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Résumé

Introduction

L’urbanisation est définie comme le processus de transition d’un milieu rural à une société
plus urbaine (Rodrigue [179]) et a caractérisé le 20e siècle. La population urbaine mondiale a
atteint 3,5 milliards d’habitants en 2010, soit 51,6% de la population totale (Rodrigue [179]).
Les villes sont le centre de gravité de notre société, où toutes les activités se déroulent,
activités commerciales ou du loisir.

Plus d’habitants vivants dans les villes signifie une plus grande quantité de marchandises
et de personnes qui se déplacent dans les villes. Le transport entre en jeu, à la fois pour les
personnes et à la fois pour les marchandises, et avec celle-là, se manifestent tous ses avantages
et ses inconvénients. Le transport crée l’accès à des événements et rend les marchandises
disponibles pour les utilisateurs. Tout cela avec un certain coût environnemental (bruit,
pollution de l’air, pollution de l’eau) et un coût social (embouteillages, accidents).

Selon les prévisions, l’urbanisation continuera à croire: 84% de la population européenne
devrait vivre dans les villes en 2050 (Commission européenne [153]), contre 72% en 2007.
L’importance du transport des personnes et des marchandises a été comprise par les au-
torités publiques, les entreprises et les chercheurs qui mènent des études pour optimiser ces
processus.

En particulier, la communauté scientifique a récemment adopté deux concepts fondamen-
taux. Le premier est celui de city logistics (Ruske [184], Kohler [122], Taniguchi et al. [200],
[49]) définie par Taniguchi et al. [200] comme le processus pour optimiser totalement les ac-
tivités de logistique et de transport par des entreprises privées dans des zones urbaines tout
en tenant compte de l’environnement, de la circulation, de la congestion, du trafic et de la
consommation d’énergie dans le cadre d’une économie de marché. Un concept beaucoup plus
vaste est celui de logistique urbaine (Ambrosini et al. [4], Anderson et al. [5]), qui comprend
l’organisation, le comportement, la réglementation, les éléments de financement ainsi que
des approches de collaboration, pour étudier les processus logistiques et les mouvements de
marchandises et les flux des services dans les zones urbaines. La plupart des auteurs se
réfèrent également au concept de city logistics lorsqu’il s’agit de ce concept plus large. Dans
cette thèse, nous allons suivre cet usage.

Cette thèse trouve sa position dans ce contexte et vise à étudier un système particulier
de livraison mutualisée de marchandises dans les centres urbains. Son origine est le projet
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MODUM 1. MODUM étudie un système de distribution spécifique reposant sur un anneau de
centres de distribution urbaine (CDU), situé dans la périphérie de la ville. La marchandise est
d’abord transportée au CDU par les transporteurs, puis transférée aux véhicules respectueux
de l’environnement, que nous appelons vans, en charge de la livraison finale aux clients. Des
systèmes de livraison réels basés sur la présence de CDU ont été mis en œuvre. Certains
ont été des réussites (par exemple le système de distribution mis en place à La Rochelle),
d’autres ont échoués pour différentes raisons (par exemple, le CDU n’a pas été bien situés, ou
par manque de soutien financier public). MODUM vise à étudier ce type de systèmes, pour
mieux comprendre les raisons potentielles de succès et les raisons possibles d’échec. L’étude
porte sur les différents aspects et impacts: économique (évaluation des gains et des coûts
prévus), environnementaux (réduction des émissions de CO2, et de la pollution sonore) et
sociaux (réduction de la congestion).

Différentes universités sont impliquées dans MODUM: l’Université de Paris 13; l’Ecole
des Ponts, Paris Tech; l’Université de Lyon; et l’Ecole Nationale Supérieure des Mines de
Saint-Etienne. Ils partagent les quatre objectifs principaux du projet. En particulier, il a
été prévu:

• de développer un outil d’aide à la décision pour la conception et le dimensionnement
du système (déterminer le nombre de CDU et les localiser, déterminer le service sur
l’anneau, la taille de la flotte de vans);

• de développer un outil pour déterminer la planification opérationnelle de la distribu-
tion;

• de développer un outil de simulation qui évalue un tel système de livraison;

• de recueillir les données nécessaires pour les trois points précédents et d’analyser les
résultats de la simulation.

Cette thèse se concentre sur le second point et en particulier elle traite de l’organisation
des opérations accomplies par les vans chaque jour. Plus précisément, notre objectif est de
développer un outil capable de fournir des solutions de haute qualité pour le problème de
tournées riche qui se pose à partir du projet.

Les problèmes de tournées (VRP) ont été très largement étudiés depuis le travail fon-
dateur “The Truck Dispatching Problem” de Dantzig et Ramser [58] publié en 1959. Une
planification à moindre coût pour servir tous les clients et en respectant les contraintes de
capacité des camions doit être déterminée. La littérature sur le sujet est vaste et continue
d’augmenter, année après année, de manière importante. Les spécialistes introduisent des
caractéristiques nouvelles au problème d’origine afin de mieux représenter la situation parti-
culière qu’ils doivent étudier. Fenêtres de temps, flotte hétérogène, plusieurs dépôts, niveau
de stocks, sont seulement quelques-unes des plus courantes. Un grand nombre de problèmes
se posent, soit en tenant compte de ces caractéristiques, individuellement, ou en combinant
certaines d’entre elles.

1http://www-lipn.univ-paris13.fr/modum
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La variété des recherches concerne aussi les méthodes de résolutions qui ont été proposées.
D’un côté, nous pouvons trouver des méthodes exactes, telles que le branch-and-bound, le
branch-and-price, le branch-and-cut, la programmation dynamique, entre autres. Le VRP a
été prouvéNP-difficile, et (à moins que P = NP) les méthodes exactes sont peu susceptibles
d’être efficaces pour la résolution de cas de grande taille. Actuellement, au mieux, des
instances avec une centaine de clients peuvent être résolues à l’optimalité dans des temps de
calcul raisonnables.

Le NP-difficulté du VRP justifie les efforts de la communauté mis dans le développement
de méthodes heuristiques. Ces méthodes peuvent rapidement proposer une bonne solution
mais sans garantir l’optimalité. Les méthodes varient d’heuristiques constructives simples
(heuristiques de Clarke et Wright, Clarke et Wright [42], heuristique du sweep, Gillet et
Miller [89]) éventuellement suivie par des méthodes d’amélioration locale, jusqu’à des schéma
plus complexes. Les méthodes d’amélioration locale commencent à partir d’une solution et
cherchent une solution meilleure en explorant les voisins de la solution qui peuvent être
atteints en perturbant la solution courante. Ces perturbations sont généralement appelées
mouvements. Des exemples de mouvements sont λ-opt, Or-opt, ou divers types d’échanges.

Une limite des méthodes d’amélioration locale repose sur le fait qu’elles peuvent facile-
ment se retrouver piégées dans des minima locaux, c’est à dire, des solutions sans voisins
strictement meilleurs. Différentes méthodes ont été proposées pour débloquer la recherche
lorsque cette situation survient. Ces méthodes peuvent être essentiellement classées en trois
groupes: les méthodes basées sur les trajectoires, les méthodes basées sur les populations, et
les méthodes hybrides. Dans le premier cas, l’espace de recherche est exploré en acceptant,
lors du passage d’une solution à une voisine, le déplacement vers des solutions de moins
bonne qualité. Des exemples sont la recherche tabou, le recuit simulé, et la recherche à
voisinage variable, parmi d’autres. Dans le second cas, de nouvelles solutions sont générées
en combinant des solutions sélectionnées à partir d’un ensemble de solutions appelé popula-
tion. Des exemples sont les algorithmes de colonies de fourmis et les algorithmes génétiques.
Enfin, des algorithmes hybrides combinent les caractéristiques des algorithmes précédents
pour profiter de la force de chaque méthode.

Un objectif de cette thèse est de développer un outil en mesure de fournir la planification
quotidienne des véhicules circulant dans le système complexe considéré dans MODUM. Cela
implique la considération d’un problème de tournées avec plusieurs contraintes secondaires
comme la possibilité pour le véhicule de faire plusieurs trajets, de faire de la collecte et de
la livraison, de considérer les fenêtres de temps, de prendre en compte plusieurs dépôts, et
de considérer les dates de mise à disposition des marchandises. De plus, nous allons avoir
à traiter des données représentatives de la situation d’une ville réelle de taille moyenne à
grande. Il est alors raisonnable de s’attendre à des cas contenant des centaines de clients et
des dizaines de véhicules. En outre, l’outil devra réagir rapidement aux nouvelles demandes
de services qui peuvent se produire au cours des opérations.

Pour toutes ces raisons, cette thèse se concentre sur le développement d’algorithmes
heuristiques pour des problèmes particuliers de tournées qui se posent dans le contexte
urbain. Nous commençons par considérer le VRP avec trajets multiples, où une flotte de
véhicules, basée en un dépôt central unique, doit servir un ensemble de clients. Les véhicules
sont autorisés à être rechargés quand ils retournent au dépôt puis être réacheminés. Dans
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une deuxième étape, nous considérons un problème plus riche. En particulier, nous associons
à chaque client une fenêtre de temps qui représente l’intervalle de temps où le service devrait
avoir lieu et nous associons une date de mise à disposition à chaque marchandise. Cette date
représente l’instant auquel la marchandise est disponible au dépôt. Dans une troisième étape,
nous considérons la possibilité de livrer des produits différents et incompatibles. Certaines
marchandises sont incompatibles et donc elles ne peuvent pas être transportées dans le
même véhicule en même temps. D’autre part, tous les véhicules peuvent transporter toutes
les marchandises. Dans cette étape, la taille de la flotte doit également être déterminée.
Dans la dernière étape, nous considérons le problème de tournées impliqué dans le projet
MODUM.

Un travail parallèle a consisté en l’écriture de deux états de l’art. Le premier concerne les
problèmes de tournées en milieu urbain et le second porte sur le problème de tournées avec
trajets multiples. Dans la première étude, nous proposons une classification et une analyse
de la circulation des marchandises dans un contexte urbain. Ensuite, nous considérons les
principales caractéristiques des problèmes de tournées rencontrés lors de la livraison des
marchandises dans les villes. Les conséquences algorithmiques de chaque caractéristique
sont mises en évidence. L’état de l’art sur le problème de tournées avec trajets multiples
propose un aperçu complet des recherches effectuées sur le sujet.

La section suivante détaille le schéma de la thèse et la liste de tous les chapitres et les
sujets qui sont traités.

Structure de la thése

La thèse est composée de huit chapitres, y compris celui-ci. Ils sont énumérés dans la suite
avec une brève explication sur leur contenu.

Chapitre 2: Vehicle Routing for City Logistics

Le transport de marchandises impacte profondément la qualité de vie des habitants, en
particulier dans les zones urbaines. Afin de contribuer à la compréhension du transport de
marchandises, ce chapitre donne un aperçu des mouvements de marchandises dans des zones
urbaines de nos jours.

Nous avons analysé les documents qui ont étudié explicitement le transport de marchan-
dises dans un contexte urbain tant du point de vue des entreprises que des autorités
publiques. A partir de ces analyses, nous avons identifié les problèmes auxquels les
chercheurs, les entreprises et les autorités doivent faire face lorsqu’ils s’intéressent aux
livraisons de marchandises en ville. Dans un contexte urbain, des aspects particuliers sont
considérés et les solutions proposées peuvent prendre en compte des aspects environnemen-
taux pour améliorer l’habitabilité de la ville tout en déterminant un planning de livraison
efficace. Quatre problèmes principaux ont été identifiés: le time-dependent VRP, le VRP
multi-échelon, le VRP dynamique et le VRP avec trajets multiples. Une vue d’ensemble sur
tous ces problèmes est alors donnée. Le document conclut en indiquant des directions pour
la recherche et les développements futurs.
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Ce chapitre a été produit en collaboration avec Jesus Gonzalez-Feliu du Laboratoire
d’Economie des Transports, Lyon, France.

Chapitre 3: The Multi-Trip Vehicle Routing Problem: A Survey

Dans ce chapitre nous présentons un état de l’art sur le problème de tournées de véhicules
avec trajets multiples. Ce problème est une extension du très connu problème de tournées
de véhicules, où les véhicules sont autorisés à être rechargés au dépôt une fois qu’ils finissent
un trajet. Il a été introduit il y a plus de 25 ans, et depuis lors, les chercheurs ont travaillé
sur ce problème, mais aucun état de l’art complet n’a été proposé.

La contribution de ce chapitre est principalement de combler cette lacune, en proposant
une synthèse exhaustive des travaux qui ont été consacrés à ce sujet. Les nombreuses ap-
plications pratiques qui sont mises en évidence devraient encourager les chercheurs et les
experts à mettre leurs efforts sur ce problème.

Chapitre 4: A Memetic Algorithm for the Multi-Trip Vehicle Routing Problem

Nous considérons le problème de tournée de véhicules avec trajets multiples, dans lequel un
ensemble de clients géographiquement dispersés doit être desservi par une flotte homogène
de véhicules. Chaque véhicule peut effectuer plusieurs trajets au cours de la journée de
travail. L’objectif est de minimiser le temps de voyage total tout en respectant les contraintes
temporelles et de capacité.

Le problème est particulièrement intéressant dans le contexte de la logistique urbaine,
où les clients sont situés dans les centres-villes. Des restrictions juridiques peuvent en effet
favoriser l’utilisation de petits véhicules de capacité limitée pour effectuer les livraisons. Cela
conduit à des trajets beaucoup plus courts que la journée de travail. Un véhicule peut alors
retourner à son dépôt et être rechargé avant de commencer un autre trajet de service.

Nous proposons un algorithme génétique hybride pour le problème. Surtout, nous intro-
duisons un nouvel opérateur de recherche locale basé sur la combinaison de mouvements et
d’échanges classique dans le contexte du VRP. Notre procédure est comparée avec celles de
la littérature et démontre sa performance par rapport aux algorithmes précédents en matière
de qualité moyenne des solutions. En outre, une nouvelle solution réalisable a été trouvée
ainsi que de nombreuses nouvelles meilleures solutions connues.

Ce chapitre a été produit en collaboration avec Thibaut Vidal de l’Université de Tech-
nologie de Troyes, Troyes, France et CIRRELT, Montréal, Canada.

Chapitre 5: The Multi-Trip Vehicle Routing Problem With Time Windows and
Release Dates

Le problème de tournées de véhicules avec trajets multiples, avec fenêtre de temps et dates
de disponibilité est une variante du problème de tournées de véhicules avec trajets multiples
où une fenêtre de temps est associée à chaque client et une date de disponibilité est associée à
chaque marchandise qui doit être livré à un certain client. La date de disponibilité représente
le moment où la marchandise est disponible au dépôt pour la livraison finale.
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Le problème est pertinent dans le contexte de la logistique urbaine, où les systèmes
de livraison qui sont étudiés se basent sur des centres de distribution urbaine (CDU). Les
camions arrivent au CDU pendant toute la journée de travail et livrent les marchandises
qui sont transférées à des véhicules respectueux de l’environnement en charge de réaliser la
livraison final aux clients.

Nous proposons un algorithme génétique pour le problème sur la base de la représentation
des chromosomes comme tour géant ainsi qu’une procédure de découpage pour obtenir des
solutions. En particulier, un graphe auxiliaire acyclique est construit sur la séquence de
clients à desservir représentée par le tour géant. Chaque arc représente une tournée qui doit
être affectée à un véhicule spécifique. La meilleure solution associée à chaque tour géant
pourrait être obtenue seulement en considérant toutes les affectations possibles de toutes les
tournées à tous les véhicules. Ceci n’est pas possible dans un temps de calcul raisonnable.
Pour cette raison, nous calculons tout d’abord le plus court chemin sur le graphe auxiliaire.
Cette première étape sélectionne des arcs sur le graphe qui correspondent à un ensemble
de tournées. Dans un deuxième temps, nous affectons les tournées sélectionnées par le plus
court chemin aux véhicules.
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Figure 1: Exemple sur une petite instance avec cinq clients
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Figure 2: Exemple de graphe auxiliaire

Le problème ici traité est nouveau et est donc introduit pour la première fois dans le cadre
de cette thèse. Pour cette raison, nous proposons un ensemble d’instances pour le problème
même et une mesure pour caractériser leur difficulté de résolution, c’est à dire la difficulté
à trouver un planning réalisable. Un planning réalisable est un planning qui respecte toutes
les contraintes de temps et de capacité.

Chapitre 6: An Iterated Local Search for the Multi-Commodity Multi-Trip Ve-
hicle Routing Problem with Time Windows

Le problème de tournées de véhicules avec produits multiples, fenêtre du temps et trajets mul-
tiples vise à déterminer un plan d’acheminement d’un ensemble de véhicules pour desservir
un ensemble de clients qui exigent des produits incompatibles entre eux. Deux produits sont
dit incompatibles s’ils ne peuvent pas être transportés ensemble dans le même véhicule. Par
contre, les véhicules sont autorisés à effectuer plusieurs trajets au cours de la journée de
travail et à transporter n’importe quel produit. L’objectif est de minimiser le nombre de
véhicules utilisés.

Contrairement aux problèmes précédemment traités celui-ci est caractérisé par un objectif
stratégique plutôt qu’un objectif opérationnel. De plus, les instances à traiter sont extraites
d’un problème réel qu’une entreprise doit résoudre pendant une semaine de travail. Il s’agit
donc de déterminer le planning de livraison pour trois à quatre cents clients en utilisant
environs quatre-vingt véhicules. Une solution du problème est représentée dans la Figure 3.
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Figure 3: Tournées pour le cinquième jour: différentes couleurs représentent différents pro-
duits

Nous proposons une procédure de recherche locale itérative plus performante que le précé-
dent algorithme proposé dans la littérature pour le même problème. De plus, nous effectuons
une analyse sur le bénéfice que l’on peut obtenir en introduisant l’aspect trajets multiples au
niveau du dimensionnement de la flotte de véhicules. Les résultats sur les instances classiques
pour le VRPTW montrent que, dans certains cas, la flotte peut être réduite de moitié.

Ce chapitre a été produit en collaboration avec Daniele Vigo de l’Université de Bologne,
Bologne, Italie.

Chapitre 7: MODUM Vehicle Routing Problem

Ce chapitre présente et définit formellement le problème considéré par le projet MODUM.
Nous donnons le schéma général du simulateur qui est conçu pour évaluer les performances
du système. Une heuristique pour faire face au problème général est proposée aussi. Elle
sera intégrée dans le simulateur.
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Door

CDC

Client
Parking

Figure 4: Schéma étudié dans le projet MODUM

Le développement du simulateur est géré par un autre partenaire du projet MODUM
(l’Ecole Nationale des Pont et Chaussées) et n’est pas présenté dans la thèse. Comme le
développement du simulateur et la collecte de données ne sont pas encore terminées, les
résultats ne sont pas présentés ici.

Ce chapitre a été fait en collaboration avec tous les partenaires du projet.

Chapitre 8: Conclusion et perspectives

Ce chapitre termine le manuscrit en proposent des perspectives de recherche ouvertes par
les travaux faits dans le cadre de cette thèse.
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Description du projet MODUM et du système de livrai-
son conçu

Le projet MODUM vise à étudier un système de distribution mutualisée basé sur un anneau
constitué de centres de distribution urbaine (CDU) stratégiquement situés dans la banlieue
de la ville. Les transporteurs qui doivent transporter aux clients leur marchandise, livrent les
marchandises à l’un des CDU plutôt que directement au client. Le CDU est une plateforme
logistique utilisée pour transférer les marchandises d’un véhicule à un autre. Habituellement,
il est caractérisé par le fait de ne pas avoir la possibilité de stocker les marchandises ou de
ne pouvoir la stocker que pour une très courte période.

Différentes études et projets ont été menés sur l’efficacité de ces systèmes de livraison en
ville. Dans certains cas, les résultats ont été positifs et les perspectives prometteuses, d’autres
projets ont échoué. Le succès dépend de plusieurs facteurs et acteurs. Les CDU doivent être
bien situés: ils doivent être à proximité du centre-ville, mais aussi faciles d’accès pour les
camions qui arrivent généralement par les autoroutes. L’ensemble du système doit être
bien dimensionné afin d’être en mesure de recevoir toutes les marchandises, mais sans être
pour autant trop coûteux. Les autorités doivent imposer et, en particulier, faire respecter la
limitation d’accès au centre-ville, afin de forcer les camions à s’arrêter au CDU au lieu d’aller
directement servir les clients. D’un autre côté, les transporteurs demandent un système
efficace: les marchandises doivent être livrées aux clients à temps, et faire faire des économies
(de temps et/ou d’argent) aux transporteurs. La livraison aux clients doit être effectuée par
des véhicules respectueux de l’environnement, que nous appellerons vans, afin de réduire la
pollution atmosphérique et le bruit.

Le projet MODUM doit évaluer un tel système de livraison, doit identifier les principaux
leviers qui peuvent faire le succès du projet s’ils sont bien appliqués. En outre, il vise à
développer un outil d’aide à la décision basé sur la simulation à événements discrets, pour
aider les praticiens à dimensionner le système en ce qui concerne la ville où ils seraient situés.

Le système conçu fonctionne pendant la journée de travail et les camions amènent d’une
façon continue les marchandises au CDU. Les nouvelles requêtes de service sont intégrées
dans la planification actuelle en temps réel. Les requêtes non desservies, ou des marchan-
dises déposées au CDU un jour à l’avance seront utilisées pour constituer la planification
initiale des trajets des vans pour le lendemain. La simulation fournit différents indicateurs
de performance qui sont utilisés pour évaluer le système.

A noter que la mise au point du simulateur est en dehors du cadre de cette thèse. Ce
développement est dirigé par un autre partenaire dans le projet de MODUM. En outre,
une mission importante liée à l’utilisation du simulateur est la conception et la collecte des
données réalistes, qui sont gérées par un troisième partenaire. Lors de la rédaction de cette
thèse, cette tâche n’est pas terminée non plus.

Le schéma général du système MODUM est représenté dans la Figure 4.

Le système considère à la fois le flux entrant et le flux sortant des marchandises. Nous
commençons par décrire le premier type de flux. Les camions livrent des marchandises au

Page 10 EMSE-CMP Diego Cattaruzza



CONTENTS

CDU (carrés bleus), d’où les vans sont utilisés pour accomplir les dernières livraisons vers
les clients indiqués par des points rouges. Les camions sont censés entrer dans le système
(approche de la ville) à partir des portes (cercles noirs). Une porte représente la source de
la marchandise et peut être un aéroport, un port, une gare, une zone industrielle ou une
bretelle d’autoroute. Le système considère aussi la présence de parkings (points verts) qui
peuvent être utilisés par les vans.

Tous les CDU sont liés par une navette qui circule régulièrement et visite tous les CDU
(flèches bleues dans la Figure 4) et transfère les marchandises d’un CDU à un autre. Par
exemple, un camion décharge des marchandises au CDU situé au nord du centre-ville, et les
marchandises doivent être livrées dans le sud de la ville. Il pourrait être pratique d’utiliser
la navette pour déplacer la marchandise à un plus proche CDU, plutôt que d’envoyer un van
de l’autre côté de la ville.

Dès que la marchandise arrive au bon CDU elle est transférée aux vans en charge de la
réalisation de la livraison finale aux clients. Les tournées de livraison ont leurs origines à
un certain CDU et se terminent au même CDU, à un autre CDU ou dans un parking. Les
clients doivent être visités pendant leur fenêtre de temps et l’attente chez le client n’est pas
autorisée. Un véhicule peut aller dans un parking et attendre.

Les flux sortants fonctionnent comme suit. Les marchandises sont collectées chez les
clients et envoyées vers les portes en passant par les CDU. Les tournées de collecte finissent
toujours à un certain CDU, mais elles peuvent commencer à partir du même CDU, d’un
autre CDU ou d’un parking. Dans tous les cas, les vans sont initialement vides. Une fois
que la marchandise est au CDU elle peut être déplacée vers un autre CDU plus pratique par
la navette ou transférée dans un camion et envoyée vers une porte.

Nous supposons que les tournées sont soit tournées de livraison soit tournées de collecte
(c’est-à-dire, seules des livraisons ou des collectes sont effectuées tout au long d’une tournée).
Lorsque la distinction n’a pas besoin d’être faite, le mot service sera utilisé pour indiquer
l’un des deux types de voyages. Chaque van est affecté à un trajet, c’est à dire, à un ensemble
de services que le van lui-même doit effectuer en séquence.

Le système considère la possibilité de louer les vans. Dans ce cas, un utilisateur peut
louer un van, en précisant les endroits (CDU ou parking) et les horaires auxquels il souhaite
obtenir et rendre le véhicule. Nous parlerons de em libre-service.

Sur le plan opérationnel, on peut supposer que le transporteur appelle le centre opéra-
tionnel (OPC) et fournit les informations telles que le CDU où il va déposer la marchandise
et à quel moment il atteindra ce CDU. En outre, il doit préciser la destination finale des
marchandises. Le OPC exécute un algorithme rapide pour évaluer la possibilité d’intégrer
la requête dans la planification actuelle afin d’accepter ou de rejeter la requête. Si elle est
acceptée, elle doit être insérée dans le plan d’exécution actuel. Tous les CDU sont consid-
érés comme points de départ potentiels des services. Si le meilleur CDU n’est pas celui où
le camion est arrivé, la navette est utilisée pour déplacer les marchandises à un autre plus
adapté. Cela rend les produits disponibles pour être chargés dans un van et commencer la
livraison finale.
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Une planification est créée avant que la journée de travail ne commence en utilisant toutes
les requêtes connues. Cette planification est construite par la résolution d’un problème
statique. Au cours de la journée de travail, de nouvelles requêtes sont insérées dans la
planification et un problème dynamique est résolu.

Conclusion

La logistique urbaine est devenue un sujet de recherche important au cours des dernières
années. Des systèmes de livraison efficaces sont étudiés et de nouvelles solutions sont recher-
chées. Ces solutions cherchent à réaliser des économies, à respecter l’environnement, et à
créer des villes agréables sans pénaliser les activités du centre-ville. Dans ce contexte, le
projet MODUM étudie un nouveau système de livraison efficace, sur la base d’un anneau de
centres de distribution urbains (CDU) situés autour de la ville.

Une première contribution de cette thèse a consisté en l’analyse des mouvements de
marchandises dans le contexte urbain. L’enquête met en évidence la façon dont les mou-
vements des marchandises dans un contexte urbain sont effectués: les trajets de livraison
desservent plusieurs clients. Cela laisse de l’espace pour l’optimisation du planning de livrai-
son de la journée, qui peut induire des réductions du temps de trajet total, de la distance
parcourue et réduire aussi la pollution.

Néanmoins, lorsqu’il s’agit de systèmes urbains, une telle planification efficace n’est pas
facile à réaliser. L’environnement métropolitain a des caractéristiques particulières comme
les heures de pointe, les embouteillages, les politiques de restriction ou d’autres caractéris-
tiques qui sont renforcées dans ce contexte, comme les accidents de voiture, qui affectent
profondément le planning et doivent être prises en compte. La conception d’un planning
efficace passe par la compréhension de l’environnement urbain.

Cette thèse contribue à cette tâche en proposant une analyse des travaux réalisés par des
chercheurs dans le contexte de la logistique urbaine et en les compilant dans un état de l’art.
En outre, à partir de ces travaux, nous extrapolons les principales caractéristiques qu’un
problème de tournées doit prendre en compte pour produire une planification de la livraison
urbaine efficace. Nous avons examiné chaque caractéristique dans l’état de l’art et, en plus,
nous avons proposé une synthèse des travaux liés à chaque sujet. Le but de ce travail est de
fournir aux futurs chercheurs un aperçu sur le tournées en ville, et de guider le lecteur vers
une plus grande et plus précise analyse.

Une caractéristique particulière que nous avons détectée dans la phase précédente, est
l’aspect trajets multiples. Les tournées de livraison en centre-ville sont souvent faites par des
véhicules petits et respectueux de l’environnement, que nous appelons vans. L’autonomie
ou capacité des vans est limitée et, en conséquence, limite la longueur des tournées qui sont
normalement plus courtes que la journée de travail. Les vans peuvent alors être réutilisés
plusieurs fois, afin d’exploiter tout l’horizon de temps. Le problème académique qui se pose
est le Multi-Trip Vehicle Routing Problem (MTVRP).

Ce modus operandi est commun aux systèmes de logistique urbaine: l’agencement struc-
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turel des villes (en raison de l’héritage médiéval) et les motivations écologiques forcent les
professionnels à prendre en compte les vans pour les livraisons finales. Cependant, le con-
texte urbain n’est pas le seul dans lequel plusieurs trajets par jour sont considérés. La
livraison de marchandises aux supermarchés, le réapprovisionnement des stations service,
la collecte des ordures et le transport du bétail sont quelques exemples d’applications de
tournées dans lesquels l’aspect trajets multiples a été pris en compte dans la littérature. Par
ailleurs, des travaux récents admettent plusieurs trajets par véhicule dans des problèmes de
production-scheduling et de l’inventory-routing.

En dépit de son intérêt pratique, le MTVRP n’a pas été intensivement étudié par les
chercheurs et la littérature n’est pas aussi riche que l’on pourrait imaginer. Cette thèse
contribue à combler cette lacune et propose des méthodes de résolution heuristiques pour le
MTVRP, pour le MTVRP avec fenêtres de temps et dates de mise à disposition, et pour le
MTVRP avec produits multiples et fenêtres de temps. Une contribution supplémentaire de
cette thèse dans le contexte des tournées multiples est de rassembler tous les travaux effectués
sur le sujet dans un deuxième état de l’art. Il s’agit de la première synthèse complète sur
le MTVRP. Cet état de l’art montre la limite des algorithmes exacts, compare les résultats
des méthodes heuristiques et donne des références aux instances classiques du problème. De
plus, une section examine l’intérêt pratique des modèles. Cette partie du travail devrait en-
courager d’autres chercheurs à mettre leurs efforts dans ce domaine particulier de problèmes
de tournées.

Comme déjà mentionné, nous avons développé trois algorithmes pour des problèmes
de tournées avec trajets multiples. Nous avons d’abord développé un algorithme génétique
pour le MTVRP où les chromosomes sont des permutations des clients, généralement appelés
tour géant. Une procédure de découpage (basée sur les travaux de Prins [166]) transforme les
chromosomes en solutions. En outre, nous avons proposé un opérateur de recherche locale
adapté au problème. A notre connaissance, à ce jour, seuls les opérateurs propres au VRP
ont été utilisés dans le contexte des tournées multiples, à la seule exception du remplacement
et des échanges de trajets entre les véhicules. L’opérateur que nous avons proposé combine
mouvements classiques pour le VRP qui n’améliorent pas la solution actuelle, avec l’échange
de tournées entre les différents véhicules, à la recherche d’une amélioration globale. Ceci
est la première étape du développement d’opérateurs spécialisés qui exploitent la structure
particulière du problème. Les résultats obtenus définissent l’état de l’art sur les instances
classiques du problème.

Un deuxième travail a introduit un nouveau problème: le MTVRP avec fenêtre du temps
et dates de disponibilité (MTVRPTWR). Une date de disponibilité est associée à chaque
marchandise et elle représente l’instant où la marchandise elle-même devient disponible pour
la livraison au dépôt. Elle modélise la dépendance entre les flux externes et les flux internes.
Les flux externes sont les déplacements effectués par les camions lourds qui apportent les
marchandises à un CDU. Les flux internes sont les déplacements effectués par les vans d’un
CDU vers les clients ou vice-versa. Des discussions avec des praticiens d’entreprises privées
ont certifié l’intérêt pratique du problème, ainsi que l’absence de travaux académiques sur le
sujet.

Nous avons proposé un algorithme génétique hybride pour le MTVRPTWR. Les tours
géants sont transformés en solutions au moyen d’une procédure de labellisation qui généralise
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la procédure de découpage que nous avons présentée pour le MTVRP. Nous avons aussi créé
un ensemble d’instances pour le problème. Nous avons utilisé les fameuses instances de
Solomon comme instances de base. En particulier, la même date de disponibilité peut être
associée à différents clients: ainsi est simulée l’arrivée d’un camion au dépôt. Différentes
familles d’instances sont présentées, chacune caractérisée par une différence moyenne entre
la date de disponibilité et la borne supérieure de la fenêtre de temps.

Avec l’introduction du problème MTVRPTWR, plusieurs directions de recherche sont
maintenant ouvertes et laissées pour des travaux futurs. L’une est le développement de
méthodes exactes. Même si les méthodes exactes sont peu susceptibles d’être efficaces dans
la résolution des problèmes de taille réelle, elles peuvent être utilisées pour évaluer les al-
gorithmes heuristiques. Une deuxième direction naturelle est l’introduction des aspects dy-
namiques. La marchandise arrive au dépôt par les axes routiers et les rues urbaines. Ainsi les
camions peuvent souffrir de retards dus à des conditions de circulation défavorables. Les con-
ducteurs peuvent communiquer leur retard au centre d’opération qui peut modifier la date
de disponibilité et mettre à jour la planification en conséquence. Les aspects dynamiques
peuvent être introduits, même du fait de la possibilité que certains camions peuvent notifier
leur arrivée au cours de la journée de travail. Dans les deux cas, l’utilisation des nouvelles
technologies communicantes permet d’établir un lien entre les conducteurs de camions et le
centre d’opération qui coordonne les opérations de livraison. Une troisième sous-classe des
problèmes qui peuvent découler du MTVRPTWR considère des aspects stochastiques. Des
temps de déplacement stochastiques peuvent être considérés au niveau des flux internes ainsi
qu’au niveau des flux externes. Dans ce dernier cas, l’incertitude du temps de déplacement
sur les routes parcourues par les camions peut être reflétée dans les dates de sortie.

La dernière variante du MTVRP que nous avons traité dans la thèse, organise le planning
de livraison de produits incompatibles, à savoir, qui ne peuvent pas être transportés dans
le même véhicule en même temps. Cette variante a été appelés le MTVRP avec produits
multiples et fenêtre de temps, et a été introduite par Battarra et al. [17]. Le problème
est plutôt stratégique qu’opérationnel: le nombre de véhicules utilisés doit être minimisé.
Une procédure itérative (ILS) est proposée pour un ensemble d’instances qui se pose dans
un contexte réel. Les résultats sont le nouvel état de l’art pour le problème: la flotte est
réduite pour toutes les instances et peut atteindre 10%. En outre, une analyse est menée
sur l’avantage potentiel de permettre aux véhicules d’effectuer plusieurs tournées dans le
problème de dimensionnement de la flotte. Sachant que le MTVRP avec produits multiples et
fenêtre de temps généralise le MTVRP avec fenêtres de temps, nous utilisons notre procédure
ILS sur les instances classiques de Solomon et les instances de Gehring et Homberger conçues
pour le VRPTW avec l’objectif de minimiser la flotte en premier et la distance parcourue en
second. Les résultats ont montré que, dans certains cas, la flotte peut être réduite de moitié,
seulement en laissant les véhicules effectuer plusieurs tournées, tandis que dans d’autres, il
est peu probable que l’introduction de l’aspect trajets multiples puisse réduire le nombre de
véhicules. Une analyse plus poussée a montré que la raison de la réduction possible de la
taille, est que l’horizon de temps n’est pas bien exploité et que donc les véhicules restent non
utilisés dans le dépôt sur une partie de l’horizon de temps.

La contribution de cette partie du travail n’est donc pas seulement algorithmique, avec
le développement d’une procédure efficace. Les résultats obtenus et leur analyse devraient
rendre le lecteur conscient de l’importance de l’aspect trajets multiples dans la réalisation
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d’une planification efficace de livraison. Ici, avec “efficace”, nous ne référons pas seulement au
niveau opérationnel, mais aussi au niveau stratégique, où nous regardons comment minimiser
la taille de la flotte et les coûts connexes.

L’axe de recherche qui découle de ce travail et de l’analyse des résultats que nous avons
obtenus est l’intérêt qu’aurait la conception d’algorithmes permettant de résoudre efficace-
ment à la fois un problème VRP et son homologue avec trajets multiples. La procédure
commune actuelle est d’évaluer les algorithmes conçus pour des problèmes avec tournées
multiples sur des instances où la capacité limitée des véhicules les oblige à effectuer plusieurs
trajets. Les méthodes ne sont pas évaluées sur des instances admettant une solution opti-
male pour le VRP. Par conséquent, leur capacité à trouver des solutions de type VRP n’est
pas évaluée. L’analyse que nous avons menée a montré que, dans certaines situations, une
solution MTVRP est nécessaire pour exploiter efficacement l’horizon de temps, dans d’autres
cas, une solution du VRP est suffisante. De là découle le besoin d’algorithmes efficaces pour
ces deux problèmes simultanément.

La thèse se termine par une définition formelle du problème de tournées riche qui se
pose dans le projet MODUM et qui a guidé notre travail. Le problème concerne plusieurs
dépôts et des parkings utilisés pour garer les vans. Les vans font plusieurs tournées au cours
de la journée de travail et font à la fois de la collecte et de la livraison (bien que dans des
tournées séparées). Les tournées commencent à un certain dépôt et se terminent au même
ou à un autre dépôt ou, aussi, dans un parking. Une date de disponibilité est associée à
chaque marchandise à livrer, alors que des dates d’échéances sont associées aux marchandises
à collecter chez le client.

Comme la conception du système MODUM a inspiré l’introduction des problèmes de
tournées avec dates de mise à disposition, ces systèmes peuvent être la motivation pour
l’introduction de problème de tournées avec des dates d’échéance associées aux marchandises
qui doivent être collectées chez les clients et ramenées au dépôt. Les problèmes de tournées
avec date de mise à disposition modélisent un problème de livraison pur, les problèmes avec
dates d’échéance modélisent des problèmes de collecte purs et peuvent définir une autre classe
intéressante de problèmes de tournées. Une extension naturelle serait alors de considérer
simultanément des dates de disponibilité et des dates d’échéance dans le même problème,
avec par conséquent l’introduction d’une troisième classe de problème à l’intersection des
deux précédentes.

Au moment de la conclusion de cette thèse, le simulateur en charge de l’évaluation du
système était en cours de développement. L’objectif est d’évaluer le système dans différents
scénarios. L’évaluation sera basée sur différents indicateurs comme le coût du système, la
quantité d’émissions de CO2, le nombre de fenêtres de temps violées, le nombre de camions
utilisés, le facteur de charge moyen. Nous n’avons pas tenu compte de temps de déplacements
qui varieraient en fonction du temps, bien que cela caractérise généralement les centres-villes
et les zones urbaines. Des temps de déplacement constants sont utilisés pour une pre-
mière évaluation du système. Cependant, d’autres recherches devraient examiner la manière
d’intégrer des temps de déplacement fonctions du temps ainsi que des temps de parcours
stochastiques pour une meilleure représentation de l’environnement urbain. En outre, le
système MODUM considère une navette qui relie tous les dépôts et déplace les marchan-
dises d’un dépôt à un autre, par exemple plus adapté à la livraison finale. Les recherches
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futures peuvent étudier l’organisation de la navette et évaluer la possibilité d’optimiser la
planification de la navette en se basant sur la demande exacte plutôt que d’avoir un service
préprogrammé. Chacune des directions que nous avons énumérées peut améliorer le système
considéré dans MODUM et améliorer sa fonctionnalité. Nous sommes optimistes quant au
fait que la simulation puisse démontrer l’efficacité du système, à condition que les choix tac-
tiques et stratégiques aient été bien effectués. Les travaux futurs devraient se poursuivre avec
l’objectif d’amélioration de ces systèmes qui, selon nous, offrent une opportunité concrète
pour la construction de villes durables et orientées vers les personnes.
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Chapter 1

Introduction

Urbanization is defined as the process of transition from a rural to a more urban society (Ro-
drigue [179]) and has characterized the 20th century. The world’s urban population reached
3.5 billion people in 2010, representing 51.6% of the total population (Rodrigue [179]). Cities
are the center of gravity of our society, where all the activities take place, from commercial
to leisure.

More inhabitants living in cities means a bigger quantity of merchandise and people
moving into the cities. Transportation comes into play, both for people and merchandise,
and with it, come into play all its benefits and disadvantages. Transportation connects
people, creates access to events, makes goods available to users. All this with a certain
environmental (noise, air and water pollution) and social cost (congestion, accident deaths).

Forecasts predict that urbanization will continue growing: 84% of the European pop-
ulation is expected to live in cities by 2050 (European Commission [153]), against 72% in
2007. The importance of both people and goods transportation has been understood by
authorities, companies and scholars and studies to optimize the process have been carried
out.

In particular the scientific community has recently adopted two main concepts. The
first is that of city logistics (Ruske [184], Kohler [122], Taniguchi et al. [200], [49]) defined
by Taniguchi et al. [200] as the process for totally optimizing the logistics and transport
activities by private companies in urban areas while considering the traffic environment, the
traffic congestion and energy consumption within the framework of a market economy. A
much larger concept is that of urban logistics (Ambrosini et al. [4], Anderson et al. [5]),
which includes all the organizational, behavioral, regulation and financing elements, as well
as collaborative approaches, to study the logistics processes and the movements of goods and
service flows in urban areas. Most authors however also refer to city logistics when dealing
with this larger concept. In the thesis, we will follow this usage.

This thesis finds its position into this context and aims at studying a particular sys-
tem of mutualized merchandise delivery in city centers. Its origin is the MODUM project1.
MODUM studies a specific delivery system based on a ring of city distribution centers (CDC),
located in the city outskirts. Merchandise is first transported to the CDC by carriers and
then transferred to eco-friendly vehicles, that we call vans, in charge of the final delivery

1http://www-lipn.univ-paris13.fr/modum
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to customers. Actual delivery systems based on the presence of CDC have been imple-
mented. Some cases were successful (for example the delivery system implemented in La
Rochelle), other failed for different reasons (for example the CDC was not well located, or
for lack of public financial support). MODUM aims at studing this kind of systems, to bet-
ter understand the potential reasons of success and the possible reasons of fail. The study
addresses different aspects and impacts: economic (evaluation of the expected gains and
costs), environmental (reduction of CO2 emission and noise pollution) and social (reduction
of congestion).

Different universities are involved in MODUM: University of Paris 13; École des Ponts,
Paris Tech; University of Lyon; and the École Nationale Supérieure des Mines de Saint-
Etienne. They share the four main objective of the project. In particular it was planned:

• to develop a decision support tool for designing and sizing the system (determine the
number of CDC and locate them; determine the service on the ring; size the fleet of
vans);

• to develop a tool for determining the distribution operational planning.

• to develop a simulation tool that evaluates such a delivery system;

• to collect the data needed for the three previous points and analyze the results of the
simulation.

This thesis focuses on the second point and in particular it deals with the organization of
operations that vans need to accomplish each day. Specifically, our objective is to develop a
tool able to provide high-quality solutions for the rich routing problem that arises from the
project.

Routing problems have been deeply studied since the seminal work “The Truck Dispatch-
ing Problem” of Dantzig and Ramser [58] published in 1959. A least-cost planning to serve
all the customers and respecting truck capacity constraints needs to be determined. The
literature on the subject is large and keeps growing year after year. Scholars introduced
different characteristics into the original problem in order to better represent the particular
situation they were facing. Time windows, heterogeneous fleet, multiple depots, backhauls,
inventories are some of the most common. A large number of problems arise, either by
considering these characteristics individually or by combining some of them.

The variety of the research concerns as well the solution methods that have been proposed.
On one side we can find exact methods such as branch and bound, branch and price, branch
and cut, dynamic programming, among others. The VRP has been proven to be NP-
hard, then (unless P = NP) exact methods are unlikely to be efficient in solving large-size
instances. Currently, at best, instances with hundred customers can be solved to optimality
within reasonable computational time.

The NP-hardness of the VRP justifies the efforts the community put into the develop-
ment of heuristic methods. These methods can quickly propose a good solution but without
the guarantee of the optimality. Methods vary from simple constructive heuristics (Clarke
and Wright heuristic, Clarke and Wright [42], sweep heuristic, Gillet and Miller [89]) even-
tually followed by local improving methods, to more complex schemes. Local improving
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methods start from a solution and look for a better one exploring neighbour solutions that
can be reached perturbing the current solution. Perturbations are usually called moves.
Examples of moves are λ-opt, Or-opt, exchanges, interchanges.

Limitation of local improving methods is that it can easily get trapped in local minima,
i.e., solutions without any strictly better neighbour. Different methods have been proposed
to push the search out of this trap. These methods can mainly be classified in three groups:
trajectory-based method, population-based methods, and hybrid methods. In the first case,
the search space is explored moving from one solution to a neighbour one, accepting moving
toward worse solutions. Examples are tabu-search, simulated annealing, variable neigh-
bourhood search among others. In the second case, new solutions are generated combining
solutions selected from a pool. Examples are genetic and ant colony algorithms. Finally,
hybrid methods combine characteristics of the previous algorithm to take advantage from
the strength of each.

One objective of this thesis is to develop a tool able to provide the daily planning of
vehicles operating in the complex system considered in MODUM. This implies to consider in
the routing problem several side constraints as multi-trip possibility for the vehicles, pickups
and deliveries, time windows, multiple depots, release dates on the merchandise. Moreover,
we will have to deal with realistic data representative of the situation of a medium-large
city. It is then reasonable to expect instances containing hundreds of customers and dozens
of vehicles. In addition, the tool will need to promptly react to new service requests that
can occur during operations.

