. Taux-de-peuplement and .. De-densité-du-niveau-haut, 115 III.2.2.1. Taux de peuplement et profil radial de densité du niveau bas, 117 III.2.2.2. Evolution des populations avec le courant de........................ 118 III.2.2.3

.. Effet-de-la-réflexion-À-la-paroi-sur-le-profil-radial-des-métastables, 129 III.3.4.1. Variation du gain due à l'auto-absorption

.. Equation-de-propagation-du-champ, 140 IV.2.2.1. Développement selon la base de mode-propres Hermite, 141 IV.2.2.2. Gain du milieu amplificateur et puissance des............................. 142 IV.2.2.3

H. Un-mode, Condition, 146 IV.2.4.2

G. Waist-et-longueurs-de-rayleigh-dans-le, 156 IV.3.3.1. Variation des waists dans la cavité : réduction à 1 dimension

.. Equation-d-'onde-dans-un-référentiel-tournant, 160 IV.4.2.2. Projection de l'équation d'onde sur le mode fondamental de la cavité

.. Modèle-semi-classique-du-dipôle-atomique, 165 IV.4.3.1. Approximation de l'enveloppe lentement variable (AELV) et approximation adiabatique

.. Calibration-par-la-puissance-lasée, 188 IV.5.5.1. Evolution relative de la puissance lasée avec le courant de décharge

.. Détermination-point-par-point, Résultats sur le gain à faible signal en fonction de l'exposant c

V. Chapitre and .. Simulateur-gyrolaser-et-analyse-expérimentale, 209 V.1. Introduction, p.209

D. Conservatif, Couplage par rétrodiffusion, p.217

T. Research-network-alves, L. L. Gousset, G. Ferreira, and C. M. , Fluid modelling of the positive column of direct-current glow discharges. Plasma Sources Science and Technology Nonlocal electron kinetics in dc discharges, J. Phys. IV France, vol.166, issue.07, pp.557-561, 1997.

G. Hagelaar, L. Pitchford, C. Ferreira, and J. Loureiro, Solving the boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [7] T. Dote and T. Kaneda. Electron temperature characteristics in he-ne positive column Electron kinetics in atomic and molecular plasmas, Alves, G. Gousset, and C. M. Ferreira. Self-contained solution to the spatially inhomogeneous electron boltzmann equation in a cylindrical plasma positive column. Phys, pp.722351-352528, 1974.

A. Ricard, ??volution de la densit?? des atomes m??tastables du n??on form??s dans une d??charge ?? courant continu de faible intensit??, Journal de Physique, vol.30, issue.7, pp.556-562, 1969.
DOI : 10.1051/jphys:01969003007055600

B. Yu, I. Golubovskii, . Porokhova, J. Behnke, and . Behnke, A comparison of kinetic and fluid models of the positive column of discharges in inert gases, Journal of Physics D: Applied Physics, vol.32, issue.4, p.456, 1999.

H. Haberland and P. Oesterlin, Interaction potentials and energy transfer cross sections for collisions of metastable helium and neon I: He(2 3 S)+Ne. Zeitschrift fur Physik A Atoms and Nuclei, pp.11-21, 1982.

Z. Navratil, . Trunec, A. Hrachova, and . Kanka, in the positive column of low pressure discharge, Journal of Physics D: Applied Physics, vol.40, issue.4, p.1037, 2007.
DOI : 10.1088/0022-3727/40/4/018

R. Yu, J. Reader, A. Kramida, and . Team, Nist atomic spectra database (ver. 5.0), [online]. available: http://physics.nist.gov/asd, 2012.

B. Yu, I. Golubovskii, . Porokhova, D. Lange, and . Uhrlandt, Metastable and resonance atom densities in a positive column: I. Distinctions in diffusion and radiation transport, Plasma Sources Science and Technology, vol.14, issue.1, p.36, 2005.

