sit on the eastern end of the Hellenic Arc. Although they form distinct centres, they have similar geochemistry and mineralogy suggesting they form a single petrogenetic system (Pe-Piper and Moulton, 2008). While most of the island of Kos is non-volcanic, there are the remains of at least two calderas (Simkin and Baker, 2014). The older of the two is younger than the Zini lava dome, which has been dated at 1.0–0.55 Ma. The younger is associated with the 160 ka Kos Plateau Tuff. Both Nisyros and Yali are younger than, and situated in or on the edge of, the 160 ka Kos Plateau Tuff caldera, and none of the products of the Kos Plateau Tuff have been found on them (Allen and Cas, 1998). The caldera may be as wide as 20 km, and stretch from present-day Kos across to Nisyros, with Yali sitting at its centre.

The earliest volcanism on Kos were rhyolitic domes (Pe-Piper and Moulton, 2008). This was followed by the growth of an andesitic stratocone, which was destroyed by the Kos Plateau Tuff, and whose existence is known only form fragments found in the deposits of that eruption. The distribution of products from for the Kos Plateau Tuff eruption suggests it was erupted from a vent near the present location of Yali.
2.2. Volcanism along the Hellenic Arc

(Allen et al., 1999). It was one of the largest eruption to take place in the Hellenic arc during the Quaternary, erupting a minimum of 90 km3 of magma (Allen and Cas, 1998). Ignimbrite deposits form this eruption have been found 40 km away on the islands and peninsulas of Turkey surrounding Kos. The eruption commenced in a phreatoplinian style, and changed to a ‘dry’ style as it progressed. U–Pb and U–Th ages, along with isotopic data, on zircon crystals suggest that the magma was stored for a period of \sim200 ky with little crustal contamination, perhaps as a crustal mush (Bachmann et al., 2007a; Keller, 1969). Recent activity on Kos itself is restricted to fumerolic fields (Simkin and Baker, 2014).

Yali is a collection of rhyolitic obsidian domes and pumice deposits. While no historical eruptions are known from Yali, rhyolitic pumice deposits overlie pottery and Neolithic obsidian artefacts dated at about 30-35 ka. This would make these pumice deposits the youngest magmatic products from the Kos-Yali-Nisyros system (Buettner et al., 2005).

Nisyros, on the south-east edge of the possible Kos Plateau Tuff caldera, is a stratovolcano. It was constructed during the last 150 ky, with recent phreatic eruptions in 1422, 1871-1873 and 1888 C.E. and continuing intense hydrothermal activity. It has its own small, 3–4 km caldera which has been dated by different authors at either <24 ka or >44 ka (Simkin and Baker, 2014). As with most volcanoes of the Hellenic arc, activity started below the sea, before building up a subaerial edifice (Di Paola, 1974). The early pillow lavas and hyaloclastites, along with early subaerial lava flows, are basaltic andesite. The transition from submarine to subaerial is gradual, with alternating hyaloclastites and lavas (Francalanci et al., 1995). The subaerial pre-caldera sequence continues with andesitic to rhyolitic lavas flows and domes, and several major explosive events, with at least one erupting 2-3 km3 and a column heigh of 15-20 km (Limburg and Varekamp, 1991). This lead to the formation of an earlier, now-buried caldera. The present caldera is associated with a a pumice fall, surge and flow sequence, erupting 6-7 km3 of magma.
Post-caldera activity on Nisyros is fairly homogeneous. Much of the caldera has been filled up with large, dacitic lava domes of similar composition (Di Paola, 1974). There are no pyroclastic deposits. The locations of the recent domes and hydrothermal craters are strongly controlled by by north-east–south-west striking oblique-slip faults (Caliro et al., 2004). These faults are a response to east-west extension. There is an active hydrothermal system at present, with isotopic chemistry suggesting that fumerolic gases containing a mantle-derived component (Brombach et al., 2003). Temperatures of up to 340°C were recorded in geothermal wells at a depth of 1,800 m. Between 1995-2000 a period of inflation and increased seismicity was observed (Sachpazi et al., 2002), which Lagios et al. (2005) found could not be explained sufficiently using only the tectonic faults found on the island. Their preferred model used two inflating Mogi point sources which they interpreted as magma chambers, one under the western edge of Nisyros, and the other close to Yali.

2.3 The local tectonic setting of Santorini

Santorini is located in the middle of a north-east–south-west trending chain of volcanoes (Figure 2.4). To the south-west lie the Christiana islands. Deposits on Santorini and Anafi have been correlated with a large, explosive eruption from the Christiana islands (Keller et al., 2012). The volcanic activity on the Christiana islands is thought to predate most of the activity on Santorini.

To the north-east lies a chain of 19 submarine volcanoes (Nomikou et al., 2013a, 2012b, 2013b). The largest of these, Coloumbo, has a small caldera, formed during an eruption that took place in 1650 C.E. Most of the remaining cones in the chain are covered in sediment, and show no signs of recent volcanic activity.

The 1650 C.E. eruption of Coloumbo was rhyolitic, large, and was accompanied by a tsunami and the release of toxic gases that killed many of the inhabitants of Santorini and their livestock (Cantner et al., 2014; Dominey-Howes et al., 2000; Fouqué, 1879;
2.3. The local tectonic setting of Santorini

Kameni line
Coloumbo line

Figure 2.4: Bathymetry of the Christiana–Santorini–Coloumbo volcanic zone, from Nomikou et al. (2013a). Faults drawn from Sakellariou et al. (2010) and Feuillet (2013). It is currently more hydrothermally active than Santorini. Hydrothermal vents up to 220°C can be found in the crater of Coloumbo, compared to vent temperatures of 15-17°C found in Santorini’s caldera (Carey et al., 2013; Kilias et al., 2013; Sigurdsson et al., 2006). There is a 3 km wide column of micro-seismicity extends from the surface to about 15 km depth beneath the north-eastern flank of the volcano (Dimitriadis et al., 2009). Dimitriadis et al. (2010) imaged a low seismic velocity zone possibly connecting Santorini with Coloumbo at depth.

Santorini lies at end of the Santorini–Amorgos rupture zone, a region of oblique
extensional faulting (Feuillet, 2013; Sakellariou et al., 2010). It corresponds to a vertical region of increased earthquake activity trending north-east, from Santorini through and Coloumbo to Amorgos (Bohnhoff et al., 2006). This zone is 30-40 km wide, and extends to a depth of 45 km. The Santorini Amorgos rupture zone is probably a pull-apart basins, and part of a larger strike-slip system (Kokkalas and Aydin, 2013).

The oblique extension is accommodated on north-east–south-west trending faults. These faults control the location of volcanic vents, which fall along two tectonic “lines”: the Coloumbo line and the Kameni line (Figure 2.4). In the north of Santorini, many of the dykes that fed the Peristeria volcano (see below) are orientated north-east–south-west, parallel to the Coloumbo line (Heiken and McCoy, 1984). To the north-east the Coloumbo line is seen to continue, in the orientation of the offshore volcanic cones. To the south, the vents of the Kameni Isles fall along a roughly parallel line: the Kameni line (Nomikou et al., 2014; Pyle and Elliott, 2006).

2.4 The volcanic history of Santorini

A simplified map of the geology of Santorini is shown in Figure 2.5, and its eruptive history is summarised in Table 2.1. In this section I will briefly discuss the early volcanism, before looking at the sequence from 67 ka up to the 22 ka Cape Riva eruption in more detail. It is this period that the rest of this thesis is chiefly concerned with. I finish by presenting the most recent volcanism on Santorini. The chemistry and petrology is covered in more detail in the next section.

2.4.1 Early activity: Akrotiri and Peristeria centres

(650–340 ka)

Before volcanism commenced on Santorini, an island already existed, consisting of the schists and marbles that make up the south-east of the present-day island (Figure 2.5). The earliest volcanism on the island dates back 650–550 ky (Druitt et al., 1999), and
Table 2.1: Summary of the volcanic history of Santorini, updated from Druitt et al. (1999)

<table>
<thead>
<tr>
<th>Age</th>
<th>Eruption/Eruptive sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 ka–Present</td>
<td>Kameni islands</td>
<td>Dacitic shield-building</td>
</tr>
<tr>
<td>3.6 kaa</td>
<td>Minoan eruption</td>
<td>Plinian eruption and caldera collapse</td>
</tr>
<tr>
<td>22 kab</td>
<td>Cape Riva eruption</td>
<td>Plinian eruption and caldera collapse</td>
</tr>
<tr>
<td>22 kab</td>
<td>Therasia shield</td>
<td>Predominantly dacitic shield building</td>
</tr>
<tr>
<td>51 ± 3 kac</td>
<td>Upper Scoria 2 eruption</td>
<td>Dominantly andesitic plinian eruption</td>
</tr>
<tr>
<td>67 ± 9–54 ± 3 kac</td>
<td>Skaros shield</td>
<td>Basaltic andesite–dacitic shield building</td>
</tr>
<tr>
<td>80 kad,e,f</td>
<td>Upper Scoria 1 eruption</td>
<td>Scoria fall and spatter agglomerate</td>
</tr>
<tr>
<td>100 kad,e,f</td>
<td>Vourvoulos eruption</td>
<td>Scoria fall, pumice fall and ignimbrite</td>
</tr>
<tr>
<td>76 ± 28; 54 ± 23c</td>
<td>Megalo Vouno; Columbus tuff ring</td>
<td>Spatter and cinder cones; tuff ring</td>
</tr>
<tr>
<td>145 kad,e,f</td>
<td>Middle Pumice eruption</td>
<td>Plinian eruption</td>
</tr>
<tr>
<td></td>
<td>Cape Thera eruption</td>
<td>Pumice fall and ignimbrite</td>
</tr>
<tr>
<td>172 ± 4 ka</td>
<td>Simandiri shield</td>
<td>Basaltic to andesitic shield building</td>
</tr>
<tr>
<td>172 kad,e,g</td>
<td>Lower Pumice 2 eruption</td>
<td>Plinian eruption and caldera collapse</td>
</tr>
<tr>
<td>184 kad,e,g</td>
<td>Lower Pumice 1 eruption</td>
<td>Plinian eruption</td>
</tr>
<tr>
<td>196 kad</td>
<td>Cape Therma 3 eruption</td>
<td>Andesitic pumice fall and ignimbrite</td>
</tr>
<tr>
<td>224 ± 5 ka</td>
<td>Cape Alonaki and NE Thera</td>
<td>Rhyodacitic lavas</td>
</tr>
<tr>
<td></td>
<td>Cape Therma 2 eruption</td>
<td>Rhyodacitic pumice fall</td>
</tr>
<tr>
<td></td>
<td>Cape Therma 1 eruption</td>
<td>Andesitic ignimbrite</td>
</tr>
<tr>
<td>∼360 ka</td>
<td>Cape Alai</td>
<td>Andesitic lavas</td>
</tr>
<tr>
<td>450–340 ka</td>
<td>Akrotiri cinder cones</td>
<td>Andesitic and basaltic spatter and cinder cones</td>
</tr>
<tr>
<td>530–430 ka</td>
<td>Peristeria stratovolcano</td>
<td>Predominantly basaltic to andesitic lavas and tuffs</td>
</tr>
<tr>
<td>650–550 ka</td>
<td>Early Akrotiri centres</td>
<td>Amphibole bearing silicic lavas and tuffs</td>
</tr>
</tbody>
</table>

a Friedrich et al. (2006) b See Chapter 4 c Druitt et al. (1999) d Keller et al. (2000) e Schwarz (2000) f Vespa et al. (2006) g Gertisser et al. (2009)
is confined to the Akrotiri peninsula in the south of the island (Figure 2.5). The early activity consists predominantly of dacitic-rhyodacitic submarine domes, coulées, and hyloclastite aprons. These are intercalated with the products of more explosive submarine eruptions and marine sediments containing benthic and planktonic forams. Towards the end of activity on the Akrotiri peninsula some eruptions were probably subaerial.

The stratigraphical relationships between the various units are complex, and in places faulted. The presence of unambiguous marine sediments at elevations of over 100 m above the present sea level show that they have been uplifted. Two separate fault
blocks exist on the peninsula. The Akrotiri volcanics are geochemically distinct from the main volcanic series that followed, and are the only volcanic rocks from Santorini that have been found to contain significant amounts of amphibole. The silicic members are richer in Ba and Sr and poorer in K, Rb, and Zr compared to the Thera volcanics.

Activity started in the north of the island with the Peristeria stratovolcano (530–430 ka), that makes up Mt. Micro Profitas Ilias. It has been split into three sequences: a core of andesitic lavas, tuffs and hyloclastites; massive silicic andesite lava flows; and a succession of thin andesitic and basaltic lavas with subordinate dacites. About 50 dykes are revealed in the caldera cliff, the majority of which trend north to north-west. In total, the subaerial volume was at least 2 km3.

Towards the end of the construction of Peristeria cinder and spatter cones were formed at three centres on the Akrotiri peninsula. These have been dated using K–Ar and Ar–Ar methods at between 450–340 ka, and lie above the early Akrotiri centres but beneath the Thera pyroclastics.

2.4.2 Thera pyroclastics (<360 ka)

The current sequence of explosive volcanism started 360 ky ago, and consists of at least twelve plinian eruptions. These have been split into two cycles, and in each cycle there is a general trend towards more silicic compositions. Both cycles end with a pair of large dacitic to rhyolitic eruptions; Lower Pumice 1 and 2 in the first cycle and the Cape Riva and Minoan eruption in the second. Lower Pumice 2, Cape Riva and Minoan eruptions are associated with caldera collapse. Vents for the Thera pyroclastics are concentrated in the northern half of Santorini, and most lie (or are inferred to lie) on either the Kameni or Coloumbo lines. In between the plinian eruptions there are numerous effusive and smaller explosive eruptions.
First eruptive cycle (360–180 ka)

The first eruptive cycle consisted of five large, explosive eruptions and numerous smaller effusive and explosive events. Cape Therma 1, 2 and 3 were all dominantly intermediate in composition. Cape Therma 1 is and andesitic ignimbrite, up to 60 m thick. Cape Therma 2 is a rhyodacitic pumice fall deposit. Cape Therma 3 is andesitic, with pyroclastic flow deposits overlying a stratified pumice fall, rich in obsidian fragments. Between Cape Therma 2 and 3 several rhyodacitic lava flows are preserved in the caldera cliffs.

The first cycle came to an end with the Lower Pumice 1 and 2 eruptions. Both were rhyodacitic, and Lower Pumice 2 resulted in the earliest known caldera collapse on Santorini. Lower Pumice 1 commenced with a Plinian phase, leaving deposits up to 5 m thick, whose isopachs are consistent with a vent somewhere near the present-day Kameni isles. Bomb sags are common at the top of this Plinian deposit, implying a strong ballistic component to the second phase of the eruption. This second phase deposited a coarse-grained lithic lag breccia up to 14 m thick. This phase is compositionally zoned, with the vesicular component changing from rhyodacite at the bottom to andesite at the top. Lenses of welded and non-welded ignimbrite occur in places under the breccia.

Lower Pumice 2 is separated from Lower Pumice 1 by only a single palaeosol. Initial Plinian deposits are up to 25 m thick, consisting of an initial thin, white basal unit overlain by an inversely graded main fall unit. Deposits are uniformly rhyodacitic, except for this Plinian deposit which also contains a small amount of of basaltic to andesitic scoria. Isopach maps suggest a vent near the present-day Kameni isles. Phreatomagmatic explosions the produced a series of dune cross-bedded surge deposits followed by a thick, massive and poorly sorted pumiceous deposit.
Second eruptive cycle (180–3.6 ka)

After the eruption of Lower Pumice 2, effusive activity began to fill the caldera. The Simandiri shield is exposed near sea-level in the cliffs of Therasia, just to the north of Manolas. At the base are stratified phreatomagmatic tuffs and conglomerates. These are overlain by thin basaltic lavas and thick andesitic domes and coulées. These dip west, away from the present caldera. This was followed by the Middle Tuff sequence, four of which discharged several km³ of magma.

The Cape Thera Tuff lies at the same stratigraphic height as the Simandiri lavas, separated from Lower Pumice 2 below by a palaeosol up to 13 m thick. This probably represents a period of hundreds to thousands of years of only minor activity following the collapse of the first caldera. The Cape Therma Tuff consists of a thin pumice fall, up to 85 cm thick, and an ignimbrite deposit.

After the Cape Thera eruption, 5 m of minor pyroclastics and palaeosols are preserved. Above this lies the Middle Pumice deposits, which begin with a Plinian pumice fall deposit, which is densely welded beneath Fira. Isopachs, and the location of the welded deposit imply a vent to the west of Fira. Above the pumice fall deposit lie lithic lag breccias, and the top of the pumice fall contains deep impact sags, demonstrating a violent ballistic event at the onset of pyroclastic flow production. The eruption ended with a second Plinian phase, from the same vent as the first.

Up to 9 m of minor pyroclastics and palaeosols lie between the Middle Pumice deposits and the Vourvoulos deposits. At the base of this eruption's deposits lie a scoria fall, which may correlate with the two cinder cones by Kokkino Vouno that erupted at about the same time. The Vourvoulos deposits only reach a maximum of a few metres, but they are widespread. They consist of a pumice fall deposit, followed by cross-bedded surge deposits and an ignimbrite.

Above the Vourvoulos deposits lies the deposits from the Upper Scoria 1 eruption. This commenced with a black scoria fall, within which lies a pair of ash beds. The ash beds are less than a metre thick, and contain accretionary lapilli and climbing-
ripples, suggesting a phreatomagmatic base surge origin. An isopach map for the scoria fall, along with the flow directions recorded by the base surge units, imply a vent near the present-day Kameni isles. Above the scoria deposits is a distinctive spatter agglomerate, formed by a pyroclastic flow containing rags of fluid andesite. Lithic clasts are also common. A caldera was present after the Upper Scoria 1 eruption (the Skaros caldera, Figure 2.6a), but its formation cannot be connected unambiguously to the eruption itself.

2.4.3 The build-up to the Cape Riva eruption (67–22 ka)

Skaros shield (67–54 ka)

A period of effusive volcanism filled up the caldera with a series of mainly basaltic and andesic lavas—the Skaros shield (Figure 2.6b). A lava flow at sea-level has an Ar–Ar age of 67 ± 9 ka (Druitt et al., 1999). The Skaros sequence has been described in detail by Huijsmans (1985) and Huijsmans and Barton (1989). It consists mainly of basaltic and andesitic lavas; all the flows have less than 64 wt% SiO₂ and most have less than 55 wt%. The most silicic lavas are at the base of the sequence, erupted shortly after the Upper Scoria 1 eruption. Interspersed between the lavas are the occasional deposits from explosive eruptions, and these have higher SiO₂ than the lavas above and below.

Huijsmans and Barton described several cycles of volcanism, starting with a silicic eruption and with subsequent eruptions having progressively lower SiO₂ contents. These trends were repeated in other elements, for example there are increases in MgO and CaO and decreases in Na₂O and K₂O with stratigraphic height within each cycle. They explained this as repeated tapping of a zoned magma reservoir, each eruption reaching a deeper and more mafic level. Before each cycle the system begins to stagnate, building up a silicic cap. Before dacite can be produced, however, an explosive eruption occurs.
Figure 2.6: Morphological evolution of Santorini between 70 and 21 ka, after Druitt et al. (1999). The dashed line is the present-day outline of the islands. Contours are at 100-m intervals. (a) The volcano after collapse of the Skaros caldera, which happened some time before the first Skaros lava was erupted at 67 ± 9 ka. (b) The maximum extent of the Skaros shield, which culminated with the 54 ± 3 ka Upper Scoria 2 eruption. (c) The maximum extent of Therasia dome complex at ~ 25 ka. (d) The island shortly after the ~ 22 ka Cape Riva eruption.
Upper Scoria 2 eruption (54 ka)

The cycles of partial stagnation then eruption continue until the Upper Scoria 2 eruption. Upper Scoria 2 is a dominantly andesitic explosive eruption, that deposited several km3 of magma over much of Santorini. Its distinctive red colour and widespread distribution make it an excellent stratigraphic marker. It also represents a change in behaviour for the volcanic system.

Shortly before — perhaps immediately before — a small dacitic pumice fall is deposited from a vent near the Kameni isles. While the volume represented by this pumice fall is much smaller than the andesite erupted during the Upper Scoria 2 eruption this is the first time dacite was erupted since Upper Scoria 1. Afterwards, during the Therasia Sequence, dacite becomes the dominant composition. Upper Scoria 2 can therefore be thought of as the last failed stagnation, where an initial build-up of silicic magma is interrupted by an eruption. Its position at the peak of the TiO$_2$ variation diagram rules out large-scale mixing, however the Sr isotopic signature of some of the crystals shows that they have been incorporated from a previous magma batch (Martin et al., 2010). The main phase of the eruption began with the emplacement of andesitic pyroclastic surge deposits. This was followed by scoria flows, with spatter rags similar to the ones found in the Upper Scoria 1 deposits.

Mellors and Sparks (1991) reported two 14C dates of 38.9$^{+2.2}_{-1.8}$ and 36.9$^{+1.9}_{-1.4}$ ka, while Druitt et al. (1999) present a K–Ar age of 79\pm8 and a more precise, Ar–Ar age of 54\pm3 ka. The Ar–Ar age is the only one that is consistent with both the ages of Skaros lavas and the Megalo Vouno cinder cone which predate Upper Scoria 2 (Druitt et al., 1999), and the youngest Therasia lava which postdates it. As the dates of Mellors and Sparks are at the limit of conventional 14C dating, the Ar–Ar date of 54 ka is assumed to be the most accurate.
2.4. The volcanic history of Santorini

Therasia dome complex (54–22 ka)

The Therasia dome complex is a series of mainly dacitic domes and coulées that covered the summit and western flank of the Skaros shield (Figure 2.6c). Interspersed between the lavas are several pumice fall deposits and soils. The sequence is capped by a crystal-rich andesite, here named the upper Therasia andesite. The lavas are well-exposed in the cliffs of the western side of the present-day caldera, on Therasia, and lavas are also found at Oia and Fira on Thera (Figure 2.5). The well-exposed stratigraphy of the Therasia dome complex makes it an ideal opportunity to study the changes in the plumbing system of a volcano in the build-up to a caldera-forming eruption.

The Therasia dacites are chemically and petrologically similar to the Cape Riva dacite, which led Druitt (1985) to propose that they were “precursory leaks” from the growing Cape Riva magma reservoir (see Chapter 1). In this thesis, however, I shall argue that the Therasia dacites are not precursory leaks, and are a distinct batch of magma.

2.4.4 Cape Riva eruption (22 ka)

While the exact amount of magma erupted during the Cape Riva is unknown, it is at least several km3, and is associated with a caldera collapse (Figure 2.6d). It has been correlated with the Y-2 ash layer in Mediterranean sediments, and is found as far away as the Marmara Sea (Figure 2.7).

The eruption has been split into four phases (Figure 2.8). It commenced with the mainly dacitic Plinian phase Cape Riva A, that left pumice fall deposits up to 7 m thick (corrected for compaction; Druitt, 1985). The Plinian deposits also contain \sim5% andesitic scoria, that is not found in the later phases. This andesite is also a hybrid, with a similar SiO$_2$ content to the upper Therasia andesite. The deposits of phase A are found only in the north of Santorini, around Cape Riva and Oia (Figure 2.5), and the deposits on Cape Riva are densely welded. This suggests that the vent for the first phase of the Cape Riva eruption was located nearby.
The second phase (Cape Riva B) of the eruption produced welded ignimbrite deposits which underlie lithic lag breccias. These breccias grade laterally and vertically into non-welded and pumiceous ignimbrites. Deposits from phase B are widely distributed around Santorini, and form veneers up to 4 m thick that drape the pre-existing topography. The deposits from phase B are particularly thick to the east of Akrotiri where they fill a pre-existing channel and reach up to 12 m in thickness.

Cape Riva C was the most voluminous phase, and the deposits are the thickest (reaching up to 25 m) and most widespread of the Cape Riva deposits found on Santorini. The most conspicuous deposits of this phase are the coarse co-ignimbrite lithic lag breccias, interpreted to have formed by strong gas fluidisation and the segregation of large and dense blocks from the flows (Druitt and Sparks, 1982). There is little systematic spacial variation in the grain size of the breccias across Santorini, and lithic blocks 1–2 m in diameter are common wherever the lag breccia is found.
lag breccias grade horizontally and vertically into pumiceous ignimbrite, and repeated flow units are often seen. The large increase in the lithic content of these deposits probably signals the onset of caldera collapse Druitt (1985).

The deposits from final phase of the eruption, Cape Riva D, is similar in appearance to Cape Riva B. They consist of surface-draping veneers of welded ignimbrite up to 2m thick, that outcrop on the north of Thera.

2.4.5 Post-Cape Riva activity

The Cape Riva eruption was accompanied by caldera collapse, as demonstrated by the existence of a water-filled caldera prior to the Minoan eruption (Druitt and Francaviglia, 1992; Eriksen et al., 1990; Friedrich et al., 1988). There are few volcanic deposits found dating from the period between the Cape Riva and the Minoan, with the notable exception of a basaltic scoria fall (Vaggelli et al., 2009; Vespa et al., 2006). The existence of an andesitic to rhyodacitic cone in the caldera can be inferred from the
presence of blocks of lava in the deposits of the Minoan eruption (Druitt, 2014).

Minoan eruption (3.6 ka)

The Minoan eruption has been dated at 1600–1627 B.C.E. (Friedrich et al., 2006; Manning et al., 2006). Although it has previously been suggested that this eruption was responsible for the collapse of the Minoan civilisation on Crete (hence the name), current evidence suggests that the Minoan civilisation lasted for over a generation afterwards. It was, however, responsible for the destruction of the flourishing trading port of Akrotiri on the island (Cioni et al., 2000). Deposits at Palaikastro suggest that a 9 m high tsunami reached Crete (Bruins et al., 2008).

This eruption produced 30-60 km3 of magmatic products, with deposits up to 60 m thick on the island and ash from the eruption is found across the eastern Mediterranean (Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978). The products are dominantly rhyodacitic, apart from subordinate andesitic scoria found in the first, Plinian phase of the eruption. This activity was interrupted by the access of sea-water into the vent. This lead to violent phreatomagmatic explosions, and base surge deposits with dune cross-bedding and impact sags. Interstratified within the base surges are pumice fall deposits, showing Plinian fallout continued during this time. Massive tuffs above the surge deposits are interpreted to have been deposited by hot (≤300 °C) debris flows and low temperature pyroclastic flows. The final phase of the eruption involved hot (300–350 °C) pyroclastic flows spreading across the whole island, leaving deposits up to 40 m thick (Druitt et al., 1999).

The Minoan eruption is associated with caldera collapse, and is responsible for most of the islands present distinctive topography.

Post-Minoan activity (3.6 ka)

Since the Minoan eruption, the volcano has returned to constructive volcanism. Historical documentation of eruptions in the centre of the Minoan caldera date back to
197 B.C.E, when an island first broke the surface. Since then a series of eruptions have produced the $\sim 10 \text{ km}^3$ of lava that make up the present-day Kameni islands, along with small explosive eruptions (Fouqué, 1879; Nomikou et al., 2014; Pyle and Elliott, 2006). The 20th century has seen eruptions in 1925-6, 1928, 1939-41 and 1950. These produced small plumes and thick lava flows. Chemically, the dacitic lavas have remained very similar over the 2,200 years of flows exposed today (Barton and Huijsmans, 1986). Numerous mafic enclaves showing that recharge is ongoing (Holness et al., 2005; Martin, 2005; Martin et al., 2006).

2.5 Chemistry and petrology

2.5.1 Major and trace element chemistry

The variations of major element concentrations as a function of SiO$_2$ content is shown in Figure 2.9, and the variations of selected trace elements is shown in Figure 2.10. The field for all of the Thera volcanics is shown in grey, and the products of the eruptions since 67 ka are plotted as individual points. Also shown is the field of Peristeria lavas, for comparison. Not shown are the early centres of the Akrotiri peninsula, as these form a chemically and petrologically distinct series.

Most of the elements fall along fairly tight fractional crystallisation trends. Some of these trends are strongly curved. For example, TiO$_2$ behaves incompatible in Santorini magmas up to about 55–60 wt\% SiO$_2$. In more evolved melts Fe–Ti oxides start to crystallise, lowering the amount of TiO$_2$ in the residual melt. This leads to the curved trend seen in Figure 2.9. Strongly compatible trace elements, such as Cr and Ni (Figure 2.10a,b), become rapidly depleted with small amounts of fractional crystallisation. Magmas formed by mixing will tend to plot between the two arms of these curved trends. This can be seen clearly on Figure 2.9f for Cape Riva, Therasia and Minoan andesites with about 60 wt\% SiO$_2$. Magma mixing in the Cape Riva and Therasia andesites is discussed in more detail in Chapter 5.
Figure 2.9: Variation diagrams for major elements in Santorini magmas. Kameni lava, Skaros and Peristeria data from Huijsmans (1985); Kameni enclave data from Martin (2005); Therasia data from this work; all other data from Druitt et al. (1999). FeO_T is the total FeO and Fe₂O₃ plotted as FeO.

The Peristeria volcanics follow the same trends as the later Thera volcanics, for the most part. They do have slightly higher incompatible element concentrations; this is part of a long-term trend on Santorini towards more depleted compositions, discussed below. A major distinguishing feature, however, is the high Sr content of some of the Peristeria basalts and andesites compared to later basalts and andesites (Figure 2.10c).
2.5. Chemistry and petrology

2.5.2 Isotopic variation

The $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ variations of Santorini pumices are shown in Figure 2.11. Pumices from Santorini are seen to form a trend away from the mantle correlation line, towards more radiogenic compositions. This is consistent with contamination by upper crustal rocks. The degree of contamination is found to correlate
with SiO₂ content, suggesting the contamination occurs during fractional crystallisation (Druitt et al., 1999). Assimilation and fractional crystallisation (AFC) models suggest the ratio of mass assimilated to mass crystallised is between 0.1–0.2.

Figure 2.12 shows the variation in ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios with stratigraphic height. It shows that there is no simple trend in the isotopic composition of Santorini magmas with time. ⁸⁷Sr/⁸⁶Sr ratio first decreases with time, up until the Upper Scoria 1 eruption. It then increases, up until the Minoan eruption. The ¹⁴³Nd/¹⁴⁴Nd ratio shows a mirror image of the ⁸⁷Sr/⁸⁶Sr variations. Martin et al. (2010) show that there are isotopic variations even within the products of a single eruption.

2.5.3 Decrease in incompatibles with time

Since volcanism commenced in the north of the island, there has been a progressive decrease in the concentration of incompatible trace elements such as K, Nb, Rb and Zr
There have been several different explanations proposed to account for this observation. Druitt et al. (1999) attributed these decreases as a result of growing isolation of the magma chamber from the crust due to an increasing amount of plutonic rocks intruded under Santorini. This would decrease the amount of assimilation and hence lower the concentration of incompatibles in the most evolved erupted magmas. However, there is no evidence for a decrease in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio with time at Santorini (Figure 2.12). Isotopic signatures fluctuate with time, and some young melts are amongst the most radiogenic in the history of the volcano (Martin et al., 2010; Vaggelli et al., 2009).

Incompatible trace element contents and isotopic signatures at Santorini are decoupled, ruling out a simple common origin. A more likely explanation for the observed trends lies in the nature of the mantle sources of the parental basalts feeding the vol-
Figure 2.13: Selected variation diagrams showing the decrease in incompatible element concentrations throughout the volcanic history of Santorini, since the commencement of volcanism in the north of the island. Normalised to dry compositions. Whole rock data taken form Druitt et al. (1999) and Huijsmans (1985), Kameni enclave data from Martin (2005).

Recent studies have found that multiple basalt series with differing trace element and isotopic ratios are contemporaneously active in the volcanic plumbing system (Bailey et al., 2009; Vaggelli et al., 2009). The different trace element contents of these series requires their mantle source underwent varying degrees of metasomatism by sediment-derived fluids or melts. Variations in Nd suggest the involvement of small amounts of sedimentary melts, as it is fluid-immobile (Bailey et al., 2009; Vaggelli et al., 2009). Aqueous fluids may also play a role in controlling the trace element chemistry, as has been proposed for the Kameni Isles (Zellmer et al., 2000).

Another possible explanation for the variation in incompatible element concentrations with time is variations in the degree of partial melting. Incompatible elements are the first elements to go into any melt, and are therefore enriched at small melt fractions. An increase in the melt fraction of the mantle source would lead to a decrease
in incompatible element concentrations. This could explain the progressive depletion in incompatibles on Santorini, while the variations in isotopic ratios would be due to changes in AFC processes in shallow magma reservoirs or sediment contamination from the descending slab (Francalanci et al., 2005).
Chapter 3

Diffusion chronometry

3.1 Introduction

Diffusion dating is becoming an increasingly exploited way of accessing the timescales of magmatic processes. Because of the different speeds at which various elements diffuse in crystals, events lasting from hours (e.g. Coogan et al., 2005) to millions of years (e.g. Faryad and Chakraborty, 2005) can be timed. Unlike radiometric dating, this technique is not restricted to young rocks. Because diffusion slows to an effective stop at low temperatures, the timescales recorded by diffusion profiles can be calculated long after the event (e.g. the cooling rate of chondrules in meteorites during the formation of the solar system; Béjina et al., 2009).

Another advantage of diffusion chronometry is the way it can be carried out on single crystals, in situ, using well-established micro-sampling techniques. Diffusion profiles can be measured using secondary ion mass spectrometry (SIMS), the electron probe or laser ablation mass spectrometry (LA ICP MS). In some cases two dimensional images of crystals can be used, such as from backscattered electron images (BSE) for Mg-Fe inter-diffusion in olivine (Martin et al., 2008; Morgan et al., 2006, 2004) or cathodoluminescence images for Ti diffusion in quartz (Girard and Stix, 2010; Saunders et al., 2010; Smith et al., 2010). This allows petrological information to be combined
with the timescales recovered, and allows timescales from many crystals in the same sample to be recovered individually.

This chapter discusses the theory behind diffusion chronometry. I also review the data on the different diffusion coefficients, and the factors that influence them. I focus in this chapter mainly on plagioclase and orthopyroxene, as these are the minerals I use later in this thesis. However, various other minerals have also been used to estimate the timescales of magmatic and volcanic processes. These include olivine, clinopyroxene, magnetite, quartz and alkali feldspars (e.g. Costa and Chakraborty, 2004; Girard and Stix, 2010; Morgan et al., 2006, 2004; Nakamura, 1995). Diffusion chronometry is also regularly applied to metamorphic systems (e.g. Ague and Baxter, 2007; Faryad and Chakraborty, 2005).

3.2 Diffusion theory

3.2.1 Basic Theory

Diffusion occurs in crystalline solids due to the random jumps of individual atoms, either to nearby vacancies or to interstitial sites. Diffusion normally occurs in all directions with equal probability, leading to no overall change in composition. However, if there is some driving force making jumps in a particular direction more energetically favourable, such as a chemical potential gradient, it will lead to a flow of atoms in that direction. The flux of those atoms per unit area, J, can be written as a function of the chemical potential μ:

$$J = -L \frac{\partial \mu}{\partial x} \quad (3.1)$$

where L is the phenomenological constant for the element or isotope of interest.

Chemical potentials are not easy to measure. However, for ideal solutions or diluted components the concentration gradient, $\partial C/\partial x$, can be used instead (Costa et al., 2008). Elemental concentrations can be measured directly, unlike chemical potential,
and hence most diffusion chronometry studies model concentrations. Replacing the chemical potential gradient by the concentration gradient, and the phenomenological constant L with the diffusion coefficient D, leads to Fick’s first law:

$$ J = -D \frac{\partial C}{\partial x} \quad (3.2) $$

We can then look at the case of one dimensional flow through an infinitesimally small volume $dx\,dy\,dz$. The flow of atoms into this volume by diffusion is $J(x)\,dy\,dz$ and the flow out of this volume is $J(x + dx)\,dy\,dz$. The rate of change of the number of atoms $\partial N/\partial t$ in this volume over an infinitesimally small time dt is, therefore:

$$ \frac{\partial N}{\partial t} = J(x)\,dy\,dz - J(x + dx)\,dy\,dz $$

$$ = -\frac{\partial J}{\partial x}\,dx\,dy\,dz \quad (3.3) $$

Dividing through by the volume in order to give concentration, we get:

$$ \frac{\partial C(x,t)}{\partial t} = -\frac{\partial J}{\partial x} \quad (3.4) $$

Equation 3.2 can then be substituted in for J, to give (Fick, 1855):

$$ \frac{\partial C(x,t)}{\partial t} = \frac{\partial D}{\partial x} \frac{\partial C(x,t)}{\partial x} + D \frac{\partial^2 C(x,t)}{\partial x^2} \quad (3.5) $$

If D is independent of x this can be simplified to Fick’s second law:

$$ \frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2} \quad (3.6) $$

This equation can be solved analytically for simple systems. One of these is diffusion in an infinite slab, which is a useful approximation to diffusion in the centre of a large, flat crystal face. In this case, diffusion is mostly parallel to the crystal face, and can
be modelled in one dimension. Starting with an initial step function, the following equation satisfies Fick’s second law (Lasaga, 1998):

\[
C(x, t) = C_{\text{left}}^0 + \frac{C_{\text{left}}^0 - C_{\text{right}}^0}{2} \left[1 + \text{erf} \left(\frac{x}{\sqrt{4Dt}} \right) \right]
\] (3.7)

where \(C_{\text{left}}^0\) and \(C_{\text{right}}^0\) are the initial concentration the left and the right of the step function, respectively; \(x\) is the distance, centred on the initial step function; \(t\) is the time; and \(\text{erf}(u)\) is the error function, shown below:

\[
\text{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-k^2} \, dk
\] (3.8)

where \(k\) is a dummy variable.

3.2.2 Trace element diffusion in plagioclase

Modelling trace element diffusion in plagioclase is not as simple as the analytical solution above. The partition coefficients of many trace elements are strongly dependent on plagioclase composition (Bindeman et al., 1998; Blundy and Wood, 1991), which means that concentration cannot be used directly as a proxy for chemical potential (Costa et al., 2003; Zellmer et al., 1999, 2003). The diffusion coefficients of trace elements are also often strongly dependent on plagioclase composition (e.g. Giletti and Casserly,
1994; Van Orman et al., 2014), which means the simplification shown in Equation 3.6 cannot be applied either.

Costa et al. (2003) formulated an equation for the diffusion of a trace element i in plagioclase starting from Equation 3.1 above:

$$J_i = -L_i \frac{\partial \mu_i}{\partial x}$$ \hspace{1cm} (3.9)

The chemical potential can be expanded to give:

$$\mu_i = \mu_i^0 + RT \ln C_i + RT \ln \gamma_i$$ \hspace{1cm} (3.10)

where μ_i^0 is the standard-state potential of i, R is the molar gas constant (8.31 J K$^{-1}$ mol$^{-1}$), T is the temperature in kelvin, C_i is the concentration of i in units of mass per unit mass and γ_i is the activity coefficient for i.

The activity coefficient for element i in plagioclase in equilibrium with a given liquid can be estimated using the expressions of Blundy and Wood (1991) and Bindeman et al. (1998) that relate trace element partitioning to the composition of the host plagioclase:

$$RT \ln \frac{C_{i}^{\text{xl}}}{C_{i}^{\text{liq}}} = AX_{An} + B$$ \hspace{1cm} (3.11)

where C_{i}^{xl} and C_{i}^{liq} are the concentration of i in the plagioclase crystal and liquid, respectively; X_{An} is the molar fraction of anorthite in the plagioclase; and A and B are experimentally determined constants. At equilibrium, the chemical potential of i in the crystals is by definition equal to that of the liquid, which gives us the following relationship:

$$\mu_i^{0,\text{xl}} + RT \ln C_{i}^{\text{xl}} + RT \ln \gamma_{i}^{\text{xl}} = \mu_i^{0,\text{liq}} + RT \ln C_{i}^{\text{liq}} + RT \ln \gamma_{i}^{\text{liq}}$$

$$RT \ln \frac{C_{i}^{\text{xl}}}{C_{i}^{\text{liq}}} = \mu_i^{0,\text{liq}} - \mu_i^{0,\text{xl}} + RT \ln \gamma_{i}^{\text{liq}} - RT \ln \gamma_{i}^{\text{xl}}$$ \hspace{1cm} (3.12)
This can be substituted into Equation 3.11 to get:

\[RT \ln \gamma_i^{xi} = \mu_i^{0,\text{liq}} - \mu_i^{0,\text{xi}} + RT \ln \gamma_i^{\text{liq}} - AX_{An} - B \]

(3.13)

which can be combined with the equation for chemical potential (Equation 3.10), and substituted into the equation for flux (Equation 3.9) to give:

\[J_i = -L_i \frac{\partial}{\partial x} \left(RT \ln C_i + \mu_i^{0,\text{liq}} + RT \ln \gamma_i^{\text{liq}} - AX_{An} - B \right) \]

(3.14)

Differentiating and cancelling out the terms that do not vary with distance we are left with:

\[J_i = -\frac{RTL_i}{C_i} \frac{\partial C_i}{\partial x} + L_i A \frac{\partial X_{An}}{\partial x} \]

(3.15)

Finally, the change in concentration due to time can be calculated using the relationship:

\[\frac{\partial C_i}{\partial t} = -\frac{\partial J_i}{\partial x} = \frac{\partial}{\partial x} \left(\frac{RTL_i}{C_i} \frac{\partial C_i}{\partial x} - L_i A \frac{\partial X_{An}}{\partial x} \right) \]

\[= \frac{\partial}{\partial x} \left(D_i \frac{\partial C_i}{\partial x} - D_i C_i \frac{A}{RT} \frac{X_{An}}{\partial x} \right) \]

(3.16)

3.3 Application to magmatic systems

Figure 3.2 shows an example of how diffusion can modify the initial concentration of a crystal. In Figure 3.2a a crystal grows in equilibrium with its melt. The concentration of some element in the crystal along the profile marked with a blue line is shown in Figure 3.2b. The environment that this crystal resides in then changes (Figure 3.2c). This could occur in several different ways. The resident magma could evolve by fractional crystallisation, for example, changing its composition. A recharge magma could underplate the magma reservoir, raising the temperature, or it could enter the reservoir and entrain crystals. Other processes could also occur; what is required for diffusion
Figure 3.2: A schematic example of the progressive modification of the zoning patterns of a crystal by diffusion. (a) A crystal grows in equilibrium with its melt. (b) The concentration of some element along the profile shown by the thick blue line across the crystal in (a). (c) This crystal is transferred to a new melt, where it is no longer in equilibrium. (d) The evolution of the compositional profile with time.

Chronometry to work is that this process places the crystal out of equilibrium with its surroundings. In our schematic example, the crystal is transferred to a melt with lower trace element concentrations. Figure 3.2d shows how the composition of the crystal will evolve with time, as the crystal tries to re-equilibrate. In this example, the element shown in Figure 3.2d diffuses out of the crystal until its concentration is in equilibrium with the new melt.

The rate of diffusion is strongly dependent on the temperature. When the crystal is erupted, it cools rapidly and its composition becomes "frozen in". If the crystal is erupted before it completely re-equilibrates, then compositional profiles intermediate between the initial and equilibrium profiles can be preserved. We can use these profiles to estimate how much diffusion has taken place. If we know the rate at which diffusion occurs, then we can then calculate timescales from these profiles.
Below is a more detailed discussion of the practical issues that need to be considered in order to extract timescales from diffusive gradients recorded in crystals.

3.3.1 Initial conditions

In order to model diffusion in a crystal, we first need a starting point. The example shown in Figure 3.2 is obviously very simple, and modelling real crystals can be much more complicated. Common initial conditions that are assumed include:

Homogeneous crystals

The simplest assumption that can be made for the initial conditions of a crystal is to presume that it was initially homogeneous. If the crystal grew in a stable environment, where storage conditions did not vary significantly during growth, then it would be homogeneous. However, diffusion can also produce homogeneous crystals. If diffusion is allowed to proceed for long enough, it will erase any zoning patterns that formed during crystal growth. This means that unzoned crystals that are in equilibrium with their host melts could be young (they grew from their host melt), or could be old (they re-equilibrated with their host melt). If a process such as recharge occurs repeatedly, the crystals may only record the last of these events. Diffusion can erase all trace of earlier episodes.

Unzoned crystals in equilibrium with their surroundings will not change their composition, and therefore cannot be used to estimate residence times. In order to set up compositional gradients, some processes must occur to set up disequilibrium between the crystal and its environment. Common processes include magma mixing, crustal assimilation and magma ascent (e.g. Bindeman and Valley, 2003; Charlier et al., 2012; Demouchy et al., 2006; Klügel, 1998; Martin et al., 2008; Pan and Batiza, 2002; Wolff et al., 2002). The range of processes that have previously been studied by diffusion chronometry is discussed in more detail in Section 3.5 below. Once disequilibrium is established, diffusion will begin. The timescales calculated in these diffusion models
will be estimates of the time that these crystals resided at high temperatures after
whatever event created the disequilibrium.

Even if we can assume that the crystals were initially homogeneous, we still need to
estimate their original composition. If diffusion is arrested early enough, the centre of
the crystals will still preserve their original composition. Flat plateaus in the centres of
compositional profiles are evidence that this is the case, and the plateau composition
can be used as the initial composition of the entire crystal. Where the initial compos-
itizations cannot be estimated directly from the profiles, for example where diffusion has
progressed to the point where the entire crystal has been affected, the most extreme
possible variation between the initial and equilibrium composition can be chosen. This
will give the maximum time that those crystals could have resided at high temperature
(Zellmer et al., 1999, 2011). Rather than use the maximum possible variation in their
crystals as the initial conditions, Zellmer et al. (2012) used the maximum observed
variation. This gave residence times relative to the youngest crystal, that they argued
had only resided in the magma for a short period based on independent evidence.

Sharp zone boundaries

Zones of different compositions can grown in crystals as a response to changing storage
conditions, and these zones will not be in equilibrium with each other. Diffusion will act
to smooth these zones. In diffusion chronometry, it is often assumed that the boundaries
between these zones was initially sharp, and that any gradient is due diffusion. Models
of diffusion between two zones will estimate the time that that crystal has resided at
high temperature after the growth of the outer zone.

Like for homogeneous crystals above, if diffusion is arrested early enough then the
original compositions of the two zones will be preserved far from the zone boundary.
These compositions can then be used in analytical models with an initial step function
for one-dimensional profiles (Figure 3.1), as well as simple two- and three-dimensional
shapes. More complicated shapes can be modelled numerically.
In practice, the boundaries between two zones will be sharp if the storage conditions change fast compared to crystal growth, or if new storage conditions first trigger a period of partial dissolution before growth recommences. If the storage conditions change slowly, then the composition of the crystals will change gradually. This will lead to a compositional gradient rather than a sharp zone boundary. It is often difficult to tell the difference between gradients created by crystal growth from those created by diffusion. Growth gradients can sometimes be distinguished from diffusive gradients by their shape (Costa et al., 2008), or different isotopes of the same element can also sometimes be used to distinguish growth from diffusion (Sio et al., 2013). Some components, such as NaSi–CaAl in plagioclase and Al in orthopyroxene, diffuse so slowly that their concentrations are unlikely to have been modified over the lifetimes of the crystals (Section 3.4). Their zoning patterns can therefore be used to reconstruct the initial zoning patterns of elements that diffuse more quickly (e.g. Allan et al., 2013). However, even if it is not possible to rule out growth as the cause of compositional gradients, diffusion models can still give useful information. Assuming that the zone boundary was initially a step function will give maximum residence times.

Comparison with slowly diffusing elements

As well as using the qualitative zoning patterns of slowly diffusing elements to estimate the initial zoning patterns of fast-diffusing elements, some studies have used the concentrations of slowly diffusing elements to quantitatively calculate the initial concentrations of fast-diffusing elements.

Druitt et al. (2012) used the slower diffusion of Sr in plagioclase relative to Mg to recreate the original Mg concentrations of plagioclase crystals from Santorini. Sr and Mg are correlated with each other in whole rock data from Santorini, so they should also be correlated in plagioclase crystals. The initial Mg concentrations of the plagioclase crystals could then be estimated using their Sr concentrations, assuming that Sr had not diffused significantly, and any difference in the measured Mg concentrations was
then assumed to be due to diffusion of Mg.

Morgan and Blake (2005) started with the assumption that two different elements with different diffusion coefficients, such as Ba and Sr in feldspar, are often correlated in a crystal as it grows. This would occur if their liquid/crystal partition coefficients remain in a constant ratio, and if the concentration of the elements in the melt is not altered by magma mixing. If the diffusivities of the two elements are different, and neither element is in equilibrium across the crystal, then diffusion will act to reduce the correlation between them. Morgan and Blake (2005) fixed the profile of the fast-diffusing element, and modelled the diffusion of the slowly diffusing element. They showed that the time their models required to bring the composition of the back into correlation of the fast-diffusing element was simply related to the residence time of the crystals at high temperature.

Fractional crystallisation models

Where there is enough information on the magmatic system, then petrologic models can be employed to estimate the initial compositions of the crystals. For example, Zellmer et al. (2003) modelled crystallisation at Montserrat to estimate the initial Sr concentrations of their plagioclase. They found that crystallisation would increase the Sr concentration in the melt, but they argued that changes in the plagioclase/liquid partition coefficient would roughly cancel out this increase in the Sr concentrations of the plagioclase crystals. Zellmer et al. (2003) therefore used an initially uniform Sr concentration, and diffusion was then driven by the chemical potential gradient set up by the differing anorthite content of the adjacent plagioclase zones. Cooper and Kent (2014) also studied Sr diffusion in plagioclase. They used the rhyolite-MELTS fractional crystallisation model of Gualda et al. (2012a) in order to estimate the initial Sr concentration of their crystals.
3.3.2 Boundary conditions

The boundary conditions are the conditions at the edge of the system under study, usually the crystal face. Boundary conditions are said to be either “open” or “closed”, depending on whether material can diffuse across them. This makes little difference to the form of the diffusion profile, but does affect the timescale calculated. Using a closed boundary when an open boundary should have been used can lead to underestimates of the timescale of more than one order of magnitude (Costa et al., 2008).

Closed boundaries can be applied if the crystal is surrounded by another phase in which either the diffusion of the element in question is much slower or it does not partition significantly into. In this case the external mineral quickly either becomes depleted or builds up an excess close to the boundary in the element in question, depending on which way diffusion across the boundary occurs. The greater the excess or depletion, the greater the reduction in diffusion across the boundary.

Diffusion of most elements in silicic melts, however, is generally much faster than in crystals (Zhang et al., 2010). This means that any element that diffuses out of a crystal into the melt can rapidly be transported away into and mixed into the rest of the melt. Similarly, any element that gets depleted close to the crystal/melt interface can swiftly be replaced. In some circumstances this can lead to fixed boundary conditions, for example if the melt volume in the chamber is large compared to the total volume of the crystals. However, if the melt volume is limited, diffusion into or out of the crystal can significantly change the concentrations in the melt. The melt composition can also change for other reasons, for example by fractional crystallisation or mafic recharge.

3.3.3 Picking a diffusion coefficient

Diffusion coefficients are measured experimentally using a variety of different techniques, reviewed recently by Cherniak et al. (2010). These methods usually involve placing a mineral grain or powder into a reservoir either enriched in the element in question or with an isotopic tracer, annealing the mineral under know conditions, and
then measuring how much diffusion has taken place. This is repeated under different experimental conditions to see how the diffusion coefficient varies, allowing empirical relationships between the diffusion coefficient and different variables to be formulated. A few studies use natural samples. These match two (or more) elements, one with known diffusion coefficients and one without. By comparing the compositional profiles of the two elements, the unknown diffusion coefficient can be calculated (e.g. Klügel, 2001; Qian et al., 2010).

In order to calculate timescales from diffusion profiles, it is important to pick a diffusion coefficient that is applicable to the system you are studying. Below is a discussion of how different factors can affect diffusion coefficients; the diffusion coefficients of the systems modelled in this thesis are reviewed in Section 3.4. All diffusion coefficients presented in the text are in m2s$^{-1}$.

Temperature

In order for an atom to jump from one site in the crystal lattice to an adjacent one, as is required for diffusion to occur, it must overcome an energy barrier Q (J mol$^{-1}$). This leads to an Arrhenius equation linking diffusivity D exponentially to temperature T:

$$D = D_0 \exp \left(\frac{-Q}{RT}\right)$$

(3.17)

where D_0 is a constant. Most diffusion experiments span a range of temperatures, and the results are usually presented as fits to an Arrhenius equation.

Arrhenius plots (plots of log(D) against $1/T$) should form a straight line, with a gradient proportional to Q. However, at higher temperatures different mechanisms of diffusion can become active, leading to different activation energies (Chakraborty, 2008). These show up as kinks in an Arrhenius plot. For this reason, extrapolation outside the range of temperatures covered by experimental work is highly uncertain. The effects of other parameters, such as those discussed below, are incorporated into
Anisotropy

Crystallographic direction can have a strong influence on diffusivity, with diffusion along fast directions up to an order of magnitude faster than along slow directions (e.g. Cherniak and Watson, 1994, 2012; Mackwell and Kohlstedt, 1990). However, even when the crystal structure of a mineral is anisotropic, such as feldspar, diffusion can still be isotropic (e.g. Behrens et al., 1990). The anisotropy of the systems modelled in this thesis are discussed below.

If the crystallographic orientation of a given sample is known, then the anisotropy of the system can be incorporated into diffusion models. If the orientation of the crystals being modelled is not known, the effects of anisotropy can be assessed by measuring diffusion profiles along different crystallographic directions.

Composition

The composition of a mineral can have an effect on the prevalence of defects in the crystal structure, and as diffusion often occurs via defects this can affect the diffusion coefficient. For example, in Fe-rich minerals such as pyroxene and olivine, the molar fraction of Fe (X_{Fe}) plays a large role in the formation of vacancies. When removing an atom from the crystalline structure to create a vacancy, charge balance must be maintained. Fe in the structure can change its valency from Fe$^{2+}$ to Fe$^{3+}$, and this can balance the effective charge of a vacancy. This means that vacancy creation is more energetically favourable in Fe-rich compositions, increasing the diffusion rate for any element that diffuses through vacancies (Dohmen and Chakraborty, 2007; Ganguly and Tazzoli, 1994; Jaoul and Ratteron, 1994).

Similar effects can be seen in plagioclase. Diffusion for elements such as Mg, K, Sr and Pb is fastest for Na-rich plagioclase and slowest for Ca-rich (Giletti and Casserly, 1994; Giletti and Shanahan, 1997; Van Orman et al., 2014). Again it is suggested
that this is due to the fact that the enthalpy of formation of vacancies depends on
the composition, and is lower for the removal of Na\(^+\) than Ca\(^{2+}\). Vacancies would,
therefore, be more common in more Na rich crystals, increasing the diffusion rate for
those elements that diffuse through a vacancies. Elements that diffuse by jumping
between interstitial sites rather than between vacancies, such as Li, do not show a
compositional dependence on their diffusion coefficients because the number of available
interstitial sites is unaffected by the composition (Giletti and Shanahan, 1997).

The effect of composition on the diffusion coefficient takes the form:

\[
D_0 \propto \exp (\alpha X_i) \\
\]

where \(\alpha\) is a constant and \(X_i\) is either the molar fraction of Fe or anorthite, depending
on the mineral. The specific compositional dependence of the systems studied in this
thesis are presented in the next section.

Oxygen fugacity

Oxygen fugacity is found to have a strong influence on diffusion in Fe-rich minerals such
as pyroxene and olivine. Diffusion is faster at higher oxygen fugacities, and this is again
thought to be due to vacancies (Buening and Buseck, 1973; Dimanov and Wiedenbeck,
2006; Dohmen et al., 2007; Hermeling and Schmalzried, 1984). The more oxidising the
conditions, the more Fe\(^{3+}\) there will be in the olivine, and hence the greater densities
of vacancies.

Little work has been done on the effect of oxygen fugacity on diffusion in plagioclase.
Cherniak (2003) found that Si diffusion in anorthite was slightly slower under reducing
conditions (NNO buffer) than in samples annealed in air, but Giletti and Casserly
(1994) found that Sr diffusion was within experimental error the same for annealing in
air and with a graphite buffer.

The relationship between the diffusion coefficient is usually modelled using the
following relationship:

\[D_0 \propto (fO_2)^m \] (3.19)

where the exponent, \(m \) is based either on experimental data or on theoretical modelling of the physics of diffusion.

Water or hydrogen fugacity

A lot of the work on the effect of water fugacity on diffusion rates has been done in olivine, where it has important implications for diffusion-controlled deformation processes. The presence of small amounts of water is found to greatly increase the rates of Si, O and Fe–Mg diffusion in olivine (Costa and Chakraborty, 2008; Hier-Majumder et al., 2005; Wang et al., 2004). A similar effect is seen for Al–Si and O diffusion in feldspars (Farver and Yund, 1990; Graham and Elphick, 1990), as well as NaSi–CaAl interdiffusion in plagioclase (discussed below). The suggested mechanism for this effect is again through the creation of vacancies. H\(^+\) can be accommodated in interstitial sites, providing charge balance for vacancies.

The form of water fugacity dependence is the same as for oxygen fugacity:

\[D_0 \propto (fH_2O)^n \] (3.20)

Pressure

Pressure also affects the diffusivity of elements. Pressure dependence is usually incorporated into the equation for the diffusion coefficient using an activation volume, \(V^* \), in an analogous way to the activation energy, \(Q \). This leads to the following relationship:

\[D_0 \propto \exp \left(\frac{PV^*}{RT} \right) \] (3.21)

Diffusion experiments are often carried out at atmospheric pressure. Where high-pressure work has been done, it is often done on elements involved in diffusion creep
in minerals that are found in the mantle (e.g. Béjina et al., 2003). Activation volumes generally lie between 10^{-5} and $10^{-6} \text{ m}^3 \text{ mol}^{-1}$, which is too small to have a large impact on diffusion coefficients at the pressures found in upper-crustal magma reservoirs (e.g. Béjina et al., 2003, and references therein). However, Yund and Snow (1989) found NaSi–CaAl diffusion in plagioclase could be significantly affected at upper-crustal pressures. The pressure dependence of individual diffusion coefficients, where that data exists, is discussed below.

Summary

A complete equation for the diffusion coefficient of an element, taking into account all the variables discussed above, takes the form:

$$D = D_0 \exp \left(\alpha X_i + \frac{-Q + PV^*}{RT} \right) \times (fO_2)^m \times (fH_2O)^n$$

(3.22)

However, most diffusion coefficients have not been studied in enough detail to fully quantify the relationships between all these different parameters. These diffusion coefficients will only be valid under the experimental conditions at which they were determined, and care must be taken in extrapolating them to other conditions.

3.4 Diffusion coefficients used in this thesis

Recent reviews of the experimental data on diffusion coefficients in plagioclase and orthopyroxene have been written by Cherniak (2010) and Cherniak and Dimanov (2010), respectively. Below is a summary of the data for the elements I have used in this thesis.
3.4.1 Plagioclase

Magnesium

Three studies have systematically investigated the diffusion coefficient of Mg in plagioclase, and these are shown in Figure 3.3. LaTourrette and Wasserburg (1998) carried out their experiments in crystals of An$_{95}$ at high temperature, while Faak et al. (2013) used plagioclase crystals of An$_{50}$ to An$_{67}$, and Van Orman et al. (2014) used plagioclase crystals with compositions between An$_{23}$ and An$_{93}$.

All three studies report similar activation energies: LaTourrette and Wasserburg (1998) give 254 ± 43 and 278 ± 43 kJ mol$^{-1}$ for diffusion parallel to the b and c axes, respectively; Faak et al. (2013) give 321 kJ mol$^{-1}$; and Van Orman et al. (2014) give 287 ± 10 kJ mol$^{-1}$. Both LaTourrette and Wasserburg (1998) and Van Orman et al. (2014) find slight anisotropy for Mg diffusion, with diffusion parallel to the c axis.

Figure 3.3: Diffusion coefficients for Mg in plagioclase. References: LW98 (solid lines): LaTourrette and Wasserburg (1998); F13 (dotted line): Faak et al. (2013), silica saturated; VO14 (dashed lines): Van Orman et al. (2014).
up to 2–3 times as fast as diffusion parallel to the b axis. Van Orman et al. (2014) find a large compositional (i.e. X_{an}) dependence, similar to that reported for Sr, Pb, Ba, Nd and Ca (Behrens et al., 1990; Cherniak, 1995, 2002a,b; Cherniak and Watson, 1994; LaTourrette and Wasserburg, 1998). However, Faak et al. (2013) do not find this compositional dependence over the range of plagioclase compositions that they studied (An_{50-67}). Faak et al. (2013) report a dependence on the activity of silica, with $D_{Mg}^{plag} \propto (a_{SiO_2})^{2.6}$.

In this thesis I choose to use the data of Van Orman et al. (2014), as their experiments cover the largest range of temperatures and plagioclase compositions. Importantly, their temperature range includes the temperatures of Santorini dacites and rhyodacites (Chapter 5), therefore extrapolation to lower temperatures is not required. Their complete equation for the diffusion of Mg as a function of temperature and plagioclase composition is:

$$D_{Mg}^{plag} = \exp \left[(-6.06 \pm 1.10) - (7.96 \pm 0.42) X_{An} - \frac{287,000 \pm 10,000}{RT} \right] \quad (3.23)$$

Strontium

Three major studies have systematically looked at Sr diffusion in plagioclase, and these are shown in Figure 3.4. Not shown are the results of LaTourrette and Wasserburg (1998), who also compared Sr diffusion to Mg diffusion in An_{95}. They did not get enough data on Sr diffusion to calculate an Arrhenius relationship, but found it to be a factor of 100 slower than Mg diffusion at the same temperature (consistent with the data of Giletti and Casserly (1994) and Cherniak and Watson (1992) shown in Figure 3.4).

All three studies found that Sr has similar activation energies to Mg. Giletti and Casserly (1994) found an activation energy of 276 kJ mol$^{-1}$ fit all their data, regardless of composition; Cherniak and Watson (1994) present activation energies of 273 ± 13, 265 ± 8, and 268 ± 8 kJ mol$^{-1}$ for An_{23}, An_{43}, and An_{67}, respectively; and Cherniak
and Watson (1992) present a slightly higher value of $330 \pm 23\,\text{kJ}\,\text{mol}^{-1}$ for An_{93}.

Both Giletti and Casserly (1994) and Cherniak and Watson (1994) found that the diffusion rate increases with a decrease in the anorthite content of the plagioclase. There is good agreement on the diffusion coefficient of Sr in An_{95} and An_{65}, however, Giletti and Casserly (1994) find higher diffusion coefficients than Cherniak and Watson (1994) in more sodic plagioclase (Figure 3.4).

The complete function for the diffusion coefficient of Sr calculated by Giletti and Casserly (1994) is:

$$ D_{\text{Sr}}^\text{plag} = \exp \left(-18.8 + 9.4X_{\text{Ab}} + \frac{276,000}{RT} \right) \quad (3.24) $$

where X_{Ab} is the molar fraction of albite.

Cherniak and Watson (1994) found that diffusion normal to (010) was about 0.7 log
units slower than normal to (001), but that this anisotropy was less pronounced in their more sodic samples. Giletti and Casserly (1994) compared their data to that of Giletti (1991), and found that Sr diffusion in albite (An$_{0.6}$) was isotropic, unaffected by oxygen and water fugacity, and unaffected by pressure up to at least 100 MPa.

Potassium

The diffusion of K in plagioclase was measured by Giletti and Shanahan (1997), and their results are shown in Figure 3.5. Giletti and Shanahan (1997) compared their results for K diffusion in albite (An$_{0.6}$) to those of Kasper (1975), reported in Brady (1995), and found that their results were slower than Kasper (1975)’s by about an order of magnitude. The bulk diffusion method used by Kasper (1975) tends to overestimate diffusion coefficients; calculating diffusion coefficients from compositional profiles, as was done by Giletti and Shanahan (1997), should be more accurate.

In An$_{67}$, the diffusion coefficient of K is similar to that of Mg found by Van Orman et al. (2014). Like Mg and Sr, K diffusion is faster in more sodic plagioclase. However, the compositional dependence of K diffusion is not as strong as that found for Mg by Van Orman et al. (2014), or as strong as that found for Sr by Giletti and Casserly (1994). Giletti and Shanahan (1997) report no dependence on water pressure between 0.004 and 100 MPa.

The Arrhenius relationships for K diffusion Giletti and Shanahan (1997) found for K are, for An$_{67}$:

\[
D_{plag}^{\text{K}} = 10^{-5.5 \pm 3.8} \exp \left(\frac{-278,000 \pm 82,000}{RT} \right)
\]

(3.25)

and, for An$_{27}$:

\[
D_{plag}^{\text{K}} = 10^{-5.2 \pm 2.5} \exp \left(\frac{-264,000 \pm 53,000}{RT} \right)
\]

(3.26)

Lanthanum

The diffusion coefficient of four REE (La, Nd, Dy and Yb) in plagioclase were measured by Cherniak (2002b), and the results for La are shown in Figure 3.5. The Arrhenius
relationship for La calculated by Cherniak (2002b) is:

\[
D_{\text{La}}^{\text{plag}} = 1.1 \times 10^{-2} \exp \left(-\frac{464,000}{RT}\right)
\]

(3.27)

The diffusion coefficients for the four REE measured by Cherniak (2002b) are almost identical in An\textsubscript{67}. Cherniak (2002b) also measured the diffusion coefficient of Nd in An\textsubscript{23} and An\textsubscript{93}, and found that Nd diffused faster in more sodic plagioclase. This is consistent with the results for Mg, Sr and K discussed above, and it is likely that La will also diffuse more quickly in more sodic plagioclase.
NaSi–CaAl interdiffusion

The experimental data for NaSi–CaAl interdiffusion is also shown in Figure 3.5. Most of the experiments on NaSi–CaAl interdiffusion use the homogenisation of exsolution lamellae in plagioclase, which is assumed to occur by diffusion. The diffusion coefficient may vary across the lamellae, for example due to compositional differences; this method calculates the average diffusion coefficient.

There is a large range of diffusion coefficients for NaSi–CaAl interdiffusion; this is partly down to the different experimental conditions. Grove et al. (1984) found the slowest diffusion coefficients, in An\text{70–90} annealed in air at atmospheric pressure. Their Arrhenius relationship is:

\[
D_{\text{plag}}^{\text{NaSi–CaAl}} = 1.01 \times 10^{-3} \exp \left(\frac{-516,000}{RT} \right)
\] (3.28)

Yund (1986) carried out experiments in An\text{0–26}. One experiment annealed in air gave a maximum diffusion coefficient consistent with the experiments of Grove et al. (1984) in An\text{70–90}. However, in Yund (1986)’s experiments at 1.5 GPa with 0.2 wt% water added, NaSi–CaAl interdiffusion was several orders of magnitude faster. The Arrhenius relationship they presented for their wet data is:

\[
D_{\text{plag}}^{\text{NaSi–CaAl}} = 1.8^{+10.8}_{-1.5} \times 10^{-3} \exp \left(\frac{-406,000 \pm 20,000}{RT} \right)
\] (3.29)

Liu and Yund (1992) carried out similar experiments to Yund (1986), with An\text{0–26} and An\text{70–90} at 1.5 GPa wit 1 wt% water. All of these experiments give similar diffusion coefficients for NaSi–CaAl interdiffusion, which suggests that there is little dependence on plagioclase composition. Liu and Yund (1992) did find a discontinuity in their data for An\text{70–90} between 975 and 1000 °C, which they attributed to a change in the microstructure of the lamellae between these temperatures.

The effects of hydrogen fugacity and confining pressure on NaSi–CaAl interdiffusion
were investigated by Yund and Snow (1989). The hydrogen fugacity was varied by using three different buffers: wüstite–magnetite (WM), magnetite–haematite (MH), and Mn$_3$O$_4$–Mn$_2$O$_3$ (MO). Yund and Snow (1989) concluded that while hydrogen fugacity does effect $D_{\text{plag}}^{\text{NaSi–CaAl}}$, the range of hydrogen fugacities found in igneous rocks will not change $D_{\text{plag}}^{\text{NaSi–CaAl}}$ by more than about a factor of 2.

The effect of confining pressure found by Yund and Snow (1989) is much greater. At a constant hydrogen fugacity, $D_{\text{NaSi–CaAl}}^{\text{NaSi–CaAl}}$ increases by a factor of about 18 between 0.1 and 500 MPa. The rate of change of $D_{\text{NaSi–CaAl}}^{\text{NaSi–CaAl}}$ with pressure decreases above 500 MPa: between 500 and 1,500 MPa $D_{\text{NaSi–CaAl}}^{\text{NaSi–CaAl}}$ only increases by a factor of about 3.

The effect of water on NaSi–CaAl interdiffusion was also studied by Baschek and Johannes (1995), who used different N$_2$–H$_2$O fluids to vary $X_{\text{H}_2\text{O}}$ between 0 and 0.5. They found that $D_{\text{NaSi–CaAl}}$ increased by a factor of 2.2 with a 0.1 increase in $X_{\text{H}_2\text{O}}$. Their diffusion coefficients were faster than those found by Yund (1986), Yund and Snow (1989) and Liu and Yund (1992), a difference Baschek and Johannes (1995) attributed to differences in the vapour phase present.

3.4.2 Orthopyroxene

Fe–Mg

The available experimental data for Fe-Mg and Al diffusion in orthopyroxene are shown in Figure 3.6.

Ganguly and Tazzoli (1994) used crystal ordering processes to calculate the average diffusion coefficient for Fe–Mg in orthopyroxene along the b and c directions. Their theoretical work suggested that diffusion should be fastest along the c direction and slowest parallel to the a direction. The diffusion coefficient along the c direction that they calculated is:

$$D_{\text{Fe–Mg}}^{\text{opx}} = \exp \left(-6.77 - 5.99X_{\text{Mg}} - \frac{240,000}{RT} \right)$$ \hspace{1cm} (3.30)
3.4. Diffusion coefficients used in this thesis

Figure 3.6: Diffusion coefficients of Fe–Mg (pink) and Al (green) in orthopyroxene. Fe–Mg data: GT94: original data of Ganguly and Tazzoli (1994) calculated for orthopyroxene with $X_{Fe} = 0.1$ and $X_{Fe} = 0.5$ IW buffer shown with solid lines, dashed lines are recalculated for the FMQ buffer as discussed in the text; H06: ter Heege et al. (2006); K01: Klügel (2001). Al data: SB91: the minimum diffusion coefficient of Smith and Barron (1991); N05: Nakagawa et al. (2005).

Klügel (2001) found zoned olivine and orthopyroxene crystals in a harzburgite xenolith. They used the well-constrained diffusion coefficient of Fe–Mg in olivine to calculate the diffusion coefficient of $3 \times 10^{-19} \text{m}^2\text{s}^{-1}$ for Fe–Mg diffusion in orthopyroxene at 1,130°C. This is consistent with the data of Ganguly and Tazzoli (1994) extrapolated to high temperatures, and similar to the diffusion coefficient of (Fe,Mn)–Mg in clinopyroxene (Dimanov and Sautter, 2000; Müller et al., 2013). A small amount of data is presented in the abstract of ter Heege et al. (2006), and their diffusion coefficients are consistent with those of Ganguly and Tazzoli (1994) and Klügel (2001).

The diffusion coefficient calculated by Ganguly and Tazzoli (1994) was calibrated at the IW oxygen buffer, which is significantly more reduced than most magmatic systems (Frost, 1991). This can be corrected using the relationship $D \propto (f_{O_2})^m$.
Data on Fe–Mg ordering processes in orthopyroxene suggest that the exponent should be between 1/5.5 and 1/6.5 ($m \approx 0.17$; Stimpfl et al., 2005). This is similar to the exponent estimated for (Fe,Mn)–Mg diffusion in clinopyroxene (0.22 ± 0.02; Dimanov and Wiedenbeck, 2006). Ter Heege et al. (2006) state that in their experiments $D_{\text{Fe-Mg}}^{\text{opx}}$ increases by a factor of ~ 4 when oxygen fugacity increases from 10^{-12} to 10^{-16} bar; this gives an exponent of ~ 0.15. The diffusion coefficient of Ganguly and Tazzoli (1994) can be corrected for oxygen fugacity to give the following equation, which is used throughout this thesis:

$$D_{\text{Fe-Mg}}^{\text{opx}} = \exp \left(-6.77 - 5.99 X_{\text{Mg}} - \frac{240,000}{RT} \right) \times \left(\frac{fO_2 \text{(sample)}}{fO_2 \text{(IW buffer)}} \right)^{\frac{1}{6}} \quad (3.31)$$

where $fO_2 \text{(sample)}$ is the oxygen fugacity of the sample for which we want to calculate $D_{\text{Fe-Mg}}^{\text{opx}}$, and $fO_2 \text{(IW buffer)}$ is the oxygen fugacity of the IW buffer at the temperature and pressure of interest.