For all these reasons, this thesis will focus on the development of heuristic algorithms
for particular routing problems that arise in the urban context. We start by considering
the Multi-Trip VRP, where a fleet of vehicles, based on a central and unique depot, need
to serve a set of customers. Vehicles are allowed to be re-load when they go back to the
depot and be re-routed. In a second step we consider a richer problem. In particular we
associate with each customer a time window that represents the time interval where service
should take place and we associate a release date with each merchandise. This release date
represents the instant the merchandise becomes available at the depot. In a third step we
consider the possibility of delivering different incompatible commodities. Commodities are
incompatible when they cannot be transported into the same vehicle at the same time. On
the other hand all the vehicles can transport all the commodities. In this step, the fleet size
needs to be determined. In the last step, we consider the whole routing problem involved in
MODUM.

A parallel work concerns the composition of two surveys. One is about routing problems
in city centers the second is about Multi-Trip Vehicle Routing Problems. In the first survey
we propose a classification and an analysis of the goods movement in an urban context. Then,
we consider the major characteristics of routing problems encountered when delivering goods
in cities. Peculiarities of each characteristic are highlighted. The survey on the Multi-Trip
Vehicle Routing Problem proposes a full overview of research done on the subject.

The following section gives the scheme of the thesis listing all the chapters and the topics
that are dealt.
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Thesis structure

The thesis is made by eight chapters including this one. They are listed in the following
with a brief explanation of the content.

Chapter 2: Vehicle Routing for City Logistics

The impact of merchandise transportation deeply impacts the life quality of inhabitants,
especially in urban areas. In order to contribute to the understanding of good transportation,
this paper gives a picture of nowadays urban good movements that are here classified and
described.

We surveyed the papers that explicitly studied urban good transportation from the enter-
prise and from public authority point of view. From these papers, we identified the problems
that scholars, privates and authorities face while studying urban deliveries or aspects that
are considered when solutions are proposed to simultaneously improve delivery efficiency and
city livability. Four main problems are identified: Time-dependent VRP, Multi-level VRP,
Dynamic VRP and Multi-trip VRP. An overview on all these problems is then given. The
paper concludes given directions for further research and development.

This chapter has been done in cooperation with Jesus Gonzalez-Feliu from Laboratoire
d’Économie des Transports, Lyon, France.

Chapter 3: The Multi-Trip Vehicle Routing Problem: A Survey

This paper presents a survey on the Multi-Trip Vehicle Routing Problem. This problem is
an extension of the well-known Vehicle Routing Problem, where vehicles are allowed to be
re-loaded and re-routed once they end a trip at the depot. It was introduced more than 25
years ago, and since then, researchers have been working on it, but no extensive survey has
been proposed.

The contribution of this paper is mainly to fill this gap, proposing a full collection of
the works that have been done on the subject. The wide practical applications that are
highlighted should encourage academics and practitioners to put their efforts on this problem
in further research.

Chapter 4: A Memetic Algorithm for the Multi-Trip Vehicle Routing Problem

We consider the Multi-Trip Vehicle Routing Problem, in which a set of geographically scat-
tered customers have to be served by a fleet of vehicles. Each vehicle can perform several trips
during the working day. The objective is to minimize the total travel time while respecting
temporal and capacity constraints.

The problem is particularly interesting in the city logistics context, where customers are
located in city centers. Road and legal restrictions favor the use of small capacity vehicles
to perform deliveries. This leads to trips much shorter than the working day. A vehicle can
then go back to the depot and be re-loaded before starting another service trip.

We propose an hybrid genetic algorithm for the problem. Especially, we introduce a new
local search operator based on the combination of standard VRP moves and swaps between
trips. Our procedure is compared with those in the literature and it outperforms previous
algorithms with respect to average solution quality. Moreover, a new feasible solution and
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many best known solutions are found.

This chapter has been done in cooperation with Thibaut Vidal from Université de Tech-
nologie de Troyes, Troyes, France and CIRRELT, Montreal, Canada.

Chapter 5: The Multi-Trip Vehicle Routing Problem With Time Windows and
Release Dates

The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates is a variant
of the Multi-Trip Vehicle Routing Problem where a time windows is associated with each
customer and a release date is associated with each merchandise to be delivered at a certain
client. The release date represents the moment the merchandise becomes available at the
depot for final delivery.

The problem is relevant in city logistics context, where delivery systems based on city
distribution centers (CDC) are studied. Trucks arrive at the CDC during the whole working
day to deliver goods that are transferred to eco-friendly vehicles in charge of accomplish final
deliveries to customers.

We propose a population-based algorithm for the problem based on giant tour represen-
tation of the chromosomes as well as a split procedure to obtain solutions from individuals.

Chapter 6: An Iterated Local Search for the Multi-Commodity Multi-Trip Ve-
hicle Routing Problem with Time Windows

The Multi Commodity Multi-Trip Vehicle Routing Problem with Time Windows calls for
the determination of a routing planning to serve a set of customers that require products
belonging to incompatible commodities. Two commodities are incompatible if they cannot
be transported together into the same vehicle. Vehicles are allowed to perform several trips
during the working day. The objective is to minimize the number of used vehicles.

We propose an Iterated Local Search that outperforms the previous algorithm designed
for the problem. Moreover, we conduct an analysis on the benefit that can be obtained in-
troducing the multi-trip aspect at the fleet dimensioning level. Results on classical VRPTW
instances show that, in some cases, the fleet can be halved.

This chapter has been done in cooperation with Daniele Vigo from the University of
Bologna, Bologna, Italy.

Chapter 7: MODUM Vehicle Routing Problem

This chapter formally introduces and defines the MODUM problem. The main scheme of
the simulator that is built to evaluate the performances of the system is given. A heuristic
to face it is proposed as well. It will be embedded in a simulator.

The development of the simulator is managed by another partner of the MODUM project
and is not presented in the thesis. As the development of the simulator and the data collection
are not finished yet, no results are presented here.

This chapter has been done in cooperation with all the project partners.

Chapter 8: Conclusion and perspectives

This chapter concludes the thesis and proposes direction for further research.
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Chapter 2

Vehicle Routing Problems for City Logis-
tics

Abstract

The impact of merchandise transportation deeply impacts the life quality of inhabitants, especially
in urban areas. In order to contribute to the understanding of good transportation, this paper
gives a picture of nowadays urban good movements that are here classified and described.

We surveyed the papers that explicitly studied urban good transportation from the enterprise
and from public authority point of view. From these papers, we identified the problems that
scholars, privates and authorities face while studying urban deliveries or aspects that are considered
when solutions are proposed to simultaneously improve delivery efficiency and city livability. Four
main problems are identified: Time-dependent VRP, Multi-level VRP, Dynamic VRP and Multi-
trip VRP. An overview on all these problems is then given. The paper concludes given directions
for further research and development.

2.1 Introduction

Transportation has huge economic, social and environmental impacts. In 2009, 7% of the
gross domestic product (GDP) in the EU was due to the transport industry that offered
over 5% of total employment. Public revenues benefit as well from transportation: 0.6% of
the GDP is collected from vehicle taxes and the biggest part of energy taxes (that counts
1.9% of the GDP) comes from taxes on fuel (European Commission [153]). Environmentally
speaking, transportation has been the sector with the biggest growth rate of greenhouse gas
(GHG) emissions compared to 1990 (European Commission [153]). 60% of the global oil
consumption and 25% of energy consumption are due to transportation (Rodrigue [179]).
Moreover, road transport caused 39,000 deaths in EU in 2008 (European Commission [153]).

On the other side, urbanization continues growing. In 2007, 85% of the EU’s GDP was
generated in urban areas where 72% of the European population lived (European Commis-
sion [151]). The urban population rate will keep growing and it is expected to reach 84% in
2050 (European Commission [153]).
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Adding to these facts that nine out of ten Europeans believe that the traffic situation
in their area should be improved (European Commission [151]), that 69% of road accidents
occur in cities, that 25% of the CO2 emission of the whole transport sector comes from urban
transport (European Commission [154]), and that more than half of the weight of goods in
road transport are moved over distances below 50 km and more than three quarters over
distances below 150 km (White paper - European Commission [154]), we can easily under-
stand the importance of transportation in urban areas for private people, public authorities
and enterprises.

Especially, the nuisances of urban freight transport, mainly related to congestion, GHG
emissions, pollution and noise, have become a priority for several public and private stake-
holders. Since 1992 (Ogden [155]), many projects have studied the different aspects of urban
goods movement (UGM) and logistics activities in urban areas. The aim of this survey is
to analyze the vehicle routing problems (VRPs) that are faced when dealing with the trans-
portation of goods in cities and to discuss the directions in which future researches should
be conducted in this field.

In the survey we adopt the following methodology. In Section 2.2 we define the con-
cept of city logistics, we introduce the actors involved and their interests, then we present
the literature on vehicle routing optimization in cities. Section 2.3 classifies and analyzes
the logistic flows in cities, and describes how vehicle routes are organized, providing some
statistics on these routes.

The structure of the second part of the paper is more sequential. In Section 2.4, for each
one of the major characteristics previously detected, we review the associated literature. We
underline the main issues raised by the considered characteristic and present how they are
addressed in the papers published on the subject. Section 2.4.1 deals with VRPs with time-
dependent travel times. Section 2.4.2 considers multi-level VRPs. Section 2.4.3 is about
dynamic VRPs. Section 2.4.4 reviews multi-trip VRPs.

In Section 2.5 we conclude the paper and open some perspectives on future works on
route optimization in the context of urban good movements.

2.2 City logistics: definitions, stakes and routing prob-
lems

2.2.1 Scope

The scientific community has recently adopted two main concepts. The first is that of city
logistics (Ruske [184], Kohler [122], Taniguchi et al. [200], [49]) defined by Taniguchi et
al. [200] as “the process for totally optimizing the logistics and transport activities by private
companies in urban areas while considering the traffic environment, the traffic congestion
and energy consumption within the framework of a market economy”. A much larger con-
cept is that of urban logistics (Ambrosini et al. [4], Anderson et al. [5]), which includes all
the organizational, behavioral, regulation and financing elements, as well as collaborative
approaches, to study the logistics processes and the movements of goods and service flows
in urban areas. Not only the retail distribution is concerned in that definition, but also
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shopping trips, civil works and city services’ maintenance, among others.

In this survey, we will retain the more general framework and will consider as UGM
all movements of goods related to urban logistics as defined above. In this sense UGM
include all the existing flows of goods, from factories to wholesalers, from wholesalers to
retail distribution, and also from shops to the households (Segalou et al. [189]). Especially,
UGM include not only a large part of the commercial transport, a part of the individual
transport, but it concerns also the service trips (of firms and of the individuals) and the
flows generated by the supplying of the building sites and the maintenance of the networks
(electricity, water, sewer system, routing of domestic waste). In the following of the paper,
we will use the term city instead of urban when referring to logistics concept because it is
generally adopted in the community.

2.2.2 The stakes of public authorities and private stakeholders

In the definitions of city and urban logistics given in Section 2.2.1, three main objectives
can be identified. The first, and the most common one, is reducing congestion and increas-
ing mobility of freight transportation services in urban areas. The second is to contribute
positively to the environment and to the sustainable development, mainly by contributing
to reach the Kyoto objectives in terms of GHG emissions, by reducing pollution and noise
or by improving living conditions of city inhabitants. The last objective outlines how it is
crucial to preserve city center activities (mainly commercial, tourist and tertiary).

However, since several stakeholders are seen in urban areas, the main goals of city and
urban logistics differ depending on the actors involved (Taniguchi and Van Der Heijden [201]).
Public authorities stakes are mainly related to collective utility. Their objectives can be in
conflict with the individual performance and the goals of private stakeholders, who seek
mainly to increase their economic benefits by both reducing their costs and ensuring a
good service quality. For that reason, it is important that public and private stakeholders
collaborate to urban logistics actions, in order to find consensual directions and increase the
success rates of urban logistics projects. The main stakes are listed in the following.

• Regarding public authorities:

– To revitalize the economic activity of the urban areas, particularly the town cen-
ters (with retail shops and various services);

– To master urban sprawl, controlling strategic town planning;
– To reduce congestion issues in the most dense (central) urban areas;
– To decrease the impacts of nuisance due to GHG and other atmospheric pollutant

emissions and to reduce noise levels;
– To implement convenient good distribution services for the different socio-

economic categories (like home deliveries for reduced mobility inhabitants or com-
fortable pickup points for very mobile inhabitants, among others).

• Regarding private stakeholders:

– To provide quality services (commercial and tertiary activities) to the customers;
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– To reduce the economic costs related to the last mile management;
– To make sure that sustainable policies of the firms coincide with urban transport

practices.

In the next section, we describe the literature published on vehicle routing problems where
the application to city logistics is explicitly underlined. We focus on papers that address
collectivity attempts and papers based on company objectives. In both cases, vehicle route
optimization can be a valuable tool.

2.2.3 VRP for city logistics

Collectivities can benefit from the use of vehicle routing optimization to validate policies
to implement. For example, Taniguchi and van der Heijden [201] evaluates the benefit of
the implementation of advanced information systems and cooperative freight transportation
systems on CO2 emissions of delivery trips.

Transportation optimization can lead to significant savings for the enterprises. These
savings are quantified to be from 5% to 30% by Hasel and Kloster [103] when routing tools
are used. Similar results are reported in Toth and Vigo [204] that estimate savings of 5%–
20% when computerized planning is adopted. Remembering that transportation represents
10% of the final cost of goods (Rodrigue [179]), these figures show how potential gains offered
by route optimization are important.

Before detailing the literature, we first shortly come back to the types of VRPs encoun-
tered in cities.

Routing problems in cities

Different transportation activities that occur in cities can be modeled using well-known
routing problems. Those problems can be tactical or operational. Tactical can be considered
problems where the planning is done once and then kept for a long period. For example, the
postman performs each day the same trip, regardless the mail he has to deliver. He can only
skip some stops if needed. At the operational level, customers served and (consequently)
delivery trips can deeply differ from day to day. Route planning is carried out daily or even
in real-time. The former is the case, for example of express parcel delivery. The latter, the
case of dynamic fleet management where vehicles are dispatched in real-time for pickup or
delivery purposes. At a tactical level, the quality of the solution obtained plays a major role.
Since the plan is going to be maintained for a long period, one is willing to spend hours or
even days to obtain a (near-) optimal solution. The use of exact methods can be considered.
On the other side, at the operational level, time is prior. The quickness of the algorithm
is a necessary condition, however quality needs to be guaranteed as well. Usually, (meta-)
heuristics are preferred.
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Collectivities

Urban goods transport is a vital activity for cities, but it is seen as a nuisance for the liv-
ability of the city itself. Trucks use the same road network as public transport and private
cars, contributing to traffic congestion, air and noise pollution, road accidents. Municipal-
ities can introduce regulations that aim to maintain the living environment in urban areas
while facilitating smooth and safe traffic flows. Such measures can be, for example, the in-
troduction of loading/unloading zones, the banning of freight vehicles in cities during night
or their restriction of movement according to time, size or weight (OECD [81], Quak and de
Koster [172]).

Access limit could be modeled using time windows (TWs) that differs from those in
VRPTW, because they restrict the access to the overall concerned area (usually called re-
stricted zone). Hence, they do not concern delivery time but the time vehicles have access to
the zone. Also, as they are not imposed by customers but by local authorities, they do not
depend on the customer. The introduction of these TWs is motivated by seeking to reduce
congestion and pollution in central areas, but imposes extra cost to the carriers, forcing
them to use more vehicles (Muñuzuri et al. [144], Muñuzuri et al. [143]). When TW imposed
by municipalities are considered, the problem that arises is called Vehicle Routing Problem
with Access Time Windows (VRPATW).

Limited access could be combined with the construction of a city distribution center
(CDC) where goods are loaded in appropriate vehicles for final delivery. CDC are imple-
mented in most of European cities with contrasting results (OECD [81], van Rooijen and
Quak [211], Browne et al. [30]). Transshipment in the outskirts of the city can avoid big
trucks from entering city centers. Moreover, small vehicles can be fully loaded in the CDC
decreasing the number of (almost) empty or not fully loaded trips. From the other side, how-
ever, more friendly vehicles can be needed to replace trucks. Crainic et al. [54] study how the
use of CDC can reduce global costs comparing VRP solution costs with two-echelon VRP
(2E-VRP, introduced in Section 2.4.2) solution costs. Results show the potential benefit of
using CDCs, especially when CDCs are judiciously located.

Quak and de Koster [172] study the impact of TW and vehicle restriction on companies,
showing that those policies increase companies’ costs and pollutant emissions.

Crainic et al. [55] study the possibility of using CDC for consolidate goods to be delivered
in the center of Rome. Trucks would deliver merchandise to CDC that is consolidated into
city-freighters limiting direct distribution to customers. Experiments show that it would re-
duce the number of truck-kilometers in the city center by about 70%. These saved kilometers
are replaced by city freighter moves that are expected to be more environmental friendly.

A different policy is to distribute financial incentives to customers in order to foster off-
hour deliveries (Silas et al. [191]). It is outlined how the potential shift of New York City to
off-hour deliveries (that is around 20%–40%) can lead to economic savings in the range of
$100–$200 million per year, while reducing congestion and environmental pollution.
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Companies

Delivering merchandise in urban areas involves facing rush hours and congestion, unexpected
events like accidents, vehicle crashes and changes in weather condition. Moreover, companies
have to respect all the restrictions that local authorities introduce to maintain the livability
of the city. Very often these measures are not harmonized among cities, causing inefficiencies
and planning difficulties (OECD [81], Muñuzuri et al. [143]).

Planners should take into account the strong relationship in urban areas between time
of the day and travel times. Considering time-dependent travel times is important to better
plan vehicle routes (Taniguchi and Shimamoto [199], Ando and Taniguchi [6], Ehmke and
Mattfeld [69], Kritzinger et al. [125]). Moreover, considering time-dependent travel times
can reduce CO2 emissions and time windows violations (Figliozzi [75]).

To consider time-dependent travel times, the planner needs information on the expected
situation of the road-network. Data can be provided by a taxi fleet (Kritzinger et al. [125],
Ehmke and Mattfeld [68], Ehmke et al. [70]) or could be collected from Google Maps and
the use of highway sensors to improve the quality (Conrad and Figliozzi [44]). For sensor
location problems on traffic networks, we refer to Gentili and Mirchandani [87]. If interested
on how time-dependent travel times for city logistics application are collected we refer to
Ehmke and Mattfeld [68], Ehmke et al. [70].

Monitoring the fleet during the working time gives the possibility to handle unforeseen
events with intelligent re-routing of vehicles (Zeimpekis and Giaglis [220], Novaes et al. [150],
Qureshi et al. [174]). A prerequisite for these systems is possible communication between
drivers and a central unit and the use of new technologies such as global positioning system
(GPS) or Intelligent Traffic System (ITS). Project SMILE ([152]), implemented in a courier
company working in Malmö, Sweden, has shown how unloaded trips decrease and the number
of delivers per trip increases when the transport monitoring center knows the real-time
location of all vehicles.

Cooperative distribution systems can improve the quality of the service and reduce the
cost for the carriers (Thompson and Hassall [203]). Consolidation of goods from different car-
riers in shared vehicles, that can be those owned by the carriers (Qureshi and Hanaoka [173]),
leads to a higher load factor and thus enables decreasing the number of empty trips and the
driven kilometers. In the Netherlands and Belgium a collaborative system is implemented
with 16 companies (TransMission). Quak [171] outline that without that collaborative sys-
tem in the city of Amsterdam four times more trucks would be needed. That could have a
good impact on the quantity of CO2 emission.

The structure of city centers in most of European cities is inherited from Middle Ages:
streets are narrow with no or few parking lots and are often one-way (Crainic et al. [55],
Muñuzuri et al. [143]). Then, trucks cannot get into centers due to structural limitations
(different than limitations introduced by authorities discussed in Section 2.2.3) and small
vehicles must be used. Due to their limited capacity, these vehicles go back to their depot
several times a day and are reloaded for new tours (Browne et al. [29], Delaître and De
Barbeyrac [60]).

Browne et al. [29] presented the case of supply company operating in the City of London.
The company studied the possible benefit of using a micro-consolidation urban center to-
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gether with electrically assisted cargo tricycles and electric vans instead of a suburban depot
(located 29 km away from the London suburbs) and 3.5 tons gross weight diesel vans. From
the original suburban depot only one truck is going to the micro-consolidation urban center
instead of being the starting point of all the diesel van delivering routes. Due to the small
size of tricycles and electric vans, they perform several trips during each day. The analysis
of the system outlined the reduction of the total distance traveled and CO2 emissions per
parcel delivered (respectively by 20% and 54%) for the same operating cost.

Finally, Chang and Yen [36] consider the case of a city-courier company in Taipei and
considered strict-TW since there is no-parking possibility along most city streets. Moreover,
waiting is not allowed on the whole network.

2.3 Urban Goods Movements

In this section we illustrate the Urban Good Movements (UGM). As already introduced in
Section 2.2.1, the UGM that we consider in this survey include all goods’ flows as well as
service, supply and maintenance trips. Section 2.3.1 proposes a detailed classification of the
UGM, while in Section 2.3.2 UGM are statistically analyzed.

2.3.1 UGM classification

A detailed classification of the movements (following the definition of Segalou et al. [189])
is given in Figure 2.1 to clearly understand what exactly are UGM. In this figure, the first
column exhibits the different types of UGM. A second column illustrates these UGM with
some examples. A third column describes the type of flow. A fourth column finally indicates
the general modeling framework used for each type of UGM.

This classification is discussed below:

• Inter-establishment movements (IEM): IEM are pickup and delivery trips related to
the urban area’s economic activities. Three main organizational modes exist for these
movements (Routhier and Toilier [182]):

– Third party transport: Transport is carried out by a third-party service provider.
Two main strategies are identified here: full truckload (FTL) or less-than-
truckload (LTL). FTL approaches mainly concerns hypermarket distribution,
urban industry and agriculture. LTL is related to retailing and tertiary activ-
ities distribution. Typical examples are parcel delivery services, express delivery
services, supermarket and medium stores distribution, but also distribution for
restaurants, hotels, food franchising, clothing retailers and so on. Other activi-
ties, like non-hypermarket grocery, wholesalers and pallet distribution companies
can also combine FTL and LTL transport schemes. FTL schemes are in general
modeled by the well-known Transportation Problem (TP), introduced by Hitch-
cock [108], and LTL schemes are in general modeled as VRPs.

– Sender’s own account: This category refers to transport flows carried out directly
by producers, artisans, craftsmen or distribution companies without involving a
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transport carrier. Concerned routes are in general similar to small LTL circuits,
although they are under-optimized with respect to third party transport services
and have only one departure point (consolidation or multiple depot approaches
are less deployed in own account transport). Note that craftsmen and small
enterprises have often one single vehicle. In this case, transportation schemes
can be modeled as traveling salesman problems (TSPs). For medium and large
companies with several vehicles, VRP models apply.

– Receiver’s own account: Transport for this category is performed by the receiver.
Examples are the distribution companies collecting goods at their suppliers, or
the retailers going to gross companies for their supply needs. Again, these flows
are in general mono-vehicle. They are assimilated to pickup routes, easily identifi-
able as TSP routes. They additionally have the following common characteristic:
purchased goods are selected at the supplier location, which implies important
pickup times at each step of the routes.

• End-consumer movements (ECM): ECM refer to the trips that permit the (physical)
junction of the goods and of the consumers. They consist of two main categories:

– Shopping trips: Traditionally, ECM flows were reduced to shopping trip chains
made by private cars (Gonzalez-Feliu et al. [93]). Individually, these flows are not
formally optimized since they derive from behavioral patterns. Globally, they are
modeled with classical four-steps models (Ortúzar and Willumsen [157]).

– Home and proximity deliveries: Home delivery includes business-to-customer
flows from the parcel delivery sector (for example e-commerce shopping) and other
types of deliveries like grocery home deliveries. For the former, LTL third-party
transport is used. In both cases, VRP routes have to be optimized. When goods
are physically purchased at stores and delivered home, distribution rather takes
the form of a TSP. Proximity delivery relies on proximity reception points where
goods are delivered. Again, they are organized via VRP, with the trend that
the number of delivery points is decreased thanks to the customer aggregation
provoked by the reception point network.

• Urban management movements (UMM): UMM flows are related to the development of
a city, public maintenance and other functional needs of the city. They are of various
nature and characteristics, and can be grouped into four main sub-families:

– Infrastructure management flows: These flow derive from building and public
works. They are non-periodic, non-systematic flows which take place in different
parts of urban areas and depend strongly on the urban planning policies. Most
of them are FTL flows when related to building and public works, although some
LTL routes can be defined (remember that FTL flows are generally modeled via
TP while LTL via VRP). Network maintenance (phone, electricity, water, optic
fiber, etc.) is another example, which is in general modeled as a VRP.

– Waste collection flows: These flows concern garbage collection for individuals
and professionals. Flows are organized differently depending on the type of waste
(household, recyclable, hazardous, etc.). For household waste collection, arc rout-
ing models are generally used (Del Pia and Filippi [59]) so as to aggregate collec-
tion points located in a same street and that will be served successively. Garbage
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collection for professionals or for recyclable waste are organized as LTL routes.
They can be sub-contracted to companies specialized in reverse logistics, that
might be able to mutualize waste collection with deliveries. Models can then
be complex pick-up and delivery VRPs. Transportation of hazardous waste also
gives raise to specific VRPs, with risk minimization objectives (Tarantilis and
Kiranoudis [202]).

– Document deliveries: This type of flows include press and postal services. They
can be modeled as VRP (or arc routing problems, ARP, for postal services) with
a large number of customers. Routes are generally stable over relatively long
periods of times (except that customers might possibly be skipped). However
difficulties stem from the huge variability of the quantities to be delivered to
customers, especially in the context of press distribution.

– Household move logistics: These flows are provoked by individual moves. They
are very heterogeneous and difficult to anticipate. They are mainly FTL routes
or FTL shuttles (when for an intra-city move, a truck makes more than one
trip to relocate all goods). The most important issues here are related to fleet
management rather than vehicle dispatching.

2.3.2 Statistical analysis of UGM flows

In this section, we provide some statistics on UGM flows. The objective is to give some
insights on the relative importance of the different categories of flows in terms of volume in
the city. Also, information is given on the size of the routes and, thus, the characteristics of
the solutions that can be expected from vehicle route optimization.

Table 2.1 compares IEM, ECM and UMM on the basis of road occupancy. All ratios are
extracted from Segalou et al. [189], Bonnafous [23] and Gonzalez-Feliu et al. [93].

Traffic road occupancy Park road occupancy
Whole urban area Inner city

IEM 40-45% 23% 62%
ECM 45-55% 67% 31%
UMM 8-10% 10% 7%

Table 2.1: Road occupancy rates

Traffic road occupancy rates are indicators that reflect the occupancy of infrastructures
by running vehicles. They are expressed in km × equivalent vehicle (generally car-equivalent
units). Impacts on road traffic of good movements are mainly shared between IEM and ECM,
with more or less equivalent rates. ECM traffic is essentially provoked by shopping trips,
with private cars. Other types of ECM flows are indeed more limited (see, e.g., Durand and
Gonzalez-Feliu [64]). UMM traffic road occupancy rate is less than 10%.

Park road occupancy rates are indicators that reflect the occupancy of infrastructures by
vehicles when they stop. They are expressed in hours × equivalent vehicle. They include
and do not differentiate among the different types of parking (on delivery areas, on the street
network, etc.). The issue of park road occupancy is essentially related to ECM (shopping
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trips) in the whole urban area. However, when focusing on city centers, the question of
parking for IEM becomes prominent.

Tables 2.2–2.4 focus on IEM flows. As stated before, these flows represent the most impor-
tant part of the UGM once shopping trips (that cannot be addressed with route optimization
strategies) are removed. The data shown in these tables are new statistics retrieved from the
French National Surveys on Urban Goods Movement database (Routhier [181], Patier and
Routhier [159]). The database compiles three surveys made in late 90’s in France, respec-
tively for the urban areas of Bordeaux, Marseille and Dijon. These surveys contain three
nested questionnaires: one at the establishment level, one at the operation level and one at
the vehicle level. We exploit here this last set of data, which was less explored so far. This
set however suffers from certain lacks: from about 2100 collected routes, about two thirds
of them cannot be exploited because of missing details or since they concern marginal types
of goods (e.g., cattle transportation). The size of the sample is thus not sufficient to be too
affirmative on the results. For this reason, we limit our analyses here to the main trends
that can be observed.

From the selected route dataset, four categories of transport have been defined, according
to French practice: third-party transport is divided in two categories (classical delivery
services and small parcel delivery services), as well as own-account transport (sender’s and
receiver’s own account transport). Categories of routes are defined according to their number
of deliveries, with 5 categories: 1 delivery, 2 to 10 deliveries, 11 to 20, 21 to 30 and more
than 31 deliveries. Tables 2.2–2.4 display information on the percentages involved with each
category of transport and route with regard to the number of deliveries, the number of routes
and the weight delivered, respectively. In these tables “-” indicates that no route included
in the dataset fits the category.

Third-party transport Own account
Route size category Classical Small parcel Sender Receiver Total

(in number of deliveries) delivery service delivery service
1 delivery (FTL routes) 0.21% - 0.34% 0.07% 0.62%

2 to 10 deliveries 2.78% 0.63% 5.77% 0.11% 9.22%
11 to 20 deliveries 4.36% 3.92% 9.24% 0.29% 17.80%
21 to 30 deliveries 4.92% 6.40% 6.40% - 17.72%

31 deliveries and more 5.79% 47.30% 1.48% - 54.46%

Total 18.05% 58.25% 23.23% 0.47% 100.00%76.30% 23.70%

Table 2.2: Percentage of deliveries with respect to the total number of deliveries

A first conclusion that can be drawn from Tables 2.2–2.4 is that third-party transport
manages about 75% of IEM in terms of number of deliveries, and aroud 60% in terms of
number of routes and weight transported. The rest part of IEM are moslty due to sender
own account, while receiver own account plays a marginal role.

It can be observed that classical and small parcel delivery services are almost equivalent
in terms of routes generated, but they are unbalanced with respect to the number of deliveries
and weight. Moreover, the unbalance reverses. As suggested by the name of the categories,
this is explained by the fact that parcels delivered by small parcel delivery system weigh
less than those transported by classical service. Also, small parcel delivery involves route
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Third-party transport Own account
Route size category Classical Small parcel Sender Receiver Total

(in number of deliveries) delivery service delivery service
1 delivery (FTL routes) 4.01% - 4.66% 1.29% 9.96%

2 to 10 deliveries 9.18% 1.55% 18.50% 0.65% 29.88%
11 to 20 deliveries 5.43% 4.79% 11.13% 0.50% 21.85%
21 to 30 deliveries 3.75% 4.79% 4.79% - 13.33%

31 deliveries and more 2.98% 21.22% 0.78% - 24.98%

Total 25.35% 32.35% 39.86% 2.44% 100.00%57.70% 42.30%

Table 2.3: Percentage of routes with respect to the total number of routes

Third-party transport Own account
Route size category Classical Small parcel Sender Receiver Total

(in number of deliveries) delivery service delivery service
1 delivery (FTL routes) 6.70% - 6.86% 2.16% 15.71%

2 to 10 deliveries 31.21% 0.13% 16.58% 0.85% 48.77%
11 to 20 deliveries 16.91% 0.52% 7.77% 0.13% 25.32%
21 to 30 deliveries 2.45% 0.58% 1.52% - 4.55%

31 deliveries and more 2.42% 3.18% 0.05% - 5.65%

Total 59.70% 4.41% 32.76% 3.13% 100.00%64.11% 35.89%

Table 2.4: Percentage of weight delivered with respect to the total delivered weight

with much more stops in average than classical delivery services. Hence, more than 50% of
the weight delivered in cities originates from classical third-party logistics with less-than-
20-deliveries routes, representing less than 20% of the routes and 10% of the deliveries.
Conversely, more than 50% of the deliveries comes from small parcel delivery with more-
than-20-deliveries routes, while representing less than 5% of the total weight.

Receiver’s own account represents only a very small percentage of the goods transported
in the city. Routes involve a limited number of stops, with a single customer visit in more
than 50% of the cases.

Regarding sender’s own account, as already mentioned, it represents about 40% of the
routes. The structure of these routes approximately matches the one of classical third-party:
most routes imply between 2 and 20 deliveries. However, contrary to third-party, the chances
that these routes are finely optimized are limited. One can suspect that place for a lot of
optimization is left here.

Papers surveyed in Sections 2.2.3–2.2.3 mostly refer to third party transportation. The
analysis conducted justifies researcher’s behavior to focus on that specific transportation
segment. Indeed, third party transportation is part of the IEM (Section 2.3.1) that counts
for 40-45% of traffic road occupancy and for 62% of park road occupancy in the inner city.
The other relevant part of movements with respect to traffic road occupancy is due to ECM
that contain all the shopping trips that are made by privates. Consequently these movements
are out of optimization possibilities. Moreover, third party transportation is prominent into
IEM regarding all the considered classifications (see last row in Tables 2.2–2.4).
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It follows that optimization of third party transportation can definitely lead to traffic
improvements, congestion and pollution reduction, and cost savings. These are some of the
stakes we listed in Section 2.2.2 for public authorities and privates. Related routing problems
are studied by scholars in order to carry out optimized planning as well as validate logistic
measures. These problems are examined in the next section.

2.3.3 UMG as routing problems

UGM listed above, can be represented using classical routing problems that are widely
studied in literature. IEM can be modeled with various vehicle routing problems (VRP,
Toth and Vigo [204], Golden et al. [90]) as well as ECM not made by private cars. If
goods need to be picked-up and delivered it can be the case of the VRP with pickup and
deliveries (VRPPD) or the VRP with backhauls (VRPB). In the former case, each request
is characterized by a pickup location and a delivery location (and eventually the weight or
size of the request). In the latter, vehicles first deliver merchandise stored at the depot to
customers. Afterwards, they can pickup other goods to bring back to the depot. The multi-
depot VRP (MDVRP) and the periodic VRP (PVRP) can arise in this context as well. In
the MDVRP, vehicles are located at different depots, while in the PVRP customers need to
be visited up to n times during a period of n time units (once per day, twice per week, etc.).

Sender’s and receiver’s own account movements as well as ECM made by private cars
can be associated with traveling salesman problems (TSP, Gutin and Punnen [99]). The
sender (receiver) accomplishes the deliveries (pickups) with his own vehicle. The private
person as well, gets his own car to visit all the stores he needs. Most of the time trips are
under-optimized.

Finally, waste collection and postal service can be modeled as arc routing problems
(ARP). In the ARP, the network is still represented as a graph, but a service is expected
on arcs instead of nodes. It can be noticed that these problems are tactical. Since they
correspond to some specific categories of routing problems, that have their own literature,
they will be ignored in this survey. The reader interested to the ARP is referred to Dror [63],
Wøhlk [217].

2.3.4 Discussion

From the above sections, one can see the high importance, the huge variety and the originality
of vehicle routing in cities. Vehicle routing is faced for a large part of UGM. Very different
products, organizations and time-scales are concerned. The literature on the subject strongly
reflects this variety. Case-study papers address a set of very different topics, with different
organizational or technological prerequisites.

It is a general opinion that a complete organization and control of UGM into cities can
enhance livability as well as transportation efficiency, possibly satisfying both privates and
public interests (Section 2.2.2). Recent works (see the MODUM1 project for an example)
study different delivery system and the research process is going toward a scheme where the
whole stream of merchandise is controlled by a central management center. Goods are first

1http://www-lipn.univ-paris13.fr/modum
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delivered to CDC located around the city. This is done in order to forbid heavy trucks to
enter into the city center seeking for pollution, noise and congestion reduction. Merchandise
is then loaded into electrical or eco-friendly vehicles. Limited autonomy as well as city
center’s configuration force the use of small vehicles that naturally perform several serving
trips during the working day. High quality service can be obtained carrying out optimization
that considers time-dependent travelling times in order to avoid congested zones in the city as
well as dynamic re-optimization that takes into account unexpected events and new requests.

Analyzing the described scheme and the papers previously cited, one can extract different
categories of vehicle routing problems that appear significant for city logistics and relevant
from an academic point of view. They are listed in the following.

A first noticeable characteristics is the time-dependency. Efficient transportation in urban
areas should consider traffic congestion and rush hours, even if many cities reflect on how
UGMs could be transferred to more quiet hours (e.g., at night).

A second important topic is multi-level distribution. Many papers highlight how new
distribution schemes based on distribution centers at the outskirts of the city and satellites
inside the city could limit nuisances and costs of UGM.

A third subject is related to the transition from large trucks to small environmentally-
friendly vehicles. A direct consequence of using small vehicles is a decrease of route sizes,
which implies both quick access to the customers from the depots (which relates to the use of
multi-level distribution or the move of distribution centers towards city centers) and multiple
returns of the vehicles to their depots during the day. In terms of vehicle routing, the latter
refers to the class of multi-trip VRPs.

Finally, the dynamics of the cities and the development of new communicating tech-
nologies motivate the study of dynamic VRPs, where vehicle routes can be re-optimized
according to different types of information (actual travel times, new requests, unexpected
events).

In the second part of this paper, we will separately consider each one of these four families
of vehicle routing problems and review them. In each case, we will enlarge the scope and also
consider papers not directly connected to city logistics. We will describe which additional
difficulties are implied and how they are handled in the literature. We start in Section
2.4.1 with VRPs with time-dependent travel times. Section 2.4.2 continues with multi-level
VRPs. Section 2.4.3 is about dynamic VRPs. Section 2.4.4 completes the review considering
multi-trip VRPs.

2.4 Prominent families of vehicle routing problems for
urban good movements

The four families of variants of VRPs surveyed in this section strongly differ in nature. Multi-
level VRPs assume a different design of the distribution scheme, with additional facilities and
transshipments. Multi-trip VRPs rather consider a different organization of the routing. No
facilities are introduced; instead, the daily management of the fleet is modified. For VRPs
with time-dependent travel times, the novelty concerns the sharpness of the modeling. The
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physical organization is the same as in standard VRPs but models better capture how routing
will actually be performed. Finally, with dynamic VRPs, the optimization setting changes
as data are revealed in the course of time.

A first consequence of these differences is that the four families are not exclusive. Actually,
all combinations are possible. Hence, one should have in mind while reading this section
that the issues are treated separately, but might be faced simultaneously. Also, the literature
devoted to the different families sometimes intersects and it is possible that some papers
appear twice or more.

A second consequence is that the topics that are worth being underlined are not the same
for the different families. For this reason, the structure of the four subsections will vary a
lot.

2.4.1 VRPs with time-dependent travel times

Traditional vehicle routing problems consider that travel times between locations depend
only on distances, while in practice they usually (and especially in an urban setting) contin-
uously vary during the day. Addressing time-dependent travel times raises different issues
that are developed here.

Motivation

A first important question is: does it worth it to consider time-dependent travel times? The
methodology used to answer this question is to compute two series of solutions: solutions
obtained with a classic VRP formulation and solutions where time-dependent travel times are
taken into account in the solution framework. Then, both types of solutions can be evaluated
using time-dependent data and compared. Several papers applied this methodology.

In the context of the distribution system of an electrical goods wholesaler in South West
UK, Maden et al. [138] outlined that 65% of the routes obtained considering constant travel
times (with no congestion) would exceed the 10 hours maximum working time, requiring
averagely 57 minutes of extra time. Even reducing the average speed by 10% in the model
produces 44% of routes that become infeasible in the time-dependent context. It is also
observed that considering time-dependent travel times leads to saving 7% of CO2 emissions.

A case study from a Taiwanese company is faced in Kuo et al. [127]. The company has to
serve 25 retail stores located nearby a depot in the south of the country. Solutions obtained
considering constant speeds and evaluated using time-dependent travel speed, decreases op-
eration time up to 16.77% compared to the company’s planning strategy. A further 6% can
be saved by considering time-dependent speeds during the search.

Kuo [126] studied the fuel consumption when time-dependent travel times are taken into
account. The time dependency of travel times is reflected in the fuel consumption that is
time-dependent as well. It is pointed out how minimizing fuel consumption increases trans-
portation time between 21.96% and 23.37% and transportation distance between 37.96%
and 40.26%. From the other side, fuel consumption is reduced by 22.69% and 24.61%.

Ehmke et al. [71] studied the impact of time-dependent travel times in city distribution
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planning. It is underlined that non time-dependent routing can underestimate or overes-
timate total travel time, introducing an error in the range of ±20%. Underestimation, in
particular, occur when routing is performed during the day.

Data collection and management

Until the 90s, time-dependent travel times (or speeds) were not addressed for two main
reasons: parameter estimation efforts and data storage requirements were prohibitive for
computers at that time (Hill and Benton [107]).

Data collection is still a very hard job: the rush hours can be known, but different arcs
of the network can be affected quite differently (Fleischmann et al. [79]). Advancements in
technology allow easier data collection: mobile phone moves or sensors installed on taxi fleets
for example can be tracked, thus providing real-time information and sources for historical
data on traffic (Ehmke [66], Fleischmann et al. [79]). However, having a precise view on the
traffic for the whole network is still a challenge.

The management of the data also still raises difficulties. van Woensel et al. [212] use
a queueing approach to get time-dependent travel speeds from traffic flow data collected
by the Flemish government. Ehmke et al. [71] discuss how storage and access to data can
be improved by clustering network segments into homogeneous groups according to their
relative variation of daily speeds. Also, Ehmke [67] explain how including the time dimension
in the input data affect the computation of the distance-matrix, the algorithms used for the
calculation of the shortest path between locations and the network representation in terms
of graphs.

Modeling of travel times

Travelling times usually vary continuously, but for modeling purpose the planning horizon is
discretized in time slots. These time slots can have different length (Fleischmann et al. [79])
and to each slot can be assigned a speed (Ichoua et al. [112], Donati et al. [61]) or a travel
time (Fleischmann et al. [79]).

Hill and Benton [107], model the time-dependency by assigning a speed to each node
for each time period. That speed can be seen as the average speed for the area around the
location during a period t. Thus, the traveling time through an edge can be estimated using
the speed assigned to the incident nodes. In Malandraki and Daskin [139] the travel time is
a step function of the time over the planning horizon.

In both previous works, the First In First Out (FIFO) property (called as well non-
passing property) does not hold. FIFO property, firstly defined in Ahn and Shin [2], can
be stated as follows. A function Aij(t) is defined as the arrival time at node j when service
starts at time t at node i and arc (i, j) is covered. If for each pair of nodes i and j and
any two service start times t1 and t2 such that t1 > t2, Aij(t1) > Aij(t2) holds, then the
FIFO property holds. Roughly speaking, identical vehicles covering an edge (i, j) must reach
location j in the order they leave location i.

It seems natural to expect from a modeling that the FIFO property holds. However, one
should be conscious that it is not necessarily true when data are dynamic (which is not the
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case usually: travel times are varying but are assumed to be known). Indeed, arcs represent
shortest paths in the street network and it is possible that two vehicles following the same
arc do not travel through the same streets. Thus, a vehicle leaving earlier a node i might
sometimes be stuck in an unexpected congestion while a vehicle departing later will be able
to avoid it.

The example of Figure 2.2a) depicts a situation where the FIFO property does not
hold. In this example, travel times are modeled with step functions, as in Malandraki and
Daskin [139]. Starting from i between 8.00 a.m. and 10.00 a.m. takes 30 minutes while
leaving i between 10.00 a.m. and 12.00 takes 15 minutes. In this case, a vehicle leaving i at
9.55 will reach j at 10.25, while a vehicle leaving i at 10.05 will reach j at 10.20. Different
modelings have been proposed that ensure the FIFO property.

Fleischmann et al. [79] propose a method to obtain smoothed travel time functions satis-
fying FIFO property from step functions. The jumps between time slots Zk = [zk−1, zk[ are
linearized in an interval [zk − δk, zk + δk] with appropriate parameter δk and slope sk. They
demonstrate that if 1) δk > 0, 2) the intervals do not overlap, and 3) the slope sk > −1,
the non-passing property holds. In Figure 2.2b, travel time illustrated in Figure 2.2a are
smoothed accordingly. The vehicle that leaves location i at 9.55 arrives at j around 10.18,
while the vehicle that leaves location i at 10.05 arrives at j at 10.26 (z1 = 10.00, δ1 = 0.5,
s1 = −0.25). FIFO property is respected.

t

8.00

0.25

0.5

10.00 12.00

τij(t)

(a) FIFO property does not hold

s1

8.00

0.25

0.5

10.00 12.00

τij(t)

t

z0 z1 z2

z1 − δ1

z1 + δ1

(b) Traveling times smoothed as proposed by
Fleischmann et al. [79]: FIFO property holds

Figure 2.2: Time-dependent travel time τij(t) for an edge (i, j). Time and traveling time in
hours

Impact on solution methods

Algorithms designed for the VRP cannot straightforwardly be adapted to the TDVRP: local
changes on a route have complex consequences on the whole planning of the route. Ahn and
Shin [2] however explain how FIFO property can help. Assuming FIFO property, arrival
time function Aij is monotonic and so it possesses an inverse A−1

ij . Thus, given a feasible
route, the latest time at which a customer service can start keeping feasibility, can be linearly
calculated using backward relations. Then, checking feasibility for inserting unrouted nodes,
combining distinct routes and exchanging nodes can be quickly done.