. Yu, R. K. Ralchenko, T. Janev, D. V. Kato, I. Fursa et al., Electronimpact excitation and ionization cross sections for ground state and excited helium atoms

R. E. Clark, J. J. Abdallah, G. Czanak, J. B. Mann, and R. D. Cowan, Ace: Atomic collisions with electrons, 1988.

H. Haberland, P. Konz, and . Oesterlin, S)+Ne, Journal of Physics B: Atomic and Molecular Physics, vol.15, issue.17, p.152969, 1982.
DOI : 10.1088/0022-3700/15/17/026

URL : https://hal.archives-ouvertes.fr/jpa-00224476

A. V. Phelps, Diffusion, De-excitation, and Three-Body Collision Coefficients for Excited Neon Atoms, Physical Review, vol.114, issue.4, pp.1011-1025, 1959.
DOI : 10.1103/PhysRev.114.1011

J. Clark and A. Cunningham, ) excited atoms at 150, 300 and 400K, Journal of Physics B: Atomic and Molecular Physics, vol.16, issue.4, p.677, 1983.
DOI : 10.1088/0022-3700/16/4/020

C. O-akoshile, J. Clark, and A. Cunningham, Reactions of excited neon atoms in neon-helium afterglows. I. Rate data, Journal of Physics B: Atomic and Molecular Physics, vol.18, issue.13, p.182793, 1985.
DOI : 10.1088/0022-3700/18/13/025

C. O-akoshile, J. Clark, and A. Cunningham, Reactions of excited atoms of neon in neon-helium afterglows. II. Kinetic model, Journal of Physics B: Atomic and Molecular Physics, vol.19, issue.3, p.349, 1986.
DOI : 10.1088/0022-3700/19/3/018

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Engineering Science Series, 1994.

. Springer, Diffusion in Gases, Liquids and Electrolytes. Landolt-Börnstein. Numerical data abd functional relationships in Science and technology

W. A. Fitzsimmons, N. F. Lane, and G. K. Walters, Diffusion of He(2 3 S 1 ) in helium gas interaction potentials at long range, Phys. Rev, vol.2, issue.174, pp.193-200, 1968.

A. V. Phelps, Absorption Studies of Helium Metastable Atoms and Molecules, Physical Review, vol.99, issue.4, pp.1307-1313, 1955.
DOI : 10.1103/PhysRev.99.1307

N. Sadeghi and J. Pebay-peyroula, ??tude exp??rimentale de la relaxation des atomes m??tastables de gaz rares sur la paroi en pyrex, Journal de Physique, vol.35, issue.4, pp.353-360, 1974.
DOI : 10.1051/jphys:01974003504035300

I. Rusinov, S. Suzuki, A. Blagoev, and H. Itoh, Studies of Diffusion Losses in Gaseous Media Using a Boundary Condition of the Third Kind, Japanese Journal of Applied Physics, vol.39, issue.Part 1, No. 5A, pp.2799-2803, 2000.
DOI : 10.1143/JJAP.39.2799

I. Rusinov, G. Paeva, and A. Blagoev, A method for simultaneous determination of the diffusion coefficient of particles in gas media and their reflection coefficient at the wall, Journal of Physics D: Applied Physics, vol.30, issue.13, p.301878, 1997.
DOI : 10.1088/0022-3727/30/13/008

I. Stewart, The reflection of metastable particles at a surface, Journal of Physics D: Applied Physics, vol.27, issue.7, p.1487, 1994.
DOI : 10.1088/0022-3727/27/7/021

T. William, P. Vetterling-brian, H. Flannery-william, S. A. Press, and . Teukolsky, Numerical Recipes in Fortran 77 The Art of Scientific Computing Second Edition, 1992.

T. William, P. Vetterling-brian, H. Flannery-william, S. A. Press, and . Teukolsky, Numerical Recipes in Fortran 90 The Art of Parallel Scientific Computing Second Edition of Fortran Numerical Recipes Press Syndicate of the University of Cambridge [1] T. Holstein. Imprisonment of resonance radiation in gases Imprisonment of resonance radiation in gases, Effect of correlations between absorbed and emitted frequencies on the transport of resonance radiation. Phys. Rev, pp.1212-12331159, 1947.