Aluminium

Very little experimental work has been done on the diffusion coefficient of Al in orthopyroxene, but the available constraints are shown in Figure 3.6. A minimum diffusion coefficient of 6×10^{-25} m2 s$^{-1}$ was calculated by Smith and Barron (1991) using zoned orthopyroxene and garnet crystals in mantle xenoliths. Nakagawa et al. (2005) present (in abstract form) the results from high-temperature experiments that are consistent with the minimum diffusion coefficient of Smith and Barron (1991), and calculate the following equation for diffusion parallel to the c axis:

$$D_{\text{Al}}^{\text{opx}} = 0.621^{+5.35}_{-0.576} \exp \left(\frac{501,000 \pm 35,000}{RT} \right) \quad (3.32)$$

Nakagawa et al. (2005) also find that diffusion parallel to the a axis is about one order of magnitude slower than that parallel to the c axis.
3.5 Previous studies

The following discussion is not meant as an exhaustive review of all diffusion chronometry studies done to date, but instead is intended as an introduction to the range of magmatic processes that have been studied using this technique.

3.5.1 Magmatic recharge

Magma mixing is often thought to have triggered eruptions, and diffusion chronometry has been used to estimate the time between mixing and eruption. This has been done for many different types of eruptions, including: mid-ocean ridge basalts (Pan and Batiza, 2002; Zellmer et al., 2012, 2011), flood basalts (Ramos et al., 2005), arc basalts (Kahl et al., 2011; Parkinson et al., 2007; Saito et al., 2010), effusive andesitic eruptions (Coombs et al., 2000; Davidson et al., 2001), explosive andesitic eruptions (Andrews et al., 2008), effusive silicic eruptions (Costa and Chakraborty, 2004; Martin et al., 2008; Nakamura, 1995), explosive silicic eruptions (Druitt et al., 2012; Finney et al., 2008; Martí et al., 2013; Morgan et al., 2006; Ruprecht and Cooper, 2012; Tomiya and Takahashi, 2005). The composition and volume of the magma intruded varies between studies, but they all suggest that a recharge event occurred anywhere from a few days to a few decades before eruption. Diffusion chronometry suggests that even the largest eruptions—such as the Bishop Tuff, Bandelier Tuff, Cerro Galán ignimbrite, and Whakamaru eruption—can be triggered by magmatic recharge less than a few thousand years, and possibly just a few years, before eruption (Boyce and Hervig, 2008; Gualda et al., 2012b; Hervig and Dunbar, 1992; Saunders et al., 2010; Wark et al., 2007; Wilcock et al., 2012).

3.5.2 Mush rejuvenation

While most of the studies above assume that the recharge magma is intruded in to a melt-dominated reservoirs, other studies have looked at the remobilisation of crys-
tal mushes by magmatic recharge. For mafic magmas, the estimated times between intrusion and eruption are only a few days to a few years (Costa et al., 2009; Suzuki et al., 2013). In andesitic systems, the times found are decades to centuries (Cooper and Kent, 2014; Zellmer et al., 1999, 2003). Longer remobilisation times are found for large silicic systems, of a few centuries to a few thousand years (Girard and Stix, 2010; Smith et al., 2010). However, even in these systems, the final, triggering input can occur within a few decades of eruption (Matthews et al., 2012a,b).

3.5.3 Vapour fluxing

As well as the input of fresh magma, the input of vapour can be timed by diffusion chronometry. Plagioclase phenocrysts from the 2004 dome-forming eruption of Mount St. Helens are enriched in Li relative to plagioclase in gabbroic inclusions in the same lava. Kent et al. (2007) assumed that the Li enrichment in the phenocrysts was due to the transfer of a Li-rich vapour phase into the magma reservoir before eruption. The lower Li content in the gabbroic inclusions would be due to their larger size, and the longer time it would take for them to re-equilibrate diffusively. Kent et al. (2007) calculated that the gabbroic inclusions would not be able to preserve their low Li contents for more than about a year. Kent et al. (2007) also found Li concentration gradients in the plagioclase phenocrysts, with Li contents decreasing towards the rim. They explained this through late-stage degassing of the magma, and diffusion models of the Li gradients suggest that this degassing occurred at most one or two weeks before eruption.

3.5.4 Crustal assimilation

Crystals will inherit their isotopic ratios from their host melt during growth. If the isotopic ratio of the melt subsequently changes, then diffusion will act to re-equilibrate the crystals’ isotopic ratios. Diffusion chronometry can be used to time the input of magma from different sources, based upon different isotopic ratios. The low spatial
resolution of techniques capable of determining isotopic ratios does somewhat limit the precision of the timescales estimates that are possible using this method, however.

Several studies have found that crystals record an input of low $^{87}\text{Sr}/^{86}\text{Sr}$ magmas at most a few thousand years (and down to only a few years) before eruption (Davidson et al., 2001; Ramos et al., 2005). The low $^{87}\text{Sr}/^{86}\text{Sr}$ magmas are interpreted to be primitive recharge magmas intruded into a crustally contaminated magma reservoir. While the $^{87}\text{Sr}/^{86}\text{Sr}$ variations of the crystals reveal that crustal contamination is implicated in the generation of these magmas, the timescales estimated from diffusion chronometry relate only to the timescales of mafic recharge.

Bindeman and Valley (2001, 2003) found that the cores of some zircon and quartz crystals in rhyolites from Yellowstone and the Southwestern Nevada Volcanic Field had higher $\delta^{18}\text{O}$ than their host melt. The lower $\delta^{18}\text{O}$ of the host melt is thought to result from the melting of hydrothermally altered plutonic rocks. The high $\delta^{18}\text{O}$ quartz and zircon crystals are interpreted to have remained unaltered in the pluton, before being incorporated into the melt. Once in the melt, they began to exchange O isotopes diffusively. The gradients in O isotopes at the edge of the crystals were modelled to show that these crystals were incorporated into the melt only 10^3–10^4 y before eruption. Slightly shorter timescales of crustal assimilation were found in the Bandelier Tuff by Wolff et al. (2002), who used the fact that quartz and feldspar would equilibrate diffusively at different speeds. Wolff et al. (2002) estimated assimilation occurred $\sim 10^2$ y before the eruption of the Bandelier Tuff.

O isotopes have also been used to time crustal assimilation in basaltic systems. Bindeman et al. (2006) found that olivine and plagioclase crystal from the Laki fissure eruption recorded assimilation of altered basaltic hyloclastites. Diffusion modelling estimated that this occurred less than a few thousand years before eruption.
3.5.5 Magma ascent

Mantle xenoliths have been used to calculate magma ascent rates via diffusion chronometry. Klügel (1998) studied a series of fractures in peridotite xenoliths in a basanite lava from La Palma in the Canary Islands. Fe–Mg gradients extend from the fracture surfaces into the xenoliths, and these are interpreted to be the result of diffusion. The timescales estimated by the modelling of these diffusive gradients fall into two populations. The older population has ages of between 6 and 83 y, and this is thought to represent the time during which the xenoliths were incorporated into their host melt at depth, transported to a shallow magma reservoir, and then stored before eruption. The younger population has ages of less than a few days; Klügel (1998) suggested that this is the time it took for the xenoliths to be transported from the shallow magma reservoir to the surface. Ruprecht and Plank (2013) also looked at the rise of melts from the mantle, by modelling Ni diffusion in olivine crystals from an andesitic eruption of Irazú volcano, Costa Rica. They found that olivine crystals from primitive mantle melts had magmatic residence times of a few months to a few years, suggesting that those mantle melts ascended only a short time before eruption.

Other studies have shown even faster ascent rates from the mantle all the way to the surface. Kelley and Wartho (2000) used Ar diffusion in phlogopite grains in mantle xenoliths to estimate rise times of a few hours to a few days. Demouchy et al. (2006) used hydrogen gradients in olivine crystals from peridotite xenoliths to estimate ascent times of a few hours for the Pali-Aike alkali basalt in Chile. Fe–Mg gradients in olivine crystals found in lherzolite xenoliths from the Hangay dome in Mongolia were modelled by Harris et al. (2009), who found rise times of about four days.

Many orthopyroxene crystals from the rhyolitic Oruanui eruption have internal resorption surfaces that Allan et al. (2013) suggest was caused by decompression. Allan et al. (2013) interpret this as recording the transfer of the Oruanui magma from a deep source mush to a shallower holding reservoir. Diffusion models across these resorption surfaces give the residence times of these crystals after orthopyroxene growth.
recommenced in the shallow reservoir. Allan et al. (2013) found that these residence times were less than 1,600 y, and most of the crystals had residence times of less than 500 y. The final ascent of the Oruanui magma from the shallow holding reservoir to the surface has also been estimated, by Charlier et al. (2012), using Li gradients in quartz and feldspar crystals. Li diffusion was driven by a change in partitioning behaviour during decompression. Because Li diffuses rapidly in quartz and feldspar at magmatic temperatures, ascent times of only 125 to 720 s (equivalent to ascent speeds of 4–21 m s\(^{-1}\)) could be recorded by the Li gradients.
Chapter 4

Fieldwork and age constraints

4.1 Introduction

The Therasia dome complex is \(\sim 2 \text{ km}^3 \) of mainly dacitic domes and coulées that underlies the explosive 22-ka Cape Riva eruption (Druitt, 1985; Druitt et al., 1999). The caldera collapse that accompanied the Cape Riva eruption cut the Therasia dome complex, and exposed a series of lava flows that should record the build-up to a Plinian eruption. Previous studies have noted the similarity in the chemistry and petrology of the Therasia dacites with the dacite erupted during the Cape Riva eruption. This led to the suggestion that the Therasia dacites were leaks from a growing Cape Riva magma chamber, similar to models proposed for Mt Mazama at Crater Lake (Oregon) and Glass Mountain in Long Valley (California) (Bacon, 1985; Bacon and Druitt, 1988; Druitt, 1985; Druitt and Bacon, 1989; Hildreth and Wilson, 2007).

In order to investigate the processes involved in the build-up to the Cape Riva eruption, and the timescales associated with those processes, it is first important to establish the stratigraphy of the lavas. The stratigraphy provides a framework which allows us to see how the chemistry and petrology of the system evolves with time (Chapter 5).
4.2 Methods

Lavas of the Therasia dome complex cropping out in the caldera cliffs were photographed from a boat, and the photos were merged using computer software and interpreted to produce synthetic sections detailing the relationships and lateral extents of individual lavas. Correlations were checked by on-land observations, and stratigraphic relationships were mapped out. Pumice layers and palaeosols between the lavas were also mapped.

Lavas from four key stratigraphic levels were dated by Dr Stépahane Scaillet using the $^{40}\text{Ar}/^{39}\text{Ar}$ technique (Fabbro et al., 2013). The groundmass of each sample was separated, hand-picked, and cleaned in an ultrasonic bath of dilute nitric acid prior to irradiation in the Cd-lined fast neutron slot β1 of the Osiris reactor (CEA, Saclay) with sanidine ACR (1.206 ± 0.002 Ma, Renne et al., 2011, 2010). Upon receipt from the nuclear reactor, the samples were analysed by multiple laser fusion using a high-sensitivity MM5400 mass spectrometer operated in pulse-counting mode following the experimental and correction procedures of Scaillet et al. (2011, 2008). More than 25 individual ages were extracted from each sample via a two-step fusion of \sim10 mg of groundmass replicates (see procedural details in Scaillet et al., 2011).

4.3 Results

4.3.1 Field and stratigraphic relationships

Photographs and sketches of the Therasia cliffs are shown in Figure 4.1 and of the cliffs at Oia and Fira in Figure 4.2. Schematic diagrams summarising the architecture of the lavas are shown in Figure 4.3 with individual lavas numbered for reference, and Figure 4.4 shows the locations of the pumice falls and soil horizons between the lava flows. Lavas of the Therasia dome complex overlie Upper Scoria 2, separated by a palaeosol. They make up much of the present-day cliffs of Therasia (flows 1–24), and
4.3. Results

One lava crops out at the top of the caldera wall north of Fira town (flow 25). Thin lava flows occupying the same stratigraphic position (between Upper Scoria and Cape Riva) occur beneath the town of Oia (flow 26; Andesite of Oia of Druitt et al., 1999).

The lava succession on Therasia consists of many individual lava flows, coulées and domes (termed flows for short). Individual flows range in thickness up to 60 m (Figure 4.5a,b); thin flows tend to be dark grey and glassy, whereas thicker ones are pale grey and de-vitrified. Many exhibit flow banding that is most evident in the thicker, de-vitrified flows. The greatest accumulated thicknesses occur near Cape Tripiti (∼150 m) and Mount Viglos (∼200 m), where, at each location, nine flows are stacked. Correlations of individual flows between the Tripiti and Viglos sections is difficult, as only two flows (3 and 4) are continuous between them. Flows 1 and 24 are compositionally very similar, and are probably the same flow. This is also true of flows 11 and 22.

Most of the lava flows on Therasia are dacitic to rhyodacitic, with two exceptions. First, the basal flows 1 and 24 are andesitic, and we refer to them jointly as the lower Therasia andesite. Second, the topmost flow on Mount Viglos (flow 22) is also andesitic, and we refer to this (and the compositionally similar flow 11) as the upper Therasia andesite. Enclaves of quenched basaltic magma with crenulated margins occur in some of the lowest lavas (flows 1 and 3; Figure 4.5c) and towards the top of the succession (flows 22 and 25); rare gabbroic enclaves also occur. The chemistry of the different units is discussed in more detail in Chapter 5. The widespread distribution of the Therasia lavas show that they were fed from vents extending from the summit to the western flank of the Skaros shield. The feeder dyke of flow 3 is preserved at Cape Tripiti (Figure 4.1b, c). The dyke is oriented NE-SW, parallel to the main dyke trend in northern Thera and the alignment of the recent vents on the Kameni Islands (Druitt et al., 1999; Heiken and McCoy, 1984).

At least five dacitic pumice fall units and a phreatomagmatic tuff occur intercalated within the Therasia succession (Figure 4.4). The pyroclastic units are concentrated towards the top of the succession (younger than flow 7 at Tripiti and younger than
Figure 4.1: Photos of the cliffs of Therasia, and the sketches drawn from them. Inset is a map of Therasia, showing where the photos of the cliffs were taken from. CR = Cape Riva, CTP = Cape Tripiti Pumice, US2 = Upper Scoria 2, MP = Middle Pumice
Figure 4.2: Photos of the cliffs at (a) Oia and (b) Fira, and the sketches drawn from them. Inset is a map of the north of Thera, showing where the photos of the cliffs were taken from. Min = Minoan, CR = Cape Riva, Sk = Skaros, US2 = Upper Scoria 2
Chapter 4. Fieldwork and age constraints

Figure 4.1a

Figure 4.1b

Figure 4.1c

Figure 4.1d

Figure 4.2: Schematic representation of the different lava flows from the Therasia dome complex. Individual flow numbers are referred to in the text. Flows that were sampled and analysed are coloured, while unsampled flows are in grey. Where a correlation of two flows is made based on their chemistry, they are drawn in the same colour. Flows that have been 40Ar/39Ar dated are labelled with arrows; 40Ar/39Ar ages are weighted mean ages. The inset map has outcrops of the Therasia dome complex in pink.
Figure 4.4: Schematic representation of the pumice fall deposits. Lava flows numbered as in Figure 4.3.
Figure 4.5: Photos of the Therasia dome complex. (a) A thick dacitic dome above the lower Therasia andesite. (b) The upper Therasia andesite on top of Mt Viglos (c) A basaltic enclave in a dacitic flow (flow 3) (d) The Cape Tripli pumice fall and an overlying phreatomagmatic tuff (Pumice fall B) above lava flow 3 on the south coast of Therasia. (e) Pumice fall D (f) The thick, orange soil between Upper Scoria 2 and the lower Therasia andesite
flow 20 at Viglos; Figure 4.4), showing an increasing tendency for explosive activity with time during eruption of the Therasia dome complex. A single pumice fall deposit crops out between flows 24 and 27 below Manolas.

The most prominent fall deposit is up to a metre thick and widespread in the cliffs of southern Therasia (Figure 4.5d), but thickens considerably into paleotopography along the southern side of Therasia. It occurs stratigraphically between lava flows 7 and 8, is well sorted, and contains sparsely phryric grey to beige pumices. It is the product of a Plinian not recognised in previous studies. I named this unit the Cape Tripiti pumice fall deposit.

Pumice fall B consists of thinly laminated surge deposits overlain by a pumice fall containing angular shards of obsidian, characteristic of phreatomagmatic activity. Pumice fall C is a well sorted, grey pumice fall, overlain in places by a laminated surge deposit and then an ashy layer containing accretionary lapilli. Pumice fall C is only exposed on the southern cliffs of the island, and is always above every lava. The Cape Riva lies above. Pumice fall D has two magmatic components: a pale pumice, which has blackened thermally in some of the larger pumices, and a red pumice. There were also banded pumices, showing mixing continued up until eruption. In the exposure at Cape Tripiti there was a breadcrust bomb ∼1 m in diameter, although most of the pumices were ∼10 cm at most (Figure 4.5e). Pumice fall E is only found beneath Manolas; it consists of well sorted, light-coloured pumice.

Palaeosols occur at several levels in the Therasia succession. A thick one separates the entire Therasia succession from Upper Scoria 2 (Figure 4.5f). Another separates the lower Therasia andesite from overlying dacitic flows, showing that eruption of the lower Therasia andesite was both preceded, and followed, by significant time breaks. Local palaeosols also occur between some of the pyroclastic layers.

The andesite of Oia is both underlain and overlain by thick palaeosols. Long periods therefore separated its eruption from both the preceding Upper Scoria 2 eruption and the subsequent Cape Riva eruption. Four thin pumice fall layers (5–25 cm thick) occur
within the palaeosol overlying the lava (sequence M11 of Vespa et al., 2006); they may correlate with the pumice layers intercalated within the lavas on Therasia, but this has not been checked chemically.

Products of the Cape Riva eruption are observed to overlie all lavas of the Therasia dome complex. They have been described in detail by Druitt and Sparks (1982), Druitt (1985), and Druitt et al. (1999). The products of the eruption are predominantly dacitic, but minor amounts of andesitic scoria were erupted during the initial Plinian phase.

4.3.2 Age constraints

Radiometric dating of the Therasia lavas

The ages of flows 1, 3, 21 and 25, as calculated by Dr Stéphane Scaillet, are reported as probability density plots in Figure 4.6. Also plotted are the corresponding Gauss plots that reflect the statistical distribution of individual ages for each sample. Complete \(^{40}\text{Ar}/^{39}\text{Ar} \) analytical data are reported in Fabbro et al. (2013) and are summarized in Table 4.1, along with 2\(\sigma \) errors. All four samples exhibit relatively well behaved \(^{40}\text{Ar}/^{39}\text{Ar} \) systematics in the form of unimodal density plots, with no (or only slightly) pronounced tails on either side of the mode. The homogeneity of the samples is reflected by the linear arrays formed by individual ages on the Gauss plots, indicating that they follow the distribution expected from the propagated Gaussian experimental errors. One exception is flow 3, which exhibits an age spread in excess of the variance expected from the analytical errors (i.e., excess-error scatter). This sample is, along with flow 1, the least glassy of the four, and both are characterized by slightly higher errors and some excess-error scatter. This suggests that flows 1 and 3 may have been affected by post-cooling alteration close to sea level near the base of the sequence, resulting in higher apparent ages (presumably due to K loss). In contrast, flows 21 and 25 are very glassy and pristine, with unusually tight error bars; especially flow 21.
4.3. Results

Figure 4.6: Probability density plots (below) and Gauss plots (above) of 40Ar/39Ar data obtained on the four lava flows dated in the Therassia sequence, taken from Fabbro et al. (2013). Ages reported above each plot are ±2σ and represent inverse variance weighted mean ages (density plots) or best-fit apparent ages through the linear array (Gauss plot). Empty symbols on Gauss plots: data excluded from the fit. Red curve on density plots: density distribution with outlier removed; blue curve: density distribution of complete dataset. N: number of data points included in the fit over total number of runs for each sample.
Table 4.1: 40Ar/39Ar-ages for the Therasia dacites, from Fabbro et al. (2013)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Gauss-plot age (ka)</th>
<th>Weighted mean age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN 09-43</td>
<td>Flow 25</td>
<td>25.3 ± 1.4</td>
<td>24.6 ± 1.3</td>
</tr>
<tr>
<td>SAN 10-13</td>
<td>Flow 21</td>
<td>33.1 ± 1.1</td>
<td>33.2 ± 1.1</td>
</tr>
<tr>
<td>SAN 10-12</td>
<td>Flow 3</td>
<td>40.1 ± 2.2</td>
<td>39.4 ± 2.2</td>
</tr>
<tr>
<td>SAN 10-11</td>
<td>Flow 1</td>
<td>49.4 ± 2.5</td>
<td>48.2 ± 2.4</td>
</tr>
</tbody>
</table>

To account for secondary alteration effects, the data from flows 1 and 3 were statistically screened by computing a weighted mean age using a MSWD cut-off value. This includes only the youngest sub-population conforming to a Gaussian distribution within each sample (see procedure in Gansecki et al., 1996; Scaillet et al., 2011). In every instance, the weighted mean age agrees with the age derived from the best-fit line through the corresponding Gauss-plot array (Figure 4.6). In what follows we cite the weighted mean ages.

The ages all are consistent with observed field stratigraphic constraints, as summarized in Figure 4.7. The age of the basal flow (flow 1; 48.2 ± 2.4 ka) is consistent with the presence of a palaeosol separating it from the underlying Upper Scoria 2 (previously dated by 40Ar/39Ar at 54 ± 3 ka by Druitt et al., 1999), and with another palaeosol separating it from the overlying flow 3 (39.4 ± 2.2 ka). Flow 21 yields an age of 33.2 ± 1.1 ka, and flow 25 (at Fira) gives an age of 24.6 ± 1.3 ka. Taken as a whole, our 40Ar/39Ar data between the base (48.2 ka) and the top (24.6 ka) of the lava sequence define a ~24 ky duration for the construction of the Therasia dome complex.

Correlation of the Cape Tripiti Pumice with the Y-4 deep-sea ash layer

The Cape Tripiti pumice is the most prominent pyroclastic layer in the Therasia sequence, and we have explored the possibility that, like most Plinian eruptions of Santorini, (Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978; Schwarz, 2000; Vinci, 1985; Wulf et al., 2002), the Cape Tripiti eruption left a recognisable ash layer in deep-sea sediments of the Aegean area. Previous studies have recognized a 2-7 cm-thick ash layer (Y-4 ash) preserved to the SE of Santorini; this ash lies stratigraphically be-
neath the Cape Riva Y-2 ash layer, and has an age of 25.8 ka estimated by interpolation in the sedimentary sequence of one core (Schwarz, 2000). The uncertainty on this age could be ±2 ka (J Keller, pers. comm). The mineralogy of the Y-4 ash (plag, opx, cpx) pinpoints its source to Santorini (Vinci, 1985). Schwarz (2000) explored the possibility that the Y-4 correlates with the rhyodacitic Plinian phase of Upper Scoria 2; however, the 40Ar/39Ar age data described above rule out this correlation, and show that the Y-4 lies chronologically in the period of the Therasia dome complex. I analysed the interstitial glass of three pumice lumps from the Cape Tripiti deposit, and find excellent agreement with glass composition of the Y-4 (Figure 4.8). A 26 ka age for the Cape Tripiti is consistent with all other age constraints (Figure 4.7).

Synthesis of published dates for the Cape Riva eruption

The Cape Riva eruption has been dated previously by radiocarbon on charcoal from beneath the ignimbrite and via δ^{18}O wiggle matching in deep-sea sequences hosting the distal equivalent Y-2 tephra layer (data and sources in Table 4.2). Calibration of the
Figure 4.8: Chemical discrimination plots for the Cape Tripiti pumice and Y-4 ash layer, after Wulf et al. (2002). The Y-4 data is taken from Vinci (1985) and Schwarz (2000).

Raw radiocarbon data against the curve of Fairbanks et al. (2005) returns a mean age of 21.8 ± 0.4 ka for Cape Riva (Table 4.2). This yields an interval of 2,800 ± 1,400 (2σ) years between the youngest dated Therasia lava (flow 25) and the Cape Riva eruption. This is a maximum estimate for the interval separating the Cape Riva eruption from the Therasia lavas, since some of the undated flows on Therasia may be younger than flow 25, or a younger flow could have been erupted and not preserved.

4.4 Discussion

4.4.1 Reconstruction of events leading up to the Cape Riva eruption

Construction of the ∼12 km³ basaltic-to-andesitic Skaros shield between 67 and 54 ka represented a period where the eruption rate was close to the average for Santorini (∼1 km³ ky⁻¹; Druitt et al., 1999). The Skaros period culminated at 54 ka in the Upper Scoria 2 explosive eruption. Following Upper Scoria 2, the system stagnated and entered a ∼15 ky-long period of near-repose until effusive activity resumed at about 39 ka. Only two lava flows are preserved in the cliffs of Therasia from this
Table 4.2: Published ages for the Cape Riva eruption. The average of these ages is $21.8 \pm 0.4\text{ka (}2\sigma)$

<table>
<thead>
<tr>
<th>Uncalibrated ^{14}C age (ka)a</th>
<th>Calibrated age (ka)</th>
<th>Method</th>
<th>Sample dated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.05 ± 0.34</td>
<td>21.46 ± 0.49b</td>
<td>^{14}C</td>
<td>Charred trees from ignimbrite</td>
<td>Pichler and Friedrich (1976)</td>
</tr>
<tr>
<td>18.17 ± 0.21</td>
<td>21.63 ± 0.33b</td>
<td>^{14}C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.05 ± 0.34</td>
<td>22.47 ± 0.24b</td>
<td></td>
<td>Charcoal from ignimbrite</td>
<td>Eriksen et al. (1990)</td>
</tr>
<tr>
<td>18.15 ± 0.20</td>
<td>21.60 ± 0.32b</td>
<td>^{14}C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.38 ± 0.23</td>
<td>20.53 ± 0.26b</td>
<td></td>
<td>Peat below Y-2 tephra, Philippi basin, Greece</td>
<td>St Seymour et al. (2004)</td>
</tr>
<tr>
<td>18.53 ± 0.15</td>
<td>21.75 ± 0.24b</td>
<td>^{14}C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.24 ± 0.14</td>
<td>22.14 ± 0.17b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>21.62</td>
<td></td>
<td>Interpolation between sapropels dated using ^{14}C</td>
<td>Asku et al. (2008)</td>
</tr>
<tr>
<td>–</td>
<td>19c</td>
<td></td>
<td>Interpolation between isotopic stages dated by $^{231}\text{Pa}/^{230}\text{Th}$</td>
<td>Thunell et al. (1979)</td>
</tr>
</tbody>
</table>

a Published uncalibrated ^{14}C age

b Calibrated using the curve of Fairbanks et al. (2005)

c Not included in the average
period: the ∼48 ka lower Therasia andesite (flows 1 and 24) and an inaccessible flow (flow 2) immediately above it. The andesite of Oia could also belong to this period; it is chemically very similar to Upper Scoria 2 and could be residual magma from that eruption. This period of reduced activity, during which the apparent eruption rate based on preserved products was very low (<0.1 km3 ky$^{-1}$), is marked by the development of thick palaeosols.

Any mantle-derived basalt injected into the crust during this period must have been trapped at depth, perhaps due to the stress imposed by the high Skaros edifice (Pinel and Jaupart, 2000). Accumulation of heat from prolonged, deep intrusion probably generated silicic melt by a combination of fractional crystallisation, partial melting of crustal rocks and defrosting of extant mushy intrusions (Barton et al., 1983; Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989; Mann, 1983). Then, between 39 and 25 ka, a chemically monotonous series of dacites (the Therasia dome complex) was extruded from the summit of Skaros and from dykes on its western flank. The lack of any systematic variation of whole rock or groundmass (i.e., melt) composition with time during this period (Figure 4.7) suggests thermal buffering of the crustal storage region by an approximate balance of heat input, heat output and latent heat of crystallisation. The mean eruption rate during construction of the Therasia dome complex was very approximately 0.1–0.2 km3 ky$^{-1}$: lower than the long-term average on Santorini (∼1 km3 ky$^{-1}$), but higher than that during the preceding repose period. Towards the end of the Therasia activity, lava extrusion became increasingly punctuated by explosive activity. Any basaltic magma intruded beneath the summit region over the 15 ky was unable to reach the surface, except as rare quenched enclaves of dacite-contaminated olivine basalt. Towards the end of the period, basalt mixed with dacite in approximately equal proportions, forming the upper Therasia hybrid andesite.

Following extrusion of the last Therasia lava, no more than 2,800 ± 1,400 years elapsed before the 21.8 ± 0.4 ka Cape Riva eruption took place. At least 10 km3 of 880 °C Cape Riva dacite, poorer in incompatible elements, was then erupted as Plinian
fallout and pyroclastic flows. The eruption also discharged a small quantity ($\leq 1 \text{ km}^3$) of hybrid andesite formed by the mixing of olivine basalt and incompatible-depleted dacite in sub-equal proportions, and the Skaros-Therasia edifice collapsed (Druitt et al., 1999).

4.5 Summary

- The Therasia dome complex is made up of at least 11 different domes and coulées, with at least five pyroclastic deposits. The earliest dated flow is the lower Therasia andesite, which was erupted at $48.2 \pm 2.4 \text{ ka}$. Dacite eruption had begun by $39.4 \pm 2.2 \text{ ka}$, and most of the Therasia dome complex was emplaced after this date.

- The most prominent pyroclastic unit is the product of a previously unrecognised Plinian eruption, named here the Cape Tripiti pumice. This pumice fall correlates with the deep sea Y-4 ash layer. The Y-4 ash layer has been dated at $\sim 26 \text{ ka}$, which is consistent with the $^{40}\text{Ar}/^{39}\text{Ar}$ ages of the lavas.

- The youngest dated lava flow was erupted at $24.6 \pm 1.3 \text{ ka}$; this is $2,800 \pm 1,400$ years before the Cape Riva. This is a maximum estimate of the time between the end of the Therasia eruptions and the onset of the Cape Riva eruption: some of the undated flows of the Therasia dome complex may be younger, or younger flows may have been buried by the caldera collapse that accompanied the Cape Riva eruption.
Chapter 5

Chemistry and petrology

5.1 Introduction

Because the Therasia dome complex directly underlies the deposits from the Cape Riva eruption, it can be used to trace the evolution of the volcanic system in the build-up to the Cape Riva eruption. The stratigraphic relations discussed in Chapter 4 provide a framework which allows us to track the changes in magma chemistry and petrology with time. The radiometric ages of the different Therasia units, and of the Cape Riva eruption, constrain the timescales of these changes. From these ages we know that the eruption of dacite commenced ~ 18 ky before the Cape Riva eruption, and the last Therasia lava was erupted at most 2800 ± 1400 years before the Cape Riva.

The petrology and chemistry of the Cape Riva products has already been studied in some detail (Druitt, 1983, 1985; Druitt et al., 1999). The majority of the Cape Riva deposits are dacitic, with 15–20 wt% of crystals of plagioclase, two pyroxenes and Fe–Ti oxides. The Cape Riva also has a minor hybrid andesite component. There is no systematic variation of the composition of the dacitic component with stratigraphic height, which suggests that a large body of homogeneous dacite existed in the crust before the onset of eruption. The collapse of the Skaros-Therasia edifice during the Cape Riva eruption suggests that this magma body was located beneath Skaros-Therasia.
Phase equilibria experiments constrain the depth of dacite storage before the eruption to 8 ± 2 km (Cadoux et al., 2014). The hybrid andesite either underlain the dacite, or was introduced shortly before eruption.

The Therasia lavas have not been studied in as much detail. Druitt (1983, 1985) reported that the whole-rock major element compositions and petrology of the Therasia dome complex are very similar to that of the Cape Riva. The majority of the lava flows and pumice fall deposits that make up the Therasia dome complex are dacitic, like the Cape Riva, and they have a similar phenocryst assemblage. Capping the Therasia sequence is a hybrid andesite, that closely resembles the one found in the Cape Riva deposits. These similarities, along with the fact that the vents for the Therasia dome complex were located in the area that subsequently collapsed to form the Cape Riva caldera, led to the Therasia dacites being interpreted as leaks from the growing Cape Riva magma chamber.

Before the crystal zoning patterns—and the ages recovered from diffusion modelling—can be interpreted, the wider context needs to be understood. This chapter looks at what the chemistry and petrology can tell us about the processes that occurred in Santorini’s plumbing system prior to the Cape Riva eruption.

5.2 Methodology

Representative samples of lava and pumice from the Therasia complex, and pumice and scoria from the Cape Riva deposits, were collected for chemical analysis. All samples were chosen to be as fresh and glassy as possible. Groundmass separates of selected lavas were obtained in order to analyse the compositions of the melt phases of the magmas. This was done using a magnetic separator, and interstitial glasses of pumice samples were concentrated by flotation in water. Remaining crystals were then removed by hand picking under an optical microscope.

Major elements were analysed using inductively coupled plasma atomic emission
spectroscopy (ICP AES) at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand. Measurements were calibrated using three standards: a blank (LiBO$_2$), basalt (BR) and granite (GH). The DR-N and BHVO-2 standards were then passed as unknowns. Trace elements were analysed using inductively coupled plasma mass spectroscopy (ICP MS) at the Institut des Sciences de la Terre, Université de Grenoble. The ICP MS analyses were calibrated using the BR standard, and the BVHO-2 and AGV-1 standards were passed as unknowns. Some previous Cape Riva samples of Druitt et al. (1999) were re-analysed for comparison with the data of those authors. These comparisons showed good agreement between the two datasets for the elements used in the present paper.

Phenocryst contents were calculated by mass balance from incompatible element concentrations in the whole rock and groundmasses (Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Tl, Pb). The concentrations of these elements in the groundmass separates was plotted against their concentration in the whole rock analyses, and they were fit using a linear regression through the origin. By assuming the concentrations of these elements is negligible in the crystals, it is possible to calculate the total crystal content.

Mineral compositions were analysed using the Cameca SX 100 electron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, using a beam current of 15 nA. Glasses were analysed with a beam current of 4 nA and a defocussed beam (10–15 µm) in order to limit Na loss. Fe-Ti oxide compositions were analysed either in touching pairs or in pairs (that would have been in contact with the same melt) adhering to the outside of the same pyroxene crystal. Magmatic temperatures and oxygen fugacities were calculated with the ILMAT software package (Lepage, 2003) using the formulation of Andersen and Lindsley (1985) and Stormer (1983). This formulation has been found to give good agreement with data from phase-equilibria experiments within the 850–950°C temperature range (Blundy and Cashman, 2008; Cottrell et al., 1999). These were compared to the temperatures
calculated using the method of Ghiorso and Evans (2008), obtained from the calculator on the authors’ website (http://ctserver.ofm-research.org/webcalculators.html).

5.3 Results

5.3.1 Mineral chemistry and assemblages

In this section I focus on the petrology and chemistry of Therasia lavas and pumices younger than \(\sim 39 \) ka (i.e., flow 3), as well as the products of the Cape Riva eruption (Figure 5.1). The lower Therasia andesite, and the andesite found at Oia are only discussed briefly, as they are significantly older than the bulk of the Therasia dome complex. In so doing we focus on the effusive leaks of dacite during the build-up to the Cape Riva eruption. The zoning patterns of plagioclase and orthopyroxene crystals from the dacites are discussed in more detail in Chapters 6 and 7, respectively.

Andesite of Oia

The andesite of Oia is found only underneath Oia. Its precise stratigraphic position relative to the lavas on Therasia is unknown, however as it sits above the Upper Scoria 2 deposits and below four Therasia pumice falls, it likely was erupted near the beginning of the Therasia sequence. It has a whole rock \(\text{SiO}_2 \) of 57.3 wt% and an MgO content of 3.5 wt%. It is crystal-poor, with 7.8 vol% crystals of plagioclase and pyroxene. It has a glassy groundmass with 58 wt% \(\text{SiO}_2 \) and 3.5 wt% MgO.

Figure 5.1 (facing page): Mineral compositions from the different rock units. Filled symbols are crystal cores or undifferentiated measurements, open symbols are crystal rims. Plagioclase populations are coloured according to their origin: orange symbols are groundmass crystals, blue symbols are populations that originated in a silicic magma and green symbols are populations that originated in a mafic magma. Some Cape Riva data taken from Druitt et al. (1999). The fields of pyroxene compositions in the dacites (a, d) are shown on the other figures, for comparison.
5.3. Results

a) Therasia dacites

b) Therasia Mafic enclave

c) Upper Therasia hybrid andesite

d) Cape Riva dacite

e) Cape Riva mafic blebs

f) Cape Riva hybrid andesite
Lower Therasia andesite

The lower Therasia andesite has 56.2 wt% SiO$_2$ and 4.1 wt% MgO. It has 23.6 wt% crystals of plagioclase, pyroxene and olivine, set in a highly crystalline groundmass of acicular plagioclase, pyroxene and Fe-Ti oxides with 57.4 wt% SiO$_2$.

Therasia dacites

The Therasia dacites have whole rock SiO$_2$ contents of 64.6–68.7 wt% and MgO contents of 0.7–1.5 wt%, with groundmass (i.e. melt) SiO$_2$ contents of 64.7–69.1 wt%. No systematic evolution of either whole rock or groundmass composition is observed with height in the lava succession. The dacites contain 1–17 wt% phenocrysts (with a smallest dimension $>$0.5 mm) of plagioclase (75–85 vol%), two pyroxenes (10–20%, with opx $>$ cpx), Fe–Ti oxides (5–8%) and trace amounts of olivine (Table 5.1). Apatite occurs as inclusions in orthopyroxene crystals. The glassy groundmass contains microlites of feldspar and Fe–Ti oxides. The petrology of flows 3 (GS10-27a), 5 (GS10-17), 8 (GS10-14) and 9 (GS10-16) were studied in detail.

The free-floating crystals can be split into three groups: phenocrysts, xenocrysts, and groundmass microlites. Some of the crystals are grouped into clusters, and these clusters can be split into two groups: glass-bearing clusters and subsolidus nodules.

Phenocrysts: Plagioclase phenocrysts are normally zoned, with cores of An$_{50–89}$ and rims of An$_{39–51}$, and commonly contain multiple internal dissolution surfaces and sawtooth zoning. The rims are euhedral, and are compositionally similar to plagioclase microlites in the groundmass. The anorthite content of the mode of the phenocryst population varies slightly between flows. The some unzoned plagioclases, and the cores of some sawtooth-zoned plagioclases, in flow 5 have large, brown glass inclusions. These glass inclusions were not seen in the other flows. Orthopyroxene phenocrysts are euhedral and have compositions of Wo$_{3–4}$En$_{53–66}$Fs$_{37–43}$. Most of the orthopyroxenes have a $\#$Mg of 58–64 and are unzoned, however a few crystals have either
Table 5.1: Total and modal crystal contents for the Therasia dome complex. Modal mineral compositions given as a percentage of the total crystal content.

| Sample | Unit | Flow | Total crystal content | Plagioclase | Pyroxene | Opaques | Olivine
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-50</td>
<td>AO</td>
<td>26</td>
<td>7.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-44b</td>
<td>LTA</td>
<td>1</td>
<td>23.6%</td>
<td>79.0%</td>
<td>18.7%</td>
<td>2.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>GS10-27a</td>
<td>TD</td>
<td>3</td>
<td>8.6%</td>
<td>74.2%</td>
<td>18.6%</td>
<td>7.3%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-17</td>
<td>TD</td>
<td>5</td>
<td>4.0%</td>
<td>72.9%</td>
<td>20.3%</td>
<td>6.8%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-14</td>
<td>TD</td>
<td>8</td>
<td>5.2%</td>
<td>80.1%</td>
<td>13.5%</td>
<td>6.4%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-16</td>
<td>TD</td>
<td>9</td>
<td>6.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-30a</td>
<td>TD</td>
<td>19</td>
<td>2.3%</td>
<td>79.3%</td>
<td>12.9%</td>
<td>7.9%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-20</td>
<td>TD</td>
<td>20</td>
<td>5.1%</td>
<td>75.5%</td>
<td>15.8%</td>
<td>8.5%</td>
<td>0.3%</td>
</tr>
<tr>
<td>GS10-48</td>
<td>TD</td>
<td>21</td>
<td>2.3%</td>
<td>84.9%</td>
<td>9.8%</td>
<td>5.4%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-40</td>
<td>TD</td>
<td>25</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-27d</td>
<td>CTP</td>
<td>A</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-27h</td>
<td>TP</td>
<td>C</td>
<td>4.7%</td>
<td>93.3%</td>
<td>3.6%</td>
<td>3.0%</td>
<td>n.d.</td>
</tr>
<tr>
<td>GS10-28c</td>
<td>TP</td>
<td>D</td>
<td>0.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-28f</td>
<td>TP</td>
<td>D</td>
<td>1.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-28d</td>
<td>TP</td>
<td>D</td>
<td>0.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-22</td>
<td>UTA</td>
<td>22</td>
<td>25.4%</td>
<td>75.9%</td>
<td>18.5%</td>
<td>5.5%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Total crystal contents are in wt%, mineral modes are in vol%.

Xenocrysts: Xenocrysts of calcic plagioclase (An_{60–89}) occur frequently in the dacites, along with more calcic clinopyroxenes (Wo_{47–50}En_{30–44}Fs_{8–20}).

Groundmass microlites: Acicular plagioclase is the dominant groundmass phase. Most crystal have compositions of An_{30–51}, although flow 9 contains some ternary feldspars which contain up to 47 mol% orthoclase (KAlSi₃O₈).

Glass-bearing clusters: These clusters were found in all the lavas studied except flow 5, and contain euhedral crystals of plagioclase, orthopyroxene and clinopyroxene. Plagioclases in these clusters are similar to those found freely floating in the magma; their composition varies in a similar fashion to the...
Chapter 5. Chemistry and petrology

phenocrysts, with cores of An$_{44-70}$ and rims of An$_{40-51}$. However, they lack melt inclusions or saw-tooth zoning sometimes found in the free-floating phenocrysts. Both orthopyroxene and clinopyroxene crystals in the clusters have the same composition as those found individually in the magma, with compositions of Wo$_{3-4}$En$_{54-60}$Fs$_{36-42}$ and Wo$_{40-42}$En$_{39-42}$Fs$_{16-22}$, respectively. Between the crystals are pockets of brown glass, and electron microprobe analyses (with the beam opened to 10–20 µm) show these glass pockets to have similar composition to the groundmass (Table 5.2).

Subsolidus nodules: Alongside the glass-bearing clusters, there are holocrystalline nodules of plagioclase, pyroxene and sometimes olivine. The plagioclases in these clusters vary from flow to flow. In flow 3 they are highly calcic (An$_{89}$) and unzoned apart from a small syn-eruptive overgrowth on crystal faces exposed to the melt. The sub-solidus plagioclase crystals in flows 5 and 9 are similar to each other. They have variably calcic cores (An$_{50-84}$), but their rims are roughly in equilibrium with their host magma (An$_{41-43}$ in flow 5, An$_{48}$ in flow 8). Most of the orthopyroxenes from sub-solidus clusters have similar compositions to the phenocrysts, however there are a small number of more magnesian crystals (up to En$_{69}$). Clinopyroxenes that resemble those free-floating in the lavas are found in these clusters, along with another group of more calcic pyroxenes. These match the composition of the clinopyroxenes found in the mafic blebs (Wo$_{47-50}$En$_{30-44}$Fs$_{8-20}$, discussed below). Olivines are only found in the holocrystalline clusters, and have not been observed as individual crystals. They often show textures characteristic of sub-solidus reactions, such as olivines breaking down to form magnetite–pyroxene symplectites. They are unzoned, and have a range of compositions from Fo$_{51}$ to Fo$_{62}$.

The similarity between phenocryst rims and groundmass microlite compositions suggests an equilibrium phenocryst rim assemblage in these lavas. The zoning patterns
Table 5.2: Average glass compositions inside glass-bearing clusters and groundmass compositions, measured using a defocused electron microprobe beam

<table>
<thead>
<tr>
<th>Oxide (wt%)</th>
<th>Flow 3 Cluster</th>
<th>Flow 3 Groundmass</th>
<th>Flow 8 Cluster</th>
<th>Flow 8 Groundmass</th>
<th>Flow 9 Cluster</th>
<th>Flow 9 Groundmass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>69.97</td>
<td>67.12</td>
<td>68.48</td>
<td>69.67</td>
<td>68.73</td>
<td>69.74</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.00</td>
<td>2.96</td>
<td>5.05</td>
<td>3.22</td>
<td>5.38</td>
<td>3.46</td>
</tr>
<tr>
<td>CaO</td>
<td>1.84</td>
<td>3.16</td>
<td>1.58</td>
<td>2.39</td>
<td>1.15</td>
<td>2.20</td>
</tr>
<tr>
<td>FeO</td>
<td>3.39</td>
<td>3.71</td>
<td>3.35</td>
<td>2.89</td>
<td>3.70</td>
<td>3.08</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.35</td>
<td>5.08</td>
<td>4.01</td>
<td>5.21</td>
<td>3.48</td>
<td>5.15</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.34</td>
<td>15.61</td>
<td>14.11</td>
<td>14.99</td>
<td>12.21</td>
<td>14.88</td>
</tr>
<tr>
<td>MgO</td>
<td>0.29</td>
<td>0.52</td>
<td>0.31</td>
<td>0.37</td>
<td>0.43</td>
<td>0.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.81</td>
<td>0.49</td>
<td>0.67</td>
<td>0.65</td>
<td>0.73</td>
<td>0.59</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.10</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>98.22</td>
<td>98.92</td>
<td>97.82</td>
<td>99.61</td>
<td>96.07</td>
<td>99.64</td>
</tr>
</tbody>
</table>

of the plagioclase and orthopyroxene are interpreted as recording varying melt composition during phenocryst growth, and are discussed in more detail in Chapters 6 and 7.

The glass-bearing clusters are interpreted as growing alongside the free-floating phenocrysts, but in a mush zone on the reservoir margins. This is supported by the textural and compositional similarity between the plagioclase, orthopyroxene and clinopyroxene found in these clusters and the phenocrysts, along with the fact that the glass within these clusters has the same composition as the glass outside. The euhedral shape of the crystals also suggests that these crystals have a simple growth history and they are not, for example, remelted plutonic mush.

The subsolidus nodules are interpreted as fragments of gabbro derived from plutonic material related to previous intrusions. Their holocrystalline nature is evidence that they represent magma that has fully solidified. The presence of symplectites in some of these clusters implies prolonged storage at elevated—but subsolidus—temperatures. Variations in the crystals in holocrystalline clusters in different flows suggest that the plutonic material they are derived from is heterogeneous.
Therasia mafic enclaves

Quenched basaltic (49.6–51.8 wt% SiO$_2$; 5.4–8.6 wt% MgO) enclaves 1–10 cm in diameter are found in flows 3 and 11, where they make up <1% of the erupted volume. They contain phenocrysts of plagioclase (~55 vol%), pyroxenes (~35 vol%, with cpx ≫ opx) and olivine (~10 vol%) set in a glassy, diktytaxitic groundmass. Two populations of plagioclase phenocrysts with different core compositions, but similar rim compositions, are observed: (1) normally zoned crystals with cores of An$_{83-91}$ and rims of An$_{64-71}$; (2) reversely zoned crystals with cores of An$_{51-61}$, separated by a sieve-textured zone from rims normally zoned from An$_{82-86}$ to An$_{64-71}$. Plagioclase in the groundmass is An$_{32-42}$. Olivines are normally zoned from cores of Fo$_{77-82}$ to rims of Fo$_{53-60}$. Two clinopyroxene populations are found, although their textural relationships with the plagioclase populations are ambiguous. Both cpx populations are euhedral and unzoned, with compositions of (1) Wo$_{43-46}$En$_{42-46}$Fs$_{10-12}$ and (2) Wo$_{41-44}$En$_{39-43}$Fs$_{15-20}$. Rare orthopyroxenes with compositions of Wo$_3$En$_{67}$Fs$_{30}$ also occur.

The occurrence of two plagioclase populations with different core compositions, but similar, intermediate rim compositions is indicative of magma mixing. Plagioclases of population 1 are interpreted as derived from a basaltic melt, and those of population 2 from a more evolved melt. The cores of olivine crystals (molar Mg/Fe = 3.37–4.64) are in equilibrium with the whole rock (i.e., basaltic) composition (Mg/Fe = 1.20), assuming a crystal-melt partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970). The composition of population-2 clinopyroxenes is similar to that of the clinopyroxene phenocrysts in the dacite. The enclaves are interpreted as having formed by the in-mixing of a small proportion of more evolved magma (possibly dacitic, containing population-2 plagioclase cores + population-2 cpx) into a basalt (containing population-1 plagioclase cores + olivine + population-1 cpx; Figure 5.2). Mixing occurred long enough prior to eruption for plagioclase from the evolved component to partially melt (generating sieve texture), followed by overgrowth of equilibrium rim
Figure 5.2: Summary of plagioclase populations in the Cape Riva and Therasia rocks. The numbers are the molar per cent anorthite content of the plagioclase compositions on plagioclases from both populations.

Upper Therasia andesite

The upper Therasia andesite (60.5 wt% SiO$_2$, 2.6 wt% MgO) contains 26 wt% macroscopic crystals: plagioclase (75 vol%), pyroxenes (20%, with opx \approx cpx), Fe–Ti oxides (5%) and trace amounts of olivine set in a glassy, 64 wt% SiO$_2$ groundmass containing microlites of plagioclase and magnetite (Table 5.1). Three distinct populations of plagioclase are observed: (1) normally zoned crystals with cores of An$_{83-89}$, and euhedral rims of An$_{57-61}$; (2) crystals with cores of An$_{53-60}$ separated by a sieve-textured zone from rims normally zoned from An$_{75-87}$ to An$_{55-70}$; (3) normally zoned crystals with cores as calcic as An$_{76}$ and rims of An$_{36-55}$. Rare olivines have cores of Fo$_{80-83}$, and rims of Fo$_{67-69}$. Orthopyroxenes have compositions of Wo$_3$En$_{57-59}$Fs$_{38-39}$, and
clinopyroxenes have compositions of $\text{Wo}_{39-42}\text{En}_{40-43}\text{Fs}_{15-20}$.

Plagioclase populations 1 and 2 texturally and compositionally resemble plagioclase populations 1 and 2 (respectively) in the basaltic enclaves; population 3 resembles plagioclase phenocrysts in the dacites. The olivine rims have a molar Mg/Fe ratio of 1.99–2.22, which is in, or close to, equilibrium with the groundmass (Mg/Fe = 0.76), assuming a partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970); the cores have an Mg/Fe ratio of 4.11–4.81 and grew in equilibrium with a basaltic melt. The two pyroxenes are indistinguishable from the same phases in the dacites. The upper Therasia andesite is interpreted as a hybrid magma formed by the mixing of the basalt (containing plagioclase of populations 1 and 2 + olivine) represented by the enclaves, with typical Therasia dacite (containing population-3 plagioclase + opx + cpx; Figure 5.2). Mixing occurred long enough prior to eruption to permit physical homogenization of the resulting hybrid melt, but not long enough for crystals to grow rims in equilibrium with that melt, or for those from the dacite to be resorbed.

Cape Riva dacite

Dacitic pumices of the Cape Riva eruption have whole rock compositions of 64–67 wt% SiO$_2$ and 1.0–1.9 wt% MgO, and interstitial glasses with 70–72 wt% SiO$_2$. Phenocryst phases and proportions are the same as in the Therasia dacites, with total contents ranging from 15 to 20 wt%. Plagioclase phenocrysts are euhedral, with rims of An$_{36-40}$, and cores as calcic as An$_{60}$. As in the Therasia dacites, plagioclase phenocrysts in the Cape Riva dacite contain complex dissolution surfaces and saw tooth zoning. Rare xenocrysts of An$_{70-96}$ also occur. Orthopyroxene phenocrysts have compositions of Wo$_3$En$_{52-68}$Fs$_{45-29}$, and clinopyroxenes from Wo$_{44}$En$_{41}$Fs$_{15}$ to Wo$_{40}$En$_{35}$Fs$_{24}$.

Cape Riva mafic enclaves

Millimetre-sized quenched blebs of basaltic magma occur dispersed ($\ll 1\%$) through the Cape Riva dacite, and in banded pumices containing the dacite and andesite mingled
together. They contain An$_{90-96}$ plagioclase, Fo$_{72-84}$ olivine, Wo$_{41-44}$En$_{36-41}$Fs$_{15-23}$ cpx and rare Wo$_3$En$_{68}$Fs$_{29}$ opx. The enclaves have micro-crenulated surface textures, and many have a single crystal or xenocrystic fragment at their centres. They are interpreted as small fragments of chilled basaltic magma.

Cape Riva andesite

The Cape Riva andesitic scoria has 60–62 wt% SiO$_2$ and 3.2–2.5 wt% MgO; it contains \sim12 wt% macroscopic crystals of plagioclase, olivine, clinopyroxene and magnetite set in brown dacitic glass with 63.5 wt% SiO$_2$. The pure andesitic component (free of any in-mingled streaks of dacite) contains two populations of plagioclase: (1) a calcic population of An$_{70-96}$, with a discrete population of euhedral, unzoned grains of An$_{90-96}$, and (2) a less abundant population with cores up to An$_{52}$ and rims of An$_{30-40}$. Olivines are compositionally uniform (Fo$_{84}$). Augites occur sparsely as microphenocrysts of Wo$_{40-41}$En$_{41-43}$Fs$_{19}$. No orthopyroxene has been observed.

The olivines and population-1 plagioclases in the andesite resemble phenocrysts present in the basaltic enclaves, whereas population-2 plagioclase resembles phenocrysts in the dacites. Genesis of the Cape Riva andesite is inferred to have involved the mixing of basaltic and dacitic magmas (Figure 5.2). Eruption occurred long after mixing for the hybrid glass to become homogeneous at the scale of the electron beam (\$\sim10\ \mu$m).

5.3.2 Whole rock chemistry and mixing systematics

Whole rock analyses of representative samples of each unit are shown in Table 5.3, and representative groundmass analyses in Table 5.4. The complete dataset is presented in Appendix B. We have used a series of variation diagrams showing the whole rock compositions of the Therasia and Cape Riva magmas, plus those of the lavas of the Skaros shield (from Huijsmans, 1985) to gain insight into the petrogenesis of the dif-
ferent magmas (Figs 11 and 12). Typical fractionation trends for Santorini magmas are also shown (Mann 1983; Huijsmans 1985; Druitt et al. 1999).

Figure 5.3 shows the variations of five key major oxides (CaO, MgO, FeO, TiO$_2$, P$_2$O$_5$) and two strongly compatible trace elements (Cr and Ni). On the plots of CaO and MgO (also Na$_2$O, Al$_2$O$_3$, V and Sc) on which typical fractionation trends are weakly curved, all the Therasia and Cape Riva magmas fall on, or close to, the fractionation trend. However, on the plots of FeO, TiO$_2$, P$_2$O$_5$, Cr and Ni, on which the fractionation trends are strongly curved, the Cape Riva hybrid andesite falls systematically off the fractionation trend. This is what we would expect to see if it was generated by the mixing of mafic and silicic end-members. The upper Therasia hybrid andesite also falls off the fractionation trend on plots of FeO and TiO$_2$; it does not on the other plots because mixing occurred along the fractionation trend, not across it. The lower Therasia andesite has slightly lower FeO$_{tot}$ and TiO$_2$, suggesting it may also be a hybrid. The andesite of Oia, however, sits near the top of the TiO$_2$ peak (Figure 5.3), showing that it is the product of fractionation and not mixing. Geochemically it is similar to the Upper Scoria 2, with slightly lower Al$_2$O$_3$ and Sr than the other Therasia andesites. This may mean that the andesite of Oia is left over magma from the Upper Scoria 2 eruption, or that it was produced by the same processes.

Mixing models using the ‘PetroGraph’ software (Petrelli et al., 2005) successfully reproduce the compositions of the upper Therasia and Cape Riva hybrid andesites (Table 5.5). In the case of the upper Therasia andesite, low Cr and Ni require the mafic end-member to also have low Cr and Ni. The relatively high P$_2$O$_5$, close to the fractionation trend, requires the silicic end-member to have a high P$_2$O$_5$ content, limiting it to a silica content of 64–67 wt%. The upper Therasia andesite can be successfully reproduced by mixing \sim60 wt% of a typical Therasia dacite with \sim40 wt% of mafic magma with the same composition as a basaltic enclave (GS10-43) collected from the same flow (sum of the squares of the residuals of 0.16). The Cape Riva andesite has higher Cr and Ni than the upper Therasia andesite, requiring that the
5.3. Results

Table 5.3: Representative whole rock analyses of the Therasia and Cape Riva products

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Therasia mafic enclave</th>
<th>Upper Therasia andesite</th>
<th>Therasia dacite</th>
<th>Cape Riva andesite</th>
<th>Cape Riva dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-43</td>
<td>Flow 22</td>
<td>51.87</td>
<td>60.26</td>
<td>66.00</td>
<td>60.19</td>
<td>65.84</td>
</tr>
<tr>
<td>GS10-22</td>
<td>Flow 22</td>
<td>19.07</td>
<td>17.16</td>
<td>15.38</td>
<td>16.43</td>
<td>15.40</td>
</tr>
<tr>
<td>GS10-17</td>
<td>Flow 5</td>
<td>0.89</td>
<td>0.86</td>
<td>0.75</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>S09-41</td>
<td>Cape Riva A</td>
<td>8.08</td>
<td>6.05</td>
<td>4.66</td>
<td>6.58</td>
<td>4.88</td>
</tr>
<tr>
<td>S09-40</td>
<td>Cape Riva A</td>
<td>5.44</td>
<td>2.66</td>
<td>1.08</td>
<td>3.17</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SiO$_2$</td>
<td>Al$_2$O$_3$</td>
<td>TiO$_2$</td>
<td>FeO$_T$</td>
<td>MgO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.87</td>
<td>19.07</td>
<td>0.89</td>
<td>8.08</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.26</td>
<td>17.16</td>
<td>0.86</td>
<td>6.05</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66.00</td>
<td>15.38</td>
<td>0.75</td>
<td>4.66</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.19</td>
<td>16.43</td>
<td>0.88</td>
<td>6.58</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.84</td>
<td>15.40</td>
<td>0.76</td>
<td>4.88</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Major elements (ICP-AES, wt% dry)

	Li	16.2	18.1	25.5	16.4	17.4
	Sc	25.9	17.4	13.9	23.4	13.8
	V	193.0	109.0	30.1	139.0	30.2
	Cr	31.30	9.52	1.17	27.10	0.60
	Ni	15.80	5.65	0.86	14.20	2.57
	Rb	25.8	68.1	104.0	50.0	71.7
	Sr	323	231	133	185	127
	Y	23.8	37.9	50.8	38.5	45.9
	Zr	108	200	321	175	250
	Nb	4.71	9.47	12.90	7.12	9.44
	Ba	251	391	513	297	375
	La	11.9	23.5	32.2	19.0	23.7
	Ce	26.9	49.5	66.5	40.7	50.5
	Pr	3.37	5.93	7.70	4.98	6.09
	Nd	14.2	23.4	30.1	20.4	24.6
	Sm	3.43	5.40	6.91	5.14	5.77
	Eu	0.97	1.29	1.43	1.29	1.34
	Gd	3.67	5.57	7.14	5.56	6.44
	Tb	0.62	0.92	1.20	0.95	1.07
	Dy	3.92	5.96	7.94	6.16	7.06
	Ho	0.84	1.27	1.68	1.33	1.54
	Er	2.53	3.89	5.20	4.11	4.77
	Yb	2.42	3.94	5.30	4.08	4.92
	Lu	0.37	0.59	0.81	0.62	0.75
	Hf	2.78	5.27	7.51	4.69	6.22
	Ta	0.29	0.63	0.92	0.50	0.64

Trace elements (ICP-MS, ppm)

	Li	16.2	18.1	25.5	16.4	17.4
	Sc	25.9	17.4	13.9	23.4	13.8
	V	193.0	109.0	30.1	139.0	30.2
	Cr	31.30	9.52	1.17	27.10	0.60
	Ni	15.80	5.65	0.86	14.20	2.57
	Rb	25.8	68.1	104.0	50.0	71.7
	Sr	323	231	133	185	127
	Y	23.8	37.9	50.8	38.5	45.9
	Zr	108	200	321	175	250
	Nb	4.71	9.47	12.90	7.12	9.44
	Ba	251	391	513	297	375
	La	11.9	23.5	32.2	19.0	23.7
	Ce	26.9	49.5	66.5	40.7	50.5
	Pr	3.37	5.93	7.70	4.98	6.09
	Nd	14.2	23.4	30.1	20.4	24.6
	Sm	3.43	5.40	6.91	5.14	5.77
	Eu	0.97	1.29	1.43	1.29	1.34
	Gd	3.67	5.57	7.14	5.56	6.44
	Tb	0.62	0.92	1.20	0.95	1.07
	Dy	3.92	5.96	7.94	6.16	7.06
	Ho	0.84	1.27	1.68	1.33	1.54
	Er	2.53	3.89	5.20	4.11	4.77
	Yb	2.42	3.94	5.30	4.08	4.92
	Lu	0.37	0.59	0.81	0.62	0.75
	Hf	2.78	5.27	7.51	4.69	6.22
	Ta	0.29	0.63	0.92	0.50	0.64

1 FeO$_T$ is the total FeO and Fe$_2$O$_3$ content calculated as FeO
Table 5.4: Representative groundmass analyses of the Ther-asia and Cape Riva products

<table>
<thead>
<tr>
<th>Sample Unit</th>
<th>Upper Therasia andesite</th>
<th>Therasia dacite</th>
<th>Cape Riva andesite</th>
<th>Cape Riva dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-22</td>
<td>GS10-17</td>
<td>S09-41</td>
<td>S09-40</td>
<td></td>
</tr>
<tr>
<td>Flow 22</td>
<td>Flow 5</td>
<td>Cape Riva A</td>
<td>Cape Riva A</td>
<td></td>
</tr>
</tbody>
</table>

Major elements (ICP-AES, wt% dry)

<table>
<thead>
<tr>
<th>Element</th>
<th>GS10-22</th>
<th>GS10-17</th>
<th>S09-41</th>
<th>S09-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>63.67</td>
<td>67.99</td>
<td>61.53</td>
<td>69.88</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>15.44</td>
<td>14.70</td>
<td>16.98</td>
<td>15.05</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.79</td>
<td>0.63</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>FeO$_T$</td>
<td>5.60</td>
<td>4.03</td>
<td>5.96</td>
<td>3.31</td>
</tr>
<tr>
<td>MgO</td>
<td>2.39</td>
<td>0.85</td>
<td>2.62</td>
<td>0.53</td>
</tr>
<tr>
<td>CaO</td>
<td>4.62</td>
<td>2.34</td>
<td>5.86</td>
<td>2.14</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>4.55</td>
<td>5.91</td>
<td>4.92</td>
<td>5.86</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2.60</td>
<td>3.25</td>
<td>1.82</td>
<td>2.95</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.20</td>
<td>0.19</td>
<td>0.17</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Trace elements (ICP-MS, ppm)

<table>
<thead>
<tr>
<th>Element</th>
<th>GS10-22</th>
<th>GS10-17</th>
<th>S09-41</th>
<th>S09-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>20.3</td>
<td>26.9</td>
<td>17.7</td>
<td>20.4</td>
</tr>
<tr>
<td>Sc</td>
<td>18.5</td>
<td>14.2</td>
<td>24.6</td>
<td>14.8</td>
</tr>
<tr>
<td>V</td>
<td>80.8</td>
<td>14.5</td>
<td>126.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Cr</td>
<td>8.41</td>
<td>0.76</td>
<td>21.20</td>
<td>4.33</td>
</tr>
<tr>
<td>Ni</td>
<td>4.62</td>
<td>0.75</td>
<td>14.60</td>
<td>5.48</td>
</tr>
<tr>
<td>Rb</td>
<td>89.0</td>
<td>105.0</td>
<td>60.2</td>
<td>101.0</td>
</tr>
<tr>
<td>Sr</td>
<td>176</td>
<td>108</td>
<td>197</td>
<td>105</td>
</tr>
<tr>
<td>Y</td>
<td>44.9</td>
<td>53.6</td>
<td>44.2</td>
<td>61.1</td>
</tr>
<tr>
<td>Zr</td>
<td>271</td>
<td>334</td>
<td>214</td>
<td>341</td>
</tr>
<tr>
<td>Nb</td>
<td>11.40</td>
<td>13.30</td>
<td>7.58</td>
<td>11.60</td>
</tr>
<tr>
<td>Ba</td>
<td>455</td>
<td>542</td>
<td>323</td>
<td>460</td>
</tr>
<tr>
<td>La</td>
<td>27.9</td>
<td>33.9</td>
<td>20.5</td>
<td>28.9</td>
</tr>
<tr>
<td>Ce</td>
<td>63.2</td>
<td>70.2</td>
<td>43.6</td>
<td>61.6</td>
</tr>
<tr>
<td>Pr</td>
<td>7.07</td>
<td>8.22</td>
<td>5.41</td>
<td>7.40</td>
</tr>
<tr>
<td>Nd</td>
<td>27.9</td>
<td>31.9</td>
<td>21.6</td>
<td>29.5</td>
</tr>
<tr>
<td>Sm</td>
<td>6.31</td>
<td>7.16</td>
<td>5.28</td>
<td>7.09</td>
</tr>
<tr>
<td>Eu</td>
<td>1.20</td>
<td>1.33</td>
<td>1.27</td>
<td>1.28</td>
</tr>
<tr>
<td>Gd</td>
<td>6.40</td>
<td>7.35</td>
<td>5.68</td>
<td>7.50</td>
</tr>
<tr>
<td>Tb</td>
<td>1.09</td>
<td>1.27</td>
<td>0.97</td>
<td>1.29</td>
</tr>
<tr>
<td>Dy</td>
<td>7.12</td>
<td>8.43</td>
<td>6.58</td>
<td>8.58</td>
</tr>
<tr>
<td>Ho</td>
<td>1.51</td>
<td>1.80</td>
<td>1.41</td>
<td>1.87</td>
</tr>
<tr>
<td>Er</td>
<td>4.64</td>
<td>5.53</td>
<td>4.32</td>
<td>5.81</td>
</tr>
<tr>
<td>Yb</td>
<td>4.69</td>
<td>5.74</td>
<td>4.37</td>
<td>6.09</td>
</tr>
<tr>
<td>Lu</td>
<td>0.72</td>
<td>0.87</td>
<td>0.66</td>
<td>0.94</td>
</tr>
<tr>
<td>Hf</td>
<td>6.73</td>
<td>8.38</td>
<td>5.14</td>
<td>8.07</td>
</tr>
<tr>
<td>Ta</td>
<td>0.81</td>
<td>0.98</td>
<td>0.52</td>
<td>0.82</td>
</tr>
</tbody>
</table>

1 FeO$_T$ is the total FeO and Fe$_2$O$_3$ content calculated as FeO
Figure 5.3: Variation diagrams of major elements and selected highly compatible trace elements. Mixing models for the upper Therasia andesite and the Cape Riva andesite are shown as blue and green lines, respectively. The mixing calculations are presented in Table 4. The typical fractionation trend for Santorini magmas discussed by (Nicholls, 1971), Mann (1983) and Druitt et al. (1999) is shown on the diagrams as a grey arrow. Composition of the Skaros lavas are also plotted for reference (Huijsmans, 1985) as are scoria from the Upper Scoria 2 eruption (Druitt et al., 1999)
The composition of the Cape Riva andesite can be modelled by mixing \(\sim 60 \text{wt}\% \) of Cape Riva dacite with \(\sim 40 \text{wt}\% \) of an average Skaros basalt (sum of the squares of the residuals of 0.14). However, the calculated Ni content is higher than that measured in the Cape Riva andesite, suggesting that the mafic endmember had lower Ni than the average Skaros basalt.

Despite their broadly similar compositions in terms of silica content and many other major and trace elements, most of the Therasia dacites are enriched in incompatible elements such as K, Rb and Zr (also Nb, Ta, Th, Hf and LREE) compared to the Cape Riva dacite (Figure 5.4). LREE are also more enriched in the Therasia dacites relative to the HREE. For example, the Therasia dacites have an average La/Yb ratio of 5.91 ± 0.16 (2\(\sigma\)), while the Cape Riva dacite has a ratio of 4.85 ± 0.04. Amongst the HFSE, Nb and Ta are more enriched than Zr and Hf. The 23 analysed samples of Cape Riva pumice form a tight linear cluster on Figure 5.4, showing that the magma was well mixed. All of the 11 analysed Therasia lavas younger than \(\sim 39 \text{ka} \), and most of the intercalated pumice horizons, similarly form a tight linear cluster (at higher incompatible contents than the Cape Riva, for a given SiO\(_2\) content). However, some of the Therasia pumices overlap with the Cape Riva field for some elements. Most prominent of these is the Cape Tripiti pumice, which lies in, or close to, the Cape Riva field for most incompatible elements except K, suggesting that the magma that fed the Cape Tripiti eruption had some chemical characteristics intermediate between the two groups of dacite.

The differences between the Therasia and Cape Riva dacites are also seen between the corresponding hybrid andesites of these two series. Despite having a similar SiO\(_2\) content, the upper Therasia hybrid andesite is enriched in incompatible elements compared to the Cape Riva hybrid andesite (e.g. 2.1 wt\% K\(_2\)O compared to 1.7 wt\%, respectively). Like the Therasia dacites, the Therasia andesite is also enriched in LREE relative to HREE, and enriched in Nb and Ta relative to Zr and Hf compared top the
Table 5.5: Calculation for the mixing of (1) Therasia dacite plus Therasia basalt (mafic enclave) to produce the upper Therasia hybrid andesite, and (2) Cape Riva dacite plus Skaros basalt to produce the Cape Riva hybrid andesite.

<table>
<thead>
<tr>
<th>Major Elements (wt%)</th>
<th>Upper Therasia Hybrid Andesite</th>
<th>Cape Riva Hybrid Andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Therasia Dacite</td>
<td>Mean Mafic Enclave (GS10-43)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.50</td>
<td>51.86</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.51</td>
<td>19.07</td>
</tr>
<tr>
<td>FeO₂⁺¹</td>
<td>4.93</td>
<td>8.08</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>1.21</td>
<td>5.44</td>
</tr>
<tr>
<td>CaO</td>
<td>3.41</td>
<td>10.16</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.50</td>
<td>3.30</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.74</td>
<td>0.90</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Sum of the Squares: 0.16 Sum of the Squares: 0.14

<table>
<thead>
<tr>
<th>Trace Elements (ppm)</th>
<th>Upper Therasia Hybrid Andesite</th>
<th>Cape Riva Hybrid Andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>Ni</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Nb</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Rb</td>
<td>92</td>
<td>26</td>
</tr>
<tr>
<td>Zr</td>
<td>291</td>
<td>108</td>
</tr>
<tr>
<td>Sr</td>
<td>155</td>
<td>323</td>
</tr>
</tbody>
</table>

For the upper Therasia andesite, the mixing proportions are 38:62 mafic:silicic. For the Cape Riva andesite, the proportions are 36:64. Calculated using the PetroGraph software of Petrelli et al. (2005).