Another difficulty arises from the fact that the TDVRP is an asymmetric problem (driving
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Authors year
Ahn and Shin [2] 1991
Hill and Benton [107] 1992
Malandraki and Daskin [139] 1992
Kaufman and Smith [118] 1993
Horn [110] 2000
Ichoua, Gendreau and Potvin [112] 2003
Fleischmann, Gietz and Gnutzmann [79] 2004
Woensel, Kerbache, Peremans, and Vandaele [212] 2008
Hashimoto, Yagiura and Ibaraki [102] 2008
Donati, Montemanni, Casagrande, Rizzoli and Gambardella [61] 2008
Figliozzi [74] 2009
Soler, Albiach and Martínez [195] 2009
Kuo, Wang, and Chuang [127] 2009
Kok, Hans and Shutten [123] 2009
Maden, Eglese and Black [138] 2010
Kok, Hans, Shutten and Zijm. [124] 2010
Figliozzi [76] 2012
Ehmke, Steinert and Mattfeld [71] 2012

Table 2.5: Articles cited that concern TDVRP

to the city center could take more than driving from the city center along the same road in
the morning, and the opposite could happen during evening, Kok et al. [123]). Local search
moves as k−opt exchange or insertion heuristic have to be carefully designed in this context.
For example, the k − opt exchange tries to improve a solution by exchanging k links while
ensuring feasibility. When the method is applied to the VRP, only the cost of the exchanged
links has to be taken into consideration. Conversely, when the TDVRP is considered, the cost
of more links must be taken into account. That happens both because some links are covered
in the opposite sense and because the start times changed (Malandraki and Daskin [139]).

Finally, differently than in the classic VRP, leaving the depot as soon as possible is not
necessarily the optimal choice. When driving time is considered in the problem (in the
objective or because it is constrained), time savings can be obtained by simply waiting at
the depot. This introduces a complication to the problem: the optimal start time problem
(Hashimoto et al. [102]) for each vehicle needs to be solved and can be modified by any
change of the routes.

Based on the previous ingredients, different heuristics and meta-heuristics have been
proposed to solve the problem: a modified Clark Wright and 2-opt heuristic (Hill and
Benton [107]), nearest-neighbor heuristic and a cutting plane heuristic (Malandraki and
Daskin [139]), iterated LS (Hashimoto et al. [102]), simulated annealing (Kuo [126]), multi
ant colony system (Donati et al. [61]), tabu search (Maden et al. [138], Kuo et al. [127]),
parallel tabu search (Ichoua et al. [112]). Moreover, in Ehmke et al. [71] classical heuristics
for the TSP are adapted to the TDTSP and their performances are compared. Another
direction explored by Soler et al. [195] is to get rid of travel-times variations by adapting the
graph structure. They show the TDVRP with TW can be transformed into a Asymmetric
Capacitated VRP (without TW). Table 2.5 lists the papers cited in this section.
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2.4.2 Multi-level Vehicle Routing Problem

Traditional routing problems consider direct delivery from a central depot to a set of cus-
tomers. Recently, mostly in city logistics context, different distribution systems have been
studied where goods are dispatched to intermediate depots before reaching the final destina-
tions. Research has mostly focused on rather simplified systems and it is here summarized.

Motivation

In the last years, enterprises understood the need to redesign their distribution scheme in
cities mainly for two reasons. Firstly, in order to improve the quality of their service, to bet-
ter match customer’s requests, to improve their image and eventually to be more effective.
Secondly, traffic restrictions have been introduced in most of the big European cities. Such
limitations, for example, avoid big trucks to enter city centers, limit the number of trips a
vehicle is allowed to do in special zones and encourage the use of green or environmental
friendly vehicles. Enterprises then need to adapt to this new environment or to anticipate
possible future restrictions. Moreover, municipalities have to face constant growth of urban
freight transportation, related to the increment in urban population, that contributes in traf-
fic congestion, air pollution, noise pollution and accidents into city centers. Solution to those
problems can be found implementing city distribution centers (CDC), where transshipment,
consolidation collaboration and synchronization are considered.

Following Rushton et al. [183], a CDC can be a finished goods warehouse that holds
stock from factories, a transshipment site or cross-docking facility (freight is unloaded from
inbound vehicles and directly loaded in outbound vehicles and no storage is offered, see Van
Belle et al. [209] for a survey on cross-docking). In city logistics context, the term satellite
is normally used to indicate a small CDC where freight can be stored only for a short period
(or cannot be stored at all) and vehicle-waiting is not offered. Then synchronization of the
inbound and outbound flows is a crucial point. In particular, a satellite can be a public
parking or municipal bus garage (Crainic [49]).

From a city logistics point of view, CDCs are installed to achieve high degree of collection
in the good flows providing efficient streams to city center from CDC itself and vice-versa,
aiming at the reduction of traffic congestion (BESTUFS [65]).

Several projects have been implemented worldwide. Some have failed due to different
reasons. For example, companies are sometimes reluctant to lose the contact with customers
or to transport their goods with the competitors due to sharing of information; in other
cases, the CDC was located too far from highways and centers or the municipality adopted
wrong supporting policy measures (BESTUFS [65], van Rooijen and Quak [211]). Despite
that, practitioners are still convinced that the use of CDC in distribution system can improve
traffic and environmental condition of city center and make distribution more efficient.

In what follows the term logistic platform (LP) is used for both CDC and satellites. The
context will make clear which platform is being considered.
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Problem description

An LP is usually located in strategical position that can be the airport, close to the train
station or in the seaport. Furthermore, an LP can be located along the highway ring just
outside the city where big trucks can easily have access. Numerous parameters can char-
acterize each LP as storage capacity, storage period limit, vehicle accessibility, number of
vehicle that can access it at the same time, possibility of vehicle-waiting and so on.

In real frameworks, firms store goods in LP from where they are dispatched to the final
users directly or via transshipment, i.e., goods are delivered to other (intermediate) LPs.
Moreover, different enterprises can agree in consolidating their products in the same vehicle
that will be delivered to common customers, sharing transportation costs and respecting
traffic limitations. LPs facilitate these operations where goods from different enterprises
arrive and are stored or loaded in smaller vehicles that can have access to the city center
and reach the customers.

The most studied system is the Two-Echelon VRP (2E-VRP) depicted in Figure 2.3.
Goods are initially in 1-st level LP(1-LP). 1-LP are represented by black squares. They are

2nd level vehicle

1st level vehicle

2nd level trip

1st level trip

2nd level LP

1st level LP

Customer

Figure 2.3: General Two-Level distribution system

the source of the merchandise: airports, ports, stations, industrial parks, etc. Products are
delivered to 2-level LP (2-LP) by 1st level vehicles (1-vehicles). Then they are consolidated
into 2nd level vehicles (2-vehicles) that perform final delivery to customers. Direct delivery to
customer made by 1-vehicle is considered if access to the customer is not limited. Moreover,
the quantity to deliver to 2-LP can be split among different 1-vehicles (then 2-LP can be
visited by more than one 1-vehicle) and 2-vehicles can end the trip at a 2-LP different than
the one from where they have started. It is assumed that each vehicle can perform several
serving trips during the working day (multi-trip aspect). Apart from Crainic et al. [56] who
proposed a model that generalizes this system (for example, time dependent travel times and
TW associated with customers are considered as well), studies are on simplified schemes.
Generalizations of the 2E-VRP with more than 2 levels can be considered.

Common assumptions in the problem definition of the 2E-VRP are the following. There
is a unique 1-LP (the central depot) where goods are initially placed. Customers cannot
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be served directly (for example, due to limitation on vehicles that can access city centers),
then goods are delivered to 2-LP by 1-vehicles. 2-LP are usually associated with a capacity.
Deliveries from 1 vehicles cannot exceed this capacity. Quantities to deliver to 2-LP can be
split among different 1-vehicles. Customers can be served only by 2-vehicles and split in the
deliveries is not allowed at that level. Moreover, vehicles can perform only one serving trip
that must start and end at the same 2-LP(Crainic et al. [52], Perboli et al. [160], and Crainic
et al. [50], Hemmelmayr et al. [104]). This situation is depicted in Figure 2.4a.

(a) Two-Level Routing Problem

(closed/open)

1st level LP

Customer

1st level trip

2nd level trip

2nd level LP

(b) Two-Level Location Routing Prob-
lem

Figure 2.4: Two-Level Problems

When the 2-LPs that are used need to be chosen among a set of possible 2-LPs, the
Two-Echelon Location Routing problem (2E-LRP) arises. Usually a cost associated with
the usage of a certain 2-LP (opening cost) is given and the objective is to minimize opening
and routing costs. It is noteworthy that when all the opening costs are zero, 2E-VRP and
2E-LRP coincide. Nguyen et al. [149] forbid splitting deliveries even when serving 2-LPs
(Figure 2.4b), while Jepsen et al. [117] allows it. The interested reader is referred to Nagy
and Salhi [146] for a recent and complete survey on location routing problems.

An implicit assumption of multi-level systems is the sharing of information. To properly
manage the merchandise flow from 1-LP to customers, knowledge is needed on the exact
destination of each 1-vehicle, the merchandise it is carrying and to which customer it will be
delivered by a specific 2-vehicle. This allow goods to be rightly moved into the LP from the
arrival.

It should be noticed that, in the previous models, the only interaction between 1- and
2-vehicles regards capacity constraints: 2-vehicles need to be enough in order to serve the
customers and deliver the quantity of goods unloaded from 1-vehicles at 2-LPs. In fact, as
pointed out in Crainic et al. [56], in advanced systems, 1- and 2-level vehicles are synchronized
for cross-docking purposes (goods are unloaded from 1-vehicle and loaded in 2-vehicles almost
immediately). Moreover, when 2-LPs do not offer storage possibility, vehicles should arrive
at the LP on time.

Synchronization between 1- and 2-vehicles has received little attention until now. We
are aware of the the work of Grangier et al. [94] where the two levels are simultaneously
considered. 2-LPs do not offer storage possibilities, thus, good transfer at 2LPs requires the
simultaneous presence of 1- and 2-vehicles.

Vehicle synchronization is considered in routing problems that differ from the 2E-VRP
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considered here. For example, in Lee et al. [130] and Wen et al. [216] vehicles are located at
the 2-LP. Merchandise needs to be picked-up at supplier locations and delivered to retailer
(by the same vehicles) via the 2-LP where consolidation takes place. While Lee et al. [130]
force all the vehicles to arrive at the 2-LP simultaneously, Wen et al. [216] associate to
products a ready date that consists of the sum of the arrival time of merchandise plus the
unloading time. The vehicle considered for final deliver needs to wait until the ready date
for loading the product. For a survey on synchronization in VRP, we refer to Drexl [62].

Algorithms for the 2E-VRP

We start this section by observing that if customers are assigned to a specific 2-LP, one has to
solve as many VRP problems as the number of 2-LP. Moreover, the assignment of customers
to 2-LP determines as well the quantity that has to be delivered to each of the 2-LPs by
1-vehicles. 1-level operations are determined by solving either a split delivery VRP (when
splitting is allowed) or a capacitated VRP. Then, the problem is naturally decomposed in
|2-LP|+ 1 routing problems.

Following this decomposition of the problem determined by its structure, different two-
phase heuristics have been proposed for the 2E-VRP. Crainic et al. [52] decompose the 2-level
problem in smaller and independent VRPs clustering customers and assigning them to 2-LPs.
The 2-level distribution is solved as well as Multi-Depot VRP. 1-vehicles deliver goods to
2-LPs accordingly to customer assignment. The second phase improves the initial solution.
Perboli et al. [160] propose a flow-based model for the 2E-VRP. They assign customers to
2-LPs regarding the solution of the linear relaxation of the model. In the second phase they
solve the corresponding |2-LP| + 1 VRPs. Crainic et al. [50] find an initial assignment of
customers to 2-LP and improves it. The solution is improved by means of a multi-start
approach.

Other procedure used are GRASP with path-relinking (Crainic et al. [53]), adaptive large
neighborhood search (Hemmelmayr et al. [104]), or Branch-and-Cut (Jepsen et al. [117]).
Baldacci et al. [15] proposes an exact method that can be summarized in three steps: first,
the set R of all the 1-level routes is generated. Second, all the subsets of R that can be part
of an optimal solution are generated. For each of these subsets, the corresponding 2-level
routing problem is solved.

We refer to Gonzalez-Feliu [92] for a recent survey on Two-Level distribution systems.

2.4.3 Dynamic vehicle routing problem

In classical routing problems all the information is supposed to be known before the oper-
ations start and the complete information is used to produce the planning. Differently, in
dynamic context, information is revealed during the operations. New information need to
be treated and re-optimization executed.

Page 44 EMSE-CMP Diego Cattaruzza



2.4. PROMINENT FAMILIES OF VEHICLE ROUTING PROBLEMS FOR URBAN
GOOD MOVEMENTS

Authors year
Jacobsen and Madsen [116] 1980
Crainic, Ricciardi and Storchi [55] 2004
Crainic [49] 2008
Crainic, Mancini, Perboli and Tadei [52] 2008
Gonzalez-Feliu and Morana [91] 2008
Gendron and Semet [86] 2009
Crainic, Ricciardi and Storchi [56] 2009
Perboli, Tadei and Vigo [160] 2011
Crainic, Errico, Rei and Ricciardi [50] 2011
Hemmelmayr, Cordeau and Crainic [104] 2012
Baldacci, Mingozzi, Roberti and Wolfler Calvo [15] 2013
Jepsen, Spoorendonk and Ropke [117] 2013

Table 2.6: Articles cited that concern multi-level distribution

Definitions

Before starting to analyze this family, it is useful to clarify the concept of dynamism. We
will adopt the following definition (Psaraftis [169]): “vehicle routing problem is dynamic
if information (input) on the problem is made known to the decision maker or is updated
concurrently with the determination of the set of routes. By contrast, if all inputs are received
before the determination of the routes and do not change thereafter, the problem is termed
static”.

This definition is in contrast, for example, to the one given by Ghiani et al. [88], that
reads as follows: “a vehicle routing problem is said to be static if its input data (travel times,
demands, . . . ) do not depend explicitly on time, otherwise it is dynamic. Moreover, a VRP
is deterministic if all input data is known when designing vehicle routes, otherwise it is
stochastic”.

The second definition introduces a possibility of confusion, since the time-dependent
VRP (TDVRP), would be considered as a dynamic problem as well as the dynamic VRP
(DVRP), even if the former would be deterministic while the latter stochastic. To avoid this
confusion, we adopt the first definition of dynamism and we consider the TDVRP as static.

In the static case, all the data are supposed to be known in advanced, i.e., before the
planning takes place, and do not change afterwards. Vice versa, in the dynamic case part
(Gendreau et al. [84], Ichoua et al.[111], Potvin et al.[164]) or all the information becomes
available when the vehicles are already routed. The dynamic elements can involve requests,
travel times or both (Potvin et al. [164], Fleischmann et al. [80]).

Motivation

The interest in the DVRP (in the literature the word dynamic is often replaced by real time
or on-line) has rapidly grown with the development in communication technology as GPS,
mobile phones and geographic information system, giving the opportunity of using real-time
information. Then, vehicle activity can be constantly monitored and dynamic demand can be
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efficiently and rapidly handled since a constant link can be kept between the dispatch center
and drivers. Moreover, the possibility of parallel computation allows quick and sophisticated
responses.

Güner et al. [98] pointed out that over 50% of travel time delays are due to non-recurrent
(and then unpredictable) events. Kim et al. [119] show how using real-time information on
congestion can produce cost savings up to 3.65% and reduction of vehicle usage up to 6.88%
compared to planes made using travel times based on historical data.

Moreover, results show the benefit of using dynamic knowledge in routing planning.
For example, Grzybowska and Barceló [97] implemented a method for the dynamic pickup
and delivery VRPTW using the downtown of Barcelona as simulation testing area. Static
planning generates solutions that are a third worse than dynamic ones obtained considering
time-dependent travel times as well.

Optimization frameworks

In dynamic context, regarding the strategy, requests must be accepted (as, for example, in
Fleischmann et al. [80] for taxi cab service or Chen and Xu [38]) or can be refused (Barkaoui
and Gendreau [16], Yang et al. [218]). A request can be rejected in the case it is not
convenient to serve it or there are no feasible insertions along the planned routes. However,
quick decisions have to be made in order to settle if a new demand should be accepted
(Gendreau et al. [84], Yang et al. [218]), since customers are willing to wait for answer a
short amount of time. When a request is accepted it has to be assigned to a vehicle and its
position along the route has to be determined.

While in the VRP the classical objective function is the minimization of the travel dis-
tance and/or time, in the dynamic case different objective can be more adequate. For
example, Barkaoui and Gendreau [16] minimize customer service denial, total lateness at
customer location and total traveled distance.

Usually, to manage dynamic requests, static algorithms are used. The static demands
form an initial static problem and each time a new request appears, a new static problem is
defined and has to be solved. When rejection is allowed, a quick insertion procedure is run in
order to determine whether the request should be accepted or discarded. Then, the customer
can know in real time whether its demand will be served. A re-optimization procedure can
be used to determine the new routes and is run between dynamic events arrival. In order to
save computational time, a simple insertion procedure can also be used but it may produce
myopic solutions.

Re-optimization can take place each time a new event occurs, or at pre-fixed decision
epochs (Chen and Xu [38]). In Gendreau et al. [84] each time a new request arises, the
procedure stops and tries to insert the new customer in one of the solutions kept in memory.
If no feasible insertion is found the request is rejected, otherwise the next destination of each
vehicle is identified regarding the best solution computed so far. Since the routes can often
change, drivers just know their next location. In Attanasio et al. [8] each time a request arises
a quick procedure called feasibility check is performed (they suppose the request is done by
telephone or Internet and a customer is not willing to wait more than few seconds). In case
of positive response, a re-optimization procedure is run in order to reduce the routing cost
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as much as possible. Ichoua et al. [111] run a procedure (based on the parallel tabu search
developed by Gendreau et al. [84]) for δ time units each time a new request is accepted.

Waiting, diversion and relocation strategies

Since new requests can arise during the planning horizon, it can be worth to let vehicles wait
at some strategic locations in order to reduce the overall traveled distance or maximizing
the probability to serve a demand. This is in contrast with the static version of the VRP,
where the only appropriate strategy requires a vehicle to drive as soon as it is feasible. A
waiting strategy is an assignment of waiting times to the customer of a tour (including the
depot) and their sum does not exceed the slack time, i.e., the difference between the traveled
time and the time horizon (Branke et al.[26]). Gendreau et al. [84], force each vehicle to
wait at their location if some waiting time is expected at the next destination. The move is
then performed as the latest possible time to allow for last minute changes to the planned
routes due to the arrival of new requests. Branke et al.[26] implemented different waiting
strategies comparing them with the nowait strategy (i.e., no waiting times are introduced).
The results show that waiting at the depot as long as possible gives worse results than
nowait strategy while waiting at the farthest location from the depot as long as possible
results in shorter routes. Moreover, waiting at each location for the same amount of time
(the slack time divided by the number of the routed customers) or for a time proportional
to the routed distance allows more customers to be served in addition to decrease the tour
length. Mitrović-Minić and Laporte [141] consider the Pickup and Delivery Problem with
time windows and propose three waiting strategies to compare with the nowait strategy. The
first strategy let a vehicle wait at the current location as long as possible. In the other two
strategies a route is divided in service zones. After customers in the same service zone are
served, vehicles wait as long as possible in the second strategy and for a time proportional
to the service zone time in the latter case. The last strategy results to be the best among
the others with respect to the route length and the number of vehicle used. Ichoua et
al. [113] consider DVRP when some stochastic information is available regarding dynamic
demands. In particular, the requests unfold over time according to a Poisson process. In
the proposed waiting strategy a vehicle may wait at its current position for some amount of
time if the probability for a request to occur in the vehicle’s neighbor is higher or equal to a
given threshold. Results show that significant improvements are obtained using the waiting
strategy especially in the case of small fleet size and high request arrival rates.

In Gendreau et al. [84], when a vehicle move to the next location it cannot be redirected
to another site to serve a request that just occurred in its vicinity, i.e., diversion is not
allowed. Ichoua et al. [111] show that diverting a vehicle to another destination can be
beneficial. When a new request is accepted, re-optimization is performed. If in the outcome
solution the next destination of a vehicle is different to the current destination, it is diverted
(note that the vehicle can be diverted to a location different to the new one). Results show
that diversion strategy reduces the total distance traveled, the total lateness and unserved
customers.

Bent and Hentenryck [19] show that using relocation strategies, i.e., moving a vehicle
to an arbitrary location, can improve the quality of the solution when the objective is to
maximize the served requests and stochastic information is available for future demands. In
particular, they generate sampled requests regarding the stochastic information and consider
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Authors year
Gendreau, Guertin, Potvin, Taillard [84] 1999
Ichoua, Gendreau, Potvin [111] 2000
Attanasio, Cordeau, Ghiani, Laporte. [8] 2004
Fleischmann, Gnutzmann, Sandvoß [80] 2004
Mitrović-Minić and Laporte [141] 2004
Yang, Jaillet, Mahmassani [218] 2004
Branke, Middendorf, Noeth, Dessouky [26] 2005
Chen and Xu [38] 2006
Ichoua, Gendreau, Potvin [113] 2006
Potvin, Xu, Benyahia [164] 2006
Bent and Hentenryck [19] 2007
Ichoua, Gendreau and Potvin [114] 2007
Larsen, Madsen, Solomon [129] 2008
Pureza and Laporte [170] 2008
Berbaglia, Cordeau, Laporte [20] 2010
Grzybowska and Barceló [97] 2012
Pillac, Gendreau, Guéret and Medaglia [162] 2013

Table 2.7: Articles cited that concern DVRP

those requests as real. Then, the vehicle will move to the request with the best evaluation
even if that request is forecasted and can not materialize. Results are compared with those
obtained using a generalization of the parallel tabu search proposed by Gendreau et al. [84]
and a waiting strategy in which vehicles can wait at their location if a request can materialize
in the vicinity. Relocation strategy produces the best results.

Different methods are used to tackle these problems, such as adaptive memory tabu
search (Gendreau et al. [84]), parallel tabu search (Attanasio et al. [8], Grzybowska and
Barceló [97]), dynamic column generation (Chen and Xu [38]), evolutionary algorithm
(Branke et al.[26], Barkaoui and Gendreau [16]).

The interested reader is referred to Ichoua et al. [114], Larsen et al. [129], Berbaglia et
al. [20] and Pillac et al. [162] for recent surveys on DVRP. Table 2.7 summarizes the articles
cited in this section.

2.4.4 Multi-Trip VRP

The Multi-Trip VRP (MTVRP) has been investigated only in the last two decades and the
literature is still scarce. However, its interest is recently growing, especially because in city
logistics context short trips are common and re-loading necessary. This is a consequence of
limited vehicle autonomy when, for example, electrical vehicles are considered, or limited
vehicle capacity due to road narrowness or law traffic limitation.

Differently than the other families, MTVRP does not involve network design and data
collection problems. Differences arise only at the operational level. For that, in this section
the review mainly focuses on the algorithmic aspects.
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Multi-Trip VRP

The MTVRP is a variant of the VRP, where vehicles are allowed to perform more than
one serving trip in the working day. Then, in the MTVRP, routes have to be determined
and assigned to vehicles. The assignment part is implicit in the VRP, where each route
is associated with one vehicle. Most of the procedures proposed in the literature for the
MTVRP, first determine the routes by means of a VRP algorithm. Then, using a bin
packing heuristic, a solution is created.

Fleischmann [78] was the first that addressed the problem in his working paper in 1990.
He proposed a modification of the saving algorithm and used a bin packing problem heuristic
to assign routes to the vehicle. In Taillard et al. [198], VRP solutions are generated using
a tabu search algorithm (Taillard [197]). The routes forming the VRP solutions are stored
in a list. From that list a subset of routes is selected and a MTVRP solution is constructed
using a bin packing heuristic. Petch and Salhi [161] proposed a multi-phase algorithm that
minimizes the maximum overtime. A pull of solutions is constructed by the parameterized
Yellow saving algorithm. For each solution in the pull, a MTVRP solution is constructed
using a bin packing heuristic. The MTVRP solutions are improved using 2-opt, 3-opt moves,
combining routes and reallocating customers. Olivera and Viera [156] used an adaptive
memory approach to tackle MTVRP. A memory M is constructed with different routes that
form VRP solutions generated with the sweep algorithm. Each route is labeled with its
overtime value and its cost and are sorted using a lexicographic order. Probabilistically
selecting routes inM , new VRP solutions are generated and then improved by a tabu search
algorithm. New VRP solutions are used to upload M . From the best VRP solution a
MTVRP is obtained using a bin packing heuristic.

Cattaruzza et al. [33] propose an efficient population based algorithm where individuals
are evaluated by an extension of the well-know split procedure proposed by Prins [166] for
the VRP, that both determines the routes and assigns them to vehicles. Moreover, a new
tailored local search operator has been introduced. It detects deteriorating moves (among
those usually considered in the VRP context) that together with a swap of trips assigned to
different vehicles, yields to a global improvement.

Mingozzi et al. [140] propose an exact method for the MTVRP based on two set
partitioning-like formulations. 52 instances with up to 120 customers and with a known
feasible solution (without overtime) are faced and in 42 cases the optimal solution is found.

MTVRP with time windows

MTVRP with time widows (MTVRPTW) is faced as well. Azi et al. [11] proposed an exact
algorithm for solving the single vehicle MTVRPTW with limited trip duration. The problem
is faced via an approach that exploits an elementary shortest path algorithm with resource
constraints. In the first phase all non dominated trips are calculated. Then the shortest
path algorithm is applied to a modified graph where each node is a non-dominated trip
and two nodes are connected whether it is possible to serve the two trips consequently and
they do not have customers in common. Solomon instances are used with different values
of time horizon. 16 instances out of 54 with 100 customers are solved to optimality. Azi et
al. [12] addressed the MTVRPTW with limited trip duration. A column generation approach
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embedded within a branch-and-price algorithm is developed. A set packing formulation is
given for the master problem and each column represents a working day. Since each pricing
problem is an elementary shortest path with resource constraints, a similar approach to
the one proposed in Azi et al. [11] is applied. As in Azi et al. [11], Solomon instances are
considered and a time horizon is introduced. Due to the limitation of the algorithm, the
authors focused on instances formed by the first 25 or 40 customers of each Solomon instance.
The number of vehicles is set to 2. Their results are overcame by Macedo et al. [136] and
Hernandez et al. [106]. The former paper proposes a minimum flow model, while in the
latter a set covering formulation is given for the problem and each column represents a trip
instead of a working day.

In Crainic et al. [51], Nguyen et al. [148] and Cattaruzza et al. [32] the dependency
between the the different distribution levels in two-echelon distribution system is studied.
Crainic et al. [51] and Nguyen et al. [148] studied the Multi-Zone MTVRP. This problem deals
with synchronization problems that arise in two-echelon systems, where 1st-level vehicles and
2nd level vehicles (see Section 2.4.2 for those definitions) should meet at 2nd level LPs in
order to transfer freight. In the Multi-Zone MTVRP, a vehicle starts from a central depot and
goes to a supply point, i.e, a 2nd level LP during its opening time, loads freight and goes to
serve (some) customers associated to the supply point itself meeting customer’s TW. Then,
it goes to another supply point or back to the depot. TW associated with supply points or
customers are hard, then no waiting time is allowed at their locations. This characterization
of the 2nd level distribution system was introduced by Crainic et al. [56]. Differently, in
Cattaruzza et al. [32] the MTVRPTW with Release Dates is introduced. Truck arrivals at
intermediate depots is modeled introducing release dates on merchandise that represent the
instant they become available for delivery. Vehicles that perform distribution must wait at
the depot until all the products they have to deliver during the next route have arrived.

MTVRP in practice

Different studies facing practical cases consider the possibilities to perform several trips
during the working day. For example, Brandão and Mercer [24] considered a MTVRPTW
and vehicles with different capacities. Moreover, vehicles can be hired from the company in
case of need and the access to some customers is restricted to particular vehicles. Drivers’
schedule must respect the maximum legal driving time per day. Legal time breaks and
unloading times are taken into account. Real instances from Burton’s Biscuit Ltd. including
45 – 70 customers and the use of 11 vans and 11 tractors are considered. In their successive
work Brandão and Mercer [25] adapted the algorithm in order to compare the results with
those obtained by Taillard et al. [198]. A two-phase tabu search is performed. In the first
phase a solution is allowed to become infeasible regarding travel time constraints, but in the
second phase, only feasible solutions are accepted. Insert and swap moves are considered.
Battarra et al. [17] consider the MTVRPTW and goods belonging to different commodities
that cannot be transported in the same vehicle in the meantime. The objective is to minimize
the number of used vehicles. The problem is divided in simpler subproblems, one for each
commodity. A set of routes is then generated for each commodity and packed by means
of a bin packing heuristic in order to obtain a solution. Alonso et al. [3] considered the
periodic MTVRP. Then each customer could be served up to t times in a planning period
of t time units. Moreover, not every vehicle can serve all the customers. The concept of
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Authors year
Fleischmann [78] 1990
Taillard, Laporte and Gendreau [198] 1996
Brandão and Mercer [24] 1997
Brandão and Mercer [25] 1998
Petch and Salhi [161] 2004
Gribkovskaia, Gullberg, Hovden and Wallace [95] 2006
Salhi and Petch [186] 2007
Olivera and Viera [156] 2007
Azi, Gendreau and Potvin [11] 2007
Alonso, Alvarez and Beasley [3] 2008
Battarra, Monaci, and Vigo [17] 2009
Cornillier, Laporte, Boctor and Renaud [47] 2009
Azi, Gendreau and Potvin [12] 2010
Hernandez, Feillet, Giroudeau and Naudi [106] 2011
Macedo, Alves, Valério de Carvalho, Clautiaux and Hanafi 2011
Crainic, Gajpal and Gendreau [51] 2012
Mingozzi, Roberti and Toth [140] 2012
Cattaruzza, Absi, Feillet and Vidal [33] 2013
Cattaruzza, Absi, Feillet, Guyon and Libeaut [32] 2013
Nguyen, Crainic and Toulouse [148] 2013

Table 2.8: Articles cited that concern MTVRP

multi-trip is also addressed by Cornillier et al. [47] and Gribkovskaia et al. [95]. The first
paper concerns petrol distribution to gas stations, while the second proposes a model for the
livestock collection.

2.5 Conclusion

Urban areas are growing faster and becoming the cornerstone of our society. Estimations
forecast more than 80% of the population will live in cities by 2050 (European Commis-
sion [153]). Transportation of people and merchandise impacts the quality of inhabitants’
life providing transfers but producing pollution and congestion. Understanding this phe-
nomenon is crucial to manage the city reorganization or enlargement in such a way that
both service quality and livability are guaranteed.

In order to contribute to the understanding of good transportation, this paper gives a
picture of nowadays urban good movements (UGM). We classified the UGM, describing the
main categories and providing statistics of each category with respect to the whole UGM
(Section 2.2). It can be noticed that a large part of UGM perform several stops. Optimization
of those movements can reduce, for instance, travelling times and pollution and/or increase
quality of services.

We surveyed the papers that explicitly studied urban good transportation (Section 2.2.3),
both from the authority perspectives (that look for an efficient city organization) and from
private point of view (that usually are interested in meeting customer desire providing quality
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services). From those papers, we identified the problems that scholars, private companies and
authorities face while studying urban deliveries - mostly congestion and unforeseen events
- or aspects that are considered when solutions are proposed to simultaneously improve
delivery efficiency and city livability, for example multi-level distribution systems and the
usage of eco-friendly vehicles.

Congestion introduces a time-dependency of travel times. Unforeseen events introduce
dynamism on the treated data that implies re-optimization of the planning. In multi-level
distribution, concepts as consolidation and synchronization arise. Finally, structural roads
limits and short autonomy or small size of eco-friendly vehicles impose short delivering trips
with multiple returns to the depot and re-loads. The classical routing problems that arises
in this context are the Time-dependent, the Dynamic, the Multi-level and the Multi-trip
VRP. We surveyed all these families in Section 2.4 without focusing on the city logistics
context. Peculiar difficulties arise: optimization of starting time in the time-dependent case,
repositioning of the fleet in dynamic environment, synchronization in multi-level systems,
assignment of routes to vehicle in the multi-trip situation, to cite some.

We observed that both scholars and enterprises look at multi-level distribution systems
as an effective solution to efficiently deliver goods in cities while preserving urban livability.
However, this line of research is still recent and focuses on simplified frameworks, that
usually do not represent real life situation. Synchronization among levels, for example,
starts to be studied nowadays and room is left for future research. Furthermore, the multi-
trip aspect that is a natural consequence of the eco-friendly vehicle usage is not considered
in several papers. Last, but not the least, time-dependency has not been addressed yet from
an algorithmic point of view when studying multi-level distribution systems. We strongly
believe that efficient solutions can be found only integrating this feature in future models,
due to the relation between time and traveling speed variation that characterizes routing in
cities. Moreover, the distribution scheme based on city distribution centers (CDCs) located
on the outskirts of the city can lead to original multi-trip vehicle routing problems where a
vehicle can start at a given CDC and finish at another one. This organization can be done
in conjunction with TSPs that move goods among CDCs.

We outlined the numerous stakes that arise in the urban distribution context as reducing
pollution or increasing mobility. There is a need of developing models and criteria that
better consider and represent the different stakes in play. Objectives are not always shared
by private and public sector. Then, multi-objective models are important avenues of research
that can be followed to capture this discordance and obtain satisfactory solutions on both
sides. Furthermore, an intelligent city development should be planned by authorities in
collaboration with the private sector and considering dwellers’ opinions. Future research
should study original models where this collaboration is taken into account by proper criteria
and objectives.

Researchers should recognize the continuous and dynamic development of our cities and
capture those changes into their approaches. Examples are the consideration of access time
windows (Muñuzuri et al. [144], Muñuzuri et al. [143]) or the possibility of the carrier to book
parking spots in order to avoid illegal parking while delivering (Patier et al. [158]). Moreover,
accordingly to Durand and Gonzalez-Feliu [64], e-commerce and distance purchasing flows
represent nowadays about 5% of the total end consumer movements (ECM) in number of
trips, but would increase up to 25% in the next five years. It can be anticipated that the
development of home delivery transportation will also be accompanied with new organiza-
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tions of deliveries and new types of VRPs. Among others, uncertainties on the presence of
customers at home, possibility to deliver to collection points in case of absence, stronger
interaction with customers through mobile devices might give raise to new challenges.

Finally, future research should as well explore solutions where merchandise is (partially)
transported using the public network and consider consistency aspects as driver knowledge
of the street network, association of clients with drivers, non-overlapping of routes and so
on.
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Chapter 3

The Multi Trip Vehicle Routing Problem:
A Survey

Abstract

This paper presents a survey on the Multi-Trip Vehicle Routing Problem. This problem is an
extension of the well-known Vehicle Routing Problem, where vehicles are allowed to be re-loaded
and re-routed once they end a trip at the depot. It was introduced more than 25 years ago, and
since then, researchers have been working on it, but no extensive survey has been proposed.

The contribution of this paper is mainly to fill this gap, proposing a full collection of the works
that have been done on the subject. The wide practical applications that are highlighted should
encourage academics and practitioners to put their efforts on this problem in further research.

3.1 Introduction

Nuisances related to congestion and pollution pushed scholars, communities and enterprises
to study new delivery policies to increase city livability. Common approaches envisage the use
of electrical vehicles and/or forbid heavy trucks to enter city centers. Moreover, physical city
structure force final deliveries to be accomplished by small-sized vans that can go through
narrow streets.

The usage of electrical vehicles or small-sized vans ends up in delivery trips shorter than
the working day due to, respectively, limited autonomy and capacity. Unless multiple trips
are allowed for vehicles, a consequence is the bad exploitation of the time horizon and the
need of an oversized fleet to satisfy all the customers (Cattaruzza et al. [34]). Operations,
then, assume the possibility to re-load vans when they are back at the depot and route them
for another trip.

The routing problem that arises is the Multi-Trip Vehicle Routing Problem (MTVRP).
To the best of our knowledge the MTVRP was first introduced by Fleischmann [78] in 1990
under the name Vehicle Routing Problem with Multiple Use of Vehicles. The multi-trip
concept can however be found earlier in the literature. Salhi [185] allows vehicles to perform
several trips in the context of fleet composition problems.



CHAPTER 3. THE MTVRP: A SURVEY

The scientific community has studied the problem and several of its variants proposing
both heuristic and exact methods. Until now, no literature review has been proposed on the
subject (except from Şen and Bülbül [57] that limit their research to the classical MTVRP).
We think that a broad overview on the subject should be given in order to make scholars
aware on the work done in more than 25 years. This motivates this survey.

The MTVRP appears in the literature under several names. In addition to the already
mentioned VRP with multiple use of vehicles used by Fleischmann [78], it has been ad-
dressed as VRP with multiple routes (Azi et al. [11]), VRP with multiple trips (Olivera and
Viera [156]) and VRP with multiple depot returns (Tsirimpas et al. [206]). Taniguchi and
Van Der Heijden [201] allow vehicles to make multiple traverses, while the multiple usage of
vehicles has been called recycling of trucks in Van Buer at al. [210].

This difference in the problem naming, made the research of papers difficult. Moreover,
several works dealing with multiple trips do not mention this aspect in the title, nor in the
abstract, making the hunt even harder. For this reason there could probably be some fishes
that escaped our net.

All along the paper we will refer to a trip as a sequence of customer services preceded and
followed by a visit to the depot and without intermediate depot returning. A sequence of
trips performed by the same vehicle will be called journey. In the literature trip and journey
can be respectively referred to trip and tour, tour and multi-tour (Aghezzaf et al. [1]) or to
voyage and route (in maritime context, Section 3.4).

To further clarify, we say that a problem involves the multi-trip aspect, when vehicles
have the possibility to accomplish journeys made by more than one trip. Roughly speaking,
the multi-trip aspect is involved in a problem definition when a vehicle can leave the depot
more than once during the horizon. In this paper we will survey works that deal with
problems characterized by this feature.

We limit this survey to papers considering problems where the depot is unique, and then
vehicles start and end all their trips at its location. Few exceptions consider several depots,
but vehicles are associated with a specific depot that is the only one they visit along the
journey. Moreover, we do not consider stochastic problems. In particular, in the stochastic
VRP (SVRP), part of the data is stochastic. It can be the travel or the service times, the
customers, or the the customer demands. One of the solving approaches for the SVRP is
to consider recourse actions, i.e., decisions on how to adapt the original plan consequently
to the realization of the uncertainty. When customer demands are stochastic, for example,
a recourse action is to return at the depot to replenish the vehicle. This can be done
when the quantity of product the vehicle is carrying is not enough to serve the remaining
customers in the trip. This generates a multi-trip planning. However, we decided to exclude
from the survey stochastic problems, since the multi-trip journey of a vehicle is a (possible)
consequence of uncertain events and not a planned issue. Moreover, to the best of our
knowledge, works on the stochastic MTVRP have not appeared yet. Hence, relevant papers
for this survey are not excluded by this decision.

The paper is structured as follows. Sections 3.2 and 3.3 survey the MTVRP and the
MTVRP with time windows (MTVRPTW) respectively. Due to their academic relevance,
a model is proposed for each problem and a complete overview of results on benchmark in-
stances is given, in addition to the references to all the papers published. Section 3.4 surveys
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multi-trip problems in maritime context. We decided to dedicate one section to this theme
due to intrinsic characteristics of maritime routing that make the problem deeply different
from the vehicle routing: costs of vessels are usually taken into account, time horizons are
longer and trips visit few locations, which makes trip enumeration easier. Section 3.5 lists
papers that make use of multi-trips in route planning coupled with production and/or inven-
tory problems. Section 3.6 surveys papers inspired by real-applications and with a number
of particular constraints. Finally, Section 3.7 concludes the paper.

3.2 Multi-Trip Vehicle Routing Problem

The Multi-Trip Vehicle Routing Problem (MTVRP) allows a vehicle to perform several
trips during the working day. It can be defined on an directed graph G = (N ,A), where
N = {0, 1, . . . , N} is the set of nodes and A = {(i, j)|i, j ∈ V, i < j} is the set of arcs.
It is possible to travel from node i to node j, incurring in a travel time Tij and covering
the distance Dij. Node 0 represents the depot where a fleet of M identical vehicles with
limited capacity Q is based. Nodes 1, . . . , N represent the customers to be served, each one
requiring a certain quantity Qi of a product. Service at customer i takes Si units of time.
Service time at the depot is indicated with S0. A time horizon TH exists, which establishes
the duration of the working day. Overtime is not allowed. It is assumed that Q, Qi and TH
are nonnegative integers.

The MTVRPTW calls for the determination of a set of trips and an assignment of each
trip to a vehicle, such that the travelled distance is minimized and the following conditions
are satisfied:

(1) each trip starts and ends at the depot,

(2) each customer is visited exactly once,

(3) the sum of the demands of the customers in any trip does not exceed Q,

(4) the total duration of the trips assigned to the same vehicle does not exceed TH .

The MTVRP is a NP-hard problem since it can be reduced to the VRP, that is in turn
NP-hard (Lenstra and Rinnooy Kan [132]). A VRP instance IV RP can be transformed into
a MTVRP instance IMTV RP as follows. Let IV RP an instance for the VRP defined by NV RP

customers,MV RP vehicles with capacity QV RP , travel times T V RPij and travel distancesDV RP
ij

for each i, j = 0, . . . , NV RP and customer demands QV RP
i , i = 0, . . . , NV RP . Analogously,

apexMTVRP is used to indicate quantities that refer to an instance IMTV RP of the MTVRP.
Let us construct IMTV RP as follows. NMTV RP = NV RP ; MMTV RP = MV RP ; QMTV RP =
QV RP ; QMTV RP

i = QV RP
i , i = 0, . . . , NV RP ; DMTV RP

ij = DV RP
ij , i, j = 0, . . . , NV RP ; TH =∑

(i,j)∈A T
V RP
ij ; TMTV RP

i0 = T V RPi0 + TH
2 , i = 1, . . . , NV RP ; TMTV RP

ij = T V RPij , i = 0, . . . , NV RP ,
j = 1, . . . , NV RP . Note that each vehicle performing more than one trip would violate the
constraint on the time horizon.

The model for the MTVRP we propose is adapted from the model in Azi et al. [12] for
a variant of the MTVRP with time windows. We introduce sets N̄ = N ∪ {N + 1} and

Ā =
{

(i, j)|i, j ∈ N \ {0}
}
∪
{

(0, i)|i ∈ N \ {0}
}
∪
{

(i, N + 1)|i ∈ N
}
.
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Node N + 1 replicates the depot. Its demand and service time are null. Set Ā contains
all the arcs connecting each pair of customers, plus arcs that go from the node 0 to each
customer, plus the arcs that go from each customer to node N + 1, plus an arc that goes
from node 0 to node N + 1. We introduce the set R as well. It contains all the trips forming
a solution, allowing some trips to be possibly empty. These trips traverse arc (0, N + 1).
Without loss of generality, trips in R are indexed such that if trip r is performed before trip
s by the same vehicle, then r < s.

The following variables are introduced:

• binary variables xrij defined for each pair of nodes i, j ∈ N̄ such that (i, j) ∈ Ā, r ∈ R
that indicate whether arc (i, j) is covered by trip r; Note that xr0,N+1 = 1 when trip r
is empty;

• binary variables yri for each i ∈ N \ {0} and for each r ∈ R that indicate whether
customer i is served by trip r;

• binary variables zrs, with r, s ∈ R and r < s, that indicate whether trips r immediately
precedes trip s in a journey;

• binary variables wr for each r ∈ R that indicate whether trip r is the first in a journey;

• continuous variables tri for each i ∈ N̄ and for each r ∈ R that indicate the instant
service starts at node i when visited by trip r; each trip r starts at the depot at instant
tr0 and ends at trN+1.

The model is as follows.

(MTVRP) min
∑
r∈R

∑
(i,j)∈Ā

Dijx
r
ij (3.1)

s.t.
∑

j∈N̄\{0}
xrij = yri , ∀i ∈ N \ {0}, r ∈ R, (3.2)

∑
r∈R

yri = 1, ∀i ∈ N \ {0}, (3.3)∑
i∈N̄\{N+1}

xrih −
∑

j∈N̄\{0}
xrhj = 0, ∀h ∈ N \ {0},∀r ∈ R, (3.4)

∑
i∈N̄\{0}

xr0i = 1, ∀r ∈ R, (3.5)

∑
i∈N̄\{N+1}

xrN+1,i = 1, ∀r ∈ R, (3.6)

∑
i∈N\{0}

Qiy
r
i ≤ Q, ∀r ∈ R, (3.7)

tri + Si + Tij − α
(
1− xrij

)
≤ trj , ∀i, j|(i, j) ∈ Ā,∀r ∈ R, (3.8)

trN+1 + S0 ≤ ts0 + α(1− zrs), ∀r, s ∈ R|r < s, (3.9)
trN+1 ≤ TH , ∀r ∈ R, (3.10)∑
r<s

zrs = 1− ws, ∀s ∈ R, (3.11)∑
r∈R

wr ≤M, (3.12)
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xrij ∈ {0, 1}, ∀i, j|(i, j) ∈ Ā,∀r ∈ R, (3.13)
yri ∈ {0, 1}, ∀i ∈ N \ {0},∀r ∈ R, (3.14)
zrs ∈ {0, 1}, ∀r, s ∈ R|r < s (3.15)
wr ∈ {0, 1}, ∀r ∈ R, (3.16)
tri ≥ 0, ∀i ∈ N̄ ,∀r ∈ R. (3.17)

The objective function (3.1) minimizes the travelled distance. Contraints (3.2)–(3.3)
guarantee that each customer is served exactly once. Constraints (3.4)–(3.6) are flow
conservation constraints. Constraints (3.7) force vehicle capacities to be respected. Con-
straints (3.8) assure schedule components on each trip to be respected. Constraints (3.9)
assure schedule components on each journey to be respected. Constraints (3.10) force the
time horizon to be respected by each journey. Constraints (3.11) guarantee that each trip
is preceded by exactly one other trip, except when it is the first assigned to a vehicle. Con-
straints (3.12) guarantee that not more than M vehicles are used. α is an arbitrary large
value.