H. A. Post, Radiative transport at the 184.9-nm Hg resonance line. I. Experiment and theory, Physical Review A, vol.33, issue.3, pp.1050-10692003, 1974.
DOI : 10.1103/PhysRevA.33.2003

G. Parker, W. Hitchon, and J. Lawler, Radiation trapping simulations using the propagator function method: complete and partial frequency redistribution, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.26, issue.23, pp.4643-4662, 1993.
DOI : 10.1088/0953-4075/26/23/031

B. Yu, I. Golubovskii, . Porokhova, D. Lange, and . Uhrlandt, Metastable and resonance atom densities in a positive column: I. Distinctions in diffusion and radiation transport, Plasma Sources Science and Technology, vol.148, issue.1, p.36, 2005.

J. Giuliani, G. Petrov, J. Apruzese, and J. Davis, Non-local radiation transport via coupling constants for the radially inhomogeneous Hg???Ar positive column, Plasma Sources Science and Technology, vol.14, issue.2, p.236, 2005.
DOI : 10.1088/0963-0252/14/2/004

J. P. Apruzese, Direct solution of the equation of transfer using frequency- and angle-averaged photon-escape probabilities for spherical and cylindrical geometries, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.25, issue.5, pp.419-425, 1981.
DOI : 10.1016/0022-4073(81)90060-1

H. M. Anderson, S. D. Bergeson, D. A. Doughty, and J. E. Lawler, value and trapped decay rates, Physical Review A, vol.51, issue.1, pp.211-217, 1995.
DOI : 10.1103/PhysRevA.51.211

F. Vermeersch, . Fiermans, H. Ongena, W. Post, and . Wieme, Monte Carlo investigation of imprisonment of resonance radiation with partial frequency redistribution, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.21, issue.10, p.1933, 1988.
DOI : 10.1088/0953-4075/21/10/023

T. J. Sommerer, A Monte Carlo simulation of resonance radiation transport in the rare???gas???mercury positive column, Journal of Applied Physics, vol.74, issue.3, pp.1579-1589, 1993.
DOI : 10.1063/1.354831

J. J. Curry, J. E. Lawler, and G. G. Lister, Resonance radiation transport in inhomogeneous media: Cylindrical glow discharges, Journal of Applied Physics, vol.86, issue.2, pp.731-737, 1999.
DOI : 10.1063/1.370796

J. Lawler and J. Curry, Analytical formula for radiation trapping with partial frequency redistribution, Journal of Physics D: Applied Physics, vol.31, issue.22, p.313235, 1998.
DOI : 10.1088/0022-3727/31/22/010

J. Lawler, J. Curry, and G. Lister, Analytic formula for radiation trapping with partial frequency redistribution and foreign gas broadening, Journal of Physics D: Applied Physics, vol.33, issue.3, p.252, 2000.
DOI : 10.1088/0022-3727/33/3/311

K. Menningen and J. Lawler, Radiation trapping of the Hg 185 nm resonance line, Journal of Applied Physics, vol.88, issue.6, pp.3190-3197, 2000.
DOI : 10.1063/1.1289050

M. Baeva and D. Reiter, Monte carlo simulation of radiation trapping in Hg-Ar fluorescent discharge lamps, Plasma Chemistry and Plasma Processing, vol.23, issue.2, pp.371-3871022928320970, 1023.
DOI : 10.1023/A:1022928320970

M. Herd, K. Lawler, and . Menningen, Radiation trapping of the Hg 254???nm resonance line, Journal of Physics D: Applied Physics, vol.38, issue.17, pp.3304-3311
DOI : 10.1088/0022-3727/38/17/S35

J. Lee, Monte Carlo Simulation of Emission Frequencies from Partial Frequency Redistribution Functions, The Astrophysical Journal, vol.192, pp.465-474, 1974.
DOI : 10.1086/153078

J. Lee, Simulation of emission frequencies from angle-dependent partial frequency redistributions, The Astrophysical Journal, vol.218, pp.857-865, 1977.
DOI : 10.1086/155741

J. Lee, Refined Monte-Carlo Method for Simulating Angle-Dependent Partial Frequency Redistributions, The Astrophysical Journal, vol.255, p.303, 1982.
DOI : 10.1086/159829

A. F. Molisch and B. P. Oehry, Radiation Trapping in Atomic Vapours. Oxford science publications, 1998.

C. Robert and . Hilborn, Einstein coefficients, cross sections, f values, dipole moments, and all that, American Journal of Physics, vol.50, issue.11, pp.982-986, 1982.