¹ FeO₂⁺ is the total FeO and Fe₂O₃ content calculated as FeO.
Figure 5.4: Incompatible element variation diagrams. (a–c) Therasia and Cape Riva data are plotted as points, along with the Skaros data of Huijsmans (1985) and Upper Scoria 2 data of Druitt et al. (1999). Mixing models for the upper Therasia andesite and the Cape Riva andesite are plotted, as in Figure 5.3. Fields of Santorini magma during the volcanic history since 530 ka are plotted, showing the long-term decrease in incompatible element concentration at Santorini Druitt et al. (1999); Huijsmans (1985); Martin (2005). (d) REE diagram showing the Therasia and Cape Riva magmas. The Therasia dacite is an average of 14 flows with 65–68 wt% SiO$_2$, and the Cape Riva dacite is an average of four analyses with SiO$_2$ contents of 66–67 wt% (mean: 66.5 wt%). The upper Therasia andesite is an average of four analyses with SiO$_2$ contents of 66–67 wt% (mean: 66.5 wt%). The Cape Riva andesite is an average of three analyses with SiO$_2$ contents between 60.2 and 60.4 wt% (mean: 60.4 wt%).
5.3. Results

Table 5.6: Temperatures, T, and oxygen fugacities, f_{O_2}, of the three Therasia pumice fall units analysed, calculated using Fe–Ti oxide compositions using the two formulations discussed in the text.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperatures, T (°C)</th>
<th>Oxygen fugacities, log(f_{O_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therasia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Tripiti</td>
<td>896 ± 12</td>
<td>−12.7 ± 0.3</td>
</tr>
<tr>
<td>Pumice fall B</td>
<td>926 ± 9</td>
<td>−11.4 ± 0.2</td>
</tr>
<tr>
<td>Pumice fall C</td>
<td>875 ± 5</td>
<td>−13.4 ± 0.1</td>
</tr>
<tr>
<td>Cape Riva</td>
<td>879 ± 11</td>
<td>−12.9 ± 0.2</td>
</tr>
</tbody>
</table>

Andersen and Lindsley (1985) with Stormer (1983)

<table>
<thead>
<tr>
<th>Ghiorsso and Evans (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
</tr>
<tr>
<td>901 ± 14</td>
</tr>
<tr>
<td>956 ± 12</td>
</tr>
<tr>
<td>876 ± 9</td>
</tr>
<tr>
<td>891 ± 12</td>
</tr>
</tbody>
</table>

Errors are 2σ, where σ is the standard error of the mean.

1 Data from Cadoux et al. (2014)

Cape Riva andesite. This is also reflected in the calculated mafic mixing end-members of the two hybrid andesites shown on Figure 5.4, although the difference is subtle.

5.3.3 Magmatic temperatures

Magmatic temperatures calculated from Fe–Ti oxide compositions from three pumice falls from the Therasia dome complex are reported in Table 5.6. Using the formulation of Andersen and Lindsley (1985) and Stormer (1983), temperatures for the Cape Tripiti pumice and pumice fall C range from about 875 °C to 895 °C, and log(f_{O_2}) from −12.7 to −13.4 (at, or slightly below the FMQ oxygen buffer; Figure 5.5). These conditions are close to what Cadoux et al. (2014) found for the Cape Riva (879 ± 15 °C and log [f_{O_2}] = −12.9 ± 4). Pumice fall B is hotter and more oxidised, with a temperature of about 925 °C and an oxygen fugacity on the NNO buffer. The temperatures and oxygen fugacities of the Cape Tripiti pumice and pumice fall C calculated using Ghiorsso and Evans (2008) are in excellent agreement. However, the temperatures of pumice fall B calculated using Ghiorsso and Evans’s formulation are about 20 °C hotter, and the oxygen fugacities are about 0.5 log units higher.
Figure 5.5: Temperature and oxygen fugacities of the three Therasia pumice fall units analysed, calculated using Fe–Ti oxide compositions using the formulation of Andersen and Lindsley (1985) and Stormer (1983). Large symbols with error bars are averages, errors are 2σ, where σ is the standard error of the mean. Cape Riva data from Cadoux et al. (2014) shown for comparison. NNO and FMQ oxygen buffers are calculated at 2 kbar, and are taken from Huebner and Sato (1970) and Frost (1991), respectively.

5.4 Discussion

5.4.1 Origin of the magma series

The Therasia and Cape Riva dacites have similar whole rock major element compositions (for all major elements except K), phenocryst assemblages, phenocryst rim compositions and Fe–Ti oxide temperatures, although the Cape Riva dacite has slightly more evolved interstitial melt. The main difference between the two magmas is that the Cape Riva dacite is depleted in incompatible elements compared to the Therasia dacite. The Cape Riva hybrid andesite is also incompatible-depleted relative to the upper Therasia hybrid andesite, and there are indications that the basaltic mixing end-members were similarly different. Throughout most of the 15ky over which the Therasia dome complex was constructed, the eruptions tapped typical Therasia-type dacite. However, the 26 ka Cape Tripiti eruption tapped dacite with some incompatible trace element contents intermediate between those of Therasia and Cape Riva.
Since the Therasia and Cape Riva magma series form parallel trends on incompatible element variation diagrams (Figure 5.4), and have different LREE/HREE ratios, they cannot be related to each other simply by closed-system crystal fractionation schemes like those explored in previously published papers (Druitt et al., 1999; Mann, 1983; Nicholls, 1971). Neither can the Cape Riva dacite be generated by simple backmixing of Therasia dacite with an incompatible-depleted basalt, since mixing would displace the silicic compositions almost parallel to the compositional trends rather than perpendicular to them. Crustal contamination of Therasia dacite to produce Cape Riva dacite is also unlikely, as this would be expected to increase incompatible element concentrations, not decrease them (Barton et al., 1983; Druitt et al., 1999). Moreover, the two dacite types have very similar whole-rock 87Sr/86Sr ratios (0.7050 and 0.7049 respectively; Briqueu et al., 1986; Druitt et al., 1999; Zellmer et al., 2000), ruling out a significant difference in the extent of upper crustal contamination. The Therasia and Cape Riva magma series (basalt, dacite and hybrid andesite in each case) represent two fundamentally distinct magma batches that cannot be related to each other in any simple way by shallow-level processes.

This conclusion is supported by comparison of the two magma series with longer-term geochemical trends at Santorini (Druitt et al., 1999; Huijsmans, 1985; Huijsmans et al., 1988). The same incompatible elements have decreased progressively in Santorini magmas over the last 530 ka, such that the lavas of the historical Kameni Volcano are the most incompatible-depleted (Figure 5.4). The difference between the (older) Therasia and (younger) Cape Riva series represents one step in this longer-term evolution. The magnitude of the decrease is similar for most incompatible elements, so that the ratios between them (e.g. K/Zr, Rb/Zr, Rb/La) have remained approximately constant with time. However, the LREE have become depleted relative to HREE, a change that is also apparent between Cape Riva and Therasia (Figure 5.4d). Similar changes also occur between different high field strength elements: Nb and Ta concentrations drop faster than those of Zr and Hf. Progressive depletion in K and other incompatible
elements with time has also occurred at other centres in the Aegean region (Francalanci et al., 2005).

A decrease in the extent of crustal contamination with time, as might be expected from the progressive sealing-off of ascending magmas from the crust, is not tenable; there is no evidence for a consistent decrease in the \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio with time at Santorini (Figure 2.12). Isotopic signatures fluctuate with time (Barton et al., 1983; Briqueu et al., 1986; Druitt et al., 1999; Martin et al., 2010), and some young melts are amongst the most radiogenic in the history of the volcano (Martin et al., 2010; Vaggelli et al., 2009).

Incompatible trace element contents and isotopic signatures at Santorini are decoupled, ruling out a simple common origin. A more likely explanation for the observed trends lies in the nature of the mantle sources of the parental basalts feeding the volcanic system. Possibilities include an increase with time in the degree of source depletion, an increase of source melt fraction, or a decrease in degree of source metasomatism by slab-derived fluids or melts. All of these mechanisms could potentially account for basaltic parents with decreasing incompatible element contents with time (Bailey et al., 2009; Clift and Blusztajn, 1999; Francalanci et al., 2005; Huijsmans et al., 1988; Zellmer et al., 2000).

A mantle origin is supported by the recent discovery at Santorini of multiple co-existing basalt types with different trace element and isotopic signatures (Bailey et al., 2009; Vaggelli et al., 2009). Changing proportions of different parental basalts that ascend into the crust, where they mix and differentiate at between 4 and 2 kb to intermediate and silicic compositions (Andújar et al., 2010; Cadoux et al., 2014), may account for the observed temporal variations of trace element chemistry. Irrespective of the exact explanation, our results demonstrate the availability of chemically distinct batches of silicic magma within the crustal plumbing system beneath Santorini, as has been demonstrated previously for basalts (Bailey et al., 2009).
5.5 Summary

From the chemistry and the petrology of the Therasia and Cape Riva deposits we can conclude:

- Between 39 ka and 25 ka, the ∼2 km³ of magma erupted as lavas and pumice falls was compositionally (65–68 wt% SiO₂) and thermally (895–925 °C) monotonous.

- The Therasia and Cape Riva dacites are similar in most major elements, but the Cape Riva dacite has lower contents of K and incompatible trace elements (e.g., Rb, Zr, Th, LREE) than the Therasia dacites at a given silica content. This decrease in incompatibles that took place at 21.8 ka is one step in the well-documented longer-term decrease in incompatible elements with time observed at Santorini over the last 530 ky. The Therasia and Cape Riva dacites represent distinct magma batches that are unrelated by shallow-level processes.

- Discharge of basaltic magma during this time period is limited to ≪1% quenched enclaves of olivine basalt in some Therasia lavas and in Cape Riva pumice. However, hybrid andesite magmas formed by the mixing of olivine basalt and dacite in approximately equal proportions were erupted as lava towards the end of the Therasia, and as scoria in the Cape Riva eruption. These hybrids may record an increased influx of basalt into the upper crust over the several thousands of years leading up to the Cape Riva eruption. Increased basaltic flux may have played a role in the rapid accumulation of incompatible-depleted Cape Riva magma beneath the summit of Skaros Volcano prior to its 21.8 ka eruption.
Chapter 6

Plagioclase

6.1 Introduction

There is a lot of information that can be gleaned by examining the crystals in volcanic rocks. Some of this has been described already in Chapter 5, such as how the different mineral assemblages in the upper Therasia and Cape Riva andesites reveal that they were formed by magma mixing.

In this chapter, I look in more detail at the zoning patterns of major and trace elements in plagioclase. I focus on the phenocrysts, as these provide the best record of the events that took place within the magma reservoir, and I focus mostly on phenocrysts in the dacites, as the dacites make up the majority of the erupted material during the both the Cape Riva eruption and the construction of the Therasia dome complex (Chapter 4).

The concentrations of a wide range of different elements were measured in the plagioclase crystals (Si, Al, Na, Ca, Li, Mg, K, Ti, Fe, Sr, Ba, La, Ce, Pb), as elements with different diffusivities can provide different insights into magmatic processes (Chapter 3). The concentrations of fast-diffusing elements can be used to estimate timescales of magmatic processes through the modelling of diffusive gradients. On the other hand, slowly-diffusing elements can be used to track growth conditions of crys-
tals, as such elements require long times to re-equilibrate with their host magma. Their concentrations in crystals should therefore reflect the magma composition at the time of growth, and they should be unaffected by any subsequent changes to its chemistry. Which elements can be considered ‘fast-’ and which can be considered ‘slow-diffusing’ depends the time- and length-scales of interest, as well as the temperature and plagioclase composition. This is discussed later in the chapter, after the zoning patterns are presented.

Of particular interest are the changes that occurred in the magma reservoir in the build-up to the Cape Riva eruption. In Chapter 5 we saw that a change in the concentration of incompatible elements between the Therasia and Cape Riva eruptions suggested that there was a large influx of new silicic magma shortly before the Cape Riva eruption. The field and chemical evidence constrains the timing of this influx to within 2,800 ± 1,400 y before the Cape Riva eruption (Chapter 4). We can look for evidence of this influx in the composition of the plagioclase crystals, using slowly-diffusing trace elements to track changes in the composition of the melt. Also of interest are the longevities of the Therasia and Cape Riva magma reservoirs, and the plagioclase crystals can be useful here as well. Diffusion modelling can provide estimates of the high-temperature residence times of the plagioclase crystals, which can then be related to magma reservoir longevity.

6.2 Methods

6.2.1 Analytical techniques

Thin sections from three dacitic lavas from the Therasia dome complex (flows 5, 8 and 9; samples GS10-17, GS10-14 and GS10-16, respectively) were studied in detail. Six pumices from the Cape Riva eruption were selected, covering all four phases of the eruption (phase A: GS11-34a and GS11-34f; phase B: S12-06; phase C: GS11-30b and S12-05; phase D: GS11-39b). These were hand-crushed, and plagioclase crystals were
hand-picked, set in resin and polished. Crystals with adhering melt were preferred, as adhering melt demonstrates that those crystal faces are original rather than fracture surfaces caused by crushing. Most of the plagioclase crystals are tabular, and these were orientated so that their shortest dimension would be within the plane of the polished surface. Trace element concentrations of plagioclase crystals in one thin section from the upper Therasia andesite (flow 22; GS10-22) were also analysed.

Mineral major element compositions were analysed using the Cameca SX 100 electron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, using a beam current of 15 nA.

Backscattered electron (BSE) images of selected plagioclase crystals were produced on the scanning electron microscope (SEM), and then calibrated for anorthite content using the analyses made with the electron microprobe. Five points on each crystal were analysed using the electron microprobe for their anorthite content, and the greyscale values of these same points was measured on the SEM images using the image analysis software package ImageJ (Rasband, 2012). The relationship between the greyscale value and composition was then calculated using a linear least-squares regression for each image. A typical example is shown in Figure 6.1. Correlation between greyscale value and anorthite content of the plagioclases was high, with correlation coefficients $r^2 > 0.97$ for most (and $r^2 > 0.90$ for all) the images used. This corresponds to a standard error in the calculated anorthite content of $\pm 1\text{–}2\text{mol}\%$, estimated from the regression parameters. With this relationship, the anorthite content of any spot on the image could be calculated. This allowed me to quickly plot profiles of anorthite against distance at much greater spatial resolution than would otherwise be practical (pixel size was 0.5–1.5 μm depending on the image).

Before plotting anorthite profiles from the BSE images, the images were smoothed using a two pixel radius median filter. The advantage of a median filter over a moving average is that it removes noise while leaving any sudden changes in composition unchanged. This meant that sharp boundaries between the rim and core were not softened.
by the smoothing process. Each point on the profiles was the average of a strip 10×1 pixels perpendicular to the direction of the profile for each point. The distance from the rim for each point was corrected for profiles that were not perpendicular to the crystal rim, although this correction was usually minor.

Trace elements in the plagioclase crystals (Li, Mg, K, Ti, Fe, Sr, Ba, La, Ce, Pb) were measured at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France using a Resonetics M-50-E 193 nm laser ablation system connected to an Agilent 7500cs ICP MS. The beam size was 10–15 µm in diameter, and laser pulses were fired at a rate of 2 Hz.

Calcium was used as the internal standard for the LA ICP-MS analyses. For most of the analyses, Ca values were measured by electron microprobe before LA ICP-MS analysis. In the analyses from the profiles for diffusion modelling, Ca was again used as the internal standard, but the Ca was measured from calibrated BSE images. The grey scale of the BSE images of the selected plagioclases was calibrated for An content using the electron microprobe, as discussed above. Photomicrographs of the analysed crystals, with the laser pits visible, were then superimposed onto the calibrated BSE images. The anorthite content of the spots analysed by LA ICP-MS could then be calculated from the calibrated BSE images.

Figure 6.1: Typical calibration curve for a BSE image of a plagioclase crystal (GS10-14 XL66)
For diffusion modelling, 13 representative crystals were selected. In these crystals one or two profiles were measured perpendicular to the crystal edges by locating successive laser analyses as close as possible to each other. In crystals where two profiles were measured, these were placed perpendicular to each other. In crystals with only one profile, the location of that profile was chosen to cover the shortest possible distance between the core and the rim. This is the part of the crystal where trace element concentrations should change the fastest in response to diffusive exchange with the liquid (Costa et al., 2008).

6.2.2 Partition coefficients

Because the partitioning of trace elements between silicic melts and plagioclase is strongly dependent on the anorthite content of the plagioclase (Bédard, 2006; Bindeman et al., 1998; Blundy and Wood, 1991), the trace element concentrations in plagioclase tell us little on their own about the composition of the melt. The partition coefficients of Bindeman et al. (1998) were therefore used to calculate the compositions of melts that are in equilibrium with the measured plagioclase compositions; these are referred to as “liquid-equivalent compositions” in the following text.

The partition coefficients take the form (using K instead of the traditional D, in order to avoid confusion with the diffusion coefficient):

$$K = \exp \left(\frac{AX_{An} + B}{RT} \right)$$

(6.1)

where A and B are empirically determined coefficients, X_{An} is the molar fraction of anorthite, R is the molar gas constant and T is the temperature (in K). Because the partition coefficients depend on temperature, we assumed that temperature was related to anorthite content as follows (Druitt et al., 2012):

$$T = 1128 + 200 \times \frac{X_{An} - 0.4}{0.4}$$

(6.2)
This equation implies that plagioclase of An$_{40}$ is equilibrium with a melt at 855°C and An$_{80}$ is in equilibrium at 1055°C, matching the temperatures of Santorini rhyodacites and basaltic andesites, respectively (Michaud et al., 2000).

The error in the liquid equivalent trace element concentrations, $\sigma_{C_{\text{melt}}}$, due to independent errors on the parameters in Equation 6.1 was estimated by error propagation:

$$\sigma_{C_{\text{melt}}}^2 = \sigma_{C_{\text{plag}}}^2 \left(\frac{\partial C_{\text{plag}}}{\partial C_{\text{melt}}} \right)^2 + \sigma_A^2 \left(\frac{\partial A}{\partial C_{\text{melt}}} \right)^2 + \sigma_B^2 \left(\frac{\partial B}{\partial C_{\text{melt}}} \right)^2 + \sigma_{X_{\text{An}}}^2 \left(\frac{\partial X_{\text{An}}}{\partial C_{\text{melt}}} \right)^2$$

(6.3)

where the errors on the trace element and anorthite contents of the plagioclase, $\sigma_{C_{\text{plag}}}$ and $\sigma_{X_{\text{An}}}$, were estimated from ICP-MS and EMP counting statistics, and the estimated errors in the coefficients of the partition coefficient equation, σ_A and σ_B were taken from Bindeman et al. (1998). This does not, however, take into account any error in the temperature.

6.3 Zoning patterns

6.3.1 Anorthite zoning

The focus of this section is on the phenocrysts from the Therasia and Cape Riva dacites. Xenocrysts and the plagioclase crystals found in the sub-solidus gabbro nodules in the Therasia dacites are not considered here. Only those crystals whose rims appear to be in equilibrium with the melt are discussed (Chapter 5).

Figure 6.2 (facing page): Sketches of plagioclase crystals from the Therasia dacites, showing the characteristic features of the phenocrysts. Anorthite spot values from EMP analyses marked on the diagrams. On the right are the corresponding calibrated BSE images (a) A weakly zoned phenocryst (GS10-16 XL105) (b) a phenocryst without a calcic core, but with an internal resorption surface and a normally zoned, “sawtooth” outer zone (GS10-27a XL49) (c) a phenocryst with a glass inclusion-rich inner zone, overgrown by a normally zoned, “sawtooth” outer zone (GS10-17 XL57) (d) a phenocryst with a simply zoned calcic core (GS10-14 XL66) (e) a phenocryst with a partially resorbed, complexly zoned core, overgrown by an oscillatory zoned outer zone (GS10-17 XL60)
Representative plagioclase phenocrysts in the Therasia dacites

a. Weakly oscillatory zoned phenocryst

b. Glass inclusions

b. Normally zoned outer zone

c. Partially resorbed inner zone, full of glass inclusions

d. Calcic core

Sodic outer zone

Irregular resorption surface

e. Partially resorbed calcic core

Oscillatory zoned outer zone

Pyroxene

Resorption surface

Glass inclusion

An (mol%)

500µm

Partially resorbed calcic core

Pyroxene

Resorption surface

Oscillatory zoned outer zone

An 40...51

Representative plagioclase phenocrysts in the Therasia dacites
Therasia dacites

The majority of the plagioclase phenocrysts in the Therasia dacites are unzoned, or have weak oscillatory zonation (Figure 6.2a). The anorthite content of these crystals varies between An$_{39}$ and An$_{51}$, depending on the lava flow, but the anorthite content of individual weakly zoned phenocrysts varies by less than about 5 mol%.

The rest can be split into two broad groups: those with sawtooth zoning, and those with calcic cores. I use the term “calcic core” to refer to a texturally well-defined entity at the centre of a crystal that has a much higher anorthite content than the outer zone. “Rim” is used to refer to the outermost part of the crystal to have grown within the magma chamber.

Sawtooth zoned phenocrysts: Some of the phenocrysts in the Therasia dacites have a single sawtooth, separating the crystal into two zones. The innermost zones of these crystals usually have a similar composition to the unzoned phenocrysts (An$_{39}$ to An$_{51}$). Sometimes these inner zones are unzoned (Figure 6.2b), but sometimes they show signs of partial dissolution and have lots of large, brown glass inclusions (Figure 6.2c). The inner zones are separated from the outer zones by a resorption surface which is sometimes smooth, but can often have an irregular shape. The resorption surfaces are then overgrown by more calcic plagioclase (An$_{50}$ to An$_{72}$). The crystals then gradually become more sodic towards the rims, eventually reaching the same compositions as the unzoned phenocrysts. An anorthite profile across a sawtooth zone from a similarly zoned crystal in the Cape Riva is shown in Figure 6.3.

Calcic cores: Some phenocrysts have distinct calcic cores, with anorthite contents between An$_{50}$ and An$_{91}$. These calcic cores are sometimes simply zoned (Figure 6.2d), but sometimes show complex zoning indicative of partial dissolution (Figure 6.2e). The cores are separated from the rest of the crystal by an irregular resorption surface. Some calcic cores are overgrown by un-
Figure 6.3: A calibrated BSE image of a plagioclase from the Cape Riva dacite (GS11-34a XL14) with sawtooth zoning. White circles indicate laser spots. The anorthite profile is measured from the calibrated BSE image, trace elements profiles were measured by LA ICP-MS. Solid lines: liquid equivalent concentrations; dashed lines: measured concentrations.
Figure 6.4: A calibrated BSE image of a plagioclase from the a Therasia dacite (GS10-14 XL66) with a calcic core. White circles indicate laser spots. The anorthite profile is measured from the calibrated BSE image, trace elements profiles were measured by LA ICP-MS. Solid lines: liquid equivalent concentrations; dashed lines: measured concentrations.
Figure 6.5: Histograms of the compositions of plagioclase crystals in the Therasia dacites. SiO$_2$ contents in the labels refers to whole rock compositions.
Table 6.1: Plagioclase compositions in different Therasia dacite lavas

<table>
<thead>
<tr>
<th>Flow</th>
<th>Whole rock SiO$_2$ (wt%)</th>
<th>Phenocryst rims</th>
<th>Calcic cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(GS10-16)</td>
<td>65.8</td>
<td>An$_{44-48}$</td>
</tr>
<tr>
<td>8</td>
<td>(GS10-14)</td>
<td>65.4</td>
<td>An$_{45-46}$</td>
</tr>
<tr>
<td>5</td>
<td>(GS10-17)</td>
<td>66.0</td>
<td>An$_{41-43}$</td>
</tr>
<tr>
<td>3</td>
<td>(GS10-27a)</td>
<td>65.8</td>
<td>An$_{49-51}$</td>
</tr>
</tbody>
</table>

zoned or weakly oscillatory zoned (e.g. Figure 6.2d), and these have the same compositions as the weakly zoned phenocrysts (An$_{39-51}$). Other calcic cores are overgrown by plagioclase that is normally zoned (e.g. Figure 6.2e), and these outer zones resemble the outer zones of the sawtooth-zoned crystals.

An anorthite profile from a crystal with a calcic core is shown in Figure 6.4.

There are slight textural variations between the plagioclase found in the different dacitic lava flows of the Therasia dome complex. Sawtooth-zoned crystals were found in flows 3 and 5, but not in flows 8 and 9. Large, rounded, brown glass inclusions are found in many of the unzoned phenocrysts and the inner zones of the sawtooth-zoned phenocrysts in flow 5, but these glass inclusions are rare in the other flows. The composition of the rims and the calcic cores also vary slightly between the different flows (Table 6.1; Figure 6.5). These observations suggest that the phenocrysts in each flow are specific to that flow, and are not inherited from previous magma batches.

Figure 6.6 (facing page): Sketches of plagioclase crystals from the Cape Riva dacites, showing the characteristic features of the phenocrysts. Anorthite spot values from EMP analyses marked on the diagrams. (a) a phenocryst with a simply zoned calcic core and an unzoned sodic rim (GS11-34a XL09) (b) a phenocryst with a partially resorbed calcic core, surrounded by a sodic rim with weak oscillatory zonation (GS11-39b XL29) (c) a phenocryst without a calcic core, but with two internal resorption surfaces, both overgrown by a normally zoned “sawtooth” (GS11-34a XL14) (d) a phenocryst with complexly zoned, partially resorbed core and a normally zoned, “sawtooth” rim (GS11-30b XL08)
6.3. Zoning patterns

Representative plagioclase phenocrysts from the Cape Riva dacite

- Irregular resorption surface
- Glass inclusion
- Partially resorbed calcic core
- Irregular resorption surface
- Oscillatory zoned rim

- Glass inclusion
- Complexly zoned, partially resorbed core
-Normally zoned rim
- Calcic core
- Weakly zoned sodic rim

Pyroxene

Fe-Ti oxide

- “Sawtooth” zones

- Resorption surfaces

- Normally zoned rim
- Glass inclusion

- Fe-Ti oxide

- Irregular resorption surface

- Complexly zoned, partially resorbed core

- 500 µm

- An (mol%)
Cape Riva dacite

The plagioclases in the Cape Riva are texturally quite similar to those found in the Therasia dacites. Many of the Cape Riva plagioclases phenocrysts are unzoned or only weakly zoned, but like the Therasia dacites there are also crystals with sawtooth zoning. Most of the rims of the Cape Riva phenocrysts have a narrow range of anorthite content (An$_{36-40}$; Druitt, 1983; Druitt et al., 1999), suggesting the Cape Riva magma reservoir was better mixed than the Therasia magma reservoir.

Sawtooth zones: The sawtooth zoned crystals have either plain centres, with compositions similar to the unzoned phenocrysts (Figure 6.6c), or can be complexly zoned (Figure 6.6d). The complex zonation appears to be the result of partial dissolution, and these centres frequently contain large, brown glass inclusions. While parts of these centres can be quite calcic (up to An$_{58}$), the dominant portions of the complexly zoned cores have composition similar to those of the unzoned phenocrysts (An$_{30}$ to An$_{41}$). These centres are then separated from their rims by a resorption surface. This surface is overgrown by calcic plagioclase of An$_{46}$ to An$_{60}$, which gradually changes outwards towards more sodic compositions. This pattern is sometimes repeated up to three times, but the rim compositions always match those of the unzoned phenocrysts.

Although some Cape Riva plagioclases appear to have calcic cores (e.g. Figure 6.6a,b), these have similar compositions to the calcic parts of the sawtooth zones (An$_{48-50}$). These are therefore better described as the inner zone of a sawtooth-zoned crystal. The inner zones can be simply zoned (Figure 6.6a), however many of them show signs or partial resorption and regrowth (Figure 6.6b). Both types of inner zone are separated from the outer zone by an irregular resorption surface. The rims resemble the weakly zoned phenocrysts: they have compositions of An$_{30}$ to An$_{41}$, and are either
6.3. Zoning patterns

Therasia

Rims are An\textsubscript{39-61}

Crystals often show weak oscillatory zoning

Sometimes have a single sawtooth, going from An\textsubscript{39-72} back to rim compositions of An\textsubscript{39-51}

Calcic cores of An\textsubscript{62-91}, often show signs of dissolution

Rims with weak oscillatory zoning, An\textsubscript{39-51}

Cape Riva

Rims are An\textsubscript{31-41}

Crystals often show weak oscillatory zoning

Many crystals have sawtooth zoning, with up to three cycles from An\textsubscript{46-60} back to rim compositions of An\textsubscript{31-41}

No cores more calcic than sawtooth zones (>An\textsubscript{60})

Figure 6.7: Schematic sketches of the plagioclase crystals found in the Therasia and Cape Riva dacites.

unzoned or have subtle oscillatory zoning.

Interpretation

Figure 6.7 summarises the textures found in the Therasia and Cape Riva plagioclase phenocrysts. Most phenocrysts are unzoned or have multiple sawtooth zones (Figure 6.7a). The unzoned phenocrysts have the same composition as the rims of the crystals with sawtooth zoning. The unzoned phenocrysts can, therefore, be considered as equivalent to the rims of the sawtooth-zoned crystals. Either the unzoned crystals do not have the calcic part of the sawteeth, or the calcic part is not exposed in the section that was imaged. Some phenocrysts in the Therasia dacites have calcic cores (e.g. Figure 6.2d,e). The cores of these crystals are more calcic than the sawtooth zones, and the boundaries between them are sharp, rather than gradational as in the sawtooth zones.
6.3.2 Trace element zoning

Trace element profiles were measured in selected crystals using the LA ICP-MS. Two profiles are shown in Figures 6.3 and 6.4.

Figure 6.4 shows an example of a plagioclase with a calcic core. The core has higher liquid equivalent Sr contents, and lower liquid equivalent La contents, than the rims. This would be expected from their behaviour in Santorini magmas—there is more Sr in mafic melts and more La in evolved melts (Chapter 2)—and suggests that their concentrations reflect the compositions of the melts from which they grew. The Mg profile, on the other hand, is more complicated. Traced from the rim inwards, the liquid-equivalent Mg concentrations start off correlated with the anorthite content. However, the inner part of the core is in equilibrium with a melt with a lower Mg concentration than that with which the outer part of the core is in equilibrium. This is despite the fact that the inner part of the core has a higher anorthite content than the outer part. This suggests that the Mg concentrations in this crystal have partially re-equilibrated.

A similar pattern is seen in the crystals with sawtooth zoning (Figure 6.3). The Sr liquid equivalents are positively correlated with, and the La liquid equivalents are negatively correlated with, anorthite content. In this crystal, the shape of the Mg liquid equivalent profile also resembles that of the anorthite profile. This suggests that less diffusion has taken place in this crystal compared to Figure 6.4.

6.4 Using fast and slow diffusing elements to elucidate magmatic processes

As stated in the chapter’s introduction, slow-diffusing elements can be used to estimate melt compositions, while fast-diffusing elements can be modelled to get timescales (Chapter 3). Which elements can be considered fast-diffusing and which can be considered slow-diffusing, however, depends on the distances and times in which we are
6.4. Using fast and slow diffusing elements to elucidate magmatic processes

The variation of characteristic distance with time for the elements discussed here at 880 °C is shown in Figure 6.8, along with the timescales and distances of interest in this study.

The plagioclases typically reach about 1 mm in length, so any element with a char-

Figure 6.8: Characteristic diffusion distance against time, calculated using Equation 6.4 at 880 °C. The upper and lower horizontal dashed lines represent the typical plagioclase size (1 mm) and the size of the laser pits (10–15 μm), respectively. The left and right vertical dashed lines are the time between the youngest dated Therasia lava and the onset of the Cape Riva eruption (2,800 y), and the time between the first dacitic eruption of the Therasia dome complex and the onset of the Cape Riva eruption (18,000 y), respectively.

References: 1: Van Orman et al. (2014); 2: Giletti and Shanahan (1997); 3: Giletti and Casserly (1994); 4: NaSi–CaAl interdiffusion at 1,500 MPa with 1% H₂O, Liu and Yund (1992); 5: NaSi–CaAl interdiffusion at atmospheric pressure and dry, Grove et al. (1984); 6: Cherniak (2002b)

The influence of diffusion on zoning patterns can be estimated using a back-of-the-envelope calculation for a characteristic length scale of diffusion, x:

$$ x \approx \sqrt{Dt} $$ \hspace{1cm} (6.4)

where D is the diffusion coefficient and t is the timescale in which we are interested. The diffusion coefficient is strongly dependent on the temperature, which for the Cape Riva dacite and two of the three analysed Therasia dacites is about 880 ± 25 °C (Chapter 5).
acteristic distance longer than this will have mostly re-equilibrated at the scale of whole crystals. These elements will not, therefore, record original melt compositions. On the other hand, elements with characteristic distances smaller than the size of the laser pits (10–15 µm) will remain close to their initial concentration, and can also be used to study the compositions of the melt from which each crystal zone grew. In between these two limits are the elements that will have partially re-equilibrated—these are the elements that can be modelled to best estimate high-temperature crystal residence times.

For the Therasia–Cape Riva series, we are chiefly interested in processes that occurred on timescales shorter than the ~18 ky of dacitic eruption (the time between the oldest Therasia dacite and the Cape Riva eruption; Chapter 4). Elements that remain immobile over this length of time have been used below (Section 6.5) to reconstruct melt compositions from plagioclase compositions. We are also particularly interested in the processes that occurred between the end of the construction of the Therasia dome complex and the onset of the Cape Riva eruption (~2,800 y; Chapter 4). The diffusion of elements that are expected to partially re-equilibrate over this period have been modelled in Section 6.6 to estimate high-temperature crystal residence times.

From Figure 6.8, La and NaSi–CaAl can be considered immobile over 18 ky. Over 18 ky La has a characteristic distance of about 2 µm (Figure 6.8).

NaSi–CaAl exchange is a little more complicated, as a wide range of diffusion coefficients have been found for NaSi–CaAl interdiffusion (Chapter 3). The diffusion coefficient for NaSi–CaAl interdiffusion found by Liu and Yund (1992) at 1,500 MPa and 1 % H₂O is several orders of magnitude faster than that of Grove et al. (1984) under dry conditions at atmospheric pressure. However, NaSi and CaAl can be considered immobile whichever diffusion coefficient is used: using the diffusion coefficient of Liu and Yund (1992), the characteristic diffusion distance over 18 ky is 10–15 µm (depending
on the anorthite content), while using the diffusion coefficient of Grove et al. (1984) this distance is only 35 nm.

The diffusivity of Ti has not been measured, but the high charge of Ti\(^{4+}\) ions implies that it will be slow (Cherniak, 2010). The diffusion coefficient of Ce is also not known, however the low diffusivity of La and other REE suggest that Ce will also diffuse slowly (Cherniak, 2002b). The anorthite content of the plagioclases zones, along with their La, Ce and Ti concentrations, can therefore be used to estimate the composition of the melt from which each zone grew.

Sr has a slightly higher diffusion coefficient than the elements discussed above, and has a characteristic diffusion length of 50–800 \(\mu\)m over 18 ky (Chapter 3). However, Figure 6.8 shows that if the high-temperature residence times for the crystals are significantly less than the 2,800 y between the Therasia dome complex and the Cape Riva eruption, then the Sr concentrations should be close to original. The tightness of the relationship between Sr and anorthite in Figure 6.9a (see below) strongly suggests this is the case, since any diffusive partial re-equilibration of Sr following crystal growth would blur the Sr-anorthite relationship.

The fastest diffusing elements considered here, Mg and K, will almost completely re-equilibrate over 18 ky (Chapter 3). Mg has a characteristic diffusion distance of 300–3,000 \(\mu\)m over this time, while K has a characteristic diffusion distance of 600–2,000 \(\mu\)m (Giletti and Shanahan, 1997; Van Orman et al., 2014). This distance drops to 25–250 \(\mu\)m for Mg and 50–150 \(\mu\)m for K over 100 years. This means that if high-temperature crystal residence times are less than a few thousand years, Mg and K will only be partially re-equilibrated. This makes Mg and K ideal targets for estimating high-temperature crystal residence times by diffusion modelling. Mg was chosen over K because K is a major element in the ternary anorthite–albite–orthoclase system, which would complicate the diffusion modelling.
6.5 Reconstructing melt compositions from plagioclase compositions

The results of the LA ICP-MS analyses of the plagioclase crystals are shown in Figure 6.9, with concentrations converted to represent liquid compositions that are in equilibrium with those found in the plagioclases. For Sr and Ti, there is a tight relationship between their concentration and the anorthite content of the host crystal (Figure 6.9a,b). These relationships mirror those found in the whole rock data, with Sr decreasing with increasing degrees of melt evolution (i.e. decreasing An content), and Ti showing a peak at around An$_{65}$ (Chapter 2).

La and Ce show greater scatter than Sr and Ti. Some of this spread is due to greater analytical uncertainty as a result of their very low concentrations. Although there is a small amount of overlap, the Therasia and Cape Riva plagioclases form two distinct trends (Figure 6.9c,d). For any given An content, the Therasia plagioclase contain more La and Ce. This difference is significant, as it reflects the two separate trends seen in the whole rock data (Chapter 5).

Although there is a general trend towards more Mg-rich compositions with increasing anorthite content, there is a broad spread of Mg concentrations (Figure 6.9e). This is particularly true for the calcic plagioclases. There are two possible interpretations for this spread: either the spread reflects a spread of magma compositions from which the plagioclases grew, or the Mg concentration has been modified by diffusion after growth.

The relationship between K and anorthite resembles that of La and Ce, with a general trend towards higher K concentrations with decreasing anorthite content, and with the Therasia plagioclases containing more K than the Cape Riva plagioclases at any given anorthite content (Figure 6.9f).
6.5. Reconstructing melt compositions from plagioclase compositions

Figure 6.9: Liquid equivalent compositions for plagioclase crystals from the Therasia and Cape Riva eruptions. Typical anorthite error bars calculated from electron microprobe counting statistics, typical trace element error bars calculated using Equation 6.3.

6.5.1 Major element composition of the melt

In order to interpret the zoning patterns of the plagioclase, it is important to understand what is causing the changes in the anorthite content. There are three potential ways of changing the anorthite content of plagioclase:
1. Changing the temperature, e.g. by underplating the magma reservoir with hotter magma

2. Changing the water content of the melt, e.g. by degassing or volatile fluxing

3. Changing the melt composition through magma mixing (which would also change the temperature, and possibly P_{H_2O} as well)

The concentrations of slowly diffusing trace elements in plagioclase crystals can be used to distinguish between these different processes, as they will behave differently in each case.

Assuming that the total pressure and the melt composition remain constant, then the temperature and water pressure changes needed to produce the changes in anorthite content can be estimated using the plagioclase–liquid thermometer and hygrometer equations of Putirka (2008). For example, the Cape Riva crystals have anorthite contents that vary between An_{36-40} and An_{55-60}. Assuming that the melt composition remains constant, this change can be produced by modest increases in the temperature ($\sim 20^\circ C$) or H_2O concentration in the melt (~ 0.3 wt%).

However, there is a tight relationships between the anorthite content of the plagioclase and the apparent Sr concentration of the melt that it is in equilibrium with (Figure 6.9a). If the anorthite content of the plagioclase phenocrysts is controlled purely by temperature or P_{H_2O}, then this relationship must be an artefact of the partition coefficients chosen. While the temperature does affect the partitioning of Sr between plagioclase and silicic melts, this effect is not large enough to explain the apparent relationship. Changing the temperature by 100°C (from 880 to 980°C) using the partition coefficients of Bindeman et al. (1998) changes the estimated Sr concentrations in the melt by 10–15 ppm, while a differences of >100 ppm are seen in the liquid equivalent compositions of Cape Riva plagioclase phenocrysts (e.g. Figure 6.3) — and an even larger range is seen in the Therasia plagioclase phenocrysts (e.g. Figure 6.4).
The effects of water concentration in the melt on the partition coefficient are less well constrained. The global regression of all partition coefficient data carried out by Bédard (2006) suggest that a change of 1–2 wt% H$_2$O in the melt could produce a \sim100 ppm variation in Sr melt concentrations. However, Blundy and Wood (1991) found little difference between the partition coefficients of Sr from experiments both under hydrothermal conditions and with silicate melts, implying that P$_{H_2O}$ has little effect on the partition coefficients of Sr. In either case, the total range of Sr melt concentrations shown in Figure 6.9a is too large to be explained by changes in the water content. Total pressure too has only a weak influence on the partition coefficient of Sr (Bédard, 2006; Blundy and Wood, 1991). The zoning patterns in the plagioclase crystals, therefore, must correlate principally with changes in the melt chemistry. These changes in the melt chemistry may well be accompanied by changes the temperature and P$_{H_2O}$ of the melt — indeed studies of glass inclusions show that melt composition, temperature and volatile contents correlate well in Santorini magmas (Mercier et al., 2013) — the important point is that the compositions of the plagioclase crystals can be used to estimate the compositions of the melts from which they grew.

Plotted on Figure 6.10 are the liquid equivalent Sr and Ti concentrations estimated from the compositions of the plagioclase crystals, along with whole rock and ground-mass compositions of different units from Santorini. Figure 6.10 shows that the Sr and Ti contents of the melt compositions estimated from plagioclase analyses do, in fact, match the whole rock compositions. For silicic magmas and sodic plagioclases there is a tight fractionation trend towards low-Sr and low-Ti melts, seen in both the whole rock plagioclase data. Most of the Cape Riva phenocrysts appear more evolved than the whole rock compositions, however this is also true for the Cape Riva glass. The Cape Riva plagioclases are therefore in equilibrium with compositions similar to — slightly more evolved than — the Cape Riva glass, and not whole rock compositions. The difference between Therasia whole rock and glass compositions is less significant, as the Therasia dacites have lower crystallinity then the Cape Riva dacite.
However, for more mafic magmas and more calcic plagioclases there is far less of a trend. The plagioclase compositions still agree with whole rock compositions, however there is quite a large range of Sr contents in Santorini basalts, even between those with similar major element concentrations. In Skaros basalts and Therasia basaltic enclaves at about 54 wt% SiO$_2$, there is between 200 and 300 ppm Sr. Some Peristeria basalts have up to 450 ppm Sr, despite similar SiO$_2$ contents (Huijsmans, 1985; Huijsmans et al., 1988). The concentration of Sr in the whole rock can also change quite rapidly with some indicators of melt evolution, such as MgO content. This means that small amounts of uncertainty in the Sr concentration of the plagioclase crystal can lead to large uncertainties in the calculated melt composition. This is particularly important when we estimate initial Mg contents of the plagioclase crystals in order to model its diffusion in Section 6.6. I therefore decided instead to use Ti concentrations to match

Figure 6.10: Sr and Ti liquid compositions calculated to be in equilibrium with plagioclase compositions. Fields are whole rock data for different Santorini units. Therasia whole rock, groundmass and mafic enclaves are from this work, and the Cape Riva dacite glass is one analysis from this work. Contours roughly match melt SiO$_2$ concentrations, in wt%. Cape Riva dacite and andesite, and Upper Scoria 2 (US2) data from Druitt et al. (1999). Skaros and Peristeria data from Huijsmans (1985).
up plagioclase compositions with whole rock compositions.

The differences in Sr concentrations between the different groups of Santorini basalts do, however, cast light on the origin of the calcic cores in the plagioclases found in the Therasia dacites. The most calcic crystal cores (with anorthite higher than An$_{80}$) have very high Sr, equivalent to up to 554 ppm in the melt (Figure 6.10). None of the Skaros basalts or Therasia basaltic enclaves have Sr that high (Chapter 2); the only magmas on Santorini with more than 350 ppm Sr are lavas from the Peristeria centre that was active between 530 and 430 ka (Druitt et al., 1999; Huijsmans, 1985; Huijsmans et al., 1988). This suggests that these cores were recycled from plutonic rock or mush from the Peristeria period. The Peristeria vents were located in the north of the island, and probably overlapped geographically with the locations of the Therasia vents. The crystals with An<80, however, are all in equilibrium with melts with less than 350 ppm Sr. The Sr contents of these crystals cannot, therefore, distinguish between plutonic mush or mafic recharge as their source.

We can use the Ti and Sr liquid-equivalent values to estimate the compositions from which each plagioclase zone crystallised. Figure 6.11 shows how the Ti content was used to match plagioclase composition to the SiO$_2$ content of the melt in which it grew, and Table 6.2 summarises the results for the different zones of the Therasia and Cape Riva plagioclases. From Figure 6.11 we can see that plagioclase with a composition of between An$_{30}$ and An$_{40}$, similar to that of the majority of the rims of the plagioclase crystals found in the Cape Riva pumice, probably grew from a liquid with between 69 and 72 wt% SiO$_2$: similar to the composition of the Cape Riva glass. The Therasia plagioclase rims are slightly more calcic (between An$_{40}$ and An$_{50}$), and these compositions correspond to whole rock compositions of between 65 and 69 wt% SiO$_2$; this matches the whole rock and groundmass compositions observed in the Therasia dacites. The most calcic plagioclases (≈An$_{90}$) would have crystallised from a basalt with about 50 wt% SiO$_2$.
Figure 6.11: (a) Ti concentrations in melts in equilibrium with the composition of plagioclase crystals in lavas from the Therasia dome complex and pumices from the Cape Riva eruption. (b) Ti concentrations in whole rock (wr), groundmass separates (gm), and mafic enclaves (en) from the Skaros (Huijsmans, 1985), Upper Scoria 2 (US2; Druitt et al., 1999), Cape Riva and Therasia dome complex (Druitt et al., 1999; this study) (c) and (d) interpretive sketches of (a) and (b), respectively, with dashed lines showing how plagioclase and whole rock data can be matched up. Mixing models in (d) are those discussed in Chapter 5.

6.5.2 Distinguishing fractionated melts from hybrid melts

The Ti concentration also allows us to distinguish between crystals that grew in hybrid andesites and those that grew from andesites formed by fractionation (Chapter 5). Figure 6.11 shows that most plagioclases lie on a curved band that mirrors the fractionation trend seen in the whole rock data. Mixing between basalts and dacites and rhyolites produces hybrid melts that fall below this trend (Figure 6.11d), and any crystals that grow from these hybrid melts should fall below the equivalent trend in the
6.5. Reconstructing melt compositions from plagioclase compositions

Table 6.2: Estimated melt compositions in equilibrium with the different plagioclase zones

<table>
<thead>
<tr>
<th>Plagioclase composition</th>
<th>Melt composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(An, mol%)</td>
</tr>
<tr>
<td>Therasia dacites</td>
<td></td>
</tr>
<tr>
<td>Calcic cores</td>
<td>62–91</td>
</tr>
<tr>
<td>Peak of sawtooth zones</td>
<td>59–72</td>
</tr>
<tr>
<td>Rims</td>
<td>39–51</td>
</tr>
<tr>
<td>Cape Riva dacite</td>
<td></td>
</tr>
<tr>
<td>Peak of sawtooth zones</td>
<td>46–60</td>
</tr>
<tr>
<td>Rims</td>
<td>36–40</td>
</tr>
</tbody>
</table>

The melt evolution paths determined from two plagioclase crystals from the Therasia dacites are shown in Figure 6.12. Most of the crystals lie along the fraction trend, including GS10-17 XL57 (Figure 6.12a). The centre (point 1) and the rim (point 3) of GS10-17 XL57 both have low anorthite and liquid equivalent Ti contents. Where the crystal becomes more calcic (point 2) it also has an increased liquid equivalent Ti content, following melt fractionation trends again. This means that mixing with a basalt cannot produce the calcic plagioclase at point 2.

GS10-17 XL71 is an example of a crystal that lies below the fractionation trends (Figure 6.12a). Going from the centre of GS10-17 XL71 (point 1) towards the rim (point 7), the plagioclases becomes less calcic. The first four points are in the calcic core of the crystal, with compositions of An$_{67-84}$. There is then a jump in anorthite content, and the three points in the outer zone have compositions of An$_{39-42}$. At the same time, the liquid equivalent Ti content first increases, and reaches a peak at point 4, after which it falls. Most of the points lie along the fractionation trends, apart from point 4 which lies slightly below. This suggest that point 4 might have grown from a hybrid melt.

In total, six analysed crystals from the Therasia dome complex have zones that appear to have precipitated from hybrid melts (Figure 6.11); three of these are from
the upper Therasia andesite that has already been shown to be hybrid (Chapter 5). The other three hybrid-derived plagioclase crystals, however, come from the uppermost flow on Cape Tripiti, the dacitic flow 9 (GS10-16). One of these analyses is of a resorbed inner zone; it could have emanated from the plutonic mush, and therefore it could be much older than the Therasia dome complex. The other two, however, are in the centres of crystals that grade normally into rims typical of the dacites and show no signs of dissolution. This suggests that there was an input of hybrid andesite into the magma reservoir before flow 9 was erupted.

The plagioclases from the Cape Riva dacite, on the other hand, all give liquid equivalent Ti values that lie along the trend defined by the fractionated magmas. This can be seen for four individual crystals in Figure 6.13. Above, it was argued that the Cape Riva plagioclases grew in equilibrium with melts ranging from dacite to
6.5. Reconstructing melt compositions from plagioclase compositions

rhyodacite in composition. If the dacite was produced by magma mixing, then we can place constraints on the mafic endmember. A basaltic or basaltic-andesite melt would have low Ti, and would drive the plagioclase compositions between the two arms of the fractionation trend (as in the mixing models in Figure 6.11d). Because the Cape Riva plagioclases all lie along the right-hand arm of the fractionation trend, all the incoming magmas must have at least ~ 57 wt% SiO$_2$. The sawtooth zoning in the Cape Riva plagioclases, therefore, records the mixing of melts that range from silicic andesite to rhyodacite.

6.5.3 Incompatible element concentrations of the melt

The difference in incompatible element concentrations in the Therasia and Cape Riva dacites provides a means of distinguishing crystals that grew in a Cape Riva-like magma from those that grew in a Therasia-like magma. The Cape Riva dacite is depleted in incompatible elements (such as La and Ce) relative to Therasia dacites, and this can be explained if a significant proportion of the Cape Riva dacite was a new silicic magma batch introduced into the sub-volcanic plumbing system less than $2,800 \pm 1,400$ y before the Cape Riva eruption (Chapter 5).

The lower La and Ce concentrations in the Cape Riva plagioclase, coupled with the very slow diffusion rates of La and Ce (Figure 6.8), indicate that the majority of the Cape Riva plagioclase grew from a Cape Riva-like magma. K also is depleted in the Cape Riva magma, however it diffuses much more rapidly (Chapter 3; Brady, 1995; Giletti and Shanahan, 1997). This means that K concentrations may not reflect the original growth conditions of the plagioclase, because the crystals may have re-equilibrated with their host magma. However, the low K values in Cape Riva plagioclases relative to Therasia plagioclases are consistent with a Cape Riva source for
Figure 6.13: Melt evolution paths determined from Ti contents of plagioclase crystals from the Cape Riva dacite. The blue and green fields are from Figure 6.11. (a) GS11-30b XL18, (b) S12-06 XL24, (c) S12-05 XL08, (d) GS11-34f XL13.
most of the Cape Riva plagioclase (Figure 6.9f).

Only two out of the 90 analyses preformed on 37 different Cape Riva plagioclases have high La and Ce (Figure 6.9c,d). One of these analyses is from the inner zone of a crystal, and shows signs of resorption; this inner zone could be xenocrystic, and therefore tells us little about evolution of the Cape Riva melt. The other, however, is from the calcic part of a sawtooth zone of a crystal (S12-06 XL08). The centre of this crystal has low La and Ce, suggesting that it started growing in a Cape Riva-like magma. This crystal could then have been transferred to a Therasia-like magma, where it was partially resorbed and overgrown by more calcic plagioclase. S12-06 XL08 was then transferred back into Cape Riva-like magma, or the Therasia-like magma was possibly mixed into a much larger body of Cape Riva-like magma, as the rim of this crystal has the low La and Ce typical of the Cape Riva dacite. This interpretation implies that there was still at least a small amount of Therasia-like melt stored beneath Santorini when the Cape Riva magma was transferred to the shallow storage region, although interpretations based on only one data point are obviously rather speculative.

It is clear, however, that few (if any) Cape Riva plagioclases are antecrysts derived from the Therasia magmas. This has important implications for the residence time of the Cape Riva magma in the shallow crust. From the whole-rock data we know that a large volume of incompatible melt arrived in the shallow plumbing system less than ~2,800 years before the Cape Riva eruption. However, the chemistry did not allow us to rule out that up to half of the Cape Riva magma was actually residual Therasia magma. The lack of plagioclase crystals recycled from the Therasia period suggests that there was very limited mixing with residual magma, although it is still possible that the Therasia plagioclases were resorbed before the Cape Riva plagioclases grew. An important implication of this observation is that the high-temperature residence times for the Cape Riva crystals estimated from diffusion modelling below relate only to processes occurring in the Cape Riva magma.
6.6 Estimating timescales with diffusion modelling

6.6.1 Initial Mg concentration of the plagioclase crystals

Given the rate of diffusion of Mg in plagioclase (Figure 6.8), we might expect to find that Mg has diffused. The relationship between Mg and anorthite shown in Figure 6.9e suggests that this is indeed the case. In order to model the diffusion of Mg in plagioclase, it is first necessary to estimate the initial Mg concentration of the crystals. This was done in two steps. First, an equation relating the Ti and Mg concentrations in the whole rock data was constructed. Then, a similar relationship between Ti and An was found, and the two equations were combined to create the final equation for the initial Mg content in terms of An. The lines of best fit and the amount variation were estimated by eye.

The relationship between Ti and Mg in the whole-rock data can be fit by two exponential functions: one for the rocks produced by Fe-Ti oxide–absent fractional crystallisation (where Ti increases with the degree of fractionation), and one for where Fe-Ti oxides are present during fractionation (where Ti decreases with the degree of fractionation). Both of these equations have the form (Figure 6.14a):

\[
C_{\text{liq}}^{\text{Mg}} = a_1 \exp \left(a_2 C_{\text{liq}}^{\text{Ti}} \right)
\]

(6.5)

where \(a_1\) and \(a_2\) are coefficients to be determined. These can be combined with linear functions for Ti against An, where Ti concentrations are those in a liquid in equilibrium with the plagioclase (Figure 6.14b):

\[
C_{\text{liq}}^{\text{Ti}} = b_1 X_{\text{An}} + b_2
\]

(6.6)

where \(b_1\) and \(b_2\) are also coefficients to be determined.

Combining Equations 6.5 and 6.6 we get the concentration of Mg in the liquids that
crystallised plagioclase of a particular anorthite content:

\[C_{\text{Mg}}^{\text{liq}} = a_1 \exp \left[a_2 \left(b_1 X_{\text{An}} + b_2 \right) \right] \]

(6.7)

Using the partition coefficients of Bindeman et al. (1998), we can calculate the concentration of Mg in the plagioclase that would be in equilibrium with these liquids:

\[C_{\text{Mg}}^{\text{eq}} = a_1 \exp \left(a_2 b_1 X_{\text{An}} + a_2 b_2 \right) \exp \left(\frac{AX_{\text{An}} + B}{RT} \right) \]

\[= a_1 \exp \left[a_2 b_2 + \left(a_2 b_1 + \frac{A}{RT} \right) X_{\text{An}} + \frac{B}{RT} \right] \]

(6.8)

Plugging the numbers in, this equation does not quite fit the data: the calculated initial concentrations are lower than those measured in the rims of the plagioclases. This may be a problem with the partition coefficients; Bindeman et al. (1998) measured theirs in basalt whereas our plagioclases grew from a dacite, and melt composition has been shown to effect trace element partitioning (Blundy and Wood, 2003). The same issue was also noted by Druitt et al. (2012). Multiplying the equation by a constant fixes this, however. The final equation used to predict the initial concentration of Mg in the plagioclases is (Figure 6.15):

\[C_{\text{Mg}}^{\text{init}} = \begin{cases}
310 \exp \left(6.13 + \frac{A}{RT} \right) X_{\text{An}} + \frac{B}{RT} & \text{for } An < 69 \\
2130 \exp \left(3.33 + \frac{A}{RT} \right) X_{\text{An}} + \frac{B}{RT} & \text{for } An \geq 69
\end{cases} \]

(6.9)

The uncertainty in this estimate is given by the following bounds:

\[C_{\text{Mg}}^{\text{init-low}} = \begin{cases}
340 \exp \left(5.62 + \frac{A}{RT} \right) X_{\text{An}} + \frac{B}{RT} & \text{for } An < 72 \\
1316 \exp \left(3.73 + \frac{A}{RT} \right) X_{\text{An}} + \frac{B}{RT} & \text{for } An \geq 72
\end{cases} \]

(6.10)
\[C_{\text{Mg}}^{\text{init-high}} = \begin{cases} 276 \exp \left((6.72 + \frac{A}{RT}) X_{\text{An}} + \frac{B}{RT} \right) & \text{for An} < 66 \\ 3150 \exp \left((3.03 + \frac{A}{RT}) X_{\text{An}} + \frac{B}{RT} \right) & \text{for An} \geq 66 \end{cases} \] (6.11)

6.6.2 Equilibrium profiles

Final, equilibrium profiles for the plagioclase crystals can also be calculated using the plagioclase–liquid partition coefficients of Bindeman et al. (1998). As the plagioclase–liquid partition coefficient of element \(i \) is defined as:

\[K_{i}^{\text{plag/liq}} = \frac{C_{i}^{\text{plag}}}{C_{i}^{\text{liq}}} \] (6.12)

we can combine the partition coefficients for two different plagioclase compositions (plag-1 and plag-2) as follows:

\[\frac{K_{i}^{\text{plag-1/liq}}}{K_{i}^{\text{plag-2/liq}}} = \frac{C_{i}^{\text{plag-1}}/C_{i}^{\text{liq}}}{C_{i}^{\text{plag-2}}/C_{i}^{\text{liq}}} = \frac{C_{i}^{\text{plag-1}}}{C_{i}^{\text{plag-2}}} \quad (= K_{i}^{\text{plag-1/plag-2}}) \] (6.13)

If the rim is assumed to be in equilibrium with the melt, then the equilibrium profile can be constructed by working inwards. We can use Equation 6.13 to calculate the concentration of \(i \) in each part of the crystal that is in equilibrium with the part of the crystal immediately outside of it. Diffusion will tend to drive the composition of the plagioclase towards this equilibrium profile (Costa et al., 2003; Zellmer et al., 1999).

6.6.3 Numerical modelling

The diffusion of Mg in plagioclase can modelled numerically using the method of Costa et al. (2003) as used by Druitt et al. (2012). The changes in concentration due to diffusion of a trace element in plagioclase such as Mg, \(C_{\text{Mg}} \), the following equation can
6.6. Estimating timescales with diffusion modelling

Figure 6.14: (a) Whole rock (filled symbols) and groundmass (open symbols) compositions of the Therasia, Cape Riva, Skaros and Upper Scoria 2 eruptions (b) Liquid equivalent compositions for plagioclases from the Cape Riva and Therasia eruptions. Solid black line is the equation used to estimate the initial Mg concentration of the plagioclase, dashed lines are an estimate of the uncertainty, covering \(\sim 2/3\) of the data. Each blue field in (b) contains all the analyses from the profiles in an individual crystal in the Therasia dacites, and the green fields are individual crystals from the Cape Riva dacite.

Figure 6.15: The estimate of the initial Mg concentration of the crystals, shown by the solid black line, from Equation 6.9. The uncertainty, from Equations 6.10 and 6.11 is shown by the dashed lines. Each blue field contains all the analyses from the profiles in an individual crystal in the Therasia dacites, and the green fields are individual crystals from the Cape Riva dacite.
be used (Equation 3.16 in Chapter 3):

\[
\frac{\partial C_{Mg}}{\partial t} = \frac{\partial}{\partial x} \left(D_{Mg} \frac{\partial C_{Mg}}{\partial x} - D_{Mg} C_{Mg} \frac{A}{RT} \frac{\partial X_{An}}{\partial x} \right)
\]

(6.14)

where \(D_{Mg}\) is the diffusion coefficient of Mg in plagioclase, \(A\) is the parameter that describes the variation of the partition coefficient of Mg with anorthite content in Equation 6.1 above.

In order to model the diffusion of Mg in plagioclase numerically, Equation 6.14 is expanded and converted to a finite difference scheme. The subscripts \(i\) and \(j\) refer to a discrete spacial and temporal step, respectively, with widths or durations of \(\Delta x\) and \(\Delta t\):

\[
\frac{\partial C_{Mg}}{\partial t} = D_{Mg} \frac{\partial^2 C_{Mg}}{\partial x^2} + \frac{\partial C_{Mg}}{\partial x} \frac{\partial D_{Mg}}{\partial x} - \frac{A}{RT} \left(D_{Mg} \frac{\partial C_{Mg}}{\partial x} \frac{\partial X_{An}}{\partial x} + C_{Mg} \frac{\partial D_{Mg}}{\partial x} \frac{\partial X_{An}}{\partial x} + D_{Mg} C_{Mg} \frac{\partial^2 X_{An}}{\partial x^2} \right)
\]

(6.15)

\[
\frac{C_{i,j+1} - C_{i,j}}{\Delta t} = D_{i,j} \frac{C_{i+1,j} - 2C_{i,j} + C_{i-1,j}}{\Delta x^2} + \frac{(C_{i+1,j} - C_{i,j})(D_{i+1,j} - D_{i,j})}{\Delta x^2} - \frac{A}{RT} \left(D_{i,j} \frac{(C_{i+1,j} - C_{i,j})(X_{An,i+1,j} - X_{An,i,j})}{\Delta x^2} + C_{i,j} \frac{(D_{i+1,j} - D_{i,j})(X_{An,i+1,j} - X_{An,i,j})}{\Delta x^2} + D_{i,j} C_{i,j} \frac{X_{An,i+1,j} - 2X_{An,i,j} + X_{An,i-1,j}}{\Delta x^2} \right)
\]

(6.16)

Equation 6.16 allows \(C_{i,j+1}\) to be calculated explicitly given \(C_{i-1,j}\), \(C_{i,j}\) and \(C_{i+1,j}\), and was implemented using Matlab scripts (Appendix D).

The outside end of the profile was fixed assuming the first measured point was in equilibrium with the melt it resided in. The profile was assumed to be symmetrical
6.6. Estimating timescales with diffusion modelling

by implicitly mirroring it around the innermost point, except where the profile was significantly longer than half the crystal. Where the profile spanned the entire crystal, both ends of the profile were assumed to be in equilibrium with the liquid.

The diffusion times of all the profiles were first estimated using one-stage models: the whole crystal was assumed to have grown instantaneously, with no diffusion, and then allowed the re-equilibrate with the melt at 880°C. The time taken for the calculated profile to match the measured profile is then assumed to be the high-temperature residence time of the crystal. Some of the profiles could, however, be better fit by a two-stage model. The two-stage models were run as follows:

1. First, the inner zone was assumed to grow instantaneously.

2. The inner zone was then allowed to partially re-equilibrate. The outer-most part of the inner zone was assumed to still have its initial Mg concentration, and to be in equilibrium with the melt. Diffusion is modelled at temperatures between 880 and 930°C, depending on the anorthite content of the outside edge of the inner zone (estimated using Equation 6.2).

3. The outer zone was then assumed to grow instantaneously, with no diffusion taking place during growth.

4. The whole crystal was then allowed to re-equilibrate diffusively with the melt, as in the single-stage models.

Although this approach is still a simplification of the processes of concurrent growth and diffusion, it is closer approximation to reality than one stage models. This method allows two times to be calculated: the total high-temperature residence times of the inner zones, and the high-temperature residence times of the crystals following outer zone growth.
6.6.4 Diffusion coefficient

The different experimental calibrations of the diffusion coefficient of Mg in plagioclase are discussed in Chapter 3. I chose to use the diffusion coefficient of Van Orman et al. (2014), whose experiments were carried out between 800 and 1150 °C (which includes the temperatures of interest to this study). Their equation for the diffusion coefficient as a function of temperature and plagioclase composition is:

\[
D_{\text{plag}}^{\text{Mg}} = \exp \left[(-6.06 \pm 1.10) - (7.96 \pm 0.42) X_{\text{An}} - \frac{287,000 \pm 10,000}{RT} \right]
\]

(6.17)

6.6.5 Results

The results of one-stage diffusion models of plagioclase crystals from the Therasia dacites are shown in Figure 6.16, and the results of two-stage diffusion models are shown in Figure 6.17. The results of one-stage and two-stage diffusion models for plagioclase crystals from the Cape Riva dacite are shown in Figures 6.18 and 6.19, respectively. Also shown on the graphs are the predicted initial Mg concentrations and uncertainties, calculated using Equations 6.9–6.11; and the Mg concentrations calculated to be in equilibrium with the edges of the crystals (and hence the melt), using Equation 6.13. The calibrated BSE images and anorthite profiles for all the crystals modelled are presented in Appendix E.

Most of the Mg concentrations of the analysed points (especially those in the centres of the crystals) sit somewhere between the estimated initial Mg concentrations and the estimated equilibrium concentrations. This confirms that the Mg has partially re-equilibrated by diffusion, and allows us to estimate high-temperature residence times for the crystal using diffusion modelling. Two crystals from the Cape Riva dacite (GS11-34a XL14 and XL23, Figures 6.18e–h and 6.20), however, have Mg concentrations within, or close, to the range of uncertainty of the initial Mg concentrations. The lack of Mg diffusion within these crystals suggest that they grew very shortly before eruption.
6.6. Estimating timescales with diffusion modelling

Figure 6.16: The results of one-stage diffusion models of plagioclase crystals from the Therasia dacites. Solid black lines are best fit models, while dashed lines show how the Mg profile evolves with time. Labels on the right of each figure are the time in years for each of the models shown. The results are summarised in Table 6.3.
Figure 6.17: The results of two-stage diffusion models of plagioclase crystals from the Therasia dacites. Dashed black line is the modelled result after the first stage (inner zone only), solid black line is the result after both stages. The inner zone and outer zone times stated on the diagram are the times for each stage only; the total high-temperature residence times of the crystals is the inner zone residence time + outer zone residence time. The results are summarised in Table 6.3.
Figure 6.18: The results of one-stage diffusion models of plagioclase crystals from the Cape Riva dacite. Solid black lines are best fit models, while dashed lines show how the Mg profile evolves with time. Labels on the right of each figure are the time in years for each of the models shown. The results are summarised in Table 6.3.
Figure 6.18 continued: The results of one-stage diffusion models of plagioclase crystals from the Cape Riva dacite.
6.6. Estimating timescales with diffusion modelling

Figure 6.19: The results of two-stage diffusion models of plagioclase crystals from the Cape Riva dacite. Dashed black line is the modelled result after the first stage (inner zone only), solid black line is the result after both stages. The inner zone and outer zone times stated on the diagram are the times for each stage only; the total high-temperature residence times of the crystals is the inner zone residence time + outer zone residence time. The results are summarised in Table 6.3.
Figure 6.20: A plagioclase crystal from the Cape Riva dacite (GS11-34 XL14). (a,b) Anorthite contents along the two laser profiles, measured using the calibrated BSE image. (c,d) The results of one-stage diffusion models. Solid black lines are best fit models, while dashed lines show how the Mg profile evolves with time. No best-fit diffusion model shown for profile 1 (c), as the data are best fit by the initial profile. Labels on the right of each figure are the time in years for each of the models shown.
6.6. Estimating timescales with diffusion modelling

GS11-34a XL14 (Figure 6.20) also shows a common feature of the diffusion models: profile 2 appears to be more equilibrated than profile 1, and hence gives a longer high-temperature residence time. Where this is the case, the shorter time is taken as the better estimate of the crystal’s high-temperature residence time. One-dimensional diffusion models, such as those presented here, may overestimate the time needed for diffusive re-equilibration (Costa et al., 2008). One-dimensional models assume that all the diffusion occurs parallel to the modelled profile. Where the geometry of the zoning pattern is complex, like it is around profile 2 of GS11-34a XL14, diffusion in other directions becomes more significant. Diffusion perpendicular to the modelled profile will allow the crystal to re-equilibrate faster than the models suggest.

There may be other fast paths for diffusion that are not obvious in the BSE images, such as cracks or grain boundaries. The zoning patterns of most of the plagioclase crystals from the Therasia and Cape Riva dacites have complex shapes, and even where the zoning patterns seem simple in the two dimensions visible in the BSE images, they may be complicated as you move out of the plane of the polished sections. Resorption also complicates the interpretation of the Mg profiles. Repeated cycles of growth, partial dissolution, re-equilibration and then renewed growth—as seen in GS11-34a XL14 (Figure 6.20), for example—will affect the shape of the Mg profile, and the one- and two-stage models presented here are clearly simplifications. It is for these reasons that the high-temperature residence times of the plagioclase crystals must be considered to be maximum residence times (except where the crystals appear to have fully equilibrated, as discussed below).

While some crystals were best fit by a one-stage model (GS11-34a XL14 and 23, discussed above; also GS10-16 XL148, Figure 6.16g and GS11-39b XL29, Figure 6.18i,j), most fits were improved by running a two-stage model. Figure 6.21 shows an example of one such crystal (GS11-30b XL15). In a one-stage model (Figure 6.21b), the calculated profile reaches the measured Mg concentrations in the edge of the crystal after less than 10 y. However, the Mg concentrations at the centre of the crystal are not
Figure 6.21: A plagioclase crystal from the Cape Riva dacite (GS11-30b XL15). (a) Anorthite contents along the laser profile, measured using the calibrated BSE image. (b) The results of one-stage diffusion models. Dashed lines show how the Mg profile evolves with time. Labels on the right are the time in years for each of the models shown. (c) The results of a two-stage diffusion model. Dashed black line is the modelled result after the first stage (inner zone only), solid black line is the result after both stages. The inner zone and outer zone times stated on the diagram are the times for each stage only; the total high-temperature residence times of the crystals is the inner zone residence time + outer zone residence time.
reached until about 450 y. In the two-stage model (Figure 6.21c), the inner zone is allowed to equilibrate for 400 y without the outer zone, and reaches the measured Mg concentrations. The outer zone then grows, and the crystal only remains in the melt for a short period (∼2 y) before being erupted.

A few crystals, however, are not well fit by either one-stage or two-stage diffusion models (e.g. GS10-14 XL32, Figure 6.22). The one-stage model for profile 1 (Figure 6.22c), for example, reaches the Mg concentration of the analyses between 170 and 250 µm from the outer zone after about 450 y. The Mg concentrations of the rest of the crystal are not reached until about 1,100 y. For the two-stage model, it is the analyses between 260 and 400 µm from the outer zone that cannot be fit at the same time as the rest of the crystal. A similar effect is seen in profile 2. One possible explanation is that not all the diffusion is occurring parallel to the measured profile. For GS10-14 XL32, it is possible that there is a join between two crystals at about 250 µm from the crystal outer zone along profile 1. This would provide a fast path for Mg to diffuse along. Another possibility is that the crystal grew in three stages rather than just two. Both explanations would require us to reduce the estimate of high-temperature crystal residence time, therefore even the poorly fit models can give us maximum high-temperature residence times.

The final feature of the diffusion models can also be seen in GS10-14 XL32 (Figure 6.22). The data can be fit by two-stage models where the inner zone first reaches equilibrium with its host melt, before the outer zone is grown. This is true of two other Therasia crystals (GS10-14 XL66, Figure 6.17c,d; GS10-17 XL60, Figure 6.17f). Once a crystal reaches equilibrium with its surroundings, it can remain at high temperature indefinitely without any changes to its composition. The timescales of these three inner zones, therefore, are minimum values. The fact that the inner zones are not in equilibrium with their outer zones, however, demonstrates that the outer zones must be younger than the inner zones, and allows us to estimate the time these crystals resided at high temperature after the growth of the outer zones.
6.6.6 Uncertainties

Uncertainty in the fit

The uncertainty in the high-temperature residence times due to the fit of the data was quantitatively assessed as follows. As the models were run, the time at which the calculated profile first reached the measured Mg concentrations was noted. The diffusion model was then allowed to continue until the calculated profile fell below most of the measured Mg concentrations. Although this approach is somewhat subjective, it was conservatively applied to produce the largest possible range of ages supported by the data.

Uncertainty in the initial conditions

Another major source of uncertainty in the diffusion models is the initial conditions. Three profiles were selected to investigate the effect of the initial Mg concentration on the residence times recovered from the diffusion models. The three profiles were run starting at the three different estimates of the initial concentration (‘best’, low, and high, as given by Equations 6.9, 6.10 and 6.11, respectively). The time each profile took to reach different levels of equilibration was then compared for the different starting conditions. The effect of using either the high or low initial Mg concentrations, rather than the ‘best’ initial concentrations, was to change the estimated high-temperature residence times by between 15 and 65 y (with an average difference of 40 y).