Allowing vehicles to perform multiple trips can be beneficial and solutions that cost less
than the optimal VRP solution can be obtained. An example is given in Figure 3.1. There
are two available vehicles each with capacity Q = 30, that need to serve four customers.
Customers 1 and 2, and customers 3 and 4 have the same location. Demands are in brackets.
The optimal VRP solution serves customers 1 and 3 with one vehicle and customers 2 and
4 with the other. The total travelled distance is 8d. If vehicles can make several trips, a
vehicle serves customers 3 and 4, while the other serves customers 1 and 2 within two round
trips. The total travelled distance is 6d.

4 (10)

3 (10)1 (20)

2 (20)

d d

Figure 3.1: An example in which the optimal MTVRP solution costs less than the optimal
VRP solution

The benchmark of instances for the MTVRP is introduced in Taillard et al. [198] and is
constructed from the instances 1–5 and 11–12 proposed in Christofides et al. [41] (usually
denoted CMT1–CMT5 and CMT11–CMT12) and instances 11–12 proposed in Fisher [77]
(F11-F12) for the VRP. For each VRP instance, instances for the MTVRP are constructed
with different values for the number of available vehicles M and two different values for the
time horizons TH , given by T 1

H =
[

1.05z∗
M

]
and T 2

H =
[

1.1z∗
M

]
where z∗ is the solution cost of

the original CVRP instance found by Rochat [178] and [x] represents the closest integer to
x (see Table 3.1). Traveled distances coincide with travel times.

Taillard et al. [198] do not report values on feasible solutions they found on the instances
they propose. On the other side, when they cannot find feasible solutions, they penalize
overtime by a factor θ = 2 and provide the corresponding solution cost. Apart few excep-
tions, next researchers follow the same scheme. It is noteworthy that in this case infeasible
solutions can cost less than feasible solution. Solution values on this benchmark set of in-
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Instance N Q z∗

CMT1 50 160 524.61
CMT2 75 140 835.26
CMT3 100 200 826.14
CMT4 150 200 1028.42
CMT5 199 200 1291.44
CMT11 120 200 1042.11
CMT12 100 200 819.56
F11 71 30000 241.97
F12 134 2210 1162.92

Table 3.1: Instances’ details of Taillard et al. [198]

stances are reported in Table 3.2. The first column indicates the instance name and the
number of customers N . Columns M , T 1

H and T 2
H are self-explanatory. Columns Opt report

optimal values (when available). Columns Best Known report best known values, when the
corresponding optimal values are not known. Column Best Unfeas. report the value of the
best unfeasible solution, when no feasible solutions are known. This column is omitted for
instances corresponding to values T 2

H of the time horizon, since for all the instances a feasi-
ble solution have been found. The algorithms that permitted to obtain these solutions are
described subsequently.

M T 1
H Opt Best Known Best Unfeas. T 2

H Opt Best Known
CMT1 1 551 524.61 577 524.61
N = 50 2 275 533.00 289 529.85

3 184 569.54 192 552.68
4 138 564.07 144 546.29

CMT2 1 877 835.26 919 835.26
N = 75 2 439 835.26 459 835.26

3 292 835.26 306 835.26
4 219 835.26 230 835.26
5 175 835.80 184 835.26
6 146 858.58 153 839.22
7 125 866.58 131 844.70

CMT3 1 867 826.14 909 826.14
N = 100 2 434 826.14 454 826.14

3 289 826.14 303 826.14
4 217 829.54 227 826.14
5 173 832.89 182 832.34
6 145 836.22 151 834.35

CMT4 1 1080 1031.00 1131 1031.07
N = 150 2 540 1031.07 566 1030.45

3 360 1028.42 377 1031.59
4 270 1031.10 283 1031.07
5 216 1031.07 226 1030.86
6 180 1034.61 189 1030.45
7 154 1068.59 162 1036.08
8 135 1056.54 141 1044.32

CMT5 1 1356 1302.43 1421 1299.86
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M T 1
H Opt Best Known Best Unfeas. T 2

H Opt Best Known
N = 199 2 678 1302.15 710 1305.35

3 452 1301.29 474 1301.03
4 339 1304.78 355 1303.65
5 271 1300.02 284 1300.62
6 226 1303.37 237 1306.17
7 194 1309.40 203 1031.54
8 170 1303.91 178 1308.78
9 151 1307.93 158 1307.25
10 136 1323.01 142 1308.81

CMT11 1 1094 1042.11 1146 1042.11
N = 120 2 547 1042.11 573 1042.11

3 365 1042.11 382 1042.11
4 274 1078.64 287 1042.11
5 219 1042.11 229 1042.11

CMT12 1 861 819.56 902 819.56
N = 100 2 430 819.56 451 819.56

3 287 819.56 301 819.56
4 215 819.56 225 819.56
5 172 845.56 180 824.78
6 143 845.48 150 823.14

F11 1 254 241.97 266 241.97
N = 71 2 127 250.85 133 241.97

3 85 256.93 89 254.07
F12 1 1221 1162.96 1279 1162.96

N = 134 2 611 1162.96 640 1162.96
3 407 1162.96 426 1162.96

Table 3.2: Results on MTVRP instances

3.2.1 Heuristics

Most of the heuristics developed for the MTVRP are based on a two-phase paradigm. In a
first step, trips are created and in a second step some of these trips are packed into journeys
respecting TH . Fleischmann [78] proposes a modification of the savings algorithm to obtain
trips and uses a bin packing problem (BPP) heuristic to assign trips to vehicles. In Taillard
et al. [198], VRP solutions are generated using a tabu search (TS) algorithm with adaptive
memory (Taillard [197]). The trips forming the VRP solutions are stored in a list. From
that list a subset of trips is selected and a MTVRP solution is constructed using a BPP
heuristic. Petch and Salhi [161] propose a multi-phase algorithm with the minimization of
the overtime as objective function. A pool of solutions is constructed by the parametrized
Yellow’s savings algorithm (Yellow [219]). For each solution in the pool, a MTVRP solution
is constructed using a BPP heuristic. The MTVRP solutions are improved using 2-opt, 3-opt
moves, combining trips and reallocating customers. In Salhi and Petch [186], as in Petch and
Salhi [161], the maximum overtime is minimized. A genetic algorithm is proposed. In this
method a chromosome is a sequence of strictly increasing angles, measured with respect to
the depot, and dividing the plane into sectors. The customers are then clustered by assigning
each one to the sector it occupies. In each cluster, the Clarke and Wright savings heuristic is
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used to solve a smaller VRP problem. The resulting trips are packed using a BPP heuristic.
Olivera and Viera [156] use an adaptive memory approach to tackle the MTVRP. A memory
M is constructed with different trips that form VRP solutions generated with the sweep
algorithm. Each trip is labeled with its overtime value and its cost and trips are sorted using
a lexicographic order. New VRP solutions are generated by probabilistically selecting trips
inM and improved by a TS algorithm. New VRP solutions are used to updateM. From
the best VRP solution a MTVRP solution is obtained using a BPP heuristic. Cattaruzza et
al. [33] propose a population based algorithm for the MTVRP. A new tailored Local Search
operator is introduced that takes advantage of the combination of classical moves and swap
of trips among different vehicles. Algorithm comparison is given in Figure 3.21.
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TLG Taillard et al. [198]
BM Brandão and Mercer [25]
PS Petch and Salhi [161]
SP Salhi and Petch [186]
OV Olivera and Viera [156]
AAB Alonso et al. [3]
CAFV Cattaruzza et al. [33]

Figure 3.2: Algorithm comparison on benchmark instances

State-of-the-art algorithms are provided by Olivera and Viera [156] and Cattaruzza et
al. [33].

The only problem-designed local search (LS) operator we are aware of is proposed in
Cattaruzza et al. [33]. It is based on the observation that classical LS pejorative moves (i.e.,
moves that do not improve the objective function) designed for the VRP along with a better
assignment of trips to vehicles can lead to a global improvement in the solution cost. An
example is given in Figures 3.3–3.5. Ov indicates the overtime of vehicle v and θ = 2 is the
penalty factor for this overtime.

r1 r2 r3 Tv θOv

v1 60 30 90 -
v2 30 30 30 90 -
v3 45 30 30 105 10

cost: 295

Figure 3.3: Initial configuration

r1 r2 r3 Tv θOv

v1 60 25 85 -
v2 30 30 40 100 -
v3 45 30 30 105 10

cost: 300

Figure 3.4: Pejorative move. In bold trips
involved in m

The example (Cattaruzza et al. [33]) involves three vehicles with up to three trips each
and the time horizon TH = 100 that is violated by the third vehicle (Figure 3.3). Let us
consider a movem that involves trips r2 and r3 of vehicles v1 and v2 respectively (for example

1CPU times reported are the original and no scale factor is considered
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r1 r2 r3 Tv θOv

v1 60 30 90 -
v2 30 30 40 100 -
v3 45 25 30 100 -

cost: 290

Figure 3.5: After re-packing the trips. In
bold trips involved in re-packing phase

m relocates a customer from r2 in r3) and leads to the configuration shown in Figure 3.4,
with an increase in the solution cost of 5 units (due to the increase in routing cost). In a
classical LS procedure, move m would be discarded since it deteriorates the solution quality.
However, with a different assignment of trips to vehicles, an improvement can be obtained.
In the particular case, it consists in swapping r2 in v1 with r2 in v3 (Figure 3.5). This operator
is called Combined Local Search and re-packing of trips is limited to swapping trips among
vehicles.

3.2.2 Exact methods

Kov and Karaoglan [121] propose a branch and bound algorithm using VRP inequalities
that are still valid for the multi-trip case. They face only instances with 50 customers, being
able to solve 3 out of 8. They report an upper bound on instance CMT1, M = 4, TH = 144
lower than the optimal solution reported by Mingozzi et al. [140].

The only other exact method we are aware of, is the one recently proposed by Mingozzi
et al. [140]. It is based on two set partitioning-like formulations. 42 instances with up to
120 customers are solved. Optimal values are reported in column Opt in Table 3.2.

3.2.3 Variants of the MTVRP

This section introduces papers that deal with some variants of the MTVRP. Ronen [180]
studies a problem of suppling retailers from a central depot by trucks allowed to visit one
retailer per trip (trips are fully loaded). When returning at the depot, trucks possibly perform
another round trip serving the same or another retailer. The fleet is heterogeneous and each
truck is associated with a time availability and a maximal allowed overtime and undertime.
The objective is to find an assignment of return trips to trucks in order to minimize routing
cost and penalizations deriving from overtime and undertime utilization. A mixed binary
formulation is provided and two simple heuristics are developed: the first assigns trips in
trucks with overtime to trucks with undertime, the second swaps trips among trucks.

Prins [165] studies the heterogeneous fleet MTVRP where the main goal is to minimize
total trip duration (equivalent to travelled distance) and secondly to minimize the number of
routed vehicles. This objective function reflect the need to provide a high-quality service. A
limitation on the trip duration tmax(≤ TH) is imposed. A two phase heuristic is used: trips
are first obtained and then packed into journeys. A real case instance made by 71 trucks
with capacities between 350 and 720 units, 775 shops, tmax = 2700 and TH = 3240 minutes
is tackled. Results show a saving of 7491 travelled minutes and 4 trucks compared with the
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solution obtained by the dispatcher of the company (which travel time is 61050 minutes and
needs 23 trucks).

Alonso et al. [3] introduce the Site Dependent and Periodic MTVRP. Customers need to
be delivered up to t times during a horizon of t days and cannot be served by all the vehicles
(the fleet is heterogeneous). They propose a tabu search procedure. Due to the novelty of the
problem, a set of 10 instances is generated. The smallest instance has 50 customers to serve,
2 days horizon, 3 delivery patterns and 2 different vehicles. The biggest instance has 1000
customer, 6 days, 12 patterns and 13 vehicles of 5 different types. Instances are available
at http://people.brunel.ac.uk/ mastjjb/jeb/orlib/sdmtpvrpinfo.html. The proce-
dure is run over classical instances for comparison purposes.

3.3 MTVRP with Time Windows

In the MTVRP with time windows (MTVRPTW) each customer i is associated with a
time interval [Ei, Li] during which service should take place. Arriving at customer location
earlier than Ei is usually allowed, but makes the driver wait until the opening of the time
window (TW). On the opposite, late arrivals are forbidden. The time horizon is represented
associating a TW equal to [0, TH ] = [E0, L0] with the depot.

The MTVRPTW calls for the determination of a set of trips and an assignment of each
trip to a vehicle, such that the travelled distance is minimized, conditions (1)–(4) are satisfied
as well as

(5) trips do not start earlier than E0 and do not finish later than L0;

(6) service at customer i must start between Ei and Li.

The MTVRPTW is obviously a NP-hard problem: each MTVRP instance can be re-
duced to a MTVRPTW instance setting Ei = 0 and Li = TH for all i = 0, . . . , N .

Differently than in the MTVRP, in the MTVRPTW the sequence of trips assigned to
each vehicle is important for both solution cost and feasibility. The model we present for the
MTVRPTW extends the model introduced in Section 3.2 and uses the same set of variables.

(MTVRPTW) min
∑
r∈R

∑
(i,j)∈Ā

Dijx
r
ij (3.18)

s.t. Eiyri ≤ tri ≤ Liy
r
i , ∀i ∈ N̄ ,∀r ∈ R, (3.19)

(3.2)–(3.9),
(3.11)–(3.17).

The objective function (3.18) minimizes the travelled distance. Constraints (3.19) impose
that the time windows are respected.

Exact methods

The only work we are aware of, is the one proposed by Hernandez et al. [105]. Solomon’s
instances of groups C2, R2, RC2 limited to the first 25 and 50 customers are used. Q is
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set to 100. M is set to 2 for instances with 25 customers, and to 4 for instances with 50.
Distances are Euclidean and truncated to one decimal place. Loading time for trip r is equal
to β∑i∈r Si where i ∈ r indicates that customer i is visited in trip r. To take this into
account, constraints (3.9) are replaced by

β
∑
i∈r

Si ≤ tr0, ∀r ∈ R, (3.20)

trN+1 + β
∑
i∈s

Si ≤ ts0 + α(1− zrs), ∀r, s ∈ R|r < s, (3.21)

in the model (MTVRPTW). β is usually fixed to the value 0.2.

Hernandez et al. [105] propose a Branch-and-Price algorithm. They are able to solve
25 out of 27 instances with 25 customers and 5 out of 27 instances with 50 customers.
Results are reported in Table 3.3. Column Opt reports optimal values, Column HRN reports
CPU times (in seconds) needed to obtain the optimal solution (a 30-hour limit is imposed).
Column Best Known reports best known solution without optimality proof. Most of these
values are provided by Cattaruzza et al. [31] (they run their procedure for the MTVRPTW
with release dates, see Section 3.3.2, on this benchmark of instances). Best known solutions
for instances RC208 with N = 25 and RC202 with N = 50 are provided by the exact method
of Hernandez et al. [105] when the computation time limit is reached.

3.3.1 MTVRPTW with limited trip duration

The MTVRPTW with limited trip duration (MTVRPTW-LD) is a variant of the
MTVRPTW, where trip duration is limited by a value tmax. In particular, the service at the
last customer of a trip cannot start more than tmax units of time after departure from the
depot. This constraints are motivated by the fact that perishable goods must be delivered
before a certain amount of time has passed from the moment they have been loaded. Azi
et al. [11] introduced the problem for the single-vehicle version. In their successive work
(Azi et al. [12]) the problem is extended to the multi-vehicle case. In particular, each trip
r is also characterized by a loading time proportional to the total service time of the trip,
i.e., β∑i∈r Si. A particular characteristic of the problem is that serving all customers is
not mandatory and a profit Pi is associated with each customer i and represents the profit
of serving customer i. The objective function consists in minimize the unserved customers,
breaking ties in favor of the minimum travelled distance.

The model for this problem is as follows.

(MTVRPTW-LD) min
∑
r∈R

∑
(i,j)∈Ā

Dijx
r
ij − p̄

∑
r∈R

∑
i∈V

Piy
r
i (3.22)

s.t.
∑
r∈R

yri ≤ 1, ∀i ∈ N \ {0}, (3.23)

tri ≤ tmax, ∀i ∈ N , ∀r ∈ R, (3.24)
(3.2), (3.4)–(3.10),
(3.11)–(3.17),
(3.19)–(3.21),
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Opt Best Known HRN
RC 201 660.0 15.06

N = 25 202 596.8 55867.10
203 530.1 28816.80
204 - 518.0 -
205 605.3 234.55
206 575.1 1178.86
207 528.2 23451.80
208 - 506.4 -

R 201 554.6 31.73
N = 25 202 485.0 146.92

203 444.2 472.17
204 407.5 5084.34
205 448.4 38.89
206 413.9 107.27
207 400.1 2218.48
208 394.3 2988.72
209 418.3 149.50
210 448.3 234.63
211 400.1 6628.09

C 201 380.8 17.39
N = 25 202 368.6 848.06

203 361.7 85.72
204 358.8 376.74
205 377.2 166.64
206 367.2 135.45
207 359.1 403.84
208 360.9 293.47

RC 201 1096.6 662.16
N = 50 202 1001.6 99346.30

203 - 941.2 -
204 - 915.9 -
205 - 1058.7 -
206 - 1027.4 -
207 - 941.7 -
208 - 916.8 -

R 201 909.8 237.34
N = 50 202 816.0 78879.90

203 - 742.4 -
204 - 702.3 -
205 807.3 24061.70
206 - 758.2 -
207 - 715.7 -
208 - 699.6 -
209 - 746.0 -
210 - 777.2 -
211 - 717.4 -

C 201 - 714.2 -
N = 50 202 - 700.1 -

203 - 688.0 -
204 - 685.1 -
205 - 700.0 -
206 - 694.6 -
207 - 689.7 -
208 - 688.6 -

Table 3.3: Results on MTVRPTW instances by Hernandez et al. [105]
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where p̄ is a parameter that makes always beneficial to serve a customer. Constraints (3.23)
guarantee that each customer is visited at most once. Constraints (3.24) force trips to respect
the duration limit.

Exact methods

The presence of TW, the limited vehicle capacity that allows few customers to be served in
each trip, and the limit imposed in trip duration, make the enumeration of all feasible trips
achievable for small and medium size instances. The proposed exact methods are based on
this observation.

Solomon’s instances of groups C2, R2 and RC2 considering only the first 25 and 40
customers are adapted to the problem. Two values t1max and t2max of tmax are imposed for
each group of instances: 75 and 100 for groups R2 and RC2 and 220 and 250 for C2 (service
times in the latter group are equal to 90 for each customer, while in the other cases they
are equal to 10). The number of vehicles is set to 2. Loading time is 0.2 times the sum of
customers’ service time served in the trip. These instances are introduced by Azi et al. [12].

Azi et al. [12] propose a branch-and-price algorithm. They are able to solve 22 instances
with t1max and 18 with t2max allowing 30 hours of computation (corrected results are reported
in Azi [10]). Distances among locations are truncated at the second decimal digit.

Macedo et al. [136] (and Macedo et al. [137]) propose a minimum flow model with a
pseudo-polynomial number of variables (the number of variables is polynomial on the working
time and on he number of trips, that is limited by a parameter proportional to tmax; the
number of constraints is polynomial on the working time). They are able to solve 41 instances
with t1max and 26 with t2max allowing 2 hours of computation. Direct comparison with Azi et
al. [12] cannot be done, since they do not truncate distances (Hernandez et al. [106]). This
explains differences in optimal values on the same instances between Azi [10] and Macedo
et al. [136].

Hernandez et al. [106] propose a Branch-and-Price algorithm. Differently than Azi et
al. [12] and Macedo et al. [136] they consider mandatory to serve all customers. On some
instances, they prove that a solution that serves all of them does not exist. Tests are run
twice on instances proposed by Azi et al. [12]: once rounding distances at the second decimal
digit and once without any rounding (for comparison purposes with Macedo et al. [136]).

Result comparison is reported in Tables 3.4–3.7. Columns Opt report the optimal value.
Next columns report for each algorithm the CPU time (in seconds) needed to solve the
instance, a “-” if the algorithm could not find an optimal solution or NoSol if Hernandez
et al. [106] proved that all the customers cannot be served with the available vehicles. For
these instances Azi et al. [10] or Macedo et al. [136] might have found the optimal solutions
serving a subset of customers. In these specific cases, the percentage of unserved customers
and the travelled distance are reported in the last two columns. Corresponding CPU times,
then, refer to the time needed to find these solutions. In Tables 3.4–3.5 comparison is made
between Macedo [136] (MCD) and Hernandez et al. [106] while in Tables 3.6–3.7 comparison
is made between Azi [10] (AZI) and Hernandez et al. [106] (HRN).

One can notice that all previous works have a first phase where all the trips are generated.
In the second phase, trips are put together in order to form a journey. This can be done
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Opt MCD HRN MCD
CPU time CPU time Unserved (%) Dist

RC 201 988.20 0.3 1.1
N = 25 202 881.60 37.2 24.8
tmax = 75 203 749.26 54.2 64.0

204 744.83 171.0 -
205 840.47 1.6 3.4
206 761.14 2.0 34.4
207 - - -
208 - - -

R 201 762.53 0.5 0.1
N = 25 202 645.86 3.1 0.6
tmax = 75 203 622.04 10.6 2.2

204 579.75 106.2 5.0
205 634.17 1.5 0.8
206 596.81 4.7 0.9
207 585.81 19.4 4.7
208 579.75 66.0 7.4
209 602.47 4.9 1.6
210 636.24 11.8 8.0
211 575.97 64.5 25.9

C 201 659.15 10.6 1.4
N = 25 202 653.50 212.4 49.9

tmax = 220 203 646.51 233.9 265.9
204 602.58 423.0 257.1
205 636.52 34.7 44.9
206 636.52 40.2 699.7
207 603.34 29.5 92.3
208 613.34 12.9 42.6

RC 201 NoSol 29.4 0.4 22.5 1292.35
N = 40 202 NoSol 40.2 2.4 7.5 1458.09
tmax = 75 203 NoSol - 5.6

204 - - -
205 NoSol 6992.6 0.9 15.0 1290.75
206 NoSol - 1.9
207 NoSol - 4.5
208 - - -

R 201 NoSol 2358.8 0.4 5.0 1130.73
N = 40 202 - - -
tmax = 75 203 962.42 436.0 -

204 858.35 - 3811.2
205 1019.89 3263.7 2902.3
206 931.94 209.9 190.9
207 890.93 - 276.2
208 858.35 - 4328.0
209 935.95 771.3 227.2
210 963.45 1803.9 1297.1
211 869.88 - 4187.2

C 201 1169.04 25.5 32.8
N = 40 202 1111.34 79.4 70.3

tmax = 220 203 1089.24 342.3 135.5
204 1039.35 - 112.9
205 1084.02 63.6 34.0
206 1081.57 109.3 173.5
207 1055.24 659.0 1700.3
208 1072.22 112.7 52.3

Table 3.4: Comparison of Hernandez et al. [106] and Macedo et al. [136] on instances with
short tmax and non-truncated distances
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Opt MCD HRN MCD
CPU time CPU time Unserved (%) Dist

RC 201 849.45 2.0 3.2
N = 25 202 679.95 11.6 2.9

tmax = 100 203 593.63 47.0 12.9
204 - - -
205 702.61 8.2 2.2
206 604.23 8.0 3.8
207 514.90 91.7 48.1
208 - - -

R 201 698.26 1.3 0.8
N = 25 202 617.60 32.6 4.5

tmax = 100 203 577.80 64.1 10.5
204 483.37 - 29.9
205 559.21 9.4 3.3
206 523.70 40.0 6.4
207 512.04 - 425.6
208 483.37 - 82.3
209 517.74 47.7 12.3
210 547.29 58.9 2.4
211 474.54 - 59.1

C 201 541.02 0.4 0.1
N = 25 202 533.55 167.9 41.0

tmax = 250 203 532.88 - 298.4
204 525.57 - 4711.6
205 530.05 3.7 0.9
206 527.95 20.7 129.3
207 525.57 44.2 25.8
208 525.57 63.2 114.1

RC 201 NoSol 3.6 0.8 15.0 1157.65
N = 40 202 NoSol 1013.8 10.4 2.5 1322.08

tmax = 100 203 - - -
204 - - -
205 NoSol 35.7 3.9 5.0 1195.51
206 - - -
207 - - -
208 - - -

R 201 NoSol - 13.2
N = 40 202 - - -

tmax = 100 203 816.65 - 2469.0
204 - - -
205 873.36 - 1200.4
206 812.42 - 1514.2
207 764.52 - 7029.8
208 - - -
209 768.99 - 454.0
210 - - -
211 - - -

C 201 966.89 6.4 85.4
N = 40 202 920.05 - 81.1

tmax = 250 203 - - -
204 - - -
205 921.37 88.5 54.8
206 919.24 290.5 1522.2
207 - - -
208 915.61 491.5 2582.7

Table 3.5: Comparison of Hernandez et al. [106] and Macedo et al. [136] on instances with
long tmax and non-truncated distances
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Opt AZI HRN AZI
CPU time CPU time Unserved (%) Dist

RC 201 988.05 3.1 0.9
N = 25 202 881.49 - 24.5
tmax = 75 203 749.15 - 62.3

204 - - -
205 840.35 28.8 3.7
206 761.03 7156.8 35.7
207 - - -
208 - - -

R 201 762.43 68.3 0.1
N = 25 202 645.78 205.2 0.6
tmax = 75 203 621.97 1333.2 2.0

204 579.68 30983.3 4.9
205 634.09 354.1 1.0
206 596.74 318.4 0.8
207 585.74 2853.5 3.5
208 579.68 9270.3 7.2
209 602.39 262.6 1.7
210 636.15 5094.1 8.5
211 575.91 5648.6 27.6

C 201 659.02 40361.2 1.3
N = 25 202 653.37 - 49.3

tmax = 220 203 646.40 - 265.0
204 602.46 - 248.0
205 636.39 - 38.1
206 636.39 - 692.4
207 603.22 - 104.7
208 613.20 - 41.4

RC 201 NoSol 14.6 0.3 22.5 1292.16
N = 40 202 NoSol 6823.2 2.4 7.5 1457.89
tmax = 75 203 NoSol - 5.8 - -

204 - - - - -
205 NoSol 1904.2 0.9 15.0 1272.12
206 NoSol - 1.7 - -
207 NoSol - 4.1 - -
208 - - - - -

R 201 NoSol 2979.5 0.5 5.0 1130.59
N = 40 202 - - -
tmax = 75 203 - - -

204 858.22 - 4049.2
205 1017.84 244494 1193.4
206 927.22 - 171.5
207 886.22 - 68.9
208 858.22 - 4954.8
209 935.81 - 198.2
210 952.92 - 246.5
211 869.75 - 5093.9

C 201 1168.83 19978.9 31.3
N = 40 202 1111.15 - 67.4

tmax = 220 203 1088.55 - 186.5
204 1039.16 - 145.3
205 1083.81 - 34.1
206 1081.37 - 184.0
207 1055.04 - 1491.5
208 1071.99 - 52.3

Table 3.6: Comparison of Hernandez et al. [106] and Azi et al. [10] on instances with short
tmax and truncated distances
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Opt AZI HRN AZI
CPU time CPU time Unserved (%) Dist

RC 201 849.33 16.06 3.6
N = 25 202 679.86 1096.3 3.5

tmax = 100 203 593.56 - 13.1
204 - - -
205 702.49 262.8 2.6
206 604.12 222.7 2.9
207 514.81 - 45.5
208 - - -

R 201 698.18 43.6 0.8
N = 25 202 617.53 25249.9 4.1

tmax = 100 203 577.74 75729.3 11.6
204 483.30 - 33.6
205 559.14 1202.3 3.7
206 523.64 28498.7 5.7
207 512.00 - 418.9
208 483.30 - 97.8
209 517.69 11173.9 14.4
210 547.23 26690 2.6
211 474.49 - 80.4

C 201 540.90 1.3 0.1
N = 25 202 533.43 - 51.4

tmax = 250 203 532.77 - 335.7
204 525.46 - 4734.4
205 529.94 116.6 0.9
206 527.84 1987.2 123.9
207 525.46 - 31.1
208 525.46 - 4.7

RC 201 NoSol 77.8 0.6 15.0 1157.48
N = 40 202 NoSol - 10.3

tmax = 100 203 - - -
204 - - -
205 NoSol 4733.3 4.2 5.0 1195.32
206 - - -
207 - - -
208 - - -

R 201 NoSol 127424 15.5 2.5 1075.05
N = 40 202 - - -

tmax = 100 203 816.51 - 2429.0
204 - - -
205 872 - 926.4
206 812.31 - 1511.4
207 - - -
208 - - -
209 768.84 - 479.8
210 - - -
211 - - -

C 201 966.7 659.2 90.4
N = 40 202 919.85 - 84.2

tmax = 250 203 - - 66.3
204 - - -
205 921.19 - 1539.1
206 919.05 - 2673.7
207 - - -
208 915.41 - -

Table 3.7: Comparison of Hernandez et al. [106] and Azi et al. [10] on instances with long
tmax and truncated distances
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because the number of trips that need to be generated is limited by the short trip duration
imposed by tmax. It is then not surprising that instances with shorter time limitation can
be solved more easily.

Heuristics

Heuristic schemes allow to tackle bigger problem than those treated in the previous section.
Then, instances used in this case are adapted from RC2, R2 and C2 instances proposed
in Solomon [196] and the bigger instances proposed in Gehring and Homberg [82]. They
are introduced in Azi et al. [14]. tmax is set to 100. Customer locations in Gehring and
Homberg [82] instances are normalized in order to fit the 100× 100 square as in Solomon
instances. Service time is set to 10 for each customer. The number of vehicles is set to 3, 6,
12, 18, 24, 30 for, respectively, instances with 100, 200, 400, 600, 800 and 1000 customers.
Loading time of trip r is equal to β∑i∈r Si. Usually β = 0.2.

We are aware of only two algorithms designed specifically for this problem. The first
is proposed by Azi et al. [14] and proposes an adaptive large neighborhood search for the
problem. Destruction and insertion operators consider customers, trips and journeys.

Wang et al. [215] propose an algorithm based on the Adaptive Memory Procedure
paradigm. Each solution that is constructed is inserted in a memoryM. WhenM reaches a
certain size, a solution is constructed probabilistically selecting trips based on the quality of
the solution they belong. Results obtained by Wang et al. [215] outperform those provided
by Azi et al. [14] with respect to quality, but the procedure is on average three time more
expensive in terms of CPU time. Results are reported in Table 3.8.

3.3.2 Variants of the MTVRPTW

In this section variants of the MTVRPTW are introduced. Cattaruzza et al. [31] introduced
the MTVRPTW with release dates. A release date is associated with each merchandise and
represents the time it becomes available at the depot for final delivery. In city distribu-
tion systems, trucks bring merchandise to city distribution centers (CDC), from where vans
perform final deliveries to customers. Merchandise is supposed to arrive at the CDC contin-
uously all along the working day, i.e., not all the goods are available for distribution at the
beginning of the horizon. Release dates model this problem characteristics. The algorithm
is run on instances for the MTVRPTW for comparison purposes and results are reported in
column Best known of Table 3.3.

Crainic et al. [51] and Nguyen et al. [148] introduce the Multi-Zone MTVRP. This problem
deals with synchronization problems that arise in two-echelon systems, where trucks that
bring merchandise to CDC located around cities need to meet vans that perform final delivery
to customers. In the particular Multi-Zone MTVRP, a vehicle starts from a central depot
and goes to a CDC during its opening time, loads freight and goes to serve (some) customers
associated to the CDC itself meeting customer’s TW. Then, it goes to another CDC or back
to the depot to terminate its trip. TW associated with CDC or customers are hard and
no waiting time is allowed at their locations. In the Multi-Zone MTVRP, vehicles leave the
depot once during the planning horizon, then they do not perform multi-trips in the sense
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N Instance Azi et al. [14] Wang et al. [215]
class unserved (%) dist CPU (s) unserved (%) dist CPU (s)
RC 25.7 1899.2 28.1 22.9 1739.1 45

100 R 10.9 1828.6 33.5 9.2 1588.5 49
C 0 2232.9 43.2 0 1945.9 17.8
RC 12.4 9218.3 140.3 10.7 6576.3 163.9

200 R 6.2 11103.7 126.9 3.2 7899 105.1
C 0 9730.3 126.2 0 6646.7 67.9
RC 22.4 10128 460.4 19.5 7658.5 1155.2

400 R 6.2 12657.7 427.7 3.9 9738 667.3
C 0 10937.2 340 0 7727 416.3
RC 20.4 15577.9 1114.2 16.5 11165.1 4186

600 R 6.4 19089.2 1009.1 4.2 14484.6 1950
C 9.9 14626 1028.5 2.5 11616.7 2646.1
RC 24.3 20858.5 1842.8 19.5 14891.5 15677.1

800 R 7.9 26136.9 1678.3 6 19763.1 6181.4
C 24.9 14441.1 1747.4 13.4 11946.6 5756.9
RC 26.3 25368.3 2855.2 25.2 19407.6 11874.4

1000 R 10.3 30732.2 2718.8 9.7 25032.1 7421.6
C 36.5 14587.6 2602.4 30.6 12888.7 8449.3

average 13.9 13953.0 1017.9 10.9 10706.4 3712.8

Table 3.8: Results on Azi et al. [14] instances

given in the Introduction of this paper. We decided to include the papers in the survey for
completeness purposes, since the world multi-trip appears in the title.

Azi et al. [13] introduces a dynamic version of the MTVRPTW-LD. Requests are rejected
when service is infeasible or not worth it. Different expected solutions are created based on
possible occurrence of requests. Information on future request revealing can be obtained,
for example, from historical information. New requests are tried to be inserted in expected
solutions and the total profit summed up. If it is positive, the request is accepted and the
plan re-optimized.

3.4 MTVRP in maritime

In maritime problems a set of vessels have to be sailed from a central onshore supply depot
to several offshore platforms. A parallelism is evident with the classical VRP. However,
important differences characterize maritime problems and we decided to treat them in a
separate section. The reader interested in maritime transportation is referred to Christiansen
et al. [40] and Christiansen et al. [39].

Remarkable differences peculiar to maritime problems are given here. First of all, the
goal is to minimize sailing costs and time charter costs. i.e., costs due to the rent of vessels.
Routing problems usually focus in minimizing only routing costs. Vehicle costs are considered
in strategic problems where the fleet of vehicles needs to be sized. Second, vessels are
usually chosen among different size vessels that go along with different renting costs and
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characteristics (capacity, sailing speed, accessibility to ports, etc.), while classical routing
problems usually consider a homogeneous fleet. Other differences are the length of the time
horizon TH that goes from a working day in routing problems to weeks in the maritime
case; routing times are shorter than sailing times; problem sizes are bigger in routing than
in maritime.

Another important difference is that vessels are usually not going back to the original
port. This makes most of the studies related to maritime falling out of the operating as-
sumption that has been made in the introduction of this paper. There are however, some
works that fit in our scheme.

Fagerholt [72] calls liner shipping problem (LSP) the problem of finding a set of vessels
and an order of visits to the offshore platforms in order to minimize sailing and charter costs
respecting capacity and time constraints. Moreover, vessels are allowed to be re-sailed once
they are back at the onshore supply depot. We will use this terminology in the following of
this paper. Due to the strategical nature of the objective function, other works classify this
problem as an optimal fleet composition problem.

Fagerholt [72] propose a three-phase method for the liner shipping problem (LSP). It calls
for the determination of a set of vessels and an order of visits to the offshore platforms in
order to minimize sailing and charter costs respecting capacity and time constraints. Vessels
are allowed to be re-sailed once they are back at the onshore supply depot.

In the first phase all the possible trips are generated for all the available vessels. In the
second phase, trips are packed into the same vessels, always respecting feasibility. In the
third phase, a solution is constructed solving a set partitioning problem. A real instance
formed by 15 nodes and 5 different vessels available is solved. Moreover, three test instances
with 20, 30 and 40 customers are created.

Fagerholt and Lindstad [73] introduce some temporal aspects in the LSP. Some offshore
platforms close overnight, generating a time window for service. The algorithm proposed
follows the same idea as the previous one. First all the feasible trips are generated, then a
solution is constructed solving an integer programming model.

In Halvorsen-Weare et al. [100], phases 1 and 3 of Fagerholt’s [72] approach are adapted
to a more complicated problem where additional constraints are considered. Opening hours
associated with onshore and offshore platforms need to be respected. Since each platform
closes all days for a certain period, and the planning horizon counts several days, a multiple
time-window is associated with each platform. Offshore platforms need to be visited more
than once during TH and departures from the onshore supply depot to the same offshore
platform need to be evenly spread. This introduces the periodicity aspect. Finally trips
need to be neither too short (for better capacity exploitation) nor too long (sailing times
uncertainty increases in long time periods). Then, a minimum and a maximum trip duration
and number of visits are introduced as constraints. Instances with up to 14 offshore platforms
are considered with at most 3 of them with opening hours. Visits to platforms varies from 1
to 6 during TH . Shyshou et al. [190] propose a large neighbourhood search for the problem.

Bendall and Stent [18] propose a model to determine cargo routes. Ships leave from the
onshore supply depot and can visit once or more times a set of ports. The revenue needs to
be maximized and is the difference between revenue earned transporting containers minus
shipping costs. A set of possible trips is first determined and then a model is solved in order
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to determine how many times each trip is performed (possibly zero) in order to maximize
profit. Then trips are heuristically packed into journeys. A simple case based on South East
Asia is given as an example.

3.5 Production, inventory and multi-trip transporta-
tion problems

In the Production and Transportation Scheduling Problem (PTSP) one has to solve the pro-
duction scheduling and the transportation routing problems simultaneously. The production
and transportation phases are not considered as separate tasks, but the entire process is op-
timized. The interested reader is referred to the recent review on PTSP by Chen [37].
The problem is particularly important in make-to-order policies, where companies produce
customized products and deliver them to clients within short time. No (or almost not) in-
ventory is considered and then handling both production and transportation is crucial. Here
we concentrate on cases where in the delivery phase, vehicles perform several trips.

Van Buer at al. [210] consider the production and distribution of newspapers. Overnight
production of different newspapers is delivered to drop-off point by trucks. The objective
is to minimize strategic costs (buying and maintaining the fleet of vehicles) and operational
costs, while respecting delivering time windows associated with each drop-off point. When a
truck gets back to the facility before production of a next trip is started, it is considered for
multiple usage. An analysis is conducted on the benefit of re-using trucks on a real instance.
The number of trucks needed to perform delivery decreases from 10 to 2 when re-usage is
allowed. Due to the nature of the objective function, costs are then drastically decreased.

Chang and Lee [35] consider problems where one or two machines are available for pro-
duction and one vehicle performs deliveries to one or two areas. Simple heuristics and worst
case analysis is proposed for the different problems.

In Gesimar et al. [83] a plant produces a product with a short lifespan B, i.e., the
product needs to arrive at customer location not later than B time units after production
has terminated. Due to time and vehicle capacity constraints, the only vehicle in charge of
distribution, needs to perform several trips in order to satisfy all the clients. Trips are first
determined by means of the Split procedure (Prins [166]) and then re-ordered to minimize
the total makespan. If production for trip i takes longer than trip i−1, production for trip i
is scheduled right after production for trip i− 1. On the other side, production is postponed
to have product for trip i ready exactly at the time the vehicle is back at the depot. A final
phase attempts to minimize the makespan anticipating production while respecting lifetime
constraints. All these steps are embedded in a genetic algorithm.

In Ullrich [208] identical parallel machines produce goods that are delivered to customers
by a fleet of vehicles that are allowed to perform several trips. Time windows associated
with customers have hard lower bounds and soft upper bounds, and the objective is the
minimization of the total tardiness at customer locations, i.e., ∑N

i=1 max{ti − Li, 0}, where
ti indicates the instant vehicle reaches customer i. Benefits of simultaneous consideration of
scheduling and routing problems are shown comparing optimal results with those obtained
by two decomposition approaches. Moreover, a genetic algorithm is designed to solve the
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whole problem.

In inventory routing problems each customer consumes a product at a certain rate per
unit of time. The supplier needs to determine, over a horizon consisting in T time periods,
when to visit and the quantity to deliver to each customer at each visit, insuring that no
stock-outs take place. Moreover, the supplier needs to organize customer visits into vehicle
trips. A fleet of vehicles is available to the supplier, and a common assumption is that
each vehicle can perform one trip per period of time. The interested reader is referred to
the recent survey on Inventory Routing Problems by Coelho et al. [43] and to Bertazzi et
al. [21].

Aghezzaf et al. [1] introduces the possibility of each vehicle to perform several trips during
a time period. A column generation approach is proposed where columns represent journeys.
Reduced cost columns are heuristically seek, turning the method not to be exact. Instances
with 25 to up to 200 customers are created and the benefit of introducing the multi-trip
aspect is confirmed by results showing savings between 12 and 16% of the total cost (vehicle
usage, transportation, inventory and serving costs). A limitation in the driving time per
period is considered in Raa and Aghezzaf [176]. In Raa and Aghezzaf [175] a long-term
plan is made based on delivery patterns. The solution method can be summarized in four
steps: first, customers are assigned to vehicles, then, for each vehicle a set of trips is created
serving the different customers. Then, frequency of trips and finally trips are scheduled into
journeys. In all these three papers, the size of the fleet need to be minimized, and then
vehicle costs are included in the objective function.

3.6 The MTVRP in practice

This section lists the papers whose study is motivated by a real case study. Some of them
could have been inserted in one of the previous section as a variant of the considered problem.
However, we preferred to insert them in a particular section, to emphasize the deep practical
motivation of the research and to show the practical interest of the multi-trip aspect.

In Brandão and Mercer [24] the delivery planning of British biscuits company need to be
computed. Vehicles have different capacities, access to some customers is restricted to some
vehicles (site dependent aspect), service must take place within time windows. Moreover,
legal driver breaking times and unloading times are considered. A tabu search algorithm is
proposed. This work is extended in Brandão and Mercer [25] for comparison with benchmark
instances purposes (see Section 3.2).

Tung and Pinnoi [207] study a real waste collection problem in the city of Hanoi. Garbage
is collected manually at house or industry locations by pushed handcarts and brought to
collection points. Trucks leave from a depot and go to collection points where handcarts are
unloaded into trucks. Then, handcarts start a new collection trip, while trucks go to the
next collection point until they are (almost) loaded to capacity. They then go to the landfill
where they are emptied. Then, another collecting trip starts, that has the landfill as origin
and destination. After the last trip, trucks go back to the depot. Multi-trip aspect in the
sense of this survey, arises at the handcart level. The authors focus only on the truck level.
Additional characteristic of the problem is the presence of a minimum interval time between
two consecutive visits to the same collecting point, due to operation time that occurs from
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collecting garbage by handcarts. Moreover, several time windows are associated with each
collecting point. Handcarts arrive at the collection point at the beginning of a time window
and wait until a truck arrives to collect garbage during the corresponding time window.
First, the initial solution is constructed by means of a modified I1 heuristic (Solomon [196])
and improved by modified Or-opt and 2-opt∗.

Gribkovskaia et al. [95] study the transport of live animals to slaughterhouses. Collection
planning of animals at farms is made on a multi day base, prohibiting overnight trips and
limiting the number of trips to three per day. Constraints taking into account animal welfare
are considered as time limitations between the moment animals are loaded into the vehicle
and the time the vehicle arrives at the slaughterhouse. A mathematical formulation of the
problem is proposed, but no computational results are reported.

In Battarra et al. [17] different commodities have to be distributed to supermarkets lo-
cated in a regional territory. Commodities are incompatible, i.e., they cannot be transported
together by the same vehicle (even if each vehicle can carry all the products). Time windows
are considered as well as duration limit on journey length: the difference between the time
the last trip arrives at the depot and the start time of the first trip cannot exceed a certain
value (representing the working day). Finally, the objective requires the minimization of
the fleet size, breaking tails in favor of solutions with lower routing cost. They propose a
guided search algorithm. Results are outperformed by the Iterated Local Search proposed
by Cattaruzza et al. [34].

Lei et al. [131] seek to minimize production, inventory and distribution costs of a chemical
company that produces road maintenance chemicals in different plants and ship products to
customers in North-America. A fleet of vehicles is associated with each plant and trucks are
allowed to perform several serving trips. In a first phase a mixed-integer program is solved
where vehicles are allowed to serve customers only via direct shipment. In a second phase
shipments are heuristically consolidated.

Lin and Kwok [133] study the case of a telecommunication company located in Hong-
Kong that needs to deliver bills to its customers. Depots need to be chosen among a set of
possible sites and serving trips need to be planned in order to serve all the customers. Total
costs as well as loading and journey working times imbalance are minimized. The problem
that arises is a location-routing problem with vehicles allowed to perform several trips. A
tabu search and a simulated annealing heuristic are developed, both in two versions: one
that creates journey made of one trip and one that allows journey to be composed by several
trips.