W. R. Hindmarsh, A. D. Petford, and G. Smith, Interpretation of Collision Broadening and Shift in Atomic Spectra, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.297, issue.1449, pp.296-304, 1449.
DOI : 10.1098/rspa.1967.0068

J. Derouard, Physique Atomique et Moléculaire, Spectroscopie, 2006.

T. William, P. Vetterling-brian, H. Flannery-william, S. A. Press, and . Teukolsky, Numerical Recipes in Fortran 77 The Art of Scientific Computing Second Edition, 1992.

T. William, P. Vetterling-brian, H. Flannery-william, S. A. Press, and . Teukolsky, Numerical Recipes in Fortran 90 The Art of Parallel Scientific Computing Second Edition, volume Volume 2 of Fortran Numerical Recipes, 1997.

K. S. Eikema, W. Ubachs, and W. Hogervorst, Isotope shift in the neon ground state by extreme-ultraviolet laser spectroscopy at 74 nm, Physical Review A, vol.49, issue.2, pp.803-808, 1994.
DOI : 10.1103/PhysRevA.49.803

E. Konz, T. Kraft, and H. Rubahn, Optical determination of the 20,22 Ne 3s-3p specific mass shift, Appl. Opt, issue.24, pp.314995-4997, 1992.

J. H. Bartlett and J. J. Gibbons, Isotope Shift in Neon, Physical Review, vol.44, issue.7, pp.538-543, 1933.
DOI : 10.1103/PhysRev.44.538

R. H. Cordover, T. S. Jaseja, and A. Javan, ISOTOPE SHIFT MEASUREMENT FOR 6328 ?? He???Ne LASER TRANSITION, Applied Physics Letters, vol.7, issue.12, pp.322-324, 1965.
DOI : 10.1063/1.1754280

B. E. Cole, Uv and plasma stable high-reflectance multilayer dielectric mirror, p.122262, 1990.

F. Aronowitz, Fundamentals of the ring laser gyro, Gyroscopes optiques et leurs applications, p.15, 1999.

I. Bibliographie, V. P. Troitskii, . G. Chebotaev-]-v, E. P. Leontev, R. Ostapchenko et al., Distribution of Population Inversion Across an He-Ne Laser Discharge Effect of excitation conditions on the radial distribution of population inversion in the active element of a He-Ne laser [3] S Spoor and I D Latimer An accurate determination of the radial distribution of gain at 633 nm in small bore helium-neon discharges Seismic Effects in Ring Lasers and Transverse Mode Selection in Helium-Neon Lasers Ring laser gain media Effects of radial gain variations on single transverse and longitudinal mode operation in a low loss 1.6m helium-neon laser, Blagoev, E. Dimova, and G.M. Petrov. Quenching of 4 He(2 1 S,2 1 P) and, pp.321-3251607319, 1966.

S. Valignat and J. Leveau, S 0 ) atoms [8] R. Rajotte. Gradual contraction of the radial distribution of excited neon atoms in the positive column from low to medium pressure Atomic radial distributions as a diagnostic of excitation processes in a low pressure neon discharge, He(2 1 S,2 1 P) states by collisions with Ne, pp.69-8247, 1973.

A. Ricard, ??volution de la densit?? des atomes m??tastables du n??on form??s dans une d??charge ?? courant continu de faible intensit??, Journal de Physique, vol.30, issue.7, pp.556-562, 1969.
DOI : 10.1051/jphys:01969003007055600

A. E. Siegman, Lasers. ISBN 0-935702-11-3 [1] A.E. Siegman. Lasers. ISBN 0-935702-11-3, J.R. Wilkinson. Ring lasers. Progress In Quantum Electronics, vol.113, issue.21, pp.1-103, 1986.

]. G. Jean-michel-courty4, J. Maynard, and . Macé, Ondes Electromagnétiques et Optique : Notes de cours, Calcul des pertes des modes transverses : Dimensionnement du diaphragme. Note interne, 2014.