We can also assess the impact that the uncertainty in the initial conditions has on

Figure 6.22 (facing page): A plagioclase crystal from the Thersea dacites (GS10-14 XL32). (a,b) Anorthite contents along the laser profiles, measured using the calibrated BSE image. (c,d) The results of one-stage diffusion models. Dashed lines show how the Mg profile evolves with time, and solid black lines are the best fit model. Labels on the right are the time in years for each of the models shown. (e,f) The results of a two-stage diffusion model. Dashed black line is the modelled result after the first stage (inner zone only), solid black line is the result after both stages. The inner zone and outer zone times stated on the diagram are the times for each stage only; the total high-temperature residence times of the crystals is the inner zone residence time + outer zone residence time.
6.6. Estimating timescales with diffusion modelling

Innerszone:
93°C for 500y

Outerszone:
88°C for 75y

Profile 1
Profile 2

Initial (with uncertainty)
Models
Equilibrium
+ LA ICP-MS measurements

Mg (ppm)

Distance from rim (µm)

Profile 1
Profile 2
the high-temperature residence times by looking at the time it takes for the calculated profile to drop from the ‘best’ initial profile to below the low bound of the initial concentration. In most cases this is less than 40 y. The exceptions are in the centres of long plateaus of the Mg concentration and regions affected by “uphill diffusion”. For example, the very centre of Figure 6.21b stays at roughly the same Mg concentration for the first 180 y. This is due to the fact that the diffusion front has to migrate to the centre. In the case of “uphill diffusion” (e.g. Figure 6.22d), it is Mg diffusing out of regions with high initial Mg concentrations that stops the Mg profile from dropping (even driving the Mg concentrations “uphill”, away from equilibrium). In both cases, changing the initial Mg concentration does not change this behaviour; instead it adds or subtracts ~ 40 years on top of the time it takes for the Mg concentrations in the regions affected to start dropping. A value of ± 40 y was taken as the uncertainty due to potential variations in the initial Mg concentration, and was added to the range of times estimated from the range of possible fits to the data (as described above). In crystals with high-temperature residence times shorter than 40 y, however, the time taken for the one-stage models to drop from the best estimate to below the lower bound of the estimates of the initial Mg concentrations was used instead.

Uncertainty in the diffusion coefficient

The final source of uncertainty in the models is the uncertainty in the diffusion coefficient. Because time is inversely proportional to the diffusion coefficient in Equation 6.4, we can assess this analytically. The biggest source of error in the diffusion coefficient is the temperature at which the diffusion is assumed to have taken place. The relationship between the diffusion coefficient and the temperature takes the form:
6.6. Estimating timescales with diffusion modelling

\[D = D_0 \exp \left(\frac{-Q}{RT} \right) \quad (6.18) \]

The ratio between the time diffusion takes at two different temperatures, \(T_1 \) and \(T_2 \), can therefore be written as:

\[
\frac{t_1}{t_2} = \frac{D_0 \exp \left(-\frac{Q}{RT_2} \right)}{D_0 \exp \left(-\frac{Q}{RT_1} \right)}
\]

\[
\ln \left(\frac{t_1}{t_2} \right) = \frac{Q}{RT_1} - \frac{Q}{RT_2} \quad (6.19)
\]

Fe–Ti oxides from two of the three analysed pumice fall deposits from the Therasia dome complex, along with the Cape Riva eruption give temperatures of within about ±25°C of 880°C (Chapter 5; Cadoux et al., 2014). This temperature range is therefore used to assess the uncertainty in the diffusion models. It is worth noting that the pumice fall deposit that falls outside this temperature range, pumice fall B, is significantly hotter. This would speed up Mg diffusion, again making the high-temperature residence times presented here overestimates.

Using the equation for the diffusion coefficient an An\textsubscript{40} of Van Orman et al. (2014), diffusion at 855°C should take 1.94 times as long as at 880°C, and diffusion at 905°C should take 0.53 times as long. This approach may not be strictly applicable, however, as the diffusion coefficient of Mg in plagioclase is not constant across the length of the crystal. This leads to a \(\frac{\partial D_{Mg}}{\partial x} \) term in the expansion of the diffusion equation (Equation 6.15). However, running models at 855 and 905°C confirms that a factor of two is a reasonable estimate of the uncertainty in the models due to variation in temperature. The lower and upper bounds on the range of high-temperature residence times estimated from the possible fits to the data and the uncertainties in the initial conditions were therefore multiplied or divided by a factor of two to take this into account.
6.7 Combining petrological and timescale information

The results of the diffusion models of the plagioclase crystals are presented in Table 6.3. Also shown are the range of possible high-temperature residence times, taking into account the uncertainties on the fit to the data, the initial conditions, and the temperature. The best estimate of the high-temperature residence time of each crystal, out of all the models presented, is shown in bold. The high-temperature crystal residence times are also plotted in Figure 6.23, along with timescale constraints from field data (Chapter 4). For the Therasia dacites, the average time between eruptions is calculated as the time between the youngest and oldest Therasia dacites, ~ 15 ky, divided by the minimum number of pauses between the eruptions that took place during that time, 10 (≈ 1.5 ky per eruption). On the plot of Cape Riva high-temperature residence times (Figure 6.23b), the time between the youngest dated Therasia lava and the Cape Riva eruption is plotted, along with the uncertainty from the radiometric dating. Inner phenocryst zones are distinguished on the graph only where a separate high-temperature residence time could be determined using diffusion models. Outer zone residence times are either one stage models, or the second stage of two-stage models.

In order to properly interpret the crystal residence times recovered from diffusion modelling, they need to be seen in the context of the petrology and crystal textures. The three longest high-temperature residence times from the Therasia dacites come from calcic cores. As discussed in Section 6.5.1, these cores are probably xenocrystic. They could have either been introduced from a mafic recharge magma, or from an ancient plutonic mush. The high Sr content of some of the crystals suggested a plutonic origin, and the long timescales estimated here support this interpretation.

The high-temperature residence times of the outer crystal zones and one-stage models, which better represent the high-temperature residence times of phenocrysts in the Therasia magma reservoir, are all much shorter than the mean time between eruptions.
The phenocrysts from the Therasia dacites appear to have grown within a few decades, up to possibly a few centuries, prior to eruption. This tends to support the idea that there was no persistent magma reservoir during the construction of the Therasia dome complex. If there had been, we would expect to see phenocrysts recycled between eruptions.

The zoning patterns of the Cape Riva crystals record the repeated mixing of compositionally diverse magmas (silicic andesite to rhyodacite). The key result of the diffusion modelling of the Cape Riva plagioclase crystals is that all their high-temperature residence times are shorter than the $2,800 \pm 1,400$ y between the youngest dated Therasia lava and the Cape Riva eruption (Chapter 4). The depletion of incompatible elements in the Cape Riva whole rock relative to the Therasia magma suggests that much of the Cape Riva magma arrived during this time, and the short high-temperature residence times (mostly years to decades, up to a maximum of few centuries) support this interpretation.

6.8 Summary

In this chapter I have looked in detail at the plagioclase phenocrysts in the Therasia and Cape Riva dacites. I have characterised the anorthite zoning patterns of the phenocrysts, and compared these to zoning patterns of selected trace elements. I used the zoning patterns of slowly diffusing components (anorthite, Sr, Ti, La, Ce) to investigate the composition of the melts that the plagioclase phenocrysts came into contact with, and used the zoning patterns of Mg to estimate high-temperature residence times. The key findings of this chapter are:

- The plagioclase phenocrysts from the Therasia dacites have rims of An$_{39}$ to An$_{51}$. Some of the crystals have sawtooth zoning, where anorthite contents cycle between An$_{59-72}$ and the rim compositions. Other crystal have a calcic core, with compositions of An$_{30}$ to An$_{91}$.
Table 6.3: High-temperature residence times, in years, calculated in diffusion models of Mg in plagioclase.

Therasia dacites

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Profile</th>
<th>1 Stage</th>
<th>2 Stage</th>
<th>Calcic core<sup>a</sup></th>
<th>Outer zone<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 5 (GS10-17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL60</td>
<td>—</td>
<td>2,200 (630–9,000)</td>
<td></td>
<td>3,000 (1,000–)</td>
<td>15 (0–120)</td>
</tr>
<tr>
<td>XL71</td>
<td>1</td>
<td>800 (100–3,400)</td>
<td>330 (10–1,100)</td>
<td></td>
<td>125 (30–480)</td>
</tr>
<tr>
<td>Flow 8 (GS10-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL32</td>
<td>1</td>
<td>1,100 (200–3,700)</td>
<td></td>
<td>500 (150–)</td>
<td>75 (5–330)</td>
</tr>
<tr>
<td>XL66</td>
<td>1</td>
<td>9,000 (430–)</td>
<td></td>
<td>5,000 (1,200–)</td>
<td>400 (130–1,100)</td>
</tr>
<tr>
<td>Flow 9 (GS10-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL148</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Riva dacite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td>Profile</td>
<td>1 Stage</td>
<td>2 Stage</td>
<td>Inner sawtooth<sup>a</sup></td>
<td>Outer sawtooth<sup>b</sup></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Phase A (GS11-34a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL09</td>
<td>1</td>
<td>20 (5–240)</td>
<td>10 (2–)</td>
<td>10 (2–120)</td>
<td>5 (0–100)</td>
</tr>
<tr>
<td>XL14</td>
<td>1</td>
<td>0 (0–120)</td>
<td>70 (10–440)</td>
<td>15 (5–)</td>
<td>10 (0–110)</td>
</tr>
<tr>
<td>Phase B (S12-06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL24</td>
<td>1</td>
<td>200 (5–280)</td>
<td>300 (25–,100)</td>
<td>50 (5–280)</td>
<td>25 (0–16)</td>
</tr>
<tr>
<td>Phase C (GS11-30b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL15</td>
<td>—</td>
<td>180 (5–980)</td>
<td>20 (5–280)</td>
<td>200 (130–,100)</td>
<td>2 (1–16)</td>
</tr>
<tr>
<td>Phase C (S12-05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL03</td>
<td>1</td>
<td>25 (2–180)</td>
<td>220 (20–1,100)</td>
<td>10 (4–180)</td>
<td>4 (0–12)</td>
</tr>
<tr>
<td>Phase D (GS11-39b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL29</td>
<td>1</td>
<td>60 (10–680)</td>
<td>75 (5–280)</td>
<td>1 (0–16)</td>
<td></td>
</tr>
</tbody>
</table>

Figures in parentheses are the range of possible high-temperature residence times, taking into account the uncertainties in model fit, initial conditions, and temperature. Where an upper bound is not present, the Mg is at or close to equilibrium. Bold figures are the best estimate for each crystal. Outer zone and one-stage models run at 880 °C, inner zone models sometimes run at higher temperatures.

^a Residence times of the inner zones up until the growth of the outer zone.

^b Residence time of the outer zone, from its growth until eruption.
Figure 6.23: High-temperature residence times of plagioclase crystals from (a) the Therasia and (b) the Cape Riva dacites. Outer zone residence times are either the duration of the second stage of the two-stage models, or the residence times calculated from one-stage models where two-stage models were not run. Calcic core and inner sawtooth high-temperature residence times are the combined durations of the first and second stages of the two-stage models. Error bars represent the uncertainties in the estimates based on uncertainties in the model fit, the initial conditions and the temperature (as discussed in the text). Outer zone and one-stage models run at 880 °C, inner zone models sometimes run at higher temperatures (as discussed in the text). Average time between Therasia eruptions and the time between the last Therasia eruption and the Cape Riva eruption is calculated using the radiometric dates presented in Chapter 4.
Chapter 6. Plagioclase

- The compositions of the phenocryst rims vary between the different Therasia eruptions. There are also textural differences between the plagioclase found in each flow. Crystals with sawtooth zoning are present in some flows and absent in others. Some flows have crystals with large, brown, rounded glass inclusions, while these crystals are not found in others.

- The Cape Riva plagioclase phenocryst rims have compositions of $\text{An}_{31−41}$, with most clustering between An_{36} and An_{40}. Some Cape Riva plagioclase phenocrysts have sawtooth zones, cycling between $\text{An}_{46−60}$ and rim compositions. No cores more calcic than the sawtooth zones were found. There are no obvious differences between crystals from the different phases of the eruption, suggesting that the Cape Riva magma reservoir was well mixed before eruption.

- The liquid equivalent Sr concentrations of the plagioclase phenocrysts in both the Therasia and Cape Riva eruptions are tightly correlated with anorthite content. This suggests that the changes in the anorthite content of the plagioclases correspond largely to changes in the melt composition. Using the Sr and Ti content of the plagioclase crystals, the composition of the melt that each zone grew from could be estimated.

- The Sr and Ti content of the Therasia plagioclase phenocrysts show that the rims grew in equilibrium with a dacitic melt. The calcic parts of the sawtooth zones demonstrate that the phenocrysts came into contact with a silicic andesitic melt during their growth. The Ti contents of these crystals suggest that most of the silicic andesite input into the Therasia plumbing system lay along fractional crystallisation trends. There is little evidence from the Ti content of the phenocrysts in the dacites for inputs of basaltic magma, apart from two crystals in the dacitic flow 9, close to the top of the sequence.

- The calcic cores found in some Therasia phenocrysts grew in a basaltic or andesitic melt, with a high Sr content characteristic of the much older (530-430 ka)
Peristeria magma. This suggests a xenocrystic origin, although it is possible that some of the calcic cores emanated from a mafic recharge magma.

- The Cape Riva plagioclase phenocrysts grew from dacitic to rhyodacitic melt compositions. The Ti content of the phenocrysts demonstrate that the incoming magma driving these composition cycles must be at least as evolved as a silicic andesite.

- The incompatible element concentrations (La, Ce, K) of the plagioclase crystals vary between the Therasia and Cape Riva magmas, in a similar fashion to the whole rock compositions (Chapter 5). While K diffuses quickly and may have re-equilibrated before eruption, La and Ce diffuse very slowly and the plagioclase crystals should preserve their original growth concentrations. Very few of the Cape Riva plagioclases have Therasia-like incompatible element concentrations, suggesting very little recycling of Therasia crystals into the Cape Riva magma. Only one crystal appears to have seen Therasia-like melt during its growth.

- Diffusion modelling of the Therasia plagioclase crystals shows that some of the calcic cores had extended histories of at least a few thousand years at high temperatures, while the bulk of the phenocrysts grew within a few decades (up to a maximum of a few centuries) before eruption.

- The Cape Riva plagioclases all have high-temperature residence times shorter than the $2,800 \pm 1,400$ years between the last Therasia eruption and the Cape Riva eruption deduced from the field data and radiometric dating (Chapter 4). This agrees with the suggestion, based on the whole rock chemistry (Chapter 5), that the Cape Riva magma only arrived in the shallow crust shortly before eruption. Most of the high-temperature residence times of the Cape Riva plagioclases are a few years to decades, up to perhaps a few hundred years.
Chapter 7

Orthopyroxene

7.1 Introduction

This chapter looks at the orthopyroxene crystals in the Therasia and Cape Riva dacites, in a similar way to how I investigated the plagioclase crystals in the previous chapter. The orthopyroxene crystals have been briefly described in Chapter 5. In this chapter, I look in more detail at the zoning patterns of both major and trace elements in orthopyroxene crystals. I consider only the phenocrysts, as these crystals provide a record of the events that took place within the magma reservoir, and I focus entirely on the dacites, as these make up the majority of the erupted material during both the Cape Riva eruption and the construction of the Therasia dome complex (Chapter 4).

Just as with the plagioclase phenocrysts, the zoning patterns of different elements with different diffusion coefficients were measured to provide complimentary information on the crystals’ histories. Fe and Mg zoning patterns were measured quantitatively, using calibrated SEM images, while Al and Ca zoning patterns were imaged qualitatively using X-ray counts on the electron microprobe. The concentrations of fast-diffusing elements can be used to estimate timescales of magmatic processes through diffusion modelling. On the other hand, slowly-diffusing elements can be used to track growth conditions of crystals as they require long times to re-equilibrate with their
host magma. Their concentrations in crystals should therefore reflect the temperature, pressure and composition of the melt at the time of the crystals’ growth, and they should be unaffected by any subsequent changes to its chemistry. Which elements can be considered “fast-” and which can be considered “slow-diffusing” depends on the temperature, the timescales and length-scales of interest. This is discussed later in the chapter, after the zoning patterns themselves are presented.

Of particular interest are the changes that occurred in the magma reservoir in the build-up to the Cape Riva eruption. In Chapter 5 we saw that a change in the concentration of incompatible elements between the Therasia and Cape Riva eruptions suggested that there was a large influx of new silicic magma shortly before the Cape Riva eruption. The field evidence constrains the timing of this influx to within $2,800 \pm 1,400$ y before the Cape Riva eruption (Chapter 4). The Cape Riva plagioclase crystals also appear to record the mixing of silicic magmas with slightly different compositions (Chapter 6). We can look for evidence of this in the zoning patterns of the orthopyroxene crystals.

Also of interest is the residence times of the phenocrysts in the Therasia and Cape Riva silicic magma reservoirs. Diffusion modelling of plagioclase crystals gave high-temperature residence times of years to centuries in both the Therasia and Cape Riva dacites (Chapter 6). This suggests that the shallow magma reservoirs that fed the Therasia and Cape Riva eruptions were short-lived.

7.2 Analytical techniques

Thin sections from three dacitic lavas from the Therasia dome complex were selected for study (flows 5, 8 and 9; samples GS10-17, GS10-14 and GS10-16, respectively), along with five pumices from the Cape Riva eruption, covering all four phases of the eruption (phase A: GS11-34a; phase B: S12-06; phase C: GS11-30b and S12-05; phase D: GS11-39b). These are the samples from which the plagioclases in Chapter 6 were taken.
The pumices were hand crushed, and orthopyroxene crystals were hand-picked, set in resin and polished. Crystals with adhering melt were preferred, as this demonstrates that those crystal face are original rather than fractures caused by crushing.

Mineral major element compositions were analysed using the Cameca SX 100 electron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, using a beam current of 15 nA. Orthopyroxene element maps were made of selected crystals with a beam current of 100 nA at 15 kV, and a dwell time of 100 ms per pixel. Pixel size varied between 1 and 3 µm, depending on the size of the crystal to be imaged.

Backscattered electron (BSE) images of selected orthopyroxene crystals were produced on the scanning electron microscope (SEM), and then calibrated for \(\#\text{Mg} \) (magnesium number; 100 × molar Mg/[Mg + Fe]) on the electron microprobe. Five points on each crystal were analysed using the electron microprobe for their \(\#\text{Mg} \). The average greyscale values in circles 2–5 µm in diameter around these same points was measured in the SEM images using the image analysis software package ImageJ (Rasband, 2012). The relationship between the greyscale value and composition was then calculated us-

Figure 7.1: Typical calibration curve for \(\#\text{Mg} \) (magnesium number; 100 × molar Mg/[Mg + Fe]) for a BSE image of an orthopyroxene crystal (GS11-39b PYX29). Horizontal error bars are the standard deviation of the greyscale values within the circles measured in ImageJ, vertical error bars are calculated from the counting statistics of the electron microprobe but are smaller than the symbol.
ing a linear least-squares regression for each image (Figure 7.1). Correlation between
greyscale values and anorthite content of the orthopyroxene was generally high, with
correlation coefficients \(r^2 > 0.95 \) for most (and \(r^2 > 0.80 \) for all) of the images used.
This corresponds to a standard error in \#Mg of \(\pm 0.2–1 \) mol\%, estimated from the re-
gression parameters. With this relationship, the \#Mg content of any spot on the image
could be calculated. This allowed me to quickly plot profiles of \#Mg against distance
at much greater spatial resolution than would otherwise be practical (pixel size was
0.01–1 µm depending on the image).

7.3 Zoning patterns

7.3.1 Mg–Fe zoning

Most of the Therasia orthopyroxene phenocrysts are euhedral, weakly zoned and have
a \#Mg of 58–64 Wo\(_{3-4}\)En\(_{53-60}\)Fs\(_{37-43}\), where Wo is molar Ca/(Ca + Mg + Fe), En
is molar Mg/(Ca + Mg + Fe) and Fs is molar Fe/(Ca + Mg + Fe). A weakly zoned
orthopyroxene is shown in Figure 7.2a. Some orthopyroxenes have a Mg-rich inner zone,
with a \#Mg of 65–71 (Wo\(_{3-4}\)En\(_{62-68}\)Fs\(_{29-35}\)). These inner zones have diffuse boundaries
with the rims, and grade into similar compositions to the weakly zoned orthopyroxenes
(Figure 7.2c). There are also rare crystals with three zones (Figure 7.2e). These crystals
have inner and outer zones of a similar composition to the weakly zoned orthopyroxene
(\#Mg: 61–65), with an intermediate zone that has a similar composition to the Mg-rich
cores (\#Mg: 67–68).

The orthopyroxenes from the Cape Riva dacite are similar in appearance to those
found in the Therasia dacites. The main differences are that more of the Cape Riva
orthopyroxenes are zoned, and the Cape Riva orthopyroxenes are slightly more iron
rich than the Therasia orthopyroxenes. The weakly zoned Cape Riva orthopyroxenes have
\#Mg of 53–58 (Wo\(_{3-4}\)En\(_{52-56}\)Fs\(_{41-44}\)), and can be slightly normally or reversely zoned
(Figure 7.2b). Many Cape Riva orthopyroxenes have Mg-rich inner zones with \#Mg
7.3. Zoning patterns

Figure 7.2: Calibrated BSE images of pyroxene crystals (a) a weakly zoned orthopyroxene from flow 8 of the Therasia dome complex (GS10-14 PYX01) (b) a weakly zoned orthopyroxene from the Cape Riva dacite (S12-05 PYX26) (c) an orthopyroxene with a Mg-rich rim from flow 5 of the Therasia dome complex (GS10-17 PYX30) (d) an orthopyroxene with a Mg-rich core from the Cape Riva dacite (S12-05 PYX12) (e) an orthopyroxene with a Mg-rich mantle from flow 8 of the Therasia dome complex (GS10-14 PYX26) (f) an orthopyroxene with a Mg-rich mantle from Cape Riva dacite (GS11-30b PYX08). cpx: clinopyroxene; plag: plagioclase.
of 60–68 (Wo$_{3–4}$En$_{57–65}$Fs$_{32–40}$). Like the Mg-rich inner zones in the Therasia dacites, these grade into rims of the same composition as the weakly zoned orthopyroxene crystals (Figure 7.2d). There are also orthopyroxenes with Mg-rich intermediate zones in the Cape Riva dacite (Figure 7.2f). Like in the Therasia dacites, the compositions of the intermediate zones match those of the Mg-rich cores, and the cores and rims match the weakly zoned crystals.

The different zoning patterns described above can all be related to a single, schematic zoning pattern, shown in Figure 7.3. The low-Mg zone 3 is overgrown by the high-Mg zone 2, which is in turn overgrown by the low-Mg zone 1. The BSE images are two-dimensional slices through three-dimensional crystals. The position of this slice relative to the zoning pattern of each crystal will be variable, and this could explain the variation in zoning patterns. A slice close to the centre of the crystal would reveal all three zones, and produce the orthopyroxenes with Mg-rich mantles. A cut closer to the edge of the crystal could go through zones 1 and 2, but miss zone 3. The BSE image would appear to show a crystal with a high-Mg core and a low-Mg rim. Cuts through just zone 1 would produce the weakly zoned crystals.

An alternative interpretation is that some of the weakly zoned crystals simply do not contain any zones 2 and 3, and the crystals with high-Mg cores do not contain any
zone 3. In either case, the high-Mg cores and high-Mg mantles can be considered to be equivalent to zone 2 of the general scheme (Figure 7.3). It is also possible that both explanations play a role in varying the zoning pattern between orthopyroxene, as the cut effect will be superimposed upon any real variation in zoning patterns.

The weakly zoned crystals have a similar composition to both zones 1 and 3. If we assume that all orthopyroxene crystals have all three zones, then the weakly zoned crystals cannot be zone 3. There is no single cut that would expose zone 3 without also exposing zone 2 (Figure 7.3). However, we cannot assume that all crystals have a zone 2. For weakly zoned orthopyroxenes without a zone 2 hidden from view outside of the plane of the section there are two possible scenarios: either they grew the same time as zone 1, but without a pre-existing orthopyroxene at their core, or they grew at the same time as zone 3 and were kept isolated from the strongly zoned orthopyroxenes during the growth of zone 2 (and possibly zone 1 as well).

7.3.2 Trace element zoning in the Cape Riva dacite

Figures 7.4–7.7 show element maps of Mg, Fe, Ca and Al of four typical orthopyroxene crystals from the Cape Riva, demonstrating the different types of apparent zoning pattern observed. Although these images are not calibrated, and therefore cannot give quantitative information on the composition, the raw X-ray counts for each element can be compared qualitatively. Fully calibrated electron microprobe spot analysis of the different zones are plotted in Figure 7.8, and these show the range of compositions found in the different zones. In all crystals examined Al zoning was sharper than Ca, which was in turn sharper than Mg and Fe. Sketches of the different features seen in the Al maps are shown in Figure 7.9.

Different types of inclusion can also be distinguished by comparing the different element maps (labelled in Figure 7.4). Glass inclusions (as well as adhering glass) have higher Al, similar Ca and lower Mg and Fe, than the orthopyroxene crystals themselves. Fe-Ti oxides have high Fe, moderately high Al, and low Mg and Ca. Apatite inclusions
Figure 7.4: Element maps of a weakly zoned orthopyroxene from the Cape Riva eruption (S12-05 PYX26). Scale bars are the number of X-ray counts per 100 ms for each element measured on the electron microprobe.

Figure 7.5: Element maps of an orthopyroxene with a Mg-rich inner zone (zone 2) from the Cape Riva eruption (S12-05 PYX12). Scale bars are the number of X-ray counts per 100 ms for each element measured on the electron microprobe.
7.3. Zoning patterns

Figure 7.6: Element maps of an orthopyroxene with a Mg-rich intermediate zone (zone 2) from the Cape Riva eruption (GS11-30b PYX08). Scale bars are the number of X-ray counts per 100 ms for each element measured on the electron microprobe.

Figure 7.7: Element maps of an orthopyroxene with sector zoning or skeletal growth (S12-06 PYX17). Scale bars are the number of X-ray counts per 100 ms for each element measured on the electron microprobe.
have high Ca, and low Mg, Fe and Al.

The features of the different zones of the orthopyroxene crystals are as follows:

Weakly zoned crystals: In all of the six orthopyroxene crystals with weak Mg–Fe zonation that were imaged, there is only slight variations in Al and Ca. Al often show weak oscillatory growth zonation (Figures 7.4 and 7.9a). There are broad correlations between all four elements, with higher Al generally corresponding to higher Fe, and lower Mg and Ca (Figure 7.8). Electron microprobe point analyses on weakly zoned crystals show between 0.36 and 0.68 wt% Al₂O₃ and between 1.50 and 1.72 wt% CaO.

Figure 7.9 (facing page): Sketches of the Al zoning patterns in typical Cape Riva orthopyroxenes, alongside EMP Al maps. (a) A weakly zoned crystal (S12-05 PYX26) (b) a crystal with a partially resorbed high-Al core (S12-05 PYX12) (c) a crystal with sector zoning or skeletal growth (S12-06 PYX17) (d) a crystal with a high-Al mantle (GS11-30b PYX07).
7.3. Zoning patterns

Subtle oscillatory growth zoning

Apatite inclusion
Glass inclusion

Partially resorbed, low-Al core
High-Al mantle, with high Mg and low Ca

Low-Al rim, with low Ca and low Mg
High-Al core, with high Mg and low Ca

“Wormy” dissolution or melt escape zones
Intermediate-Al zone, with low Ca and low Mg

High-Al core, with high Mg and high Ca

Intermediate-Al zone, with low Ca and high Mg

Low-Al rim, with low Ca and low Mg

Skeletal or sector zoning

“Wormy” dissolution or melt escape zones

Interpretations of the zoning patterns:

- **Subtle oscillatory growth zoning**
 - Characterized by subtle variations in composition over short distances.

- **Apatite inclusion**
 - Small, needle-like crystals within the rock matrix.

- **Glass inclusion**
 - Voids filled with glassy material.

- **Partially resorbed, low-Al core**
 - Core region with low aluminum content, partially dissolved.

- **High-Al mantle, with high Mg and low Ca**
 - Mantle region with high aluminum and magnesium, low calcium.

- **Low-Al rim, with low Ca and low Mg**
 - Rim region with low aluminum and magnesium, low calcium.

- **“Wormy” dissolution or melt escape zones**
 - Areas where the rock appears to have been dissolved or melted, forming worm-like structures.

- **Intermediate-Al zone, with low Ca and high Mg**
 - Zone with intermediate aluminum content, low calcium, and high magnesium.

- **High-Al core, with high Mg and high Ca**
 - Core region with high aluminum and magnesium, high calcium.

- **Intermediate-Al zone, with low Ca and high Mg**
 - Zone with intermediate aluminum content, low calcium, and high magnesium.

- **Skeletal or sector zoning**
 - Geometric sectoral patterns indicative of phase separation or crystallographic alignment.

- **Dissolution surface, cutting across zoning in core**
 - Surface where the rock has been dissolved, affecting the core zoning pattern.
Zone 1: Examples of strongly zoned orthopyroxenes are shown in Figures 7.5–7.7. Their outer, low-Mg zone (zone 1) also has low Al. Electron microprobe spot analyses record similar compositions to the weakly zoned crystals, with 0.44–0.69 wt% Al$_2$O$_3$ and 1.49–1.71 wt% CaO (Figure 7.8a).

Zone 2: The high-Mg inner and intermediate zones (zone 2) also have high Al (up to 1.26–1.65 wt% Al$_2$O$_3$, depending on the crystal). While there is sometimes correlation between the areas of high Al with areas of high Ca (e.g. Figure 7.5), in general Ca contents in zone 2 are decoupled from the concentrations of the other elements. Ca contents in zone 2 have a larger range than zone 1 (1.42–1.85 wt% CaO; Figure 7.8a). There is often more fine scale zoning visible in the Al maps, with zone 2 regularly split into an area of high Al and an area of intermediate Al (Figure 7.9b-d). A few crystals show repeated oscillation between intermediate and high Al contents within zone 2. The boundaries between zones 1 and 2 are sharp on Al maps, and often cut across the internal zoning in zone 2. There are often “wormy” structures, filled in with zone 1 orthopyroxene (Figure 7.9c,d). These are probably melt escape structures, as they often have glass inclusions trapped at their inner end. Alternatively, they may be due to partial dissolution of zone 2 before the growth of zone 1. One crystal (S12-06 PYX17; Figures 7.7 and 7.9d) shows evidence of skeletal growth or sector zoning during the growth of zone 2 preserved in the Al zoning patterns.

Zone 3: These zones have similar compositions to both zone 1 and the weakly zoned orthopyroxene crystals. It has between 0.47 and 0.54 wt% Al$_2$O$_3$ and between 1.59 and 1.67 wt% CaO (Figure 7.8a). The boundaries between zones 3 and 2 are sharp on maps of Al, and sometimes show signs of dissolution (Figure 7.9c).
7.4 Using fast and slow diffusing elements to elucidate magmatic processes

As previously discussed for plagioclase in Chapter 6, slow-diffusing elements can be used to reveal the crystals’ histories, while fast-diffusing elements can be modelled to get timescales. The influence of diffusion on zoning patterns can be estimated using a back-of-the-envelope calculation for a characteristic length scale of diffusion, x:

$$x \approx \sqrt{Dt}$$

(7.1)

where D is the diffusion coefficient and t is the timescale that we are interested in. The variation of characteristic distance with time for the elements discussed here at 880°C and at the FMQ buffer is shown in Figure 7.10, along with the timescales and distances of interest to this study.

The orthopyroxenes typically reach about 500 µm in length, so any element with a characteristic distance longer than this will have mostly re-equilibrated at the scale of whole crystals. These elements will not, therefore, record original growth compositions, and they will only provide information on minimum crystal residence times. On the other hand, elements with characteristic distances smaller than the size of the electron microprobe beam (1 µm) will remain close to their initial concentration. These slow-diffusing elements will be able to provide only maximum crystal high-temperature residence times. However, because their concentrations remain relatively unmodified even over extended periods, they can also be used to study the histories of the crystals. In between these two limits are the elements that will have partially re-equilibrated—these are the elements that can be modelled to estimate crystal high-temperature residence times.

For the Therasia–Cape Riva series, we are chiefly interested in processes that occur on timescales shorter than the ~18 ky of dacitic eruption (the time between the
Chapter 7. Orthopyroxene

Figure 7.10: Characteristic diffusion distance against time, calculated using Equation 7.1 at 880°C. The upper and lower horizontal dashed lines represent the typical orthopyroxene size (500 µm) and the size of the electron microprobe beam (1 µm), respectively. The left and right vertical dashed lines are the time between the youngest dated Therasia lava and the onset of the Cape Riva eruption (2,800 y), and the time between the first dacitic eruption of the Therasia dome complex and the onset of the Cape Riva eruption (18,000 y), respectively. References: 1: Nakagawa et al. (2005); 2: Ganguly and Tazzoli (1994), in orthopyroxene with a #Mg of 60 mol%, at the FMQ oxygen buffer.

Elements that remain immobile over this length of time have been used in Section 7.5 to reconstruct crystal histories from orthopyroxene compositions. We are also particularly interested in the processes that occurred between the end of the construction of the Therasia dome complex and the onset of the Cape Riva eruption (2,800 ± 1,400 y; Chapter 4). The diffusion of elements that are expected to partially re-equilibrate over this period have been modelled in Section 7.6 in order to estimate crystal high-temperature residence times.

The diffusion coefficients of Al Fe–Mg have been discussed in detail in Chapter 3. Aluminium has a characteristic distance of ~3 µm over 18 kyr, and can be considered immobile here (Nakagawa et al., 2005; Smith and Barron, 1991). This is confirmed by the sharpness of the zoning patterns in the Al maps presented here (Figures 7.4–7.7).
Al contents should therefore be close to original, and the Al zoning can be used to reconstruct the crystals’ growth histories (Section 7.5).

The Ca zoning patterns are not as sharp as the Al zoning patterns, but they are not as diffuse as the zoning patterns of Fe–Mg (Figure 7.2). It therefore appears the diffusion coefficient of Ca is intermediate between that of Al and that of Fe–Mg, although there is no available experimental data to estimate the diffusion coefficient quantitatively. A diffusion coefficient between that of Al and that of Fe-Mg would agree with data for clinopyroxene (Cherniak and Dimanov, 2010).

Fe–Mg are the fastest diffusing elements considered in this chapter, and most orthopyroxene crystals will have completely re-equilibrated their Fe-Mg over 18 ky (Figure 7.10). The characteristic distance is \(\sim 160 \mu m \) over the \(\sim 2,800 \) y between the last Therasia eruption and the Cape Riva eruption, and this drops to \(30 \mu m \) over 100 y. This means Fe–Mg diffusion should be useful to constrain the timescales of the magmatic processes that took place between the last Therasia eruption and the Cape Riva eruption, and it is modelled in Section 7.6.

7.5 Estimating melt compositions from orthopyroxene compositions

Despite the low diffusivity of Al and Ca in orthopyroxene, it is difficult to use their concentrations in the crystals to estimate melt compositions the same ways as Sr and Ti in plagioclase were used in Chapter 6. Whole-rock Al contents vary little at Santorini (Chapter 2), and the partitioning of Al between the melt and orthopyroxenes is complicated by the fact that Al can occupy either the tetrahedral or the metal ion sites (Bédard, 2007). Ca is not strictly a trace element, and experimental data for both Al and Ca shows that there is no simple relationship between their concentration in orthopyroxene and melt composition or other parameters (Bédard, 2007). This is true even when we look at the compositions of experimental orthopyroxenes from only
Figure 7.11: #Mg of orthopyroxenes plotted against the SiO$_2$ contents coexisting glasses produced in the experiments of Cadoux et al. (2014) using the Cape Riva dacite as a starting material. The horizontal grey bands represent the compositions of the natural orthopyroxenes from the Cape Riva (this chapter). The vertical grey bands are the compositions of the glass from the Cape Riva dacite (Chapter 5) and the melt compositions calculated from the trace element contents of the calcic parts of the sawtooth-zoned plagioclases (Chapter 6).

Cape Riva whole-rock compositions (Cadoux et al., 2014).

The low diffusivity of Al and Ca in orthopyroxene does mean that we can assume that the Al and Ca contents are primary, although they may have been affected by fast growth. The relationship between #Mg and Al content in the zoned crystals can therefore be used to interpret the lack of Fe-Mg zoning in the weakly zoned crystals. The high-Mg zone 2 also has high Al (Figure 7.8b), and if the weakly zoned crystals originally had a high-Mg zone 2 that was erased by diffusion, then we would expect them to still have a high-Al zone. Figures 7.4 and 7.8 show that this is not the case, the weakly zoned crystals have the same Al (and Ca) contents as the low-Mg zones 1 and 3 of the strongly zoned crystals. It seems unlikely, therefore, that the weakly zoned crystals were ever strongly zoned in Fe–Mg.

The #Mg of orthopyroxene is more useful than Al and Ca as an indicator of melt composition. Figure 7.11 shows how the #Mg of the orthopyroxenes produced in the phase-equilibrium experiments of Cadoux et al. (2014) varied with the SiO$_2$ content.
of the coexisting glass during their runs using the Cape Riva dacite as the starting material. The orthopyroxenes range from a #Mg of 38 mol% at 76 wt% SiO$_2$ to 58 mol% at 69 wt% SiO$_2$. This is consistent with the weakly zoned crystals, zone 1 and zone 3 growing from the melt with the composition of the the Cape Riva glass (70–72 wt% SiO$_2$; Chapter 5), while zone 2 grew from a more mafic melt.

The growth histories of the orthopyroxene crystals can be compared to those of the plagioclase crystals, documented in Chapter 6. The trace element concentrations of the plagioclases implied that they had cycled between a melt similar in composition to the Cape Riva glass and another, more mafic melt, with between 61 and 67 wt% SiO$_2$. Although the data of Cadoux et al. do not extend back that far, the trend is consistent with the zone 2 orthopyroxene growing from the same 61–67 wt% SiO$_2$ melt.

7.6 Estimating timescales with diffusion chronometry

7.6.1 Method

As discussed in Chapter 3, Fe–Mg diffusion in orthopyroxene varies with orthopyroxene composition and oxygen fugacity as well as temperature (Ganguly and Tazzoli, 1994; Klügel, 2001). The equation for the diffusion coefficient, D_{Fe-Mg}, used for the models presented here is the same as that used by Allan et al. (2013):

$$D_{Fe-Mg}^{opx} = \exp \left(-6.77 - 5.99 X_{Mg} - \frac{240,000}{RT} \right) \times \left(\frac{fO_2\text{(sample)}}{fO_2\text{(IW buffer)}} \right)^{\frac{1}{6}} \quad (7.2)$$

where X_{Mg} is the molar Mg fraction (Mg/[Mg + Fe]); R is the molar gas constant; and T is the temperature in Kelvin. Fe–Ti oxides from the Cape Riva dacite and two of the three Therasia pumice fall deposits analysed plot along the fayalite–magnetite–quartz (FMQ) oxygen buffer (Chapter 5), which is about four log units higher than the iron–würstite (IW) buffer used in the calibration of the equation above (Frost, 1991). The
diffusion coefficient is strongly dependent on the temperature, which for the Cape Riva
dacite and two of the three analysed Therasia dacites is about $880 \pm 25 ^\circ C$ (Figure 5.5).
The models were therefore run at $880 ^\circ C$, and at the FMQ oxygen buffer. The effect
of using different temperatures and oxygen fugacities is discussed later, in Section 7.6.

The zone boundaries were assumed to initially be sharp, and modelled as a step
function. The initial $\#Mg$ on either side of the boundary was estimated by taking
the values of $\#Mg$ at a distance away from the boundary where they appeared to be
unmodified by diffusion. The weakly zoned orthopyroxene crystals do not have obvious
zone boundaries, however many of them do have small variations in the $\#Mg$. These
variations often have the curved profiles that are typical of diffusion. These profiles
were modelled assuming they were initially a step function, to give the maximum times
that the observed $\#Mg$ variations could survive at high temperature.

Because the variation in $\#Mg$ in each individual profile was always small (<10%)
the dependence of the Mg–Fe diffusion coefficient on $\#Mg$ within a single profile was
ignored. This meant that the diffusion profiles could be fit by a simple analytical
solution to the diffusion equation (Chapter 3):

$$X_{Mg}(x,t) = X_{Mg}^{\text{left}} + \frac{X_{Mg}^{\text{left}} + X_{Mg}^{\text{right}}}{2} \left[1 + \text{erf} \left(\frac{x}{\sqrt{tD}} \right) \right]$$

(7.3)

where X_{Mg}^{left} and X_{Mg}^{right} are the initial molar Mg fraction to the left and the right of the
step function, respectively; x is the distance, centred on the initial step function; t is
the time; and erf (u) is the error function, shown below:

$$\text{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-k^2} dk$$

(7.4)

The diffusion coefficient was calculated using an X_{Mg} half way between X_{Mg}^{left} and X_{Mg}^{right}.

Implicit in Equation 7.3 is the assumption that diffusion occurs in an infinitely long
solid. This assumption is valid as long as the profiles are long compared to the length
affected by diffusion (approximated by \sqrt{tD} in Equation 7.3 above).
First, low resolution BSE images were taken with short acquisition times (\(\sim 60-90\) s). Although these were noisy, they could be used to pick promising crystals for diffusion modelling. High-resolution images were then made across the zone boundaries, with acquisition times of \(\sim 30\) minutes. High-resolution images of selected weakly zoned crystals were also taken. Profiles perpendicular to zone boundaries were then plotted using the ImageJ software (Rasband, 2012). The profiles were made up of averages across a strip 20–50 pixels wide. The profiles were then fit by eye in a spreadsheet (LibreOffice Calc), allowing \(t\), the diffusion time, to be extracted from Equation 7.3.

7.6.2 Results

The results of models of Mg–Fe diffusion in orthopyroxene crystals from the Therasia dacites are presented in Figures 7.12–7.14, and the results for crystals from the Cape Riva are shown in Figures 7.15–7.19. Low resolution BSE images with the location of the boundaries modelled are presented in Appendix F.

Most of the Mg–Fe profiles zone boundaries can be modelled as initial step functions that have broadened by diffusion. However, there is evidence that not all the gradients are entirely due to diffusion. There are sometimes large differences in the times calculated for different profiles in the same crystal. Profile 3 of S12-06 PYX17 (Figure 7.20c), for example, gives a high-temperature residence time of 450 y, while the other two profiles (Figure 7.20a,b) give diffusion times of only 11–33 y. The zoning pattern of this crystal suggests that it was originally elongated parallel to profile 3, which implies that growth was quickest along this direction. If crystal growth continued during a change in magma composition or another parameter that effects the orthopyroxene composition, then a compositional gradient reflecting this change will be preserved in the orthopyroxene. The faster growth is (relative to the change in magma composition), the shallower the gradient. The diffusion models presented here assume that the boundary was initially a step function, and any initial gradient due to growth will increase the apparent high-temperature residence times of the crystals. The
Figure 7.12: The results of models of Mg-Fe diffusion in orthopyroxenes from flow 5 of the Therasia dacites (GS10-17).
Figure 7.13: The results of models of Mg-Fe diffusion in orthopyroxenes from flow 8 of the Therasia dacites (GS10-14).
Figure 7.14: The results of models of Mg-Fe diffusion in orthopyroxenes from flow 9 of the Therasia dacites (GS10-16).
Figure 7.15: The results of models of Mg-Fe diffusion in orthopyroxenes from phase A of the Cape Riva eruption (GS11-34a).
Figure 7.15 continued: The results of models of Mg-Fe diffusion in orthopyroxenes from phase A of the Cape Riva eruption (GS11-34a).
longer high-temperature residence time given by profile 3 can, therefore, be explained by faster growth in that direction.

While the diffusion coefficient for Fe–Mg diffusion in orthopyroxene is thought to be isotropic (Ganguly and Tazzoli, 1994), comparison of the Fe–Mg zoning patterns with those of Al suggest that growth is at least partially responsible for the longer apparent high-temperature residence time calculated for profile 3. The boundary between zones 2 and 1 in the Al map is sharp along profiles 1 and 2, but more diffuse along profile 3 (Figure 7.21). This is consistent with the results of Allan et al. (2013), who also found that gradients along the c axis, parallel to the direction of elongation of the orthopyroxene crystals, were best explained by a mix of growth and diffusion. Where only one profile in a crystal was modelled, it was chosen to be perpendicular to the long axis in order to minimise this effect. Where more than one profile was modelled, the shorter high-temperature residence time was used as the best estimate of the high-temperature residence time of the crystal. The sharpness of the zoning patterns in most of the Al maps of the strongly zoned crystals suggests that the effect of growth on the timescales calculated for the strongly zoned crystals is small (Section 7.3.2). This is less true for the weakly zoned crystals, as the Al and Ca often show gradual changes in their concentrations. However, correcting for the effect of growth will always reduce the high-temperature residence times. The high-temperature residence times

![Figure 7.15 continued:](image-url) The results of models of Mg-Fe diffusion in orthopyroxenes from phase A of the Cape Riva eruption (GS11-34a).
Figure 7.16: The results of models of Mg-Fe diffusion in orthopyroxenes from phase B of the Cape Riva eruption (S12-06).
Figure 7.16 continued: The results of models of Mg-Fe diffusion in orthopyroxenes from phase B of the Cape Riva eruption (S12-06).

presented here are therefore maxima.

Another apparent contradiction in the data is that for many crystals the high-temperature residence times implied by the inner, zone 3/2 boundary is shorter than that implied by the outer, zone 2/1 boundary (e.g. GS11-30b PYX08; Figure 7.22). This cannot be explained by changes in the diffusion coefficient (through changes in the temperature or oxygen fugacity, for example) as any changes that affected the outer boundary would also affect the inner boundary. Instead, it is probable that the discrepancy can be explained by a mixture of growth and diffusion, in the same way as the different ages of the different profiles of the same boundary in S12-06 PYX17 are explained above. If orthopyroxene growth was more rapid—or the change in magma composition more gradual—during the transition from zone 2 to zone 1 than the transition from zone 3 to zone 2, then the outer boundary would initially be more diffuse than the inner boundary. This would increase the apparent high-temperature residence time of the outer boundary. Again, this shows that the high-temperature residence times presented here are maxima.

Most of the Fe–Mg zone boundaries can be fit by a single step function, however in a few crystals the boundary between zone 2 and zone 1 occurs in two steps (GS11-34a PYX59, Figure 7.15c–f; GS11-34a PYX63, Figure 7.15i,j; GS11-30b PYX08, Figure 7.17c,d; S12-05 PYX18 Figure 7.18e,f). Two steps are often seen in the Al zoning
Figure 7.17: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (GS11-30b).
7.6. Estimating timescales with diffusion chronometry

7.6.3 Uncertainties

Temperature

The temperature will have an effect on all the residence times presented here. Because we are using an analytical solution to the diffusion equation (Equation 7.3), the
Figure 7.18: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (S12-05).
Figure 7.18 continued: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (S12-05).
Figure 7.18 continued: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C of the Cape Riva eruption (S12-05).
Figure 7.19: The results of models of Mg-Fe diffusion in orthopyroxenes from phase D of the Cape Riva eruption (GS11-39b).
The relationship between the residence time \(t \) and temperature \(T \) is given by:

\[
t \propto \frac{1}{D} \propto \exp \left(\frac{240,000}{RT} \right)
\]

(7.5)

where the diffusion coefficient \(D \) is given by Equation 7.2.

Pre-eruptive temperatures calculated from Fe–Ti oxides in the Cape Riva and two of the three analysed Therasia pumice fall deposits have a range of \(\pm 25 \) °C, centred around 880 °C (Chapter 5). The residence times quoted here are calculated at 880 °C;
Figure 7.21: Profiles of Fe, Mg, Ca and Al counts (arbitrary scale). Profiles are the same as those modelled using diffusion chronometry (Figure 7.20).
Figure 7.22: An orthopyroxene crystal from the Cape Riva dacite (GS11-03b PYX08).
7.6. Estimating timescales with diffusion chronometry

using a temperature of 855 °C instead changes the calculated residence times by a factor of 1.42, while calculations done at 905 °C change the residence times by a factor of 0.71.

Diffusion was modelled at constant temperature of 880 °C. However in Section 7.5 it was argued that zone 2 grew from a less evolved melt (61–66 wt% SiO$_2$), which would have been hotter. It is difficult to assess how much time the crystals resided in this hotter melt, but the fact that zone 1 appears to be in equilibrium with the Cape Riva glass suggests that the crystals were stored at 880 °C immediately prior to eruption. Because higher temperatures lead to faster diffusion, modelling the crystals at 880 °C for the duration of their pre-eruptive storage provides a maximum estimate of their high-temperature residence times.

Oxygen fugacity

The oxygen fugacity also has an effect on the diffusion coefficient. The relationship between the residence times and $f\text{O}_2$ is given by:

$$t \propto \frac{1}{D} \propto (f\text{O}_2)^{-\frac{1}{2}}$$

(7.6)

Pre-eruptive oxygen fugacities calculated from Fe–Ti oxides in the Cape Riva and two of the three analysed Therasia pumice fall deposits have a range of ±0.3 log units around the FMQ oxygen buffer. This translates to a difference in high-temperature residence times of ±12% relative to the high-temperature residence times presented here, calculated at the FMQ buffer.

Pumice Fall B, however, was significantly hotter and more oxidised than both the Cape Riva dacite and the other two Therasia pumice fall deposits that were analysed (~925 °C and FMQ + 0.7 log units). If Pumice Fall B better represents the pre-eruptive conditions, then high-temperature residence times would be reduced by a factor of 3.
7.7 Comparison of plagioclase and orthopyroxene timescales

The results of the diffusion models of orthopyroxene crystals from the Therasia dacites are presented in Table 7.1, and those from the Cape Riva in Table 7.2. The range of high-temperature residence times for each model is estimated by the range of times that still provide reasonable fits to most of the data, adjusted by ±50% to account for uncertainty in the diffusion coefficient due to uncertainty in the temperature and oxygen fugacity. The crystal high-temperature residence times are also plotted in Figure 7.23, along with timescale constraints from field data (Chapter 4). For the Therasia dacites, the average time between eruptions is calculated as the time between the youngest and oldest Therasia dacites, ∼15 ky, divided by the minimum number of pauses between the eruptions that took place during that time, 10 (≈1.5 ky per eruption). On the plot of Cape Riva high-temperature residence times, the time between the youngest dated Therasia lava and the Cape Riva eruption is plotted, along with the uncertainty from the radiometric dating.

All the modelled Therasia orthopyroxenes have high-temperature residence times significantly shorter than the average time between eruptions, with estimated high-temperature residence times varying from a few months up to a few decades. These times are similar, but slightly shorter than those estimated for the plagioclase phenocrysts (decades to a few centuries). This difference may be real, and the plagioclase crystals may have grown before the orthopyroxene crystals, however it is more likely to be an artefact. Both the orthopyroxene and plagioclases residence times are maximum high-temperature residence times. The tabular shapes and complex resorption surfaces found in the plagioclase crystals means that diffusion in two and three dimensions will be significant. In contrast, the orthopyroxene crystals have prismatic shapes and planar zone boundaries. This make the assumption of diffusion in 1D more realistic for the orthopyroxenes. It is likely that the plagioclase models overestimate the true
Table 7.1: Residence times, in years, calculated in diffusion models of Fe–Mg in orthopyroxene from the Therasia dacites.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Profile Zone 3 → Zone 2</th>
<th>Zone 2 → Zone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 5 (GS10-17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX22</td>
<td>2.6 (0.90–6.8)</td>
<td>2.4 (0.46–6.8)</td>
</tr>
<tr>
<td>PYX24</td>
<td>—</td>
<td>24 (3.8–60)</td>
</tr>
<tr>
<td>PYX30</td>
<td>1</td>
<td>6.5 (1.8–15)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14 (5.0–45)</td>
</tr>
<tr>
<td>Flow 8 (GS10-14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX01</td>
<td>—</td>
<td>5.6 (1.2–14)</td>
</tr>
<tr>
<td>PYX19</td>
<td>—</td>
<td>1.1 (0.34–2.8)</td>
</tr>
<tr>
<td>PYX24</td>
<td>—</td>
<td>2.5 (0.60–7.8)</td>
</tr>
<tr>
<td>PYX26</td>
<td>0.17 (0.08–0.38)</td>
<td>0.27 (0.06–0.94)</td>
</tr>
<tr>
<td>PYX29</td>
<td>—</td>
<td>20 (8.0–60)</td>
</tr>
<tr>
<td>Flow 9 (GS10-16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX02</td>
<td>1</td>
<td>32 (11–88)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>89 (34–190)</td>
</tr>
<tr>
<td>PYX03</td>
<td>1</td>
<td>7.1 (2.2–20)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.6 (3.2–27)</td>
</tr>
<tr>
<td>PYX05</td>
<td>3.2 (0.90–11)</td>
<td>5.8 (1.8–16)</td>
</tr>
</tbody>
</table>

Figures in parentheses are the range of possible residence times, taking into account the uncertainties discussed in the text. Bold figures are the best estimate for each crystal.

high-temperature residence times by a greater amount than the orthopyroxene models do.

The orthopyroxenes from the Cape Riva dacite have also have short high-temperature residence times, of months to decades. There is no significant difference between the timescales estimated for crystals in each of the four eruptive phases. This is also true for diffusion models of both the zone 3 to zone 2 and the zone 2 to zone 1 boundary, as well as chemical gradients in the weakly zoned orthopyroxene crystals. This suggests that the majority of the orthopyroxene crystals in the Cape Riva are young. Although some of these gradients may be due to growth rather than
Table 7.2: Residence times, in years, calculated in diffusion models of Fe–Mg in orthopyroxene from the Cape Riva dacite.

<table>
<thead>
<tr>
<th>Crystal Profile</th>
<th>Zone 3 → Zone 2</th>
<th>Zone 2 → Zone 1</th>
<th>Weakly Zoned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A (GS11-34a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX36</td>
<td>—</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 (0.28–3.3)</td>
<td></td>
</tr>
<tr>
<td>PYX39</td>
<td>1</td>
<td>9.0 (3.6–21)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>250 (95-520)</td>
<td>—</td>
</tr>
<tr>
<td>PYX59</td>
<td>1 1.5 (0.38–3.6)</td>
<td>0.49 (0.12–1.5)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 15 (2.7–30)</td>
<td>1.5 (0.33–7.5)</td>
<td>—</td>
</tr>
<tr>
<td>PYX62</td>
<td>—</td>
<td>—</td>
<td>40 (9.0–220)</td>
</tr>
<tr>
<td>PYX63</td>
<td>1 5.2 (1.5–11)</td>
<td>4.1 (1.2–10)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 0.63 (0.21–1.5)</td>
<td>0.09 (0.03–0.50)</td>
<td>—</td>
</tr>
<tr>
<td>PYX64</td>
<td>—</td>
<td>—</td>
<td>38 (13–120)</td>
</tr>
<tr>
<td>PYX65</td>
<td>—</td>
<td>—</td>
<td>28 (10–70)</td>
</tr>
<tr>
<td>Phase B (S12-06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX01</td>
<td>1</td>
<td>5.0 (1.2–11)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.7 (0.60–5.6)</td>
<td>—</td>
</tr>
<tr>
<td>PYX04</td>
<td>—</td>
<td>5.3 (1.2–10)</td>
<td>—</td>
</tr>
<tr>
<td>PYX07</td>
<td>—</td>
<td>20 (6.0–54)</td>
<td>—</td>
</tr>
<tr>
<td>PYX13</td>
<td>— 2.7 (1.0–6.6)</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11 (3.9–24)</td>
<td>—</td>
</tr>
<tr>
<td>PYX17</td>
<td>2</td>
<td>33 (10–63)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>450 (160–940)</td>
<td>—</td>
</tr>
<tr>
<td>Phase C (GS11-30b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX01</td>
<td>—</td>
<td>13 (4.4–28)</td>
<td>—</td>
</tr>
<tr>
<td>PYX03</td>
<td>—</td>
<td>—</td>
<td>8.5 (1.4–32)</td>
</tr>
<tr>
<td>PYX07</td>
<td>—</td>
<td>—</td>
<td>14 (2.8–36)</td>
</tr>
<tr>
<td>PYX08</td>
<td>1 6.2 (2.4–14)</td>
<td>7.5 (2.0–33)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 0.22 (0.08–0.48)</td>
<td>0.23 (0.04–0.58)</td>
<td>—</td>
</tr>
<tr>
<td>PYX10</td>
<td>1</td>
<td>—</td>
<td>6.0 (1.2–16)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>9.4 (2.6–22)</td>
</tr>
<tr>
<td>PYX29</td>
<td>—</td>
<td>29 (10–64)</td>
<td>—</td>
</tr>
</tbody>
</table>

Figures in parentheses are the range of possible residence times, taking into account the uncertainties discussed in the text. Bold figures are the best estimate for each crystal.
Table 7.2 continued: Residence times, in years, calculated in diffusion models of Fe–Mg in orthopyroxene from the Cape Riva dacite.

<table>
<thead>
<tr>
<th>Crystal Profile</th>
<th>Zone 3 → Zone 2</th>
<th>Zone 2 → Zone 1</th>
<th>Weakly Zoned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase C (S12-05)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX01</td>
<td>1 0.73 (0.20–1.8)</td>
<td>1.3 (0.22–3.2)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 1.8 (0.60–3.4)</td>
<td>5.2 (1.8–16)</td>
<td>—</td>
</tr>
<tr>
<td>PYX06</td>
<td>1</td>
<td>—</td>
<td>2.9 (0.80–7.2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>14 (4.3–30)</td>
</tr>
<tr>
<td>PYX12</td>
<td>—</td>
<td>22 (4.8–51)</td>
<td>—</td>
</tr>
<tr>
<td>PYX17</td>
<td>—</td>
<td>—</td>
<td>5.3 (1.6–15)</td>
</tr>
<tr>
<td>PYX18</td>
<td>1 1.7 (0.22–3.3)</td>
<td>2.1 (0.75–6.0)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 0.16 (0.05–0.33)</td>
<td>0.22 (0.05–0.70)</td>
<td>—</td>
</tr>
<tr>
<td>PYX26</td>
<td>1</td>
<td>—</td>
<td>19 (5.5–56)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>11 (3.6–39)</td>
</tr>
<tr>
<td>PYX28</td>
<td>1 0.88 (0.22–2.1)</td>
<td>3.5 (0.95–13)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.88 (0.16–3.3)</td>
<td>—</td>
</tr>
<tr>
<td>PYX34</td>
<td>—</td>
<td>—</td>
<td>3.6 (0.55–10)</td>
</tr>
<tr>
<td>Phase D (GS11-39b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYX11</td>
<td>—</td>
<td>—</td>
<td>19 (5.5–39)</td>
</tr>
<tr>
<td>PYX12</td>
<td>—</td>
<td>—</td>
<td>11 (2.8–30)</td>
</tr>
<tr>
<td>PYX21</td>
<td>— 4.7 (1.2–11)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PYX31</td>
<td>— 0.16 (0.06–0.46)</td>
<td>1.5 (0.46–2.8)</td>
<td>—</td>
</tr>
<tr>
<td>PYX37</td>
<td>—</td>
<td>12 (4.9–24)</td>
<td>—</td>
</tr>
</tbody>
</table>

Figures in parentheses are the range of possible residence times, taking into account the uncertainties discussed in the text. Bold figures are the best estimate for each crystal.

diffusion, the diffusion models still place constraints on the maximum time that the orthopyroxenes resided at high temperature before eruption. Significantly, the models show that this is much shorter than the 2,800 ± 1,400 y between the youngest dated Therasia eruption and the Cape Riva eruption (Chapter 4). This supports the short high-temperature residence times calculated for the Cape Riva plagioclase phenocrysts (Chapter 6). Like in the Therasia dacites, the Cape Riva orthopyroxenes appear to have shorter high-temperature residence times than the plagioclases. As described for the Therasia dacites above, this is probably an artefact of the different modelling pro-
There is still ambiguity over whether the weakly zoned crystals are the equivalent of zones 1 or 3 of the strongly zoned crystals. Their relatively long high-temperature residence times — at the upper end of the range shown by the strongly zoned crystals — would seem to suggest that they are too old to be equivalent to zone 1. However, the gradients in the weakly zoned crystals are probably at least partly due to growth, and that the calculated high-temperature residence times for the weakly zoned crystals are overestimates. Even if the calculated high-temperature residence times are overestim-
Figure 7.24: (a) An orthopyroxene crystal from the Cape Riva dacite (S12-06 PYX17) and (b) an orthopyroxene from the experiments of Schwandt and McKay (2006), showing possible sector zoning.

ates, they are still short (up to a few decades). This, along with the lack of strong Al zonation, makes it unlikely that the weakly zoned crystals were once strongly zoned before they re-equilibrated with their host melt.

There is evidence for rapid growth of zone 2, which is consistent with the short high-temperature residence times. Many of the crystals’ zone 2 has melt escape features typical of rapid growth visible in the Al zoning (Figure 7.9). Another orthopyroxene crystal (S12-06 PYX17) appears to have sector zoning (Figure 7.24). Schwandt and McKay (2006) found Al sector zoning in some of the orthopyroxene crystal that were produced in their experiments, but only when crystal growth was sufficiently fast.

7.8 Summary

- Many of the orthopyroxene phenocrysts found in the Therasia are weakly zoned $\text{Wo}_{3-4}\text{En}_{53-60}\text{Fs}_{37-43}$ (#Mg: 58–64). Those that have strong Fe-Mg zoning can be described schematically as different cuts through a crystal with three zones: a core (zone 3) and rim (zone 1) with similar compositions to the weakly zoned orthopyroxene crystals, and in between these a high-Mg mantle (zone 2) of $\text{Wo}_{3-4}\text{En}_{62-68}\text{Fs}_{29-35}$ (#Mg: 65–71). The boundaries between the different
zones are diffuse, and can be used to estimate high-temperature residence times for the different zones.

- The orthopyroxene phenocrysts found in the Cape Riva dacite have similar zoning patterns to those found in the Therasia dacites. Weakly zoned crystals have compositions of $W_{0.3-4}E_{52-56}F_{41-44}$ ($\#Mg$: 53–58). Strongly zoned crystals are more common than in the Therasia dacites, but have a similar, diffuse Fe–Mg zoning patterns. The cores (zone 3) and rims (zone 1) of strongly zoned Cape Riva phenocrysts have similar compositions to the weakly zoned crystals found in the Cape Riva dacite. Zone 2, the mantles, have compositions of $W_{0.3-4}E_{57-65}F_{32-40}$ ($\#Mg$: 60–68).

- Electron microprobe X-ray count maps show that the high-Mg zone 2 also has high Al. Because Al diffuses very slowly in orthopyroxene (Nakagawa et al., 2005; Smith and Barron, 1991), the Al concentrations seen in the element maps are close to original. The sharp boundaries between different zones in most of the Al maps suggest that the Fe–Mg zoning was also originally sharp, and this is assumed in the timescale modelling. The present gradients seen in Fe–Mg are therefore mostly due to diffusion. The lack of significant Al zoning in the crystals with weak Fe–Mg zoning suggests that they were never strongly zoned.

- The experiments of Cadoux et al. (2014) show that the composition of zones 1, 3 and the weakly zoned orthopyroxene crystals is consistent with them growing from a melt with the composition of the Cape Riva, between 70–72 wt% SiO$_2$. The high-Mg zone 2 could have grown from a melt with between 61 and 67 wt% SiO$_2$, as proposed for the Ca-rich parts of the sawtooth zoned plagioclase crystals (Chapter 6).

- Modelling the diffusion of Fe–Mg across the zone boundaries in the Therasia orthopyroxenes give high-temperature residence times of months to decades. This is consistent with high-temperature residence times of years to centuries calculated
by modelling Mg diffusion in plagioclase (Chapter 6). The plagioclase diffusion models probably overestimate the true high-temperature residence times of the plagioclase crystals, due to diffusion in 2/3D. These ages are significantly shorter than the average time between eruptions during the construction of the Therasia dome complex.

- Modelling the diffusion of Fe–Mg across the zone boundaries of the strongly zoned orthopyroxene crystals found in the Cape Riva dacite, as well as the more gentle gradients in the weakly zoned crystals, also gives high-temperature residence times of months to decades. The timescale for all four eruptive phases is the same.
Chapter 8

Conclusions

8.1 Introduction

There is currently much discussion over the processes that allow the accumulation of large bodies of eruptible silicic magma in the shallow crust, and particularly over the timescales over which these processes operate (Chapter 1). For example, radiometric ages of accessory minerals such as zircon are often found to be 10^5–10^6 y older than eruption ages, which suggests long-term storage for these magmas (e.g. Brown and Fletcher, 1999; Chamberlain et al., 2014). However, diffusion chronometry often suggests much shorter times for the assembly of these magma bodies, of 10^1–10^3 y (e.g. Allan et al., 2013; Druitt et al., 2012). This apparent dichotomy between short and long timescales is usually explained by long-term storage in a rigid crystal mush, followed by rapid remobilisation or segregation shortly before eruption (e.g. Bachmann and Bergantz, 2004; Bachmann et al., 2007a; Burgisser and Bergantz, 2011).

With this in mind, I studied the >10 km3, dacitic Cape Riva eruption of Santorini, Greece (Chapter 2). Over a period of about 18 ky prior to the Cape Riva eruption, the volcano extruded a series of dacitic domes and coulées: the Therasia dome complex. This allowed me to investigate the evolution of the plumbing system of Santorini during the build-up to a caldera-forming eruption. I focused in particular on answering the
following three questions:

1. How are large, shallow crustal bodies of volatile-rich, crystal-poor magma assembled?

2. How and where do the crystals in these eruptions form, and what do the zoning patterns of the crystals record?

3. What are the associated timescales of these processes?

I attempted to answer these questions by combining information acquired using multiple approaches. The first technique I used was field mapping (Chapter 4). The stratigraphic relationships between the different units provided the context into which I could place the subsequent results. These relative dates were augmented with 40Ar/39Ar absolute dates of four key lava flows provided by Dr S. Scaillet (Fabbro et al., 2013). The Y-4 ash layer in the Aegean was found to correlate with the one of the pumice fall deposits intercalated between the Therasia lavas (the Cape Tripiti Pumice), and this provided further constraints on the absolute ages of the Therasia dacites. A key finding was that the last Therasia eruption occurred no more the $2,800 \pm 1,400$ y before the Cape Riva eruption.

Following the field mapping, I analysed the chemistry and petrology of the Therasia dome complex and the Cape Riva eruption (Chapter 5). Using the stratigraphic relationships identified in the field, I could show that there were no systematic trends in the composition of the magma emitted in the build-up to the Cape Riva eruption. The chemistry and petrology allowed me to distinguish hybrid andesites from fractionated andesites, which allowed me to place constraints on mafic recharge. Comparing the chemistry of the Therasia dacites with that of the Cape Riva dacite allowed me to rule out the possibility that the Therasia dacites were precursory leaks from the growing Cape Riva magma reservoir, contrary to previous interpretations (Bacon, 1985; Druitt, 1985).
I then looked in more detail at the zoning patterns of plagioclase and orthopyroxene crystals in both the Therasia and Cape Riva dacites (Chapters 6 and 7). I examined the zoning patterns of multiple elements with different diffusion coefficients in each mineral, as these provided complimentary information. The distribution of slowly diffusing elements, such as NaSi–CaAl and Ti in plagioclase and Al in orthopyroxene, would not be modified by diffusion during the crystals’ storage in the magma reservoir. This meant they could be used to recreate the melt compositions those crystals came into contact with, and study the magmatic processes that the crystals witnessed. After interpreting the histories recorded by the crystals’ zoning patterns, the timescales associated with the identified processes could be estimated by modelling the diffusion of fast-diffusing elements (Mg in plagioclase and Fe–Mg in orthopyroxene). Using diffusion models of two different minerals in the same samples provides more robust constraints on the timescales.

Below, I first summarise the key findings of this thesis. I then discuss how these findings can be used to place constraints on the ascent and storage of the Therasia and Cape Riva magmas, on the growth of the phenocrysts, and on the timescales calculated in the diffusion models. Finally, I bring together all the different pieces of evidence in order to present a coherent model for the evolution of the plumbing system of Santorini in the build-up to the Cape Riva eruption.

8.2 Summary of the Therasia–Cape Riva sequence

8.2.1 The Therasia dome complex

- The Therasia dacites were preceded by the construction of the ∼10 km3 Skaros shield from 67±9 ka, which culminated in the 54±3 ka large, explosive, andesitic Upper Scoria 2 eruption (Chapter 2).

- Between the Upper Scoria 2 eruption and the first Therasia dacite there was a
period of 15±4 ky of near repose, with a low eruptive rate (<0.1 km3 ky$^{-1}$). Lavas emitted during this period were andesitic (Chapter 4).

- Starting at 39.4±2.2 ka, dacite began to be erupted from diffuse vents across the Skaros edifice. Two feeder dykes from these lavas are visible on the south-east corner of Therasia (Chapter 4).

- Dacite eruption continued for a period of 14.8±2.6 ky, during which time ∼2 km3 was emitted over at least 11 extrusive eruptions and 5 explosive eruptions. This give a maximum mean repose time between eruptions of ∼1,000 y (Chapter 4).

- Pumice fall deposits intercalated between the lavas are concentrated towards the top of the sequence, suggesting increased explosivity with time (Chapter 4).

- There are only minor, non-systematic variations with stratigraphic height in both whole-rock and groundmass (i.e. melt) compositions of the Therasia dacites (Chapter 5).

- The compositions of both the plagioclase and orthopyroxene phenocryst rims vary between lava flows. There are also textural differences in plagioclases in different flows (Chapter 6).

- There are also variations in the pre-eruptive temperatures and oxygen fugacities of different pumice fall deposits. Fe–Ti oxides in the Cape Tripiti pumice fall and Pumice Fall C record temperatures of ∼880°C and oxygen fugacities close to the FMQ buffer. Fe–Ti oxides from Pumice Fall B, however, record temperatures ∼50°C hotter and oxygen fugacities close to the NNO buffer (Chapter 5).

- The Therasia dacites contain glass-bearing clusters of plagioclase and orthopyroxene. The crystals in these clusters have similar compositions and textures to the phenocrysts. These clusters are interpreted as having grown on the margins of the magma reservoir at the same time as the phenocrysts (Chapter 5).
The lavas also contain holocrystalline gabbroic nodules, composed of plagioclase, two pyroxenes and olivine. These nodules are interpreted as remobilised plutonic material intruded during previous episodes of volcanism at Santorini. The textures of these nodules, as well as the compositions of the minerals of which they consist, vary from lava flow to lava flow (Chapter 5).

Some plagioclase phenocrysts have calcic cores, with compositions of An_{62-91}. These are often resorbed, in equilibrium with a high Sr melt, and have high-temperature residence times of at least a few thousand years. They are probably derived from plutons related to previous volcanic activity on Santorini, although some may have been introduced by basaltic or andesitic recharge magmas. These calcic cores are overgrown by rims with the same composition as the phenocrysts (Chapter 6).

Some plagioclase phenocrysts have sawtooth zoning, cycling between An_{59-72} and An_{41-51}, the latter being similar to rim compositions. The tight correlation of Sr with anorthite content suggests that the sawtooth zones grew from melts ranging in composition from andesite to dacite. The Ti contents of these crystals suggest that most of the melts injected into the Therasia reservoir were the products of fractional crystallisation; these plagioclase crystals do not record evidence of basaltic recharge (Chapter 6).

The compositions of the orthopyroxene crystals are also consistent with growth from andesitic to dacitic melts (Chapter 7).

Plagioclase phenocrysts in the Therasia dacites have maximum high-temperature residence times of a few decades to a few centuries at 880°C, as estimated by diffusion chronometry (Chapter 6). Orthopyroxene yield shorter maximum high-temperature residence times, of a few months to a few decades (Chapter 7). These timescales are shorter that the estimated repose times between eruptions (~1,000 y).
After the eruption of the first Therasia dacite at ~39 ka, up until the final lava flow discharged before the Cape Riva eruption, mafic magma only reaches the surface as minor ($\ll1\%$) chilled basaltic enclaves (Chapter 5).