In automated guided vehicle systems, vehicles deliver material to warehouses along fixed
paths: the different points to serve are in a predefined sequence. The (only) decisions is
needed to be taken regard vehicles depot returns for replenish purposes. The single vehicle
case is studied in Tsirimpas et al. [206]. Three different problems are treated concerning
diverse loading policies. Algorithms based on dynamic programming are developed.

In the Petrol Station Replenishment Problem (PSRP) introduced by Cornillier, et al. [46],
a set of petrol stations need to be replenished by a fleet of heterogeneous vehicles. Each
station requires a certain quantity of each product that lies between given minimum and
maximum values. Each vehicle has different compartments that can be filled with any of
products at once. Other side constraints are present as the obligation of emptying the
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front vehicle’s compartment last and a maximum trip time limitation. A limitation on
regular and overtime driving hours is given and the wage is different in the two cases. It is
required to determine the quantities to deliver to each station, the loading of these products
into compartments and to route the vehicles in order to maximize profits. The problem is
extended to the multi-period case in Cornillier et al. [45]. Vehicles are allowed to perform
several trips during each period. A multi-phase heuristics is proposed that for each period
constructs trips and packs them into vehicles. Time windows and the multi-trip aspect are
introduced in Cornillier et al. [47]. Two heuristics are proposed. The first heuristic is based
on arc preselection that reduces the dimension of the network. The second heuristic divides
the region in sectors and determines trips for each of these sectors. Finally, it recomposes
them to form a solution. The problem is extended to the multi-depot case in Cornillier et
al. [48] and is solved heuristically. Avella et al. [9] study a particular case of the problem
where compartments must travel either completely full, or completely empty. They propose
a heuristic procedure and a Branch-and-Price exact method. Instances from a company with
6 vehicles and around 25 customers per day are solved. The heuristic and exact methods
produce solutions that cost respectively 12-15% and 22.25% less than the manual solutions
provided by the company.

Taniguchi and Shimamoto [199] and Taniguchi and Van Der Heijden [201] allow vehicle to
perform several trips in their simulation model to evaluate the benefits of traffic information
systems, cooperation among companies and other city logistics initiatives.

3.7 Conclusions and perspectives

In this paper we presented the first complete survey on the multi-trip vehicle routing problem
more than 25 years after that the concept was introduced by Salhi [185] and almost 25 years
after the problem was formalized by Fleischmann [78].

The literature review has shown a clear lack in the development of exact methods for
this problem. Only one method has been proposed for the MTVRP. It is characterized by
the need of an initial feasible solution. Hence, it cannot provide an answer regarding the
existence of such a feasible solution for the 5 instances in which all the developed heuristics
have failed in providing a feasible planning.

The situation in the presence of time windows is similar. Three algorithm have been
developed, two of which for the case with trip duration limitation. Moreover, the method
for the MTVRPTW fails in solving instances with only 25 customers and 2 vehicles, in-
stances with 50 customer and 4 vehicles being the biggest that can currently be closed. This
underlines the need for further research on the subject, looking for more efficient methods.

The situation does not improve when the MTVRPTW with limited trip duration is
considered. The limited trip duration limits the number of feasible trips, but some instances
with 25 customers cannot be solved. The largest instance currently solved contains 40
customers. In maritime problems the case is different. The characteristics of the problem,
such as a limited number of visits per trip, limit strongly the number of feasible trips.
Moreover, instances are usually smaller than routing problems. This makes enumeration
methods efficient.

Page 78 EMSE-CMP Diego Cattaruzza



3.7. CONCLUSIONS AND PERSPECTIVES

Finally, this article has shown that the MTVRP and its variants are of practical interest.
Moreover, some problems including production and inventory start now to be explored.
These considerations should motivate researchers in pursuing further research in this area.
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Chapter 4

A Memetic Algorithm for the Multi Trip
Vehicle Routing Problem

Abstract

We consider the Multi-Trip Vehicle Routing Problem, in which a set of geographically scattered
customers have to be served by a fleet of vehicles. Each vehicle can perform several trips during
the working day. The objective is to minimize the total travel time while respecting temporal and
capacity constraints.

The problem is particularly interesting in the city logistics context, where customers are located
in city centers. Road and legal restrictions favor the use of small capacity vehicles to perform
deliveries. This leads to trips much shorter than the working day. A vehicle can then go back to
the depot and be re-loaded before starting another service trip.

We propose an hybrid genetic algorithm for the problem. Especially, we introduce a new
local search operator based on the combination of standard VRP moves and swaps between trips.
Our procedure is compared with those in the literature and it outperforms previous algorithms
with respect to average solution quality. Moreover, a new feasible solution and many best known
solutions are found.

4.1 Introduction

The well known Vehicle Routing Problem (VRP) is an NP-hard combinatorial optimization
problem where a set of geographically scattered customers has to be served by a fleet of
vehicles. An implicit assumption of the VRP is that each vehicle can perform only one route
in the planning horizon. This assumption is not realistic in several practical situations. For
the distribution of goods in city centers, for example, small vehicles are generally preferred.
Because of this capacity limitation, they daily perform several short tours. This problem
is referred to as the Multi-Trip VRP (also VRP with multiple use of vehicles, Taillard et
al. [198], VRP with multiple trips, Petch and Salhi [161] or VRP with multiple routes, Azi
et al. [11]). In the rest of the paper it will be indicated as MTVRP.

The MTVRP is defined on an undirected graph G = (V,E), where V = {0, 1, . . . , N} is
the set of vertices and E = {(i, j)|i, j ∈ V, i < j} is the set of edges. It is possible to travel
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from i to j, incurring in a travel time Tij. Vertex 0 represents the depot where a fleet of M
identical vehicles with limited capacity Q is based. Vertices 1, . . . , N represent the customers
to be served, each one having a demand Qi. A time horizon TH exists, which establishes the
duration of the working day. Overtime is not allowed. It is assumed that Q, Qi and TH are
nonnegative integers.

The MTVRP calls for the determination of a set of routes and an assignment of each
route to a vehicle, such that the total travel time is minimized and the following conditions
are satisfied:

(1) each route starts and ends at the depot,

(2) each customer is visited by exactly one route,

(3) the sum of the demands of the customers in any route does not exceed Q,

(4) the total duration of the routes assigned to the same vehicle does not exceed TH .

It is also supposed that each customer i could be served by a return trip, i.e, T0i + Ti0 ≤ TH
and Qi ≤ Q.

Few papers in the literature address the MTVRP and no efficient population-based al-
gorithm were proposed. Our goal is to fill this gap proposing a memetic algorithm able
to compete with previous works. Our interest in the MTVRP raises from the MODUM
project1, where mutualized distribution in city centers is explored. The contribution of this
paper is threefold: 1) A high-performance memetic algorithm is proposed: the results found
are the new state-of-the-art on classical instances for the MTVRP. Moreover, an instance
has been solved for the first time, i.e., a feasible solution has been found; 2) An adaptation
of the Split procedure (Prins [166]) to segment a chromosome into a MTVRP solution is
developed; 3) A new local search (LS) operator, that combines standard VRP moves and
re-assignment of trips to vehicles is introduced.

This paper is organized as follows. In Section 4.2 the literature on the MTVRP is
reviewed. Section 4.3 describes the proposed algorithm. Section 4.4 details the Combined LS.
Results are reported in Section 4.5. Conclusions and perspectives are discussed in Section 4.6.

4.2 Literature review

The well known VRP has been deeply studied in the last 50 years and many exact and
heuristic methods have been proposed in the literature (see Toth and Vigo [204] and Golden
et al. [90]). However, exact methods remain limited to problems with restricted size, i.e.,
less than 100 customers. Moreover, many different variants of the problem are introduced
in order to face particular constraints that arise in everyday applications. Despite that,
MTVRP has been investigated only in the last two decades and the literature is still scarce.

Fleischmann [78] was the first to address the problem in his working paper in 1990. He
proposes a modification of the savings algorithm and uses a bin packing (BP) problem heuris-
tic to assign routes to the vehicles. In Taillard et al. [198], VRP solutions are generated using

1http://www-lipn.univ-paris13.fr/modum
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a tabu search (TS) algorithm with adaptive memory (Taillard [197]). The routes forming the
VRP solutions are stored in a list. From that list a subset of routes is selected and a MTVRP
solution is constructed using a BP heuristic. A benchmark of instances (constructed from
VRP instances) is proposed. It will be used as efficiency comparison for all the authors that
have developed a solution method for the MTVRP. Curiously, Taillard et al. [198] provide
values only when the algorithm fails in finding a feasible solution, introducing an arbitrary
penalization factor θ = 2 for the overtime. Next papers follow the same scheme except Salhi
and Petch [186] (Olivera and Viera [156] do not provide exact values, but just a GAPmeasure
from a reference value as it will be explained in Section 4.5). Petch and Salhi [161] propose
a multi-phase algorithm with the minimization of the overtime as objective function. A pool
of solutions is constructed by the parametrized Yellow’s savings algorithm (Yellow [219]).
For each solution in the pool, a MTVRP solution is constructed using a BP heuristic. The
MTVRP solutions are improved using 2-opt, 3-opt moves, combining routes and reallocating
customers. In Salhi and Petch [186], as in Petch and Salhi [161], the maximum overtime
is minimized. A genetic algorithm is proposed. In this method the plane is divided into
circular sectors. Each sector is defined by an angle measured with respect to the depot and
the x axis. A chromosome is the sequence of such angles in non-decreasing order. Clusters
are created by assigning each customer to the sector it occupies. In each cluster, the Clarke
and Wright savings heuristic is used to solve a smaller VRP problem. The resulting routes
are packed using a BP heuristic. Olivera and Viera [156] use an adaptive memory approach
to tackle the MTVRP. A memory M is constructed with different routes that form VRP
solutions generated with the sweep algorithm. Each route is labeled with its overtime value
and its cost and are sorted using a lexicographic order. New VRP solutions are generated by
probabilistically selecting routes inM and improved by a TS algorithm. New VRP solutions
are used to updateM. From the best VRP solution a MTVRP solution is obtained using
a BP heuristic. Recently, Mingozzi et al. [140] propose an exact method for the MTVRP
based on two set partitioning-like formulations. 52 instances with up to 120 customers and
with a known feasible solution (without overtime) are tackled and in 42 cases the optimal
solution is found.

Alonso et al. [3] consider the site-dependent periodic MTVRP. Each customer has to be
served up to t times in a planning horizon of t periods. Moreover, not every vehicle can
serve all the customers. To each customer is assigned a delivery pattern and it is assigned
to a vehicle using GENIUS heuristic (Gendreau et al. [85]). If the insertion violates time
or capacity constraints, a new route is initialized. Two moves are used to improve the
solution: customers are moved from a route to another and different patterns are assigned
to a customer.

The MTVRP with time windows (MTVRPTW) is addressed as well. Several exact
methods are proposed (Azi et al. [11], Hernandez et al. [106]). Instances with 100 customers
and 1 vehicle (Azi et al. [11]) and with 50 customers and 4 vehicles (Hernandez et al. [106])
can be solved to optimality.

Different studies facing practical cases envisage to perform several trips during the work-
ing day. For example, Brandão and Mercer [24] consider a MTVRPTW that arises from
the biscuit distribution of a British company. Vehicles have different capacities, in case of
need they can be hired from the company and the access to some customers is restricted to
particular vehicles. Drivers’ schedule must respect the maximum legal driving time per day.
Legal time breaks and unloading times are taken into account. Real instances including 45
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to 70 customers and the use of 11 vans and 11 tractors are considered. In their subsequent
work, Brandão and Mercer [25] adapt the algorithm to compare the results with those ob-
tained by Taillard et al. [198]. A two phases TS is performed. In the first phase, a solution is
allowed to become infeasible regarding travel time constraints, but in the second phase, only
feasible solutions are accepted. Insert and swap moves are considered. Battarra et al. [17]
consider the MTVRPTW and different commodities that cannot be transported together.
The objective is to minimize the number of used vehicles. The problem is decomposed in
simpler subproblems, one for each commodity. A set of routes is then generated for each
commodity and packed by means of a BP heuristic in order to obtain a solution. Data comes
from real-world instances where goods are delivered to supermarkets placed in a regional ter-
ritory. The concept of multi-trips is also addressed by Cornillier et al. [47] and Gribkovskaia
et al. [95]. The former paper concerns the petrol distribution to gas stations, while the latter
proposes a model for the livestock collection.

The idea of multi-trip is found in the context of city logistics as well. For example,
Taniguchi and Shimamoto [199] propose a model to evaluate the impact of advanced infor-
mation system in urban areas and they assume that vehicles are allowed to perform multiple
trips per day. Browne et al. [29] present the case of supplies company operating in the City
of London. From a micro-consolidation urban center, electrically assisted cargo tricycles and
electric vans perform deliveries. Due to the small size of tricycles and electric vans, they
perform several trips during each day.

4.3 A memetic algorithm for the MTVRP

Genetic algorithms (GA) are adaptive methods inspired from the natural evolution of bi-
ological organisms. An initial population of individuals (chromosomes) evolves through
generations until satisfactory criteria of quality, a maximum number of iterations or time
limits are reached. New individuals (children) are generated from individuals forming the
current generation (parents) by means of genetic operators (crossover and mutation). The
principles of genetic procedure were firstly formalized by Holland [109] and have been suc-
cessfully used in different contexts (Neri and Cotta [147]). The papers of Prins [166] and
Vidal et al. [213] are two examples of efficient GA (the former for the VRP and the latter for
the multi depot VRP and the periodic VRP) in the VRP field. In particular, GAs allow for
a diversified exploration over the search space due to the management of several solutions
at the same time. When Local Search (LS) algorithms are part of the procedure, the GA is
commonly called memetic algorithm (MA). For an overview of GAs and MAs the reader is
respectively referred to Reeves [177] and Moscato and Cotta [142].

In this section the proposed MA for the MTVRP is described. It makes use of an
adaptation of the Split procedure (Prins [166]) to obtain a MTVRP solution from giant
tours (Section 4.3.2). The population diversity management is inspired by the work of
Vidal et al. [213]: for survival, individuals are selected according to their quality and their
contribution to the diversification of the population (Section 4.3.6). A sketch of the method
is given in Algorithm 1.

A new advanced feature is embedded in the LS: when a pejorative move is detected, it is
tested in combination with a re-assignment of trips. In case of improvement, both the move
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and the re-assignment are performed (Section 4.4).

Algorithm 1 Memetic Algorithm outline
1: Initialize population (Section 4.3.5)
2: while Termination criterion is not met do
3: Select parent chromosomes ΨP1 and ΨP2 (Section 4.3.3)
4: Generate a child ΨC (Section 4.3.3)
5: Educate ΨC (Section 4.3.4)
6: if ΨC is infeasible then
7: Repair ΨC (Section 4.3.4)
8: end if
9: Insert ΨC in the population

10: if Dimension of the population exceeds a given size then
11: Select survivors (Section 4.3.6)
12: end if
13: end while

4.3.1 Solution representation and search space

A chromosome is a sequence (permutation) Ψ = (Ψ1, . . . ,ΨN) of N client nodes, without
trip delimiters. Ψ can be viewed as a TSP solution that has to be turned in a feasible
MTVRP solution by splitting the chromosome (inserting trip delimiters and assigning trips
to vehicles). From that point of view, Ψ is usually called a giant tour. From a giant tour Ψ,
different MTVRP solutions can be constructed depending on the way Ψ is split.

During the search phase, overtime and overload are allowed and penalized in the fitness
function with factors θ and λ respectively, even though a feasible solution is required.

A procedure AdSplit (explained in Section 4.3.2) is used to get a MTVRP solution ξ
from Ψ. The following notation is introduced: Tv(ξ) and Ov(ξ) = max{0, Tv(ξ) − TH} are
respectively the travel time and the overtime of vehicle v in solution ξ. Lr(ξ) is the load of
route r and r ∈ v indicates that route r is assigned to vehicle v. The fitness F (Ψ) of the
chromosome Ψ is the cost of the best solution ξ found by AdSplit and it is defined as

F (Ψ) = c(ξ) =
M∑
v=1

Tv(ξ) + θ
M∑
v=1

Ov(ξ) + λ
M∑
v=1

∑
r∈v

max{0, Lr(ξ)−Q} (4.1)

When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome
Ψ is called feasible (infeasible) if AdSplit obtains, from Ψ, a feasible (infeasible) solution ξ.

4.3.2 A Split algorithm for the multi-trip problems

The splitting procedure proposed here, called AdSplit, is an adaptation of the procedure
proposed by Prins in [166]. It is used to turn a chromosome into MTVRP solutions. The
cost of the solution obtained by AdSplit is associated with the chromosome itself as fitness
value in order to evaluate its quality. The procedure is used each time a new individual is
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generated, either randomly (at the beginning for initialization purposes, Section 4.3.5), or
after mating parents to generate children by means of crossover operators, Section 4.3.3.

Auxiliary graph construction

The splitting procedure works on an auxiliary graph H = (V ′ , A′). V ′ contains N + 1 nodes
indexed from 0 to N . Arc (i, j), i < j, represents a trip serving customers from Ψi+1 to Ψj

in the order they are in Ψ. With each arc (i, j), is associated a cost cij defined as
cij = τij + θmax{0, τij − TH}+ λmax{0, Lij −Q} (4.2)

where τij and Lij represent respectively the trip travelling time and the sum of customer’s
requests served during the trip.

A simple example with five customers is given in Figures 4.1–4.2. Ψ = (1, 2, 3, 4, 5),
TH = 45, Q = 50, θ = λ = 2 and the demand of each customer is given between brackets.
For example, arc (1, 5) in Figure 4.2 represents the trip serving customers from 2 to 5.
τ15 = 116, L15 = 76. The arc cost is then c15 = 116 + 2 · (116− 45) + 2 · (76− 50) = 310.
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Figure 4.1: Example with 5 customers: demands in brackets, TH = 45, Q = 50, θ = λ = 2
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Figure 4.2: Auxiliary graph (to each arc (i, j), cost cij is assigned as defined in Equation 4.2)

OnceH is computed, paths basically represent set of trips that can be assigned to vehicles.
In the VRP context, an optimal splitting is equivalent to a shortest path (SP) in H each arc
representing a route which is assigned to a vehicle. Since H is acyclic, Bellman’s algorithm
can be used to find the SP in O(N2). In the MTVRP context, more than one trip can be
assigned to the same vehicle. The procedure proposed in Prins [166] cannot be directly used
and is modified as explained in Section 4.3.2.

Assignment procedure

The assignment procedure both selects and assigns trips to vehicles. It consists of two phases.
In the first phase, the SP in H is computed. In the second phase, trips of the SP are assigned
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to vehicles by means of a labelling algorithm. The labelling algorithm works as follows.

Starting from node 0, labels are progressively extended along the graph defined by SP.
Each label L has M + 3 fields: the first M fields store vehicle travel times in decreasing
order (enhancing the strength of the dominance rule), the (M + 1)th field memorizes the
total load infeasibility, the (M + 2)th the predecessor node, and the last field keeps the cost
of the partial solution evaluated using Equation 4.1 and equivalent to the cost c(L) of label
L. When extending a label, M new labels are constructed, one for each possible allocation
of the new trip to a vehicle. When node N is reached, the label L with minimum cost c(L)
associated with node N is selected and the related solution is constructed.

Dominated labels, accordingly with the following dominance rule, are discarded: let L1

and L2 be two labels associated with the same node i. L1 dominates L2 if and only if

c(L1) + θ
M∑
j=1

δj(L1,L2) ≤ c(L2) (4.3)

where c(L) is the cost associated with label L,

δj(L1,L2) = max
{

0,min
{
TH , Tj(L1)

}
−min

{
TH , Tj(L2)

}}
and Tj(L) is the (partial) travel time of vehicle j associated with label L. Roughly speaking,
given two labels L1 and L2, extending L1 is penalized as much as possible while it is not
extending L2 in the same way. If Inequality 4.3 holds, L2 cannot be extended in a better
way than L1, and it is eliminated.

The procedure is illustrated for the simple example in Figure 4.1. First, SP is calcu-
lated on the corresponding auxiliary graph H. The solution is then constructed with the
assignment procedure just explained. The SP and the solution obtained are depicted in
Figure 4.3.

114

1 2 3 4 526 28 34
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2

3

4

51

v1

v2

v1

Figure 4.3: MTVRP solution obtained from arcs forming the shortest path (F (Ψ) = 288)

Label’s extension is reported in Table 4.1. The first line reports the node. Due to space
limitations, labels associated with nodes 0 and 3 are not reported: only the null label is
associated with node 0, while node 3 is not connected. Moreover, the predecessor of each
label is straightforward and load infeasibility is zero for each label considered. Thus, they are
omitted. Column dom indicates whether the corresponding label is dominated by another
label associated with the same node.

Note that this approach provides the optimal assignment of trips in SP, but is suboptimal
with regard to the decomposition of Ψ, as illustrated in Figure 4.4.
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1 2 4 5
v1 v2 c dom v1 v2 c dom v1 v2 c dom v1 v2 c dom
26 0 26 no 28 26 54 no 96 26 224 yes 102 54 328 yes

54 0 72 no 94 28 220 yes 88 68 288 no
122 0 276 yes
68 54 184 no

Table 4.1: Labels associated with nodes of H during the assignment procedure
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Figure 4.4: Best MTVRP solution for Ψ (F (Ψ) = 273)

Applying the procedure on the complete graph H, the label that minimizes Equation 4.1
at node N would correspond to the best decomposition of Ψ in the MTVRP context. One
could however expect that a huge number of labels would need to be treated, which do not
appear to be viable in the MA context.

Improving the Split procedure

Arc (i, j) in the auxiliary graph H represents the trip serving customers (Ψi+1,Ψi+2, . . . ,Ψj)
in the order they appear in the giant tour Ψ. Visiting customers in a different order can
lead to a trip with a smaller cost. Let suppose the distance between customers 1 and 4 in
the example shown in Figure 4.1 is equal to 20. The trip (0, 2, 3, 4, 1, 0) would cost 207 that
together with trip (0, 5, 0) leads to a solution of cost 241 (Figure 4.5). As proposed by Prins

207

1 2 3 4 534

v2

2

3

4

51

v1

Figure 4.5: MTVRP solution obtained considering rotations of customers in the same trip
(F (Ψ) = 241)

et al. [168], each rotation (circular left shit) can be considered and evaluated in constant
time. For example, a one-position rotation corresponds to the trip (0,Ψi+2, . . . ,Ψj,Ψi+1, 0).
Then, given an arc, all the possible rotations are considered looking for the best starting
point of the trip without introducing any computational burden (see Prins et al. [168] for a
detailed explanation).

Page 88 EMSE-CMP Diego Cattaruzza



4.3. A MEMETIC ALGORITHM FOR THE MTVRP

A pseudo-code sketch of the AdSplit procedure is proposed in Algorithm 2. Procedure
SP_best_in() computes the shortest path on graph H, taking into consideration the best
rotation for each arc. With each node i, it associates its successor succi, the travelling time
and load of the trip represented by (i, succi). These values are obtained when needed by
procedures get_successor(i), get_best_in_time(i) and get_load(i). Lk indicates the kth field
of label L, while LlInf , Lpred and Lc refer respectively to the (M + 1)th, (m + 2)th and
(m+ 3)th label fields. sort(L) sorts the first m fields in decreasing order. If L is dominated
by a label in ListLabeli, is_dominated(ListLabeli,L) returns true, otherwise it returns
false. Labels in ListLabeli dominated by the new inserted label L are eliminated from the
list by eliminate_dominated_labels(ListLabeli,L).

Algorithm 2 AdSplit
1: SP_best_in()
2: for i = 0 to N do
3: LabelListi = ∅
4: end for

5: LabelList0 ← (
M︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0)
6: current = 0
7: while current < N do
8: succ = get_successor(current)
9: load = get_load(current);

10: time = get_best_in_time(current)
11: for all L ∈ LabelListcurrent do
12: for k = 1→M do
13: L∗ = L
14: L∗k = Lk + time
15: sort(L)
16: L∗lInf = LlInf + λ ·max{load−Q, 0}
17: L∗c = Lc+ time+θ ·max{L∗k−TH , 0}−θ ·max{Lk−TH , 0}+λ ·max{load−Q, 0}
18: L∗pred = current
19: if not is_dominated(ListLabelsucc,L∗) then
20: ListLabelsucc ← L∗
21: eliminate_dominated_labels(ListLabelsucc,L∗)
22: end if
23: end for
24: end for
25: current = succ
26: end while

4.3.3 Crossover

The classic OX operator is used. Figure 4.6 shows how the OX works. First, two cutting
points have to be chosen in the parents ΨP1 and ΨP2 . In the example they are i = 4 and
j = 7. Indicating with ΨC1 = OX(ΨP1 ,ΨP2) the first child, ΨC1(k) = ΨP1(k) for k = i, . . . , j.
Then, ΨP2 is circularly swept from ΨP2(j+1) onward inserting in ΨC1 the missing nodes. By
inverting the roles between ΨP1 and ΨP2 , we obtain the second child ΨC2 = OX(ΨP2 ,ΨP1).
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i=4 j=7
↓ ↓

ΨP1 : 2 6 4 7 8 5 10 9 3 1
ΨP2 : 3 7 9 2 4 10 1 6 5 8

ΨC1 : 2 4 1 7 8 5 10 6 3 9
ΨC2 : 7 8 5 2 4 10 1 9 3 6

Figure 4.6: OX operator

Parents ΨP1 and ΨP2 are selected with the classic binary tournament method: two
chromosomes are randomly drawn from the population and the one with the lower fit-
ness is selected. The procedure is repeated twice, once for the selection of each parent.
The child that has to be inserted in the population is randomly selected between children
ΨC1 = OX(ΨP1 ,ΨP2) and ΨC2 = OX(ΨP2 ,ΨP1).

4.3.4 Local search - education and repair procedures

After crossover, the obtained child is evaluated by means of AdSplit procedure, and educated
applying LS procedure with a probability pLS trying to improve its quality. LS is usually
used in literature as mutation operator in order to obtain a high-performance hybrid GA.

The operators listed in the following are used. Let u and z be two nodes and t and x
be their respective successors (that could be the depot as well). R(u) indicates the route
visiting customer u. The following simple types of moves are tested

m1 If u is a client node, remove u and insert it after z;

m2 If u and t are clients, remove them and insert u and t after z;

m3 If u and t are clients, remove them and insert t and u after z;

m4 If u and z are clients, swap u and z;

m5 If u, t and z are clients, swap u and t with z;

m6 If u, t, z and x are clients, swap u and t with z and x;

m7 If R(u) = R(z), replace (u, t) and (z, x) by (u, z) and (t, x);

m8 If R(u) 6= R(z), replace (u, t) and (z, x) by (u, z) and (t, x);

m9 If R(u) 6= R(z), replace (u, t) and (z, x) by (u, x) and (t, z);

m10 If R(u) = R(z), create another route with all customers from u to z (or from z to u if
z comes before u) and put it in a randomly drawn vehicle.

The nodes can belong to the same route or to different routes. Routes can either belong
to the same vehicle or to different vehicles. Moves m1–m3 correspond to insertion moves,
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moves m4–m6 to swaps, move m7 is the well known 2-opt and moves m8, m9 are usually
called 2-opt∗.

Moves m1–m9 are those used in Prins [166]. If u = z in m10, a new route with only
customer u is created.

At the beginning of the LS with each type of move mi, i = 1, . . . , 10 is associated a weight
wi = w and the status active. At each iteration the LS procedure probabilistically selects
a move among the active moves. The probability of move mi to be chosen is wi/W where
W = ∑10

i=1wi. The selected move Mi is evaluated and the first improvement criterion is
adopted. If the move fails, i.e., the current solution is a local optimum in the neighbourhood
defined by Mi, Mi becomes inactive and cannot be selected anymore until another move
succeeds. The LS terminates when all the moves are inactive, i.e., a local optimum in the
neighbourhood defined by m1–m10 is reached.

After a fixed number of iterations ω (arbitrarily fixed to 100), the weights are updated
accordingly to the number of successes. Precisely, wi = wi + successi

attemptsi
, where successi and

attemptsi indicate respectively the number of times move Mi succeeded and was performed
(attemptsi is usually not the same for all moves due to probabilistic selection). W is updated
accordingly. Weights wi can be viewed as a short-term memory, i.e., a move that historically
succeeds more will have a higher probability to be chosen.

To speed up LS, granular search is implemented as proposed by Toth and Vigo [205]: a
move is considered only when z is one of the nclosest closest customers of u (filtering rule).

Each time a solution ξ is obtained from chromosome Ψ by means of AdSplit, it is stored
in four different N -size vectors that memorize in ith position the predecessor, the successor,
the vehicle and the route of customer i. The travel time of each vehicle and the load of
each route are stored as well. In this way, moves m1–m9 are evaluated in constant time,
while m10 is in O(N). Then, given a solution ξ and defining its neighbourhood N(ξ) by
the set of moves m1–m10, it can be completely explored in O(N3) time (more precisely, in
O(N2 ·Nclosest) with the usage of the filtering rule), although the neighbourhood defined by
m1–m9 requires O(N2) operations to be explored.

After LS is applied, the educated chromosome can be either feasible or infeasible. In the
latter case the repair procedure is applied with a probability prep. It consists in applying
again LS with λ (load infeasibility penalization parameter) and/or θ temporarily multiplied
by 10, regarding the nature of the infeasibility. If a feasible chromosome is obtained, it is
inserted in the population, otherwise λ and/or θ are (temporarily) multiplied again by 10
and LS reapplied. The original chromosome is not discarded even if the repaired chromosome
is feasible (Vidal et al. [213]). All the chromosomes obtained during LS and repair procedure
are as well inserted in the population.

4.3.5 Population structure, initialization and stopping criteria

An ordered population Π of chromosomes is kept. A key value kΨ is associated with each
chromosome Ψ and the population is sorted regarding the key value. kΨ corresponds to the
fitness F (Ψ) of Ψ multiplied by a penalization factor P . P = 1 if Ψ is feasible, P = 1.5
if Ψ is time-infeasible, P = 2 if Ψ is load-infeasible, P = 3 if Ψ is both load and time-
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infeasible. This is done in order to ensure the best feasible solution found so far corresponds
to the chromosome in the first position of the population (infeasible individuals can cost
less than the best feasible one) and in general to keep good quality individuals at the top
of Π. Moreover, it allows to manage both feasible and infeasible chromosomes in the same
population, differently from what is done, for example, in Vidal et al. [213], where the
population is divided in two subpopulations, one for feasible and the other for infeasible
chromosomes.

The initial population is formed of π random generated chromosomes evaluated with the
AdSplit procedure and improved applying LS.

The procedure terminates after a maximum number of iterations has been performed.
An iteration consists of generating a child ΨC crossing parents that undergoes evaluation
(by means of AdSplit), education and eventually reparation procedures. ΨC is then inserted
in the population. It can be noticed that the number of iterations correspond to the number
of crossovers performed.

4.3.6 Survivor strategy

When the population reaches a maximum dimension, i.e., π + µ, a survivor selection is
performed as proposed by Vidal et al. [214], [213]. Survivor chromosomes are selected based
on quality, i.e., on fitness F (Ψ), and their diversity contribution f(Ψ) defined as the average
distance between Ψ and its nc closest neighbours in Π (forming set Nc) as follows:

f(Ψ) = 1
nc

∑
Ψ1∈Nc

D(Ψ,Ψ1), (4.4)

where D(·, ·) is the broken pair distance, that is the number of pairs of adjacent customers
in Ψ that are broken in Ψ1 (Prins [167]). D(·, ·) gives a measure on the amount of common
arcs between Ψ and Ψ1. A biased fitness bF (·) is calculated for each chromosome as follows:

bF (Ψ) = rF (Ψ) + (1− ne
|Π|)rf (Ψ) (4.5)

where rF (Ψ) and rf (Ψ) are the ranks of chromosome Ψ calculated based on fitness F and
function f defined in Equation 4.4 respectively, and ne is a parameter that ensures elitism
properties during selection (see Vidal et al. [213] for a formal proof).

4.4 Combined Local Search

To optimize the packing of routes into vehicles, we introduce the possibility of a re-pack
of trips along with a pejorative move m among m1–m10 introduced in Section 4.3.4. By
pejorative move, we mean a move that does not decrease the solution cost. The swap
between trips (Swp) in different vehicles is used as re-assignment procedure.

To understand the idea of the Combined LS (CLS) consider Figures 4.7–4.9. The example
involves three vehicles with up to three routes each and duration constraint TH = 100 that
is violated by the third vehicle (Figure 4.7). Move m involves routes r2 and r3 of vehicles v1
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and v2 respectively and it leads to the configuration shown in Figure 4.8 with an increase
in the solution cost of 5 units (due to the increase in routing cost). Since m is pejorative, it
would be discarded by the LS procedure. However, with a different assignment of trips to
vehicles, an improvement can be obtained. In the particular case, it consists of swapping r2
in v1 with r2 in v3 (Figure 4.9).

r1 r2 r3 Tv θOv

v1 60 30 90 -
v2 30 30 30 90 -
v3 45 30 30 105 10

cost: 295

Figure 4.7: Initial configuration

r1 r2 r3 Tv θOv

v1 60 25 85 -
v2 30 30 40 100 -
v3 45 30 30 105 10

cost: 300

Figure 4.8: Pejorative move. In bold trips
involved in M

r1 r2 r3 Tv θOv

v1 60 30 90 -
v2 30 30 40 100 -
v3 45 25 30 100 -

cost: 290

Figure 4.9: After Swp. In bold trips in-
volved in Swp

The goal of the CLS is to detect when the combination of moves m1–m10 along with a
swap of two trips leads to a better solution and, in that case, to perform both the move and
the swap.

For the sake of computing time, the main issue here is to avoid evaluating every pos-
sible combination of moves with swaps (indicated with m+Swp). We propose to limit the
evaluations of m+Swp according to the following rule R1:

Rule 1 (R1). The evaluations of m+Swp is limited to those that would improve the solution
even if the assignment of routes to vehicles is optimal before m+Swp is applied.

Using the subsequent propositions, it is then possible to limit heavily the size of the
neighborhood explored with m+ Swp.

In the following, we will note respectively ξ, ξm, ξm+Swp the current solution, the solution
after applying move m and the solution after performing Swp as shown in Figure 4.10. A
vehicle without (with) overtime will be called feasible (infeasible).

m
ξm

Swp
ξ ξm+Swp

Figure 4.10: Notation

It is noteworthy that Swp can modify overtime, but does not affect the traveling time
and the load infeasibility of the solution. We state two propositions in order to justify
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the restriction of pejorative moves that are tested along with swaps. The first proposition
identifies which Swp can be worth to be tested once m has been performed. On the other
hand, the second proposition states which moves m can lead to a global improvement when
combined with a Swp. We start discussing the choice of swaps.

Proposition 1. Under rule R1, we can restrict the choice of the Swp as follows:

1. Swp involves (trips in) two different vehicles v1 and v2,

2. exactly one vehicle between v1 and v2 is feasible,

3. at least one vehicle between v1 and v2 has to have been involved in m.

Proof. The following notation is introduced. ∆O refers to a difference in the overtime
of the solution induced by move m or Swp. In particular ∆O(ξm) = O(ξm) − O(ξ) and
∆O(ξm+Swp) = O(ξm+Swp)−O(ξm).

We can notice that swapping trips belonging to the same vehicle v cannot lead to any
improvement: Tv is not reduced, then Ov is not reduced neither (that proves 1). Let consider
two trips belonging to two different vehicles v1 and v2. For ease of notation, we note ri the
trip that belongs to vi (ri ∈ vi) and τi, instead of τri , the travel time of trip ri. Let T1 (resp.,
O1) and T2 (resp., O2) be the respective travel times (resp., overtimes) of the two vehicles.
If point 2 does not hold, we will prove that swapping r1 with r2 cannot improve the solution.

Let suppose both vehicles are feasible or both are infeasible, i.e., Ti(ξm) ≤ TH or Ti(ξm) >
TH , i = 1, 2. We consider the two cases separately.

a. T1(ξm) ≤ TH and T2(ξm) ≤ TH . O1(ξm) = O2(ξm) = 0. No improvement can be
carried out with Swp.

b. T1(ξm) > TH and T2(ξm) > TH . We consider without loss of generality τ2(ξm) ≤ τ1(ξm).
With Swp, overtime of vehicle v1 decreases; ∆O1(ξm+Swp) = max{τ2(ξm)−τ1(ξm), TH−
T1(ξm)}. Overtime of vehicle v2 increases; ∆O2(ξm+Swp) = τ1(ξm) − τ2(ξm). Then
∆O(ξm+Swp) = ∆O1(ξm+Swp) + ∆O2(ξm+Swp) ≥ τ2(ξm) − τ1(ξm) + τ1(ξm) − τ2(ξm),
that is, ∆O(ξm+Swp) ≥ 0.

This proves point 2. Point 3 directly follows from the rule R1. Let us suppose v1 and v2
are not involved in M . Then, τk(ξ) = τk(ξm) for all rk ∈ vi, i = 1, 2. If an improvement is
obtained by Swp, the same improvement could have been obtained applying Swp before m
(that does not modify trips involved in Swp). This means that when the initial assignment
of trips to vehicles is optimal, no improvement can be carried out.

Let us now move the discussion to the choice of the move m to be tested along with a
Swp. We introduce the following proposition.

Proposition 2. Under Proposition 1 we can restrict the choice of moves involved along with
a swap to those such that

τr(ξm) < τr(ξ) for at least one route r involved in m. (C1)
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Proof. We suppose the assignment of trips to vehicles is optimal before m is applied. We
will show that when C1 does not hold, m+Swp cannot improve the solution cost. Applying
R1, such moves can be discarded. We indicate respectively with R and Rm the set of trips
that form ξ and ξm. Without loss of generality we can suppose |R| = |Rm| (if m creates a
new route, an empty route could be added in R). Let us indicate with r a trip in R and with
rm the corresponding trip in Rm after m have been applied. The following considerations
are valid.

¬ The cost of the solution ξm+Swp is greater than or equal to the cost of the solution
obtained by optimally assigning trips in Rm to vehicles. We indicate such solution
with ξ∗Rm and its cost with c∗Rm ;

 Let ξ̃ be the solution constructed by assigning trips in R as follows: r is assigned to
vehicle v if and only if the corresponding rm is assigned to vehicle v in ξ∗Rm . We note
c̃ the cost of such solution. Since τrm ≥ τr for all r ∈ R (C1 does not hold), c∗Rm ≥ c̃ is
verified.

® We note c∗R the cost of the solution obtained by optimally assigning trips in R to
vehicles. Then, it holds c̃ ≥ c∗R.

¯ We have assumed the initial assignment of trips to vehicles to be optimal. Then,
c∗R = c(ξ).

Concluding, the following holds

c(ξm+Swp)
¬

≥ c∗Rm


≥ c̃
®

≥ c∗R
¯= c(ξ),

namely, m+ Swp cannot improve the solution ξ.

An algorithm sketch of the procedure is given in Algorithm 3.
Detect_Trips_To_Swap(v1, v2) is a function that tests swaps between trips in vehi-
cles v1 and v2. If it finds a pair of trips r1, r2 that improves the solution if swapped,
it returns them and sets tripDetected to TRUE. Otherwise tripDetected is set to FALSE.
Function perform(m) performs move M while swap(v1, v2, r1, r2) swaps trips r1, r2.

4.5 Computational results

This section reports the computational results obtained with the proposed method. The
algorithm is coded in C++, compiled with Visual Studio 2008 and run on a Intel Xeon 2.80
Ghz processor. It is tested on classical instances in the MTVRP literature. These instances
were introduced by Taillard et al. [198] and are constructed from the instances 1–5 and 11–12
proposed in Christofides et al. [41] (that will be denoted CMT1–CMT5 and CMT11–CMT12
in the following) and instances 11–12 proposed in Fisher [77] (F11-F12) for the VRP. For
each VRP instance, instances for MTVRP are constructed with different values of m and
two values of TH , given by T 1

H =
[

1.05z∗
M

]
and T 2

H =
[

1.1z∗
M

]
where z∗ is the solution cost of the

original CVRP instances found by Rochat [178] and [x] represents the closest integer to x
(see Table 4.2). There are, in total, 104 different instances. For 42 of them, the optimal value
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Algorithm 3 Combined LS
1: evaluate move m
2: if m improves the solution then
3: accept m
4: else
5: if C1 then
6: for all v1 involved in m do
7: for all v2 6= v1 do
8: if (T1(ξm) < TH ∧ T2(ξm) > TH) ∨ (T1(ξm) > TH ∧ T2(ξm) < TH) then
9: (r1, r2, tripDetected) = Detect_Trips_To_Swap(v1, v2)
10: if tripDetected then
11: perform(m)
12: swap(v1, v2, r1, r2)
13: end if
14: end if
15: end for
16: end for
17: end if
18: end if

Instance N Q z∗

CMT1 50 160 524.61
CMT2 75 140 835.26
CMT3 100 200 826.14
CMT4 150 200 1028.42
CMT5 199 200 1291.44
CMT11 120 200 1042.11
CMT12 100 200 819.56
F11 71 30000 241.97
F12 134 2210 1162.92

Table 4.2: Instances’ details
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is known and is provided by Mingozzi et al. [140]. We classify them in a first group denoted
G1. For the remaining 62 instances, 56 have a known feasible solution (they will form a
second group G2). The six remaining instances form the third group G3. These instances
are not solved yet. These groups of the instances set will be used during the presentation of
the computational results. When it is necessary to indicate a specific instance, the notation
N_T iH_m, will be used, where N stands for the original VRP instance name and i = 1, 2
for the horizon length.

4.5.1 Parameter settings

Overtime and overload penalization parameters

The overtime penalization parameter θ is set to 2 and it is kept fixed during all the search.
That is done because the value θ = 2 is used in literature to penalize overtime when a feasible
solution is not found.

The overload penalization parameter λ is set to D̄/Q̄, where D̄ represents the average
distance among customers and Q̄ the average demand of customers. The value of λ is kept
fixed during the search. Different dynamic adaptation schemes were tested, but no visible
improvements were obtained.

Parameter tuning

The procedure requires the setting of a number np of parameters among values that have
to be chosen in sensible ranges. To set the parameters involved in our algorithm, a tuning
method is used. Roughly speaking, a tuning method is a procedure whose search space is
P 1 × · · · × P np , where P i is the domain of parameter i and looks for the solution with
the best utility, that is a measure of the algorithm’s efficiency on a given parameter vector
(Smit and Eiben [194]). In particular, the Evolutionary Strategy with Covariance Matrix
Adaptation proposed by Hansen and Ostermeier [101] is used. The tuning algorithm is
run on a limited set of instances formed by CMT1_T 2

H_4, CMT2_T 1
H_6, CMT3_T 1

H_6,
CMT4_T 1

H_8, CMT5_T 1
H_9, CMT11_T 1

H_4 to determine the values of parameters listed
in Table 4.3. Instances with a large number of vehicles were selected since they are more
difficult to solve. Other parameters are fixed a priori: the probability of educate a new

Parameter Range Final value
Π Dimension of population [1, 100] 9
µ Children generated at each generation [1, 100] 32
ne Proportion of elite individuals ne = ne × Π (Eq. 4.4) [0.1, 1] 0.2
nc Proportion of close individuals nc = nc × Π (Eq. 4.5) [0.1, 1] 0.35
h Granularity threshold in LS nclosest = h× n [0.2, 1] 0.45

Table 4.3: Parameter Tuning

chromosome is pLS = 1 and the probability to repair an infeasible chromosome is prep = 0.5
as in Vidal et al. [214]. The adopted survivor strategy (Section 4.3.6) allows for the use of LS

03/2014 EMSE-CMP Page 97



CHAPTER 4. A MEMETIC ALGORITHM FOR THE MTVRP

to educate each chromosome without premature convergence of the population. That is in
particular due to the fact that survivor chromosomes are selected based on their contribution
to the diversification of the population as well as their fitness value.

4.5.2 Discussion

A fair and comprehensive comparison with previous works is quite difficult to carry out
since (as already mentioned) complete and precise values are reported only by Salhi and
Petch [186].

Olivera and Veira [156], report detailed results as well, but with some imprecision. Indeed,
these authors provide gaps to values z∗ (see Table 4.2), which cannot be precisely converted
into solution costs due to truncation.

Notation reported in Table 4.4 will be used in the following. In all tables, the first three
columns indicate respectively the name, the number of vehicles and the time horizon of the
instances.

Symbol Meaning
TLG results from Taillard, Laporte and Gendreau [198]
BM results from Brandão and Mercer [25]
SP results from Salhi and Petch [186]
OV results from Olivera and Viera [156]
AAB results from Alonso, Alvarez and Beasley [3]
MRT results from Mingozzi, Roberti and Toth [140]
MA-F results from our MA stopping at the first feasible found solution
MA results from MA without the usage of CLS
MA+CLS results from our MA with the usage of CLS
Best Best value over five runs
Av Average value over five runs
Worst Worst value over five runs
StDv Standard deviation over five runs
#fs Number of runs ended with a feasible solution
#opt Number of runs ended with an optimal solution
3 a feasible solution is found
5 a feasible solution is not found
8 the instance is not considered

Table 4.4: Notation for computational results

All procedures stop once 2000 individuals have been generated. Preliminary computa-
tional experiments shown that it is a good compromise between solution quality and com-
putational efficiency.