J. E. Harvey, S. Schröder, N. Choi, A. Duparré, H. E. Bennett et al., Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles, Feb 1961. [7] C. Drag F. Bretenaker. Cours de Physique des Lasers. Laboratoire Aimé Cotton, CNRS, Orsay. [8] G. Sagnac. L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre ne rotation uniforme. Comptes rendus hebdomadaires des séances de l'Académie des sciences, pp.13402-13403, 1913.
DOI : 10.1117/1.OE.51.1.013402

E. J. Post, Sagnac Effect, Reviews of Modern Physics, vol.39, issue.2, pp.475-493, 1967.
DOI : 10.1103/RevModPhys.39.475

W. W. Chow, J. Gea-banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich et al., The ring laser gyro, Reviews of Modern Physics, vol.57, issue.1, pp.61-104, 1985.
DOI : 10.1103/RevModPhys.57.61

C. Robert and . Hilborn, Einstein coefficients, cross sections, f values, dipole moments, and all that, American Journal of Physics, vol.50, issue.11, pp.982-986, 1982.

P. W. Smith, Linewidth and Saturation Parameters for the 6328????? Transition in a He???Ne Laser, Journal of Applied Physics, vol.37, issue.5, pp.2089-2093, 1966.
DOI : 10.1063/1.1708677

A. Bielski, S. Bierza, K. Bystra, and W. Dokurno, Pressure broadening of the 2p53p-2p55s neon spectral lines, Physica B+C, vol.97, issue.2-3, pp.249-256, 1979.
DOI : 10.1016/0378-4363(79)90057-3

A. Bielski, R. Bobkowski, R. Dygdala, and J. Wawrzynski, Low pressure shift of the 2p53p-2p55s spectral lines of neon perturbed by neon and helium, Physica B+C, vol.115, issue.2, pp.261-265, 1983.
DOI : 10.1016/0378-4363(83)90108-0

P. W. Smith and R. Hänsch, Cross-Relaxation Effects in the Saturation of the 6328-?? Neon-Laser Line, Physical Review Letters, vol.26, issue.13, pp.740-743, 1971.
DOI : 10.1103/PhysRevLett.26.740

J. W. Knutson and W. R. Bennett, laser transitions of neon, Physical Review A, vol.13, issue.1, pp.318-325, 1976.
DOI : 10.1103/PhysRevA.13.318

W. R. Bennett, Hole Burning Effects in a He-Ne Optical Maser, Physical Review, vol.126, issue.2, pp.580-593, 1962.
DOI : 10.1103/PhysRev.126.580

F. Aronowitz, Single-isotope Laser Gyro, Applied Optics, vol.11, issue.2, pp.405-412, 1972.
DOI : 10.1364/AO.11.000405

H. Haberland and P. Oesterlin, Interaction potentials and energy transfer cross sections for collisions of metastable helium and neon I: He(23S)+ne. Zeitschrift fur Physik A Atoms and Nuclei, pp.11-21, 1982.

H. Haberland, P. Konz, and . Oesterlin, S)+Ne, Journal of Physics B: Atomic and Molecular Physics, vol.15, issue.17, p.152969, 1982.
DOI : 10.1088/0022-3700/15/17/026

URL : https://hal.archives-ouvertes.fr/jpa-00224476

T. Podgorski and F. Aronowitz, Langmuir flow effects in the laser gyro, IEEE Journal of Quantum Electronics, vol.4, issue.1, pp.11-18, 1968.
DOI : 10.1109/JQE.1968.1074907

F. Bretenaker, Proposition de méthode pour déterminer la cause de la baisse de puissance d'un gyrolaser. Note interne FB, 1995.

F. Bretenaker, S. Maynard, A. Aissi, S. J. Ds-n, E. R. Van-druten et al., Note interne FB Développement de logiciels permettant de modéliser le comportement, normal ou atypique, du signal de sortie d'un gyrolaser he-ne. rapport Note interne, LPGP-SAGEM DS Maynard and A. Virdis. Modélisation de la zone aveugle, Diagnostic des baisses de puissance des gyrolasers grâce au facteur d'échelle: résultats expérimentaux Haus, H. Statz, and I. Smith. Frequency locking of modes in a ring laser, pp.1-10378, 1985.

G. E. Woerdman, Z. Stedman, C. H. Li, A. D. Rowe, H. R. Mcgregor et al., Harmonic analysis in a large ring laser with backscatter-induced pulling Dynamics of a ring-laser gyroscope with backscattering, Phys. Rev. A Phys. Rev. A Phys. Rev. A, vol.42, issue.234, pp.4315-43244944, 1987.