The final eruption of the Therasia period, the upper Therasia andesite, is a hybrid andesite that formed through a $\sim60:40$ mix of dacite and basalt (Chapter 5).

The youngest dated Therasia lava was erupted at 24.6 ± 1.3 ka (Chapter 4).

8.2.2 The Cape Riva eruption

The Cape Riva eruption occurred at 21.8 ± 0.4 ka, $2,800 \pm 1,400$ y after the youngest dated Therasia eruption (Chapter 4).

>10 km3 of mainly dacitic magma was erupted, with a minor ($>1\%$) hybrid andesite component formed by mixing olivine basalt and dacite in the ratio 60:40 (Chapter 4).

The Skaros–Therasia edifice collapsed during the eruption, creating a caldera 5–6 km in diameter in the north of the volcanic field (Chapter 2).

The dacite discharged during all four phases of the eruption has the same composition and pre-eruptive temperatures and oxygen fugacities (Chapter 5).

The rim compositions of the plagioclases and orthopyroxene crystals erupted during all four phases is the same (Chapter 5).

Many plagioclase phenocrysts have sawtooth zoning, cycling between An_{46-60} and An_{36-41} rim compositions. The tight correlation of Sr with anorthite content suggests that these plagioclase compositions grew from melts that range from dacitic to rhyodacitic compositions. The Ti content of the sawtooth zones of the plagioclase crystals rule out the injection and mixing into the Cape Riva magma reservoir of melts less evolved than a silicic andesite as the cause of the changes in melt composition (Chapter 6).
• The orthopyroxene phenocrysts have compositions that are consistent with growth from melts with compositions ranging between that of the Cape Riva glass and a dacitic melt (Chapter 7).

• Major element contents of the Cape Riva dacite are similar to those found in the Therasia dacites. In addition, the major element contents of the Cape Riva hybrid andesite are similar to the upper Therasia hybrid andesite. However, the Cape Riva dacite is depleted in incompatible elements compared to the Therasia dacites (K, Rb, Zr, LREE, HREE). A similar depletion is implied for both the mafic and silicic endmembers that mixed to form the Cape Riva hybrid andesite (Chapter 5).

• Plagioclase phenocrysts in the Cape Riva dacite are also depleted in La and Ce compared to plagioclase phenocrysts in the Therasia dacite (Chapter 6).

• Maximum high-temperature residence times of the plagioclase phenocrysts in the Cape Riva are a few years up to a few centuries at 880 °C, as measured by diffusion chronometry (Chapter 6). Maximum high-temperature residence times of the orthopyroxene phenocrysts at the same temperature are months to decades (Chapter 7). This is short compared to the 2,800 ± 1,400 y maximum repose time after the last Therasia dacite eruption.

8.3 Constraints on the volcanic plumbing system

8.3.1 Magma reservoir depths

Figure 8.1 shows the estimated storage depths of Santorini magmas. Andújar et al. (2010) examined a basalt from a cinder cone erupted during the Peristeria period along with the andesitic Upper Scoria 1 (Chapter 2). Their phase equilibria experiments suggest that the basalt was stored at around 4 kbar (∼15 km) prior to eruption. They also suggest that the Upper Scoria 1 differentiated from basalt to andesite at about
Chapter 8. Conclusions

4 kbar. This is close to the boundary between the upper and lower crust (Endrun et al., 2008; Karagianni et al., 2005; Konstantinou, 2010).

Cadoux et al. (2013, 2014) carried out phase equilibria experiments using the Cape Riva dacite as their starting material, and the phase relationships they calculated are shown in Figure 8.2. They estimated the depth of storage of the Cape Riva magma was 2 ± 0.5 kbar (8 ± 2 km). The similar chemistry and petrology of the Cape Riva and Therasia dacites suggests that they were stored at comparable depths. In the following
8.3. Constraints on the volcanic plumbing system

discussion, I shall refer to this reservoir at \(\sim 2 \text{kbar} \) as the “shallow” reservoir.

The storage depths of other silicic magmas from Santorini have also been estimated. Cadoux et al. (2013, 2014) also carried out experiments on the deposits of three other Plinian eruptions of Santorini, the Minoan, Lower Pumice 1 and Lower Pumice 2. Their results indicate that all four magmas were stored at about 2 kbar. Cottrell et al. (1999) also studied the products of the Minoan eruption. They suggested that the Minoan magma underwent two stages of evolution, the first at \(>2 \text{kbar} \), and the second at \(\sim 0.5 \text{kbar} \). However, Cottrell et al. (1999) carried out their experiments at water-saturated conditions. Cadoux et al. (2013, 2014) demonstrate that the Minoan eruption was not water saturated, and that the phase relationships observed in the Minoan products can be explained by a single stage of evolution at 2 kbar. Gertisser et al. (2009) used the aluminium content of rare amphibole crystals to estimate a storage depth of about 4 kbar for the Lower Pumice 2 magma. A shallower magma reservoir, at about 2–4 km depth, has been suggested for the youngest dacites, based on modelling recent deformation at Santorini (Foumelis et al., 2013; Newman et al., 2012; Papoutsis et al., 2013; Parks et al., 2012).

8.3.2 Magma ascent and storage during the Therasia period

The vents of the Therasia dacites were located across the flanks and summit area of the Skaros shield. This suggests that they were fed from one or more reservoirs situated beneath the Skaros shield. The depth at which these dacites were stored is not well constrained. However, the mineralogy and major element composition of the Therasia dacites is similar to that of the Cape Riva dacite, suggesting they were stored at similar depths (about 8 km).

The Therasia dacites have been previously interpreted as “precursory leaks” from the growing Cape Riva magma body (Druitt, 1985). Precursory leaks of silicic magma from diffuse vents prior to caldera-forming eruptions are believed to record the prolonged, incremental growth of large crustal magma reservoirs (Bacon, 1985). For ex-
Figure 8.2: Isobaric phase relationships of the Cape Riva dacite at (a) 2 and (b) 4 kbar, at the FMQ oxygen buffer and as a function of the molar water fraction (X_{H_2O}) of the coexisting fluid phase and of temperature (°C). Taken from Cadoux et al. (2014). Curves are labelled with mineral names lying inside their stability fields. Plg: plagioclase, Opx: orthopyroxene, Cpx: clinopyroxene, A: amphibole, Ilm: ilmenite. Each black circle represents an experimental charge. Dark blue numbers: by-difference H_2O melt values in wt%. Smaller italic black numbers are charge crystallinity in wt%. Light grey dashed-lines indicate the anorthite content (mol%) of the experimental plagioclases. Grey band: pre-eruptive temperature range inferred from natural Fe-Ti oxides (Chapter 5).
ample, leaks of rhyodacite at Mount Mazama (Crater Lake, Oregon) bear witness to the progressive growth, over about 20,000 y, of the magma body that was discharged 6,850 years ago (Bacon, 1985; Bacon and Lanphere, 2006). The Glass Mountain rhyolites at Long Valley, California, have also been described as precursory leaks recording the growing Bishop Tuff magma chamber over about 300 ky (Chapter 1; Halliday et al., 1989; Hildreth and Wilson, 2007), although this interpretation is somewhat controversial (Chamberlain et al., 2014; Reid and Coath, 2000; Simon and Reid, 2005).

However, there are several lines of evidence that suggest that the Therasia dacites were fed by multiple small magma reservoirs, rather than one single, long-lived reservoir. Whole rock and melt compositions vary slightly throughout the sequence, along with temperature and oxygen fugacity, but not in any systematic way (Figure 4.7). The crystals found in one flow do not appear to be the same as the crystals found in another. The composition of the rims of the plagioclase and orthopyroxene phenocrysts vary from flow to flow, and the plagioclase crystals have a range of textures in different units. In some lavas some of the plagioclase crystals have large, brown glass inclusions, while these crystals are absent in others. Similarly, plagioclase crystals with sawtooth zoning are only present in some lava flows. Although plagioclase crystals with calcic cores are present in most lava flows, the composition of these cores varies from flow to flow. The composition and zoning patterns of the plagioclases found in the gabbroic also differs between flows. Finally, the high-temperature residence times of both the plagioclase and orthopyroxene phenocrysts are short compared to the repose time between eruptions. This implies that there is little recycling of crystals between eruptions, contrary to what would be expected if the Therasia lavas were fed from a single, long-lived reservoir.

There are three potential ways of producing multiple, small batches of silicic magma in the shallow crust: (1) fractional crystallisation from basalt to dacite, followed by the upward transfer to the shallow reservoir in small batches; (2) the defrosting and bulk remobilisation of a crystal mush stored in the shallow crust; (3) mush defrosting,
followed by melt segregation.

Fractional crystallisation and upward transfer

The Therasia dacites could be produced by fractional crystallisation from basalt at depth. Small parcels of dacite could be transferred to a shallow holding reservoir at about 2 kbar, where the phenocrysts would grow. Each individual parcel would then either promptly be erupted, or would rapidly freeze. There is little constraint on the depth at which this fractionation would happen, but one possibility is that it occurred in the 4 kbar reservoir identified by Andújar et al. (2010) as the location where basalt fractionates to andesite (Figure 8.1).

Defrosting and bulk remobilisation of a crystal mush

In situ melting and remobilising of a shallow crystal mush could have been caused by the injection of basalt into the shallow plumbing system. The injection of basalt is recorded by the presence of mafic enclaves in many of the Therasia dacites; the injected mafic magma could have melted some of the overlying crystal mush by conduction or gas sparging, without large-scale mixing and hybridisation (Bachmann and Bergantz, 2006). The gabbroic nodules attest to at least some assimilation of plutonic material. The glass-bearing clusters appear to once have been part of a network of touching crystals, which is consistent with them having grown in a mush zone.

However, there is little textural evidence that the crystals in the Therasia dacites are derived from a partially remelted crystal mush. The plutonic nodules are holocrystalline, and appear to have been incorporated by mechanical disaggregation rather than melting and resorption. The phenocrysts are euhedral, and they often are normally zoned towards their rims. This is true of phenocrysts found as individual crystals as well as those found in the glass-bearing clusters. The last thing the phenocrysts appear to record is a period of growth, not a period of dissolution.
Mush defrosting followed by melt segregation

If the Therasia dacites were produced by the defrosting of a crystal mush, then the melt must have been segregated and transferred into a shallow holding reservoir before eruption. It is not possible to place constraints on the depth of the source mush. One possibility is that the source mush may have been located at about 4 kbar (Figure 8.1). Another possibility is that the source mush was already in the shallow crust, and segregation only occurred locally. In either case, most of the phenocrysts would have grown in the shallow holding reservoir after segregation.

Conclusion

The Therasia dacites formed either by remelting and remobilising a rigid crystal mush or by fractional crystallisation; however in both cases the melts that were produced must have segregated and been stored for a period in small, short-lived holding reservoirs before eruption. Most of the phenocrysts would have grown in these holding reservoirs.

8.3.3 The ascent and storage of the Cape Riva magma

The Cape Riva dacite was probably stored in a single, well-mixed reservoir immediately prior to eruption. The evidence for this is that all four phases of the Cape Riva eruption have the same whole rock and melt compositions (Druitt, 1983; Druitt et al., 1999); the phenocrysts found in all four phase have the same rim compositions and the same textures; and the temperature and oxygen fugacity does not vary between different phases (Cadoux et al., 2013, 2014).

Despite the similar major-element chemistry and petrology of the Cape Riva and Therasia dacites, the Cape Riva dacite is depleted in incompatible elements compared to the Therasia dacites (Figure 5.4). This depletion cannot be produced by fractional crystallisation of the Therasia dacite, or by back-mixing of the Therasia dacite with an incompatible-depleted basalt. The similar $^{87}\text{Sr}/^{86}\text{Sr}$ of the Cape Riva and Therasia
dacites rules out significant crustal assimilation (Briqueu et al., 1986; Druitt et al., 1999; Zellmer et al., 2000). This depletion is part of a longer term trend, and is probably related to processes occurring in the source region of the magmas (Bailey et al., 2009; Clift and Blusztajn, 1999; Francalanci et al., 2005; Huijsmans et al., 1988; Zellmer et al., 2000). This suggests that the Therasia and Cape Riva magmas are separate batches that evolved independently.

One possible model for the storage of these two dacite types is that they were emplaced in separate, long-lived reservoirs that coexisted in the upper crust, perhaps for much of the 30 ky since the Upper Scoria 2 eruption. The Therasia eruptions would have been fed from one or more small reservoirs, and the Cape Riva eruption from another, larger reservoir. The Cape Tripiti pumice, with its intermediate chemical character, might have resulted from a temporary connection between the two reservoirs.

However, field and phase equilibria data provide quite stringent constraints on the possible locations of the two reservoirs in such a model. First, the vents that fed the Therasia lavas lay within the area that subsequently collapsed to form the Cape Riva caldera (Druitt, 1985, 2014; Druitt and Francaviglia, 1992), showing that the reservoirs were geographically coincident. Second, the similarities in whole rock major element composition, phenocryst assemblage, phenocryst rim compositions and Fe–Ti oxide temperatures, show that the Therasia dacites must have been stored immediately prior to eruption at a pressure $(2 \pm 0.5 \text{kbar}, \text{equivalent to } 8 \pm 2 \text{km})$ similar to that determined experimentally for the Cape Riva dacite by Cadoux et al. (2013, 2014). The two reservoirs must therefore have been situated within the $\sim 4 \text{km}$ vertical distance represented by the $\pm 0.5 \text{kbar}$ uncertainty on the pressure. Moreover, this uncertainty is on the absolute pressure, not on the relative pressure difference between the two dacite types. It is difficult to see how two magma reservoirs within this confined space could remain largely isolated over many thousands of years. This model cannot be ruled out, but it raises problems that are hard to surmount.

My preferred interpretation is that the Therasia and Cape Riva magma batches
were emplaced sequentially into the upper crust beneath the summit of the volcano, the first then being partially, or wholly, flushed out by the arrival of the second. The new input magma mixed with any remaining Therasia magma to generate the dacite that subsequently discharged during the Cape Riva eruption. This may have had the composition of pure Cape Riva dacite, or may have been a dacite even poorer in incompatibles (e.g. Kameni-like dacite). However, the lower La and Ce contents of the Cape Riva plagioclase phenocrysts relative to the Therasia phenocrysts suggest that few of the crystals in the Cape Riva dacite were derived from remnant Therasia magma. Either there was little Therasia magma remaining in the shallow plumbing system when the Cape Riva magma arrived, or the remnant Therasia magma was mostly aphyric.

8.4 Constraints on the growth of the phenocrysts

8.4.1 Cause of the zoning in the phenocrysts

Understanding the cause of the zoning patterns of the crystals is key to interpreting the high-temperature residence times estimated from the diffusion modelling. The orthopyroxene and plagioclase phenocrysts appear to be recording the same events, with a similar story in both the Therasia and Cape Riva dacites. The Therasia phenocrysts mostly grew in a dacitic melt, however the calcic peaks of the sawtooth zones of some plagioclases and the Mg-rich zones of some orthopyroxenes show that they occasionally came into contact with an andesitic melt. Zoning in the Cape Riva dacite shows cycling between slightly more evolved melts (dacites and rhyodacites).

The high Ti contents of most of the Therasia and all of the Cape Riva plagioclase phenocrysts that were analysed, along with the tight correlation of Sr with anorthite content, implies that the majority of the melts that the phenocrysts came into contact with lay along fractionation trends for Santorini magmas (Figure 6.11). The reversely zoned sections of the phenocrysts must record a period when the melt was driven back
down the fractional crystallisation trends, towards more primitive compositions. This suggests that magma mixing occurred during the growth of the phenocrysts. The mafic endmember would have to be at least as evolved as a silicic andesite to explain the high Ti contents of the plagioclase phenocrysts.

The mixing would not necessarily have had to involve the entire reservoir simultaneously. This is particularly evident in the Cape Riva phenocrysts, where the range of residence times recovered suggests that mixing was a continuous process, affecting different crystals at different times. The zoning patterns could record mingling and mixing between small batches of differing compositions, or the injection of small batches into a growing Cape Riva magma reservoir. Either way, these different batches must have amalgamated into a single reservoir and been homogenised prior to eruption.

8.4.2 Triggering crystal growth

Although the zoning patterns of the phenocrysts suggest that their growth coincided with a period of magma mixing, it does not tell us what is causing the crystals to grow in the first place.

The experiments of Cadoux et al. (2013, 2014) show that both plagioclase and orthopyroxene growth in the Cape Riva dacite can be caused either by a reduction in the temperature, or by a reduction in the pressure of the magma (Figure 8.2). For example, a melt with $X_{H_2O} = 0.8$ at 2 kbar cooling from 925 to 880°C will first start to crystallise plagioclase, then orthopyroxene. Similarly, a melt with $X_{H_2O} = 0.8$ and a temperature of 880°C decompressing from 4 to 2 kbar will also grow first plagioclase then orthopyroxene.

There are several potential magmatic processes that could trigger crystal growth on a timescale of decades to centuries:

1. Decompression of the dacitic melt through upward transfer through the crust.

2. Cooling of the dacitic melt due to mixing with cooler resident magma at shallow
3. Transfer of dacitic melt upwards through the crust to a cooler environment.

4. Depressurisation of the shallow magma reservoir through precursory eruptions or degassing.

These processes are not mutually exclusive, and the data presented here is not sufficient to definitively rule out any of them.

The phase relationships shown in Figure 8.2 suggest that the magma reservoir would have to cool by about 25°C in order to grow the observed plagioclase and orthopyroxene phenocrysts. The high-temperature residence times of the phenocrysts requires that this cooling occurred within decades to a few centuries of eruption; it is difficult to reconcile such a sudden drop in temperature with a model of a long-lived, stable magma reservoir. If cooling of the reservoir did cause crystal growth, then some other process — such as the transfer of the magma to a cooler part of the crust — must have triggered the cooling.

Precursory eruptions prior to the Cape Riva are unlikely to have caused the growth of the Cape Riva crystals. No products of precursory volcanic activity are preserved on Santorini after the last Therasia dacite at 39.4 ± 2.2 ka. Precursory degassing would not leave much evidence in the geological record, however precursory degassing raises much the same questions as cooling. If the reservoir is present in the shallow crust for long periods of time, what would cause it to start degassing only shortly before eruption?

The zoning patterns of the phenocrysts show that crystal growth was coincident with the amalgamation of compositionally diverse melts (silicic andesite to rhyodacite), and a major reorganisation of the plumbing system must have occurred a few decades before the Cape Riva eruption. If a hotter dacitic melts were mixed into cooler rhyodacitic melts, then the dacites would cool and start to crystallise.
The final process capable of triggering the growth of the phenocrysts is through the upward movement and decompression of the magma. The Cape Riva dacite was probably stored at about 2 kbar had about 6 wt% water in the melt (Cadoux et al., 2013, 2014). The same magma at 4 kbar would be close to its liquidus, and would not contain any plagioclase or orthopyroxene crystals. Transferring the magma upwards from about 4 kbar to about 2 kbar would trigger the growth of ~10% phenocrysts. This interpretation is consistent with magma storage depths estimated from experimental petrology (Figure 8.1). It is possible that the mafic parental magma for the Cape Riva was stored in the lower reservoir, where it partially crystallised. The melt from this stage, which had the same composition as the bulk Cape Riva, then separated from its crystals and ascended in to the upper reservoir.

In summary: the growth of the phenocrysts in the both the Cape Riva and Therasia dacites was probably caused by a mixture of cooling and decompression triggered by the amalgamation and emplacement of multiple batches of compositionally diverse melts (silicic andesite to rhyodacite) in the shallow crust.

8.5 The evolution of the volcanic plumbing system prior to the Cape Riva eruption

I now bring together all of the evidence presented in this thesis in order to put forward an integrated model of the evolution of the plumbing system of Santorini in the build-up to the Cape Riva eruption.

8.5.1 Skaros–Upper Scoria 2 (67–54 ka)

The Skaros shield was studied in detail by Huijsmans (1985) and Huijsmans and Barton (1989), and their conclusions are presented here for completeness. The oldest Skaros lava has been dated at 67 ± 9 ka (Druitt et al., 1999). During the Skaros period the volcano is interpreted as having behaved as an open conduit. The eruptive rate was
high, and close to the long-term average for Santorini (\(\sim 1 \text{ km}^3\)). The volcanic activity mostly involved the extrusion of andesites and relatively primitive basalts.

A few times during this period, the system began to stagnate and the composition of the erupted magma became steadily more evolved. Each of these cycles ended with a minor explosive eruption, leaving pumice fall and phreatomagmatic deposits. The last of these failed stagnations ended with the Upper Scoria 2 eruption, at 54 ± 3 ka (Druitt et al., 1999). The Upper Scoria 2 eruption began with a small dacitic pumice and ash fall, before discharging several \(\text{km}^3\) of andesitic scoria as pyroclastic flows (Mellors and Sparks, 1991). This was the first time dacite had been erupted at Santorini since the beginning of the Skaros period.

8.5.2 Early Therasia period (54–39 ka)

After the Upper Scoria 2 eruption, the volcano entered a period of near-repose where the eruption rate dropped to \(<0.1 \text{ km}^3 \text{ky}^{-1}\). The activity consisted of only a few andesitic lavas, such as the Lower Therasia andesite (48.2 ± 24 ka). The Andesite of Oia was probably also erupted during this period; its composition is very similar to that of the Upper Scoria 2 andesite, and it is probably remnant magma from that eruption. It is possible that the weight of the Skaros edifice during this period prevented the ascent of magma to the surface, trapping the incoming mafic magma at depth (Pinel and Jaupart, 2000, 2004).

8.5.3 The Therasia dacites (39–25 ka)

The first erupted dacite after the Upper Scoria 2 eruption was erupted at 39.4 ± 2.2 ka. From this point on, mafic magma was only erupted as minor \((\ll 0.1\%)\) basaltic enclaves. Incoming mafic magma was probably still being trapped at depth. Accumulation of heat from prolonged, deep intrusion probably generated silicic melt by a combination of fractional crystallisation, partial melting of crustal rocks and defrosting of extant
mushy intrusions (Barton et al., 1983; Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989; Mann, 1983).

While the Therasia dacites have been interpreted as leaks from the growing Cape Riva magma reservoir (Druitt, 1985), the differences in incompatible element concentrations in the Therasia and Cape Riva dacites suggest this is not the case. While I cannot rule out the possibility that the Therasia dacites were fed from a single, long-lived reservoir, it is more likely that they were fed from a series of small, ephemeral reservoirs. Small batches of dacitic melt would have been sequentially emplaced in the shallow crust, at a depth corresponding to a pressure of about 2 kbar (~8 km; Figure 8.1). This emplacement would have driven crystal growth through a mixture of cooling and decompression. Occasional inputs of less evolved magma would have caused the sawtooth zoning in the plagioclases and the high-Mg zones in the orthopyroxenes. Gabbroic nodules were incorporated into the magma from plutonic material intruded during previous volcanic activity at Santorini, and some plagioclase crystals from this plutonic material became the cores of new plagioclase phenocrysts. Eruption occurred within a few decades to centuries of the onset of crystallisation.

The Therasia period ended with the eruption of the upper Therasia andesite, a hybrid andesite formed by mixing ~60 wt% Therasia dacite with ~40 wt% basalt. This hybrid andesite represents the first time that basaltic magma had ascended into the shallow crust since the eruption of the first Therasia dacite, and may have signalled an increase in the rate magma supply from depth. Increasing explosivity towards the top of the Therasia sequence was also potentially a result of this increase in magma flux.

The youngest dated Therasia lava was erupted at 24.6 ± 1.3 ka, 2,800 ± 1,400 y before the Cape Riva eruption.

8.5.4 The build-up to the Cape Riva eruption (25–22 ka)

As argued above, most of the Cape Riva magma probably arrived in the shallow crust after the extrusion of the last Therasia dacite. At 26 ka the system may have been
replenished by incompatible-depleted silicic melt, which mixed with Therasia dacite and was discharged as the Cape Tripiti Pumice. The subsequent return to eruption of “pure” Therasia dacite suggests that if a discrete Cape Riva reservoir already existed below the summit at this time, it had probably not yet reached its full size. Following extrusion of the last Therasia lava flow, the input of incompatible-depleted silicic melt continued, and perhaps accelerated, during the $< 2800 \pm 1400$ y preceding the Cape Riva eruption.

The Cape Riva magma reservoir formed through the amalgamation of multiple compositionally diverse melts (silicic andesite to rhyodacite). Crystallisation of plagioclase and orthopyroxene was triggered by a mixture of decompression and cooling. Sawtooth zoning in the plagioclases was generated as the crystals cycled between hotter and cooler melts. Crystals transferred from a cooler rhyodacite to a hotter, less evolved melt were first partially resorbed, then overgrown with more calcic plagioclase. A similar story is recorded in the orthopyroxene crystals. Crystal high-temperature residence times indicate that this occurred within a few decades to centuries before eruption. The entire reservoir was then homogenised prior to eruption.

If the Cape Riva magma reservoir did not exist in the shallow crust during the Therasia period, then a robust minimum magma supply rate can be calculated assuming that most of the >10 km3 of Cape Riva magma was injected into the shallow crust in the $<2800 \pm 1400$ y between the last Therasia eruption and the onset of the Cape Riva eruption. This yields a time-averaged supply rate of $>0.004 \pm 0.002$ km3 y$^{-1}$. The high-temperature residence times of the phenocrysts are much shorter than the break between the end of the Therasia period and the Cape Riva eruption. This suggests that supply rates could be much greater, although the phenocrysts may only record the last few pulses of reservoir assembly rather than the accumulation of the entire Cape Riva magma body. Using the longest high-temperature residence time found in the plagioclase phenocrysts (400 y), the magma supply rate rises to >0.025 km3 y$^{-1}$, and using the longest high-temperature residence time found for the orthopyroxene crystals
(40 y) gives a supply rate of $>0.25 \text{km}^3 \text{y}^{-1}$.

For comparison, the mean accumulation rate estimated over the 1600 y to prior the Oruanui eruption has been estimated as $>0.33 \text{km}^3 \text{y}^{-1}$, culminating in values of $\sim 1 \text{km}^3 \text{y}^{-1}$ (Allan et al., 2013; Wilson and Charlier, 2009). A late-stage growth spurt of the Minoan magma reservoir has been estimated as $>0.05 \text{km}^3 \text{y}^{-1}$ (Druitt et al., 2012). Intrusion rates comparable to, or higher than, that estimated for the Cape Riva are implied by measured deformation rates at silicic volcanoes such as Uturuncu ($\sim 0.01 \text{km}^3 \text{y}^{-1}$; Pritchard and Simons, 2004; Sparks et al., 2008), Kameni ($\sim 0.01 \text{km}^3 \text{y}^{-1}$; Parks et al., 2012), Yellowstone ($\sim 0.1 \text{km}^3 \text{y}^{-1}$; Chang et al., 2010), and Lazufre ($\sim 0.01 \text{km}^3 \text{y}^{-1}$; Froger et al., 2007; Ruch et al., 2009).

Rapid intrusion of the Cape Riva dacite into the upper crust would have favoured runaway growth of a melt-dominated magma reservoir (Annen, 2009; Gelman et al., 2013; Schöpa and Annen, 2013). Driving mechanisms for magma ascent may have included increased basaltic flux from the mantle, tectonic forces, or gravitational instability of crustal magma storage regions. Possible evidence of increased basaltic flux is provided by the production of hybrid andesites (formed by mixing of basalt and dacite in approximately equal proportions) in the few thousand years prior to the Cape Riva eruption, as well as in the Cape Riva reservoir itself. Pressurization of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to catastrophic explosive eruption and caldera collapse.
References

References

References

References

References

Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R. (2010). Joint determination of \(^{40}\)K decay constants and \(^{40}\)Ar*/\(^{40}\)K for the Fish Canyon sanidine standard, and improved accuracy for \(^{40}\)Ar/\(^{39}\)Ar geochronology. *Geochimica et Cosmochimica Acta*, 74(18):5349–5367. doi:10.1016/j.gca.2010.06.017.

Appendix A

Sample locations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Locality</th>
<th>Unit</th>
<th>Description</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-03</td>
<td>Manolas</td>
<td>Therasia 19</td>
<td>lava</td>
<td>36.4417</td>
<td>25.3527</td>
</tr>
<tr>
<td>GS10-06</td>
<td>Manolas</td>
<td>Therasia 27</td>
<td>lava</td>
<td>36.4406</td>
<td>25.3565</td>
</tr>
<tr>
<td>GS10-14</td>
<td>South Therasia</td>
<td>Therasia 8</td>
<td>lava</td>
<td>36.4122</td>
<td>25.3507</td>
</tr>
<tr>
<td>GS10-16</td>
<td>South Therasia</td>
<td>Therasia 9</td>
<td>lava</td>
<td>36.4122</td>
<td>25.3507</td>
</tr>
<tr>
<td>GS10-17</td>
<td>South Therasia</td>
<td>Therasia 5</td>
<td>lava</td>
<td>36.4122</td>
<td>25.3507</td>
</tr>
<tr>
<td>GS10-18</td>
<td>South Therasia</td>
<td>Therasia 14</td>
<td>lava</td>
<td>36.4184</td>
<td>25.3483</td>
</tr>
<tr>
<td>GS10-20</td>
<td>Mt. Vigalos</td>
<td>Therasia 22</td>
<td>lava</td>
<td>36.4265</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-22</td>
<td>Mt. Vigalos</td>
<td>Therasia 22</td>
<td>lava</td>
<td>36.4265</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-27a</td>
<td>South Therasia</td>
<td>Therasia 3</td>
<td>lava</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27b</td>
<td>South Therasia</td>
<td>Therasia 3</td>
<td>lava</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27c</td>
<td>South Therasia</td>
<td>Therasia 3</td>
<td>enclave</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27d</td>
<td>South Therasia</td>
<td>Therasia A</td>
<td>single pumice clast</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27e</td>
<td>South Therasia</td>
<td>Therasia A</td>
<td>single pumice clast</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27f</td>
<td>South Therasia</td>
<td>Therasia A</td>
<td>pumice</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27g</td>
<td>South Therasia</td>
<td>Therasia B</td>
<td>pumice and obsidian</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-27h</td>
<td>South Therasia</td>
<td>Therasia C</td>
<td>pumice</td>
<td>36.4139</td>
<td>25.3440</td>
</tr>
<tr>
<td>GS10-28a</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>banded pumice</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-28b</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>single scoria clast</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-28c</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>single scoria clast</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-28d</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>single pumice clast</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-28e</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>single pumice clast</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-28f</td>
<td>South Therasia</td>
<td>Therasia D</td>
<td>pumice</td>
<td>36.4144</td>
<td>25.3508</td>
</tr>
<tr>
<td>GS10-30a</td>
<td>Mt. Vigalos</td>
<td>Therasia 19</td>
<td>lava</td>
<td>36.4211</td>
<td>25.3477</td>
</tr>
<tr>
<td>GS10-30b</td>
<td>Mt. Vigalos</td>
<td>Therasia 15</td>
<td>lava</td>
<td>36.4211</td>
<td>25.3477</td>
</tr>
<tr>
<td>GS10-31a</td>
<td>Mt. Vigalos</td>
<td>Therasia D</td>
<td>single scoria clast</td>
<td>36.4267</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-31b</td>
<td>Mt. Vigalos</td>
<td>Therasia D</td>
<td>single pumice clast</td>
<td>36.4267</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-31c</td>
<td>Mt. Vigalos</td>
<td>Therasia D</td>
<td>single pumice clast</td>
<td>36.4267</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-31d</td>
<td>Mt. Vigalos</td>
<td>Therasia D</td>
<td>single pumice clast</td>
<td>36.4267</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-31e</td>
<td>Mt. Vigalos</td>
<td>Therasia D</td>
<td>pumice</td>
<td>36.4267</td>
<td>25.3468</td>
</tr>
<tr>
<td>GS10-32</td>
<td>Manolas</td>
<td>Therasia E</td>
<td>pumice</td>
<td>36.4373</td>
<td>25.3475</td>
</tr>
<tr>
<td>GS10-33</td>
<td>Manolas</td>
<td>Therasia 27</td>
<td>lava</td>
<td>36.4374</td>
<td>25.3478</td>
</tr>
<tr>
<td>GS10-36</td>
<td>Oia</td>
<td>Therasia 26</td>
<td>lava</td>
<td>36.4628</td>
<td>25.3699</td>
</tr>
<tr>
<td>GS10-37b</td>
<td>Oia</td>
<td>Therasia 26</td>
<td>enclave</td>
<td>36.4659</td>
<td>25.3681</td>
</tr>
<tr>
<td>GS10-38a</td>
<td>Oia</td>
<td>Oia A</td>
<td>pumice</td>
<td>36.4659</td>
<td>25.3682</td>
</tr>
</tbody>
</table>
Appendix A. Sample locations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Locality</th>
<th>Unit</th>
<th>Description</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-38b</td>
<td>Oia</td>
<td>Oia B</td>
<td>pumice</td>
<td>36.4659</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS10-38c</td>
<td>Oia</td>
<td>Oia C</td>
<td>pumice</td>
<td>36.4659</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS10-38d</td>
<td>Oia</td>
<td>Oia D</td>
<td>pumice</td>
<td>36.4659</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS10-39a</td>
<td>Oia</td>
<td>Cape Riva A</td>
<td>scoria</td>
<td>36.4663</td>
<td>25.3684</td>
</tr>
<tr>
<td>GS10-39b</td>
<td>Oia</td>
<td>Cape Riva A</td>
<td>banded pumice</td>
<td>36.4663</td>
<td>25.3684</td>
</tr>
<tr>
<td>GS10-39c</td>
<td>Oia</td>
<td>Cape Riva A</td>
<td>pumice</td>
<td>36.4663</td>
<td>25.3684</td>
</tr>
<tr>
<td>GS10-40</td>
<td>Phira</td>
<td>Therasia 25</td>
<td>lava</td>
<td>36.4198</td>
<td>25.4297</td>
</tr>
<tr>
<td>GS10-41</td>
<td>Cape Skaros</td>
<td>Skaros</td>
<td>lava</td>
<td>36.4324</td>
<td>25.4196</td>
</tr>
<tr>
<td>GS10-43</td>
<td>South Therasia</td>
<td>Therasia 11</td>
<td>enclave</td>
<td>36.4168</td>
<td>25.3377</td>
</tr>
<tr>
<td>GS10-44b</td>
<td>South Therasia</td>
<td>Therasia 1</td>
<td>lava</td>
<td>36.4181</td>
<td>25.3363</td>
</tr>
<tr>
<td>GS10-46</td>
<td>South Therasia</td>
<td>Therasia 11</td>
<td>lava</td>
<td>36.4168</td>
<td>25.3377</td>
</tr>
<tr>
<td>GS10-48</td>
<td>Mt. Vigalos</td>
<td>Therasia 21</td>
<td>lava</td>
<td>36.4311</td>
<td>25.3445</td>
</tr>
<tr>
<td>GS10-49</td>
<td>Balos</td>
<td>Upper Scoria 2</td>
<td>scoria</td>
<td>36.3617</td>
<td>25.3934</td>
</tr>
<tr>
<td>GS10-50</td>
<td>Ammoudi</td>
<td>Andesite of Oia</td>
<td>lava</td>
<td>36.4659</td>
<td>25.3680</td>
</tr>
<tr>
<td>GS11-07a</td>
<td>Balos</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3603</td>
<td>25.4044</td>
</tr>
<tr>
<td>GS11-07b</td>
<td>Balos</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3603</td>
<td>25.4044</td>
</tr>
<tr>
<td>GS11-07c</td>
<td>Balos</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3603</td>
<td>25.4044</td>
</tr>
<tr>
<td>GS11-12a</td>
<td>Akrotiri Quary</td>
<td>Therasia</td>
<td>pumice</td>
<td>36.3628</td>
<td>25.4178</td>
</tr>
<tr>
<td>GS11-12b</td>
<td>Akrotiri Quary</td>
<td>Therasia</td>
<td>pumice</td>
<td>36.3628</td>
<td>25.4178</td>
</tr>
<tr>
<td>GS11-30a</td>
<td>Cape Riva</td>
<td>Cape Riva C</td>
<td>single pumice clast</td>
<td>36.4505</td>
<td>25.3466</td>
</tr>
<tr>
<td>GS11-30b</td>
<td>Cape Riva</td>
<td>Cape Riva C</td>
<td>single pumice clast</td>
<td>36.4505</td>
<td>25.3466</td>
</tr>
<tr>
<td>GS11-30c</td>
<td>Cape Riva</td>
<td>Cape Riva C</td>
<td>single pumice clast</td>
<td>36.4505</td>
<td>25.3466</td>
</tr>
<tr>
<td>GS11-32a</td>
<td>Red Beach</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3481</td>
<td>25.4151</td>
</tr>
<tr>
<td>GS11-32b</td>
<td>Red Beach</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3481</td>
<td>25.4151</td>
</tr>
<tr>
<td>GS11-32c</td>
<td>Red Beach</td>
<td>Cape Riva B</td>
<td>single pumice clast</td>
<td>36.3481</td>
<td>25.4151</td>
</tr>
<tr>
<td>GS11-34a</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34b</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34c</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34d</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34e</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34f</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34g</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single dacite pumice</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34h</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>andesite scoria</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-34i</td>
<td>Katheros</td>
<td>Cape Riva A</td>
<td>single andesite scoria</td>
<td>36.4661</td>
<td>25.3682</td>
</tr>
<tr>
<td>GS11-39a</td>
<td>Ammoudi</td>
<td>Cape Riva D</td>
<td>single pumice clast</td>
<td>36.4629</td>
<td>25.3708</td>
</tr>
<tr>
<td>GS11-39b</td>
<td>Ammoudi</td>
<td>Cape Riva D</td>
<td>single pumice clast</td>
<td>36.4629</td>
<td>25.3708</td>
</tr>
<tr>
<td>GS11-39c</td>
<td>Ammoudi</td>
<td>Cape Riva D</td>
<td>single pumice clast</td>
<td>36.4629</td>
<td>25.3708</td>
</tr>
</tbody>
</table>
Appendix B

Whole rock and groundmass chemical analyses
Appendix B. Whole rock and groundmass chemical analyses

<table>
<thead>
<tr>
<th>Sample Unit</th>
<th>Andesite of Oia</th>
<th>Lower Therasia Andesite</th>
<th>Therasia Dacites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-50</td>
<td>Lava (Flow 26)</td>
<td>GS10-44b (Flow 1)</td>
<td>GS10-27a (Flow 3)</td>
</tr>
<tr>
<td>GS10-33</td>
<td>Lava (Flow 24)</td>
<td>GS10-33 (Flow 3)</td>
<td>GS10-17 (Flow 5)</td>
</tr>
<tr>
<td>GS10-27a</td>
<td>Lava (Flow 3)</td>
<td>GS10-27a (Flow 3)</td>
<td>GS10-14 (Flow 8)</td>
</tr>
<tr>
<td>GS10-17</td>
<td>Lava (Flow 5)</td>
<td>GS10-17 (Flow 5)</td>
<td>GS10-16 (Flow 9)</td>
</tr>
<tr>
<td>GS10-14</td>
<td>Lava (Flow 8)</td>
<td>GS10-14 (Flow 8)</td>
<td></td>
</tr>
<tr>
<td>GS10-16</td>
<td>Lava (Flow 9)</td>
<td>GS10-16 (Flow 9)</td>
<td></td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

<table>
<thead>
<tr>
<th>Element</th>
<th>GS10-50</th>
<th>GS10-44b</th>
<th>GS10-33</th>
<th>GS10-27a</th>
<th>GS10-17</th>
<th>GS10-14</th>
<th>GS10-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.26</td>
<td>56.26</td>
<td>56.19</td>
<td>65.83</td>
<td>66.00</td>
<td>65.36</td>
<td>65.80</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.74</td>
<td>17.73</td>
<td>17.45</td>
<td>15.73</td>
<td>15.38</td>
<td>15.86</td>
<td>15.65</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.28</td>
<td>1.04</td>
<td>1.01</td>
<td>0.81</td>
<td>0.75</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>FeO₇</td>
<td>9.15</td>
<td>8.05</td>
<td>7.78</td>
<td>5.23</td>
<td>4.66</td>
<td>4.71</td>
<td>4.64</td>
</tr>
<tr>
<td>MgO</td>
<td>3.54</td>
<td>4.16</td>
<td>4.07</td>
<td>1.25</td>
<td>1.08</td>
<td>1.31</td>
<td>1.21</td>
</tr>
<tr>
<td>CaO</td>
<td>7.28</td>
<td>8.26</td>
<td>8.05</td>
<td>3.69</td>
<td>3.15</td>
<td>3.83</td>
<td>3.53</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.18</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.21</td>
<td>0.16</td>
<td>0.16</td>
<td>0.22</td>
<td>0.18</td>
<td>0.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Trace elements (ppm)

<table>
<thead>
<tr>
<th>Element</th>
<th>GS10-50</th>
<th>GS10-44b</th>
<th>GS10-33</th>
<th>GS10-27a</th>
<th>GS10-17</th>
<th>GS10-14</th>
<th>GS10-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>11.4</td>
<td>10.3</td>
<td>9.6</td>
<td>24.3</td>
<td>25.5</td>
<td>23.7</td>
<td>24.2</td>
</tr>
<tr>
<td>Sc</td>
<td>30.1</td>
<td>26.3</td>
<td>25.7</td>
<td>13.1</td>
<td>13.9</td>
<td>13.7</td>
<td>13.3</td>
</tr>
<tr>
<td>V</td>
<td>275</td>
<td>215</td>
<td>206</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td>41</td>
</tr>
<tr>
<td>Cr</td>
<td>5.23</td>
<td>13.30</td>
<td>17.50</td>
<td>2.76</td>
<td>1.17</td>
<td>2.27</td>
<td>1.17</td>
</tr>
<tr>
<td>Co</td>
<td>23.00</td>
<td>22.30</td>
<td>22.00</td>
<td>7.08</td>
<td>5.77</td>
<td>6.92</td>
<td>6.17</td>
</tr>
<tr>
<td>Ni</td>
<td>7.84</td>
<td>11.10</td>
<td>11.90</td>
<td>1.69</td>
<td>0.86</td>
<td>1.13</td>
<td>0.79</td>
</tr>
<tr>
<td>Cu</td>
<td>48.4</td>
<td>37.0</td>
<td>44.4</td>
<td>20.4</td>
<td>17.5</td>
<td>14.5</td>
<td>12.7</td>
</tr>
<tr>
<td>Zn</td>
<td>92.0</td>
<td>79.1</td>
<td>73.8</td>
<td>77.2</td>
<td>76.4</td>
<td>71.6</td>
<td>71.2</td>
</tr>
<tr>
<td>As</td>
<td>1.98</td>
<td>0.91</td>
<td>1.02</td>
<td>1.99</td>
<td>2.18</td>
<td>1.90</td>
<td>2.00</td>
</tr>
<tr>
<td>Rb</td>
<td>52.7</td>
<td>42.8</td>
<td>45.1</td>
<td>95.0</td>
<td>104.0</td>
<td>91.6</td>
<td>92.6</td>
</tr>
<tr>
<td>Sr</td>
<td>183</td>
<td>147</td>
<td>146</td>
<td>243</td>
<td>321</td>
<td>272</td>
<td>281</td>
</tr>
<tr>
<td>Y</td>
<td>38.9</td>
<td>31.2</td>
<td>31.1</td>
<td>41.4</td>
<td>50.8</td>
<td>46.0</td>
<td>46.8</td>
</tr>
<tr>
<td>Zr</td>
<td>175</td>
<td>140</td>
<td>146</td>
<td>243</td>
<td>321</td>
<td>272</td>
<td>281</td>
</tr>
<tr>
<td>Nb</td>
<td>6.44</td>
<td>5.99</td>
<td>6.03</td>
<td>11.70</td>
<td>12.90</td>
<td>12.50</td>
<td>12.60</td>
</tr>
<tr>
<td>Cd</td>
<td>0.070</td>
<td><DL</td>
<td>0.081</td>
<td>0.078</td>
<td>0.129</td>
<td>0.108</td>
<td>0.117</td>
</tr>
<tr>
<td>Cs</td>
<td>1.77</td>
<td>0.65</td>
<td>0.70</td>
<td>2.90</td>
<td>3.21</td>
<td>2.74</td>
<td>2.80</td>
</tr>
<tr>
<td>Ba</td>
<td>236</td>
<td>253</td>
<td>256</td>
<td>450</td>
<td>513</td>
<td>482</td>
<td>489</td>
</tr>
<tr>
<td>La</td>
<td>16.4</td>
<td>16.5</td>
<td>16.8</td>
<td>28.6</td>
<td>32.2</td>
<td>30.3</td>
<td>30.6</td>
</tr>
<tr>
<td>Ce</td>
<td>36.1</td>
<td>35.2</td>
<td>35.3</td>
<td>57.9</td>
<td>66.5</td>
<td>63.1</td>
<td>63.8</td>
</tr>
<tr>
<td>Pr</td>
<td>4.62</td>
<td>4.36</td>
<td>4.32</td>
<td>6.60</td>
<td>7.70</td>
<td>7.33</td>
<td>7.49</td>
</tr>
<tr>
<td>Nd</td>
<td>19.3</td>
<td>18.3</td>
<td>18.0</td>
<td>25.6</td>
<td>30.1</td>
<td>29.1</td>
<td>29.4</td>
</tr>
<tr>
<td>Sm</td>
<td>5.08</td>
<td>4.41</td>
<td>4.35</td>
<td>5.83</td>
<td>6.91</td>
<td>6.51</td>
<td>6.54</td>
</tr>
<tr>
<td>Eu</td>
<td>1.33</td>
<td>1.18</td>
<td>1.17</td>
<td>1.28</td>
<td>1.43</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>Gd</td>
<td>5.74</td>
<td>4.79</td>
<td>4.63</td>
<td>5.92</td>
<td>7.14</td>
<td>6.62</td>
<td>6.73</td>
</tr>
<tr>
<td>Tb</td>
<td>0.99</td>
<td>0.80</td>
<td>0.79</td>
<td>1.00</td>
<td>1.20</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>Dy</td>
<td>6.27</td>
<td>5.17</td>
<td>5.17</td>
<td>6.45</td>
<td>7.94</td>
<td>7.09</td>
<td>7.12</td>
</tr>
<tr>
<td>Ho</td>
<td>1.36</td>
<td>1.08</td>
<td>1.08</td>
<td>1.40</td>
<td>1.68</td>
<td>1.54</td>
<td>1.58</td>
</tr>
<tr>
<td>Er</td>
<td>4.10</td>
<td>3.30</td>
<td>3.26</td>
<td>4.26</td>
<td>5.20</td>
<td>4.76</td>
<td>4.75</td>
</tr>
<tr>
<td>Yb</td>
<td>4.13</td>
<td>3.33</td>
<td>3.20</td>
<td>4.36</td>
<td>5.30</td>
<td>4.71</td>
<td>4.79</td>
</tr>
<tr>
<td>Lu</td>
<td>0.598</td>
<td>0.501</td>
<td>0.483</td>
<td>0.665</td>
<td>0.810</td>
<td>0.725</td>
<td>0.722</td>
</tr>
<tr>
<td>Hf</td>
<td>4.82</td>
<td>3.80</td>
<td>3.85</td>
<td>6.06</td>
<td>7.51</td>
<td>6.55</td>
<td>6.76</td>
</tr>
<tr>
<td>Ta</td>
<td>0.488</td>
<td>0.423</td>
<td>0.436</td>
<td>0.886</td>
<td>0.920</td>
<td>0.869</td>
<td>0.868</td>
</tr>
<tr>
<td>Tl</td>
<td>0.111</td>
<td>0.170</td>
<td>0.161</td>
<td>0.455</td>
<td>0.491</td>
<td>0.418</td>
<td>0.441</td>
</tr>
<tr>
<td>Pb</td>
<td>8.1</td>
<td>6.6</td>
<td>6.5</td>
<td>15.2</td>
<td>16.9</td>
<td>14.7</td>
<td>14.9</td>
</tr>
<tr>
<td>Th</td>
<td>9.8</td>
<td>8.2</td>
<td>8.4</td>
<td>15.7</td>
<td>17.9</td>
<td>15.1</td>
<td>15.4</td>
</tr>
<tr>
<td>U</td>
<td>2.91</td>
<td>2.34</td>
<td>2.41</td>
<td>4.40</td>
<td>5.15</td>
<td>4.14</td>
<td>4.23</td>
</tr>
<tr>
<td>Sample</td>
<td>GS10-30a</td>
<td>GS10-20</td>
<td>GS10-48</td>
<td>GS10-40</td>
<td>GS10-46</td>
<td>GS10-22</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Lava</td>
<td>Lava</td>
<td>Lava</td>
<td>Lava</td>
<td>Lava</td>
<td>Lava</td>
<td></td>
</tr>
<tr>
<td>Therasia Dacites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>67.46</td>
<td>65.08</td>
<td>67.87</td>
<td>68.67</td>
<td>60.79</td>
<td>60.26</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>15.26</td>
<td>15.65</td>
<td>15.17</td>
<td>15.25</td>
<td>17.04</td>
<td>17.16</td>
<td></td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.72</td>
<td>0.82</td>
<td>0.67</td>
<td>0.61</td>
<td>0.85</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>FeO$_7$</td>
<td>4.42</td>
<td>5.18</td>
<td>4.25</td>
<td>4.09</td>
<td>6.01</td>
<td>6.05</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.87</td>
<td>1.43</td>
<td>0.67</td>
<td>0.65</td>
<td>2.58</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>2.68</td>
<td>3.79</td>
<td>2.39</td>
<td>2.37</td>
<td>5.85</td>
<td>5.98</td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>5.23</td>
<td>4.97</td>
<td>5.50</td>
<td>5.60</td>
<td>4.43</td>
<td>4.52</td>
<td></td>
</tr>
<tr>
<td>K$_2$O</td>
<td>3.07</td>
<td>2.75</td>
<td>3.21</td>
<td>2.50</td>
<td>2.09</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
<td>0.14</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.17</td>
<td>0.21</td>
<td>0.16</td>
<td>0.14</td>
<td>0.20</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Upper Therasia Andesite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

Trace elements (ppm)

<table>
<thead>
<tr>
<th>Element</th>
<th>GS10-30a</th>
<th>GS10-20</th>
<th>GS10-48</th>
<th>GS10-40</th>
<th>GS10-46</th>
<th>GS10-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>25.2</td>
<td>24.3</td>
<td>26.4</td>
<td>28.2</td>
<td>16.7</td>
<td>18.1</td>
</tr>
<tr>
<td>Sc</td>
<td>13.2</td>
<td>15.3</td>
<td>12.8</td>
<td>14.9</td>
<td>17.5</td>
<td>17.4</td>
</tr>
<tr>
<td>V</td>
<td>22</td>
<td>51</td>
<td>8</td>
<td>8</td>
<td>106</td>
<td>109</td>
</tr>
<tr>
<td>Cr</td>
<td>0.42</td>
<td>2.88</td>
<td>0.64</td>
<td>0.98</td>
<td>8.44</td>
<td>9.52</td>
</tr>
<tr>
<td>Co</td>
<td>4.88</td>
<td>7.91</td>
<td>3.35</td>
<td>3.38</td>
<td>13.10</td>
<td>13.80</td>
</tr>
<tr>
<td>Ni</td>
<td>0.75</td>
<td>2.01</td>
<td>0.23</td>
<td><DL</td>
<td>4.85</td>
<td>5.65</td>
</tr>
<tr>
<td>Cu</td>
<td>14.9</td>
<td>20.4</td>
<td>10.6</td>
<td>16.3</td>
<td>21.7</td>
<td>16.5</td>
</tr>
<tr>
<td>Zn</td>
<td>76.4</td>
<td>77.8</td>
<td>79.6</td>
<td>75.4</td>
<td>68.7</td>
<td>71.9</td>
</tr>
<tr>
<td>As</td>
<td>2.26</td>
<td>2.03</td>
<td>2.36</td>
<td>2.70</td>
<td>1.39</td>
<td>1.54</td>
</tr>
<tr>
<td>Rb</td>
<td>107.0</td>
<td>95.6</td>
<td>109.0</td>
<td>106.0</td>
<td>69.0</td>
<td>68.1</td>
</tr>
<tr>
<td>Sr</td>
<td>123</td>
<td>146</td>
<td>117</td>
<td>108</td>
<td>232</td>
<td>231</td>
</tr>
<tr>
<td>Y</td>
<td>51.1</td>
<td>48.5</td>
<td>53.7</td>
<td>55.4</td>
<td>38.0</td>
<td>37.9</td>
</tr>
<tr>
<td>Zr</td>
<td>333</td>
<td>296</td>
<td>354</td>
<td>352</td>
<td>201</td>
<td>200</td>
</tr>
<tr>
<td>Cd</td>
<td>0.119</td>
<td>0.116</td>
<td>0.112</td>
<td>0.150</td>
<td>0.069</td>
<td>0.077</td>
</tr>
<tr>
<td>Cs</td>
<td>3.29</td>
<td>2.97</td>
<td>3.40</td>
<td>3.34</td>
<td>1.40</td>
<td>2.09</td>
</tr>
<tr>
<td>Ba</td>
<td>528</td>
<td>480</td>
<td>542</td>
<td>533</td>
<td>400</td>
<td>391</td>
</tr>
<tr>
<td>La</td>
<td>33.1</td>
<td>30.4</td>
<td>33.4</td>
<td>32.7</td>
<td>24.0</td>
<td>23.5</td>
</tr>
<tr>
<td>Ce</td>
<td>68.7</td>
<td>62.9</td>
<td>69.0</td>
<td>66.5</td>
<td>50.5</td>
<td>49.5</td>
</tr>
<tr>
<td>Pr</td>
<td>7.96</td>
<td>7.41</td>
<td>8.11</td>
<td>8.11</td>
<td>6.01</td>
<td>5.93</td>
</tr>
<tr>
<td>Nd</td>
<td>30.8</td>
<td>28.9</td>
<td>31.5</td>
<td>32.0</td>
<td>23.9</td>
<td>23.4</td>
</tr>
<tr>
<td>Sm</td>
<td>7.04</td>
<td>6.69</td>
<td>7.18</td>
<td>7.30</td>
<td>5.60</td>
<td>5.40</td>
</tr>
<tr>
<td>Eu</td>
<td>1.37</td>
<td>1.39</td>
<td>1.46</td>
<td>1.40</td>
<td>1.30</td>
<td>1.29</td>
</tr>
<tr>
<td>Gd</td>
<td>7.21</td>
<td>6.82</td>
<td>7.44</td>
<td>7.67</td>
<td>5.66</td>
<td>5.57</td>
</tr>
<tr>
<td>Tb</td>
<td>1.22</td>
<td>1.13</td>
<td>1.25</td>
<td>1.27</td>
<td>0.94</td>
<td>0.92</td>
</tr>
<tr>
<td>Dy</td>
<td>8.04</td>
<td>7.56</td>
<td>8.29</td>
<td>8.76</td>
<td>6.03</td>
<td>5.96</td>
</tr>
<tr>
<td>Ho</td>
<td>1.73</td>
<td>1.65</td>
<td>1.82</td>
<td>1.88</td>
<td>1.30</td>
<td>1.27</td>
</tr>
<tr>
<td>Er</td>
<td>5.20</td>
<td>4.98</td>
<td>5.49</td>
<td>5.73</td>
<td>3.96</td>
<td>3.89</td>
</tr>
<tr>
<td>Yb</td>
<td>5.35</td>
<td>5.06</td>
<td>5.68</td>
<td>5.88</td>
<td>3.99</td>
<td>3.94</td>
</tr>
<tr>
<td>Lu</td>
<td>0.821</td>
<td>0.767</td>
<td>0.854</td>
<td>0.883</td>
<td>0.597</td>
<td>0.589</td>
</tr>
<tr>
<td>Hf</td>
<td>7.80</td>
<td>7.05</td>
<td>8.32</td>
<td>8.62</td>
<td>5.25</td>
<td>5.27</td>
</tr>
<tr>
<td>Ta</td>
<td>0.933</td>
<td>0.833</td>
<td>0.928</td>
<td>1.050</td>
<td>0.643</td>
<td>0.634</td>
</tr>
<tr>
<td>Tl</td>
<td>0.484</td>
<td>0.436</td>
<td>0.348</td>
<td>0.454</td>
<td>0.279</td>
<td>0.287</td>
</tr>
<tr>
<td>Pb</td>
<td>17.1</td>
<td>15.8</td>
<td>16.9</td>
<td>18.3</td>
<td>10.8</td>
<td>11.6</td>
</tr>
<tr>
<td>Th</td>
<td>18.8</td>
<td>16.5</td>
<td>18.7</td>
<td>17.7</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>U</td>
<td>5.25</td>
<td>4.71</td>
<td>5.34</td>
<td>5.06</td>
<td>3.20</td>
<td>3.15</td>
</tr>
</tbody>
</table>
Appendix B. Whole rock and groundmass chemical analyses

Therasia Pumices

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Type</th>
<th>GS10-27d</th>
<th>GS10-27g(o)</th>
<th>GS10-27g(p)</th>
<th>GS10-27h</th>
<th>GS10-28c</th>
<th>GS10-28d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pumice</td>
<td>67.50</td>
<td>64.60</td>
<td>64.82</td>
<td>68.14</td>
<td>65.16</td>
<td>66.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obsidian</td>
<td>15.10</td>
<td>15.61</td>
<td>15.62</td>
<td>15.15</td>
<td>15.31</td>
<td>15.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>0.97</td>
<td>0.98</td>
<td>0.60</td>
<td>0.86</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.35</td>
<td>5.39</td>
<td>5.54</td>
<td>4.14</td>
<td>4.79</td>
<td>4.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td>1.42</td>
<td>1.46</td>
<td>0.78</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.68</td>
<td>3.70</td>
<td>3.80</td>
<td>2.29</td>
<td>3.10</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.54</td>
<td>5.38</td>
<td>5.05</td>
<td>5.36</td>
<td>6.52</td>
<td>5.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.92</td>
<td>2.48</td>
<td>2.28</td>
<td>3.27</td>
<td>2.81</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
<td>0.12</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.30</td>
<td>0.31</td>
<td>0.15</td>
<td>0.25</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

- **SiO$_2$**: 67.50, 64.60, 64.82, 68.14, 65.16, 66.24
- **Al$_2$O$_3$**: 15.10, 15.61, 15.62, 15.15, 15.31, 15.41
- **TiO$_2$**: 0.72, 0.97, 0.98, 0.60, 0.86, 0.87
- **FeO$_T$**: 4.35, 5.39, 5.54, 4.14, 4.79, 4.83
- **MgO**: 0.88, 1.42, 1.46, 0.78, 1.07, 1.07
- **CaO**: 2.68, 3.70, 3.80, 2.29, 3.10, 3.16
- **Na$_2$O**: 5.54, 5.38, 5.05, 5.36, 6.52, 5.34
- **K$_2$O**: 2.92, 2.48, 2.28, 3.27, 2.81, 2.68
- **MnO**: 0.13, 0.15, 0.15, 0.12, 0.14, 0.14
- **P$_2$O$_5$**: 0.17, 0.30, 0.31, 0.15, 0.25, 0.26

Trace elements (ppm)

- **Li**: 20.2, 23.5, 23.1, 22.4, 25.3, 24.7
- **Sc**: 13.6, 16.3, 16.8, 12.0, 15.2, 14.8
- **V**: 9, 44, 48, 11, 21, 20
- **Cr**: <DL, 4.77, 1.02, 0.93, 0.81, 0.43
- **Co**: 5.66, 6.69, 7.26, 3.50, 4.73, 4.64
- **Ni**: 1.09, 2.61, 0.90, 0.65, 0.78, 1.66
- **Cu**: 6.5, 8.9, 10.5, 13.6, 5.8, 8.7
- **Zn**: 71.4, 85.9, 86.1, 71.1, 83.0, 82.2
- **As**: 2.12, 1.96, 2.06, 2.94, 2.08, 2.09
- **Rb**: 86.6, 80.2, 79.8, 104.0, 91.4, 90.7
- **Sr**: 112, 164, 168, 108, 145, 143
- **Y**: 46.6, 52.1, 51.7, 55.2, 51.9, 52.3
- **Zr**: 279, 280, 287, 362, 296, 308
- **Nb**: 11.90, 11.20, 11.10, 13.30, 12.00, 11.90
- **Cd**: 0.136, 0.115, 0.128, 0.140, 0.127, 0.108
- **Cs**: 2.71, 2.54, 2.54, 3.33, 2.90, 2.87
- **Ba**: 454, 450, 442, 508, 486, 480
- **La**: 28.3, 29.5, 29.4, 32.2, 31.2, 31.1
- **Ce**: 56.7, 62.8, 62.4, 67.6, 65.1, 64.5
- **Pr**: 6.88, 7.61, 7.57, 7.99, 7.78, 7.54
- **Nd**: 27.7, 30.8, 30.6, 31.6, 30.7, 30.5
- **Sm**: 6.27, 7.29, 7.05, 7.23, 7.20, 7.23
- **Eu**: 1.24, 1.64, 1.58, 1.35, 1.54, 1.54
- **Gd**: 6.50, 7.73, 7.47, 7.45, 7.51, 7.31
- **Tb**: 1.09, 1.26, 1.25, 1.30, 1.23, 1.24
- **Dy**: 7.20, 8.23, 8.03, 8.52, 8.13, 8.06
- **Ho**: 1.55, 1.76, 1.77, 1.85, 1.76, 1.75
- **Er**: 4.78, 5.48, 5.27, 5.64, 5.33, 5.33
- **Yb**: 4.91, 5.41, 5.34, 5.83, 5.43, 5.38
- **Lu**: 0.743, 0.837, 0.822, 0.888, 0.831, 0.832
- **Hf**: 6.85, 6.96, 6.88, 8.55, 7.39, 7.30
- **Ta**: 0.852, 0.758, 0.755, 0.905, 0.820, 0.833
- **Tl**: 0.481, 0.384, 0.408, 0.512, 0.452, 0.417
- **Pb**: 15.3, 14.1, 14.4, 17.6, 15.9, 15.5
- **Th**: 15.2, 14.2, 13.7, 17.5, 15.7, 15.7
- **U**: 4.33, 4.11, 3.92, 4.94, 4.49, 4.52
<table>
<thead>
<tr>
<th>Sample</th>
<th>GS10-28f</th>
<th>GS10-32</th>
<th>GS10-38d</th>
<th>GS10-27c</th>
<th>GS10-43</th>
<th>GS10-50</th>
<th>GS10-44b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>PF D</td>
<td>PF E</td>
<td>Oia PF D</td>
<td>Flow 3</td>
<td>Flow 11</td>
<td>Flow 26</td>
<td>Flow 1</td>
</tr>
<tr>
<td>Type</td>
<td>Pumice</td>
<td>Pumice</td>
<td>Pumice</td>
<td>Enclave</td>
<td>Enclave</td>
<td>Gdms</td>
<td>Gdms</td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

<table>
<thead>
<tr>
<th></th>
<th>Therasia Pumices</th>
<th>Therasia Mafic Enclaves</th>
<th>Andesite of Oia</th>
<th>L. Therasia Andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-28f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-38d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-27c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS10-44b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Therasia Pumices</th>
<th>Therasia Mafic Enclaves</th>
<th>Andesite of Oia</th>
<th>L. Therasia Andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trace elements (ppm)

<table>
<thead>
<tr>
<th></th>
<th>Therasia Pumices</th>
<th>Therasia Mafic Enclaves</th>
<th>Andesite of Oia</th>
<th>L. Therasia Andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SiO₂ | 65.49 | 65.32 | 66.34 | 49.62 | 51.87 | 58.44 | 57.39 |
Al₂O₃	14.94	15.37	15.55	17.41	19.07	15.71	17.35
TiO₂	0.72	0.78	0.83	0.51	0.89	1.31	1.08
FeO₇	4.36	5.06	4.71	7.39	8.08	9.41	8.19
MgO	0.91	1.29	1.04	8.58	5.44	3.50	3.79
CaO	2.65	3.46	3.00	14.53	10.16	7.35	7.39
Na₂O	7.75	5.65	5.29	1.39	3.30	1.42	1.59
K₂O	0.13	0.14	0.14	0.16	0.16	0.18	0.16
P₂O₅	0.17	0.21	0.22	0.05	0.14	0.21	0.19

Li | 23.6 | 29.4 | 22.7 | 9.5 | 16.2 | 11.4 | 9.6 |
Sc	13.3	14.0	13.8	46.2	25.9	30.5	28.9
V	13	29	24	201	193	285	192
Cr	0.92	1.83	2.17	44.20	31.30	5.40	8.92
Co	4.40	5.99	4.75	37.50	27.40	23.90	21.30
Ni	1.70	0.92	1.46	32.80	15.80	8.93	10.40
Cu	8.9	33.1	6.4	17.6	54.4	48.3	40.8
Zn	78.9	82.1	77.4	50.3	72.6	98.8	85.7
As	2.31	2.39	2.61	0.27	0.77	1.91	1.12
Rb	97.5	91.8	89.7	10.1	25.8	55.7	52.8
Sr	124	155	153	215	323	183	261
Y	51.7	47.7	52.6	14.2	23.8	39.6	37.9
Zr	323	265	318	40	108	191	186
Nb	12.20	11.20	13.10	1.24	4.71	6.23	7.24
Cd	0.148	0.130	0.145	0.047	0.072	0.075	0.083
Cs	3.02	5.30	3.02	0.29	0.52	1.86	0.77
Ba	496	451	476	65.2	251	235	295
La	31.3	29.4	31.7	3.8	11.9	16.2	19.2
Ce	64.7	60.7	69.3	9.0	26.9	38.1	41.4
Pr	7.60	7.14	7.88	1.19	3.37	4.59	5.20
Nd	29.9	28.0	31.5	5.4	14.2	19.5	20.9
Sm	6.89	6.27	7.18	1.68	3.43	4.96	5.04
Eu	1.43	1.37	1.46	0.56	0.97	1.26	1.30
Gd	7.05	6.66	7.58	1.98	3.67	5.53	5.27
Tb	1.21	1.10	1.25	0.35	0.62	0.96	0.88
Dy	7.88	7.35	8.25	2.40	3.92	6.32	5.82
Ho	1.72	1.59	1.77	0.50	0.84	1.37	1.25
Er	5.23	4.74	5.36	1.56	2.53	4.08	3.82
Yb	5.40	4.81	5.57	1.43	2.42	4.15	3.76
Lu	0.814	0.757	0.830	0.226	0.369	0.622	0.573
Hf	7.58	6.61	7.87	1.18	2.78	4.89	4.63
Ta	0.843	0.789	0.872	0.090	0.285	0.477	0.524
Tl	0.464	0.609	0.503	0.083	0.110	0.126	0.199
Pb	17.5	17.5	16.5	2.9	15.9	8.2	7.9
Th	16.6	15.4	16.4	1.3	3.5	9.8	11.0
U	4.74	4.67	4.37	0.45	1.02	2.97	2.94
Appendix B. Whole rock and groundmass chemical analyses

<table>
<thead>
<tr>
<th>Sample</th>
<th>Therasia Dacites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>GS10-27a</td>
</tr>
<tr>
<td>Type</td>
<td>Gdms</td>
</tr>
<tr>
<td>Major elements (wt% dry)</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>66.06</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.36</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.73</td>
</tr>
<tr>
<td>FeO₇</td>
<td>4.91</td>
</tr>
<tr>
<td>MgO</td>
<td>1.14</td>
</tr>
<tr>
<td>CaO</td>
<td>3.35</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.25</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.86</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
</tr>
</tbody>
</table>

<p>| Trace elements (ppm) |
| Li | 23.6 | 26.9 | 24.5 | 24.8 | 24.1 | 25.1 | 25.4 |
| Sc | 15.5 | 14.2 | 13.1 | 13.4 | 12.9 | 15.5 | 14.1 |
| V | 27 | 15 | 24 | 25 | 9 | 29 | 5 |
| Cr | 2.54 | 0.76 | 1.09 | 1.05 | <DL | 2.28 | 0.85 |
| Co | 6.96 | 4.48 | 5.25 | 5.33 | 3.93 | 6.28 | 3.08 |
| Ni | 1.95 | 0.75 | 1.02 | 1.19 | 0.80 | 4.39 | 0.75 |
| Cu | 24.6 | 22.9 | 16.5 | 15.6 | 18.0 | 25.3 | 13.0 |
| Zn | 82.5 | 75.9 | 68.5 | 73.1 | 71.5 | 77.2 | 78.3 |
| As | 1.88 | 3.06 | 1.97 | 2.60 | 3.04 | 2.85 | 2.03 |
| Rb | 106.0 | 105.0 | 100.0 | 102.0 | 106.0 | 105.0 | 110.0 |
| Sr | 172 | 108 | 160 | 146 | 99 | 125 | 125 |
| Y | 46.5 | 53.6 | 48.4 | 50.5 | 52.7 | 50.9 | 50.8 |
| Zr | 267 | 334 | 287 | 302 | 341 | 312 | 365 |
| Nb | 12.30 | 13.30 | 12.90 | 13.20 | 13.50 | 12.40 | 13.60 |
| Cd | 0.101 | 0.117 | 0.107 | 0.113 | 0.128 | 0.116 | 0.110 |
| Cs | 2.92 | 3.55 | 3.00 | 3.05 | 3.57 | 3.26 | 3.28 |
| Ba | 463 | 542 | 514 | 520 | 510 | 511 | 548 |
| La | 29.3 | 33.9 | 32.2 | 32.3 | 33.6 | 31.9 | 29.1 |
| Ce | 59.5 | 70.2 | 66.4 | 67.9 | 69.8 | 66.6 | 63.4 |
| Pr | 6.90 | 8.22 | 7.77 | 8.05 | 8.22 | 7.80 | 7.40 |
| Nd | 26.6 | 31.9 | 30.5 | 31.4 | 31.5 | 30.4 | 29.5 |
| Sm | 5.96 | 7.16 | 6.72 | 7.04 | 7.17 | 7.04 | 6.63 |
| Eu | 1.26 | 1.33 | 1.35 | 1.39 | 1.32 | 1.33 | 1.35 |
| Gd | 6.08 | 7.35 | 6.89 | 7.07 | 7.27 | 7.13 | 6.88 |
| Tb | 1.01 | 1.27 | 1.13 | 1.19 | 1.24 | 1.22 | 1.19 |
| Dy | 6.71 | 8.43 | 7.42 | 7.74 | 8.20 | 8.00 | 8.04 |
| Ho | 1.44 | 1.80 | 1.61 | 1.67 | 1.76 | 1.71 | 1.70 |
| Er | 4.43 | 5.53 | 4.92 | 5.18 | 5.39 | 5.27 | 5.27 |
| Yb | 4.48 | 5.74 | 5.03 | 5.25 | 5.58 | 5.40 | 5.56 |
| Lu | 0.699 | 0.871 | 0.777 | 0.806 | 0.851 | 0.833 | 0.855 |
| Hf | 6.42 | 8.38 | 7.18 | 7.52 | 8.43 | 7.82 | 8.62 |
| Ta | 0.896 | 0.982 | 0.929 | 0.969 | 0.992 | 0.917 | 0.942 |
| Th | 0.461 | 0.546 | 0.466 | 0.477 | 0.531 | 0.484 | 0.355 |
| Pb | 16.3 | 18.8 | 16.3 | 16.4 | 18.5 | 17.3 | 17.7 |
| Th | 18.3 | 20.5 | 16.6 | 17.2 | 20.5 | 18.8 | 17.3 |
| U | 4.64 | 5.84 | 4.64 | 4.77 | 5.78 | 5.35 | 5.56 |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Therasia Dacites</th>
<th>U. Therasia Andesite</th>
<th>Therasia Pumices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Flow 25</td>
<td>Flow 22</td>
<td>CTP</td>
</tr>
<tr>
<td>Type</td>
<td>Gdms</td>
<td>Glass</td>
<td>Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>68.97</td>
<td>63.67</td>
<td>67.87</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.23</td>
<td>15.44</td>
<td>15.28</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.56</td>
<td>0.79</td>
<td>0.64</td>
</tr>
<tr>
<td>FeOt</td>
<td>3.90</td>
<td>5.60</td>
<td>4.05</td>
</tr>
<tr>
<td>MgO</td>
<td>0.60</td>
<td>2.39</td>
<td>0.74</td>
</tr>
<tr>
<td>CaO</td>
<td>2.20</td>
<td>4.62</td>
<td>2.63</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.58</td>
<td>4.55</td>
<td>5.51</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.27</td>
<td>2.60</td>
<td>2.97</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.13</td>
<td>0.20</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