The results are reported as follows. In Section 4.5.2, the ability of the algorithm to find
feasible solutions is tested. The algorithm terminates whenever a feasible solution is found,
or after 2000 chromosome constructions. In Section 4.5.2 two variants of the algorithm, with
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or without CLS, are evaluated and complete and detailed results are reported. Both versions
stop after a fixed number of iterations. Separate comparison with the results obtained by
Olivera and Viera [156] is discussed in Section 4.5.2. Finally, computational times comparison
is discussed in Section 4.5.2.

Feasibility check algorithm

The procedure is first run five times over all instances to measure its capability to obtain
feasible solutions: it stops as soon as a feasible solution is found or after 2000 iterations. It
is indicated as MA-F. The efficiency of the algorithm is measured on the time needed to find
a feasible solution without considering its value, following the implicit idea of the paper by
Taillard et al. [198]. Results are reported on Tables 4.5 and 4.6.

Instance Algorithm
Name M TH TLG BM SP OV AAB MA-F #fs
CMT1 1 551 3 3 3 3 3 3 5

2 275 3 3 5 3 3 3 5
1 577 3 3 3 3 3 3 5
2 289 3 3 3 3 3 3 5
4 144 3 3 3 3 3 3 5

CMT2 1 877 3 3 3 3 3 3 5
2 439 3 3 3 3 3 3 5
3 292 3 3 5 3 3 3 5
4 219 3 3 3 3 3 3 5
5 175 3 3 5 3 3 3 5
1 919 3 3 3 3 3 3 5
2 459 3 3 3 3 3 3 5
3 306 3 3 3 3 3 3 5
4 230 3 3 3 3 3 3 5
5 184 3 3 3 3 3 3 5
6 153 3 3 5 3 3 3 5

CMT3 1 867 3 3 3 3 3 3 5
2 434 3 3 3 3 3 3 5
3 289 3 3 5 3 3 3 5
1 909 3 3 3 3 3 3 5
2 454 3 3 3 3 3 3 5
3 303 3 3 3 3 3 3 5
4 227 3 3 3 3 3 3 5

CMT11 1 1094 3 3 3 3 3 3 5
2 547 3 3 5 3 3 3 5
3 365 3 3 5 3 3 3 5
5 219 3 3 5 3 3 3 5
1 1146 3 3 3 3 3 3 5
2 573 3 3 3 3 3 3 5
3 382 3 3 3 3 3 3 5
4 287 3 3 5 3 3 3 5
5 229 3 3 3 3 3 3 5

CMT12 1 861 3 3 3 3 3 3 5
2 430 3 3 3 3 3 3 5
3 287 3 3 3 3 3 3 5
4 215 3 3 3 3 3 3 5
1 902 3 3 3 3 3 3 5
2 451 3 3 3 3 3 3 5
3 301 3 3 3 3 3 3 5
4 225 3 3 3 3 3 3 5
5 180 3 3 3 3 3 3 5
6 150 3 3 3 3 3 3 5

# instances solved 42 42 33 42 42 42

Table 4.5: Feasibility check on the 42 instances in G1

The algorithm is able to find a feasible solution in at least one run on all instances from
groups G1 and G2. Better, feasible solutions are always found on G1 and for 50 instances
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Instance Algorithm
Name M TH TLG BM SP OV AAB MA-F #fs
CMT1 3 192 3 3 3 3 3 3 5
CMT2 6 146 5 5 5 3 5 3 1

7 131 3 3 5 3 3 3 5
CMT3 4 217 3 3 5 3 3 3 5

5 173 5 3 5 3 3 3 5
6 145 3 3 5 3 3 3 5
5 182 3 3 3 3 3 3 5
6 151 3 3 3 3 3 3 5

CMT4 1 1080 3 3 3 3 3 3 5
2 540 3 3 3 3 3 3 5
3 360 3 3 5 3 3 3 5
4 270 3 3 5 3 3 3 5
5 216 3 3 5 3 3 3 5
6 180 3 3 5 3 3 3 5
8 135 5 5 5 3 5 3 2
1 1131 3 3 3 3 3 3 5
2 566 3 3 3 3 3 3 5
3 377 3 3 3 3 3 3 5
4 283 3 3 3 3 3 3 5
5 226 3 3 3 3 3 3 5
6 189 3 3 3 3 3 3 5
7 162 3 3 5 3 3 3 5
8 141 3 3 5 3 3 3 5

CMT5 1 1356 3 3 3 3 3 3 5
2 678 3 3 3 3 3 3 5
3 452 3 3 5 3 3 3 5
4 339 3 3 5 3 3 3 5
5 271 3 3 5 3 3 3 5
6 226 3 3 5 3 3 3 5
7 194 3 3 5 3 3 3 5
8 170 3 3 5 3 3 3 5
9 151 3 5 5 3 5 3 4
10 136 5 5 5 3 5 3 2
1 1421 3 3 3 3 3 3 5
2 710 3 3 3 3 3 3 5
3 474 3 3 3 3 3 3 5
4 355 3 3 3 3 3 3 5
5 284 3 3 3 3 3 3 5
6 237 3 3 3 3 3 3 5
7 203 3 3 3 3 3 3 5
8 178 3 3 5 3 3 3 5
9 158 3 3 5 3 3 3 5
10 142 3 3 5 3 3 3 5

CMT11 4 274 5 5 5 3 5 3 1
CMT12 5 172 3 3 5 3 3 3 1

F11 1 254 3 3 5 3 8 3 5
2 127 5 5 5 3 8 3 5
1 266 3 3 3 3 8 3 5
2 133 3 3 3 3 8 3 5
3 89 3 3 3 3 8 3 5

F12 1 1221 3 3 3 3 8 3 5
2 611 3 3 3 3 8 3 5
3 407 3 3 3 3 8 3 5
1 1279 3 3 3 3 8 3 5
2 640 3 3 3 3 8 3 5
3 426 3 3 3 3 8 3 5

# instances solved 50 50 29 56 40 56

Table 4.6: Feasibility check on the 56 instances in G2
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out of 56 on G2. In general, on all the 490 runs, feasible solutions are obtained 471 times,
denoting high efficiency of the algorithm. Comparatively, only Olivera and Viera [156] exhibit
similar results. No feasible solutions are found on G3 instances.

Detailed results

The algorithm is run again five times over all the instances. Complete and detailed results
are reported in Tables 4.7–4.10. Results from the MA without CLS are reported in columns
indicated with MA while those from the MA with CLS are given in columns indicated with
MA+CLS.

Table 4.7 reports results obtained on the 42 instances of G1. Optimal values are indicated
in bold. MA and MA+CLS find optimal solutions on all the five runs in 23 cases, but the
former finds the optimal value at least once in 32 cases while the latter in 37 cases. In
general, MA+CLS is more efficient in finding optimal solutions: they are obtained 137 times
over 210 runs while MA finds optimal solutions 129 times. Both procedures always find
feasible solutions. Note that Salhi and Petch [186] do not find any optimal solution and it
is outperformed by both methods on all instances.

Results on instances of G2 are detailed in Table 4.8. Here, bold numbers are used to
indicate best known values. MA finds a feasible solution at least once over all instances and
the procedure finds a feasible solution on all the five runs in 50 cases (out of 56) for a total
of 261 feasible solutions out of 280 runs. Introducing the CLS improves the results. Feasible
solutions are always found in 52 cases and at least 2 feasible solutions are found over the
five runs for a total of 271 feasible solutions. Again, solutions found by the procedures are
always better than those reported in Salhi and Petch [186].

Tables 4.9 and 4.10 report results on instances of G3. First of all, it can be noticed from
Table 4.9 that MA+CLS finds a new feasible solution for instance CMT4_T 1

H_7 (details
can be found in A). On the other five instances (Table 4.10), direct comparison with other
methods on values of infeasible solutions found is possible. MA+CLS finds two new best
known values for instances CMT2_T 1

H_7 and F11_T 1
H_3. For the latter, the new best

known value is as well reached by MA. On average, both methods outperform the others.

Averagely, MA+CLS performs better than MA as can be seen in the last columns of
Tables 4.7, 4.8 and 4.10. This, together with the new feasible solution found for instance
CMT4_T 1

H_7 by MA+CLS, validates the usefulness and efficiency of the CLS.

Detailed comparison with Olivera and Viera [156]

A full comparison following the scheme proposed by Olivera and Viera [156] is proposed in
Tables 4.11 and 4.12. Given a solution ξ, the value GAP (ξ) is calculated as

GAP (ξ) = 100 ·
(
c(ξ)
z∗
− 1

)
, (4.6)

and results are reported accordingly. The number of runs ended with a feasible solution is
reported for instances in G1 as in Olivera and Viera [156]. Focusing on the gap values, as it
can be noticed, results obtained by MA+CLS outperform those by Olivera and Viera [156].
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Algorithm
Instance MRT SP MA MA+CLS

Name M TH Optimal Best Best Average #opt Best Av #opt
CMT1 1 551 524.61 546.28 524.61 524.61 5 524.61 524.61 5

2 275 533.00 5 533.00 533.67 4 533.00 533.00 5
1 577 524.61 547.14 524.61 524.61 5 524.61 524.61 5
2 289 529.85 549.42 529.85 529.85 5 529.85 530.67 3
4 144 546.29 566.86 546.29 546.29 5 546.29 546.29 5

CMT2 1 877 835.26 869.06 835.26 838.40 2 835.26 838.40 2
2 439 835.26 865.48 835.77 840.04 0 835.26 838.59 1
3 292 835.26 5 835.26 836.32 1 835.26 838.58 2
4 219 835.26 856.77 835.77 839.41 0 835.77 839.77 0
5 175 835.8 5 836.18 841.97 0 836.18 836.52 0
1 919 835.26 869.73 835.26 835.48 2 835.26 835.48 2
2 459 835.26 881.50 835.26 839.20 1 835.26 836.46 1
3 306 835.26 869.11 835.77 840.07 0 835.26 837.40 2
4 230 835.26 880.90 838.17 840.41 0 835.26 837.73 2
5 184 835.26 883.29 835.77 837.71 0 835.77 837.99 0
6 153 839.22 5 843.09 848.06 0 839.22 846.02 1

CMT3 1 867 826.14 845.33 826.14 827.96 1 826.14 827.96 1
2 434 826.14 850.65 826.14 827.96 0 826.14 827.75 2
3 289 826.14 5 828.08 829.63 0 826.14 828.53 1
1 909 826.14 845.33 829.45 829.53 0 829.45 829.53 0
2 454 826.14 872.10 826.14 828.80 1 826.14 827.96 1
3 303 826.14 869.48 826.14 828.94 1 827.39 829.09 0
4 227 826.14 878.00 826.14 828.01 1 826.14 827.55 1

CMT11 1 1094 1042.11 1088.26 1042.11 1042.11 5 1042.11 1042.11 5
2 547 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
3 365 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
5 219 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
1 1146 1042.11 1088.26 1042.11 1042.11 5 1042.11 1042.11 5
2 573 1042.11 1110.10 1042.11 1042.11 5 1042.11 1042.11 5
3 382 1042.11 1088.56 1042.11 1042.11 5 1042.11 1042.11 5
4 287 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
5 229 1042.11 1092.95 1042.11 1042.11 5 1042.11 1042.11 5

CMT12 1 861 819.56 819.97 819.56 819.56 5 819.56 819.56 5
2 430 819.56 821.33 819.56 819.56 5 819.56 819.56 5
3 287 819.56 826.98 819.56 819.56 5 819.56 819.56 5
4 215 819.56 824.57 819.56 819.56 5 819.56 819.56 5
1 902 819.56 819.97 819.56 819.56 5 819.56 819.56 5
2 451 819.56 829.54 819.56 819.56 5 819.56 819.56 5
3 301 819.56 851.16 819.56 819.56 5 819.56 819.56 5
4 225 819.56 821.53 819.56 819.56 5 819.56 819.56 5
5 180 824.78 833.85 824.78 824.78 5 824.78 824.78 5
6 150 823.14 855.36 823.14 823.14 5 823.14 823.15 5

total optimal solutions found 129 137
average 838.85 840.01 838.64 839.62

average GAP from optimal 0.05 0.19 0.03 0.15

Table 4.7: Feasible solutions on the 42 instances in G1
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Algorithm
Instance SP MA MA+CLS

Name M TH Best known Best Best Av #fs Best Av #fs
CMT1 3 192 552.68 560.26 552.68 552.68 5 552.68 552.68 5
CMT2 6 146 858.58 5 858.58 858.58 1 859.16 859.42 3

7 131 844.70 5 853.88 861.64 5 844.70 854.70 5
CMT3 4 217 829.45 5 829.45 829.65 5 829.45 829.45 5

5 173 832.89 5 832.89 835.98 5 832.89 843.72 5
6 145 836.22 5 836.22 837.06 5 836.22 836.22 5
5 182 832.34 901.30 833.02 833.83 5 832.34 832.88 5
6 151 834.35 861.76 834.35 834.83 5 834.35 834.35 5

CMT4 1 1080 1031.00 1064.06 1031.00 1034.22 5 1031.00 1034.22 5
2 540 1031.07 1065.86 1032.65 1038.33 5 1031.07 1037.89 5
3 360 1028.42 5 1029.56 1036.73 5 1028.42 1032.79 5
4 270 1031.10 5 1036.25 1040.75 5 1031.10 1037.09 5
5 216 1031.07 5 1032.69 1040.42 5 1031.07 1037.41 5
6 180 1034.61 5 1043.42 1046.71 5 1034.61 1041.82 5
8 135 1056.54 5 1056.93 1059.58 2 1056.54 1059.68 3
1 1131 1031.07 1088.93 1031.07 1038.77 5 1031.07 1038.77 5
2 566 1030.45 1070.50 1030.45 1037.29 5 1034.08 1040.39 5
3 377 1031.59 1077.24 1031.63 1040.75 5 1031.59 1032.92 5
4 283 1031.07 1119.05 1031.07 1034.69 5 1031.96 1036.33 5
5 226 1030.86 1085.38 1033.05 1039.52 5 1030.86 1035.52 5
6 189 1030.45 1112.03 1032.16 1038.62 5 1030.45 1037.10 5
7 162 1036.08 5 1043.92 1047.87 5 1036.08 1043.60 5
8 141 1044.32 5 1044.71 1050.28 5 1044.32 1048.08 5

CMT5 1 1356 1302.43 1347.34 1302.43 1308.27 5 1302.43 1308.27 5
2 678 1302.15 1346.63 1302.15 1309.04 5 1306.26 1309.66 5
3 452 1301.29 5 1301.41 1309.33 5 1301.29 1307.85 5
4 339 1304.78 5 1308.93 1312.76 5 1304.78 1308.07 5
5 271 1300.02 5 1307.78 1314.66 5 1300.02 1307.10 5
6 226 1303.37 5 1303.37 1314.29 5 1308.40 1311.16 5
7 194 1309.40 5 1315.41 1319.86 5 1309.40 1313.06 5
8 170 1303.91 5 1310.48 1316.53 5 1303.91 1308.98 5
9 151 1307.93 5 1329.86 1331.61 4 1307.93 1317.03 5
10 136 1323.01 5 1326.54 1331.59 2 1323.01 1329.00 5
1 1421 1299.86 1340.44 1299.86 1310.43 5 1299.86 1310.43 5
2 710 1305.35 1399.65 1305.35 1310.98 5 1307.70 1314.05 5
3 474 1301.03 1409.37 1301.03 1312.15 5 1308.76 1310.93 5
4 355 1303.65 1397.60 1303.65 1311.19 5 1310.97 1312.40 5
5 284 1300.62 1411.19 1308.04 1311.87 5 1300.62 1308.75 5
6 237 1306.17 1377.07 1306.17 1308.49 5 1306.25 1311.40 5
7 203 1301.54 1394.73 1311.35 1314.18 5 1301.54 1313.66 5
8 178 1308.78 5 1311.93 1313.86 5 1308.78 1310.61 5
9 158 1307.25 5 1312.28 1318.26 5 1307.25 1311.32 5
10 142 1308.81 5 1312.04 1321.27 5 1308.81 1316.80 5

CMT11 4 274 1078.64 5 1080.12 1080.12 1 1078.64 1080.38 3
CMT12 5 172 845.56 5 849.89 849.89 1 845.564 847.727 2

F11 1 254 241.97 5 241.97 241.97 5 241.97 241.97 5
2 127 250.85 5 250.85 250.85 5 250.85 250.85 5
1 266 241.97 254.07 241.97 241.97 5 241.97 241.97 5
2 133 241.97 254.07 241.97 241.97 5 241.97 241.97 5
3 89 254.07 256.53 254.07 254.07 5 254.07 254.07 5

F12 1 1221 1162.96 1190.21 1162.96 1162.96 5 1162.96 1162.96 5
2 611 1162.96 1194.24 1162.96 1162.96 5 1162.96 1162.96 5
3 407 1162.96 1199.86 1162.96 1163.05 5 1162.96 1162.96 5
1 1279 1162.96 1183.00 1162.96 1162.96 5 1162.96 1162.96 5
2 640 1162.96 1199.64 1162.96 1162.96 5 1162.96 1162.96 5
3 426 1162.96 1215.43 1162.96 1162.96 5 1162.96 1162.96 5

total feasible solutions found 261 271
average 1040.90 1044.70 1039.23 1043.11

Table 4.8: Feasible solutions on the 56 instances in G2

03/2014 EMSE-CMP Page 103



CHAPTER 4. A MEMETIC ALGORITHM FOR THE MTVRP

A
lgorithm

T
LG

B
M

SP
O

V
A

A
B

M
A

M
A

+
C

LS
N

am
e

M
T
H

B
est

know
n

B
est

B
est

B
est

B
est

B
est

B
est

Av
#

fs
B

est
Av

#
fs

C
M

T
1

3
184

-
5

5
5

5
5

5
-

-
5

-
-

C
M

T
1

4
138

-
5

5
5

5
5

5
-

-
5

-
-

C
M

T
2

7
125

-
5

5
5

5
5

5
-

-
5

-
-

C
M

T
4

7
154

1068.59
5

5
5

5
5

5
-

-
1068.59

1068.59
1

C
M

T
12

6
143

-
5

5
5

5
5

5
-

-
5

-
-

F
11

3
85

-
5

5
5

5
8

5
-

-
5

-
-

Table
4.9:

Feasible
solutions

on
the

6
instances

in
G
3

Page 104 EMSE-CMP Diego Cattaruzza
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A
lg

or
it

hm
T

LG
B

M
SP

O
V

A
A

B
M

A
M

A
+

C
LS

N
am

e
M

T
H

B
es

t
kn

ow
n

be
st

be
st

be
st

be
st

be
st

B
es

t
Av

B
es

t
Av

C
M

T
1

3
18

4
56

9.
54

57
9.

48
57

5.
73

58
6.

32
57

3.
4

56
9.

54
56

9.
54

56
9.

54
56

9.
54

56
9.

54
C

M
T

1
4

13
8

56
4.

07
56

5.
27

56
4.

07
63

2.
54

56
4.

07
56

4.
1

56
4.

07
56

4.
07

56
4.

07
56

4.
07

C
M

T
2

7
12

5
86

6.
58

87
8.

29
89

6.
57

10
56

.3
4

87
7.

12
87

8.
05

87
6.

77
88

0.
06

86
6.

58
87

3.
14

C
M

T
12

6
14

3
84

5.
48

84
5.

48
84

7.
85

89
8.

88
86

0.
61

86
6.

54
84

5.
48

84
5.

48
84

5.
48

84
5.

48
F

11
3

85
25

6.
93

25
7.

31
25

7.
47

26
6.

85
26

0.
55

8
25

6.
93

25
6.

93
25

6.
93

25
6.

93
av

er
ag

e
62

5.
17

62
8.

34
68

8.
19

62
7.

15
-

62
2.

56
62

3.
21

62
0.

52
62

1.
83

Ta
bl
e
4.
10
:
N
on

-fe
as
ib
le

so
lu
tio

ns
on

th
e
5
un

so
lv
ed

in
st
an

ce
s
in

G
3

03/2014 EMSE-CMP Page 105



CHAPTER 4. A MEMETIC ALGORITHM FOR THE MTVRP

On the other side, the algorithm proposed by Olivera and Viera [156] performs better than
MA-F. A probable reason is that MA-F terminates the procedure as soon as a feasible
solution is found, while Olivera and Viera [156] check for feasibility each 100 iterations of
their procedure. Regarding computing times (see Section 4.5.2), note however that Olivera
and Viera [156] and MA-F are much quicker than MA+CLS.

Computational times

A fair computational time comparison could not be performed as the machine relative speeds
were not found for all the computers used by previous papers. Machines used in previous
works are listed in Table 4.13. Original computational times, as well as those of our method,
are reported in Table 4.14 (times are expressed in seconds). Furthermore, algorithm differ-
ences and inharmonious computational time reporting complicate comparison. In particular,
Taillard et al. [198] perform their algorithm five times on each instance. If no feasible solution
is found, it is run another time. Average time on all runs is reported. Brandão and Mer-
cer [25] stop their procedure once a feasible solution is found and they report computational
times over the runs where a feasible solution is found. Salhi and Petch [186] and Alonso
et al. [3] stop their algorithm when a maximum number of iteration is reached, but while
the former reports average computational time over five runs the latter runs the algorithm
just once. Olivera and Viera [156] check for feasibility each 100 iterations and terminate
the computation in case of success. They report computational times only for the best run.
We report the average computational time, on five runs, for each class of instances. Finally,
our goal is to find high quality solution and not to just satisfy feasibility as it was done
in previous works. Keeping that in mind, it can be noticed from Table 4.14 that MA-F is
able to find feasible solutions very quickly (almost instantaneously for instances of families
CMT3 and F12). We can also notice that the use of the CLS increases the time spent by
the procedure. The time increase is, however, rewarded by more efficiency in finding optimal
and feasible solutions as already outlined in Section 4.5.2.

4.6 Conclusion and future work

In this paper we proposed a genetic algorithm for the Multi-Trip Vehicle Routing Problem. It
is the first evolutionary procedure that efficiently faces the benchmark of instances proposed
in the literature.

We use an adaptation of the Split procedure proposed by Prins [166] to evaluate the
chromosomes.

We introduce a new LS operator that performs pejorative moves along with re-assignment
of trips to vehicles and is called Combined LS (CLS). The efficiency of the CLS is validated
by the quality of the results obtained. This opens a new promising research direction related
to the management of moves combined with re-packing procedures.

We report detailed results over all instances (and not only for unsolved instances) and
we give precise values of the found solutions (differently than what is done in Olivera and
Viera [156]).
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4.6. CONCLUSION AND FUTURE WORK

Paper Machine RAM
TLG 100 Mhz Silicon Graphics Idingo -
BM HP Vectra XU Pentium Pro 200 Mhz -
SP Ultra Enterprise 450 dual processor 300 Mhz -
OV 1.8 Ghz AMD Athlon XP 2200+ 480 Mb
AAB DELL Dimensio 8200 1.6 Ghz 256 Mb

Table 4.13: Machines used in previous papers

Instance Algorithm
Name # TLG BM SP OV AAB MA-F MA MA+CLS
CMT1 8 300 150 16 16 161 3 10 30
CMT2 14 420 300 30 29 221 4 25 118
CMT3 12 1440 600 70 27 459 1 52 173
CMT4 16 3060 1500 206 68 681 31 169 493
CMT5 20 3960 3750 484 125 870 37 354 1284
CMT11 10 2700 1500 1132 28 527 12 99 302
CMT12 12 1380 600 45 27 414 10 37 138
F11 6 1560 150 93 13 8 5 21 40
F12 6 4500 4800 584 31 8 0 87 160

Table 4.14: CPU times comparison. Times expressed in seconds

The method finds a feasible solution over 99 instances, one more than all the previous
works (that have failed in finding a feasible solution for instance CMT4_T 1

H_7). Solutions
found are always better than those reported by Salhi and Petch [186] (the only paper which
gives detailed results). GAP values are on average better than those reported by Olivera
and Viera [156].

The proposed algorithm could be extended to the MTVRP with time windows intro-
ducing slight modifications into the AdSplit procedure explained in Section 4.3.2, in moves
M1–M10 and in the CLS. This will be the subject of future research.
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Chapter 5

The Multi Trip Vehicle Routing Problem
With Time Windows and Release Dates

Abstract

The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates is a variant of the
Multi-Trip Vehicle Routing Problem where a time windows is associated with each customer and
a release date is associated with each merchandise to be delivered at a certain client. The release
date represents the moment the merchandise becomes available at the depot for final delivery.

The problem is relevant in city logistics context, where delivery systems based on city distri-
bution centers (CDC) are studied. Trucks arrive at the CDC during the whole working day to
deliver goods that are transferred to eco-friendly vehicles in charge of accomplish final deliveries to
customers.

We propose a population-based algorithm for the problem based on giant tour representation
of the chromosomes as well as a split procedure to obtain solutions from individuals.

5.1 Introduction

The well-known Vehicle Routing Problem (VRP) is an NP-hard combinatorial optimization
problem where a set of geographically scattered customers has to be served by a fleet of
vehicles minimizing routing costs and respecting capacity constraints on vehicles. The VRP
represents a simplified problem that is usually far from the reality of freight distribution. To
better represent real world problems, different aspects need to be taken into account leading
to more complex problems, usually called rich (or multi-attribute) problems.

In this paper, we introduce a new variant of the VRP, the Multi Trip Vehicle Routing
Problem with Time Windows and Release Dates. Our interest for this problem originates
from mutualized distribution in cities, where external goods continuously arrive in a City
Distribution Center (CDC) from where the last-mile delivery is operated

In this context, vehicle distribution from the CDC should be optimized on a daily basis.
As vehicles have preferably small capacities and the fleet size should be minimized, vehicles
will typically perform several trips along the day. This introduces the multi trip aspect.
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Customers usually ask to be served within a certain time interval. Meeting these in-
tervals is vital for the carrier: delays mean losing reliability and trustworthiness and often
means paying a penalty. Then, time windows should be considered and associated with each
customer.

Finally, merchandise can be delivered to the CDC all day long. This means that they
are not necessarily available at the CDC at the beginning of the planning horizon. Vehicle
routes must then be designed such that no vehicle leaves the CDC before the goods it has
to transport in its trip have arrived. The concept of release date is associated with each
merchandise, indicating the time at which the merchandise is available at the CDC.

These attributes together lead to the Multi Trip Vehicle Routing Problem with Time
Windows and Release Dates (MTVRPTWR). It is noteworthy that the problem is static (or
off-line) even if the merchandise continuously arrives to the CDC during the day. In fact,
the release dates are supposed to be known before the working day starts.

Online variants can consider requests that become known at time intervals differently long
before the respective release date. This aspect raises the issue of the value of the information.
These variants, as well as stochastic variants, where the actual availability of the merchandise
might differ from the release date, are left for future research. To the best of our knowledge,
this is the first time release dates are considered in a routing problem. Discussions with
researchers from several software companies revealed that this issue, coupled with multiple
trips and time windows, is actually very relevant in practice and models a problem that
companies have to deal with (Grunert [96] and Kleff [120]).

The MTVRPTWR implicitly models the dependence between different levels in multi-
level distribution systems. The particular case of two-level distribution systems (called as
well two-echelon or two-tier distribution systems, Hemmelmayr et al. [104], Crainic [49]) has
recently been investigated by scholars. In these systems, final delivery trips depend on the
time and on the CDC where vehicles operating in the first level unload goods. Information
sharing and synchronization between the two levels of distribution are, however, assumed.
On the contrary, the MTVRPTWR models a situation where the first level of distribution
cannot be controlled. The purpose of this paper is to contribute filling this gap introducing
a new routing problem that takes into account this aspect as well as proposing an efficient
procedure to solve it.

The paper is organized as follows. In Section 5.2 the problem is formally defined and
characterized. Section 5.3 reviews related research. Section 5.4 describes a heuristic solution.
Instance sets and results are presented in Section 5.5, while Section 5.6 concludes the paper.

5.2 Problem definition and notation

This section defines the problem (Section 5.2.1) and introduces the notation used in the rest
of the paper (Section 5.2.2). Moreover, relations with the VRP with pickup and delivery
are presented in Section 5.2.3. Finally, a characterization of problems with release dates is
proposed in Section 5.2.4.

Page 112 EMSE-CMP Diego Cattaruzza



5.2. PROBLEM DEFINITION AND NOTATION

5.2.1 Problem definition

The MTVRPTWR can be defined on a complete undirected graph G = (V,E), where
V = {0, . . . , N} is the set of vertices and E = {(i, j)|i, j ∈ V, i < j} the set of edges.
Vertex 0 represents the depot, where a fleet ofM identical vehicles with capacity Q is based.
Vertices 1, . . . , N represent the customers. With each customer is associated a demand
Qi that needs to be delivered during a time window (TW) indicated by [Ei, Li]. Service
at customer i takes Si and must start during the TW. Service time S0 at the depot is
usually called loading time. Arriving at customer location before Ei is allowed. Since the
service cannot start earlier than Ei, the driver must wait. On the other side, late arrival at
customer location is forbidden. Moreover, the quantity Qi of product requested by customer
i is available at the depot not earlier than Ri. Ri is called the release date. For brevity, we
will say Ri is associated with customer i, instead of Ri is associated with the quantity Qi

requested by customer i. It is possible to travel from i to j incurring a travel time Tij and
covering a distance Dij, i, j = 0, . . . , N .

It is noteworthy that the release dates introduced here do not have the same implication as
those considered in scheduling problems (called as well release or ready times, Błażewicz [22]).
In that case, the release date is the earliest time at which job can be processed on a machine
(Pinedo [163]). A vehicle needs to wait until all goods it has to carry are available at the
depot, i.e., it cannot start the trip before the maximal release date associated with the
customers it has to serve. On the other hand, a machine can start processing available jobs
without waiting for all to be ready.

A time horizon TH is given and establishes the duration of the working day. It can be
viewed as a TW associated with the depot. Thus, it is assumed that [E0, L0] = [0, TH ],
Q0 = 0. Operations cannot start before E0 and all vehicles must be back to the depot at
time L0.

The MTVRPTWR calls for the determination of a set of trips and an assignment of each
trip to a vehicle, such that the total travel distance is minimized and the following conditions
are satisfied:

(1) each trip starts and ends at the depot;

(2) trips do not start earlier than E0 = 0 and finish later than L0 = TH ;

(3) no trips assigned to the same vehicle overlap;

(4) operations of each trip start not earlier than the greater Ri associated with customers
assigned to the trip itself;

(5) each customer is visited by exactly one trip;

(6) service at customer i starts in the associated range [Ei, Li];

(7) the sum of the demands of the customers served by any trip does not exceed Q.

It is supposed that each customer i can be served by a return trip, i.e, Ri + T0i ≤ Li,
max{Ei, Ri + T0i}+ Si + Ti0 ≤ TH and Qi ≤ Q (otherwise no feasible solution would exist).
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5.2.2 Notation

The notation used in the rest of the paper is introduced here. The symbol σ will always
indicate a trip. The capital Σ will indicate the set of trips assigned to a vehicle. It will be
called journey in the following. A journey is formed by different trips. The symbol ⊕ is used
to indicate the concatenation of paths (partial trips) or trips. For example (v1, . . . , vn) ⊕
(w1, . . . , wm) is the concatenation of two paths (that results in a trip if v1 and wm are the
depot). σ1 ⊕ σ2 means that trip σ1 is performed right before σ2 by the same vehicle.

The time a vehicle is available at the depot to perform a given trip σ, is indicated as
T σ. It is noteworthy that the vehicle cannot start trip σ before max{T σ,maxv∈σ Rv}. Here
and in the next sections, the symbol “∈” will be used to describe “belonging”. For example
σ ∈ Σ means trip σ belongs to journey Σ, v ∈ σ means customer v belongs to (i.e., it is
served by) trip σ, and so on.

The service of a customer i will be called feasible if the vehicle arrives at its location
before Li, infeasible otherwise. A trip σ is called feasible if service at each customer in σ is
feasible, infeasible otherwise. A journey is called feasible if it is composed by feasible trips,
infeasible otherwise.

5.2.3 Relationship with the VRPPDTW

In the VRP with pickup and delivery (VRPPD), requests i = 1, . . . , N need to be picked up
at defined locations PICKi before delivery takes place at location DELi. Precedence con-
straints impose pickups to be performed before deliveries. The VRPPD with time windows
(VRPPDTW) asks pickups and deliveries to take place during a TW. The MTVRPTWR can
be reduced to an extension of the VRPPDTW where multiple trips are allowed. Given an
instance of the MTVRPTWR, N requests are defined such that PICKi is the depot for ev-
ery request and DELi is the location of customer i. The pickup TW associated with request
i is set to [Ri, TH ], the delivery TW is set to [Ei, Li]. Travelling from the depot to a pickup
location and between pickup locations does not require time, i.e., T0PICKi = 0, TPICKi0 = 0
and TPICKiPICKj = 0. On the other hand TPICKiDELj = T0j and TDELiDELj = Tij. Distances
are managed similarly.

5.2.4 Problem characterization

Larsen [128] and Larsen et al. [129] introduce some parameters to characterize problems
in the context of the Dynamic VRP (DVRP). Even if there is no exact correspondence
between the DVRP and the MTVRPTWR, these problems share similarities. In the DVRP,
a request becomes known at a certain time called disclosure time (Pillac et al. [162]), while in
the MTVRPTWR, merchandise becomes available at a certain moment that we call release
date. The main difference is that all the release dates are known at the beginning of the
working day, that makes the MTVRPTWR a static problem. On the other side, requests in
the DVRP context become known during operations.

We introduce the rigidity of a system (which corresponds to the degree of dynamism for
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the DVRP) as

r = 1
N

N∑
i=1

(
1− Li −Ri

TH

)
. (5.1)

Since Ri ≤ Li, r ∈ [0, 1]. It represents how close are the Ri to the corresponding Li on
average. In particular, r = 0 when Ri = 0 and Li = TH for all customers i. On the other
side r = 1 when Ri = Li for all customers i. A considerable amount of release dates Ri close
to the corresponding Li thus makes the plan more rigid than having the release dates Ri far
in time from Li.

It can be noticed that, when Ri = 0 for all customers i, the rigidity r can be strictly
positive since it depends on the relationship between Li and TH . We introduce another
parameter that takes into account only the relationship between Ri and Li. We define the
instance tightness as

tight = 1
N

N∑
i=1

Ri

Li
. (5.2)

The parameter tight equals zero when Ri = 0 for all customers i and equals one when Ri = Li
for all customers i. Practically, r and tight are strictly less than 1: all Ri = Li would make
the problem infeasible as long as travel times between the depot and the customers are not
null.

5.3 Literature Review

To the best of our knowledge, there is no routing problem considering release dates. On
the other side, the Multi Trip VRP with Time Windows (MTVRPTW) is an extension of
the well-known Vehicle Routing Problem with Time Windows (VRPTW) where customers
must be served during a time interval called time window (Bräysy and Gendreau [27, 28])
and the Multi Trip VRP, that allows vehicles to perform several trips during the working
day (Cattaruzza et al. [33], Olivera and Vera [156], Taillard et al. [198]).

The MTVRP is a NP-hard problem (Olivera and Viera [156]). This makes the
MTVRPTW a NP-hard problem (the MTVRP can be reduced to the MTVRPTW associ-
ating a TW equal to [0, TH ] with each customer). Finally, the MTVRPTWR is NP-hard
since the MTVRPTW trivially reduces to the MTVRPTWR setting all the release dates to
zero.

Despite its practical interest, the literature on the MTVRPTW is pretty scarce and most
of the existing papers propose exact methods. Azi et al. [11] propose an exact algorithm
for solving the single vehicle MTVRPTW. The solution approach exploits an elementary
shortest path algorithm with resource constraints. In the first phase all non-dominated
paths are calculated. Then the shortest path algorithm is applied to a modified graph.
Each node represents a non-dominated trip and two nodes are connected by an arc when it
is possible to serve the two trips consecutively and they do not serve common customers.
Solomon’s instances are used with different values of time horizon. 16 instances out of 54
with 100 customers are solved to optimality.

Azi et al. [12] address the MTVRPTW where trips are constrained by a limited duration
and serve all customers is not mandatory. A column generation approach embedded within
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a branch-and-price algorithm is proposed. A set packing formulation is given for the mas-
ter problem and each column represents a working day. Since each pricing problem is an
elementary shortest path with resource constraints, a similar approach to the one proposed
in Azi et al. [11] is applied. As in Azi et al. [11], Solomon’s instances are considered. Due
to the limitations of the algorithm, the authors focus on instances formed by the first 25 or
40 customers of each Solomon’s instance. The algorithm can also solve few instances of size
50. Hernandez et al. [106] use a similar approach. A set covering formulation is given for
the problem and each column represents a trip instead of a working day. With this method
applied on the same instances proposed in Azi et al. [12] optimal solutions are found for
a majority of instances with size up to 50. Macedo et al. [136] propose a minimum flow
model where variable represent feasible trips. Optimal solutions are found for a majority of
instances with size up to 50 in 2 hours of computation time. In all the previous works, the
full set of feasible trips is generated. This is practicable due to the presence of time windows
and trip duration constraint that limit the cardinality of the set.

Hernandez et al. [105] propose the only exact method on the MTVRPTW. A branch-
and-price algorithm is proposed and instances up to 50 customers and 4 vehicles can be
solved.

Battarra et al. [17] study an extension of the MTVRPTW where products are clustered
in different commodities that cannot be transported in the same vehicle. They first generate
a set of feasible trips considering each commodity independently. Then, these trips are
assigned to vehicles in order to obtain a solution.

5.4 Method

This section describes the hybrid genetic algorithm ACAF that we developed for the
MTVRPTWR. In genetic algorithms (GA), a set of chromosomes forms a population that
evolves across generations until termination criteria are met. New individuals (children) are
generated from those in the current population, called parents, by crossover and mutation
operators. GA turned out to be highly efficient heuristic methods to face different problems,
mainly because children generation allows to explore new zones (children differ from parents)
that are promising (children keep good parents’ characteristics). The papers of Prins [166],
Vidal et al. [213] and Cattaruzza et al. [33] are three examples of efficient GA (respectively
for the VRP; the multi depot VRP and the periodic VRP; and for the multi trip VRP) in
the VRP field.

The principles of genetic procedure were first formalized by Holland [109]. The interested
reader is referred to Reeves [177], Moscato and Cotta [142] and Neri and Cotta [147] for an
overview of population based procedures.

5.4.1 Algorithm outline

This section outlines our ACAF for the MTVRPTWR. Initially, a population Π of π chro-
mosomes is generated. Chromosomes are sequences of client nodes without trip delimiters.
Each chromosome is evaluated with an adaptation of the Split procedure developed by
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Prins [166], that we call AdSplit (Section 5.4.4). AdSplit obtains a MTVRPTWR solution
ξ from a chromosome Ψ. The fitness of chromosome Ψ is then defined as the cost of the
solution ξ.

All individuals are improved by means of a local search (LS) procedure called as well
education phase (Section 5.4.3). At each iteration two chromosomes ΨP1 and ΨP2 are selected
using the classical binary tournament procedure. Two children ΨC1 and ΨC2 are obtained
crossing parents with the order crossover procedure and one (ΨC) is randomly selected
between them. ΨC undergoes AdSplit for evaluation and LS for education. It is then inserted
in Π.

After µ children are inserted in Π, π chromosomes are selected based on their fitness
(representing their quality) and diversification contribution to the population itself, while
the other µ are eliminated (survivor procedure, Section 5.4.5). A sketch of the method is
given in Algorithm 4.

Algorithm 4 ACAF outline
1: Initialize population
2: while Termination criteria are not met do
3: Select parent chromosomes ΨP1 and ΨP2

4: Generate a child ΨC

5: Educate ΨC

6: Insert ΨC in the population
7: if Dimension of the population exceeds a given size then
8: Select survivors
9: end if

10: end while

5.4.2 Solution representation and search space

A chromosome is a sequence (permutation) Ψ = (Ψ1, . . . ,ΨN) of the N client nodes, without
trip delimiters. Ψ can be viewed as a TSP solution that has to be turned into a feasible
MTVRPTWR solution by splitting the chromosome (inserting trip delimiters and assign-
ing trips to vehicles). Ψ is usually called a giant tour. From a giant tour Ψ, different
MTVRPTWR solutions can be constructed depending on the way Ψ is split.

During the search phase, overload and TW violations are allowed and penalized in the
fitness function. Two penalization factors are needed: θ for TW violation and λ for load
infeasibility.

A procedure AdSplit (explained in Section 5.4.4) is used to get a MTVRPTWR solution
ξ from Ψ. The following notation is introduced: DΣ(ξ) and TWΣ(ξ) are respectively the
traveled distance and the TW violation of journey Σ in solution ξ. Lσ(ξ) is the load of trip
σ. The fitness F (Ψ) of the chromosome Ψ is the cost c(ξ) of the solution ξ found by AdSplit
and it is defined as

F (Ψ) = c(ξ) =
M∑

Σ=1
DΣ(ξ) + θ

M∑
Σ=1

TWΣ(ξ) + λ
M∑

Σ=1

∑
σ∈Σ

max{0, Lσ(ξ)−Q}. (5.3)
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When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome
Ψ is called feasible (infeasible) if AdSplit obtains, from Ψ, a feasible (infeasible) solution ξ.

In practice a chromosome is split in order to obtain a solution and then it possibly
undergoes LS for improvement. It would then be natural to continue describing the solution
method with the AdSplit procedure. However, AdSplit takes advantages of aspects in the
LS. Thus, we will start presenting the latter.

5.4.3 Local search

This section presents the local search (LS) procedure embedded in ACAF . First, an efficient
scheme to manage TW violations is presented (Section 5.4.3) based on Vidal et al. [214] work.
In Section 5.4.3 peculiar characteristics of our problem are introduced, and Section 5.4.3
describes the general LS procedure.

Local Search for VRP with TW

LS in presence of TW becomes more complicated than in the classic VRP. Feasibility checks
and routing cost variations cannot be straightforwardly calculated in constant time. Savels-
bergh [187] proposes a scheme to check feasibility and to calculate cost variation for series of
k-opt moves. Nagata et al. [145] propose a new scheme to evaluate TW violations. Roughly
speaking, when a vehicle arrives late at the customer location, it is allowed to drive back
in time in order to meet the TW and a penalization proportional to the TW violation is
introduced in the objective function. They also propose formulas to evaluate in constant
time inter-route moves as relocation, exchange and 2-opt (inter-route 2-opt is usually called
2-opt∗)1.

Vidal et al. [214] generalize this scheme for a large class of routing problems with TW.
Each move is seen as a concatenation of paths. In particular, given a path ρ, the quantities
T (ρ), TW (ρ), E(ρ), L(ρ), D(ρ) and Q(ρ) are introduced. T (ρ) and TW (ρ) are respectively
the minimum duration and the minimum penalization (called as well time warp) of ρ. E(ρ)
and L(ρ) are the earliest and the latest date service can start at the first customer of
ρ (that can be the depot) allowing minimum duration and TW violation. D(ρ) is the
travelled distance while Q(ρ) is the cumulative demand of served customer. We will call
these quantities features. For a path made by a single customer i, features are initialized as
follows: T (i) = Si, TW (i) = 0, E(i) = Ei, L(i) = Li, D(i) = 0, Q(i) = Qi. Given two paths
ρ1 and ρ2, the following relations hold (see Vidal et al. [214] for formal proofs):

T (ρ1 ⊕ ρ2) = T (ρ1) + T (ρ2) + Tv1
n1 ,v

2
1

+ ∆WT ; (5.4)
TW (ρ1 ⊕ ρ2) = TW (ρ1) + TW (ρ2) + ∆TW ; (5.5)

E(ρ1 ⊕ ρ2) = max {E(ρ2)−∆, E(ρ1)} −∆WT ; (5.6)
L(ρ1 ⊕ ρ2) = min {L(ρ2)−∆, L(ρ1)}+ ∆TW ; (5.7)

1The formula proposed for inter-route relocations provides incorrect results in particular cases and it has
been corrected by Schneider et al. [188].
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D(ρ1 ⊕ ρ2) = D(ρ1) +D(ρ2) +Dv1
n1 ,v

2
1
; (5.8)

Q(ρ1 ⊕ ρ2) = Q(ρ1) +Q(ρ2); (5.9)

where

∆ = T (ρ1)− TW (ρ1) + Tv1
n1 ,v

2
1
;

∆WT = max {E(ρ2)−∆− L(ρ1), 0} ;
∆TW = max {E(ρ1) + ∆− L(ρ2), 0} .

Equations (5.4)–(5.9) allow evaluating classical LS moves in constant time. For exam-
ple, relocate customer vi from trip σ1 = (0, v1, . . . , vi−1, vi, vi+1, . . . , vn1 , 0) to trip σ2 =
(0, w1, . . . , wj, wj+1, . . . , wn2 , 0) between customers wj and wj+1 can be evaluated apply-
ing Equations (5.4)–(5.9) to (0, v1, . . . , vi−1) ⊕ (vi+1, . . . , vn1 , 0) and (0, w1, . . . , wj) ⊕ (vi) ⊕
(wj+1, . . . , wn2 , 0).

Features defined in Equations (5.4)–(5.9) need to be available for all the paths and their
reverse present in the current solution. Reverse paths come into play, for example, in the
evaluation of 2-opt moves. Moreover, these quantities need to be updated each time a move
is implemented. Straightforward update takes O(N2), but it can be done in O(N8/7) using
speed up techniques proposed by Irnich [115].