F. Aronowitz, The laser gyro. Laser applications, p.133, 1971.

F. Aronowitz, Fundamentals of the ring laser gyro, Gyroscopes optiques et leurs applications, p.15, 1999.

F. Aronowitz and W. Lim, Positive scale factor correction in the laser gyro, IEEE Journal of Quantum Electronics, vol.13, issue.5, pp.338-343, 1977.
DOI : 10.1109/JQE.1977.1069343

B. Merlet, Simulateur des asservissements GLS32N, 2010.

A. Palies, Spécification du stand de MEO de RW rapide. Note interne SK- 0000148648-01, 2006.

J. R. Mallassingne, Etude théorique de la mesure de RW rapide, 2006.

A. Palies, Spécification du stand de dépouillement random walk rapide. Note interne SK-0000148647-01, SAGEM DS, 2007.

A. Palies, Validation du random-walk rapide. Note interne SK-0000148936-03, SAGEM DS, 2007.

J. Macé and G. Maynard, Etude parametrique de la derive, 2011.

A. Virdis, Synthèse sur la sensibilité ODB des GLS32 au point de fonctionnement, 2009.

T. William, P. Vetterling-brian, H. Flannery-william, S. A. Press, and . Teukolsky, Numerical Recipes in Fortran 77 The Art of Scientific Computing Second Edition, 1992.

F. Qirezi and R. Klages, From stochastic to deterministic equations, 2009.

G. Maynard, Analyse des mesures électriques réalisées par le LPGP sur le GLS32N. Note interne SK-0000446986-01, 2011.

A. Kleinmann, Analyse théorique et expérimentale du couplage des modes dans un gyrolaser, Note interne, SAGEM DS, 1986.

R. H. Cordover, T. S. Jaseja, and A. Javan, ISOTOPE SHIFT MEASUREMENT FOR 6328 ?? He???Ne LASER TRANSITION, Applied Physics Letters, vol.7, issue.12, pp.322-324, 1965.
DOI : 10.1063/1.1754280

J. Macé and G. Maynard, Accepté pour publication : ? 'Influence of diffusion and non-local radiation transport on the laser amplification of a He-Ne ring laser gyro, Liste des communications scientifiques Articles Virdis A. Plasma Sources Science and Technology, p.2014

J. Publiés-lors-de-conférences-macé, A. Virdis, and G. Maynard, Influence of non-local radiation transport on the gain of a He-Ne ring laser gyro, 40 th IEEE International Conference on Plasma Science (ICOPS) and 19th IEEE Pulsed Power Conference (PPC), pp.16-21, 2013.

J. Macé, A. Virdis, and G. Maynard, Modélisation de l'amplification laser dans un gyrolaser He-Ne de haute précision, dans Modélisation: Atomes, Molécules, Plasmas et Sytèmes Dynamiques, pp.93-106, 2013.

I. Annexe and .. De-boltzmann, Calcul des moments de l'équation, p.273

I. Annexe, Index des niveaux excités de l'Hélium et du Néon du code 1D, p.279

I. Annexe, Discrétisation de l'équation de diffusion et de ses conditions aux bords, p.281

I. Annexe, Calcul de l'élargissement collisionnel d'une transition radiative, p.285

V. Annexe, Conditions d'amplifications des modes HG dans une cavité laser linéaire, p.289

]. L. Alves, R. Yu, J. Reader, A. Kramida, N. Asd-team et al., Fluid modelling of the positive column of direct-current glow discharges. Plasma Sources Science and Technology Nist atomic spectra database (ver. 5.0), [online]. available: http://physics.nist.gov/asd [2013, march 11]. National Institute of Standards and Technology Interpretation of collision broadening and shift in atomic spectra, Bibliographie des Annexes, pp.557-297, 1449.

N. Allard, J. Kielkopf, S. Mabong, G. Maynard, and K. Katsonis, Atomic and molecular polarizabilities. CRC Handbook of Chemistry and Physic,s 87th Edition Parametric potential for modelling of highly charged heavy ions, Rev. Mod. Phys. Laser and Particle BeamsE. Siegman. Lasers, vol.54, issue.111, pp.1103-1182575, 1982.