<table>
<thead>
<tr>
<th>Trace elements (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
</tr>
<tr>
<td>Sc</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Co</td>
</tr>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Zn</td>
</tr>
<tr>
<td>As</td>
</tr>
<tr>
<td>Rb</td>
</tr>
<tr>
<td>Sr</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Zr</td>
</tr>
<tr>
<td>Nb</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Cs</td>
</tr>
<tr>
<td>Ba</td>
</tr>
<tr>
<td>La</td>
</tr>
<tr>
<td>Ce</td>
</tr>
<tr>
<td>Pr</td>
</tr>
<tr>
<td>Nd</td>
</tr>
<tr>
<td>Sm</td>
</tr>
<tr>
<td>Eu</td>
</tr>
<tr>
<td>Gd</td>
</tr>
<tr>
<td>Tb</td>
</tr>
<tr>
<td>Dy</td>
</tr>
<tr>
<td>Ho</td>
</tr>
<tr>
<td>Er</td>
</tr>
<tr>
<td>Yb</td>
</tr>
<tr>
<td>Lu</td>
</tr>
<tr>
<td>Hf</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Th</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

299
Appendix B. Whole rock and groundmass chemical analyses

<table>
<thead>
<tr>
<th></th>
<th>Cape Riva Andesite</th>
<th>Cape Riva Dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S09-41</td>
<td>S09-145</td>
</tr>
<tr>
<td>Unit Type</td>
<td>Scoria</td>
<td>Scoria</td>
</tr>
<tr>
<td>Major elements (wt% dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>60.19</td>
<td>60.41</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>16.43</td>
<td>16.61</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.88</td>
<td>0.83</td>
</tr>
<tr>
<td>FeO$_7$</td>
<td>6.58</td>
<td>6.33</td>
</tr>
<tr>
<td>MgO</td>
<td>3.17</td>
<td>3.03</td>
</tr>
<tr>
<td>CaO</td>
<td>6.20</td>
<td>6.22</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>4.63</td>
<td>4.65</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1.56</td>
<td>1.60</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>16.4</td>
<td>16.9</td>
</tr>
<tr>
<td>Sc</td>
<td>23.4</td>
<td>22.7</td>
</tr>
<tr>
<td>V</td>
<td>139</td>
<td>127</td>
</tr>
<tr>
<td>Cr</td>
<td>27.10</td>
<td>29.20</td>
</tr>
<tr>
<td>Co</td>
<td>15.50</td>
<td>14.70</td>
</tr>
<tr>
<td>Ni</td>
<td>14.20</td>
<td>12.00</td>
</tr>
<tr>
<td>Cu</td>
<td>37.0</td>
<td>35.8</td>
</tr>
<tr>
<td>Zn</td>
<td>82.1</td>
<td>82.6</td>
</tr>
<tr>
<td>As</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>Rb</td>
<td>50.0</td>
<td>50.2</td>
</tr>
<tr>
<td>Sr</td>
<td>185</td>
<td>188</td>
</tr>
<tr>
<td>Y</td>
<td>38.5</td>
<td>38.3</td>
</tr>
<tr>
<td>Zr</td>
<td>175</td>
<td>184</td>
</tr>
<tr>
<td>Nb</td>
<td>7.12</td>
<td>7.27</td>
</tr>
<tr>
<td>Cd</td>
<td>0.080</td>
<td>0.098</td>
</tr>
<tr>
<td>Cs</td>
<td>1.56</td>
<td>1.57</td>
</tr>
<tr>
<td>Ba</td>
<td>297</td>
<td>298</td>
</tr>
<tr>
<td>La</td>
<td>19.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Ce</td>
<td>40.7</td>
<td>40.3</td>
</tr>
<tr>
<td>Pr</td>
<td>4.98</td>
<td>4.96</td>
</tr>
<tr>
<td>Nd</td>
<td>20.4</td>
<td>20.3</td>
</tr>
<tr>
<td>Sm</td>
<td>5.14</td>
<td>4.99</td>
</tr>
<tr>
<td>Eu</td>
<td>1.29</td>
<td>1.28</td>
</tr>
<tr>
<td>Gd</td>
<td>5.56</td>
<td>5.42</td>
</tr>
<tr>
<td>Tb</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>Dy</td>
<td>6.16</td>
<td>6.05</td>
</tr>
<tr>
<td>Ho</td>
<td>1.33</td>
<td>1.35</td>
</tr>
<tr>
<td>Er</td>
<td>4.11</td>
<td>4.02</td>
</tr>
<tr>
<td>Yb</td>
<td>4.08</td>
<td>4.00</td>
</tr>
<tr>
<td>Lu</td>
<td>0.624</td>
<td>0.609</td>
</tr>
<tr>
<td>Hf</td>
<td>4.69</td>
<td>4.61</td>
</tr>
<tr>
<td>Ta</td>
<td>0.498</td>
<td>0.498</td>
</tr>
<tr>
<td>Ti</td>
<td>0.217</td>
<td>0.193</td>
</tr>
<tr>
<td>Pb</td>
<td>9.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Th</td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td>U</td>
<td>2.44</td>
<td>2.47</td>
</tr>
<tr>
<td>Sample Unit</td>
<td>Type</td>
<td>Cape Riva Andesite</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>S09-41 A</td>
<td>Glass</td>
<td>61.53</td>
</tr>
<tr>
<td>S09-64 A</td>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>S09-40 A</td>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>GS10-49</td>
<td>Scoria</td>
<td>5.96</td>
</tr>
<tr>
<td>GS10-49</td>
<td>Gdms</td>
<td>2.62</td>
</tr>
<tr>
<td>GS10-41</td>
<td>Lava</td>
<td>5.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.17</td>
</tr>
</tbody>
</table>

Major elements (wt% dry)

- SiO$_2$: 61.53, 62.83, 69.88, 58.70, 59.19, 57.65
- Al$_2$O$_3$: 16.98, 16.59, 15.05, 16.38, 16.47, 15.88
- TiO$_2$: 0.74, 0.71, 0.48, 1.34, 1.32, 1.26
- FeO$_T$: 5.96, 5.57, 3.31, 8.60, 8.56, 8.42
- MgO: 2.62, 2.53, 0.53, 2.95, 2.93, 3.64
- CaO: 5.86, 5.67, 2.14, 6.58, 6.63, 7.15
- Na$_2$O: 4.92, 4.68, 5.86, 3.44, 4.35, 3.94
- K$_2$O: 1.82, 1.81, 2.95, 1.59, 1.54, 1.63
- MnO: 0.15, 0.14, 0.12, 0.18, 0.18, 0.17
- P$_2$O$_5$: 0.17, 0.18, 0.16, 0.23, 0.13, 0.25

Trace elements (ppm)

- Li: 17.7, 17.2, 20.4, 15.5, 15.1, 13.3
- Sc: 24.6, 19.6, 14.8, 25.5, 28.6, 28.9
- V: 126, 111, 8, 200, 198, 194
- Cr: 21.20, 20.80, 4.33, 1.17, 1.93, 54.70
- Co: 14.20, 14.60, 5.62, 17.50, 17.60, 20.70
- Ni: 14.60, 11.60, 5.48, 2.78, 1.69, 19.60
- Cu: 39.2, 34.8, 10.3, 13.2, 15.9, 83.5
- Zn: 132.0, 387.0, 92.3, 96.2, 98.5, 90.8
- As: 1.60, 1.76, 2.10, 2.21, 1.85, 1.82
- Rb: 60.2, 53.7, 101.0, 59.3, 61.6, 59.6
- Sr: 197, 171, 105, 190, 209, 181
- Y: 44.2, 39.5, 61.1, 40.4, 42.9, 43.4
- Zr: 214, 212, 341, 177, 194, 198
- Nb: 7.58, 7.40, 11.60, 7.09, 7.09, 7.41
- Cd: 0.087, 0.089, 0.124, 0.079, 0.086, 0.084
- Cs: 1.70, 1.83, 2.82, 2.10, 2.06, 1.47
- Ba: 323, 331, 460, 224, 225, 244
- La: 20.5, 19.3, 28.9, 17.5, 17.4, 18.6
- Ce: 43.6, 44.9, 61.6, 38.6, 38.1, 41.6
- Pr: 5.41, 5.17, 7.40, 4.9, 4.89, 5.3
- Nd: 21.6, 21.2, 29.5, 20.7, 20.6, 22.0
- Sm: 5.28, 5.16, 7.09, 5.37, 5.20, 5.59
- Eu: 1.27, 1.24, 1.28, 1.38, 1.43, 1.42
- Gd: 5.68, 5.45, 7.50, 5.97, 5.84, 6.43
- Tb: 0.97, 0.94, 1.29, 0.99, 0.99, 1.09
- Dy: 6.58, 6.34, 8.58, 6.56, 6.60, 7.06
- Ho: 1.41, 1.37, 1.87, 1.41, 1.42, 1.50
- Er: 4.32, 4.17, 5.81, 4.20, 4.37, 4.55
- Yb: 4.37, 4.27, 6.09, 4.26, 4.29, 4.49
- Lu: 0.663, 0.655, 0.938, 0.641, 0.655, 0.680
- Hf: 5.14, 5.21, 8.07, 4.91, 4.89, 5.36
- Ta: 0.520, 0.529, 0.819, 0.531, 0.538, 0.535
- Tl: 0.242, 0.319, 0.427, 0.189, 0.182, 0.154
- Pb: 11.1, 11.8, 16.0, 9.6, 9.7, 10.3
- Th: 10.9, 9.2, 17.3, 10.3, 11.3, 10.4
- U: 2.86, 2.90, 4.56, 3.12, 3.18, 3.05
Appendix B. Whole rock and groundmass chemical analyses
Appendix C

LA ICP-MS data
<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>45.6</td>
<td>16.7</td>
<td>302</td>
<td>2996</td>
<td>67110</td>
<td>—</td>
<td>2968</td>
<td>565</td>
<td>208</td>
<td>5.84</td>
<td>8.44</td>
<td>2.07</td>
<td>4.25</td>
</tr>
<tr>
<td>33</td>
<td>44.9</td>
<td>17.7</td>
<td>304</td>
<td>3107</td>
<td>66184</td>
<td>—</td>
<td>2926</td>
<td>585</td>
<td>225</td>
<td>6.05</td>
<td>8.46</td>
<td>2.86</td>
<td>3.42</td>
</tr>
<tr>
<td>51</td>
<td>46.9</td>
<td>17.9</td>
<td>302</td>
<td>3331</td>
<td>69064</td>
<td>—</td>
<td>3144</td>
<td>606</td>
<td>231</td>
<td>6.22</td>
<td>9.17</td>
<td>2.61</td>
<td>3.32</td>
</tr>
<tr>
<td>71</td>
<td>46.4</td>
<td>17.7</td>
<td>306</td>
<td>3050</td>
<td>68418</td>
<td>—</td>
<td>3011</td>
<td>603</td>
<td>218</td>
<td>6.10</td>
<td>8.75</td>
<td>2.67</td>
<td>3.33</td>
</tr>
<tr>
<td>89</td>
<td>47.4</td>
<td>18.4</td>
<td>308</td>
<td>2814</td>
<td>69831</td>
<td>—</td>
<td>3037</td>
<td>588</td>
<td>186</td>
<td>5.53</td>
<td>7.56</td>
<td>2.64</td>
<td>3.49</td>
</tr>
<tr>
<td>104</td>
<td>51.2</td>
<td>17.0</td>
<td>298</td>
<td>2315</td>
<td>75361</td>
<td>—</td>
<td>2842</td>
<td>578</td>
<td>154</td>
<td>4.68</td>
<td>7.16</td>
<td>2.34</td>
<td>3.23</td>
</tr>
<tr>
<td>121</td>
<td>51.7</td>
<td>17.4</td>
<td>294</td>
<td>2483</td>
<td>76101</td>
<td>—</td>
<td>2918</td>
<td>579</td>
<td>146</td>
<td>4.86</td>
<td>6.92</td>
<td>2.41</td>
<td>2.89</td>
</tr>
<tr>
<td>138</td>
<td>50.8</td>
<td>18.7</td>
<td>308</td>
<td>2255</td>
<td>74810</td>
<td>—</td>
<td>2829</td>
<td>530</td>
<td>139</td>
<td>4.42</td>
<td>6.59</td>
<td>2.24</td>
<td>3.13</td>
</tr>
<tr>
<td>157</td>
<td>53.7</td>
<td>20.2</td>
<td>346</td>
<td>2234</td>
<td>79063</td>
<td>—</td>
<td>3339</td>
<td>551</td>
<td>143</td>
<td>3.94</td>
<td>6.39</td>
<td>1.90</td>
<td>3.49</td>
</tr>
<tr>
<td>178</td>
<td>55.8</td>
<td>18.8</td>
<td>336</td>
<td>2014</td>
<td>82146</td>
<td>—</td>
<td>3194</td>
<td>540</td>
<td>128</td>
<td>3.50</td>
<td>5.61</td>
<td>1.89</td>
<td>3.45</td>
</tr>
<tr>
<td>194</td>
<td>57.1</td>
<td>19.5</td>
<td>350</td>
<td>2051</td>
<td>84050</td>
<td>—</td>
<td>3426</td>
<td>542</td>
<td>127</td>
<td>3.33</td>
<td>5.54</td>
<td>2.34</td>
<td>3.53</td>
</tr>
<tr>
<td>213</td>
<td>56.4</td>
<td>19.5</td>
<td>359</td>
<td>2083</td>
<td>83072</td>
<td>—</td>
<td>3363</td>
<td>557</td>
<td>133</td>
<td>3.30</td>
<td>5.81</td>
<td>1.96</td>
<td>4.72</td>
</tr>
<tr>
<td>230</td>
<td>55.9</td>
<td>18.9</td>
<td>345</td>
<td>2117</td>
<td>82370</td>
<td>—</td>
<td>3319</td>
<td>555</td>
<td>140</td>
<td>3.69</td>
<td>5.74</td>
<td>1.91</td>
<td>4.37</td>
</tr>
<tr>
<td>246</td>
<td>55.3</td>
<td>18.5</td>
<td>334</td>
<td>1977</td>
<td>81446</td>
<td>—</td>
<td>3163</td>
<td>534</td>
<td>141</td>
<td>4.34</td>
<td>7.26</td>
<td>2.08</td>
<td>4.93</td>
</tr>
<tr>
<td>262</td>
<td>54.1</td>
<td>17.3</td>
<td>323</td>
<td>2024</td>
<td>79754</td>
<td>—</td>
<td>3125</td>
<td>516</td>
<td>115</td>
<td>3.42</td>
<td>5.35</td>
<td>1.83</td>
<td>3.15</td>
</tr>
<tr>
<td>279</td>
<td>55.4</td>
<td>17.7</td>
<td>329</td>
<td>2067</td>
<td>81649</td>
<td>—</td>
<td>3243</td>
<td>515</td>
<td>123</td>
<td>3.36</td>
<td>5.10</td>
<td>1.66</td>
<td>2.92</td>
</tr>
<tr>
<td>296</td>
<td>55.2</td>
<td>17.8</td>
<td>336</td>
<td>2101</td>
<td>81334</td>
<td>—</td>
<td>3189</td>
<td>522</td>
<td>121</td>
<td>3.32</td>
<td>5.27</td>
<td>1.63</td>
<td>3.66</td>
</tr>
<tr>
<td>311</td>
<td>56.0</td>
<td>18.0</td>
<td>331</td>
<td>1941</td>
<td>82482</td>
<td>—</td>
<td>3220</td>
<td>521</td>
<td>121</td>
<td>3.21</td>
<td>5.12</td>
<td>1.57</td>
<td>2.71</td>
</tr>
<tr>
<td>330</td>
<td>57.5</td>
<td>17.1</td>
<td>330</td>
<td>1884</td>
<td>84694</td>
<td>—</td>
<td>3299</td>
<td>544</td>
<td>121</td>
<td>3.20</td>
<td>4.93</td>
<td>1.70</td>
<td>2.51</td>
</tr>
<tr>
<td>347</td>
<td>57.5</td>
<td>16.9</td>
<td>319</td>
<td>1863</td>
<td>84679</td>
<td>—</td>
<td>3185</td>
<td>545</td>
<td>122</td>
<td>3.54</td>
<td>5.03</td>
<td>1.69</td>
<td>2.18</td>
</tr>
<tr>
<td>362</td>
<td>57.1</td>
<td>15.6</td>
<td>302</td>
<td>1696</td>
<td>84098</td>
<td>—</td>
<td>3091</td>
<td>540</td>
<td>123</td>
<td>3.19</td>
<td>4.93</td>
<td>2.03</td>
<td>2.69</td>
</tr>
<tr>
<td>377</td>
<td>55.0</td>
<td>14.8</td>
<td>300</td>
<td>1783</td>
<td>81084</td>
<td>—</td>
<td>3082</td>
<td>532</td>
<td>117</td>
<td>2.92</td>
<td>4.78</td>
<td>1.96</td>
<td>3.63</td>
</tr>
<tr>
<td>393</td>
<td>55.5</td>
<td>15.2</td>
<td>300</td>
<td>1890</td>
<td>81803</td>
<td>—</td>
<td>3029</td>
<td>544</td>
<td>128</td>
<td>3.50</td>
<td>5.25</td>
<td>1.69</td>
<td>2.44</td>
</tr>
<tr>
<td>411</td>
<td>70.9</td>
<td>9.1</td>
<td>254</td>
<td>705</td>
<td>104470</td>
<td>—</td>
<td>3314</td>
<td>490</td>
<td>76</td>
<td>3.97</td>
<td>6.14</td>
<td>2.58</td>
<td>1.84</td>
</tr>
<tr>
<td>430</td>
<td>70.5</td>
<td>9.4</td>
<td>258</td>
<td>747</td>
<td>103803</td>
<td>—</td>
<td>3292</td>
<td>486</td>
<td>76</td>
<td>3.64</td>
<td>5.77</td>
<td>2.00</td>
<td>2.74</td>
</tr>
<tr>
<td>446</td>
<td>71.5</td>
<td>10.2</td>
<td>261</td>
<td>830</td>
<td>105265</td>
<td>—</td>
<td>3419</td>
<td>492</td>
<td>78</td>
<td>3.64</td>
<td>5.97</td>
<td>2.57</td>
<td>2.47</td>
</tr>
<tr>
<td>463</td>
<td>68.7</td>
<td>11.7</td>
<td>266</td>
<td>999</td>
<td>101154</td>
<td>—</td>
<td>3402</td>
<td>485</td>
<td>83</td>
<td>3.28</td>
<td>5.50</td>
<td>2.45</td>
<td>2.20</td>
</tr>
<tr>
<td>479</td>
<td>61.9</td>
<td>11.9</td>
<td>262</td>
<td>1044</td>
<td>91253</td>
<td>—</td>
<td>3251</td>
<td>447</td>
<td>80</td>
<td>2.69</td>
<td>4.66</td>
<td>2.20</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Table C.1: GS10-14 XL32 Profile I
Table C.2: GS10-14 XL32 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>44.9</td>
<td>17.0</td>
<td>304</td>
<td>3087</td>
<td>66192</td>
<td>—</td>
<td>2988</td>
<td>579</td>
<td>214</td>
<td>6.04</td>
<td>8.66</td>
<td>2.95</td>
<td>3.69</td>
</tr>
<tr>
<td>81</td>
<td>45.9</td>
<td>17.8</td>
<td>306</td>
<td>2969</td>
<td>67597</td>
<td>—</td>
<td>2969</td>
<td>560</td>
<td>198</td>
<td>5.42</td>
<td>8.11</td>
<td>2.47</td>
<td>3.54</td>
</tr>
<tr>
<td>99</td>
<td>51.3</td>
<td>18.5</td>
<td>325</td>
<td>2722</td>
<td>75615</td>
<td>—</td>
<td>3239</td>
<td>603</td>
<td>187</td>
<td>6.20</td>
<td>8.88</td>
<td>2.33</td>
<td>3.90</td>
</tr>
<tr>
<td>115</td>
<td>51.5</td>
<td>17.0</td>
<td>334</td>
<td>2565</td>
<td>75925</td>
<td>—</td>
<td>3191</td>
<td>570</td>
<td>159</td>
<td>4.76</td>
<td>7.16</td>
<td>2.59</td>
<td>5.80</td>
</tr>
<tr>
<td>133</td>
<td>50.5</td>
<td>16.2</td>
<td>311</td>
<td>2374</td>
<td>74342</td>
<td>—</td>
<td>2983</td>
<td>543</td>
<td>142</td>
<td>4.98</td>
<td>7.37</td>
<td>2.42</td>
<td>3.86</td>
</tr>
<tr>
<td>149</td>
<td>52.4</td>
<td>17.3</td>
<td>332</td>
<td>2246</td>
<td>77252</td>
<td>—</td>
<td>3422</td>
<td>556</td>
<td>134</td>
<td>4.42</td>
<td>6.93</td>
<td>2.51</td>
<td>3.22</td>
</tr>
<tr>
<td>170</td>
<td>55.3</td>
<td>17.2</td>
<td>353</td>
<td>2144</td>
<td>81436</td>
<td>—</td>
<td>3570</td>
<td>538</td>
<td>131</td>
<td>4.01</td>
<td>6.04</td>
<td>2.13</td>
<td>2.85</td>
</tr>
<tr>
<td>190</td>
<td>59.0</td>
<td>16.6</td>
<td>377</td>
<td>2007</td>
<td>86887</td>
<td>—</td>
<td>3798</td>
<td>552</td>
<td>120</td>
<td>3.74</td>
<td>5.61</td>
<td>2.18</td>
<td>3.12</td>
</tr>
<tr>
<td>209</td>
<td>58.9</td>
<td>17.6</td>
<td>395</td>
<td>2072</td>
<td>86759</td>
<td>—</td>
<td>3808</td>
<td>548</td>
<td>120</td>
<td>3.42</td>
<td>5.56</td>
<td>2.27</td>
<td>4.95</td>
</tr>
<tr>
<td>225</td>
<td>57.7</td>
<td>16.3</td>
<td>372</td>
<td>2174</td>
<td>84988</td>
<td>—</td>
<td>3573</td>
<td>524</td>
<td>119</td>
<td>3.37</td>
<td>5.20</td>
<td>2.40</td>
<td>2.67</td>
</tr>
<tr>
<td>240</td>
<td>56.0</td>
<td>18.3</td>
<td>381</td>
<td>2207</td>
<td>82534</td>
<td>—</td>
<td>3668</td>
<td>541</td>
<td>124</td>
<td>3.28</td>
<td>5.01</td>
<td>1.70</td>
<td>2.47</td>
</tr>
<tr>
<td>262</td>
<td>57.2</td>
<td>17.8</td>
<td>377</td>
<td>2174</td>
<td>84334</td>
<td>—</td>
<td>3671</td>
<td>529</td>
<td>123</td>
<td>3.45</td>
<td>5.32</td>
<td>1.79</td>
<td>2.62</td>
</tr>
<tr>
<td>282</td>
<td>57.2</td>
<td>18.7</td>
<td>380</td>
<td>2222</td>
<td>84206</td>
<td>—</td>
<td>3675</td>
<td>536</td>
<td>123</td>
<td>3.20</td>
<td>5.36</td>
<td>1.46</td>
<td>2.54</td>
</tr>
<tr>
<td>301</td>
<td>56.4</td>
<td>15.8</td>
<td>389</td>
<td>2236</td>
<td>83108</td>
<td>—</td>
<td>3720</td>
<td>537</td>
<td>129</td>
<td>3.39</td>
<td>5.35</td>
<td>1.94</td>
<td>2.50</td>
</tr>
<tr>
<td>319</td>
<td>54.2</td>
<td>10.9</td>
<td>414</td>
<td>2467</td>
<td>79803</td>
<td>—</td>
<td>3763</td>
<td>534</td>
<td>144</td>
<td>3.54</td>
<td>5.73</td>
<td>2.10</td>
<td>2.89</td>
</tr>
<tr>
<td>339</td>
<td>55.9</td>
<td>10.8</td>
<td>413</td>
<td>2390</td>
<td>82353</td>
<td>—</td>
<td>3577</td>
<td>540</td>
<td>131</td>
<td>3.77</td>
<td>5.86</td>
<td>2.21</td>
<td>4.03</td>
</tr>
<tr>
<td>356</td>
<td>57.2</td>
<td>9.9</td>
<td>401</td>
<td>2185</td>
<td>84195</td>
<td>—</td>
<td>3642</td>
<td>519</td>
<td>129</td>
<td>3.53</td>
<td>5.61</td>
<td>1.63</td>
<td>3.09</td>
</tr>
<tr>
<td>372</td>
<td>56.7</td>
<td>16.6</td>
<td>423</td>
<td>2246</td>
<td>83551</td>
<td>—</td>
<td>3894</td>
<td>533</td>
<td>132</td>
<td>3.64</td>
<td>5.73</td>
<td>2.34</td>
<td>3.09</td>
</tr>
<tr>
<td>394</td>
<td>53.0</td>
<td>20.2</td>
<td>414</td>
<td>2330</td>
<td>78046</td>
<td>—</td>
<td>3735</td>
<td>522</td>
<td>137</td>
<td>3.50</td>
<td>5.90</td>
<td>1.87</td>
<td>2.76</td>
</tr>
<tr>
<td>415</td>
<td>53.7</td>
<td>22.2</td>
<td>430</td>
<td>2496</td>
<td>79046</td>
<td>—</td>
<td>3700</td>
<td>534</td>
<td>143</td>
<td>3.60</td>
<td>5.54</td>
<td>1.73</td>
<td>2.82</td>
</tr>
<tr>
<td>436</td>
<td>55.1</td>
<td>22.5</td>
<td>402</td>
<td>2471</td>
<td>81185</td>
<td>—</td>
<td>3669</td>
<td>555</td>
<td>150</td>
<td>3.86</td>
<td>6.10</td>
<td>2.14</td>
<td>2.62</td>
</tr>
<tr>
<td>458</td>
<td>52.0</td>
<td>22.9</td>
<td>423</td>
<td>2591</td>
<td>76666</td>
<td>—</td>
<td>3732</td>
<td>531</td>
<td>145</td>
<td>3.29</td>
<td>5.30</td>
<td>1.63</td>
<td>2.61</td>
</tr>
<tr>
<td>479</td>
<td>54.6</td>
<td>20.2</td>
<td>386</td>
<td>2100</td>
<td>80402</td>
<td>—</td>
<td>3507</td>
<td>537</td>
<td>135</td>
<td>3.42</td>
<td>5.50</td>
<td>2.07</td>
<td>2.11</td>
</tr>
<tr>
<td>503</td>
<td>71.1</td>
<td>13.4</td>
<td>276</td>
<td>1382</td>
<td>104719</td>
<td>—</td>
<td>3837</td>
<td>461</td>
<td>80</td>
<td>3.12</td>
<td>4.96</td>
<td>3.18</td>
<td>2.07</td>
</tr>
<tr>
<td>528</td>
<td>70.1</td>
<td>17.7</td>
<td>374</td>
<td>1204</td>
<td>103201</td>
<td>—</td>
<td>3798</td>
<td>584</td>
<td>127</td>
<td>3.60</td>
<td>6.38</td>
<td><1.41</td>
<td>2.17</td>
</tr>
<tr>
<td>548</td>
<td>69.6</td>
<td>15.4</td>
<td>337</td>
<td>1359</td>
<td>102596</td>
<td>—</td>
<td>4287</td>
<td>511</td>
<td>97</td>
<td>2.98</td>
<td>5.73</td>
<td>2.45</td>
<td>3.77</td>
</tr>
<tr>
<td>569</td>
<td>61.9</td>
<td>11.9</td>
<td>262</td>
<td>1044</td>
<td>91253</td>
<td>—</td>
<td>3251</td>
<td>447</td>
<td>80</td>
<td>2.69</td>
<td>4.66</td>
<td>2.20</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Table C.3: GS10-14 XL66 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>47.0</td>
<td>20.5</td>
<td>340</td>
<td>3390</td>
<td>69215</td>
<td>—</td>
<td>3455</td>
<td>598</td>
<td>228</td>
<td>6.22</td>
<td>9.03</td>
<td>2.34</td>
<td>6.64</td>
</tr>
<tr>
<td>20</td>
<td>48.4</td>
<td>21.8</td>
<td>350</td>
<td>3682</td>
<td>71352</td>
<td>—</td>
<td>3538</td>
<td>637</td>
<td>255</td>
<td>6.61</td>
<td>9.59</td>
<td>2.48</td>
<td>4.42</td>
</tr>
<tr>
<td>42</td>
<td>45.6</td>
<td>19.8</td>
<td>323</td>
<td>3424</td>
<td>67167</td>
<td>—</td>
<td>3253</td>
<td>601</td>
<td>246</td>
<td>6.54</td>
<td>9.36</td>
<td>1.94</td>
<td>4.52</td>
</tr>
<tr>
<td>62</td>
<td>45.2</td>
<td>19.4</td>
<td>315</td>
<td>3665</td>
<td>66532</td>
<td>—</td>
<td>3289</td>
<td>612</td>
<td>256</td>
<td>6.61</td>
<td>9.64</td>
<td>3.13</td>
<td>4.52</td>
</tr>
<tr>
<td>82</td>
<td>46.7</td>
<td>18.2</td>
<td>309</td>
<td>3464</td>
<td>68820</td>
<td>—</td>
<td>3411</td>
<td>632</td>
<td>258</td>
<td>6.85</td>
<td>9.97</td>
<td>3.25</td>
<td>4.72</td>
</tr>
<tr>
<td>103</td>
<td>45.6</td>
<td>19.1</td>
<td>312</td>
<td>3408</td>
<td>67219</td>
<td>—</td>
<td>3351</td>
<td>601</td>
<td>241</td>
<td>6.27</td>
<td>9.51</td>
<td>2.86</td>
<td>4.10</td>
</tr>
<tr>
<td>122</td>
<td>46.4</td>
<td>19.7</td>
<td>309</td>
<td>3296</td>
<td>68409</td>
<td>—</td>
<td>3373</td>
<td>616</td>
<td>243</td>
<td>6.62</td>
<td>9.26</td>
<td>2.99</td>
<td>4.06</td>
</tr>
<tr>
<td>139</td>
<td>46.9</td>
<td>18.8</td>
<td>306</td>
<td>3282</td>
<td>69091</td>
<td>—</td>
<td>3216</td>
<td>626</td>
<td>242</td>
<td>6.78</td>
<td>9.51</td>
<td>2.75</td>
<td>3.66</td>
</tr>
<tr>
<td>155</td>
<td>47.2</td>
<td>18.2</td>
<td>305</td>
<td>3200</td>
<td>69462</td>
<td>—</td>
<td>3318</td>
<td>607</td>
<td>226</td>
<td>6.52</td>
<td>9.84</td>
<td>2.24</td>
<td>3.73</td>
</tr>
<tr>
<td>170</td>
<td>45.7</td>
<td>18.4</td>
<td>307</td>
<td>3397</td>
<td>67349</td>
<td>—</td>
<td>3340</td>
<td>610</td>
<td>225</td>
<td>5.88</td>
<td>8.34</td>
<td>1.97</td>
<td>3.83</td>
</tr>
<tr>
<td>188</td>
<td>52.6</td>
<td>17.0</td>
<td>306</td>
<td>2662</td>
<td>77424</td>
<td>—</td>
<td>3445</td>
<td>640</td>
<td>178</td>
<td>4.86</td>
<td>7.54</td>
<td>2.24</td>
<td>3.87</td>
</tr>
<tr>
<td>206</td>
<td>59.2</td>
<td>15.4</td>
<td>305</td>
<td>1903</td>
<td>87163</td>
<td>—</td>
<td>3538</td>
<td>660</td>
<td>147</td>
<td>4.68</td>
<td>6.93</td>
<td>2.25</td>
<td>4.37</td>
</tr>
<tr>
<td>223</td>
<td>64.1</td>
<td>15.2</td>
<td>301</td>
<td>1580</td>
<td>94414</td>
<td>—</td>
<td>3895</td>
<td>637</td>
<td>109</td>
<td>3.26</td>
<td>5.19</td>
<td>1.72</td>
<td>3.71</td>
</tr>
<tr>
<td>241</td>
<td>72.8</td>
<td>13.0</td>
<td>292</td>
<td>1113</td>
<td>107282</td>
<td>—</td>
<td>4178</td>
<td>622</td>
<td>73</td>
<td>2.38</td>
<td>3.81</td>
<td>1.84</td>
<td>3.40</td>
</tr>
<tr>
<td>255</td>
<td>71.0</td>
<td>15.1</td>
<td>299</td>
<td>1219</td>
<td>104617</td>
<td>—</td>
<td>4179</td>
<td>601</td>
<td>65</td>
<td>1.50</td>
<td>2.57</td>
<td><0.55</td>
<td>2.98</td>
</tr>
<tr>
<td>275</td>
<td>81.0</td>
<td>10.5</td>
<td>265</td>
<td>826</td>
<td>119388</td>
<td>—</td>
<td>4487</td>
<td>578</td>
<td>41</td>
<td>0.94</td>
<td>1.81</td>
<td>1.40</td>
<td>2.51</td>
</tr>
<tr>
<td>299</td>
<td>87.3</td>
<td>4.9</td>
<td>214</td>
<td>374</td>
<td>128655</td>
<td>—</td>
<td>4501</td>
<td>574</td>
<td>26</td>
<td>0.69</td>
<td>1.03</td>
<td><0.72</td>
<td>1.76</td>
</tr>
<tr>
<td>324</td>
<td>87.3</td>
<td>5.2</td>
<td>183</td>
<td>314</td>
<td>128669</td>
<td>—</td>
<td>4341</td>
<td>587</td>
<td>24</td>
<td>0.57</td>
<td>1.03</td>
<td><0.66</td>
<td>1.26</td>
</tr>
<tr>
<td>342</td>
<td>88.4</td>
<td>5.2</td>
<td>180</td>
<td>267</td>
<td>130214</td>
<td>—</td>
<td>4278</td>
<td>576</td>
<td>21</td>
<td>0.59</td>
<td>0.95</td>
<td>1.16</td>
<td><0.39</td>
</tr>
<tr>
<td>360</td>
<td>88.3</td>
<td>3.4</td>
<td>146</td>
<td>167</td>
<td>130118</td>
<td>—</td>
<td>3695</td>
<td>549</td>
<td>20</td>
<td>0.32</td>
<td>1.02</td>
<td><0.71</td>
<td>0.65</td>
</tr>
<tr>
<td>376</td>
<td>89.0</td>
<td>4.6</td>
<td>177</td>
<td>301</td>
<td>131115</td>
<td>—</td>
<td>4142</td>
<td>577</td>
<td>24</td>
<td>0.71</td>
<td>0.97</td>
<td><0.68</td>
<td><0.42</td>
</tr>
<tr>
<td>394</td>
<td>87.4</td>
<td>4.4</td>
<td>176</td>
<td>294</td>
<td>128748</td>
<td>—</td>
<td>4202</td>
<td>567</td>
<td>22</td>
<td>0.53</td>
<td>1.02</td>
<td><0.71</td>
<td><0.44</td>
</tr>
<tr>
<td>413</td>
<td>85.8</td>
<td>6.2</td>
<td>180</td>
<td>314</td>
<td>126463</td>
<td>—</td>
<td>3989</td>
<td>563</td>
<td>24</td>
<td>0.41</td>
<td>0.92</td>
<td><0.66</td>
<td><0.41</td>
</tr>
<tr>
<td>431</td>
<td>85.7</td>
<td>5.9</td>
<td>190</td>
<td>298</td>
<td>126309</td>
<td>—</td>
<td>4231</td>
<td>568</td>
<td>24</td>
<td>0.66</td>
<td>0.99</td>
<td><0.78</td>
<td><0.46</td>
</tr>
<tr>
<td>452</td>
<td>86.0</td>
<td>6.2</td>
<td>200</td>
<td>398</td>
<td>126663</td>
<td>—</td>
<td>4258</td>
<td>574</td>
<td>24</td>
<td>0.63</td>
<td>1.08</td>
<td><0.73</td>
<td><0.43</td>
</tr>
</tbody>
</table>
Table C.4: GS10-14 XL66 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>46.8</td>
<td>15.9</td>
<td>304</td>
<td>3020</td>
<td>68968</td>
<td>—</td>
<td>3343</td>
<td>599</td>
<td>224</td>
<td>6.11</td>
<td>8.56</td>
<td>1.84</td>
<td>2.96</td>
</tr>
<tr>
<td>65</td>
<td>46.7</td>
<td>17.5</td>
<td>299</td>
<td>3056</td>
<td>68815</td>
<td>—</td>
<td>3343</td>
<td>605</td>
<td>226</td>
<td>6.03</td>
<td>8.34</td>
<td>2.71</td>
<td>3.13</td>
</tr>
<tr>
<td>88</td>
<td>45.9</td>
<td>16.7</td>
<td>287</td>
<td>3006</td>
<td>67594</td>
<td>—</td>
<td>3310</td>
<td>592</td>
<td>225</td>
<td>6.22</td>
<td>8.42</td>
<td>2.42</td>
<td>3.16</td>
</tr>
<tr>
<td>106</td>
<td>54.4</td>
<td>17.3</td>
<td>327</td>
<td>3044</td>
<td>80182</td>
<td>—</td>
<td>3779</td>
<td>688</td>
<td>217</td>
<td>5.83</td>
<td>7.81</td>
<td>1.96</td>
<td>3.09</td>
</tr>
<tr>
<td>122</td>
<td>66.7</td>
<td>15.2</td>
<td>310</td>
<td>1707</td>
<td>98201</td>
<td>—</td>
<td>3884</td>
<td>668</td>
<td>114</td>
<td>3.54</td>
<td>5.54</td>
<td>1.21</td>
<td>2.49</td>
</tr>
<tr>
<td>143</td>
<td>82.9</td>
<td>8.1</td>
<td>249</td>
<td>643</td>
<td>122150</td>
<td>—</td>
<td>4105</td>
<td>610</td>
<td>50</td>
<td>1.29</td>
<td>2.27</td>
<td>1.23</td>
<td>2.55</td>
</tr>
<tr>
<td>160</td>
<td>86.9</td>
<td>6.9</td>
<td>203</td>
<td>483</td>
<td>128019</td>
<td>—</td>
<td>4089</td>
<td>572</td>
<td>35</td>
<td>0.76</td>
<td>1.58</td>
<td>0.81</td>
<td>1.63</td>
</tr>
<tr>
<td>181</td>
<td>87.3</td>
<td>6.3</td>
<td>197</td>
<td>388</td>
<td>128655</td>
<td>—</td>
<td>4303</td>
<td>564</td>
<td>31</td>
<td>0.61</td>
<td>1.31</td>
<td><0.55</td>
<td>1.15</td>
</tr>
<tr>
<td>204</td>
<td>87.3</td>
<td>6.8</td>
<td>207</td>
<td>398</td>
<td>128669</td>
<td>—</td>
<td>4370</td>
<td>565</td>
<td>34</td>
<td>0.65</td>
<td>1.53</td>
<td><0.52</td>
<td>1.12</td>
</tr>
<tr>
<td>229</td>
<td>87.6</td>
<td>6.1</td>
<td>217</td>
<td>508</td>
<td>129035</td>
<td>—</td>
<td>4553</td>
<td>598</td>
<td>45</td>
<td>0.61</td>
<td>1.78</td>
<td><0.54</td>
<td>1.25</td>
</tr>
<tr>
<td>251</td>
<td>87.3</td>
<td>7.8</td>
<td>460</td>
<td>1233</td>
<td>128655</td>
<td>—</td>
<td>4552</td>
<td>590</td>
<td>52</td>
<td>1.09</td>
<td>2.81</td>
<td>1.06</td>
<td>4.27</td>
</tr>
<tr>
<td>280</td>
<td>87.3</td>
<td>5.2</td>
<td>183</td>
<td>314</td>
<td>128669</td>
<td>—</td>
<td>4341</td>
<td>587</td>
<td>24</td>
<td>0.57</td>
<td>1.03</td>
<td><0.66</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Table C.5: GS10-16 XI28 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>47.6</td>
<td>19.1</td>
<td>318</td>
<td>3068</td>
<td>70135</td>
<td>274</td>
<td>3356</td>
<td>607</td>
<td>228</td>
<td>5.53</td>
<td>7.30</td>
<td>1.14</td>
<td>2.80</td>
</tr>
<tr>
<td>79</td>
<td>50.1</td>
<td>19.2</td>
<td>318</td>
<td>2726</td>
<td>73860</td>
<td>254</td>
<td>3414</td>
<td>620</td>
<td>187</td>
<td>4.62</td>
<td>6.47</td>
<td>2.53</td>
<td>2.48</td>
</tr>
<tr>
<td>97</td>
<td>53.3</td>
<td>19.8</td>
<td>315</td>
<td>2435</td>
<td>78555</td>
<td>238</td>
<td>3366</td>
<td>600</td>
<td>143</td>
<td>3.97</td>
<td>6.00</td>
<td>1.58</td>
<td>2.29</td>
</tr>
<tr>
<td>117</td>
<td>54.0</td>
<td>19.4</td>
<td>321</td>
<td>2357</td>
<td>79579</td>
<td>249</td>
<td>3540</td>
<td>591</td>
<td>129</td>
<td>3.59</td>
<td>5.08</td>
<td>1.22</td>
<td>2.45</td>
</tr>
<tr>
<td>140</td>
<td>62.5</td>
<td>18.1</td>
<td>325</td>
<td>1707</td>
<td>92002</td>
<td>240</td>
<td>3838</td>
<td>578</td>
<td>100</td>
<td>3.00</td>
<td>4.84</td>
<td>1.79</td>
<td>2.67</td>
</tr>
<tr>
<td>164</td>
<td>68.7</td>
<td>19.0</td>
<td>347</td>
<td>1576</td>
<td>101262</td>
<td>231</td>
<td>4175</td>
<td>582</td>
<td>96</td>
<td>2.69</td>
<td>4.64</td>
<td>1.28</td>
<td>2.07</td>
</tr>
<tr>
<td>194</td>
<td>68.3</td>
<td>27.3</td>
<td>467</td>
<td>3486</td>
<td>100600</td>
<td>310</td>
<td>5112</td>
<td>737</td>
<td>196</td>
<td>5.37</td>
<td>8.07</td>
<td>2.57</td>
<td>4.20</td>
</tr>
<tr>
<td>240</td>
<td>71.2</td>
<td>17.6</td>
<td>443</td>
<td>1794</td>
<td>104898</td>
<td>382</td>
<td>5324</td>
<td>535</td>
<td>92</td>
<td>3.93</td>
<td>6.76</td>
<td>2.39</td>
<td>3.44</td>
</tr>
<tr>
<td>263</td>
<td>70.0</td>
<td>19.2</td>
<td>350</td>
<td>1540</td>
<td>103082</td>
<td>269</td>
<td>4317</td>
<td>555</td>
<td>90</td>
<td>3.26</td>
<td>5.46</td>
<td>2.33</td>
<td>2.79</td>
</tr>
<tr>
<td>286</td>
<td>67.3</td>
<td>17.0</td>
<td>307</td>
<td>1316</td>
<td>99212</td>
<td>206</td>
<td>3665</td>
<td>552</td>
<td>82</td>
<td>2.90</td>
<td>4.78</td>
<td>2.14</td>
<td>2.36</td>
</tr>
<tr>
<td>311</td>
<td>70.7</td>
<td>15.2</td>
<td>292</td>
<td>1160</td>
<td>104155</td>
<td>198</td>
<td>3722</td>
<td>545</td>
<td>75</td>
<td>3.10</td>
<td>5.12</td>
<td>1.52</td>
<td>2.49</td>
</tr>
</tbody>
</table>

From this table we can see...
<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>45.5</td>
<td>17.7</td>
<td>314</td>
<td>3341</td>
<td>67070</td>
<td>231</td>
<td>3341</td>
<td>601</td>
<td>239</td>
<td>6.30</td>
<td>8.61</td>
<td>3.11</td>
<td>3.54</td>
</tr>
<tr>
<td>31</td>
<td>46.2</td>
<td>18.4</td>
<td>301</td>
<td>2988</td>
<td>68024</td>
<td>242</td>
<td>3162</td>
<td>573</td>
<td>211</td>
<td>4.76</td>
<td>7.02</td>
<td>1.97</td>
<td>2.64</td>
</tr>
<tr>
<td>51</td>
<td>53.7</td>
<td>18.7</td>
<td>318</td>
<td>2467</td>
<td>79068</td>
<td>262</td>
<td>3585</td>
<td>588</td>
<td>141</td>
<td>3.60</td>
<td>5.19</td>
<td>1.79</td>
<td>2.62</td>
</tr>
<tr>
<td>77</td>
<td>62.8</td>
<td>17.6</td>
<td>332</td>
<td>1917</td>
<td>92468</td>
<td>248</td>
<td>4119</td>
<td>577</td>
<td>102</td>
<td>3.08</td>
<td>5.01</td>
<td>1.25</td>
<td>2.07</td>
</tr>
<tr>
<td>102</td>
<td>57.6</td>
<td>18.0</td>
<td>306</td>
<td>1936</td>
<td>84832</td>
<td>260</td>
<td>3716</td>
<td>515</td>
<td>112</td>
<td>3.29</td>
<td>5.10</td>
<td>1.59</td>
<td>1.87</td>
</tr>
<tr>
<td>125</td>
<td>60.3</td>
<td>18.8</td>
<td>317</td>
<td>2033</td>
<td>88894</td>
<td>275</td>
<td>3766</td>
<td>540</td>
<td>117</td>
<td>3.43</td>
<td>5.49</td>
<td>2.28</td>
<td>2.20</td>
</tr>
<tr>
<td>147</td>
<td>60.3</td>
<td>17.9</td>
<td>316</td>
<td>2243</td>
<td>88847</td>
<td>290</td>
<td>3642</td>
<td>573</td>
<td>128</td>
<td>3.49</td>
<td>5.80</td>
<td>1.91</td>
<td>2.52</td>
</tr>
<tr>
<td>174</td>
<td>51.3</td>
<td>17.9</td>
<td>320</td>
<td>3002</td>
<td>75530</td>
<td>236</td>
<td>3496</td>
<td>587</td>
<td>196</td>
<td>5.63</td>
<td>8.17</td>
<td>1.35</td>
<td>2.76</td>
</tr>
<tr>
<td>199</td>
<td>48.6</td>
<td>12.8</td>
<td>277</td>
<td>2441</td>
<td>71534</td>
<td>208</td>
<td>3012</td>
<td>542</td>
<td>169</td>
<td>5.12</td>
<td>7.50</td>
<td>2.64</td>
<td>3.01</td>
</tr>
<tr>
<td>228</td>
<td>48.7</td>
<td>13.4</td>
<td>330</td>
<td>3732</td>
<td>71803</td>
<td>256</td>
<td>3659</td>
<td>613</td>
<td>225</td>
<td>7.08</td>
<td>9.98</td>
<td>3.11</td>
<td>3.84</td>
</tr>
<tr>
<td>254</td>
<td>48.1</td>
<td>13.8</td>
<td>318</td>
<td>3327</td>
<td>70904</td>
<td>221</td>
<td>3409</td>
<td>608</td>
<td>222</td>
<td>6.58</td>
<td>9.33</td>
<td>2.98</td>
<td>3.52</td>
</tr>
<tr>
<td>279</td>
<td>48.1</td>
<td>9.4</td>
<td>432</td>
<td>4852</td>
<td>70889</td>
<td>372</td>
<td>4267</td>
<td>592</td>
<td>242</td>
<td>8.37</td>
<td>12.28</td>
<td>4.24</td>
<td>4.20</td>
</tr>
<tr>
<td>301</td>
<td>55.9</td>
<td>15.8</td>
<td>330</td>
<td>2582</td>
<td>82309</td>
<td>313</td>
<td>3669</td>
<td>580</td>
<td>125</td>
<td>3.14</td>
<td>4.82</td>
<td>1.26</td>
<td>3.16</td>
</tr>
<tr>
<td>325</td>
<td>60.7</td>
<td>17.8</td>
<td>320</td>
<td>2168</td>
<td>89359</td>
<td>283</td>
<td>3748</td>
<td>556</td>
<td>118</td>
<td>3.70</td>
<td>5.23</td>
<td>1.72</td>
<td>2.42</td>
</tr>
<tr>
<td>350</td>
<td>60.2</td>
<td>18.7</td>
<td>311</td>
<td>2049</td>
<td>88674</td>
<td>268</td>
<td>3586</td>
<td>541</td>
<td>109</td>
<td>3.35</td>
<td>5.35</td>
<td>1.87</td>
<td>2.03</td>
</tr>
<tr>
<td>372</td>
<td>58.9</td>
<td>18.2</td>
<td>316</td>
<td>1939</td>
<td>86773</td>
<td>267</td>
<td>3665</td>
<td>531</td>
<td>108</td>
<td>3.33</td>
<td>4.65</td>
<td>1.84</td>
<td>2.04</td>
</tr>
<tr>
<td>393</td>
<td>61.3</td>
<td>19.8</td>
<td>330</td>
<td>2046</td>
<td>90298</td>
<td>262</td>
<td>3932</td>
<td>566</td>
<td>102</td>
<td>3.19</td>
<td>4.64</td>
<td>1.73</td>
<td>2.01</td>
</tr>
<tr>
<td>413</td>
<td>60.2</td>
<td>18.6</td>
<td>334</td>
<td>2312</td>
<td>88697</td>
<td>263</td>
<td>3900</td>
<td>618</td>
<td>125</td>
<td>3.42</td>
<td>4.65</td>
<td>1.70</td>
<td>2.51</td>
</tr>
<tr>
<td>435</td>
<td>51.8</td>
<td>18.8</td>
<td>326</td>
<td>2946</td>
<td>76272</td>
<td>252</td>
<td>3584</td>
<td>628</td>
<td>193</td>
<td>4.79</td>
<td>6.65</td>
<td>2.35</td>
<td>3.08</td>
</tr>
</tbody>
</table>

Table C.6: GS10-16 XL148 Profile 2
<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>45.7</td>
<td>21.0</td>
<td>313</td>
<td>4437</td>
<td>67320</td>
<td>227</td>
<td>3584</td>
<td>543</td>
<td>320</td>
<td>7.02</td>
<td>9.87</td>
<td>2.58</td>
<td>6.14</td>
</tr>
<tr>
<td>37</td>
<td>47.3</td>
<td>18.4</td>
<td>286</td>
<td>3549</td>
<td>69705</td>
<td>220</td>
<td>3456</td>
<td>533</td>
<td>253</td>
<td>6.05</td>
<td>8.44</td>
<td>2.01</td>
<td>3.86</td>
</tr>
<tr>
<td>50</td>
<td>51.6</td>
<td>19.9</td>
<td>299</td>
<td>3447</td>
<td>75948</td>
<td>228</td>
<td>3755</td>
<td>569</td>
<td>244</td>
<td>6.07</td>
<td>8.90</td>
<td>2.69</td>
<td>4.65</td>
</tr>
<tr>
<td>66</td>
<td>47.1</td>
<td>20.9</td>
<td>268</td>
<td>4133</td>
<td>69409</td>
<td>212</td>
<td>3488</td>
<td>555</td>
<td>309</td>
<td>6.71</td>
<td>9.90</td>
<td>2.27</td>
<td>3.90</td>
</tr>
<tr>
<td>86</td>
<td>45.7</td>
<td>22.3</td>
<td>289</td>
<td>4988</td>
<td>67320</td>
<td>210</td>
<td>3544</td>
<td>573</td>
<td>374</td>
<td>7.54</td>
<td>10.44</td>
<td>3.03</td>
<td>5.43</td>
</tr>
<tr>
<td>106</td>
<td>43.5</td>
<td>21.0</td>
<td>267</td>
<td>4395</td>
<td>64019</td>
<td>216</td>
<td>3339</td>
<td>551</td>
<td>342</td>
<td>6.96</td>
<td>9.59</td>
<td>2.47</td>
<td>3.86</td>
</tr>
<tr>
<td>126</td>
<td>51.8</td>
<td>19.9</td>
<td>288</td>
<td>3145</td>
<td>76252</td>
<td>214</td>
<td>3501</td>
<td>578</td>
<td>221</td>
<td>5.87</td>
<td>8.78</td>
<td>1.90</td>
<td>4.08</td>
</tr>
<tr>
<td>143</td>
<td>54.1</td>
<td>21.4</td>
<td>300</td>
<td>3166</td>
<td>79716</td>
<td>225</td>
<td>3789</td>
<td>609</td>
<td>226</td>
<td>5.97</td>
<td>8.99</td>
<td>2.01</td>
<td>3.84</td>
</tr>
<tr>
<td>158</td>
<td>48.5</td>
<td>22.1</td>
<td>298</td>
<td>3897</td>
<td>71469</td>
<td>228</td>
<td>3932</td>
<td>600</td>
<td>284</td>
<td>6.45</td>
<td>8.86</td>
<td>2.13</td>
<td>3.90</td>
</tr>
<tr>
<td>176</td>
<td>53.6</td>
<td>22.2</td>
<td>312</td>
<td>3297</td>
<td>79018</td>
<td>229</td>
<td>3869</td>
<td>586</td>
<td>219</td>
<td>5.79</td>
<td>8.42</td>
<td>2.85</td>
<td>3.94</td>
</tr>
<tr>
<td>195</td>
<td>61.0</td>
<td>19.0</td>
<td>294</td>
<td>2438</td>
<td>89869</td>
<td>206</td>
<td>4067</td>
<td>556</td>
<td>146</td>
<td>4.62</td>
<td>7.13</td>
<td>2.03</td>
<td>3.33</td>
</tr>
<tr>
<td>216</td>
<td>75.0</td>
<td>14.4</td>
<td>264</td>
<td>1398</td>
<td>110561</td>
<td>246</td>
<td>4351</td>
<td>513</td>
<td>103</td>
<td>3.11</td>
<td>6.03</td>
<td>2.37</td>
<td>3.37</td>
</tr>
<tr>
<td>233</td>
<td>61.0</td>
<td>20.8</td>
<td>295</td>
<td>2490</td>
<td>89918</td>
<td>241</td>
<td>3950</td>
<td>505</td>
<td>167</td>
<td>5.23</td>
<td>8.35</td>
<td>2.34</td>
<td>4.59</td>
</tr>
<tr>
<td>252</td>
<td>48.3</td>
<td>17.8</td>
<td>275</td>
<td>2860</td>
<td>71116</td>
<td>197</td>
<td>3823</td>
<td>441</td>
<td>213</td>
<td>7.10</td>
<td>9.90</td>
<td>2.62</td>
<td>3.22</td>
</tr>
<tr>
<td>272</td>
<td>54.4</td>
<td>23.4</td>
<td>298</td>
<td>3178</td>
<td>80090</td>
<td>298</td>
<td>3730</td>
<td>483</td>
<td>199</td>
<td>4.96</td>
<td>8.76</td>
<td>2.07</td>
<td>5.06</td>
</tr>
<tr>
<td>293</td>
<td>65.1</td>
<td>19.2</td>
<td>265</td>
<td>1855</td>
<td>95872</td>
<td>244</td>
<td>3828</td>
<td>474</td>
<td>142</td>
<td>4.58</td>
<td>8.31</td>
<td>3.02</td>
<td>4.54</td>
</tr>
<tr>
<td>315</td>
<td>79.2</td>
<td>22.2</td>
<td>311</td>
<td>2114</td>
<td>116636</td>
<td>315</td>
<td>4768</td>
<td>570</td>
<td>167</td>
<td>6.54</td>
<td>12.08</td>
<td>4.68</td>
<td>5.56</td>
</tr>
<tr>
<td>337</td>
<td>64.7</td>
<td>21.3</td>
<td>280</td>
<td>1963</td>
<td>95308</td>
<td>263</td>
<td>3763</td>
<td>485</td>
<td>141</td>
<td>4.03</td>
<td>6.64</td>
<td>1.97</td>
<td>4.96</td>
</tr>
<tr>
<td>364</td>
<td>76.2</td>
<td>16.1</td>
<td>248</td>
<td>1314</td>
<td>112276</td>
<td>263</td>
<td>3756</td>
<td>459</td>
<td>137</td>
<td>5.56</td>
<td>9.94</td>
<td>3.50</td>
<td>3.63</td>
</tr>
<tr>
<td>385</td>
<td>66.1</td>
<td>18.9</td>
<td>268</td>
<td>2027</td>
<td>97312</td>
<td>284</td>
<td>3861</td>
<td>491</td>
<td>153</td>
<td>5.16</td>
<td>9.19</td>
<td>3.80</td>
<td>5.01</td>
</tr>
<tr>
<td>407</td>
<td>70.5</td>
<td>17.0</td>
<td>256</td>
<td>1768</td>
<td>103880</td>
<td>255</td>
<td>3740</td>
<td>492</td>
<td>152</td>
<td>5.83</td>
<td>10.49</td>
<td>4.20</td>
<td>4.76</td>
</tr>
<tr>
<td>426</td>
<td>57.7</td>
<td>16.6</td>
<td>243</td>
<td>2090</td>
<td>84972</td>
<td>216</td>
<td>3358</td>
<td>439</td>
<td>162</td>
<td>6.79</td>
<td>11.66</td>
<td>3.52</td>
<td>4.28</td>
</tr>
<tr>
<td>447</td>
<td>70.9</td>
<td>20.5</td>
<td>303</td>
<td>2590</td>
<td>104459</td>
<td>301</td>
<td>4259</td>
<td>557</td>
<td>203</td>
<td>7.88</td>
<td>13.67</td>
<td>4.91</td>
<td>5.42</td>
</tr>
<tr>
<td>466</td>
<td>75.4</td>
<td>16.3</td>
<td>303</td>
<td>1772</td>
<td>111027</td>
<td>234</td>
<td>4860</td>
<td>526</td>
<td>118</td>
<td>4.66</td>
<td>8.20</td>
<td>3.57</td>
<td>34.88</td>
</tr>
<tr>
<td>487</td>
<td>63.9</td>
<td>14.2</td>
<td>232</td>
<td>1550</td>
<td>94193</td>
<td>205</td>
<td>3265</td>
<td>472</td>
<td>110</td>
<td>3.57</td>
<td>6.45</td>
<td>1.26</td>
<td>3.76</td>
</tr>
<tr>
<td>505</td>
<td>57.0</td>
<td>14.8</td>
<td>232</td>
<td>1774</td>
<td>83900</td>
<td>203</td>
<td>3263</td>
<td>445</td>
<td>133</td>
<td>4.48</td>
<td>7.39</td>
<td>2.51</td>
<td>3.64</td>
</tr>
</tbody>
</table>

From Table C.7: GS10-17 X160 Profile 1
Table C.8: GS10-17 XL71 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>40.1</td>
<td>14.5</td>
<td>856</td>
<td>3513</td>
<td>59132</td>
<td>188</td>
<td>4272</td>
<td>398</td>
<td>228</td>
<td>5.46</td>
<td>7.91</td>
<td>2.88</td>
<td>8.61</td>
</tr>
<tr>
<td>68</td>
<td>39.3</td>
<td>14.3</td>
<td>740</td>
<td>3149</td>
<td>57849</td>
<td>193</td>
<td>3332</td>
<td>436</td>
<td>228</td>
<td>5.56</td>
<td>7.91</td>
<td>2.79</td>
<td>6.11</td>
</tr>
<tr>
<td>119</td>
<td>82.4</td>
<td>14.9</td>
<td>283</td>
<td>1065</td>
<td>121140</td>
<td>187</td>
<td>4460</td>
<td>580</td>
<td>78</td>
<td>1.93</td>
<td>3.15</td>
<td>1.33</td>
<td>4.21</td>
</tr>
<tr>
<td>140</td>
<td>80.6</td>
<td>11.2</td>
<td>255</td>
<td>753</td>
<td>118766</td>
<td>142</td>
<td>4719</td>
<td>507</td>
<td>49</td>
<td>1.37</td>
<td>2.37</td>
<td>0.86</td>
<td>4.49</td>
</tr>
<tr>
<td>166</td>
<td>78.4</td>
<td>12.7</td>
<td>509</td>
<td>942</td>
<td>115428</td>
<td>190</td>
<td>6837</td>
<td>498</td>
<td>49</td>
<td>1.59</td>
<td>3.05</td>
<td>1.96</td>
<td>38.37</td>
</tr>
<tr>
<td>191</td>
<td>78.4</td>
<td>13.5</td>
<td>476</td>
<td>1208</td>
<td>115428</td>
<td>200</td>
<td>6813</td>
<td>498</td>
<td>60</td>
<td>1.64</td>
<td>3.06</td>
<td>1.59</td>
<td>55.30</td>
</tr>
<tr>
<td>223</td>
<td>77.8</td>
<td>13.9</td>
<td>284</td>
<td>884</td>
<td>114606</td>
<td>158</td>
<td>4682</td>
<td>501</td>
<td>56</td>
<td>1.12</td>
<td>2.05</td>
<td><0.53</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Table C.9: GS10-17 XL71 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>38.9</td>
<td>15.3</td>
<td>221</td>
<td>3352</td>
<td>57293</td>
<td>180</td>
<td>2540</td>
<td>455</td>
<td>250</td>
<td>5.84</td>
<td>7.80</td>
<td>1.87</td>
<td>3.66</td>
</tr>
<tr>
<td>48</td>
<td>39.9</td>
<td>16.4</td>
<td>240</td>
<td>3412</td>
<td>58839</td>
<td>179</td>
<td>2853</td>
<td>465</td>
<td>244</td>
<td>5.74</td>
<td>8.25</td>
<td>2.71</td>
<td>3.81</td>
</tr>
<tr>
<td>70</td>
<td>41.9</td>
<td>16.7</td>
<td>247</td>
<td>3440</td>
<td>61685</td>
<td>175</td>
<td>2964</td>
<td>479</td>
<td>227</td>
<td>5.96</td>
<td>7.91</td>
<td>2.55</td>
<td>3.84</td>
</tr>
<tr>
<td>94</td>
<td>67.1</td>
<td>14.2</td>
<td>297</td>
<td>1511</td>
<td>98784</td>
<td>211</td>
<td>3721</td>
<td>533</td>
<td>122</td>
<td>2.31</td>
<td>3.67</td>
<td>1.42</td>
<td>4.15</td>
</tr>
<tr>
<td>120</td>
<td>74.3</td>
<td>13.6</td>
<td>288</td>
<td>1132</td>
<td>109499</td>
<td>177</td>
<td>3996</td>
<td>512</td>
<td>61</td>
<td>1.57</td>
<td>2.58</td>
<td><0.60</td>
<td>3.46</td>
</tr>
<tr>
<td>143</td>
<td>84.2</td>
<td>9.6</td>
<td>236</td>
<td>575</td>
<td>124095</td>
<td>118</td>
<td>4399</td>
<td>500</td>
<td>51</td>
<td>1.43</td>
<td>2.24</td>
<td>1.01</td>
<td>1.62</td>
</tr>
<tr>
<td>165</td>
<td>81.0</td>
<td>12.8</td>
<td>539</td>
<td>939</td>
<td>119267</td>
<td>179</td>
<td>5672</td>
<td>493</td>
<td>54</td>
<td>1.39</td>
<td>2.71</td>
<td><0.58</td>
<td>2.57</td>
</tr>
</tbody>
</table>
Table C.10: GS11-30b XL15 Profile 1

<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>46.1</td>
<td>3.7</td>
<td>242</td>
<td>2756</td>
<td>67923</td>
<td>209</td>
<td>3355</td>
<td>508</td>
<td>154</td>
<td>4.03</td>
<td>5.41</td>
<td>1.94</td>
<td>3.16</td>
</tr>
<tr>
<td>29</td>
<td>47.9</td>
<td>5.8</td>
<td>270</td>
<td>2595</td>
<td>70558</td>
<td>209</td>
<td>3519</td>
<td>513</td>
<td>131</td>
<td>3.56</td>
<td>5.62</td>
<td>0.00</td>
<td>3.30</td>
</tr>
<tr>
<td>40</td>
<td>49.5</td>
<td>5.9</td>
<td>279</td>
<td>2269</td>
<td>72889</td>
<td>196</td>
<td>3388</td>
<td>497</td>
<td>130</td>
<td>4.41</td>
<td>6.17</td>
<td>2.02</td>
<td>2.45</td>
</tr>
<tr>
<td>58</td>
<td>56.6</td>
<td>10.8</td>
<td>327</td>
<td>1809</td>
<td>83369</td>
<td>192</td>
<td>3860</td>
<td>511</td>
<td>127</td>
<td>4.89</td>
<td>7.08</td>
<td>2.61</td>
<td>2.74</td>
</tr>
<tr>
<td>78</td>
<td>58.6</td>
<td>16.2</td>
<td>330</td>
<td>1662</td>
<td>86278</td>
<td>222</td>
<td>3888</td>
<td>484</td>
<td>130</td>
<td>4.26</td>
<td>5.86</td>
<td>1.72</td>
<td>2.78</td>
</tr>
<tr>
<td>96</td>
<td>58.5</td>
<td>27.7</td>
<td>361</td>
<td>1933</td>
<td>86185</td>
<td>223</td>
<td>3887</td>
<td>484</td>
<td>125</td>
<td>3.82</td>
<td>5.86</td>
<td>1.72</td>
<td>3.11</td>
</tr>
<tr>
<td>114</td>
<td>57.4</td>
<td>36.5</td>
<td>347</td>
<td>1986</td>
<td>84613</td>
<td>212</td>
<td>3754</td>
<td>476</td>
<td>119</td>
<td>3.62</td>
<td>5.45</td>
<td>1.36</td>
<td>2.94</td>
</tr>
<tr>
<td>132</td>
<td>57.2</td>
<td>44.9</td>
<td>350</td>
<td>2243</td>
<td>84258</td>
<td>229</td>
<td>3773</td>
<td>468</td>
<td>116</td>
<td>3.81</td>
<td>5.55</td>
<td>1.83</td>
<td>2.81</td>
</tr>
<tr>
<td>151</td>
<td>58.1</td>
<td>53.2</td>
<td>353</td>
<td>2258</td>
<td>85626</td>
<td>226</td>
<td>3963</td>
<td>472</td>
<td>120</td>
<td>3.62</td>
<td>5.48</td>
<td>1.95</td>
<td>3.03</td>
</tr>
<tr>
<td>176</td>
<td>58.1</td>
<td>54.0</td>
<td>347</td>
<td>2195</td>
<td>85646</td>
<td>227</td>
<td>3821</td>
<td>460</td>
<td>113</td>
<td>3.43</td>
<td>5.39</td>
<td>2.15</td>
<td>2.97</td>
</tr>
<tr>
<td>200</td>
<td>59.6</td>
<td>56.4</td>
<td>367</td>
<td>2234</td>
<td>87840</td>
<td>225</td>
<td>3960</td>
<td>481</td>
<td>107</td>
<td>3.76</td>
<td>5.68</td>
<td>2.45</td>
<td>3.01</td>
</tr>
<tr>
<td>222</td>
<td>59.1</td>
<td>54.1</td>
<td>367</td>
<td>2302</td>
<td>87018</td>
<td>216</td>
<td>4028</td>
<td>474</td>
<td>110</td>
<td>3.69</td>
<td>5.93</td>
<td>2.19</td>
<td>3.34</td>
</tr>
<tr>
<td>241</td>
<td>58.3</td>
<td>55.7</td>
<td>361</td>
<td>2404</td>
<td>85864</td>
<td>229</td>
<td>4080</td>
<td>471</td>
<td>109</td>
<td>3.70</td>
<td>5.66</td>
<td>2.47</td>
<td>3.12</td>
</tr>
<tr>
<td>263</td>
<td>57.4</td>
<td>50.8</td>
<td>357</td>
<td>2417</td>
<td>84556</td>
<td>234</td>
<td>3887</td>
<td>471</td>
<td>111</td>
<td>3.69</td>
<td>5.50</td>
<td>2.41</td>
<td>3.45</td>
</tr>
<tr>
<td>286</td>
<td>56.3</td>
<td>43.2</td>
<td>370</td>
<td>2559</td>
<td>82914</td>
<td>225</td>
<td>3959</td>
<td>471</td>
<td>112</td>
<td>3.34</td>
<td>5.43</td>
<td>2.09</td>
<td>3.03</td>
</tr>
<tr>
<td>305</td>
<td>56.3</td>
<td>26.9</td>
<td>374</td>
<td>2787</td>
<td>82907</td>
<td>218</td>
<td>4030</td>
<td>474</td>
<td>117</td>
<td>3.34</td>
<td>5.51</td>
<td>1.48</td>
<td>3.72</td>
</tr>
<tr>
<td>324</td>
<td>56.6</td>
<td>13.7</td>
<td>360</td>
<td>2522</td>
<td>83405</td>
<td>226</td>
<td>3882</td>
<td>465</td>
<td>109</td>
<td>3.54</td>
<td>5.52</td>
<td>2.23</td>
<td>3.27</td>
</tr>
</tbody>
</table>

Distance from rim (µm)
Table C.11: GS11-30b XL18 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>38.7</td>
<td>5.7</td>
<td>214</td>
<td>3509</td>
<td>56972</td>
<td>210</td>
<td>3028</td>
<td>502</td>
<td>243</td>
<td>5.01</td>
<td>6.65</td>
<td>1.65</td>
<td>2.80</td>
</tr>
<tr>
<td>51</td>
<td>42.3</td>
<td>6.4</td>
<td>235</td>
<td>3116</td>
<td>62328</td>
<td>202</td>
<td>3128</td>
<td>539</td>
<td>206</td>
<td>4.16</td>
<td>5.91</td>
<td>1.77</td>
<td>2.57</td>
</tr>
<tr>
<td>71</td>
<td>45.4</td>
<td>8.5</td>
<td>254</td>
<td>2675</td>
<td>66874</td>
<td>202</td>
<td>3257</td>
<td>535</td>
<td>163</td>
<td>4.00</td>
<td>5.60</td>
<td>2.11</td>
<td>2.26</td>
</tr>
<tr>
<td>93</td>
<td>46.9</td>
<td>11.8</td>
<td>265</td>
<td>2467</td>
<td>69030</td>
<td>226</td>
<td>3245</td>
<td>539</td>
<td>139</td>
<td>4.10</td>
<td>6.47</td>
<td>2.28</td>
<td>2.29</td>
</tr>
<tr>
<td>118</td>
<td>50.0</td>
<td>11.0</td>
<td>252</td>
<td>1984</td>
<td>73612</td>
<td>218</td>
<td>3096</td>
<td>551</td>
<td>116</td>
<td>2.98</td>
<td>4.86</td>
<td>1.07</td>
<td>2.16</td>
</tr>
<tr>
<td>139</td>
<td>49.9</td>
<td>12.0</td>
<td>273</td>
<td>2122</td>
<td>73537</td>
<td>232</td>
<td>3457</td>
<td>543</td>
<td>113</td>
<td>3.06</td>
<td>4.49</td>
<td>1.88</td>
<td>1.94</td>
</tr>
<tr>
<td>162</td>
<td>54.0</td>
<td>9.0</td>
<td>262</td>
<td>1890</td>
<td>79500</td>
<td>231</td>
<td>3555</td>
<td>542</td>
<td>93</td>
<td>2.96</td>
<td>4.44</td>
<td>1.41</td>
<td>1.80</td>
</tr>
<tr>
<td>186</td>
<td>55.3</td>
<td>3.3</td>
<td>225</td>
<td>1569</td>
<td>81489</td>
<td>209</td>
<td>3292</td>
<td>480</td>
<td>77</td>
<td>2.33</td>
<td>3.69</td>
<td>1.30</td>
<td>2.28</td>
</tr>
<tr>
<td>211</td>
<td>44.0</td>
<td>3.3</td>
<td>190</td>
<td>2302</td>
<td>64787</td>
<td>175</td>
<td>2675</td>
<td>439</td>
<td>151</td>
<td>4.29</td>
<td>5.96</td>
<td>1.89</td>
<td>2.98</td>
</tr>
<tr>
<td>288</td>
<td>39.8</td>
<td>1.8</td>
<td>199</td>
<td>2765</td>
<td>58649</td>
<td>160</td>
<td>2555</td>
<td>456</td>
<td>201</td>
<td>4.88</td>
<td>7.22</td>
<td>2.58</td>
<td>2.89</td>
</tr>
<tr>
<td>337</td>
<td>37.8</td>
<td>2.4</td>
<td>189</td>
<td>3192</td>
<td>55692</td>
<td>157</td>
<td>2722</td>
<td>465</td>
<td>223</td>
<td>5.23</td>
<td>7.46</td>
<td>2.42</td>
<td>3.72</td>
</tr>
<tr>
<td>358</td>
<td>41.1</td>
<td>1.9</td>
<td>192</td>
<td>3110</td>
<td>60547</td>
<td>172</td>
<td>2808</td>
<td>493</td>
<td>219</td>
<td>5.40</td>
<td>7.42</td>
<td>2.16</td>
<td>3.57</td>
</tr>
<tr>
<td>378</td>
<td>49.2</td>
<td>2.1</td>
<td>201</td>
<td>2167</td>
<td>72449</td>
<td>190</td>
<td>2957</td>
<td>507</td>
<td>134</td>
<td>3.69</td>
<td>5.58</td>
<td>2.39</td>
<td>3.50</td>
</tr>
<tr>
<td>398</td>
<td>52.3</td>
<td>1.1</td>
<td>189</td>
<td>1879</td>
<td>77115</td>
<td>207</td>
<td>2729</td>
<td>563</td>
<td>206</td>
<td>6.53</td>
<td>9.03</td>
<td>2.31</td>
<td>4.01</td>
</tr>
</tbody>
</table>
Table C.12: GS1-34a XL09 Profile 1