We use this approach (except for the little modification introduced by the release dates,
Section 5.4.3) to evaluate local variations due to a move. By local we mean a cost variation
that occurs in the trips affected by the move itself. It is noteworthy that this variation can
affect successive trips in the same journey (Section 5.4.3).

Local search: introduction of release dates and application to the multi trip case

The MTVRPTWR has two more attributes to consider compared to the VRPTW: vehicles
can perform several trips, and merchandise can be non-available at the depot at the beginning
of the horizon.

We introduce a new feature R(ρ) as the greatest release date of customers served in ρ.
We define R(i) = Ri and Equation (5.10) holds

R(ρ1 ⊕ ρ2) = max {R(ρ1), R(ρ2)} . (5.10)

Then, given two paths ρ1 and ρ2, the quantity R(ρ1⊕ ρ2) can be calculated in constant time
from values R(ρ1) and R(ρ2).

It is observed that in the VRP it is always possible to start a new trip σ at time t, with
E(σ) ≤ t ≤ L(σ), because all the vehicles are available at the depot at t = 0 and are assigned
to only one trip. Then, the minimum travelling duration time T (σ) and the minimum TW
violation TW (σ) can always be obtained. On the other side, this cannot be possible when
vehicles are allowed to perform more than one trip or in the presence of release dates. In
the first case it can be that L(σ) < T σ because of previous trips, in the second case, it can
be that L(σ) < R(σ) (that means trip σ is infeasible). We, thus, need to calculate T (σ) and
TW (σ) based on the effective time t a vehicle leaves the depot to perform σ. To do that, we
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can use the following relations proved by Vidal et al. [214] that provide the value of these
quantities as functions of the starting time t:

T (ρ)(t) = T (ρ) + max {0, E(ρ)− t} ; (5.11)
TW (ρ)(t) = TW (ρ) + max {0, t− L(ρ)} . (5.12)

Finally, the time T σi a vehicle is available at the depot to perform trip σi can be recursively
calculated as follows

T σ1 = 0; (5.13)
T σi+1 = T (σi)(max{R(σi), T σi})− TW (σi)(max{R(σi), T σi}). (5.14)

The Figure 5.1 introduces an example (data are given in tables, travel times and distances
coincide) that illustrates a consequence of using Nagata et al. [145] penalization scheme for
TW violations in the multi-trip context. In particular Figure 5.1 depicts a journey formed by
four trips: σ1 = (v0, v5, v3, v0), σ1 = (v0, v1, v0), σ3 = (v0, v4, v0) and σ4 = (v0, v2, v0) where
v0 represents the depot. It can be noticed that 115 = T σ4 < T σ3 = 125 and 95 = T σ5 < T σ4 .
This means that the vehicle can be available at the depot to perform trip σi+1 before the time
it was available to perform trip σi. Indeed, it travelled back in time and it is the consequence
of a deep use of the time warp, i.e., a deep time window violation.

v0

0 100 200

v4

v0

v1

v0

v3

v5

v0

v0

v2

Si Qi Ei Li Ri

v0 20 0 0 200 0
v1 5 20 100 120 60
v2 5 20 50 75 0
v3 5 20 50 75 0
v4 5 20 50 100 60
v5 5 20 50 100 0

Distance matrix
v0 v1 v2 v3 v4 v5

v0 0 5 15 20 10 15
v1 5 0 20 20 15 15
v2 15 20 0 40 20 30
v3 20 20 40 0 30 10
v4 10 15 20 30 0 20
v5 15 15 30 10 20 0

Figure 5.1: The last two trips arrive at the depot before they have left it

One needs also to observe that the effect of a move on trip σi ∈ Σ can modify T σi+1 , that
in turn can modify T (σi+1) and TW (σi+1). Hence, the effect of the move on trip σi can be
propagated to the following trips.

When loading times at the depot are constant and not trip-dependent, evaluation of
the TW violation can be done in constant time, considering a journey as a unique segment
with multiple visits at the depot. Conversely, the calculation requires O(Σmax), where Σmax
indicates the maximum number of trips among all journeys.
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Local search: general scheme and penalty adaptation

We consider the move 2-opt and the move exρ that exchanges two segments ρ1 and ρ2 of
successive customers, where ρ1 and ρ2 are respectively subsequences of trips σ1 and σ2. Let
v1 and v2 be two customers. In particular, it can be observed that if:

• ρ1 = v1 and ρ2 = ∅, exρ is the classical relocate;

• ρ1 = v1 and ρ2 = v2, exρ is the classical exchange (or swap);

• ρ1 = (v1, . . . , 0) and ρ2 = (v2, . . . , 0), or ρ1 = (0, . . . , v1) and ρ2 = (0, . . . , v2), and
σ1 6= σ2, exρ is the classical 2-opt∗;

• ρ1 = σ1 and ρ2 = ∅, exρ relocates a full trip;

• ρ1 = σ1 and ρ2 = σ2, exρ exchanges trips.

The last two moves, take into account the multi-trip aspect. Relocations and swaps of
trips are inter-vehicle (resp. intra-vehicle) moves if σ1 and σ2 belong to a different (resp.
the same) journey. No limitation on the segment size is considered. Different neighbour
structures considering a maximum segment size could speed up the search against a payback
due to the possible lower quality of the obtained solutions.

Initially, a neighbourhood defined by one of the listed move is randomly chosen and
deeply explored. The best improving move is then executed, if it exists. In this case,
another neighbourhood is randomly chosen. The LS terminates when all the neighborhoods
have been fully explored without finding any improving move.

When the population reaches the dimension of π + µ, the values of each penalty factor
P = θ, λ is adjusted as follows:

P =

1.25× P if ζP > ζ+
ref ;

max{1, 0.85× P} if ζP < ζ−ref ,

where ζP is the percentage of infeasible chromosomes over the last µ individuals generated
with respect to time window violation (P = θ) or capacity violation (P = λ), while ζ+

ref and
ζ−ref are reference values.

5.4.4 A Split algorithm for multi-trip problems with time windows
and release dates

The split procedure, indicated with AdSplit, is an adaptation of the procedure proposed by
Prins [166]. It turns a permutation of the N customers into a solution for the MTVRPTWR.
It works on an acyclic graph H whose nodes represent customers, and arcs represent trips.
The graph construction is illustrated in Section 5.4.4, while Section 5.4.4 presents the AdSplit
procedure.
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Auxiliary graph construction

The auxiliary graph H = (V ′ , A′) is defined with N + 1 nodes indexed from 0 to N . Node
i represents customer Ψi in the chromosome Ψ = (Ψ1, . . . ,ΨN). Arc (i, j), i < j, represents
trip σji+1 serving customers from Ψi+1 to Ψj in this order, i.e., σji+1 = (0,Ψi+1, . . . ,Ψj, 0).
Cost cij of arc (i, j) is given by the following equation

cij = D(σji+1) + θTW (σji+1) + λmax{0, Q(σji+1)−Q},

that is the sum of the travelled distance in trip σji+1 plus the penalized TW and capacity
violations. Figure 5.2 depicts graph H for the example in Figure 5.1, where Ψ = (1, 2, 3, 4, 5).
Cost of arc (0, 1) is twice the travelling distance needed to go from the depot to customer

45

2 3 4 510 10 30 40 20 30

60

245

355

470

140

360

205
325 115

Figure 5.2: The auxiliary graph for chromosome Ψ = (1, 2, 3, 4, 5), data as in Figure 5.1,
Q = 60 and θ = λ = 2

1, i.e., 10. Cost of arc (0,2) is the travelling distance needed to reach customer 1 from the
depot, then visit customer 2 and to conclude the trip at the depot, i.e., 40. The penalization
50 · θ is added since the vehicle arrives at customer 2 at 125 and its time window closes at
75. Then, for θ = 2, arc (0, 2) costs 140. Other costs are computed similarly.

It is noteworthy that the arc cost does not take into account the position of the trip in the
journey, but it is the (penalized) cost of the trip when it is performed at t = 0. Therefore,
the (contingent) TW violation due to later departure is not taken into account.

Assignment of trips to vehicles

In the MTVRPTWR context in particular and in the MTVRP context in general, more than
one trip can be assigned to the same vehicle. TW penalization deeply depends on the time
trips leave the depot and this aspect cannot be considered by the constant costs associated
with arcs on H.

Due to the correspondence between arcs and trips in H and to simplify the presentation,
in this section we will indifferently refer to arc or trip. Consequently, the assignment of arcs
to a vehicle, will mean that the trips represented by these arcs are assigned to this vehicle.
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Each path that goes from node 0 to node N , represents a set of trips, that need to be
assigned to vehicles to form a solution. Arcs are assigned to a vehicle in the order they
appear in the path. For each arc, M assignments (one for each vehicle) are possible. In each
case, the trip is positioned after the trips already assigned to the vehicle. Hence, the order
of trips in vehicles meets the order in Ψ.

The aim of the AdSplit procedure is to find the path whose optimal assignment of trips
to vehicles results in the best solution. It can be shown that the problem solved with the
AdSplit procedure in NP-hard.

Let us consider the problem SPLIT that consists in finding the optimal solution for an
auxiliary graph H (constructed as explained in Section 4.4.1) defined by an instance I of
the MTVRPTWR and a permutation Ψ of customers in I. The objective of SPLIT is to
find the optimal solution ξΨ associated with Ψ on graph H. In what follows we analyze the
complexity of the SPLIT problem.
Proposition 3. The problem SPLIT is NP-Hard.

Proof. We perform a reduction from the Bin Packing Problem (BPP). The decision version
of the BPP is defined given MBPP bins of size QBPP and NBPP objects of size QBPP

i , i =
1, . . . , NBPP . We need to answer the question: can the NBPP objects be inserted in the
MBPP available bins respecting capacity constraints?

The key idea of the reduction is to define an instance of the SPLIT problem such that
each arc (i, j) corresponds to the selection of objects {i+ 1, . . . , j} of the BPP.

Given an instance IBPP of the BPP, an instance of the MTVRPTWR problem is defined
with the following parameters: N = NBPP , Tij = QBPP

j for all i, j = 1, . . . , N , and T0i =
QBPP
i , Ti0 = 0, [Ei, Li] =

[
0, QBPP

]
, Ri = 0, for all i = 1, . . . , N and Q = +∞. We

call ISPLIT the instance of the decision version of problem SPLIT obtained when applying
AdSplit to the chromosome (1, . . . , N) for this instance.

The graph H associated with the ISPLIT instance is constructed such that the cost on
each arc (i, j) is given by cij = ∑j

k=i+1Qk for all i, j = 0, . . . , N , i < j. We can notice that
all paths from 0 to N in this graph have the same cost (∑N

k=1Qk). From the definition of
ISPLIT , it is obvious that the instance IBPP can be polynomially transformed into an ISPLIT
instance.

We show that the answer for instance IBPP is positive if and only if there exists a feasible
solution of the SPLIT problem that uses at most MBPP vehicles.

If IBPP is a positive instance, then there exists an assignment of objects to bins such
that the number of used bins is lower than or equal to MBPP . Considering the path in H
that corresponds to all the arcs (i− 1, i), i = 1, . . . , N and assigning trips (0, i, 0) to the kth
vehicle if the ith object is into the kth bin, constructs a feasible solution for ISPLIT .

On the other side let suppose that ISPLIT is a positive instance. There exists a path
ρ from 0 to N and an assignment of arcs to the MBPP vehicles such that the sum of the
duration of the trips assigned to a vehicle does not exceed the time limit QBPP . A solution
for the IBPP instance is constructed assigning object i to bin k if customer i is assigned to
the kth vehicle in ρ. The number of used bins is lower than or equal to MBPP and their
capacities are satisfied, which concludes the proof.
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We propose a labelling procedure that selects arcs on H and assigns them to vehicles, in
order to obtain the solution with minimum cost with respect to Equation (5.3).

Labels are associated with nodes in the graph. Each label associated with node i repre-
sents a partial path that goes from node 0 to node i in H and, then, a partial solution that
serves all customers Ψ1, . . . ,Ψi. Trips of this partial solution are represented by the arcs in
the corresponding partial path.

Each label L has M + 3 fields. Each field j, with j = 1, . . . ,M records the availability
time Tj(L) of vehicle j, namely, the time the vehicle is available at the depot for starting the
next service trip. Availability times are stored in decreasing order to better take advantage
of the dominance rules introduced in the following. The (M + 1)th field memorizes the total
load infeasibility, and the (M + 2)th the predecessor node. The last field stores the cost
c(L) of the partial solution represented by L. When extending a label, M new labels are
constructed, one for each possible allocation of the new trip to a vehicle. Extending a label
Li associated with node i through arc (i, j) means assigning trip (0,Ψi+1, . . . ,Ψj, 0) to a
certain vehicle. Identical labels associated with the same node are discarded.

Graph H is implicitly generated. Arc and solution costs are computed using relations
introduced in Section 5.4.3. In particular, the cost of an arc (i, . . . , j + 1) is calculated
concatenating path (0,Ψi+1, . . . ,Ψj) with path (Ψj+1, 0), while label costs are updated using
Relations (5.11)–(5.14) since vehicle availability times are stored in labels.

The label L with minimum cost c(L) associated with node N is selected and the related
solution is constructed (going backwards through the graph).

To speed up the procedure, dominated labels, accordingly with the following dominance
rule, are discarded.

Dominance Rule 1 (Strong). Let L1 and L2 be two labels associated with the same node
i. L1 strongly dominates L2 if and only if

c(L1) + θ
M∑
j=1

δj(L1,L2) ≤ c(L2); (5.15)

δj(L1,L2) = max{0, Tj(L1)− Tj(L2)}.

Roughly speaking, δj(L1,L2) represents the maximal additional penalization that can be
introduced in the partial solution represented by L1 compared to the one represented by
L2. If Inequality (5.15) holds, L2 cannot be extended in a better way than L1, and it is
eliminated.

Table 5.1 shows all the labels generated by AdSplit when applied on the graph H depicted
in Figure 5.2. The number of vehicles M is set to 2. Column dom indicates if the respective
label is dominated in the sense of Dominance Rule 1. Only 3 labels associated with node 5
are non-dominated.

Label (120, 110) with cost c = 265 associated with node 5 corresponds to the solution
made up of three trips: (0, 1, 0) assigned to one vehicle and trips (0, 2, 0) and (0, 3, 4, 5, 0)

Page 124 EMSE-CMP Diego Cattaruzza



5.4. METHOD

1
2

3
4

5
co

st
la

b
el

p
do

m
co

st
la

b
el

p
do

m
co

st
la

b
el

p
do

m
co

st
la

b
el

p
do

m
co

st
la

b
el

p
do

m
10

(1
10

,0
00

)
0

no
40

(1
10

,
70

)
1

no
12

5
(1

10
,

10
0)

1
no

19
0

(1
15

,
11

0)
2

no
26

5
(1

20
,

11
0)

2
no

14
0

(9
5,

0)
0

no
18

0
(9

5,
75

)
2

no
21

0
(1

15
,

95
)

3
no

28
5

(1
20

,
95

)
3

no
23

0
(1

00
,

70
)

2
ye

s
25

0
(1

15
,

75
)

3
ye

s
30

0
(1

20
,

11
5)

4
ye

s
27

5
(1

00
,

0)
0

no
25

0
(1

15
,

10
0)

3
ye

s
30

0
(1

20
,

10
0)

3
ye

s
27

0
(1

15
,

70
)

2
ye

s
32

5
(1

20
,

75
)

3
ye

s
29

5
(1

05
,

10
0)

3
ye

s
34

5
(1

20
,

70
)

2
ye

s
34

0
(1

15
,

0)
2

no
37

0
(1

15
,

70
)

4
ye

s
36

0
(1

05
,

10
0)

3
ye

s
39

5
(1

20
,

10
5)

4
ye

s
41

5
(1

20
,

0)
2

no

Ta
bl
e
5.
1:

La
be

ls
ge
ne
ra
te
d
by

Ad
Sp

lit

03/2014 EMSE-CMP Page 125



CHAPTER 5. THE MTVRP WITH TIME WINDOWS AND RELEASE DATES

performed by the other vehicle (in this order). Travelled distance is 125, while late arrival
at customers 3, 4 and 5 introduces a total TW violation of 70 · θ.

Preliminary tests showed that a huge number of labels needs to be treated, which does
not appear to be viable in the heuristic context (see Section 5.5.3 for details). For this reason
a heuristic version of the Dominance Rule 1 is introduced as follows:

Dominance Rule 2 (Weak). Label L1 weakly dominates L2 if and only if

c(L1) + θ
M∑
j=1

δj(L1,L2) ≤ γc(L2), (5.16)

c(L1) ≤ c(L2). (5.17)

where γ ≥ 1.

For γ = 1, the weak dominance rule is equivalent to the strong version. When γ > 1,
Inequality (5.16) is easier to be satisfied and a larger number of labels can be eliminated.
Condition (5.17) is added because when γ > 1 label L2 can be dominated by label L1 even
if c(L2) < c(L1). Using the weak relation one expects the solution to be obtained quicker.
On the other side the best decomposition of the chromosome can be missed.

The value of γ is dynamically adapted during the process according to the number of
labels associated with each node. Precisely the following scheme is adopted:

γ =

γ + |Li|
1000Lthreshold

if |Li| > Lthreshold

γ − Lthreshold
1000|Li| if |Li| < Lthreshold

(5.18)

where |Li| is the number of labels associated with node i and Lthreshold is a threshold param-
eter that indicates the number of labels that should be kept associated with each node. If
after Relation (5.18) is applied, γ is lower than 1, it is set back to 1.

It is worth noting that the smaller Lthreshold is, the quicker AdSplit is. On the other side,
the larger Lthreshold is, the better the quality of the solution obtained is.

5.4.5 Survivor strategy

When the population Π contains π + µ chromosomes, the survivor procedure is launched.
It selects µ chromosomes based on their quality and their diversification contribution to the
population as suggested by Vidal et al. [214, 213]. Diversity contribution f(Ψ) is set as
the average distance between a selected chromosome Ψ and its nc closest neighbours in Π
(forming set Nc). Distance D(Ψ,Ψ1) between chromosomes Ψ and Ψ1 is measured by the
broken pair distance that is the number of pairs of adjacent customers in Ψ that are broken
in Ψ1 (Prins [167]). Formally we have:

f(Ψ) = 1
nc

∑
Ψ1∈Nc

D(Ψ,Ψ1), (5.19)

A biased fitness bF (·) is calculated for each chromosome as follows:

bF (Ψ) = rF (Ψ) + (1− ne
|Π|)rf (Ψ); (5.20)
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where rF (Ψ) and rf (Ψ) are the ranks of chromosome Ψ calculated based on fitness F and
function f defined in Equation (5.19) respectively, and ne is a parameter that ensures elitism
properties during selection (see Vidal et al. [213] for a formal proof).

5.5 Computational results

In this section we present the results obtained with our procedure ACAF . We start intro-
ducing a set of instances (Section 5.5.1) for benchmark purposes: due to the novelty of
the problem, no instances are available in the literature. In Section 5.5.2 we present the
values of the parameters involved in the ACAF , determined using a meta-tuning procedure.
Results obtained on the new set of instances are presented in Section 5.5.4, while in Sec-
tion 5.5.5 results obtained by ACAF on instances proposed by Hernandez et al. [105] for the
MTVRPTW are given. ACAF is coded in C++ and compiled with Visual Studio 2010. All
the experiments are run on a Intel Xeon W3550 3.07GHz with a RAM of 12 Gb.

5.5.1 Instances for the MTVRPTWR

In this section we describe how we generate a set of instances for the MTVRPTWR. We
use the instances introduced by Solomon [196] for the VRPTW as base instances and adapt
them to the MTVRPTWR case. In Solomon [196] six groups of instances are generated,
named R1, C1, RC1, R2, C2, RC2. Groups R1 and R2 have customers randomly located in
a region, while they are clustered in groups C1 and C2. RC1 and RC2 instances contain a
mix of randomly located and clustered customers. The time horizon is shorter in instances
of groups C1, R1, RC1 than in instances of C2, R2, RC2. There are 56 instances in total.

Depot location as well as customer locations, demands, time windows and service times
are set as in the original Solomon’s instances. Release dates are calculated in three steps,
based on the Algorithm 5 explained in the following, and given a rigidity parameter r.

In the first step (lines 1–7 of Algorithm 5) release dates R(2) are calculated based on
Equation (5.21)

r = 1− Li −R(2)
i

TH
. (5.21)

Equation (5.21) (instead of Equation (5.1)) allows to univocally determine the value of
R

(2)
i once r is given. This is done in order to make instance replication easier. Inverting

Equation (5.21) we obtain
R

(2)
i = Li + TH(r − 1);

from which follows that

R
(2)
i ≥ 0⇔ Li + TH(r − 1) ≥ 0⇔ r ≥ 1− Li

TH
.

Then, when r < 1 − Li
TH

, R(2)
i is negative. We fix the release date to zero in this case.

Moreover, the decimal parts are truncated in order to work with integer values. Thus, the
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Algorithm 5 Instance creation
1: for all i = 1, . . . , N do
2: if Li + TH(r − 1) ≥ 0 then
3: Ri = bLi + TH(r − 1)c
4: else
5: Ri = 0
6: end if
7: end for
8: for all i = 1, . . . , N do
9: if Ri + T0i > Li then
10: Ri = 0
11: end if
12: end for
13: Initialize Λ with customers with strictly positive release date and ranked with respect

to non-decreasing release dates: u < v ⇒ Ru ≤ Rv

14: Γ = ∅; LΓ − TΓ =∞; RΓ = 0
15: while Λ 6= ∅ do
16: Get v∗ first customer in Λ
17: Λ = Λ \ {v∗}
18: if Γ = ∅ then
19: Γ = {v∗}; LΓ − TΓ = κLv∗ − T0v∗ ; RΓ = Rv∗

20: else
21: LΓ − TΓ = min{κLv∗ − T0v∗ , LΓ − TΓ}
22: if Rv∗ ≤ LΓ − TΓ then
23: Γ = Γ ∪ v∗; RΓ = Rv∗

24: else
25: λ = Λ ∪ {v∗}
26: for all v ∈ Γ do
27: Rv = RΓ
28: end for
29: Γ = ∅
30: end if
31: end if
32: end while
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following scheme is adopted

R
(2)
i =

bLi + TH(r − 1)c if 1− Li
TH
≤ r;

0 otherwise.

In the second step (lines 8–12 of Algorithm 5), to guarantee that each customer can be
served by a round trip, R(1)

i is calculated as follows

R
(1)
i =

R
(2)
i if R(2)

i + T0i ≤ Li,

0 otherwise.

In the third step (lines 13–32 of Algorithm 5) the final release date values Ri, i = 1, . . . , N
are determined. Customers are clustered with respect to the release dates with the purpose
to represent different truck arrivals at the depot. All the customers that belong to the same
cluster Γ will be associated with the same release date RΓ.

A list Λ is initialized with all the customers ordered by non-decreasing values of R(1),
i.e., such that i < j implies R(1)

i ≤ R
(1)
j . Clusters Γ are constructed starting with a single

customer v1 and successively adding the following customers in Λ. A customer v2 is added
if and only if each customer v ∈ Γ can be served by a round trip even if the merchandise is
available at the depot at time R(1)

v2 (≥ R(1)
v ), namely, if and only if

R
(1)
v2 + T0v ≤ Lv ∀v ∈ Γ. (5.22)

The final release date Rv of each customer v in Γ is set to R(1)
v2 . When the next customer

v2 to be inserted in Γ does not satisfy Relation (5.22), a new cluster is initialized and the
procedure restarted.

In order to create different classes of instances, a parameter κ ≤ 1 is introduced in
Equation (5.22). Hence, it becomes

R
(1)
v2 + T0v ≤ κLv ∀v ∈ Γ.

Different values of κ produce instances with different rigidity. In particular the higher is κ,
the higher is the rigidity r.

The first step release dates R(2)
i , i = 1, . . . , N are determined setting r = 0.5. Then,

for each Solomon instance, three instances are created using Algorithm 5 with values κ =
0.25, 0.5, 0.75. A fourth instance has all the release dates equal to zero and will be referred
by κ = 0 for simplicity. There are in total 224 new instances.

Finally, vehicle capacities are half of the original values, while the number of vehicles M
is set in order to have feasible or quasi-feasible solutions for the κ = 0.75 instance group.
Since we force some release dates to be zero and we use different values of κ, the final rigidity
of instances differs from 0.5. Values of the number of vehicles, actual rigidity r and tightness
tight are reported in Table 5.2.

5.5.2 Tuning

The procedure makes use of some parameters that need to be set to values chosen into
sensible ranges. After conducting preliminary tests we decided to fix the values of ζ+

ref and
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κ = 0 κ = 0.25 κ = 0.5 κ = 0.75
M tight r tight r tight r tight r

C101 12 0 0.606 0.085 0.664 0.129 0.690 0.161 0.709
C102 10 0 0.493 0.164 0.629 0.201 0.651 0.225 0.666
C103 11 0 0.350 0.261 0.576 0.290 0.595 0.311 0.609
C104 13 0 0.227 0.350 0.540 0.361 0.548 0.380 0.561
C105 11 0 0.579 0.098 0.647 0.152 0.678 0.190 0.702
C106 11 0 0.563 0.105 0.638 0.152 0.667 0.203 0.697
C107 11 0 0.553 0.102 0.627 0.151 0.656 0.206 0.689
C108 10 0 0.522 0.116 0.607 0.158 0.632 0.225 0.674
C109 10 0 0.467 0.139 0.573 0.192 0.605 0.257 0.644
R101 22 0 0.537 0.093 0.605 0.099 0.609 0.135 0.632
R102 19 0 0.424 0.179 0.571 0.185 0.574 0.222 0.601
R103 18 0 0.332 0.258 0.548 0.261 0.550 0.311 0.589
R104 17 0 0.241 0.332 0.522 0.334 0.523 0.387 0.566
R105 17 0 0.492 0.111 0.575 0.122 0.582 0.181 0.619
R106 15 0 0.391 0.192 0.548 0.201 0.553 0.260 0.594
R107 16 0 0.311 0.266 0.533 0.272 0.536 0.346 0.590
R108 16 0 0.231 0.335 0.514 0.336 0.515 0.382 0.550
R109 15 0 0.427 0.137 0.531 0.147 0.537 0.212 0.577
R110 15 0 0.362 0.204 0.517 0.223 0.527 0.299 0.575
R111 15 0 0.328 0.241 0.521 0.249 0.526 0.320 0.575
R112 18 0 0.283 0.289 0.500 0.314 0.515 0.469 0.618

RC101 19 0 0.492 0.104 0.569 0.120 0.577 0.175 0.611
RC102 17 0 0.406 0.179 0.546 0.187 0.551 0.244 0.587
RC103 18 0 0.332 0.249 0.532 0.257 0.537 0.325 0.584
RC104 19 0 0.256 0.317 0.514 0.317 0.515 0.391 0.570
RC105 18 0 0.430 0.153 0.542 0.167 0.550 0.220 0.584
RC106 16 0 0.427 0.141 0.531 0.156 0.540 0.227 0.584
RC107 18 0 0.365 0.202 0.514 0.212 0.520 0.280 0.563
RC108 18 0 0.302 0.268 0.501 0.280 0.508 0.380 0.571
C201 3 0 0.519 0.151 0.634 0.199 0.664 0.258 0.702
C202 4 0 0.393 0.239 0.600 0.274 0.623 0.318 0.651
C203 5 0 0.277 0.318 0.570 0.339 0.584 0.364 0.601
C204 5 0 0.147 0.405 0.530 0.416 0.538 0.431 0.548
C205 3 0 0.495 0.159 0.619 0.210 0.652 0.262 0.685
C206 3 0 0.469 0.175 0.607 0.225 0.639 0.287 0.679
C207 3 0 0.452 0.185 0.603 0.233 0.634 0.283 0.666
C208 3 0 0.445 0.183 0.592 0.237 0.626 0.290 0.660
R201 4 0 0.493 0.133 0.600 0.162 0.617 0.215 0.651
R202 2 0 0.365 0.222 0.567 0.247 0.581 0.284 0.606
R203 3 0 0.252 0.312 0.546 0.328 0.555 0.355 0.575
R204 3 0 0.141 0.395 0.519 0.397 0.521 0.420 0.540
R205 3 0 0.430 0.177 0.571 0.236 0.607 0.297 0.645
R206 3 0 0.318 0.262 0.548 0.313 0.578 0.365 0.612
R207 3 0 0.222 0.337 0.533 0.368 0.551 0.405 0.578
R208 3 0 0.126 0.409 0.514 0.410 0.514 0.456 0.548
R209 3 0 0.370 0.211 0.537 0.283 0.580 0.380 0.640
R210 3 0 0.334 0.250 0.540 0.310 0.578 0.381 0.623
R211 4 0 0.303 0.276 0.517 0.390 0.582 0.541 0.673

RC201 4 0 0.488 0.142 0.600 0.183 0.624 0.240 0.660
RC202 5 0 0.366 0.232 0.569 0.264 0.588 0.314 0.621
RC203 3 0 0.257 0.320 0.549 0.344 0.563 0.385 0.594
RC204 4 0 0.147 0.393 0.519 0.394 0.519 0.440 0.554
RC205 4 0 0.426 0.176 0.566 0.254 0.610 0.334 0.658
RC206 3 0 0.424 0.172 0.562 0.227 0.594 0.293 0.638
RC207 4 0 0.362 0.212 0.531 0.282 0.571 0.388 0.638
RC208 4 0 0.291 0.276 0.508 0.379 0.568 0.537 0.666

Table 5.2: Instance details
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ζ−ref to 0.35 and 0.25 respectively, while θ and λ are initially set respectively to 20 and 2.

In order to determine the values of the remaining parameters, we run the Evolutionary
Strategy with Covariance Matrix Adaptation proposed by Hansen and Ostermeier [101] on a
limited set of instances. In particular ACAF is run on C108, R104, RC106, RC208, obtained
with κ = 0.75, and we obtained the values reported in Table 5.3.

Parameter Range Final value
π Dimension of population [1, 100] 20
µ Children generated at each generation [1, 100] 30
ne Proportion of elite individuals ne = ne × Π (Eq. 5.19) [0.1, 1] 0.20
nc Proportion of close individuals nc = nc × Π (Eq. 5.20) [0.1, 1] 0.35

Table 5.3: Parameter Tuning

5.5.3 Setting of Lthreshold

The value of Lthreshold is important to achieve the best compromise between solution quality
and computational efficiency. To find a suitable value, we evaluate the impact of Lthreshold on
a set of 100 chromosomes. In order to avoid completely random chromosomes, we proceed as
follows. A chromosome is randomly generated for instances C101 and C201 of group κ = 0.
AdSplit first evaluates them with Lthreshold = 10, then they are improved by LS. The resulting
chromosomes are re-evaluated by AdSplit with different values of Lthreshold. Average results
obtained on the 100 evaluations are reported in Table 5.4. The value of Lthreshold is indicated

C101 κ = 0 C201 κ = 0
Lthreshold time (ms) cost time gap (%) cost gap (%) time (ms) cost time gap (%) cost gap (%)

500 292111 2561.17 - - 119933 2089.89 - -
50 5446 2564.93 -98.14 0.15 2797 2089.93 -97.67 ≈ 0
45 4299 2565.04 -98.53 0.15 2413 2089.93 -97.99 ≈ 0
40 3134 2565.32 -98.93 0.16 2080 2089.93 -98.27 ≈ 0
35 2273 2565.42 -99.22 0.17 1698 2089.93 -98.58 ≈ 0
30 1550 2565.82 -99.47 0.18 1377 2089.93 -98.85 ≈ 0
25 1013 2594.49 -99.65 1.30 1035 2089.93 -99.14 ≈ 0
20 631 2656.85 -99.78 3.74 657 2089.93 -99.45 ≈ 0
15 346 2713.37 -99.88 5.94 370 2089.93 -99.69 ≈ 0
10 164 2788.42 -99.94 8.87 178 2089.93 -99.85 ≈ 0
5 62 3185.31 -99.98 24.37 67 2089.93 -99.94 ≈ 0
1 14 8619.91 -100.00 236.56 11 2242.80 -99.99 7.32

Table 5.4: Setting Lthreshold

in the first column of the table. A maximum of 500 labels is considered for Lthreshold. In
this case, computational times are huge implying also that splitting chromosomes using the
Strong Dominance Rule 1 is not time efficient. The Weak Dominance Rule 2 allows a quick
evaluation preserving solution quality even with a few labels kept associated with each node.
Symbol ≈ 0 means the value is approximately zero. Results show that for instance C201 a
small cost deterioration is achieved when the value of Lthreshold is very small. This can be
explained by the fact that C201 is characterized by a low number of vehicles, that reduces
the possible assignment of trips. Finally, it has been decided to set Lthreshold= 15.
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5.5.4 Results on MTVRPTWR instances

ACAF is run 5 times over the 224 instances. Each run is stopped after 5 minutes of compu-
tation time. Complete results are reported in Tables 5.5–5.6, each table being divided in two
parts, exhibiting results for instances with κ = 0, 0.25, 0.5, 0.75. Column instance contains
the name of the original Solomon instance. Columns best report the distance (dist) and the
number of trips (#trips) of the best solution found on the 5 runs. Columns average report
average distances and trips on the five found solutions. Column #feas indicates the number
of runs the procedure found a feasible solution. A dash means no feasible solution has been
found for the respective instance. It can be noticed that the best solution can be formed by
a number of trips higher than the average.

Result analysis is reported on Table 5.7 and in Figure 5.3. Table 5.7 reports average
results per group of instances. Columns best report average distance and number of trips
of the corresponding best solution found by the procedure, while columns average report
the average of the average values on instances of the same group. Column % feas indicates
the percentage of feasible solutions found on the total number of runs (that is 5 times the
number of instances forming a specified group).
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Figure 5.3: Result analysis

Procedure ACAF always finds a feasible solution for instances with κ = 0 (Table 5.5
and 5.7). This validates the generation scheme presented in Section 5.5.1.

Rigidity and tightness of instances describe on average the difficulty of solving an in-
stance: considering results grouped by type of instances and value of κ, it can be noticed
(Figures 5.3a–5.3c, Table 5.7) that when the tightness and rigidity grow, the travelled dis-
tance and the number of trips per vehicle grow, while the number of feasible solutions found
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κ = 0 κ = 0.25
instance best average #feas best average #feasdist #trips dist #trips dist #trips dist #trips

C101 1529.66 20 1568.27 20.8 5 1565.24 21 1585.29 21.0 5
C102 1675.75 22 1715.14 21.8 5 1759.23 22 1778.12 22.4 5
C103 1452.69 19 1524.98 19.6 5 1748.96 22 1810.23 22.6 5
C104 1384.78 19 1407.10 19.2 5 1774.75 22 1834.28 22.6 5
C105 1550.02 21 1709.18 22.2 5 1552.38 21 1601.48 21.4 5
C106 1592.13 20 1624.38 21.4 5 1594.68 21 1621.70 21.6 5
C107 1513.19 20 1527.41 20.0 5 1511.36 20 1536.45 20.0 5
C108 1545.94 21 1659.66 21.6 5 1518.79 20 1548.04 20.2 5
C109 1496.65 21 1538.70 20.2 5 1536.90 21 1547.45 20.4 5
R101 1671.77 22 1678.46 20.6 5 2102.53 32 2160.65 31.4 5
R102 1498.23 18 1502.58 18.0 5 2133.22 31 2146.89 32.5 2
R103 1288.44 16 1298.49 16.0 5 1924.76 27 1990.82 29.0 5
R104 1177.88 15 1190.59 15.0 5 1632.43 24 1711.13 25.6 5
R105 1421.19 16 1433.05 16.4 5 1848.76 25 1913.50 26.6 5
R106 1361.02 16 1365.95 16.2 5 1882.07 27 1959.79 28.4 5
R107 1235.15 16 1245.09 16.0 5 1830.08 26 1861.37 27.2 5
R108 1187.36 15 1193.28 15.0 5 1565.98 22 1622.82 23.0 5
R109 1307.25 17 1316.19 16.4 5 1750.73 25 1835.34 26.0 5
R110 1246.99 15 1253.13 15.0 5 1741.20 25 1779.37 26.6 5
R111 1236.23 17 1244.99 16.2 5 1803.39 26 1833.50 26.4 5
R112 1182.72 15 1191.47 15.6 5 1323.48 17 1329.28 17.0 5

RC101 1805.40 19 1828.30 19.0 5 2304.70 26 2398.29 28.6 5
RC102 1746.02 18 1759.63 18.2 5 - - - - 0
RC103 1637.38 18 1641.92 18.0 5 2161.58 25 2319.11 28.0 5
RC104 1582.81 18 1583.46 18.0 5 1884.44 22 1963.69 22.8 5
RC105 1752.66 19 1759.14 18.4 5 2291.55 28 2367.93 29.0 2
RC106 1750.52 19 1764.37 18.8 5 2249.39 29 2266.68 28.0 3
RC107 1615.05 18 1618.37 18.0 5 1911.32 21 1980.79 22.8 5
RC108 1581.78 18 1587.03 18.0 5 1706.06 20 1737.62 19.4 5
C201 777.48 6 777.48 6.0 5 781.76 7 781.76 7.0 5
C202 718.69 6 724.85 6.0 5 913.97 7 914.23 7.0 5
C203 700.20 6 711.06 6.0 5 949.71 8 949.71 8.0 5
C204 695.12 6 698.17 6.0 5 966.98 7 977.18 7.2 5
C205 767.55 7 770.21 6.8 5 755.45 7 755.45 7.0 5
C206 747.14 6 750.42 6.0 5 796.57 7 797.31 7.0 5
C207 746.62 6 748.66 6.0 5 786.64 7 788.08 7.0 5
C208 741.58 6 742.09 6.0 5 820.57 8 828.71 7.8 5
R201 1272.47 4 1287.21 4.2 5 1403.33 8 1444.78 9.0 5
R202 1272.72 4 1278.20 4.2 5 1400.45 6 1452.05 6.6 5
R203 966.35 5 976.30 4.2 5 1140.24 6 1162.86 6.0 5
R204 779.22 3 787.31 3.6 5 1018.57 5 1027.23 5.8 5
R205 1074.75 5 1089.24 4.6 5 1141.30 8 1163.15 7.2 5
R206 944.58 4 962.93 4.2 5 1018.97 6 1034.26 6.0 5
R207 849.64 4 862.07 4.0 5 981.61 6 993.27 6.0 5
R208 735.49 4 738.52 3.8 5 905.53 4 912.03 4.6 5
R209 944.06 3 961.83 3.6 5 1050.79 6 1127.31 6.8 5
R210 985.66 4 1001.98 4.2 5 1149.92 7 1178.50 7.0 5
R211 772.99 5 779.80 4.2 5 891.09 6 900.95 6.6 5

RC201 1424.18 5 1459.26 5.2 5 1637.82 9 1690.93 9.8 5
RC202 1171.86 4 1196.66 4.4 5 1423.40 8 1508.23 9.4 5
RC203 1108.21 4 1150.94 5.0 5 1441.46 6 1485.27 8.2 5
RC204 806.44 4 809.59 4.2 5 1076.24 7 1082.30 6.8 5
RC205 1321.64 4 1354.18 4.6 5 1543.24 11 1585.42 10.4 5
RC206 1325.01 5 1385.87 5.4 5 1493.13 9 1554.81 9.8 5
RC207 1042.03 4 1050.24 4.6 5 1185.78 8 1228.64 8.2 5
RC208 803.59 4 818.23 4.0 5 1001.06 6 1060.34 7.0 5

Table 5.5: Results on new instances, κ = 0 and κ = 0.25
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κ = 0.5 κ = 0.75
instance best average #feas best average #feasdist #trips dist #trips dist #trips dist #trips

C101 1579.19 22 1584.99 21.8 5 1591.91 22 1611.34 22.2 5
C102 1746.59 22 1774.92 22.4 5 1766.15 22 1793.42 22.2 5
C103 1842.84 24 1889.73 23.6 5 1900.10 23 1920.27 24.5 4
C104 1773.04 21 1814.93 21.8 5 1805.55 20 1890.63 21.8 5
C105 1603.96 22 1637.48 22.0 4 1600.94 21 1633.32 21.4 5
C106 1587.25 22 1605.18 21.8 5 1663.38 22 1695.00 21.8 5
C107 1518.75 20 1529.53 20.0 5 1538.41 20 1547.13 20.0 5
C108 1556.50 20 1662.16 21.4 5 1546.53 20 1569.45 20.2 5
C109 1506.85 20 1541.79 20.0 5 1512.26 20 1521.20 20.2 5
R101 2135.93 32 2236.49 33.0 5 2372.83 35 2372.83 35.0 1
R102 2102.70 31 2120.94 32.0 2 - - - - 0
R103 1879.98 27 1959.64 28.6 5 - - - - 0
R104 1637.50 22 1680.34 23.8 5 - - - - 0
R105 1964.79 27 1987.37 28.6 5 2046.53 31 2135.91 32.0 2
R106 1900.14 28 1964.97 28.6 5 2043.12 30 2043.12 30.0 1
R107 1853.74 27 1888.95 27.6 5 - - - - 0
R108 1562.17 22 1618.08 23.2 5 - - - - 0
R109 1730.47 24 1819.57 26.0 5 1898.65 28 1898.65 28.0 1
R110 1682.08 24 1756.21 25.8 5 - - - - 0
R111 1784.27 26 1884.33 27.6 5 - - - - 0
R112 1320.07 17 1332.57 17.4 5 1540.39 23 1612.44 24.8 4

RC101 2484.09 30 2484.09 30.0 1 - - - - 0
RC102 - - - - 0 - - - - 0
RC103 2194.26 25 2270.77 26.8 5 - - - - 0
RC104 1896.29 22 1930.99 22.6 5 2175.03 27 2214.98 27.3 4
RC105 - - - - 0 - - - - 0
RC106 - - - - 0 - - - - 0
RC107 1918.73 21 2024.90 24.0 5 2249.07 28 2290.20 28.6 5
RC108 1718.04 19 1728.73 19.4 5 1985.12 24 2014.37 25.5 2
C201 788.37 7 788.37 7.0 5 815.58 6 815.58 6.0 5
C202 913.66 7 914.14 7.0 5 913.66 7 915.58 7.0 5
C203 952.09 8 962.94 8.0 5 952.46 8 952.47 8.0 5
C204 967.23 7 975.28 7.0 5 976.79 7 982.89 7.0 5
C205 762.06 7 762.06 7.0 5 778.45 6 778.45 6.0 5
C206 796.57 7 797.32 7.0 5 813.52 6 813.52 6.0 5
C207 784.22 7 789.49 7.0 5 805.76 6 806.23 6.2 5
C208 817.35 8 824.63 8.0 5 833.46 8 841.61 7.6 5
R201 1443.84 10 1464.64 8.6 5 1430.19 9 1455.41 8.6 5
R202 1425.40 9 1452.19 8.3 4 1452.75 9 1481.26 8.3 3
R203 1214.24 7 1242.41 7.6 5 1255.53 8 1287.27 8.6 5
R204 990.54 6 1022.97 5.8 5 987.98 6 1028.77 6.0 5
R205 1183.48 8 1256.04 9.2 5 1242.05 9 1266.00 9.0 5
R206 1069.98 7 1113.78 8.2 5 1111.86 8 1160.79 8.2 5
R207 1004.76 6 1032.92 6.8 5 1034.82 7 1054.83 6.8 5
R208 905.90 4 920.82 4.6 5 910.47 5 944.81 5.6 5
R209 1188.91 9 1237.35 9.6 5 1320.07 9 1327.13 9.3 3
R210 1228.73 9 1288.66 8.4 5 1268.23 8 1338.17 9.2 5
R211 902.45 6 910.85 6.6 5 1074.15 8 1114.96 7.8 5

RC201 1677.63 10 1784.00 11.8 5 1796.39 10 1874.02 11.4 5
RC202 1427.31 10 1522.27 10.6 5 1539.80 13 1599.26 12.2 5
RC203 1464.58 8 1480.79 8.8 4 1488.91 9 1493.40 9.0 2
RC204 1084.93 7 1086.09 7.0 5 1103.65 7 1123.24 7.2 5
RC205 1695.25 11 1734.99 11.4 5 1777.28 12 1808.49 11.4 5
RC206 1445.43 9 1575.79 9.0 5 1493.88 9 1594.45 9.2 5
RC207 1163.13 8 1328.49 9.6 5 1449.89 11 1502.53 10.6 5
RC208 1107.69 8 1122.44 7.6 5 1297.58 9 1304.99 8.5 2

Table 5.6: Results on new instances, κ = 0.5 and κ = 0.75
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Instance Group
best average % feas tight rigiditydist #trips dist #trips

κ = 0
C1 1526.76 20.33 1586.09 20.76 100 0.00 0.48
R1 1317.85 16.50 1326.11 16.37 100 0.00 0.36
RC1 1683.95 18.38 1692.78 18.30 100 0.00 0.38
C2 736.80 6.13 740.37 6.10 100 0.00 0.40
R2 963.45 4.09 975.04 4.07 100 0.00 0.30
RC2 1125.37 4.25 1153.12 4.68 100 0.00 0.35

κ = 0.25
C1 1618.03 21.11 1651.45 21.36 100 0.16 0.61
R1 1794.89 25.58 1845.37 26.64 95.0 0.22 0.54
RC1 2072.72 24.43 2147.73 25.51 75.0 0.20 0.53
C2 846.45 7.25 849.05 7.25 100 0.23 0.59
R2 1100.16 6.18 1126.94 6.51 100 0.27 0.54
RC2 1350.27 8.00 1399.49 8.70 100 0.21 0.53

κ = 0.5
C1 1635.00 21.44 1671.19 21.64 97.8 0.20 0.64
R1 1796.15 25.58 1854.12 26.85 95.0 0.23 0.55
RC1 2042.28 23.40 2087.90 24.56 52.5 0.21 0.54
C2 847.69 7.25 851.78 7.25 100 0.27 0.62
R2 1141.66 7.36 1176.60 7.60 98.2 0.31 0.57
RC2 1383.24 8.88 1454.36 9.47 97.5 0.28 0.58

κ = 0.75
C1 1658.36 21.11 1686.86 21.59 97.8 0.24 0.66
R1 1980.30 29.40 2012.59 29.95 15.0 0.29 0.59
RC1 2136.41 26.33 2173.18 27.12 27.5 0.28 0.58
C2 861.21 6.75 863.29 6.73 100 0.31 0.65
R2 1189.83 7.82 1223.58 7.95 92.7 0.37 0.61
RC2 1493.42 10.00 1537.55 9.94 85.0 0.34 0.62

Table 5.7: Statistics on new instances
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by the algorithm decreases. On the other side, there is no evident punctual correlation be-
tween rigidity and tightness, and the results obtained on a specific instance: for example
instance R103 with κ = 0.25 has higher tightness and rigidity than instance RC102 (see
Table 5.2), but 5 feasible solutions out of 5 runs are found for the former, while none for the
latter.