<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3.66</td>
<td>3.18</td>
<td>1.36</td>
<td>0.43</td>
<td>0.20</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>39</td>
<td>3.40</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>59</td>
<td>3.45</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>80</td>
<td>3.40</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>98</td>
<td>3.45</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>117</td>
<td>3.40</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>136</td>
<td>3.45</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>153</td>
<td>3.40</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>172</td>
<td>3.45</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>194</td>
<td>3.40</td>
<td>2.85</td>
<td>1.20</td>
<td>0.50</td>
<td>0.25</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Distance from rim

Table C.12: GS1-34a XL09 Profile 1
Table C.13: GS11-34a XL09 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>38.8</td>
<td>20.5</td>
<td>198</td>
<td>3443</td>
<td>57154</td>
<td>—</td>
<td>2814</td>
<td>481</td>
<td>246</td>
<td>5.59</td>
<td>8.15</td>
<td>2.28</td>
<td>3.84</td>
</tr>
<tr>
<td>50</td>
<td>40.6</td>
<td>16.1</td>
<td>200</td>
<td>3541</td>
<td>59788</td>
<td>—</td>
<td>2831</td>
<td>488</td>
<td>234</td>
<td>5.56</td>
<td>7.59</td>
<td>1.90</td>
<td>3.60</td>
</tr>
<tr>
<td>75</td>
<td>39.7</td>
<td>10.5</td>
<td>197</td>
<td>3476</td>
<td>58572</td>
<td>—</td>
<td>2771</td>
<td>493</td>
<td>239</td>
<td>5.76</td>
<td>8.22</td>
<td>2.40</td>
<td>3.57</td>
</tr>
<tr>
<td>96</td>
<td>41.8</td>
<td>9.3</td>
<td>202</td>
<td>3297</td>
<td>61612</td>
<td>—</td>
<td>2827</td>
<td>493</td>
<td>225</td>
<td>5.30</td>
<td>7.93</td>
<td>2.69</td>
<td>3.63</td>
</tr>
<tr>
<td>118</td>
<td>42.0</td>
<td>7.8</td>
<td>211</td>
<td>3335</td>
<td>61916</td>
<td>—</td>
<td>2930</td>
<td>514</td>
<td>227</td>
<td>5.46</td>
<td>7.88</td>
<td>2.34</td>
<td>3.71</td>
</tr>
<tr>
<td>145</td>
<td>41.4</td>
<td>8.0</td>
<td>202</td>
<td>3218</td>
<td>61004</td>
<td>—</td>
<td>2754</td>
<td>490</td>
<td>221</td>
<td>5.66</td>
<td>7.71</td>
<td>2.79</td>
<td>3.50</td>
</tr>
<tr>
<td>167</td>
<td>39.2</td>
<td>8.1</td>
<td>188</td>
<td>3332</td>
<td>57762</td>
<td>—</td>
<td>2579</td>
<td>471</td>
<td>227</td>
<td>5.23</td>
<td>7.36</td>
<td>2.75</td>
<td>3.28</td>
</tr>
<tr>
<td>191</td>
<td>39.3</td>
<td>7.9</td>
<td>191</td>
<td>3425</td>
<td>57964</td>
<td>—</td>
<td>2591</td>
<td>488</td>
<td>227</td>
<td>5.70</td>
<td>7.60</td>
<td>2.50</td>
<td>3.36</td>
</tr>
<tr>
<td>216</td>
<td>40.4</td>
<td>7.7</td>
<td>196</td>
<td>3068</td>
<td>59484</td>
<td>—</td>
<td>2633</td>
<td>476</td>
<td>207</td>
<td>5.39</td>
<td>7.40</td>
<td>2.10</td>
<td>3.26</td>
</tr>
<tr>
<td>237</td>
<td>41.8</td>
<td>8.4</td>
<td>216</td>
<td>2944</td>
<td>61511</td>
<td>—</td>
<td>2823</td>
<td>488</td>
<td>200</td>
<td>5.09</td>
<td>7.29</td>
<td>2.65</td>
<td>3.54</td>
</tr>
<tr>
<td>261</td>
<td>42.6</td>
<td>7.9</td>
<td>216</td>
<td>2929</td>
<td>62727</td>
<td>—</td>
<td>2888</td>
<td>482</td>
<td>180</td>
<td>4.64</td>
<td>7.16</td>
<td>2.00</td>
<td>3.30</td>
</tr>
<tr>
<td>283</td>
<td>50.2</td>
<td>7.3</td>
<td>216</td>
<td>2023</td>
<td>73975</td>
<td>—</td>
<td>2960</td>
<td>499</td>
<td>133</td>
<td>3.33</td>
<td>5.39</td>
<td>1.67</td>
<td>2.91</td>
</tr>
<tr>
<td>308</td>
<td>52.0</td>
<td>6.5</td>
<td>223</td>
<td>1726</td>
<td>76610</td>
<td>—</td>
<td>3080</td>
<td>511</td>
<td>91</td>
<td>2.55</td>
<td>4.28</td>
<td>1.09</td>
<td>2.98</td>
</tr>
<tr>
<td>329</td>
<td>52.9</td>
<td>9.2</td>
<td>251</td>
<td>1975</td>
<td>77927</td>
<td>—</td>
<td>3370</td>
<td>533</td>
<td>99</td>
<td>2.73</td>
<td>4.85</td>
<td>1.43</td>
<td>2.85</td>
</tr>
</tbody>
</table>
Table C.14: GS11-34a XL14 Profile 1

<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>7.8</td>
<td>39.7</td>
<td>27.7</td>
<td>172</td>
<td>172</td>
<td>654</td>
<td>529</td>
<td>478</td>
<td>239</td>
<td>5.4</td>
<td>7.3</td>
<td>2.1</td>
<td>3.6</td>
</tr>
<tr>
<td>37</td>
<td>27.7</td>
<td>41.3</td>
<td>172</td>
<td>224</td>
<td>224</td>
<td>627</td>
<td>519</td>
<td>474</td>
<td>194</td>
<td>4.8</td>
<td>7.2</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>58</td>
<td>27.7</td>
<td>42.1</td>
<td>139</td>
<td>239</td>
<td>239</td>
<td>628</td>
<td>533</td>
<td>489</td>
<td>200</td>
<td>5.4</td>
<td>7.4</td>
<td>2.4</td>
<td>3.1</td>
</tr>
<tr>
<td>87</td>
<td>27.7</td>
<td>43.0</td>
<td>110</td>
<td>284</td>
<td>284</td>
<td>634</td>
<td>551</td>
<td>489</td>
<td>219</td>
<td>4.9</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>113</td>
<td>27.7</td>
<td>44.7</td>
<td>102</td>
<td>312</td>
<td>312</td>
<td>658</td>
<td>571</td>
<td>494</td>
<td>135</td>
<td>3.5</td>
<td>5.3</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>139</td>
<td>27.7</td>
<td>50.3</td>
<td>94</td>
<td>232</td>
<td>232</td>
<td>689</td>
<td>603</td>
<td>519</td>
<td>108</td>
<td>3.2</td>
<td>5.1</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>163</td>
<td>27.7</td>
<td>54.0</td>
<td>84</td>
<td>182</td>
<td>182</td>
<td>745</td>
<td>647</td>
<td>519</td>
<td>83</td>
<td>2.5</td>
<td>4.5</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>188</td>
<td>27.7</td>
<td>56.0</td>
<td>74</td>
<td>179</td>
<td>179</td>
<td>724</td>
<td>625</td>
<td>525</td>
<td>79</td>
<td>2.4</td>
<td>4.5</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>211</td>
<td>27.7</td>
<td>55.9</td>
<td>64</td>
<td>176</td>
<td>176</td>
<td>715</td>
<td>605</td>
<td>525</td>
<td>82</td>
<td>2.1</td>
<td>4.3</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>233</td>
<td>27.7</td>
<td>58.1</td>
<td>54</td>
<td>128</td>
<td>128</td>
<td>756</td>
<td>631</td>
<td>547</td>
<td>68</td>
<td>2.0</td>
<td>4.0</td>
<td>0.8</td>
<td>1.3</td>
</tr>
<tr>
<td>259</td>
<td>27.7</td>
<td>55.9</td>
<td>44</td>
<td>250</td>
<td>250</td>
<td>823</td>
<td>728</td>
<td>572</td>
<td>136</td>
<td>3.3</td>
<td>5.2</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>289</td>
<td>27.7</td>
<td>55.2</td>
<td>34</td>
<td>179</td>
<td>179</td>
<td>813</td>
<td>751</td>
<td>541</td>
<td>105</td>
<td>3.1</td>
<td>4.8</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>310</td>
<td>27.7</td>
<td>42.5</td>
<td>24</td>
<td>272</td>
<td>272</td>
<td>723</td>
<td>691</td>
<td>519</td>
<td>150</td>
<td>4.6</td>
<td>5.5</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>331</td>
<td>27.7</td>
<td>42.7</td>
<td>14</td>
<td>296</td>
<td>296</td>
<td>749</td>
<td>699</td>
<td>525</td>
<td>163</td>
<td>4.9</td>
<td>6.5</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>350</td>
<td>27.7</td>
<td>43.3</td>
<td>10</td>
<td>306</td>
<td>306</td>
<td>775</td>
<td>715</td>
<td>535</td>
<td>173</td>
<td>5.1</td>
<td>7.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>370</td>
<td>27.7</td>
<td>43.4</td>
<td>6</td>
<td>299</td>
<td>299</td>
<td>826</td>
<td>737</td>
<td>534</td>
<td>172</td>
<td>5.3</td>
<td>7.0</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>389</td>
<td>27.7</td>
<td>42.7</td>
<td>4</td>
<td>289</td>
<td>289</td>
<td>826</td>
<td>737</td>
<td>534</td>
<td>173</td>
<td>5.1</td>
<td>7.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>413</td>
<td>27.7</td>
<td>42.7</td>
<td>2</td>
<td>273</td>
<td>273</td>
<td>826</td>
<td>737</td>
<td>534</td>
<td>173</td>
<td>5.1</td>
<td>7.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>436</td>
<td>27.7</td>
<td>42.7</td>
<td>0</td>
<td>257</td>
<td>257</td>
<td>826</td>
<td>737</td>
<td>534</td>
<td>173</td>
<td>5.1</td>
<td>7.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Distance from rim
<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>40.3</td>
<td>15.9</td>
<td>196</td>
<td>3166</td>
<td>59384</td>
<td>—</td>
<td>2618</td>
<td>483</td>
<td>227</td>
<td>5.52</td>
<td>7.86</td>
<td>2.44</td>
<td>3.84</td>
</tr>
<tr>
<td>36</td>
<td>42.2</td>
<td>19.1</td>
<td>205</td>
<td>3028</td>
<td>62221</td>
<td>—</td>
<td>2699</td>
<td>489</td>
<td>206</td>
<td>5.42</td>
<td>7.71</td>
<td>2.61</td>
<td>3.36</td>
</tr>
<tr>
<td>52</td>
<td>42.2</td>
<td>12.0</td>
<td>214</td>
<td>2963</td>
<td>62221</td>
<td>—</td>
<td>2815</td>
<td>497</td>
<td>189</td>
<td>5.69</td>
<td>7.53</td>
<td>2.88</td>
<td>3.35</td>
</tr>
<tr>
<td>72</td>
<td>42.7</td>
<td>9.6</td>
<td>227</td>
<td>2983</td>
<td>62829</td>
<td>—</td>
<td>2873</td>
<td>501</td>
<td>176</td>
<td>4.76</td>
<td>6.74</td>
<td>2.50</td>
<td>3.22</td>
</tr>
<tr>
<td>95</td>
<td>48.9</td>
<td>7.6</td>
<td>242</td>
<td>2390</td>
<td>72051</td>
<td>—</td>
<td>3102</td>
<td>518</td>
<td>138</td>
<td>3.49</td>
<td>5.52</td>
<td>1.80</td>
<td>2.88</td>
</tr>
<tr>
<td>114</td>
<td>52.3</td>
<td>7.0</td>
<td>255</td>
<td>1982</td>
<td>77016</td>
<td>—</td>
<td>3325</td>
<td>531</td>
<td>106</td>
<td>2.96</td>
<td>4.58</td>
<td>1.53</td>
<td>2.65</td>
</tr>
<tr>
<td>130</td>
<td>55.3</td>
<td>6.9</td>
<td>250</td>
<td>1618</td>
<td>81475</td>
<td>—</td>
<td>3281</td>
<td>517</td>
<td>81</td>
<td>2.48</td>
<td>3.97</td>
<td>1.38</td>
<td>2.04</td>
</tr>
<tr>
<td>152</td>
<td>57.4</td>
<td>6.5</td>
<td>244</td>
<td>1446</td>
<td>84617</td>
<td>—</td>
<td>3310</td>
<td>507</td>
<td>67</td>
<td>2.15</td>
<td>3.60</td>
<td>1.28</td>
<td>2.14</td>
</tr>
<tr>
<td>170</td>
<td>55.9</td>
<td>6.3</td>
<td>255</td>
<td>1579</td>
<td>82387</td>
<td>—</td>
<td>3362</td>
<td>520</td>
<td>67</td>
<td>2.23</td>
<td>3.42</td>
<td>1.36</td>
<td>1.79</td>
</tr>
<tr>
<td>188</td>
<td>57.2</td>
<td>6.4</td>
<td>254</td>
<td>1477</td>
<td>84211</td>
<td>—</td>
<td>3399</td>
<td>514</td>
<td>68</td>
<td>1.93</td>
<td>2.99</td>
<td>1.13</td>
<td>1.83</td>
</tr>
<tr>
<td>210</td>
<td>57.9</td>
<td>6.8</td>
<td>255</td>
<td>1545</td>
<td>85225</td>
<td>—</td>
<td>3437</td>
<td>525</td>
<td>76</td>
<td>2.01</td>
<td>3.13</td>
<td>1.33</td>
<td>1.99</td>
</tr>
<tr>
<td>232</td>
<td>48.4</td>
<td>7.7</td>
<td>254</td>
<td>2185</td>
<td>71240</td>
<td>—</td>
<td>3141</td>
<td>517</td>
<td>99</td>
<td>3.00</td>
<td>4.10</td>
<td>1.45</td>
<td>1.69</td>
</tr>
<tr>
<td>254</td>
<td>50.6</td>
<td>7.9</td>
<td>267</td>
<td>2328</td>
<td>74483</td>
<td>—</td>
<td>3371</td>
<td>555</td>
<td>120</td>
<td>3.54</td>
<td>5.56</td>
<td>2.28</td>
<td>1.89</td>
</tr>
<tr>
<td>276</td>
<td>52.1</td>
<td>7.6</td>
<td>267</td>
<td>2185</td>
<td>76814</td>
<td>—</td>
<td>3264</td>
<td>554</td>
<td>116</td>
<td>3.60</td>
<td>5.27</td>
<td>2.08</td>
<td>1.87</td>
</tr>
<tr>
<td>299</td>
<td>52.9</td>
<td>8.5</td>
<td>284</td>
<td>2189</td>
<td>78030</td>
<td>—</td>
<td>3420</td>
<td>552</td>
<td>117</td>
<td>3.39</td>
<td>4.96</td>
<td>1.89</td>
<td>2.08</td>
</tr>
<tr>
<td>316</td>
<td>46.9</td>
<td>6.7</td>
<td>223</td>
<td>1678</td>
<td>69112</td>
<td>—</td>
<td>2823</td>
<td>468</td>
<td>100</td>
<td>2.89</td>
<td>4.58</td>
<td>1.89</td>
<td>1.94</td>
</tr>
<tr>
<td>338</td>
<td>41.8</td>
<td>5.6</td>
<td>191</td>
<td>1481</td>
<td>61512</td>
<td>—</td>
<td>2399</td>
<td>417</td>
<td>91</td>
<td>2.69</td>
<td>3.94</td>
<td>1.64</td>
<td>1.90</td>
</tr>
<tr>
<td>360</td>
<td>40.7</td>
<td>7.0</td>
<td>223</td>
<td>2760</td>
<td>59992</td>
<td>—</td>
<td>2684</td>
<td>512</td>
<td>156</td>
<td>4.44</td>
<td>5.35</td>
<td>2.10</td>
<td>2.00</td>
</tr>
<tr>
<td>382</td>
<td>39.0</td>
<td>6.6</td>
<td>206</td>
<td>2636</td>
<td>57357</td>
<td>—</td>
<td>2524</td>
<td>485</td>
<td>150</td>
<td>4.54</td>
<td>5.50</td>
<td>1.02</td>
<td>2.24</td>
</tr>
<tr>
<td>421</td>
<td>38.1</td>
<td>7.2</td>
<td>213</td>
<td>2711</td>
<td>56141</td>
<td>—</td>
<td>2573</td>
<td>477</td>
<td>145</td>
<td>4.68</td>
<td>5.88</td>
<td>2.01</td>
<td>2.21</td>
</tr>
<tr>
<td>443</td>
<td>41.6</td>
<td>7.7</td>
<td>244</td>
<td>3134</td>
<td>61309</td>
<td>—</td>
<td>2938</td>
<td>520</td>
<td>159</td>
<td>4.93</td>
<td>6.51</td>
<td>2.04</td>
<td>2.51</td>
</tr>
<tr>
<td>463</td>
<td>42.7</td>
<td>7.7</td>
<td>251</td>
<td>3151</td>
<td>62931</td>
<td>—</td>
<td>3074</td>
<td>541</td>
<td>164</td>
<td>4.76</td>
<td>6.21</td>
<td>2.24</td>
<td>3.03</td>
</tr>
</tbody>
</table>
Table C.16: GS11-34a XL23 Profile 1

<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>32.3</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>33.7</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>35.1</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>36.4</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>37.6</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Distances in µm from rim.
19
38
56
75
96
115
135
155
174
194
213
232
252
276
297
319
339
366
385
404
432
456
478
495
515
536
567
597
626
650
676
699
719

Distance
from rim
(µm)

38.7
41.5
46.7
47.6
51.2
51.7
52.7
51.8
52.8
53.4
54.4
53.4
53.1
54.8
56.3
57.3
57.8
60.2
61.1
54.6
49.2
48.5
47.7
47.5
47.8
48.6
47.1
46.7
46.3
49.1
46.6
44.4
44.7

An
(mol%)

16.3
13.4
12.5
9.4
9.8
8.3
8.0
8.6
9.2
8.7
9.0
8.5
7.9
8.7
7.9
8.2
9.3
9.9
7.0
7.1
8.1
8.8
8.4
8.3
8.9
8.8
7.5
8.5
7.9
8.2
8.3
8.9
10.1

Li
(ppm)
207
215
273
277
331
346
336
331
366
379
387
359
368
373
394
421
514
463
406
371
337
321
320
310
306
309
309
286
285
408
266
248
265

Mg
(ppm)
2827
2492
2484
2179
2342
2206
2198
2057
2014
2002
2233
2028
1997
2001
1911
1879
2132
1863
1392
1517
2249
2245
2378
2468
2513
2572
2566
2396
2442
3523
2662
2628
2870

K
(ppm)
56952
61106
68808
70125
75496
76104
77523
76307
77726
78739
80056
78638
78131
80766
82894
84414
85123
88670
90089
80360
72558
71443
70328
69923
70429
71645
69315
68808
68099
72254
68605
65363
65869

Ca
(ppm)
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Ti
(ppm)
2647
2625
3204
3195
3682
3684
3429
3255
3478
3744
3842
3521
3613
3779
3893
3996
4826
4391
4275
3741
3224
3118
3008
2958
3051
3035
3105
2907
3031
4171
3091
2962
3050

Fe
(ppm)
455
474
523
497
534
533
566
573
559
575
591
553
547
559
556
558
543
560
584
505
538
540
533
539
556
560
532
529
522
555
518
501
525

Sr
(ppm)
194
149
128
111
115
110
106
98
87
100
111
112
106
102
101
94
90
94
97
81
120
136
140
149
159
162
156
159
166
186
189
181
173

Ba
(ppm)

Table C.17: GS11-34a XL23 Profile 2

4.69
4.28
3.54
3.45
3.37
3.45
3.30
2.94
2.51
2.77
3.63
3.14
3.34
3.08
2.96
3.01
2.71
2.61
2.14
1.98
3.71
4.17
3.94
4.30
4.45
4.62
4.45
4.11
4.17
5.12
4.75
4.59
4.85

La
(ppm)
6.10
5.81
5.66
5.02
5.22
4.89
4.71
4.47
4.42
4.24
5.53
5.40
4.89
4.88
4.79
4.69
4.40
4.23
4.06
3.06
5.47
5.91
5.94
6.20
6.64
6.66
6.52
6.17
6.28
7.98
7.03
6.91
7.37

Ce
(ppm)
2.24
1.94
1.74
1.33
2.08
1.94
1.42
1.49
1.81
1.30
1.74
1.80
1.60
1.36
1.46
1.94
1.46
1.81
1.52
1.19
1.70
1.74
2.30
2.04
2.24
2.48
2.45
1.57
1.67
2.61
1.84
2.67
1.60

Nd
(ppm)
3.62
3.64
3.18
2.75
2.82
2.23
1.96
2.16
2.21
2.13
1.99
2.11
2.11
2.08
2.11
2.14
2.23
2.06
1.66
1.84
2.21
2.54
2.50
2.57
2.44
2.82
2.50
2.89
2.89
3.96
3.01
3.18
3.19

Pb
(ppm)

319


<table>
<thead>
<tr>
<th>Distance (µm)</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>4.3</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>34</td>
<td>4.4</td>
<td>10.2</td>
<td>2.63</td>
<td>239</td>
<td>72</td>
<td>205</td>
<td>4.17</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>41</td>
<td>4.5</td>
<td>9.7</td>
<td>2.17</td>
<td>239</td>
<td>72</td>
<td>205</td>
<td>4.17</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>49</td>
<td>4.9</td>
<td>8.8</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>56</td>
<td>5.3</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>63</td>
<td>5.7</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>70</td>
<td>6.1</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>77</td>
<td>6.5</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
<tr>
<td>84</td>
<td>6.9</td>
<td>9.2</td>
<td>1.97</td>
<td>192</td>
<td>72</td>
<td>205</td>
<td>3.89</td>
<td>2817</td>
<td>412</td>
<td>237</td>
<td>1.76</td>
<td>4.72</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Table C.18: GS1-34c XL06 Profile 1
Table C.19: GS11-39b XL29 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>34.1</td>
<td>4.3</td>
<td>168</td>
<td>3297</td>
<td>50185</td>
<td>153</td>
<td>2378</td>
<td>444</td>
<td>234</td>
<td>4.92</td>
<td>6.72</td>
<td>1.43</td>
<td>3.22</td>
</tr>
<tr>
<td>38</td>
<td>36.0</td>
<td>4.3</td>
<td>170</td>
<td>2862</td>
<td>53040</td>
<td>148</td>
<td>2342</td>
<td>440</td>
<td>215</td>
<td>4.85</td>
<td>6.65</td>
<td>1.28</td>
<td>2.84</td>
</tr>
<tr>
<td>55</td>
<td>37.0</td>
<td>5.3</td>
<td>173</td>
<td>2793</td>
<td>54521</td>
<td>144</td>
<td>2372</td>
<td>451</td>
<td>205</td>
<td>5.13</td>
<td>6.61</td>
<td>1.82</td>
<td>3.10</td>
</tr>
<tr>
<td>75</td>
<td>34.8</td>
<td>4.5</td>
<td>166</td>
<td>2947</td>
<td>51249</td>
<td>148</td>
<td>2287</td>
<td>442</td>
<td>207</td>
<td>5.16</td>
<td>6.63</td>
<td>2.58</td>
<td>3.18</td>
</tr>
<tr>
<td>98</td>
<td>40.8</td>
<td>5.9</td>
<td>184</td>
<td>2663</td>
<td>60095</td>
<td>159</td>
<td>2531</td>
<td>482</td>
<td>199</td>
<td>4.99</td>
<td>6.91</td>
<td>2.41</td>
<td>3.23</td>
</tr>
<tr>
<td>122</td>
<td>43.2</td>
<td>6.6</td>
<td>190</td>
<td>2460</td>
<td>63610</td>
<td>228</td>
<td>2599</td>
<td>477</td>
<td>175</td>
<td>4.57</td>
<td>6.50</td>
<td>1.80</td>
<td>3.10</td>
</tr>
<tr>
<td>146</td>
<td>48.9</td>
<td>5.4</td>
<td>191</td>
<td>2081</td>
<td>72070</td>
<td>220</td>
<td>2510</td>
<td>509</td>
<td>142</td>
<td>3.72</td>
<td>5.36</td>
<td>2.37</td>
<td>2.93</td>
</tr>
<tr>
<td>169</td>
<td>47.9</td>
<td>6.2</td>
<td>195</td>
<td>2185</td>
<td>70576</td>
<td>219</td>
<td>2537</td>
<td>511</td>
<td>149</td>
<td>4.16</td>
<td>5.66</td>
<td>1.57</td>
<td>2.62</td>
</tr>
<tr>
<td>193</td>
<td>51.0</td>
<td>5.5</td>
<td>178</td>
<td>1720</td>
<td>75112</td>
<td>214</td>
<td>2409</td>
<td>500</td>
<td>129</td>
<td>4.19</td>
<td>5.89</td>
<td>1.93</td>
<td>2.62</td>
</tr>
<tr>
<td>214</td>
<td>50.0</td>
<td>4.9</td>
<td>182</td>
<td>1876</td>
<td>73638</td>
<td>237</td>
<td>2434</td>
<td>486</td>
<td>133</td>
<td>4.19</td>
<td>5.96</td>
<td>2.02</td>
<td>3.39</td>
</tr>
<tr>
<td>234</td>
<td>40.8</td>
<td>4.8</td>
<td>187</td>
<td>2755</td>
<td>60149</td>
<td>176</td>
<td>2431</td>
<td>465</td>
<td>204</td>
<td>5.34</td>
<td>7.04</td>
<td>3.72</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Table C.20: GS11-39b XL29 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>36.8</td>
<td>4.1</td>
<td>169</td>
<td>2652</td>
<td>54284</td>
<td>147</td>
<td>2364</td>
<td>442</td>
<td>200</td>
<td>5.32</td>
<td>7.00</td>
<td>2.40</td>
<td>2.63</td>
</tr>
<tr>
<td>51</td>
<td>36.9</td>
<td>4.6</td>
<td>171</td>
<td>2646</td>
<td>54373</td>
<td>147</td>
<td>2385</td>
<td>443</td>
<td>196</td>
<td>5.01</td>
<td>6.90</td>
<td>2.41</td>
<td>2.82</td>
</tr>
<tr>
<td>75</td>
<td>39.7</td>
<td>5.3</td>
<td>185</td>
<td>2615</td>
<td>58555</td>
<td>155</td>
<td>2569</td>
<td>463</td>
<td>200</td>
<td>4.99</td>
<td>7.16</td>
<td>1.95</td>
<td>3.28</td>
</tr>
<tr>
<td>100</td>
<td>36.7</td>
<td>5.4</td>
<td>186</td>
<td>3327</td>
<td>54009</td>
<td>161</td>
<td>2616</td>
<td>459</td>
<td>232</td>
<td>5.33</td>
<td>7.26</td>
<td>2.10</td>
<td>2.93</td>
</tr>
<tr>
<td>123</td>
<td>38.4</td>
<td>5.1</td>
<td>191</td>
<td>3243</td>
<td>56508</td>
<td>170</td>
<td>2631</td>
<td>473</td>
<td>233</td>
<td>5.27</td>
<td>6.91</td>
<td>2.23</td>
<td>2.99</td>
</tr>
<tr>
<td>146</td>
<td>49.4</td>
<td>4.7</td>
<td>185</td>
<td>1877</td>
<td>72706</td>
<td>216</td>
<td>2500</td>
<td>490</td>
<td>161</td>
<td>4.40</td>
<td>6.11</td>
<td>1.61</td>
<td>3.19</td>
</tr>
<tr>
<td>171</td>
<td>50.9</td>
<td>5.0</td>
<td>192</td>
<td>2039</td>
<td>75012</td>
<td>254</td>
<td>2588</td>
<td>513</td>
<td>149</td>
<td>3.89</td>
<td>5.66</td>
<td>2.19</td>
<td>3.40</td>
</tr>
<tr>
<td>193</td>
<td>37.5</td>
<td>4.1</td>
<td>183</td>
<td>3311</td>
<td>55224</td>
<td>167</td>
<td>2571</td>
<td>474</td>
<td>202</td>
<td>4.66</td>
<td>6.26</td>
<td>1.59</td>
<td>2.79</td>
</tr>
<tr>
<td>215</td>
<td>34.3</td>
<td>3.6</td>
<td>177</td>
<td>3265</td>
<td>50554</td>
<td>150</td>
<td>2431</td>
<td>439</td>
<td>212</td>
<td>4.80</td>
<td>6.22</td>
<td>2.24</td>
<td>2.97</td>
</tr>
<tr>
<td>238</td>
<td>37.8</td>
<td>2.3</td>
<td>197</td>
<td>3542</td>
<td>55633</td>
<td>153</td>
<td>2777</td>
<td>480</td>
<td>223</td>
<td>6.21</td>
<td>8.72</td>
<td>3.54</td>
<td>3.86</td>
</tr>
</tbody>
</table>
Table C.21: S12-05 XL03 Profile 1

<table>
<thead>
<tr>
<th>Distance from rim</th>
<th>An</th>
<th>Li</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Sr</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>(µm)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>31.9</td>
<td>12.9</td>
<td>146</td>
<td>3675</td>
<td>46954</td>
<td>133</td>
<td>2209</td>
<td>423</td>
<td>229</td>
<td>5.37</td>
<td>6.82</td>
<td>1.99</td>
<td>2.95</td>
</tr>
<tr>
<td>31</td>
<td>32.8</td>
<td>11.9</td>
<td>148</td>
<td>3480</td>
<td>48301</td>
<td>130</td>
<td>2206</td>
<td>413</td>
<td>224</td>
<td>5.18</td>
<td>6.78</td>
<td>1.91</td>
<td>3.23</td>
</tr>
<tr>
<td>48</td>
<td>32.4</td>
<td>9.4</td>
<td>148</td>
<td>3440</td>
<td>47743</td>
<td>135</td>
<td>2152</td>
<td>408</td>
<td>216</td>
<td>5.24</td>
<td>7.00</td>
<td>2.44</td>
<td>3.45</td>
</tr>
<tr>
<td>66</td>
<td>34.6</td>
<td>7.1</td>
<td>156</td>
<td>3432</td>
<td>50951</td>
<td>142</td>
<td>2292</td>
<td>419</td>
<td>224</td>
<td>4.85</td>
<td>6.70</td>
<td>2.25</td>
<td>3.33</td>
</tr>
<tr>
<td>82</td>
<td>34.2</td>
<td>7.5</td>
<td>169</td>
<td>3556</td>
<td>50406</td>
<td>171</td>
<td>2400</td>
<td>434</td>
<td>220</td>
<td>5.06</td>
<td>6.81</td>
<td>1.99</td>
<td>3.10</td>
</tr>
<tr>
<td>104</td>
<td>44.2</td>
<td>8.4</td>
<td>207</td>
<td>3619</td>
<td>65096</td>
<td>177</td>
<td>3020</td>
<td>514</td>
<td>235</td>
<td>6.45</td>
<td>8.47</td>
<td>3.00</td>
<td>4.24</td>
</tr>
<tr>
<td>124</td>
<td>47.6</td>
<td>7.4</td>
<td>197</td>
<td>2710</td>
<td>70113</td>
<td>117</td>
<td>2895</td>
<td>500</td>
<td>204</td>
<td>7.66</td>
<td>10.79</td>
<td>2.73</td>
<td>4.44</td>
</tr>
<tr>
<td>144</td>
<td>48.9</td>
<td>7.7</td>
<td>201</td>
<td>2481</td>
<td>72048</td>
<td>133</td>
<td>2824</td>
<td>494</td>
<td>196</td>
<td>7.49</td>
<td>11.00</td>
<td>2.00</td>
<td>4.51</td>
</tr>
<tr>
<td>160</td>
<td>48.8</td>
<td>7.7</td>
<td>200</td>
<td>2589</td>
<td>71963</td>
<td>132</td>
<td>2841</td>
<td>506</td>
<td>201</td>
<td>7.91</td>
<td>10.92</td>
<td>2.26</td>
<td>4.33</td>
</tr>
<tr>
<td>178</td>
<td>48.8</td>
<td>7.9</td>
<td>206</td>
<td>2738</td>
<td>71924</td>
<td>137</td>
<td>2939</td>
<td>511</td>
<td>211</td>
<td>7.59</td>
<td>10.81</td>
<td>2.91</td>
<td>4.66</td>
</tr>
<tr>
<td>196</td>
<td>48.6</td>
<td>8.2</td>
<td>215</td>
<td>2956</td>
<td>71543</td>
<td>151</td>
<td>3107</td>
<td>525</td>
<td>226</td>
<td>7.44</td>
<td>10.24</td>
<td>2.75</td>
<td>4.59</td>
</tr>
<tr>
<td>215</td>
<td>45.0</td>
<td>8.6</td>
<td>212</td>
<td>3355</td>
<td>66273</td>
<td>172</td>
<td>2990</td>
<td>512</td>
<td>243</td>
<td>5.65</td>
<td>8.52</td>
<td>2.25</td>
<td>4.27</td>
</tr>
<tr>
<td>235</td>
<td>46.4</td>
<td>8.1</td>
<td>222</td>
<td>3787</td>
<td>68314</td>
<td>197</td>
<td>3294</td>
<td>551</td>
<td>274</td>
<td>5.78</td>
<td>8.26</td>
<td>3.74</td>
<td>4.57</td>
</tr>
<tr>
<td>269</td>
<td>40.9</td>
<td>7.8</td>
<td>203</td>
<td>3397</td>
<td>60194</td>
<td>176</td>
<td>3005</td>
<td>506</td>
<td>272</td>
<td>5.51</td>
<td>7.09</td>
<td>2.36</td>
<td>3.62</td>
</tr>
<tr>
<td>288</td>
<td>42.7</td>
<td>8.4</td>
<td>208</td>
<td>3864</td>
<td>62886</td>
<td>185</td>
<td>3064</td>
<td>527</td>
<td>327</td>
<td>6.01</td>
<td>7.85</td>
<td>2.25</td>
<td>4.28</td>
</tr>
<tr>
<td>307</td>
<td>40.5</td>
<td>8.1</td>
<td>200</td>
<td>3909</td>
<td>59725</td>
<td>185</td>
<td>2949</td>
<td>517</td>
<td>337</td>
<td>6.17</td>
<td>7.99</td>
<td>2.34</td>
<td>3.59</td>
</tr>
<tr>
<td>327</td>
<td>36.9</td>
<td>8.3</td>
<td>183</td>
<td>3673</td>
<td>54355</td>
<td>166</td>
<td>2708</td>
<td>470</td>
<td>322</td>
<td>5.78</td>
<td>7.56</td>
<td>3.02</td>
<td>3.26</td>
</tr>
<tr>
<td>350</td>
<td>35.9</td>
<td>8.1</td>
<td>174</td>
<td>3574</td>
<td>52863</td>
<td>151</td>
<td>2529</td>
<td>458</td>
<td>313</td>
<td>5.68</td>
<td>7.45</td>
<td>2.10</td>
<td>3.00</td>
</tr>
<tr>
<td>372</td>
<td>36.0</td>
<td>8.8</td>
<td>169</td>
<td>3425</td>
<td>53031</td>
<td>146</td>
<td>2482</td>
<td>455</td>
<td>293</td>
<td>5.52</td>
<td>7.40</td>
<td>2.23</td>
<td>3.38</td>
</tr>
<tr>
<td>393</td>
<td>36.8</td>
<td>11.0</td>
<td>169</td>
<td>3299</td>
<td>54197</td>
<td>149</td>
<td>2546</td>
<td>460</td>
<td>273</td>
<td>5.54</td>
<td>7.39</td>
<td>2.29</td>
<td>3.28</td>
</tr>
<tr>
<td>411</td>
<td>36.5</td>
<td>13.9</td>
<td>169</td>
<td>3098</td>
<td>53710</td>
<td>149</td>
<td>2518</td>
<td>448</td>
<td>240</td>
<td>5.52</td>
<td>6.80</td>
<td>2.73</td>
<td>3.19</td>
</tr>
<tr>
<td>428</td>
<td>35.3</td>
<td>16.8</td>
<td>164</td>
<td>2807</td>
<td>51937</td>
<td>144</td>
<td>2386</td>
<td>431</td>
<td>208</td>
<td>5.10</td>
<td>6.42</td>
<td>2.28</td>
<td>3.47</td>
</tr>
<tr>
<td>Distance from rim (µm)</td>
<td>An (mol%)</td>
<td>Li (ppm)</td>
<td>Mg (ppm)</td>
<td>K (ppm)</td>
<td>Ca (ppm)</td>
<td>Ti (ppm)</td>
<td>Fe (ppm)</td>
<td>Sr (ppm)</td>
<td>Ba (ppm)</td>
<td>La (ppm)</td>
<td>Ce (ppm)</td>
<td>Nd (ppm)</td>
<td>Pb (ppm)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>12</td>
<td>37.0</td>
<td>15.0</td>
<td>173</td>
<td>3609</td>
<td>54563</td>
<td>162</td>
<td>2625</td>
<td>455</td>
<td>221</td>
<td>5.15</td>
<td>7.03</td>
<td>2.14</td>
<td>3.66</td>
</tr>
<tr>
<td>26</td>
<td>38.5</td>
<td>12.4</td>
<td>186</td>
<td>3524</td>
<td>56735</td>
<td>163</td>
<td>2642</td>
<td>463</td>
<td>220</td>
<td>5.35</td>
<td>7.02</td>
<td>2.49</td>
<td>3.54</td>
</tr>
<tr>
<td>46</td>
<td>32.6</td>
<td>8.0</td>
<td>160</td>
<td>4185</td>
<td>48014</td>
<td>146</td>
<td>2382</td>
<td>423</td>
<td>241</td>
<td>5.31</td>
<td>6.82</td>
<td>1.85</td>
<td>3.37</td>
</tr>
<tr>
<td>67</td>
<td>33.7</td>
<td>7.4</td>
<td>163</td>
<td>4098</td>
<td>49606</td>
<td>154</td>
<td>2431</td>
<td>439</td>
<td>243</td>
<td>5.18</td>
<td>7.24</td>
<td>1.64</td>
<td>3.21</td>
</tr>
<tr>
<td>87</td>
<td>35.1</td>
<td>8.3</td>
<td>174</td>
<td>3918</td>
<td>51762</td>
<td>132</td>
<td>2494</td>
<td>446</td>
<td>250</td>
<td>5.21</td>
<td>7.28</td>
<td>2.79</td>
<td>3.47</td>
</tr>
<tr>
<td>100</td>
<td>35.5</td>
<td>8.4</td>
<td>170</td>
<td>4003</td>
<td>52340</td>
<td>150</td>
<td>2359</td>
<td>443</td>
<td>239</td>
<td>5.42</td>
<td>7.61</td>
<td>1.70</td>
<td>3.38</td>
</tr>
<tr>
<td>119</td>
<td>34.5</td>
<td>8.2</td>
<td>175</td>
<td>3715</td>
<td>50805</td>
<td>170</td>
<td>2471</td>
<td>441</td>
<td>231</td>
<td>5.14</td>
<td>6.81</td>
<td>2.54</td>
<td>3.25</td>
</tr>
<tr>
<td>134</td>
<td>35.6</td>
<td>7.7</td>
<td>173</td>
<td>3869</td>
<td>52389</td>
<td>164</td>
<td>2473</td>
<td>447</td>
<td>227</td>
<td>5.06</td>
<td>6.80</td>
<td>1.99</td>
<td>3.32</td>
</tr>
<tr>
<td>149</td>
<td>37.2</td>
<td>7.9</td>
<td>189</td>
<td>3812</td>
<td>54829</td>
<td>174</td>
<td>2741</td>
<td>463</td>
<td>225</td>
<td>5.06</td>
<td>6.71</td>
<td>1.55</td>
<td>3.32</td>
</tr>
<tr>
<td>167</td>
<td>37.3</td>
<td>7.5</td>
<td>180</td>
<td>3555</td>
<td>54989</td>
<td>163</td>
<td>2603</td>
<td>461</td>
<td>220</td>
<td>5.03</td>
<td>6.89</td>
<td>2.29</td>
<td>3.51</td>
</tr>
<tr>
<td>186</td>
<td>40.8</td>
<td>7.8</td>
<td>199</td>
<td>3680</td>
<td>60143</td>
<td>190</td>
<td>2894</td>
<td>494</td>
<td>228</td>
<td>5.84</td>
<td>7.63</td>
<td>2.23</td>
<td>3.64</td>
</tr>
<tr>
<td>204</td>
<td>45.9</td>
<td>7.1</td>
<td>206</td>
<td>3202</td>
<td>67033</td>
<td>126</td>
<td>2912</td>
<td>514</td>
<td>218</td>
<td>6.80</td>
<td>9.60</td>
<td>3.22</td>
<td>3.81</td>
</tr>
<tr>
<td>221</td>
<td>41.7</td>
<td>7.7</td>
<td>189</td>
<td>3103</td>
<td>61430</td>
<td>110</td>
<td>2696</td>
<td>476</td>
<td>212</td>
<td>6.13</td>
<td>8.94</td>
<td>2.05</td>
<td>3.70</td>
</tr>
<tr>
<td>244</td>
<td>41.7</td>
<td>8.0</td>
<td>181</td>
<td>2708</td>
<td>61411</td>
<td>92</td>
<td>2589</td>
<td>447</td>
<td>188</td>
<td>6.73</td>
<td>9.34</td>
<td>2.55</td>
<td>3.84</td>
</tr>
<tr>
<td>263</td>
<td>41.8</td>
<td>7.2</td>
<td>182</td>
<td>2603</td>
<td>61616</td>
<td>94</td>
<td>2556</td>
<td>434</td>
<td>181</td>
<td>6.93</td>
<td>9.85</td>
<td>2.10</td>
<td>3.81</td>
</tr>
<tr>
<td>283</td>
<td>42.6</td>
<td>7.7</td>
<td>176</td>
<td>2597</td>
<td>62733</td>
<td>101</td>
<td>2520</td>
<td>444</td>
<td>189</td>
<td>6.71</td>
<td>9.61</td>
<td>2.75</td>
<td>3.88</td>
</tr>
<tr>
<td>303</td>
<td>43.0</td>
<td>7.9</td>
<td>186</td>
<td>2935</td>
<td>63348</td>
<td>90</td>
<td>2640</td>
<td>454</td>
<td>201</td>
<td>6.70</td>
<td>10.04</td>
<td>3.42</td>
<td>3.94</td>
</tr>
<tr>
<td>323</td>
<td>42.8</td>
<td>7.6</td>
<td>188</td>
<td>2798</td>
<td>62982</td>
<td>94</td>
<td>2646</td>
<td>457</td>
<td>192</td>
<td>7.22</td>
<td>10.00</td>
<td>2.67</td>
<td>4.17</td>
</tr>
<tr>
<td>343</td>
<td>44.2</td>
<td>8.4</td>
<td>199</td>
<td>2793</td>
<td>65130</td>
<td>108</td>
<td>2837</td>
<td>474</td>
<td>207</td>
<td>7.34</td>
<td>10.48</td>
<td>3.70</td>
<td>4.67</td>
</tr>
<tr>
<td>364</td>
<td>49.9</td>
<td>8.4</td>
<td>205</td>
<td>2778</td>
<td>73557</td>
<td>122</td>
<td>3066</td>
<td>513</td>
<td>206</td>
<td>7.95</td>
<td>11.68</td>
<td>3.64</td>
<td>4.96</td>
</tr>
<tr>
<td>382</td>
<td>49.3</td>
<td>8.5</td>
<td>207</td>
<td>2757</td>
<td>72676</td>
<td>139</td>
<td>2914</td>
<td>506</td>
<td>203</td>
<td>7.96</td>
<td>10.75</td>
<td>3.07</td>
<td>4.37</td>
</tr>
<tr>
<td>Distance (µm)</td>
<td>An</td>
<td>Li</td>
<td>Mg</td>
<td>K</td>
<td>Ca</td>
<td>Ti</td>
<td>Fe</td>
<td>Sr</td>
<td>Ba</td>
<td>La</td>
<td>Ce</td>
<td>Nd</td>
<td>Pb</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>21</td>
<td>4.01</td>
<td>9.62</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>43</td>
<td>3.49</td>
<td>9.48</td>
<td>7.26</td>
<td>2.00</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>64</td>
<td>3.00</td>
<td>9.94</td>
<td>7.26</td>
<td>1.79</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>83</td>
<td>2.38</td>
<td>9.86</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>101</td>
<td>2.21</td>
<td>9.62</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>125</td>
<td>2.83</td>
<td>9.94</td>
<td>7.26</td>
<td>1.79</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>148</td>
<td>2.60</td>
<td>9.94</td>
<td>7.26</td>
<td>1.79</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>174</td>
<td>2.38</td>
<td>9.86</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>199</td>
<td>2.21</td>
<td>9.62</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>221</td>
<td>2.00</td>
<td>9.94</td>
<td>7.26</td>
<td>1.79</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>243</td>
<td>2.38</td>
<td>9.86</td>
<td>7.26</td>
<td>1.99</td>
<td>1.77</td>
<td>1.17</td>
<td>1.17</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Table C.23: TXF-ICP-MS Data
Table C.24: S12-06 XL24 Profile 2

<table>
<thead>
<tr>
<th>Distance from rim (µm)</th>
<th>An (mol%)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Ti (ppm)</th>
<th>Fe (ppm)</th>
<th>Sr (ppm)</th>
<th>Ba (ppm)</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Nd (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>38.6</td>
<td>3.0</td>
<td>181</td>
<td>3033</td>
<td>56913</td>
<td>163</td>
<td>2680</td>
<td>465</td>
<td>216</td>
<td>5.12</td>
<td>7.58</td>
<td>2.64</td>
<td>3.36</td>
</tr>
<tr>
<td>26</td>
<td>36.8</td>
<td>3.0</td>
<td>179</td>
<td>3129</td>
<td>54212</td>
<td>154</td>
<td>2654</td>
<td>447</td>
<td>216</td>
<td>5.04</td>
<td>7.02</td>
<td>1.77</td>
<td>2.97</td>
</tr>
<tr>
<td>45</td>
<td>34.6</td>
<td>4.5</td>
<td>191</td>
<td>3869</td>
<td>50962</td>
<td>205</td>
<td>2762</td>
<td>455</td>
<td>268</td>
<td>5.14</td>
<td>6.47</td>
<td>2.52</td>
<td>3.44</td>
</tr>
<tr>
<td>66</td>
<td>40.1</td>
<td>4.9</td>
<td>187</td>
<td>3030</td>
<td>59090</td>
<td>213</td>
<td>2724</td>
<td>472</td>
<td>231</td>
<td>4.73</td>
<td>5.88</td>
<td>1.97</td>
<td>2.84</td>
</tr>
<tr>
<td>87</td>
<td>48.2</td>
<td>6.7</td>
<td>188</td>
<td>2240</td>
<td>70932</td>
<td>208</td>
<td>2643</td>
<td>503</td>
<td>148</td>
<td>3.43</td>
<td>5.03</td>
<td>1.62</td>
<td>3.48</td>
</tr>
<tr>
<td>109</td>
<td>51.1</td>
<td>9.6</td>
<td>184</td>
<td>2012</td>
<td>75336</td>
<td>250</td>
<td>2627</td>
<td>521</td>
<td>110</td>
<td>2.56</td>
<td>3.81</td>
<td>1.38</td>
<td>2.59</td>
</tr>
<tr>
<td>132</td>
<td>52.3</td>
<td>12.9</td>
<td>180</td>
<td>1751</td>
<td>77054</td>
<td>231</td>
<td>2559</td>
<td>526</td>
<td>91</td>
<td>2.31</td>
<td>3.45</td>
<td>1.05</td>
<td>2.91</td>
</tr>
<tr>
<td>154</td>
<td>53.9</td>
<td>14.3</td>
<td>181</td>
<td>1704</td>
<td>79405</td>
<td>243</td>
<td>2616</td>
<td>535</td>
<td>82</td>
<td>2.07</td>
<td>3.04</td>
<td>0.99</td>
<td>2.38</td>
</tr>
<tr>
<td>176</td>
<td>55.4</td>
<td>11.0</td>
<td>178</td>
<td>1567</td>
<td>81601</td>
<td>236</td>
<td>2614</td>
<td>531</td>
<td>68</td>
<td>2.06</td>
<td>2.85</td>
<td>1.03</td>
<td>2.19</td>
</tr>
<tr>
<td>198</td>
<td>55.8</td>
<td>7.2</td>
<td>179</td>
<td>1553</td>
<td>82227</td>
<td>244</td>
<td>2694</td>
<td>519</td>
<td>66</td>
<td>1.88</td>
<td>2.65</td>
<td>1.13</td>
<td>2.63</td>
</tr>
<tr>
<td>220</td>
<td>55.7</td>
<td>4.7</td>
<td>176</td>
<td>1547</td>
<td>81986</td>
<td>245</td>
<td>2626</td>
<td>515</td>
<td>68</td>
<td>1.74</td>
<td>3.01</td>
<td>0.00</td>
<td>2.65</td>
</tr>
</tbody>
</table>
Appendix D

Plagioclase diffusion model code

D.1 1 Stage model

```
An   = % Anorthite profile
x_An = % Positions of the anorthite profile points
C_mes = % Measured Mg
x_C  = % Location of measured Mg points
T    = % Temperature in Kelvin
delta_t = % Time step in seconds
j_max = % Number of time steps to run diffusion model
a    = % Parameter from partition coefficient equation
b    = % Parameter from partition coefficient equation
Title = % Title for graphs

i_max  = length(x_An);
C_eq   = zeros(i_max,1);
C_init = zeros(i_max,1);
C_High = zeros(i_max,1);
C_Low  = zeros(i_max,1);

% Calculate initial Mg profile from An [via Ti]
for i = 1:i_max
    if An(i) < 0.69
        C_init(i) = 3 * 310 * exp((6.13 - ...
                                (26100 / (7670 + 4160 * An(i))) * An(i) ...
        - (25700 / (7670 + 4160 * An(i))));
    else
        C_init(i) = 3 * 2130 * exp((3.33 - ...
                                (26100 / (7670 + 4160 * An(i))) * An(i) ...
        - (25700 / (7670 + 4160 * An(i))));
    end
end
```
% Upper bound on the initial Mg
for i = 1:i_max
 if An(i) < 0.66
 C_High(i) = 3 * 276 * exp((6.72 - ...
 (26100 / (7670 + 4160 * An(i))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 else
 C_High(i) = 3 * 3150 * exp((3.03 - ...
 (26100 / (7670 + 4160 * An(i))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 end
end

% Lower bound on the initial Mg
for i = 1:i_max
 if An(i) < 0.72
 C_Low(i) = 3 * 340 * exp((5.62 - ...
 (26100 / (7670 + 4160 * An(i))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 else
 C_Low(i) = 3 * 1320 * exp((3.73 - ...
 (26100 / (7670 + 4160 * An(i))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 end
end

% Find location of the first measurement
first_C = find(abs(x_An - min(x_C)) == min(abs(x_An - min(x_C))));
C_eq(first_C) = C_mes(length(C_mes));

for i = first_C+1:1:i_max
 C_eq(i) = C_eq(i-1) * exp(a * (An(i)-An(i-1)) ... / (8.3144621*T));
end

for i = first_C-1:-1:1
 C_eq(i) = C_eq(i+1) * exp(a * (An(i)-An(i+1)) ... / (8.3144621*T));
end

% Plot initial and equilibrium profiles
figure

plot(x_An, C_init, 'LineStyle', '-', 'Color', [0 170/255 0], ...
 'DisplayName', 'Initial')

plot(x_An, C_High, 'LineStyle', '-', 'Color', [85/255 1 85/255], ...
 'DisplayName', 'Uncertainty')

plot(x_An, C_Low, 'LineStyle', '-', 'Color', [85/255 1 85/255], ...
 'DisplayName', 'Uncertainty')

plot(x_An, C_eq, 'LineStyle', '-', 'Color', [0 85/255 212/255], ...
 'DisplayName', 'Equilibrium')

plot(x_C, C_mes, 'LineStyle', 'none', 'Color', [212/255 0 0], ...
 'DisplayName', 'Measured', ...
 'Marker', '+')

title(Title)

legend('show', 'Location', 'NorthWest')

% Calculate initial parameters

% Calculate the distance between points
delta_x = (x_An(2) - x_An(1));

% Calculate total time for model
t_max = j_max * delta_t;

% Add an extra row rather than overwrite An data in making crystal "symmetrical"
i_max = length(x_An)+1;
x2 = x_An;
x2(i_max) = x_An(i_max-1) + delta_x;

% Variables for before and after each diffusion step
C_old = C_init;
C_new = C_init;

% External boundary condition
Out_BC = C_eq(1);

% make crystal "symmetrical"
An(i_max) = An(i_max-1);
C_init(i_max) = C_init(i_max-1);

% Diffusion coefficient equation
% D = 10^(m_An * An + c_An) * exp(-act_en/RT)
m_An = -3.46;
c_An = -2.63;
act_en = 287000;

% Check for stability
D_max = 10^(m_An*min(An)+c_An) * exp(-act_en/(8.3144621*T)) ... * 10^-12;
r = D_max * delta_t / delta_x^2 %#ok < NOPRT>
if r >= 0.5;
 t_max = 0;
 error('plag_diff:Courant', strcat('Courant condition unfulfilled: r = ', num2str(r,3), ' >= 0.5'))
end

% Diffusion model
% Calculate constants invariant with time, so they are only calculated once
rr = delta_t / delta_x^2;
ART = a / (8.3144621*T);
D = 10.^(m_An * An + c_An) * exp(-act_en ... / (8.3144621 * T)) * 10^-12;
delta_D = zeros(i_max,1);
delta_An = zeros(i_max,1);
delta_An2 = zeros(i_max,1);
for i = 2:1:i_max-1
 delta_D(i) = (D(i+1) - D(i));
 delta_An(i) = (An(i+1) - An(i));
 delta_An2(i) = An(i+1) - 2*An(i) + An(i-1);
end
D_delta_An = D .* delta_An;
D_delta_An2 = D .* delta_An2;
delta_D_delta_An = delta_D .* delta_An;

% Diffuse
for j = 1:j_max
 C_new(1) = Out_BC;
 for i = 2:1:i_max-1
 C_new(i) = C_old(i) + rr * (...
\[D(i) \times (C_{old}(i+1) - 2C_{old}(i) + C_{old}(i-1)) \ldots + \delta_D(i) \times (C_{old}(i+1) - C_{old}(i)) \ldots - ART \times (D_{\Delta An}(i) \times (C_{old}(i+1) - C_{old}(i)) \ldots + C_{old}(i) \times D_{\Delta An2}(i)) \]

\textbf{end}

% Symmetrical crystal (internal boundary condition)
\textbf{C}_\text{new}(i_{\text{max}}) = \text{C}_\text{new}(i_{\text{max}-1});

\text{C}_{\text{old}} = \text{C}_{\text{new}};
\textbf{end}

% remove the extra datapoint added to make the crystal symmetrical
\text{C}_\text{new}(i_{\text{max}}) = [];

% Plot the results
% Calculate the length of time diffusion has taken place over % in a sensible unit, and append it to graph label
\text{time}_\text{in} = 'years';

\textbf{if} strcmp(\text{time}_\text{in},'\text{days}') \textbf{then}
 \text{t}_\text{max} = \text{t}_\text{max}/(60*60*24) \textbf{else if} strcmp(\text{time}_\text{in},'\text{years}') \textbf{then}
 \text{t}_\text{max} = \text{t}_\text{max}/(60*60*24*365.25) \textbf{else}
 \text{time}_\text{in} = 'seconds';
\textbf{end}

% Plot results
\textbf{figure('Name', [\text{Title}, ' for ', num2str(t_max,3), ', ', time_in])}
\textbf{plot}(x_{\text{An}}, \text{C}_\text{init}, '\text{LineStyle}', '-', '\text{Color}', [0 170/255 0], ...
 'DisplayName', 'Initial')
\textbf{hold on}
\textbf{plot}(x_{\text{An}}, \text{C}_\text{new}, '\text{LineStyle}', '-', '\text{Color}', 'k', 'DisplayName', ...
 [num2str(t_max,3), ', ', time_in, ', @ ', num2str(T), 'K'])
\textbf{plot}(x_{\text{An}}, \text{C}_\text{eq}, '\text{LineStyle}', '-', '\text{Color}', [0 85/255 212/255], ...
 'DisplayName', 'Equilibrium')
plot(x_C, C_mes, 'LineStyle', 'none', 'Color', [212/255 0 0], ...
 'DisplayName', 'Measured', 'Marker', '+')

plot(x_An, C_High, 'LineStyle', '-', 'Color', [85/255 1 85/255], ...
 'DisplayName', 'Uncertainty')

plot(x_An, C_Low, 'LineStyle', '-', 'Color', [85/255 1 85/255], ...
 'DisplayName', 'Uncertainty')

% Plot labels
ylabel('Mg (ppm)')
xlabel('Distance from rim (microns)')
title(Title)
legend('show', 'Location', 'NorthWest')
D.2 2 stage model

An = % Anorthite profile
x_An = % Positions of the anorthite profile points
C_mes = % Measured Mg
x_C = % Location of measured Mg points
T_core = % Temperature for the first (core) stage
T_rim = % Temperature for the second (whole crystal) stage
i_min = % Location of the core/rim boundary (in steps)
delta_t = % Time step in seconds
j_max = % Number of time steps to run diffusion model
a = % Parameter from partition coefficient equation
b = % Parameter from partition coefficient equation>Title = % Title for graphs
Core_Yr = % Time(s) in years to run the first stage
Rim_Yr = % Time(s) in years to run the second stage

i_max = length(x_An);
C_eq = zeros(i_max,1);
C_init = zeros(i_max,1);
C_High = zeros(i_max,1);
C_Low = zeros(i_max,1);

% Calculate initial Mg profile from An [via Ti]
for i = 1:i_max
 if An(i) < 0.69
 C_init(i) = 3 * 310 * exp((6.13 - ...
 (26100 / (7670 + 4160 * An(i)))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 else
 C_init(i) = 3 * 2130 * exp((3.33 - ...
 (26100 / (7670 + 4160 * An(i)))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 end
end

% Upper bound on the initial Mg
for i = 1:i_max
 if An(i) < 0.66
 C_High(i) = 3 * 276 * exp((6.72 - ...
 (26100 / (7670 + 4160 * An(i)))) * An(i) ...
 - (25700 / (7670 + 4160 * An(i))));
 else
 C_High(i) = 3 * 3150 * exp((3.03 - ...
 (26100 / (7670 + 4160 * An(i)))) * An(i) ...
Appendix D. Plagioclase diffusion model code

- \((25700 / (7670 + 4160 * \text{An}(i))));

end
end

% Lower bound on the initial Mg
for i = 1:i_max
 if \text{An}(i) < 0.72
 \text{C_Low}(i) = 3 \times 340 \times \exp((5.62 - \ldots
 (26100 / (7670 + 4160 * \text{An}(i)))) \times \text{An}(i) \ldots
 - (25700 / (7670 + 4160 * \text{An}(i))));
 else
 \text{C_Low}(i) = 3 \times 1320 \times \exp((3.73 - \ldots
 (26100 / (7670 + 4160 * \text{An}(i)))) \times \text{An}(i) \ldots
 - (25700 / (7670 + 4160 * \text{An}(i))));
 end
end

% Find location of the first measurement
\text{first_C} = \text{find}([\text{abs}(\text{x_An} - \text{min}(\text{x_C})) \ldots
 == \text{min}(\text{abs}(\text{x_An} - \text{min}(\text{x_C})))));
\text{C_eq(}\text{first_C}) = \text{C_mes(}\text{length}(\text{C_mes}));

for i = \text{first_C+1}:1:i_max
 \text{C_eq}(i) = \text{C_eq}(i-1) \times \exp(\text{a} \times (\text{An}(i)-\text{An}(i-1)) \ldots
 / (8.3144621*T));
end

for i = \text{first_C-1}:1:1
 \text{C_eq}(i) = \text{C_eq}(i+1) \times \exp(\text{a} \times (\text{An}(i)-\text{An}(i+1)) \ldots
 / (8.3144621*T));
end

% Plot initial and equilibrium profiles
\text{figure}
\text{plot}(\text{x_An}, \text{C_init}, 'LineStyle' ,'-', 'Color', [0 170/255 0], ...'
 'DisplayName', 'Initial')
\text{plot}(\text{x_An}, \text{C_High}, 'LineStyle' ,'-', 'Color', [85/255 1 85/255], ...'
 'DisplayName', 'Uncertainty')
\text{plot}(\text{x_An}, \text{C_Low}, 'LineStyle' ,'-', 'Color', [85/255 1 85/255], ...'
 'DisplayName', 'Uncertainty')
plot(x_An, C_eq, 'LineStyle', '-', 'Color', [0 85/255 212/255], ...
 'DisplayName', 'Equilibrium')

plot(x_C, C_mes, 'LineStyle', 'none', 'Color', [212/255 0 0], ...
 'DisplayName', 'Measured', ...
 'Marker', '+')

title(Title)

legend('show', 'Location', 'NorthWest')

%% Contestants for calculating the diffusion coefficient using
% \(D = 10^{(m_{An} \cdot An + c_{An})} \cdot \exp\left(\frac{\text{act_en}}{RT}\right) \)

\[
m_{An} = -3.46;
\]

\[
c_{An} = -2.63;
\]

\[
\text{act_en} = 287000;
\]

% Combine upper and lower bounds of the initial profile
C_un = [C_High; NaN; C_Low];

% Calculate delta_t to give a maximum r of 0.48 (fulfilling the
% Courant condition) for both the rim and core separately
delta_x = x_An(2) - x_An(1);

D_max = 10^(m_An * min(An) + c_An) * exp(-act_en / ...
 (8.3144621 * T_core)) * 10^-12;
delta_t_core = 0.48 * delta_x^2 / D_max;

D_max = 10^(m_An * min(An) + c_An) * exp(-act_en / ...
 (8.3144621 * T_rim)) * 10^-12;
delta_t_rim = 0.48 * delta_x^2 / D_max;

% Turn times from years into multiples of delta_t (in s)
Core = fix(Core_Yr * 31557600 / delta_t_core);
Rim = fix(Rim_Yr * 31557600 / delta_t_rim);

% Call the diffusion functions
for n1 = 1:1:length(Core)

 if n1 == 1
 [C_new_core, t_max] = DiffCore (delta_t_core, ...
 Core(n1), T_core, An, x_An, C_init, i_min, ...
 element, m_An, c_An, act_en);
 end

end
else
 [C_new_core, t_maxb] = DiffCore (delta_t_core, ...
 Core(n1) - Core(n1-1), T_core, An, x_An, ...
 C_new_core, i_min, element, m_An, c_An, act_en);
 t_max = t_max + t_maxb;
end

for n2 = 1:1:length(Rim)
if n2 == 1
 [C_new_rim, t_max2] = DiffRim (delta_t_rim, ...
 Rim(n2), T_rim, An, x_An, C_new_core, C_eq, ...
 element, m_An, c_An, act_en);
else
 [C_new_rim, t_max2b] = DiffRim (delta_t_rim, ...
 Rim(n2) - Rim(n2-1), T_rim, An, x_An, ...
 C_new_rim, C_eq, element, m_An, c_An, act_en);
 t_max2 = t_max2 + t_max2b;
end

PlotDiff (Title, t_max, t_max2, x_An, C_init, C_un, ...
 C_eq, x_C, C_mes, C_new_core, T_core, ...
 C_new_rim, T_rim, element);
end

function [C_new, t_max] = DiffCore (delta_t, j_max, ...
T_core, An, x_An, C_init, i_min, element, m_An, ...
c_An, act_en)

% Calculate the first stage in a 2 stage diffusion model
%
% Output:
% C_new = final profile
% C_old = profile after diffusion in just the core
%
% Inputs:
% delta_t = seconds per time step
% j_max = number of time steps for the core
% j_max2 = number of time steps for the core + rim
% T_core = temperature for core diffusion (in K)
% T_rim = temperature for rim diffusion (in K)
% An = anorthite profile
% x_An = location of the anorthite measurements (in microns)
% C_eq = equilibrium profile
% C_init = initial profile
% C_un = uncertainty in the initial profile
% i_min = location of the core/rim boundary (in pixels)
% element = element diffusing
% m_An = Diffusion coefficient parameter
% c_An = Diffusion coefficient parameter
% act_en = Diffusion coefficient parameter
% Title = title for the graph
%
% Diffusion coefficient is in the form:
% D = 10^(m_An * An + c_An) * exp(act_en / RT)
%
% adding an extra row rather than overwriting An data
% in making crystal "symmetrical"

i_max = length(x_An)+1;
x_An(i_max) = x_An(i_max-1);
An(i_max) = An(i_max-1);

% Calculate the time core diffuses in years

C_old = C_init;
C_old(i_max) = C_init(i_max-1);
C_new = C_old;

A = -21600;

% Calculate constants invariant with time, so they are only
% calculated once

delta_x = x_An(2) - x_An(1);
rr = delta_t / delta_x^2;
delta_An = zeros(i_max,1);
delta_An2 = zeros(i_max,1);
for i = 2:1:i_max-1
 delta_An(i) = (An(i+1) - An(i));
 delta_An2(i) = An(i+1) - 2*An(i) + An(i-1);
end

% Core

% Calculate constants invariant with time at core temperatures

ART = A / (8.3144621*T_core);
D = 10 .^ (m_An * An + c_An) * ...
 exp(-act_en / (8.3144621 * T_core)) ...
```
* 10^-12;
delta_D = zeros(i_max, 1);
for i = 2:1:i_max-1
    delta_D(i) = (D(i+1) - D(i));
end
D_delta_An = D .* delta_An;
D_delta_An2 = D .* delta_An2;
delta_D_delta_An = delta_D .* delta_An;

% Diffuse
for j = 1:j_max
    for i = i_min:1:i_max-1
        C_new(i) = C_old(i) + rr * (...  
                    D(i) * (C_old(i+1) - 2*C_old(i) + C_old(i-1)) ...  
                     + delta_D(i) * (C_old(i+1) - C_old(i)) ...  
                     - ART * (D_delta_An(i) * (C_old(i+1) - C_old(i))...  
                     + C_old(i) * delta_D_delta_An(i) ...  
                     + C_old(i) * D_delta_An2(i)));
    end

% symmetrical crystal (internal boundary condition)
C_new(i_max) = C_new(i_max-1);
end

% remove the extra datapoint added to make the crystal
% symmetrical
C_new(i_max) = [];
end

function [C_new, t_max2] = DiffRim (delta_t, j_max2, T_rim, ...
                          An, x_An, C_init, C_eq, element, m_An, c_An, act_en)

% Calculate the second stage in a 2 stage diffusion model
%
% Output:
% C_new = final profile
% C_old = profile after diffusion in just the core
%
% Inputs:
% delta_t = seconds per time step
% j_max = number of time steps for the core
% j_max2 = number of time steps for the core + rim
```
D.2. 2 stage model

% T_core = temperature for core diffusion (in K)
% T_rim = temperature for rim diffusion (in K)
% An = anorthite profile
% x_An = location of the anorthite measurements (in microns)
% C_eq = equilibrium profile
% C_init = initial profile
% C_un = uncertainty in the initial profile
% i_min = location of the core/rim boundary (in pixels)
% element = element diffusing
% m_An = Diffusion coefficient parameter
% c_An = Diffusion coefficient parameter
% act_en = Diffusion coefficient parameter
% Title = title for the graph

% Diffusion coefficient is in the form:
% D = 10^(m_An * An + c_An) * \exp(act_en / RT)

% adding an extra row rather than overwriting An data
% in making crystal "symmetrical"

i_max = length(x_An)+1;
x_An(i_max) = x_An(i_max-1);
An(i_max) = An(i_max-1);

% Time whole crystal diffuses
t_max2 = delta_t * j_max2 / 31557600;

C_old = C_init;
C_old(i_max) = C_init(i_max-1);
C_old(1) = C_eq(1);
C_new = C_old;

A = -21600;

% Calculate constants invariant with time, so they are only
% calculated once
delta_x = x_An(2) - x_An(1);
rr = delta_t / delta_x^2;
delta_An = zeros (i_max,1);
delta_An2 = zeros (i_max,1);
for i = 2:1:i_max-1
 delta_An(i) = (An(i+1) - An(i));
 delta_An2(i) = An(i+1) - 2*An(i) + An(i-1);
end

% Core
% Calculate constants invariant with time at rim temperatures
ART = A / (8.3144621* T_rim);
D = 10 .^ (m_An * An + c_An) * ...
 exp(-act_en / (8.3144621 * T_rim)) ... * 10^-12;
delta_D = zeros(i_max,1);
for i = 2:1:i_max-1
 delta_D(i) = (D(i+1) - D(i));
end
D_delta_An = D .* delta_An;
D_delta_An2 = D .* delta_An2;
delta_D_delta_An = delta_D .* delta_An;
for j = 1:j_max2
 for i = 2:1:i_max-1
 C_new(i) = C_old(i) + rr * (...
 D(i) * (C_old(i+1) - 2*C_old(i) + C_old(i-1)) ...
 + delta_D(i) * (C_old(i+1) - C_old(i)) ...
 - ART * (D_delta_An(i) * (C_old(i+1) - C_old(i))...
 + C_old(i) * delta_D_delta_An(i) ...
 + C_old(i) * D_delta_An2(i)));
 end
 % symmetrical crystal (internal boundary condition)
 C_new(i_max) = C_new(i_max-1);
end
C_old = C_new;
end

% remove the extra datapoint added to make the crystal
% symmetrical
C_new(i_max)=[];
end
Appendix E

Plagioclase diffusion model results
Figure E.1: GS10-14 XL32
Figure E.2: GS10-14 XL66
Figure E.3: GS10-16 XL148
Figure E.4: GS10-17 XL60
Appendix E. Plagioclase diffusion model results

Figure E.5: GS10-17 XL71
Figure E.6: GS11-30b XL15
Figure E.7: GS11-30 XL18
Figure E.8: GS11-34a XL09
Appendix E. Plagioclase diffusion model results

Figure E.9: GS11-34a-XL14
Figure E.10: GS11-34a XL23
Figure E.11: GS11-39b XL29
Figure E.12: S12-05 XL03
Figure E.13: S12-06 XL24
Appendix F

Orthopyroxene diffusion model results
Figure F.1: Therasia dacite flow 5 (GS10-17)
Figure F.2: Therasia dacite flow 8 (GS10-14)
Figure F.3: Therasia dacite flow 9 (GS10-16)
Figure F.4: Cape Riva A (GS11-34a)
Figure F.4 continued: Cape Riva A (GS11-34a)
Figure F.5: Cape Riva B (S12-06)
Figure F.6: Cape Riva C (GS11-30b)
Figure F.7: Cape Riva C (S12-05)
Figure F.7 continued: Cape Riva C (S12-05)
Figure F.7 continued: Cape Riva D (GS11-39b)
Appendix G

Evolution of the crustal magma plumbing system during the build-up to the 22 ka caldera-forming eruption of Santorini (Greece)
Appendix G. Evolution of the crustal magma plumbing system

GN Fabbro*a,b,c, TH Druitt*a,b,c, S Scailletd

a Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, F-63000 Clermont-Ferrand, France.

b CNRS, UMR 6524, LMV, F-63038 Clermont-Ferrand, France.

c IRD, R 163, LMV, F-63038 Clermont-Ferrand, France.

d Institut des Sciences de la Terre d’Orleans (ISTO), INSU-CNRS – Université d’Orleans, 1A rue de la Ferollerie, 45071 Orleans, France.

* Corresponding author:

Email: g.fabbro@opgc.univ-bpclermont.fr

Phone: +33 (0)6 47 17 60 58

Fax: +33 (0)4 73 34 67 44

Authors’ accepted manuscript, published in the Bulletin of Volcanology, 75(12):1–21. The final publication is available at Springer via http://dx.doi.org/10.1007/s00445-013-0767-5
G.1 Abstract

The formation of caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8 ± 0.4 ka Cape Riva eruption of Santorini discharged $>10 \text{km}^3$ of crystal-poor dacitic magma along with $\ll 1 \text{km}^3$ of hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field, petrological, chemical and high-resolution $^{40}\text{Ar}/^{39}\text{Ar}$ chronological study of a sequence of lavas discharged prior to the Cape Riva eruption in order to constrain the crustal residence time of the Cape Riva magma reservoir. The lavas were erupted between 39~and 25 ka, forming a $\sim 2 \text{km}^3$ complex of dacitic flows, coulées and domes up to 200 m thick (Therasia dome complex). The Therasia dacites show little chemical variation with time, suggesting derivation from one or more thermally buffered reservoirs. Minor pyroclastic layers occur intercalated within the lava succession, particularly near the top. A prominent pumice fall deposit probably correlates with the 26-ka Y-4 ash layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape Riva eruption occurred no more than $2,800 \pm 1,400$ y after the final Therasia activity. The Cape Riva dacite is similar in major element composition to the Therasia dacites, but is poorer in K and most incompatible trace elements (e.g. Rb, Zr, LREE). The same chemical differences are observed between the Cape Riva and Therasia hybrid andesites, and between the calculated basaltic mixing endmembers of each series. The Therasia and Cape Riva dacites are distinct silicic magma batches and are not related by shallow processes of crystal fractionation or assimilation. The Therasia lavas were
therefore not simply precursory leaks from the growing Cape Riva magma reservoir. The change 21.8 ky ago from a magma series richer in incompatible elements to one poorer in those elements is one step in the well documented decrease with time of incompatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches are interpreted to have been emplaced sequentially into the upper crust beneath the summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out by the arrival of the second (Cape Riva). This constrains the crustal residence time of the Cape Riva reservoir to less than 2,800 ± 1,400 years, and the associated time-averaged magma accumulation rate to >0.004 km3 y$^{-1}$. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurization of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse.

Keywords: Santorini, magma reservoirs, melt accumulation, residence timescales, calderas

G.2 Introduction

Caldera-forming ignimbrite eruptions discharge large volumes (1-103 km3) of silicic magma from shallow reservoirs (Mason et al., 2004; Miller and Wark, 2008; Smith, 1979). The processes that generate such reservoirs, and the timescales on which those processes operate, are not completely understood (e.g. Bachmann and Bergantz, 2008a;
Costa, 2008; Gelman et al., 2013). This is particularly true of caldera systems such as Santorini that erupt crystal-poor silicic magmas (Allan et al., 2013; Bachmann and Bergantz, 2004; Druitt et al., 2012; Gualda et al., 2012b; Hildreth and Wilson, 2007; Wilson and Charlier, 2009).

The formation of caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust (Bachmann and Bergantz, 2004, 2008a; Lindsay et al., 2001). Large volumes of silicic melt are generated in crustal hot zones by fractional crystallization of mantle-derived basalt, partial melting of crustal rocks, defrosting of incompletely crystallized plutons (Annen et al., 2006; Hildreth, 1981; Hildreth and Moorbath, 1988; Solano et al., 2012). Fractional crystallization is driven by outgassing and cooling of magma during ascent (Blundy and Cashman, 2008). Partial melting of crustal rocks and pre-existing plutons is driven by heat advected by mantle-derived magma and magmatic volatiles (Bachmann and Bergantz, 2006; Hildreth, 1981; Huber et al., 2011). Silicic melt generation can occur over timescales of 10^5 to 10^4 years (Bachmann and Bergantz, 2006; Brown and Fletcher, 1999; Burgisser and Bergantz, 2011; Charlier et al., 2005; Huber et al., 2011; Klemetti et al., 2011). Magmatic crystal mushes generated by these processes may remain at depth, or may erupt en masse to form crystal-rich ignimbrites (the monotonous intermediates of Hildreth, 1981).

The formation of reservoirs of crystal-poor silicic magma requires the separation of melt from residual mush crystals, and the accumulation of that melt at a particular crustal level—either in situ within the mush (e.g. Bachmann and Bergantz, 2004), or at higher levels in the plumbing system (e.g. Allan et al., 2013). The rate at which
silicic melt can separate from crystals is limited by its high viscosity (Bachmann and Bergantz, 2008b; McKenzie, 1985). Possible mechanisms include gravitational separation through hindered settling of individual crystals, or compaction of a porous crystal network (Bachmann and Bergantz, 2004). Melt migration driven by shear or gas filter pressing may generate small, local segregations (Brown and Solar, 1998; Sisson and Bacon, 1999; Stevenson, 1989) that are subsequently concentrated into large melt lenses. Runaway reservoir growth requires rates of heat (and hence magma) input high enough to limit crystallisation and avoid plutonic death (Annen, 2009; Gelman et al., 2013; Schöpa and Annen, 2013).

Estimates of melt accumulation timescales for crystal-poor silicic magmas vary widely. Assembly of the rhyolitic magma reservoir that discharged the 600-650 km3 Bishop Tuff has been estimated as $\sim 10^5$ y, based on zircon ages and on the chemical similarity between the Bishop magma and earlier rhyolites (Hildreth and Wilson, 2007). However, element diffusion profiles and melt inclusion faceting in Bishop quartz crystals yield much shorter timescales (10^3–10^2 y; Gualda et al., 2012b; Wark et al., 2007). The reservoir that fed the 530 km3 Oruanui Ignimbrite at Taupo was assembled over 1600 years (Allan et al., 2013; Wilson and Charlier, 2009), and that of the ~ 35 km3 post-Oruanui ‘Y’ eruption was assembled over <1000 years (Sutton et al., 2000). The magma reservoir of the 30-60 km3 Minoan eruption at Santorini underwent a spurt of rapid growth in the centuries preceding venting (Druitt et al., 2012). Ascent of silicic melt into shallow reservoirs can occur in pulses with durations that are short compared to the repose period between eruptions (Druitt et al., 2012; Parks et al., 2012).

In this paper we study a sequence of silicic and intermediate lavas at Santorini
that were discharged prior to a $\geq 10\,\text{km}^3$ caldera-forming eruption of crystal-poor silicic magma (the 22-ka Cape Riva eruption). The lavas record the development of the crustal plumbing system over many thousands of years preceding the Cape Riva eruption. We present field, petrological and chemical data for these lavas, along with new, high-precision 40Ar/39Ar ages. The results enable us to place constraints on the residence timescale of the Cape Riva magma reservoir in the upper crust.

G.3 Geological Setting

Santorini Volcano lies on the Hellenic volcanic arc, which stretches between Greece and Turkey through the Aegean Sea, and owes its origin to the subduction of the African plate beneath the Eurasian plate (Le Pichon and Angelier, 1979; Nocquet, 2012; Papazachos et al., 2000). Santorini lies on continental crust about 23 km thick (Karagianni et al., 2005; Tirel et al., 2004). The boundary between the upper crust and lower crust lies at about 15 km depth (Konstantinou, 2010).

The volcanic history of Santorini has been described by Druitt et al. (1999). Volcanism commenced about 650 ka (Figure G.1). From about 360 ka onwards, activity consisted of multiple large ($>1\,\text{km}^3$) explosive eruptions alternating with periods of lava extrusion and minor explosive events. The last major eruption (Minoan eruption) occurred about 1639–1616 BCE (Manning et al., 2006) and discharged 30–60 km3 of magma (Pyle, 1990; Sigurdsson et al., 2006). Since the Minoan eruption there have been at least ten dacitic effusive eruptions, building up the Kameni intra-caldera volcano (Pyle and Elliott, 2006).

Santorini magmas are calc-alkaline to mildly tholeiitic, and range from basalt to
rhyodacite in composition (Druitt et al., 1999). The silicic magmas are generally poor in phenocrysts (<5–20 vol% on a vesicle-free basis). Phase-equilibria experiments (Andújar et al., 2010) have shown that mantle-derived basalt ascending beneath Santorini stagnates and fractionates to basaltic andesite at about 4 kb (≈15 km, assuming a mean upper crustal density of 2640 kg m$^{-3}$; Konstantinou, 2010), near the boundary between the upper and lower crust. The silicic magmas discharged during large eruptions are stored in the upper crust at 2 ± 0.5 kb (≈8 km) immediately prior to eruption (Cadoux et al., 2013).

Our study focuses on the products of the volcano from the period between 70 and 22 ka (Figure G.2). About 70 ky ago a caldera formed in the northern half of the volcanic field, probably as a result of one or more explosive eruptions (Druitt et al.,
G.3. Geological Setting

Figure G.2: Morphological evolution of Santorini between 70 ka and 21 ka, after Druitt et al. (1999). The dashed line is the present-day outline of the islands. Contours are at 100 m intervals (a) The volcano after collapse of the Skaros caldera, which happened some time before the first Skaros lava was erupted at 69 ± 7 ka (b) The maximum extent of the Skaros shield, which culminated with the 54 ± 3 ka Upper Scoria 2 eruption (c) The maximum extent of Therasia dome complex at ~25 ka (d) The island shortly after the ~22 ka Cape Riva eruption.

1999). Eruption of basaltic to andesitic lavas then built up a lava shield within this caldera (Skaros lava shield; 70–54 ka). The shield grew to over 350 m above present-day sea level, filling and partly overspilling the caldera (Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989). The volume of the shield has been estimated at about 12 km3 from reconstructions based on lavas exposed in the caldera cliffs (Druitt et al., 1999). Construction of the shield culminated 54 ky ago with an explosive eruption called Upper Scoria 2, which generated a rhyodacitic Plinian fall deposit overlain by voluminous andesitic scoria flows (Mellors and Sparks, 1991). Following Upper Scoria 2, about 2 km3 of silicic lavas were extruded across the summit and western flank of Skaros to form the Therasia dome complex.

At ~22 ka, a large silicic explosive eruption (the Cape Riva eruption) collapsed the Skaros-Therasia edifice (Druitt and Francaviglia, 1992). The eruption had an initial Plinian phase from a vent located somewhere in the northern part of the volcanic field. This was followed by the discharge of pyroclastic flows that laid down welded
ignimbrite, non-welded ignimbrite and lithic-rich lag deposits up to 25 m thick all over
the islands (Druitt and Sparks, 1982). The volume of magma discharged during the
Cape Riva eruption is poorly constrained, since most of the ignimbrite lies under the
sea. However distal tephra from the eruption, recognised as the Y-2 marine ash bed,
is found over a very wide area of the eastern Mediterranean and as far north as the
Island of Lesvos and the Sea of Marmara (Asku et al., 2008; Federman and Carey,
1980; Keller et al., 1978; Margari et al., 2007; Thunell et al., 1979; Wulf et al., 2002).
The dispersal area and thickness of the Y-2 ash are similar to those of the Z-2 ash
from the Minoan eruption, suggesting that the Cape Riva and Minoan eruptions were
of comparable magnitude (Asku et al., 2008; Narcisi and Vezzoli, 1999). Graphical
integration of Y-2 ash thicknesses recorded by the above authors yields a minimum
volume of \(\sim 10 \text{ km}^3 \). Since distal ashes commonly have comparable volumes to the
parent ignimbrite (e.g. Pyle, 1990), we very approximately infer a volume of \(>20 \text{ km}^3 \)
for the Cape Riva products, equivalent to \(>10 \text{ km}^3 \) of magma.

Remnants of the Skaros and Therasia lavas are widely exposed in the northern half
of the present day complex. The Skaros lavas are thickest (up to 300 m) on Thera,
and the Therasia lavas are thickest (up to 200 m) on Therasia. The products of the
Therasia and Cape Riva eruptions are the focus of the present paper.

G.4 Methodology

Lavas of the Therasia dome complex cropping out in the caldera cliffs were photo-
graphed from a boat, and the photos were merged using computer software and inter-
pred to produce synthetic sections detailing the relationships and lateral extents of
individual lavas. Correlations were checked by onland observations, and stratigraphic relationships were mapped out. Pumice layers and palaeosols between the lavas were also mapped. Lavas from four key stratigraphic levels were dated using the 40Ar/39Ar technique. The groundmass of each sample was separated, hand-picked, and cleaned in an ultrasonic bath of dilute nitric acid prior to irradiation in the Cd-lined fast neutron slot 51 of the Osiris reactor (CEA, Saclay) with sanidine ACR (1.206±0.002 Ma, Renne et al., 2011, 2010). Upon receipt from the nuclear reactor, the samples were analysed by multiple laser fusion using a high-sensitivity mm5400 mass spectrometer operated in pulse-counting mode following the experimental and correction procedures of Scaillet et al. (2011, 2008). More than 25 individual ages were extracted from each sample via a two-step fusion of ∼10 mg of groundmass replicates (see procedural details in Scaillet et al., 2011).

Representative samples of lava and pumice from the Therasia complex, and pumice and scoria from the Cape Riva deposits, were collected for chemical analysis. All samples were chosen to be as fresh and glassy as possible. Groundmass separates of selected lavas were obtained in order to analyse the compositions of the melt phases of the magmas. This was done using a magnetic separator, and interstitial glasses of pumice samples were concentrated by flotation in water. Remaining crystals were then removed by hand picking under an optical microscope. Major elements were analysed using inductively coupled plasma atomic emission spectroscopy (ICP AES) at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand. Measurements were calibrated using three standards: a blank (LiBO2), basalt (BR) and granite (GH). The DR-N and BHVO-2 standards were then passed as unknowns.
Trace elements were analysed using inductively coupled plasma mass spectroscopy (ICP MS) at the Institut des Sciences de la Terre, Université de Grenoble. The ICP MS analyses were calibrated using the BR standard, and the BVHO-2 and AGV-1 standards were passed as unknowns. Some previous Cape Riva samples of Druitt et al. (1999) were re-analysed for comparison with the data of those authors. These comparisons showed good agreement between the two datasets for the elements used in the present paper.

Phenocryst contents were calculated by mass balance from Zr concentrations in whole rock and groundmass analyses of individual samples, by assuming that the crystals contain no Zr. Zirconium behaves incompatibly in all magmas younger than 530 ka at Santorini (Druitt et al., 1999; Huijsmans, 1985), and zircon has never been observed as a mineral phase in those magmas. Proportions of the different phenocryst phases were estimated by image analysis of thin sections using the ImageJ software package (Rasband, 2012). Mineral compositions were analysed using the Cameca SX 100 electron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, using a beam current of 15 nA. Glasses were analysed with a beam current of 4 nA and a defocussed beam (10-15 µm) in order to limit Na loss. Fe–Ti oxide compositions were analysed either in touching pairs or in pairs (that would have been in contact with the same melt) adhering to the outside of the same pyroxene crystal.

Magmatic temperatures and oxygen fugacities were calculated with the ILMAT software package (Lepage, 2003) using the formulation of Andersen and Lindsley (1985) and Stormer (1983). This formulation has been found to give good agreement with data from phase-equilibria experiments within the 850-950 °C temperature range (Blundy...
and Cashman, 2008; Cottrell et al., 1999). Values we obtained using the formulation of Ghiorso and Evans (2008) are 10–20°C and 0.2–0.4 fO_2 log units higher than those obtained using Andersen and Lindsley (1985), for the temperature range in question.

G.5 Results

G.5.1 Field and stratigraphic relationships

Photographs and sketches of the Therasia cliffs are shown in Figure G.3; schematic diagrams summarising the architecture of the lavas are shown in Figure G.4 (with individual lavas numbered for reference). Lavas of the Therasia dome complex overlie Upper Scoria 2, separated by a palaeosol. They make up much of the present-day cliffs of Therasia (flows 1–24), and one lava crops out at the top of the caldera wall north of Fira town (flow 25). Thin lava flows occupying the same stratigraphic position (between Upper Scoria and Cape Riva) occur beneath the town of Oia (flow 26; Andesite of Oia of Druitt et al., 1999).

The lava succession on Therasia consists of many individual lava flows, coulées and domes (termed flows for short). Individual flows range in thickness up to 60 m (Figure G.5a); thin flows tend to be dark grey and glassy, whereas thicker ones are pale grey and devitrified. Many exhibit flow banding that is most evident in the thicker, devitrified flows. The greatest accumulated thicknesses occur near Cape Tripiti (∼150 m) and Mount Viglos (∼200 m), where, at each location, nine flows are stacked. Correlations of individual flows between the Tripiti and Viglos sections is difficult, as only two flows (3 and 4) are continuous between them. Flows 1 and 24 are compositionally
Figure G.3: Photos of the cliffs of Therasia, and the sketches drawn from them. Inset is a map of Therasia, showing where the photos of the cliffs were taken from. CR = Cape Riva, CTP = Cape Tripiti Pumice, US2 = Upper Scoria 2, MP = Middle Pumice
Figure G.4: Schematic representation of the different lava flows from the Therasia dome complex. Individual flow numbers are referred to in the text. Flows that were sampled and analysed are coloured, while unsampled flows are in grey. Where a correlation of two flows is made based on their chemistry, they are drawn in the same colour. Flows that have been 40Ar/39Ar dated are labelled with arrows; 40Ar/39Ar ages are weighted mean ages. The inset map has outcrops of the Therasia dome complex in pink.

very similar, and are probably the same flow. This is also true of flows 11 and 22.

Most of the lava flows on Therasia are dacitic to rhyodacitic, with two exceptions. First, the basal flows 1 and 24 are andesitic, and we refer to them jointly as the lower Therasia andesite. Second, the topmost flow on Mount Viglos (flow 22) is also andesitic, and we refer to this (and the compositionally similar flow 11) as the upper Therasia andesite. Enclaves of quenched basaltic magma with crenulated margins occur in some of the lowest lavas (flows 1 and 3) and towards the top of the succession (flows 22 and 25); rare gabbroic enclaves also occur. The widespread distribution of the Therasia lavas show that they were fed from vents extending from the summit to the western flank of the Skaros shield (Figure G.2). The feeder dyke of flow 3 is preserved at Cape Tripiti (Figure G.3b,c). The dyke is oriented NE–SW, parallel to the main
dyke trend in northern Thera and the alignment of the recent vents on the Kameni Islands (Druitt et al., 1999; Heiken and McCoy, 1984).

At least four dacitic pumice fall units and a phreatomagmatic tuff occur intercalated within the Therasia succession (Figure G.5c). The pyroclastic units are concentrated towards the top of the succession (younger than flow 7 at Tripti, and younger than flow 20 at Viglos), showing an increasing tendency for explosive activity with time during eruption of the Therasia dome complex. A single pumice fall deposit crops out between flows 24 and 27 below Manolas. The most prominent fall deposit is up
to a metre thick and widespread in the cliffs of southern Therasia (Figure G.5c). It occurs stratigraphically between lava flows 7 and 8, and is the product of a Plinian not recognized in previous studies. We name this unit the Cape Tripiti pumice fall deposit.

Palaeosols occur at several levels in the Therasia succession. A thick one separates the entire Therasia succession from Upper Scoria 2 (Figure G.5d). Another separates the lower Therasia andesite from overlying dacitic flows, showing that eruption of the lower Therasia andesite was both preceded, and followed, by significant time breaks. Local palaeosols also occur between some of the pyroclastic layers.

The andesite of Oia is both underlain and overlain by thick palaeosols. Long periods therefore separated its eruption from both the preceding Upper Scoria 2 eruption and the subsequent Cape Riva eruption. Four thin pumice fall layers (5–25 cm thick) occur within the palaeosol overlying the lava (sequence M11 of Vespa et al., 2006); they may correlate with the pumice layers intercalated within the lavas on Therasia, but this has not been checked chemically.

Products of the Cape Riva eruption are observed to overlie all lavas of the Therasia dome complex. They have been described in detail by (Druitt and Sparks, 1982), (Druitt, 1985), and (Druitt et al., 1999). The products of the eruption are predominantly dacitic, but minor amounts of andesitic scoria were erupted during the initial Plinian phase.
Table G.1: New 40Ar/39Ar ages for the Therasia dacites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Gauss-plot age (ka)</th>
<th>Weighted mean age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN 09-43</td>
<td>Flow 25</td>
<td>25.3 ± 1.4</td>
<td>24.6 ± 1.3</td>
</tr>
<tr>
<td>SAN 10-13</td>
<td>Flow 21</td>
<td>33.1 ± 1.1</td>
<td>33.2 ± 1.1</td>
</tr>
<tr>
<td>SAN 10-12</td>
<td>Flow 3</td>
<td>40.1 ± 2.2</td>
<td>39.4 ± 2.2</td>
</tr>
<tr>
<td>SAN 10-11</td>
<td>Flow 1</td>
<td>49.4 ± 2.5</td>
<td>48.2 ± 2.4</td>
</tr>
</tbody>
</table>

G.5.2 Age constraints

Radiometric dating of the Therasia lavas

The ages of flows 1, 3, 21 and 25 are reported as probability density plots in Figure G.6, along with the corresponding Gauss plots that reflect the statistical distribution of individual ages for each sample. Complete 40Ar/39Ar analytical data are reported in Supplementary Table S1 and are summarized in Table G.1, along with 2σ errors. All four samples exhibit relatively well behaved 40Ar/39Ar systematics in the form of unimodal density plots, with no (or only slightly) pronounced tails on either side of the mode. The homogeneity of the samples is reflected by the linear arrays formed by individual ages on the Gauss plots, indicating that they follow the distribution expected from the propagated Gaussian experimental errors. One exception is flow 3, which exhibits an age spread in excess of the variance expected from the analytical errors (i.e. excess-error scatter). This sample is, along with flow 1, the least glassy of the four, and both are characterized by slightly higher errors and some excess-error scatter. This suggests that flows 1 and 3 may have been affected by post-cooling alteration close to sea level near the base of the sequence, resulting in higher apparent ages (presumably due to K loss). In contrast, flows 21 and 25 are very glassy and pristine, with unusually tight error bars; especially flow 21.
Figure G.6: Probability density plots (below) and Gauss plots (above) of $^{40}\text{Ar}/^{39}\text{Ar}$ data obtained on four lava flows dated in the Therasia sequence. Ages reported above each plot are $\pm 2\sigma$ and represent inverse variance weighted mean ages (density plots) or best-fit apparent ages through the linear array (Gauss-plot). Empty symbols on Gauss-plots: data excluded from the fit. Red curve on density plots: density distribution with outlier removed; blue curve: density distribution of complete dataset. N: number of data points included in the fit over total number of runs for each sample.

To account for secondary alteration effects, the data from flows 1 and 3 were statistically screened by computing a weighted mean age using a MSWD cut-off value. This includes only the youngest sub-population conforming to a Gaussian distribution within each sample (see procedure in Gansecki et al., 1996; Scaillet et al., 2011). In every instance, the weighted mean age agrees with the age derived from the best-fit line through the corresponding Gauss-plot array (Figure G.6). In what follows we cite the weighted mean ages.

The ages all are consistent with observed field stratigraphic constraints, as sum-
Figure G.7: Summary of magma compositions and ages between 70 and 20 ka. Major explosive eruptions are represented by stars, with periods of edifice construction coloured in yellow. Periods of little or no preserved eruptive activity are left blank. The SiO₂ content of the eruptive products is shown on the right. Black symbols are whole rock compositions, and white symbols are groundmass composition. Skaros data is taken from Huijsmans (1985) ¹ Data and citations in Table G.2, ² date taken from Schwarz (2000) ³ date taken from Druitt et al. (1999)

marized in Figure G.7. The age of the basal flow (flow 1; 48.2 ± 2.4 ka) is consistent with the presence of a palaeosol separating it from the underlying Upper Scoria 2 (previously dated by ⁴⁰Ar/³⁹Ar at 54 ± 3 ka by Druitt et al. (1999), and with another palaeosol separating it from the overlying flow 3 (39.4 ± 2.2 ka). Flow 21 yields an age of 33.2±1.1 ka, and flow 25 (at Fira) gives an age of 24.6±1.3 ka. Taken as a whole, our ⁴⁰Ar/³⁹Ar data between the base (48.2 ka) and the top (24.6 ka) of the lava sequence define a ∼24 ky duration for the construction of the Therasia dome complex.
Correlation of the Cape Tripiti Pumice with the Y-4 deep-sea ash layer

The Cape Tripiti pumice is the most prominent pyroclastic layer in the Therasia sequence, and we have explored the possibility that, like most Plinian eruptions of Santorini, (Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978; Schwarz, 2000; Vinci, 1985; Wulf et al., 2002), the Cape Tripiti eruption left a recognisable ash layer in deep-sea sediments of the Aegean area. Previous studies have recognized a 2–7 cm-thick ash layer (Y-4 ash) preserved to the SE of Santorini; this ash lies stratigraphically beneath the Cape Riva Y-2 ash layer, and has an age of 25.8 ka estimated by interpolation in the sedimentary sequence of one core (Schwarz, 2000). The uncertainty on this age could be ±2 ka (J Keller, pers. comm). The mineralogy of the Y-4 ash (plag, opx, cpx) pinpoints its source to Santorini (Vinci, 1985). Schwarz (2000) explored the possibility that the Y-4 correlates with the rhyodacitic Plinian phase of Upper Scoria 2; however, the 40Ar/39Ar age data described above rule out this correlation, and show that the Y-4 lies chronologically in the period of the Therasia dome complex. We have analysed the interstitial glass of three pumice lumps from the Cape Tripiti deposit, and find excellent agreement with glass composition of the Y-4 (Figure G.8, Supplementary Table S2). A 26 ka age for the Cape Tripiti is consistent with all other age constraints (Figure G.7).

Synthesis of published dates for the Cape Riva eruption

The Cape Riva eruption has been dated previously by radiocarbon on charcoal from beneath the ignimbrite and via δ18O wiggle matching in deep-sea sequences hosting the distal equivalent Y-2 tephra layer (data and sources in Table G.2). Calibration of
the raw radiocarbon data against the curve of Fairbanks et al. (2005) returns a mean age of 21.8 ± 0.4 ka for Cape Riva (Table G.2). This yields an interval of $2,800 \pm 1,400$ (2σ) y between the youngest dated Therasia lava (flow 25) and the Cape Riva eruption. This is a maximum estimate for the interval separating the Cape Riva eruption from the Therasia lavas, since some of the undated flows on Therasia may be younger than flow 25, or a younger flow could have been erupted and not preserved.

G.5.3 Mineral chemistry and assemblages

In this section we present the petrology and chemistry of Therasia lavas and pumices younger than ~39 ka (i.e. flow 3), as well as the products of the Cape Riva eruption (Fig. 9). We exclude the lower Therasia andesite, which is significantly older, as well as the andesite of Oia. In so doing we focus on the effusive leaks of dacite during the build-up to the Cape Riva eruption.
Table G.2: Published ages for the Cape Riva eruption. The average of these ages is $21.8 \pm 0.4 \text{ ka} \ (2\sigma)$

<table>
<thead>
<tr>
<th>Uncalibrated 14C age (ka)a</th>
<th>Calibrated age (ka)</th>
<th>Method</th>
<th>Sample dated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.05 ± 0.34</td>
<td>21.46 ± 0.49b</td>
<td>14C</td>
<td>Charred trees from ignimbrite</td>
<td>Pichler and Friedrich (1976)</td>
</tr>
<tr>
<td>18.17 ± 0.21</td>
<td>21.63 ± 0.33b</td>
<td>14C</td>
<td>Charcoal from ignimbrite</td>
<td>Eriksen et al. (1990)</td>
</tr>
<tr>
<td>18.05 ± 0.34</td>
<td>22.47 ± 0.24b</td>
<td>14C</td>
<td>Peat below Y-2 tephra, Philippi basin, Greece</td>
<td>St Seymour et al. (2004)</td>
</tr>
<tr>
<td>18.15 ± 0.20</td>
<td>21.60 ± 0.32b</td>
<td>14C</td>
<td>Interpolation between sapropels dated using 14C</td>
<td>Asku et al. (2008)</td>
</tr>
<tr>
<td>17.38 ± 0.23</td>
<td>20.53 ± 0.26b</td>
<td>14C</td>
<td>Interpolation between isotopic stages dated by 231Pa/230Th</td>
<td>Thunell et al. (1979)</td>
</tr>
<tr>
<td>18.53 ± 0.15</td>
<td>21.75 ± 0.24b</td>
<td>14C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18.24 ± 0.14</td>
<td>22.14 ± 0.17b</td>
<td>14C</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a Published uncalibrated 14C age

b Calibrated using the curve of Fairbanks et al. (2005)

c Not included in the average
Figure G.9: Mineral compositions from the different rock units. Filled symbols are crystal cores or undifferentiated measurements, open symbols are crystal rims. Plagioclase populations are coloured according to their origin: orange symbols are groundmass crystals, blue symbols are populations that originated in a silicic magma and green symbols are populations that originated in a mafic magma. Some Cape Riva data taken from Druitt (1983). The fields of pyroxene compositions in the dacites (a, d) are shown on the other figures, for comparison.

Therasia products

Therasia dacites. The Therasia dacites have whole rock SiO₂ contents of 64.6–68.7 wt% and MgO contents of 0.7–1.5 wt%, with groundmass (i.e. melt) SiO₂ contents of 64.7–69.1 wt%. No systematic evolution of either whole rock or groundmass composition is observed with height in the lava succession (Figure G.7). The dacites contain 1-17 wt% of phenocrysts (with a smallest dimension >0.5 mm) of plagioclase (75-85 vol%), 2 pyroxenes (10-20%, with opx > cpx), Fe–Ti oxides (5–8%) and trace amounts of olivine. Apatite occurs as inclusions in orthopyroxene crystals. The glassy groundmass contains microlites of feldspar and Fe–Ti oxides. Plagioclase phenocrysts
are normally zoned, with cores of An$_{38-89}$ and rims of An$_{39-51}$, and commonly contain multiple internal dissolution surfaces and sawtooth zoning. The rims are euhedral, and are compositionally similar to plagioclase microlites in the groundmass (An$_{30-51}$). Orthopyroxene phenocrysts are euhedral and unzoned, and have compositions of Wo$_{3-4}$En$_{54-60}$Fs$_{36-42}$. Clinopyroxenes are also euhedral and unzoned, and their compositions are Wo$_{39-42}$En$_{36-43}$Fs$_{15-22}$. Some phenocrysts occur as aggregates of multiple euhedral crystals with brown interstitial glass. Xenocrysts of calcic plagioclase (An$_{60-89}$) occur frequently in the dacites, along with more calcic clinopyroxenes (Wo$_{47-50}$En$_{30-44}$Fs$_{8-20}$). There are also fragments of sub-solidus olivine-bearing gabbro, with some olivines that have broken down to form pyroxene-magnetite symplectites. Fe–Ti oxides from three different dacitic pumice fall deposits within the Therasia sequence record magmatic temperatures of 875 ± 5°C at an fO$_2$ of 13.4 ± 0.1, 896 ± 12°C at an fO$_2$ of 12.7 ± 0.3, and 926 ± 9°C at an fO$_2$ of 11.4 ± 0.2 (2σ, where σ is the standard error of the mean, Supplementary Table S3).

The similarity between phenocryst rims and groundmass microlite compositions suggests an equilibrium phenocryst rim assemblage in these lavas. Sawtooth zoning of plagioclase is interpreted as recording repeated recharge of the magmas by hotter magma during phenocryst growth. Glass-bearing phenocryst clusters were probably derived from crystal mush of the reservoir margins.

Therasia mafic enclaves. Quenched basaltic (49.6–51.8 wt% SiO$_2$; 5.4–8.6 wt% MgO) enclaves 1–10 cm in diameter are found in flows 3 and 11, where they make up <1% of the erupted volume. They contain phenocrysts of plagioclase (∼55 vol%), pyroxenes (∼35 vol%, with cpx ≫ opx) and olivine (∼10 vol%) set in a glassy, diktytax-
itic groundmass. Two populations of plagioclase phenocrysts with different core compositions, but similar rim compositions, are observed: (1) normally zoned crystals with cores of An$_{83-91}$ and rims of An$_{64-71}$; (2) reversely zoned crystals with cores of An$_{51-61}$, separated by a sieve-textured zone from rims normally zoned from An$_{82-86}$ to An$_{64-71}$. Plagioclase in the groundmass is An$_{32-42}$. Olivines are normally zoned from cores of Fo$_{77-82}$ to rims of Fo$_{53-60}$. Two clinopyroxene populations are found, although their textural relationships with the plagioclase populations are ambiguous. Both cpx populations are euhedral and unzoned, with compositions of (1) Wo$_{43-46}$En$_{42-46}$Fs$_{10-12}$ and (2) Wo$_{41-44}$En$_{39-43}$Fs$_{15-20}$. Rare orthopyroxenes with compositions of Wo$_{3}$En$_{67}$Fs$_{30}$ also occur.

The occurrence of two plagioclase populations with different core compositions, but similar, intermediate rim compositions is indicative of magma mixing. Plagioclases of population 1 are interpreted as derived from a basaltic melt, and those of population 2 from a more evolved melt. The cores of olivine crystals (molar Mg/Fe = 3.37–4.64) are in equilibrium with the whole rock (i.e. basaltic) composition (Mg/Fe = 1.20), assuming a crystal-melt partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970). The composition of population-2 clinopyroxenes is similar to that of the clinopyroxene phenocrysts in the dacite. The enclaves are interpreted as having formed by the inmixing of a small proportion of more evolved magma (possibly dacitic, containing population-2 plagioclase cores + population-2 cpx) into a basalt (containing population-1 plagioclase cores + olivine + population-1 cpx; Figure G.10). Mixing occurred long enough prior to eruption for plagioclase from the evolved component to partially melt (generating sieve texture), followed by overgrowth of equilibrium rim
Figure G.10: Summary of plagioclase populations in the Cape Riva and Therasia rocks. The numbers are values of molar % anorthite content of plagioclase compositions on plagioclases from both populations.

Upper Therasia andesite. The upper Therasia andesite (60.5 wt% SiO₂, 2.6 wt% MgO) contains 26 wt% of macroscopic crystals: plagioclase (75 vol%), pyroxenes (20 %, with opx ≈ cpx), Fe–Ti oxides (5 %) and trace amounts of olivine set in a glassy, 64 wt% SiO₂ groundmass containing microlites of plagioclase and magnetite. Three distinct populations of plagioclase are observed: (1) normally zoned crystals with cores of An₈₃–₈₉, and euhedral rims of An₅₇–₆₁; (2) crystals with cores of An₅₃–₆₀ separated by a sieve-textured zone from rims normally zoned from An₇₅–₈₇ to An₅₅–₇₀; (3) normally zoned crystals with cores as calcic as An₇₆ and rims of An₄₆–₅₅. Rare olivines have cores of Fo₈₀–₈₃, and rims of Fo₆₇–₆₉. Orthopyroxenes have compositions of
Appendix G. Evolution of the crustal magma plumbing system

Wo$_3$En$_{57-59}$Fs$_{38-39}$, and clinopyroxenes have compositions of Wo$_{39-42}$En$_{40-43}$Fs$_{15-20}$.

Plagioclase populations 1 and 2 texturally and compositionally resemble plagioclase populations 1 and 2 (respectively) in the basaltic enclaves; population 3 resembles plagioclase phenocrysts in the dacites. The olivine rims have a molar Mg/Fe ratio of 1.99–2.22, which is in, or close to, equilibrium with the groundmass (Mg/Fe = 0.76), assuming a partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970); the cores have an Mg/Fe ratio of 4.11–4.81 and grew in equilibrium with a basaltic melt. The two pyroxenes are indistinguishable from the same phases in the dacites. The upper Therasia andesite is interpreted as a hybrid magma formed by the mixing of the basalt (containing plagioclase of populations 1 and 2 + olivine) represented by the enclaves, with typical Therasia dacite (containing population-3 plagioclase + opx + cpx). Mixing occurred long enough prior to eruption to permit physical homogenization of the resulting hybrid melt, but not long enough for crystals to grow rims in equilibrium with that melt, or for those from the dacite to be resorbed.

Cape Riva products

Cape Riva Dacite. Dacitic pumices of the Cape Riva eruption have whole rock compositions of 64–67 wt% SiO$_2$ and 1.0–1.9 wt% MgO, and interstitial glasses with 70–72 wt% SiO$_2$. Phenocryst phases and proportions are the same as in the Therasia dacites, with total contents ranging from 15 to 20 wt%. Plagioclase phenocrysts are euhedral, with rims of An$_{31-65}$, and cores as calcic as An$_{70}$. As in the Therasia dacites, plagioclase phenocrysts in the Cape Riva dacite contain complex dissolution surfaces and saw tooth zoning. Rare xenocrysts of An$_{70-96}$ also occur. Orthopyroxene phenocrysts have compositions of Wo$_3$En$_{52-68}$Fs$_{45-29}$, and clinopyroxenes from Wo$_{44}$En$_{41}$Fs$_{15}$
to Wo$_{40}$En$_{36}$Fs$_{24}$. Touching Fe–Ti oxide pairs give temperatures of 879±15 °C and fO_2 of -12.9 ± 0.4 (Cadoux et al., 2013).

Cape Riva mafic enclaves. Millimetre-sized quenched blebs of basaltic magma occur dispersed ($\ll 1\%$) through the Cape Riva dacite, and in banded pumices containing the dacite and andesite mingled together. They contain An$_{90-96}$ plagioclase, Fo$_{72-84}$ olivine, Wo$_{41-44}$En$_{36-41}$Fs$_{15-23}$ cpx and rare Wo$_3$En$_{68}$Fs$_{29}$ opx. The enclaves have microcrenulated surface textures, and many have a single crystal or xenocrystic fragment at their centres. They are interpreted as small fragments of chilled basaltic magma.

Cape Riva andesite. The Cape Riva andesitic scoria has 60–62 wt% SiO$_2$ and 3.2–2.5 wt% MgO; it contains $\sim 12\%$ macroscopic crystals of plagioclase, olivine, clinopyroxene and magnetite set in brown dacitic glass with 63.5 wt% SiO$_2$. The pure andesitic component (free of any in-mingled streaks of dacite) contains two populations of plagioclase: (1) a calcic population of An$_{70-96}$, with a discrete population of euhedral, unzoned grains of An$_{90-96}$, and (2) a less abundant population with cores up to An$_{52}$ and rims of An$_{30-40}$. Olivines are compositionally uniform (Fo$_{84}$). Augites occur sparsely as microphenocrysts of Wo$_{40-41}$En$_{41-43}$Fs$_{19}$. No orthopyroxene has been observed.

The olivines and population-1 plagioclases in the andesite resemble phenocrysts present in the basaltic enclaves, whereas population-2 plagioclase resembles phenocrysts in the dacites. Genesis of the Cape Riva andesite is inferred to have involved the mixing of basaltic and dacitic magmas. Eruption occurred long after mixing for the hybrid glass to become homogeneous at the scale of the electron beam ($\sim 10\, \mu m$).
G.5.4 Whole rock chemistry and mixing systematics

Representative samples of each unit are shown in Table G.3, and the complete dataset is presented in Supplementary Table S4. We have used a series of variation diagrams showing the whole rock compositions of the Therasia and Cape Riva magmas, plus those of the lavas of the Skaros shield (from Huijsmans, 1985) to gain insight into the petrogenesis of the different magmas (Figs 11 and 12). Typical fractionation trends for Santorini magmas are also shown (Druitt et al., 1999; Huijsmans, 1985; Mann, 1983).

Figure G.11 shows the variations of five key major oxides (CaO, MgO, FeO, TiO$_2$, P$_2$O$_5$) and two strongly compatible trace elements (Cr and Ni). On the plots of CaO and MgO (also Na$_2$O, Al$_2$O$_3$, V and Sc) on which typical fractionation trends are weakly curved, all the Therasia and Cape Riva magmas fall on, or close to, the fractionation trend. However, on the plots of FeO, TiO$_2$, P$_2$O$_5$, Cr and Ni, on which the fractionation trends are strongly curved, the Cape Riva hybrid andesite falls systematically off the fractionation trend. This is what we would expect to see if it was generated by the mixing of mafic and silicic end-members. The upper Therasia hybrid andesite also falls off the fractionation trend on plots of FeO and TiO$_2$, (it does not on the other plots because mixing occurred along the fractionation trend, not across it).

Mixing models using the ‘PetroGraph’ software (Petrelli et al., 2005) successfully reproduce the compositions of the upper Therasia and Cape Riva hybrid andesites (Table G.5). In the case of the upper Therasia andesite, low Cr and Ni require the mafic end-member to also have low Cr and Ni. The relatively high P$_2$O$_5$, close to the fractionation trend, requires the silicic end-member to have a high P$_2$O$_5$ content, limiting it to a silica content of 64–67 wt%.

The upper Therasia andesite can be
Table G.3: Representative whole rock and groundmass analyses of the Therasia and Cape Riva products

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Therasia mafic enclave</th>
<th>Upper Therasia andesite</th>
<th>Therasia dacite</th>
<th>Cape Riva andesite</th>
<th>Cape Riva dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS10-43</td>
<td>Flow 22</td>
<td>51.87</td>
<td>60.26</td>
<td>66.00</td>
<td>60.19</td>
<td>65.84</td>
</tr>
<tr>
<td>GS10-22</td>
<td>Flow 22</td>
<td>19.07</td>
<td>17.16</td>
<td>15.38</td>
<td>16.43</td>
<td>15.40</td>
</tr>
<tr>
<td>GS10-17</td>
<td>Flow 5</td>
<td>0.89</td>
<td>0.86</td>
<td>0.75</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>S09-41</td>
<td>Cape Riva A</td>
<td>8.08</td>
<td>6.05</td>
<td>4.66</td>
<td>6.58</td>
<td>4.88</td>
</tr>
<tr>
<td>S09-40</td>
<td>Cape Riva A</td>
<td>5.44</td>
<td>2.66</td>
<td>1.08</td>
<td>3.17</td>
<td>1.16</td>
</tr>
<tr>
<td>Major elements (ICP-AES, wt% dry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>10.16</td>
<td>5.98</td>
<td>3.15</td>
<td>6.20</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.30</td>
<td>4.52</td>
<td>5.48</td>
<td>4.63</td>
<td>5.84</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>FeO_T¹</td>
<td>0.14</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Trace elements (ICP-MS, ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>16.2</td>
<td>18.1</td>
<td>25.5</td>
<td>16.4</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>25.9</td>
<td>17.4</td>
<td>13.9</td>
<td>23.4</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>193.0</td>
<td>109.0</td>
<td>30.1</td>
<td>139.0</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>31.30</td>
<td>9.52</td>
<td>1.17</td>
<td>27.10</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>15.80</td>
<td>5.65</td>
<td>0.86</td>
<td>14.20</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>25.8</td>
<td>68.1</td>
<td>104.0</td>
<td>50.0</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>323</td>
<td>231</td>
<td>133</td>
<td>185</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>23.8</td>
<td>37.9</td>
<td>50.8</td>
<td>38.5</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>108</td>
<td>200</td>
<td>321</td>
<td>175</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>4.71</td>
<td>9.47</td>
<td>12.90</td>
<td>7.12</td>
<td>9.44</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>251</td>
<td>391</td>
<td>513</td>
<td>297</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>11.9</td>
<td>23.5</td>
<td>32.2</td>
<td>19.0</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>26.9</td>
<td>49.5</td>
<td>66.5</td>
<td>40.7</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>3.37</td>
<td>5.93</td>
<td>7.70</td>
<td>4.98</td>
<td>6.09</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>14.2</td>
<td>23.4</td>
<td>30.1</td>
<td>20.4</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>3.43</td>
<td>5.40</td>
<td>6.91</td>
<td>5.14</td>
<td>5.77</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.97</td>
<td>1.29</td>
<td>1.43</td>
<td>1.29</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>3.67</td>
<td>5.57</td>
<td>7.14</td>
<td>5.56</td>
<td>6.44</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.62</td>
<td>0.92</td>
<td>1.20</td>
<td>0.95</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>3.92</td>
<td>5.96</td>
<td>7.94</td>
<td>6.16</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.84</td>
<td>1.27</td>
<td>1.68</td>
<td>1.33</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>2.53</td>
<td>3.89</td>
<td>5.20</td>
<td>4.11</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>2.42</td>
<td>3.94</td>
<td>5.30</td>
<td>4.08</td>
<td>4.92</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.37</td>
<td>0.59</td>
<td>0.81</td>
<td>0.62</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>2.78</td>
<td>5.27</td>
<td>7.51</td>
<td>4.69</td>
<td>6.22</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.29</td>
<td>0.63</td>
<td>0.92</td>
<td>0.50</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

¹ FeO_T is the total FeO and Fe₂O₃ content calculated as FeO
Table G.4 continued: Representative whole rock and groundmass analyses of the Therasia and Cape Riva products

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>GS10-22</th>
<th>GS10-17</th>
<th>S09-41</th>
<th>S09-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therasia andesite</td>
<td>Flow 22</td>
<td>63.67</td>
<td>67.99</td>
<td>61.53</td>
<td>69.88</td>
</tr>
<tr>
<td>Therasia dacite</td>
<td>Flow 5</td>
<td>15.44</td>
<td>14.70</td>
<td>16.98</td>
<td>15.05</td>
</tr>
<tr>
<td>Cape Riva andesite</td>
<td>Cape Riva A</td>
<td>0.79</td>
<td>0.63</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>Cape Riva dacite</td>
<td>Cape Riva A</td>
<td>5.60</td>
<td>4.03</td>
<td>5.96</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Major elements (ICP-AES, wt% dry)

<table>
<thead>
<tr>
<th>Element</th>
<th>Upper</th>
<th>Therasia</th>
<th>Therasia</th>
<th>Cape Riva</th>
<th>Cape Riva</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>63.67</td>
<td>67.99</td>
<td>61.53</td>
<td>69.88</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.44</td>
<td>14.70</td>
<td>16.98</td>
<td>15.05</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.79</td>
<td>0.63</td>
<td>0.74</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>FeO<sup>T</sup></td>
<td>5.60</td>
<td>4.03</td>
<td>5.96</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.39</td>
<td>0.85</td>
<td>2.62</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.62</td>
<td>2.34</td>
<td>5.86</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.55</td>
<td>5.91</td>
<td>4.92</td>
<td>5.86</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>2.60</td>
<td>3.25</td>
<td>1.82</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.20</td>
<td>0.19</td>
<td>0.17</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Trace elements (ICP-MS, ppm)

<table>
<thead>
<tr>
<th>Element</th>
<th>Upper</th>
<th>Therasia</th>
<th>Therasia</th>
<th>Cape Riva</th>
<th>Cape Riva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>20.3</td>
<td>26.9</td>
<td>17.7</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>18.5</td>
<td>14.2</td>
<td>24.6</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>80.8</td>
<td>14.5</td>
<td>126.0</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>8.41</td>
<td>0.76</td>
<td>21.20</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>4.62</td>
<td>0.75</td>
<td>14.60</td>
<td>5.48</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>89.0</td>
<td>105.0</td>
<td>60.2</td>
<td>101.0</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>176</td>
<td>108</td>
<td>197</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>44.9</td>
<td>53.6</td>
<td>44.2</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>271</td>
<td>334</td>
<td>214</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>11.40</td>
<td>13.30</td>
<td>7.58</td>
<td>11.60</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>455</td>
<td>542</td>
<td>323</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>27.9</td>
<td>33.9</td>
<td>20.5</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>63.2</td>
<td>70.2</td>
<td>43.6</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>7.07</td>
<td>8.22</td>
<td>5.41</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>27.9</td>
<td>31.9</td>
<td>21.6</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>6.31</td>
<td>7.16</td>
<td>5.28</td>
<td>7.09</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>1.20</td>
<td>1.33</td>
<td>1.27</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>6.40</td>
<td>7.35</td>
<td>5.68</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>1.09</td>
<td>1.27</td>
<td>0.97</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>7.12</td>
<td>8.43</td>
<td>6.58</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>1.51</td>
<td>1.80</td>
<td>1.41</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>4.64</td>
<td>5.53</td>
<td>4.32</td>
<td>5.81</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>4.69</td>
<td>5.74</td>
<td>4.37</td>
<td>6.09</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.72</td>
<td>0.87</td>
<td>0.66</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>6.73</td>
<td>8.38</td>
<td>5.14</td>
<td>8.07</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.81</td>
<td>0.98</td>
<td>0.52</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

¹ FeO_T is the total FeO and Fe₂O₃ content calculated as FeO
Figure G.11: Variation diagrams of major elements and selected highly compatible trace elements. Mixing models for the upper Therasia andesite and the Cape Riva andesite are shown as blue and green lines, respectively. The mixing calculations are presented in Table G.5. The typical fractionation trend for Santorini magmas discussed by Nicholls (1971), Mann (1983) and Druitt et al. (1999) is shown on the diagrams as a grey arrow. Composition of the Skaros lavas are also plotted for reference (Huijsmans, 1985), as are scoria from the Upper Scoria 2 eruption (Druitt et al., 1999)
Appendix G. Evolution of the crustal magma plumbing system

Figure G.12: Incompatible element variation diagrams. (a-c) Therasia and Cape Riva data are plotted as points, along with the Skaros data of Huijsmans (1985) and Upper Scoria 2 data of Druitt et al. (1999). Mixing models for the upper Therasia andesite and the Cape Riva andesite are plotted, as in Figure G.11. Fields of Santorini magma during the volcanic history since 530 ka are plotted, showing the long-term decrease in incompatible elements at Santorini (Druitt et al., 1999; Huijsmans, 1985; Martin, 2005). (d) REE diagram showing the Therasia and Cape Riva magmas. The Therasia dacite is an average of 14 flows with 65–68 wt% SiO$_2$, and the Cape Riva dacite is an average of four analyses with SiO$_2$ contents of 66–67 wt% (average: 66.5 wt%). The upper Therasia andesite is an average of flows 11 and 22 (average SiO$_2$: 60.5 wt%), and the Cape Riva andesite is an average of three analyses with SiO$_2$ contents between 60.2–60.4 wt% (average: 60.4 wt%).
successfully reproduced by mixing ∼60 wt% of a typical Therasia dacite with ∼40 wt% of mafic magma with the same composition as a basaltic enclave (GS10-43) collected from the same flow (sum of the squares of the residuals of 0.16). The Cape Riva andesite has higher Cr and Ni than the upper Therasia andesite, requiring that the mafic end-member also has higher contents of these elements. The composition of the Cape Riva andesite can be modelled by mixing ∼60 wt% of Cape Riva dacite with ∼40 wt% of an average Skaros basalt (sum of the squares of the residuals of 0.14). However, the calculated Ni content is higher than that measured in the Cape Riva andesite, suggesting that the mafic endmember had lower Ni than the average Skaros basalt.

Despite their broadly similar compositions in terms of silica content and many other major and trace elements, most of the Therasia dacites are enriched in incompatible elements such as K, Rb and Zr (also Nb, Ta, Th, Hf and LREE) compared to the Cape Riva dacite (Figure G.12). LREE are also more enriched in the Therasia dacites relative to the HREE. For example, the Therasia dacites have an average La/Yb ratio of 5.91 ± 0.16 (2σ), while the Cape Riva dacite has a ratio of 4.85 ± 0.04. Amongst the HFSE, Nb and Ta are more enriched than Zr and Hf. The 23 analysed samples of Cape Riva pumice form a tight linear cluster on Figure G.12, showing that the magma was well mixed. All of the 11 analysed Therasia lavas younger than ∼39 ka, and most of the intercalated pumice horizons, similarly form a tight linear cluster (at higher incompatible contents than the Cape Riva, for a given SiO$_2$ content). However, some of the Therasia pumices overlap with the Cape Riva field for some elements. Most prominent of these is the Cape Tripiti pumice (Fig. 5c), which lies in, or close to, the Cape Riva
Table G.5: Calculation for the mixing of (1) Therasia dacite plus Therasia basalt (mafic enclave) to produce the upper Therasia hybrid andesite, and (2) Cape Riva dacite plus Skaros basalt to produce the Cape Riva hybrid andesite.

<table>
<thead>
<tr>
<th>Major Elements (wt%)</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeOT</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>Trace Elements (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therasia Enclave</td>
<td>65.50</td>
<td>0.83</td>
<td>15.01</td>
<td>4.93</td>
<td>1.14</td>
<td>2.74</td>
<td>1.26</td>
<td>2.74</td>
<td>0.23</td>
<td>Cr</td>
</tr>
<tr>
<td>Cape Riva Dacite</td>
<td>61.86</td>
<td>0.74</td>
<td>13.29</td>
<td>5.71</td>
<td>0.60</td>
<td>2.19</td>
<td>1.10</td>
<td>2.19</td>
<td>0.16</td>
<td>Ni</td>
</tr>
<tr>
<td>Residual</td>
<td>66.84</td>
<td>0.24</td>
<td>12.81</td>
<td>4.72</td>
<td>1.17</td>
<td>2.86</td>
<td>1.39</td>
<td>2.86</td>
<td>0.02</td>
<td>Nb</td>
</tr>
<tr>
<td>Skaros Basalt</td>
<td>57.46</td>
<td>0.21</td>
<td>11.76</td>
<td>4.62</td>
<td>0.74</td>
<td>2.64</td>
<td>1.01</td>
<td>2.64</td>
<td>0.04</td>
<td>Zr</td>
</tr>
<tr>
<td>Residual</td>
<td>60.00</td>
<td>0.21</td>
<td>10.87</td>
<td>4.52</td>
<td>0.76</td>
<td>2.55</td>
<td>1.05</td>
<td>2.55</td>
<td>0.04</td>
<td>Hf</td>
</tr>
<tr>
<td>Upper Therasia Hybrid</td>
<td>63.33</td>
<td>0.21</td>
<td>11.67</td>
<td>4.69</td>
<td>1.10</td>
<td>2.86</td>
<td>1.39</td>
<td>2.86</td>
<td>0.02</td>
<td>Ce</td>
</tr>
<tr>
<td>Cape Riva Hybrid</td>
<td>55.00</td>
<td>0.16</td>
<td>10.87</td>
<td>4.52</td>
<td>0.74</td>
<td>2.64</td>
<td>1.01</td>
<td>2.64</td>
<td>0.04</td>
<td>La</td>
</tr>
</tbody>
</table>

For the upper Therasia andesite, the mixing proportions are 38:62 mafic:silicic. For the Cape Riva andesite, the proportions are 36:64. Calculated using the PetroGraph software of Petrelli et al. (2005).

1 FeOT is the total FeO and Fe₂O₃ content calculated as FeO.
field for most incompatible elements except K, suggesting that the magma that fed the Cape Tripiti eruption had some chemical characteristics intermediate between the two groups of dacite. The differences between the Therasia and Cape Riva dacites are also seen between the corresponding hybrid andesites of these two series. Despite having a similar SiO$_2$ content, the upper Therasia hybrid andesite is enriched in incompatible elements compared to the Cape Riva hybrid andesite (e.g. 2.1 wt% K$_2$O compared to 1.7 wt%, respectively). Like the Therasia dacites, the Therasia andesite is also enriched in LREE relative to HREE, and enriched in Nb and Ta relative to Zr and Hf compared to the Cape Riva andesite. This is also reflected in the calculated mafic mixing end-members of the two hybrid andesites shown on Figure G.12, although the difference is subtle.

G.6 Discussion

G.6.1 Origin of the magma series

The Therasia and Cape Riva dacites have similar whole rock major element compositions (for all major elements except K), phenocryst assemblages, phenocryst rim compositions and Fe-Ti oxide temperatures, although the Cape Riva dacite has slightly more evolved interstitial melt. The main difference between the two magmas is that the Cape Riva dacite is depleted in incompatible elements compared to the Therasia dacite. The Cape Riva hybrid andesite is also incompatible-depleted relative to the upper Therasia hybrid andesite, and there are indications that the basaltic mixing end-members were similarly different.
Since the Therasia and Cape Riva magma series form parallel trends on incompat-
ible element variation diagrams (Figure G.12), and have different LREE/HREE ratios,
they cannot be related to each other simply by closed-system crystal fractionation
schemes like those explored in previously published papers (Druitt et al., 1999; Mann,
1983; Nicholls, 1971). Neither can the Cape Riva dacite be generated by simple back-
mixing of Therasia dacite with an incompatible-depleted basalt, since mixing would
displace the silicic compositions almost parallel to the compositional trends rather than
perpendicular to them. Crustal contamination of Therasia dacite to produce Cape Riva
dacite is also unlikely, as this would be expected to increase incompatible element con-
centrations, not decrease them (Barton et al., 1983; Druitt et al., 1999). Moreover,
the two dacite types have very similar whole-rock $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (0.7050 and 0.7049
respectively; Briqueu et al., 1986; Druitt et al., 1999; Zellmer et al., 2000), ruling out a
significant difference in the extent of upper crustal contamination. The Therasia and
Cape Riva magma series (basalt, dacite and hybrid andesite in each case) represent
two fundamentally distinct magma batches that cannot be related to each other in any
simple way by shallow-level processes.

This conclusion is supported by comparison of the two magma series with longer-
term geochemical trends at Santorini (Druitt et al., 1999; Huijsmans, 1985; Huijsmans
et al., 1988). The same incompatible elements have decreased progressively in Santorini
magmas over the last 530 ka, such that the lavas of the historical Kameni Volcano are
the most incompatible-depleted (Figure G.12). The difference between the (older)
Therasia and (younger) Cape Riva series represents one step in this longer-term evolu-
tion. The magnitude of the decrease is similar for most incompatible elements, so that
the ratios between them (e.g. K/Zr, Rb/Zr, Rb/La) have remained approximately constant with time. However, the LREE have become depleted relative to HREE, a change that is also apparent between Cape Riva and Therasia (Figure G.12d). Similar changes also occur between different high field strength elements: Nb and Ta concentrations drop faster than those of Zr and Hf. Progressive depletion in K and other incompatible elements with time has also occurred at other centres in the Aegean region (Francalanci et al., 2005). A decrease in the extent of crustal contamination with time, as might be expected from the progressive sealing-off of ascending magmas from the crust, is not tenable; there is no evidence for a decrease in the 87Sr/86Sr ratio with time at Santorini.

Isotopic signatures fluctuate with time (Barton et al., 1983; Briqueu et al., 1986; Druitt et al., 1999; Martin et al., 2010), and some young melts are amongst the most radiogenic in the history of the volcano (Martin et al., 2010; Vaggelli et al., 2009). Incompatible trace element contents and isotopic signatures at Santorini are decoupled, ruling out a simple common origin. A more likely explanation for the observed trends lies in the nature of the mantle sources of the parental basalts feeding the volcanic system. Possibilities include an increase with time in the degree of source depletion, an increase of source melt fraction, or a decrease in degree of source metasomatism by slab-derived fluids or melts. All of these mechanisms could potentially account for basaltic parents with decreasing incompatible element contents with time (Bailey et al., 2009; Clift and Blusztajn, 1999; Francalanci et al., 2005; Huijmsans et al., 1988; Zellmer et al., 2000). A mantle origin is supported by the recent discovery at Santorini of multiple co-existing basalt types with different trace element and isotopic signatures (Bailey et al., 2009; Vaggelli et al., 2009). Changing proportions of different parental basalts
that ascend into the crust, where they mix and differentiate at between 4 and 2 kb to intermediate and silicic compositions (Andújar et al., 2010; Cadoux et al., 2013), may account for the observed temporal variations of trace element chemistry. Irrespective of the exact explanation, our results demonstrate the availability of chemically distinct batches of silicic magma within the crustal plumbing system beneath Santorini, as has been demonstrated previously for basalts (Bailey et al., 2009).

G.6.2 Reconstruction of events leading up to the Cape Riva eruption

Construction of the ∼12 km3 basaltic-to-andesitic Skaros shield between 67 and 54 ka represented a period where the eruption rate was close to the average for Santorini (∼1 km3ky$^{-1}$; Druitt et al., 1999). The Skaros period culminated at 54 ka in the Upper Scoria 2 explosive eruption. Following Upper Scoria 2, the system stagnated and entered a ∼15 ky-long period of near-repose until effusive activity resumed at about 39 ka. Only two lava flows are preserved in the cliffs of Therasia from this period: the ∼48 ka lower Therasia andesite (flows 1 and 24) and an inaccessible flow (flow 2) immediately above it. The andesite of Oia could also belong to this period; it is chemically very similar to Upper Scoria 2 and could be residual magma from that eruption. This period of reduced activity, during which the apparent eruption rate based on preserved products was very low (<0.1 km3ky$^{-1}$), is marked by the development of thick palaeosols.

Any mantle-derived basalt injected into the crust during this period must have been trapped at depth, perhaps due to the stress imposed by the high Skaros edi-
fice (Pinel and Jaupart, 2000). Accumulation of heat from prolonged, deep intrusion probably generated silicic melt by a combination of fractional crystallization, partial melting of crustal rocks and defrosting of extant mushy intrusions (Barton et al., 1983; Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989; Mann, 1983). Then, between 39 and 25 ka, a chemically and thermally (895-925 °C) monotonous series of dacites (the Therasia dome complex) was extruded from the summit of Skaros and from dykes on its western flank. The lack of any systematic variation of whole rock or groundmass (i.e. melt) composition with time during this period (Figure G.7) suggests thermal buffering of the crustal storage region by an approximate balance of heat input, heat output and latent heat of crystallisation. The mean eruption rate during construction of the Therasia dome complex was very approximately 0.1–0.2 km3 ky$^{-1}$: lower than the long-term average on Santorini (\sim1 km3 ky$^{-1}$), but higher than that during the preceding repose period. Towards the end of the Therasia activity, lava extrusion became increasingly punctuated by explosive activity. Throughout most of this 15 ky period, the eruptions tapped typical Therasia-type dacite. However, the 26 ka Cape Tripiti eruption tapped dacite with some incompatible trace element contents intermediate between those of Therasia and Cape Riva. Any basaltic magma intruded beneath the summit region over the 15 ky was unable to reach the surface, except as rare quenched enclaves of dacite-contaminated olivine basalt. Towards the end of the period, basalt mixed with dacite in approximately equal proportions, forming the upper Therasia hybrid andesite.

Following extrusion of the last Therasia lava, no more than 2,800 ± 1,400 years elapsed before the 21.8 ± 0.4 ka Cape Riva eruption took place. At least 10 km3 of
Appendix G. Evolution of the crustal magma plumbing system

880 °C Cape Riva dacite, poorer in incompatible elements, was then erupted as Plinian fallout and pyroclastic flows. The eruption also discharged a small quantity (≪1 km3) of hybrid andesite formed by the mixing of olivine basalt and incompatible-depleted dacite in sub-equal proportions, and the Skaros-Therasia edifice collapsed (Druitt et al., 1999).

G.6.3 Constraints on magma reservoir development

The Therasia dacites have been previously interpreted as ‘precursory leaks’ from the growing Cape Riva magma body (Bacon, 1985; Druitt, 1985). Precursory leaks of silicic magma from diffuse vents prior to caldera-forming eruptions are believed to record the prolonged, incremental growth of large crustal magma reservoirs (Bacon, 1985). For example, leaks of rhyodacite at Mount Mazama (Crater Lake, Oregon) bear witness to the progressive growth, over about 20,000 years, of the magma body that was discharged 6,850 years ago (Bacon, 1985; Bacon and Lanphere, 2006). However, the Therasia lavas cannot simply be leaks from a single, growing Cape Riva reservoir, because they represent a chemically different magma batch.

One possibility is that the two dacite types were stored in separate, long-lived reservoirs that coexisted in the upper crust, perhaps for much of the 30 ky since Upper Scoria 2. The Therasia eruptions would have been fed from one or more small reservoir(s), and the Cape Riva eruption from another, larger reservoir. The Cape Tripiti pumice, with its intermediate chemical character, might have resulted from a temporary connection between the two reservoirs. However, field and phase equilibria data provide quite stringent constraints on the possible locations of the two reser-
voirs in such a model. First, the vents that fed the Therasia lavas lay within the area that subsequently collapsed to form the Cape Riva caldera (Druitt, 1985, 2014; Druitt and Francaviglia, 1992), showing that the reservoirs were geographically coincident. Second, the similarities in whole rock major element composition, phenocryst assemblage, phenocryst rim compositions and Fe–Ti oxide temperatures, show that the Therasia dacites must have been stored immediately prior to eruption at a pressure $(2 \pm 0.5 \text{ kb}, \text{ equivalent to } 8 \pm 2 \text{ km})$ similar to that determined experimentally for the Cape Riva dacite by Cadoux et al. (2013). The two reservoirs must therefore have been situated within the $\sim 4 \text{ km}$ vertical distance represented by the $\pm 0.5 \text{ kb}$ uncertainty on the pressure. Moreover, this uncertainty is on the absolute pressure, not on the relative pressure difference between the two dacite types. It is difficult to see how two magma reservoirs within this confined space could remain largely isolated over many thousands of years. We cannot rule out this model, but it raises problems that are hard to surmount. Our preferred interpretation is that the Therasia and Cape Riva magma batches were emplaced sequentially into the upper crust beneath the summit of the volcano, the first then being partially, or wholly, flushed out by the arrival of the second. In this model the 15ky of Therasia activity was fed either from a single long-lived, melt-dominated reservoir or by the ascent, partial eruption and rapid freezing of multiple melt packets (e.g. Zellmer et al., 2003). At 26ka the system may have been replenished by incompatible-depleted dacite, which mixed with Therasia dacite and was discharged as the Cape Tripiti Pumice. The subsequent return to eruption of ‘pure’ Therasia dacite suggests that if a discrete Cape Riva reservoir already existed below the summit at this time, it had probably not yet reached its full size. Following
extrusion of the last Therasia lava flow, the input of incompatible-depleted dacite con-
tinued, and perhaps accelerated, during the $<2,800 \pm 1,400$ y preceding the Cape Riva
eruption. The new input magma mixed with any remaining Therasia magma to gener-
ate the dacite that subsequently discharged during the Cape Riva eruption. This may
have had the composition of pure Cape Riva dacite, or may have been a dacite even
poorer in incompatibles (e.g. Kameni-like dacite; Figure G.12). Amalgamation and
homogenization of the different magma batches resulted in the formation of a single,
contiguous reservoir.

Assuming injection of most of the $>10\, \text{km}^3$ of Cape Riva magma in <2800 y yields a
time-averaged supply rate of $>0.004\pm0.002\, \text{km}^3\, \text{y}^{-1}$, although the peak value may have
been much higher. For comparison, the mean accumulation rate estimated over the
1600 y to prior the Oruanui eruption has been estimated as $>0.33\, \text{km}^3\, \text{y}^{-1}$, culminating
in values of $\sim1\, \text{km}^3\, \text{y}^{-1}$ (Allan et al., 2013; Wilson and Charlier, 2009). A late-stage
growth spurt of the Minoan magma reservoir has been estimated as $>0.05\, \text{km}^3\, \text{y}^{-1}$
(Druitt et al., 2012). Intrusion rates comparable to, or higher than, that estimated for
the Cape Riva are implied by measured deformation rates at silicic volcanoes such as
Uturuncu ($\sim0.01\, \text{km}^3\, \text{y}^{-1}$; Pritchard and Simons, 2004; Sparks et al., 2008), Kameni
($\sim0.01\, \text{km}^3\, \text{y}^{-1}$; Parks et al., 2012), Yellowstone ($0.1\, \text{km}^3\, \text{y}^{-1}$; Chang et al., 2010), and
Lazufre ($\sim0.01\, \text{km}^3\, \text{y}^{-1}$; Froger et al., 2007; Ruch et al., 2009).

Rapid intrusion of the Cape Riva dacite into the upper crust would have favoured
runaway growth of a melt-dominated magma reservoir (Annen, 2009; Gelman et al.,
2013; Schöpa and Annen, 2013). Driving mechanisms for magma ascent may have
included increased basaltic flux from the mantle, tectonic forces, or gravitational in-
G.7 Conclusions

We have combined field, high-resolution radiometric, petrological and geochemical approaches in a study of the evolution of the crustal magma plumbing system of Santorini prior to a silicic caldera-forming eruption. The main conclusions are listed below.

1. Between 39 ka and 25 ka, a sequence of compositionally (65-68 wt% SiO$_2$) and thermally (895-925°C) monotonous dacitic lavas leaked out to form the \sim2 km3 Therasia dome complex across the summit and western flank of the high, extant Skaros lava shield. Pyroclastic units interbedded with the lavas towards the top of the sequence record increasing explosivity of the system towards the end of this period. One prominent pumice fall deposit within the Therasia complex probably correlates with the 26 ka Y-4 ash layer observed in deep-sea sediments SE of Santorini. Following a pause in activity no longer than 2,800 ± 1,400 ky, the 21.8 ± 0.4 ka Cape Riva explosive eruption discharged $>$10 km3 of 880°C dacite, and collapsed the Skaros shield.
2. The Therasia and Cape Riva dacites are similar in most major elements, but the Cape Riva dacite has lower contents of K and incompatible trace elements (e.g., Rb, Zr, Th, LREE) than the Therasia dacites at a given silica content. This decrease in incompatibles that took place at 21.8 ka is one step in the well-documented longer-term decrease in incompatible elements with time observed at Santorini over the last 530 ka. The Therasia and Cape Riva dacites represent distinct magma batches that are unrelated by shallow-level processes.

3. Given that the source vents for the Therasia and Cape Riva dacites were geographically coincident, and that the reservoir depths estimated from phase equilibria were similar, accumulation of most of the Cape Riva magma in the upper crust probably took place within the 2,800 ± 1,400 yr period between the last Therasia eruption and the Cape Riva. This would have required a time-averaged magma accumulation rate in excess of 0.004 ± 0.002 km³ yr⁻¹.

4. Discharge of basaltic magma during this time period is limited to ≪1% quenched enclaves of olivine basalt in some Therasia lavas and in Cape Riva pumice. However, hybrid andesite magmas formed by the mixing of olivine basalt and dacite in approximately equal proportions were erupted as lava towards the end of the Therasia, and as scoria in the Cape Riva eruption. These hybrids may record an increased influx of basalt into the upper crust over the several thousands of years leading up to the Cape Riva eruption. Increased basaltic flux may have played a role in the rapid accumulation of incompatible-depleted Cape Riva magma beneath the summit of Skaros Volcano prior to its 21.8 ka eruption.

5. Pressurization of the upper crustal plumbing system by sustained, high-flux in-
jection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity (Therasia) to catastrophic explosive eruption and caldera collapse (Cape Riva).

Acknowledgments

We thank M Benbakkar and C Chauvel for providing major element and trace element analyses, respectively, and J-L Devidal for help with the electron microprobe. J Keller kindly drew our attention to the Y-4 deep-sea ash layer. E Klemetti, D Morgan and G Zellmer provided helpful reviews, and F Costa commented on an earlier version of the manuscript. The work was carried out in the framework of the project ‘Storage and Mixing at Santorini’ financed by the French Agence National de Recherche [ANR-08-BLAN-0249-01]. GN Fabbro was funded by the Région d’Auvergne. This is Laboratory of Excellence ClerVolc contribution number 76.