Robustness of procedure ACAF is proved by the small differences between best values
and average values reported in Tables 5.5–5.6 and in Table 5.7.

5.5.5 Comparison with Hernandez et al. [105]

To evaluate the performance of ACAF , we run the procedure on instances generated by Her-
nandez et al. [105] for the MTVRP with TW. These instances are generated from Solomon’s
instances in groups C2, R2, RC2, considering the first 25 customers and M fixed to 2, and
the first 50 customers andM = 4. Vehicle capacity is fixed to 100, loading time at the depot
is trip dependent and in particular it is 0.2 times the sum of service times at customers in
the trip. Travel times are the Euclidean distances rounded to the first decimal. Limitation
into the number of customers is due to the exact nature of the algorithm proposed by Her-
nandez et al. [105]. Due to the heuristic nature of our algorithm, we consider as well the
instances with all the 100 customers. Following the instance generation system of Hernandez
et al. [105], we double the number of available vehicles used for instances with 50 customers.
Then, 8 vehicles are available to serve the 100 customers.

Instances in groups C1, R1 and RC1 are not considered by Hernandez et al. [105] due to
short time horizon that, in their opinion, would not allow vehicles to perform different trips.

ACAF is run five times on each instance and it is stopped after 1 minute on instances with
25 customers and after 5 minutes on instances with 50 customers and with 100 customers.
Results are reported in Tables 5.8–5.10.

The first column reports the instance name, columns HRN report the optimal value
(column opt) found by Hernandez et al. [105]. A blank indicates they could not find the
optimal solution. In some cases their algorithm provides a feasible solution which value is
indicated in column feas.

Columns best report the travelled distance (dist) and the number of trips (# trips) that
characterize the best solution found by ACAF in the five runs. Columns average indicate
average values over the five runs. Bold numbers indicate the best known solution has been
improved by ACAF (we omitted the bold font when no solution value was available). Finally,
column # opt reports the number of runs ACAF finds the optimal solution on the five runs.
A dash is reported when the optimal value is not available.

It can be observed that on small instances ACAF finds the optimal solution on all the five
runs for 23 out of 25 instances. It fails to find the optimal solution on only 2 runs in total,
one for instance C201 and one for instance RC206. The average gap from the optimal value
is respectively 0.079% and 0.003%. Moreover, a new best solution is obtained for instance
RC204. On instances with 50 customers, our procedure fails to find the optimal solution
only for instance RC202, while in the other four cases the optimal solution is retrieved 14
times out of 20 runs. 8 instances on the 9 with a feasible known solution are improved,
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Instance HRN best average #optopt feas dist # trips dist # trips
C201 380.8 380.8 3 381.10 5.4 4
C202 368.6 368.6 5 368.60 5.0 5
C203 361.7 361.7 5 361.70 5.0 5
C204 358.8 358.8 5 358.80 5.0 5
C205 377.2 377.2 5 377.20 5.0 5
C206 367.2 367.2 5 367.20 5.0 5
C207 359.1 359.1 5 359.10 5.0 5
C208 360.9 360.9 5 360.90 5.0 5
R201 554.6 554.6 4 554.60 4.0 5
R202 485.0 485.0 4 485.00 4.0 5
R203 444.2 444.2 4 444.20 4.0 5
R204 407.5 407.5 4 407.50 4.0 5
R205 448.4 448.4 4 448.40 4.0 5
R206 413.9 413.9 4 413.90 4.0 5
R207 400.1 400.1 4 400.10 4.0 5
R208 394.3 394.3 4 394.30 4.0 5
R209 418.3 418.3 4 418.30 4.0 5
R210 448.3 448.3 4 448.30 4.0 5
R211 400.1 400.1 4 400.10 4.0 5
RC201 660.0 660.0 6 660.00 6.0 5
RC202 596.8 596.8 6 596.80 6.0 5
RC203 530.1 530.1 6 530.10 6.0 5
RC204 520.3 518.0 6 518.00 6.0 -
RC205 605.3 605.3 6 605.30 6.0 5
RC206 575.1 575.1 6 575.12 6.0 4
RC207 528.2 528.2 6 528.20 6.0 5
RC208 506.4 506.4 6 506.40 6.0 -

Table 5.8: Results on Hernandez et al. [105] instances with N = 25 and M = 2
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Instance HRN best average #optopt feas dist # trips dist # trips
C201 717.9 714.2 10 714.20 10.0 -
C202 701.9 700.1 9 700.38 9.0 -
C203 688.0 9 689.34 9.0 -
C204 685.1 9 685.10 9.0 -
C205 706.6 700.0 9 703.52 9.8 -
C206 694.6 9 696.92 9.2 -
C207 689.7 9 690.38 9.0 -
C208 688.6 9 688.60 9.0 -
R201 909.8 909.8 9 917.08 9.0 1
R202 816.0 816.0 8 816.00 8.0 5
R203 742.4 8 743.40 8.0 -
R204 702.3 8 704.38 8.0 -
R205 807.3 807.3 8 808.74 8.0 3
R206 767.6 758.2 8 760.96 8.0 -
R207 715.7 8 715.70 8.0 -
R208 699.6 8 700.60 8.0 -
R209 749.6 746.0 8 746.00 8.0 -
R210 777.2 8 779.22 8.0 -
R211 717.4 8 722.02 8.0 -
RC201 1096.6 1096.6 10 1096.60 10.0 5
RC202 1001.6 1038.6 10 1038.60 10.0 0
RC203 945.8 941.2 10 941.20 10.0 -
RC204 915.9 915.9 10 915.90 10.0 -
RC205 1065.4 1058.7 10 1058.70 10.0 -
RC206 1027.4 11 1032.12 10.8 -
RC207 944.8 941.7 10 941.70 10.0 -
RC208 916.8 10 916.80 10.0 -

Table 5.9: Results on Hernandez et al. [105] instances with N = 50 and M = 4
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Instance best average
dist # trips dist # trips

C201 1488.9 19 1500.22 19.2
C202 1479.3 19 1486.94 19.0
C203 1467.3 19 1471.20 19.0
C204 1453.6 19 1455.46 19.0
C205 1477.1 19 1483.04 19.0
C206 1464.7 19 1473.38 19.0
C207 1464.2 19 1470.36 19.0
C208 1459.4 19 1465.86 19.0
R201 1449.7 16 1464.32 15.8
R202 1343.3 16 1352.70 15.8
R203 1222.2 15 1232.50 15.4
R204 1165.6 15 1172.54 15.0
R205 1292.2 15 1315.08 15.6
R206 1239.9 15 1249.76 15.4
R207 1194.3 15 1200.76 15.0
R208 1159.8 15 1164.56 15.0
R209 1234.5 16 1248.42 15.4
R210 1247.5 15 1253.24 15.6
R211 1170.5 15 1182.38 15.0
RC201 1843.6 18 1862.40 18.8
RC202 1733.9 18 1740.34 18.2
RC203 1618.6 18 1624.24 18.2
RC204 1579.1 18 1581.36 18.0
RC205 1759.8 18 1776.68 18.0
RC206 1731.1 18 1747.24 18.0
RC207 1656.7 18 1662.96 18.0
RC208 1580.9 18 1585.44 18.0

Table 5.10: Results on instances with N = 100 and M = 8 created as in Hernandez et
al. [105]
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while in the remaining case a same-cost solution is got. The average percentage gap from
the optimal value is 0.03%. Feasible solutions are found for all the instances, included those
with all 100 customers.

5.6 Conclusions and perspectives

In this paper we introduced a new problem, the Multi Trip Vehicle Routing Problem with
Time Windows and Release Dates. It raises in city logistics context, where trucks deliver
goods to city distribution centers (CDC) before they are delivered to final customers by
eco-friendly vans. Optimization of van trips depends on the truck delivery plan to the CDC.
Trucks arrive during the whole day, continuously bringing goods into the distribution system.
Arrival of trucks to CDC is modelled associating a release date with each merchandise. It
represents the moment the merchandise itself becomes available for final delivery.

We introduced a new set of instances on which we run the memetic algorithm we de-
veloped. Moreover, we run the algorithm on instances for the Multi Trip Vehicle Routing
Problem with Time Windows for performance evaluation purposes. Results show the effi-
ciency of our procedure.

An efficient labelling procedure is proposed to turn permutation of customers into solution
that is an adaptation of the procedure proposed by Prins [166] for the VRP. It is designed
for the MTVRPTWR case, but it can be used in the MTVRPTW context as well.

Associating a release date with each merchandise implicitly suppose the arrival of each
truck to the depot is known in advance, at least before the operational planning is computed.
Communication and organization between carriers and the management center is needed.
Future studies could introduce some dynamism in the problem, considering part of the goods
or the whole merchandise to arrive at the depot with no advanced notice. Optimization
procedure needs to react to these events, reorganizing the planning quickly and efficiently.
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Chapter 6

An Iterated Local Search for the Multi
Commodity Multi Trip Vehicle Routing
Problem with Time Windows

Abstract

The Multi Commodity Multi-Trip Vehicle Routing Problem with Time Windows calls for the
determination of a routing planning to serve a set of customers that require products belonging
to incompatible commodities. Two commodities are incompatible if they cannot be transported
together into the same vehicle. Vehicles are allowed to perform several trips during the working
day. The objective is to minimize the number of used vehicles.

We propose an Iterated Local Search that outperforms the previous algorithm designed for the
problem. Moreover, we conduct an analysis on the benefit that can be obtained introducing the
multi-trip aspect at the fleet dimensioning level. Results on classical VRPTW instances show that,
in some cases, the fleet can be halved.

6.1 Introduction

The well known Vehicle Routing Problem (VRP) (Toth and Vigo [204] and Golden et al. [90])
is an NP-hard combinatorial optimization problem where a set of geographically scattered
customers has to be served by a fleet of vehicles. An implicit assumption of the VRP is that
each vehicle can perform only one route in the planning horizon. Several practical situations
allow vehicles to perform several trips during the working day. The problem that arises is
the Multi Trip VRP (MTVRP), (Cattaruzza et al. [33], Olivera and Viera [156], Mingozzi
et al. [140]).

This paper studies a variant of the MTVRP, where different commodities need to to
be delivered to customers. Commodities are incompatible, i.e., they cannot be transported
together into the same vehicle. On the other hand, the vehicles can transport different
commodities in different trips.

The problem has been introduced by Battarra et al. [17] and called the Minimum Mul-
tiple Trip Vehicle Routing Problem (MMTVRP). The study was motivated by a real-world
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application, where a set of supermarkets requires deliveries of different commodities. To the
best of our knowledge, no further study has been done on the MMTVRP.

Classical routing problems implicitly deal with different commodities. In particular, when
vehicles can transport only one commodity, the problem is split in several sub-problems, one
for each commodity, where a set of dedicated vehicles is available for the deliveries. On
the other hand, if vehicles can carry different commodities at the same time, customer’s
demands of all commodity are collapsed into a single value, that represents its total request.
Moreover, demands of different commodities are normalized into vehicle capacity units. As
a consequence the resulting problem is a single-commodity VRP. Recently Archetti et al. [7]
introduced a variant of the Split-Delivery VRP (SDVRP) where multiple customer visits are
allowed only if the customer requires different commodities. In this case, commodities need
to be considered explicitly.

In this paper we propose an effective Iterated Local Search (ILS) to solve the MMTVRP
and a procedure AdSplit that turns permutations of customers into solutions. Moreover, a
study is conducted on the benefit of introducing the multi-trip aspect in fleet dimensioning
problems.

The paper is organized as follows. The problem and the notation are introduced in
Section 6.2. Section 6.3 describes the ILS algorithm, while Section 6.4 presents the AdSplit
procedure. Finally, Section 6.5 presents the results and Section 6.6 draws some conclusions.

6.2 Problem definition and notation

The problem we consider has been introduced by Battarra et al. [17] and arises in the
distribution of merchandise to supermarkets. The main characteristics of the problem are
the presence of time windows (TW) and the fact that goods belong to different commodities
which cannot be transported in the same vehicle at the same time. Overtime is not allowed.
Moreover, the number of used vehicles is a variable that needs to be minimized. This problem
has been called by Battarra et al. [17] the Minimum Multiple Trip Vehicle Routing Problem
(MMTVRP).

More precisely, the MMTVRP can be defined on a complete undirected graph G = (V,E),
where V = {0, . . . , N} is the set of vertices and E = {(i, j)|i, j ∈ V, i < j} the set of edges.
Vertex 0 represents the depot and vertices 1, . . . , N the customers. A set of commodities B
has to be delivered to the set of customers. Commodities are incompatible with each other,
that means they cannot be transported together in the same vehicle. Therefore, it can be
supposed that each customer requires only one commodity: if a customer requires more than
one commodity, it can be replicated as many times as the number of commodities he requires,
associating with each replication one commodity and the corresponding quantity to deliver.
Hence, each customer i requires a quantity Qi of the commodity bi to be delivered during a
TW indicated by [Ei, Li]. Vehicles are allowed to arrive at the location of each customer i
before the corresponding Ei and wait until Ei to start service. Service at customer takes Si
time units.

A homogeneous fleet of vehicles is located at the depot. Vehicles have a fixed capacity
Qb that depends on the commodity b. Moreover, the depot is open during the time interval
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[E0b, L0b]. The loading time S0b at the depot is given by the sum of two terms. The first
is a constant time S0. The second is a trip-dependent value equal to a constant time Sb
multiplied by the quantity of commodity b transported in the trip. Vehicles cannot operate
longer than a given spread time ST , while the total duration of each trip must not exceed a
spread time STb dependent on the transported commodity. Also routing costs depend on the
transported commodity throughout cost Cb for each kilometer travelled. Finally, covering
the distance Dij that separates each pair of vertices i, j requires Tij time units. Travelling
times and distances do not coincide.

The set of trips assigned to the same vehicle is called journey. The MMTVRP calls for
the determination of a set of trips and an assignment of each trip to a vehicle that minimizes
the number of used vehicles (i.e., journeys) and, in case of ties, minimizes the routing cost.
Moreover, it satisfies the following conditions:

(1) each trip starts and ends at the depot;

(2) a single commodity is delivered along each trip;

(3) each trip transporting commodity b starts not earlier than E0b and ends not later than
L0b;

(4) trips assigned to the same vehicle do not overlap in time;

(5) each customer is served exactly once;

(6) service at customer i must start in the range [Ei, Li];

(7) the sum of the demands of the customers in any trip delivering commodity b does not
exceed Qb;

(8) each trip takes less than STb when delivering commodity b;

(9) each journey takes no longer than ST .

To simplify notation, the letter v will be used to indicate both the journey and the
vehicle that performs it. When confusion can arise, details will be given. A solution will be
indicated by the Greek letter ξ, while a trip by the letter σ. To indicate that journey v is
part of the solution ξ, we will use v ∈ ξ. Analogously, σ ∈ v indicates that trip σ is assigned
to journey v. Tv indicates the duration of a journey v, while T (σ) indicates the duration
of trip σ. The duration of a trip (resp. journey) is defined as the difference between the
moment the vehicle that performs it (resp. the last trip in it) is back at the depot and the
moment loading operations for the trip (resp. first trip in the journey) start.

6.3 Algorithm

The only algorithm for the MMTVRP that we are aware of, has been proposed by Battarra
et al. [17]. In this work a two-step heuristic is repeated in an iterated manner. The first step
creates a set of trips generated by means of a heuristic for the VRP with time windows. The
second step combines the obtained trips into feasible journeys and obtains a solution. The
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creation of trips makes use of a guidance mechanism. It penalizes the creation of numerous
trips that overlap the same time interval and the creation of long-lasting trips. These trips
do not facilitate the packing step.

In this section we present the iterated local search (ILS) procedure for the MMTVRP.
The general scheme of any ILS is presented in Algorithm 6 (Lourenço et al. [135]).

Algorithm 6 General Iterated Local Search scheme
1: Create a solution ξ0
2: Apply LS to ξ0 and obtain ξ∗
3: while Termination criteria are not met do
4: Perturb ξ∗ to obtain ξ′

5: Apply LS to ξ′ and obtain ξ′∗
6: if ξ∗′ is accepted then
7: ξ∗ = ξ∗

′

8: end if
9: end while

An initial solution ξ0 is generated and improved by a local search (LS) procedure. The
local optimum that is obtained is indicated by ξ∗. The following steps are repeated, until
predetermined termination criteria are not met. The solution ξ∗ is perturbed (modified) and
a new current solution ξ′ is obtained. The LS is applied to ξ′ and a solution ξ∗′ is obtained. If
ξ∗
′ is accepted (for example, based on its quality) it becomes the new current local optimum

ξ∗.

Perturbation plays a key role in the diversification of the search: small perturbations
are likely to create a ξ′ that falls back into ξ∗ after LS is applied, resulting in an inefficient
exploration of the search space. On the other hand, large perturbations make the ILS
comparable to a multi-start algorithm.

Our ILS, indicated with AILS, manages permutations Ψ of the N customers, usually
called giant tour in the literature. Initially, a permutation Ψ0 is created as explained in
Section 6.3.2 and the number of vehicles M is set to a valid upper bound, for example to N .

The initial solution ξ0 is obtained from the giant tour Ψ0 by the AdSplit procedure
(see Section 6.4). A first local optimum ξ∗ is obtained by applying LS (Section 6.3.3). If
ξ∗ is not feasible, it undergoes the Repair procedure (Section 6.3.4). At each step, the
current ξ∗ is perturbed in order to obtain solution ξ′ . A perturbation consists in crossing the
permutation Ψ∗ associated with ξ∗, with another permutation Ψ1. The resulting permutation
Ψ′ undergoes AdSplit and ξ′ is obtained. A new local minimum ξ

′∗ is obtained by applying
LS and, if needed, the Repair procedure. LetM(ξ) and D(ξ) indicate the number of vehicles
and the routing cost of the solution ξ. If ξ′∗ uses of less vehicles than ξ∗ or ifM(ξ′∗) = M(ξ∗)
and D(ξ′∗) < D(ξ∗), then ξ′∗ is accepted and becomes the current ξ∗.

The AILS algorithm is illustrated in Algorithm 7. We now explain in details the various
steps of the algorithm.
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Algorithm 7 AILS
1: M = N , M(ξ∗) = N , D(ξ∗) =∞
2: Create a permutation Ψ0
3: Apply AdSplit to Ψ0 to obtain ξ0
4: Apply LS to ξ0 and obtain ξ∗
5: if ξ∗ is not feasible then
6: Repair ξ∗
7: end if
8: while Termination criteria are not met do
9: Create a permutation Ψ1

10: Cross Ψ1 with Ψ∗ to obtain Ψ′

11: Apply AdSplit to Ψ′ to obtain ξ′

12: Apply LS to ξ′ and obtain ξ′∗
13: if ξ′∗ is not feasible then
14: Repair ξ′∗
15: end if
16: if

(
M(ξ′∗) < M(ξ∗)

)
or
(
M(ξ′∗) = M(ξ∗) ∧D(ξ′∗) < D(ξ∗)

)
then

17: Set ξ∗ = ξ
′∗, Ψ∗ = Ψ′∗, M = M(ξ′∗)

18: end if
19: end while

6.3.1 Objective function and search space

The strategic nature of the problem requires the minimization of the number of vehicles
used, breaking ties in favor of solutions with lower routing cost. During the search phase,
infeasibility with respect to time window and spread time violations is allowed. Given a
solution ξ, time window violation is denoted TW (ξ), and spread time violation ST (ξ). The
violation of the TW is calculated as proposed by Nagata et al. [145]. When a vehicle arrives
late at a customer location, it is allowed to drive back in time in order to meet the TW. A
penalization proportional to the late arrival is added to the objective function. Precisely, let
tξi be the arrival time at customer i in solution ξ. Then,

TW (ξ) =
∑
i∈V
tξi>Li

Li − tξi .

Analogously, the spread time violation is calculated as the maximum between 0 and the
difference between trip (resp. journey) duration and STb (resp. ST ). Precisely,

ST (ξ) =
∑
v∈ξ

Tv>ST

(Tv − ST ) +
∑
v∈ξ

∑
σ∈v

T (σ)>STbσ

(STbσ − T (σ))

where bσ is the commodity transported in trip σ. Capacity constraints are always respected
and each trip transports only one commodity.

The cost c(ξ) of a solution ξ is defined as:

c(ξ) = αM(ξ) +D(ξ) + T (ξ) + θTW (ξ) +$ST (ξ) (6.1)

where θ and $ are the penalization factors, while α is a coefficient that represents the cost
of using a vehicle.
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Note that in our problem, trips are packed into vehicles with respect to the time dimen-
sion, but solutions are evaluated by considering the number of vehicles used and the routing
cost. Note also that a higher routing cost can correspond to a shorter trip duration due,
for example, to the reduction of waiting times. Shorter trips in terms of duration, are more
suitable in terms of journey packaging and consequently can lead to a solution that makes
use of a smaller fleet. Hence, including the term T (ξ) in the solution cost may help driving
the search towards solutions with a balance between routing cost and duration.

6.3.2 Giant tour creation

This section introduces the procedure CommodityCreate that creates the permutation Ψ at
steps 2 and 9 of Algorithm 7. Such permutation is initialized with a randomly selected
customer i whose demand is stored in Q̃, i.e., Q̃ = Qi. The next customer z is selected as

z = arg min
j:bj=bi

Ei+Si+Tij≤Lj

{Lj − Ei − Si − Tij}. (6.2)

If such customer z exists and Q̃ + Qz ≤ Qbz is respected (i.e., the vehicle capacity is not
violated), z is inserted as the next customer in Ψ, otherwise another customer is randomly
chosen, Q̃ is set to zero and the procedure is repeated until all the customers are in Ψ.

We observe that procedure CommodityCreate (by Equation (6.2)), tries to concatenate
sequences of customers that can be transported into the same trip, taking into account time
windows and capacity constraints. Procedure AdSplit (see Section 6.4) turns a permutation
Ψ into a solution by splitting it into trips that are assigned to vehicles. We experimentally
found that procedure CommodityCreate creates permutations that can be better split by
AdSplit than randomly constructed permutations. This is illustrated by the results reported
in Table 6.1, where CommodityCreate is compared with RndCreate that randomly creates a
permutation on the real-world instances described in Section 6.5.2. For each test instance,
100 giant tours are generated with each procedure and evaluated by means of AdSplit. In
Table 6.1 average results over the 100 giant tours are reported, time expressed in milliseconds.
It can be noticed that CommodityCreate creates a giant tour that on average provides a
better solution once evaluated by AdSplit. In addition, although it takes more than twice
the computational time used by RndCreate, in both cases CPU times are in the order of
milliseconds. Gap values are calculated as the difference between the values obtained by
CommodityCreate and RndCreate, divided by the value obtained by RndCreate.

6.3.3 Local Search

Each time a giant tour is created, a solution ξ is obtained from it by means of the AdSplit
procedure (detailed in Section 6.4). The LS is then applied to ξ in order to obtain a better
quality solution.

The LS procedure considers four classical moves used in the VRP context: relocation,
swap, 2-opt and 2-opt∗ (see, e.g., Prins [166]). Moreover, swaps between sequences of cus-
tomers of different sizes are implemented. We do not limit the size of the segments due to
the restricted capacity of the vehicles that allow few deliveries per trip, hence reducing the

Page 146 EMSE-CMP Diego Cattaruzza



6.3. ALGORITHM

RndCreate CommodityCreate
value value gap

day cost time (ms) cost time (ms) cost time (ms)
1 45574100 4.36 44040300 11.39 -3.4% 161.2%
2 62313900 5.93 57854900 13.26 -7.2% 123.6%
3 47121500 4.68 45028800 12.64 -4.4% 170.1%
4 61398600 5.30 57709900 14.97 -6.0% 182.5%
5 63003400 5.93 57801500 12.94 -8.3% 118.2%
6 21381300 3.12 18811100 6.86 -12.0% 119.9%

Table 6.1: Comparison of the procedures for the creation of the initial permutation

number of segments of each trip. Finally, relocation and swap of trips among vehicles are
implemented. These moves exploit the peculiar characteristic of the problem of allowing
vehicles to perform several trips. Moves are evaluated according to Equation (6.1).

As already mentioned, time windows violation is calculated as proposed by Nagata et
al. [145]: when a vehicle arrives late at customer location, it is allowed to drive back in time
in order to meet the time window. A penalization proportional to the late arrival is added
into the objective function. This penalization scheme has been extended by Vidal et al. [214].
In particular, inter- and intra-route moves are considered as a concatenation of segments.
Segments can start or end with a depot. The concatenation operator will be indicated by
the sign ⊕. For example, swapping customer wi in trip (0, w1, . . . , wn1 , 0) with customer uj
in trip (0, u1, . . . , un2 , 0) can be viewed as (0, w1, . . . , wi−1) ⊕ (uj) ⊕ (wi+1, . . . , wn1 , 0) and
(0, u1, . . . , uj−1)⊕ (wi)⊕ (uj+1, . . . , un2 , 0).

Let ρ1 = (v1
1, . . . , v

1
n1) and ρ2 = (v2

1, . . . , v
2
n2) be two segments. We suppose the customers

in ρ1 and ρ2 require the same commodity bρ1 . Vidal et al. [214] propose to calculate the
duration T (ρ1 ⊕ ρ2), the time windows violation TW (ρ1 ⊕ ρ2), the earliest E(ρ1 ⊕ ρ2) and
the latest L(ρ1 ⊕ ρ2) departure times from the location of the first customer in ρ1, which
correspond to the minimum values of T (ρ1⊕ρ2) and TW (ρ1⊕ρ2), the routing cost D(ρ1⊕ρ2)
and the total demand Q(ρ1 ⊕ ρ2) as follows1:

T (ρ1 ⊕ ρ2) = T (ρ2) + T (ρ1) + Tv1
n1 ,v

2
1

+ ∆WT ; (6.3)
TW (ρ1 ⊕ ρ2) = TW (ρ1) + TW (ρ2) + ∆TW ; (6.4)

E(ρ1 ⊕ ρ2) = max {E(ρ2)−∆, E(ρ1)} −∆WT ; (6.5)
L(ρ1 ⊕ ρ2) = min {L(ρ2)−∆, L(ρ1)}+ ∆TW ; (6.6)
D(ρ1 ⊕ ρ2) = D(ρ1) +D(ρ2) + Cbρ1

Dv1
n1 ,v

2
1
; (6.7)

Q(ρ1 ⊕ ρ2) = Q(ρ1) +Q(ρ2) (6.8)

where

∆ = T (ρ1)− TW (ρ1) + Tv1
n1 ,v

2
1
;

∆WT = max {E(ρ2)−∆− L(ρ1), 0} ;
1To be precise, the equivalent of Equation (6.7) in Vidal et al. [214] refers to the travelled distance and

corresponds to the case where Cb = 1 for all commodities b.

03/2014 EMSE-CMP Page 147



CHAPTER 6. AN ILS FOR THE MULTI COMMODITY MTVRP WITH TW

∆TW = max {E(ρ1) + ∆− L(ρ2), 0} .

Quantities are initialized by setting, for each customer i, T (i) = Si, TW (i) = 0, E(i) =
Ei, L(i) = Li, D(i) = 0 and Q(i) = Qi.

Relations (6.3)–(6.8) are developed for the VRP, where each vehicle performs only one
trip σ. Consequently, the vehicle assigned to σ can leave the depot during the time interval
[E(σ), L(σ)] in order to minimize the trip duration and the TW violation. In problems where
vehicles are allowed to perform several trips as in our case, we do not have the guarantee
that each trip σ can leave the depot during the time interval [E(σ), L(σ)]. This, for example,
happens when the trip σ− that is performed right before σ, by the same vehicle, arrives back
at the depot at tσ− > L(σ). The following relations, (Vidal et al. [214]):

T (ρ)(t) = T (ρ) + max {0, E(ρ)− t} ; (6.9)
TW (ρ)(t) = TW (ρ) + max {0, t− L(ρ)} (6.10)

allow to calculate the segment duration and TW penalization as functions of the exact
starting time t of the segment itself. Moreover, performing a segment ρ takes T (ρ)(t) −
TW (ρ)(t), if the vehicle starts at time t. This allows to calculate arrival times of vehicles at
the depot and then to know when they are ready for a new trip (see Cattaruzza et al. [31]).
Moreover, this relation allows to calculate the spread time violations.

Letm be a particular move considered in the LS. Let suppose thatm involves a trip σ ∈ v.
Variation in the quantities T (σ), TW (σ), E(σ), L(σ), D(σ) and Q(σ) can be calculated in
O(1) using Relations (6.3)–(6.8). Note also that a variation in σ can be propagated to
the following trips. For example an increment in T (σ) can delay the trip completion time
and then delay the start of its subsequent trip σ+, with a possible increment in the TW
penalization TW (σ+). Consequently, the full cost variation due to m can be calculated in
O(|v|) where |v| represents the number of trips assigned to the vehicle v.

Due to the strategic objective of minimizing the fleet, the LS needs to reduce the number
of used vehicles. In order to achieve this, we first detect a vehicle that can presumably be
easily removed, by assigning the customers it has to serve to other vehicles. We, hence,
define the worst-packed vehicle to be the non-empty vehicle v∗ such that

v∗ = arg min
v

∑
σ∈v T (σ)
ST

∏
σ∈v

Q(σ)
Qbσ

(6.11)

where bσ indicates the commodity transported in trip σ. Equation (6.11) selects the vehicle
v∗ which journey does not well exploit the spread time available (by factor

∑
σ∈v T (σ)
ST

) and
which trips do not employ the available capacity (by factor ∏σ∈v

Q(σ)
Qbσ

).

Let ξ be the current solution and c(ξ) be its cost defined as in Equation (6.1). As before,
let m be a particular move considered by the LS and ξm be the solution that is obtained
by implementing m. The cost variation ∆m = c(ξm) − c(ξ) is defined. If m involves v∗, a
quantity equal to α is added (resp. subtracted) to ∆m if at least one customer is added to
(resp. removed from) v∗. This fosters moves that remove customers from v∗ and discourage
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moves that replenish it. This is inspired by the work of Lodi et al. [134] for the multi-
dimensional bin packing problem: in order to reduce the number of used bins, a candidate
bin is detected and tried to be emptied by inserting objects in the other bins.

Initially, each one of the moves listed at the beginning of the section is declared active
and a weight is associated with it. At each step of the LS, vehicle v∗ is determined and a
move M is probabilistically selected based on its weight. The neighbourhood that m defines
is fully explored. If the exploration fails in finding a better solution, the move becomes
inactive and cannot be selected again until the current solution is improved. When all the
moves are inactive the LS terminates. Weights are updated as in Cattaruzza et al. [33].
Once the LS terminates, trips are concatenated one after the other and depots are removed
to obtain a new giant tour Ψ̃.

6.3.4 Repair procedure

When LS terminates, it produces a solution ξ that can be infeasible. In this case, ξ undergoes
the Repair procedure, that tries to obtain from it a feasible solution. First, an infeasible trip
is detected. Then, part of that trip is moved to a new vehicle in order to eliminate its
infeasibility. The operation is repeated until infeasibility is eliminated or the M(ξ∗) vehicles
are used. Due to the need of using a new vehicle for this operation, ξ is repaired only if it
uses of strictly less vehicles than M(ξ∗). Then, LS is reapplied with θ multiplied by 10000
to avoid re-inserting infeasibility in the solution, or to try to eliminate the still present ones.
Computational experiments showed that the spread time is infrequently violated. Hence,
the value of $ is not modified during the Repair procedure.

6.3.5 Crossover

The classical order crossover is used to obtain a new permutation Ψ from the permutation
Ψ∗ associated with the best solution found so far and a new generated permutation Ψ1. Two
cutting points are randomly determined and all the customers in between in Ψ∗ are copied
in Ψ. It is then completed by circularly sweeping Ψ1 and inserting those customers that
are not yet in Ψ. A simple example is depicted in Figure 6.1 where the cutting points are
denoted by the vertical bars.

i = 4 j = 7
↓ ↓

Ψ∗: 1 2 3 4 5 6 7 8 9 10
Ψ1: 7 5 1 3 2 8 9 4 10 6

Ψ: 2 8 9 4 5 6 7 10 1 3

Figure 6.1: Ordered Crossover

03/2014 EMSE-CMP Page 149



CHAPTER 6. AN ILS FOR THE MULTI COMMODITY MTVRP WITH TW

6.4 AdSplit Procedure

The AdSplit procedure obtains a solution from a permutation Ψ of the N customers. AdSplit
is inspired by the procedure proposed by Prins [166] to obtain a VRP solution from a given
permutation.

AdSplit works on an auxiliary graph H. Its construction is explained in Section 6.4.1.
Then, a path from the starting node 0 to the final node N is selected and each arc (rep-
resenting a trip) is assigned to a vehicle. The selection of the arcs forming the path and
the assignment of trips (arcs) to vehicles is done by a labelling procedure explained in Sec-
tion 6.4.2.

6.4.1 Graph construction

The auxiliary graph is indicated by H = (V ′ , A′). V ′ contains N + 1 nodes indexed from
0 to N . Arc (i, j), i < j, represents a trip σji+1 serving customers from Ψi+1 to Ψj in the
order they are in Ψ, namely, σji+1 = (0,Ψi+1, . . . ,Ψj, 0). Arc (i, j) is added to A′ if customers
Ψk, k = i + 1, . . . , j, require the same commodity b and ∑j

k=i+1Qk ≤ Qb (i.e., the capacity
constraint is respected). With each arc (i, j) is associated the cost

cij = D(σji+1) + T (σji+1) + θTW (σji+1) +$ST (σji+1), (6.12)

given by the sum of the routing cost, the duration, the time window and the spread time
violation penalized by factors θ and $ of trip σji+1. The construction of H is illustrated
on Figure 6.2, on a small example with 5 customers and 2 commodities. White customers
require one commodity, grey customers the other commodity. Data are given in Table 6.2.
θ = 2, Q = 40. To simplify the exposition, the service time at the depot is always considered
null and the spread times are large enough that spread time violations do not occur.

Note that cij is the cost of trip σji+1 as it leaves the depot at t ∈ [E(σji+1), L(σji+1)]. As
a consequence, penalizations due to later departure from the depot cannot be taken into
account by the routing costs cij. These penalizations considered by the labelling procedure
presented in the next section. For example, trip σ2

2 = (0, 2, 0), (that corresponds to arc
(1, 2)) has a cost of c12 = D(σ2

2) + T (σ2
2) + +θTW (σ2

2) + $ST (σ2
2) = 30 + 35 + 0 + 0 = 65.

[E(σ2
2), L(σ2

2)] = [35, 60]. Let suppose that trips σ1
1 and σ2

2 are assigned to the same vehicle.
T (σ1

1) = 15 and [E(σ1
1), L(σ1

1)] = [95, 115]. Hence, the vehicle is back at the depot after
serving customer 1, not earlier than t = 95 + 15 = 110. If the vehicle starts performing trip
σ2

2 at t = 110, it would leave later than L(σ2
2) = 60. This implies a TW violation equal to

50 (applying Equation (6.9)) with an increase in the trip cost equal to 100 (because θ = 2).

200

10 25 65 85 45 652 3 54

100

Figure 6.2: Auxiliary graph H

Page 150 EMSE-CMP Diego Cattaruzza



6.4. ADSPLIT PROCEDURE

Data Distance matrix
Si Qi Ei Li Commodity v0 v1 v2 v3 v4 v5

v0 - 0 0 200 - v0 0 5 15 20 10 15
v1 5 20 100 120 0 v1 5 0 20 20 15 15
v2 5 20 50 75 1 v2 15 20 0 40 20 30
v3 5 20 50 75 1 v3 20 20 40 0 30 10
v4 5 20 50 100 0 v4 10 15 20 30 0 20
v5 5 20 50 100 0 v5 15 15 30 10 20 0

Table 6.2: Data for H in Figure 6.2

6.4.2 Assignment of trips to vehicles

Once H is computed, a solution can be obtained by a path from node 0 to node N , where
each arc represents a trip. Depending on the way trips are assigned to vehicles, different
solutions can be constructed from the same path. We propose a labelling procedure to select
the path and to assign the trips (represented by arcs) to vehicles.

A label Li associated with node i represents a path that goes from node 0 to node i
and the corresponding partial solution that serves customers Ψ1, . . . ,Ψi. Trips serving these
customers are represented by the corresponding arcs in the path. Basically, when a label is
extended with an arc (trip), one new label is created for each possible assignment of this
trip to a vehicle. To do so, as many fields as the best number of vehicles found so far (M)
should be considered in the label definition, to keep information on the trip assignments.
One drawback of this approach would, however, be the very large number of labels generated
ifM is large. In order to deal with this difficulty, we slightly adapt this scheme and introduce
a parameter M̃ to limit the number of simultaneously open vehicles. By open vehicles we
mean that the new trip can only be assigned to these vehicles. Hence, the label definition is
as follows.

A label L is formed by M̃ + 3 fields. The first M̃ fields contain the availability times of
the vehicles at the depot, while fields M̃ + 1, M̃ + 2 and M̃ + 3 contain the total routing
cost, the total TW violation and the total spread time violation. The cost c(L) of a label L
is the cost of the partial solution it represents.

Starting from node 0, labels are extended to the following nodes. In particular a label
Li associated with node i is extended to label Lj associated with node j through arc (i, j),
namely, by assigning trip (Ψi+1, . . . ,Ψj) to a certain vehicle. A predetermined number
M̃(< M) of vehicles are kept open, i.e., trips can be assigned to them. If the assignment
does not violate spread time constraints, the extended label is kept. Otherwise it is discarded.
When assigning a trip to all the open vehicles fails, the vehicle that would produce the biggest
spread time violation is closed, i.e., no more trips can be assigned to it. A new empty vehicle
is then declared open and the trip is assigned to it. A closed vehicle cannot be re-opened
later.

Considering all the possible assignments of trips to vehicles can be highly time consuming,
especially when the number of vehicles is large. Allowing trips to be assigned to a smaller
number M̃ of vehicles reduces the combinations and speeds-up the procedure. When the
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number of vehicles is relatively small, M̃ can be set to M . Note that M̃ is not necessarily
sufficient to serve all the customers.

Quantities defined in Equations (6.3)–(6.8) for trip σji+1 are calculated whenever an arc
(i, j) is considered. This allows to determine exact availability times of each vehicle when
extending the labels.

A heuristic version of the dominance rule introduced in Cattaruzza et al. [31] is adopted
to limit furthermore the number of labels associated with each node.

Dominance Rule 3. Given two labels L1 and L2 associated with the same node i, we say
that L1 dominates L2 if and only if

c(L1) + θ
M̃∑
j=1

δj(L1,L2) ≤ γc(L2) (6.13)

where δj(L1,L2) = max{Tj(L1)− Tj(L2), 0} and γ ≥ 1.

Intuitively, the summation in the Relation (6.13) evaluates the maximal TW penalization
that can be introduced into the open vehicles of the solution represented by L1 with respect
to the solution represented by L2, and without introducing any penalization in the solution
represented by L2. This maximal penalization is the sum on all the open vehicles of the max-
imal penalization that can be introduced in each open vehicle in the solution ξ1 represented
by L1 with respect to the solution ξ2 represented by L2. In turn, the maximal penalization
that can be introduced in a particular open vehicle j in ξ1 with respect to the open vehicle
j in ξ2 is the difference of their duration times (if this difference is positive) multiplied by
the penalty θ. The parameter θ is the same as the one introduced in Equation (6.1). The
bigger is γ the weaker is the dominance rule, the quicker a solution can be obtained from
a permutation. Its value is dynamically adapted while traversing the graph based on the
number of labels associated with each node. Precisely the following scheme (Cattaruzza et
al. [31]) is adopted:

γ =

γ + |Li|
1000Lthreshold

if |Li| > Lthreshold

γ − Lthreshold
1000|Li| if |Li| < Lthreshold

(6.14)

where |Li| is the number of labels associated with node i and Lthreshold is a threshold param-
eter that indicates the number of labels that is targeted to be kept with each node.

6.5 Computational results

This section describes the computational experiments conducted and reports the results
obtained by our algorithm. The AILS algorithm is coded in C++, compiled with Visual
Studio 2010 and it is run on a Intel Xeon W3550 3.07GHz and RAM of 12 Gb.

Our testing is conducted first on a set of real-world MMTVRP instances proposed by
Battarra et al. [17]. Then, we tested the potential benefit of multiple trips versus traditional
single trip solutions by considering VRPTW instances from the literature.
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6.5.1 Parameter setting

Three main parameters are involved in AILS and need to be set. Two are used in the
Dominance Rule 3 and are γ and Lthreshold. The third is M̃ . The value of γ is initially set
to 10, while M̃ is set to 20. Extensive preliminary tests showed that the procedure becomes
computationally efficient when γ approached that value, while M̃ = 20 leaves a certain
freedom in trip assignment, keeping the procedure computationally efficient. Moreover,
Lthreshold is set to 15 as in Cattaruzza et al. [32].

Different schemes for the penalties used in Equation (6.1) were tested in a preliminary
phase and the setting that gave the best results is the following: α is initially set to M2,
while $ and θ are set to N . Penalty α is doubled whenever an iteration does not reduce the
number of used vehicles and it is set back to its initial value otherwise. The other penalties
are kept constant.

6.5.2 Results on Battarra et al.’s instances

Experiments are conducted on six real-world instances proposed by Battarra et al. [17]. Su-
permarkets located in a regional territory need to be weekly supplied with three commodities.
The time unit is equivalent to one minute. The time horizon is 1440 time units long, i.e. one
day, while all the spread times ST and STb are set to 840, i.e., 14 hours. Service time at the
depot takes 15 minutes plus 1 unit of time for each unit of quantity loaded into the vehicle.
Vehicle capacity is the same for each commodity, since demand quantities are normalized to
a common unit. Cb = 1 for all the three commodities b. Hence, the routing cost corresponds
to the travelled distance, to which we refer in the presentation of the computational results.

Table 6.3 reports the data related to each instance (day 1 to day 6). Abbreviations V G,
F and NP stand for Vegetables, Fresh-Food and Non-Perishable products that represent
the three commodities that cannot be transported together. The values Q̄b, Ēb, Lmax

b , W̄b

represent average values over the Nb customers associated with commodity b. In particular
Q̄b is the ratio of average demand of customers with respect to the vehicle capacity, Ēb is the
average TW start time, Lmax

b is the maximal TW closing time and W̄b is the average TW
width.

Note that some values in Table 6.3 (marked with an asterisk) are different than those in
Battarra et al. [17] (Table 1, p. 3048), since the values there were incorrect.

Table 6.4 reports results. ColumnsM indicate the number of vehicles used, dist the total
travelled distance, # trips the number of trips. Columns gap report gap values with respect
to solutions obtained by Battarra et al. [17]. Gap values are calculated as the difference
between values obtained by Battarra et al. [17] and values obtained by AILS divided by
values obtained by Battarra et al. [17]. We recall the strategic nature of the objective: the
number of used vehicles needs to be minimized first. Ties are broken in favor of solutions
with lower travelled distance.

The algorithm is run 5 times on each instance and stopped after 10 minutes of computing
time. Battarra et al. [17] algorithm was run approximately for the same time on each
instance. Hence, due to computing time equivalence, this information is not inserted in
Table 6.4.
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day N Vegetables
NV G Q̄V G ĒV G Lmax

V G W̄V G
1 394 167 0.24 260.87 540 144.67
2 473 182∗ 0.26 255.36 540 151.04
3 403 175 0.20 260.60 540 146.46
4 465 174 0.21∗ 252.96 540 151.09
5 481 184 0.27∗ 258.61 540 148.59
6 297 183 0.30 256.26 540 150.38

Average 419∗ 178 0.25 257.44 540 148.71

day N Fresh Food
NF Q̄F ĒF Lmax

F W̄V
1 394 84 0.10 397.50 1080 108.93
2 473 149∗ 0.09 424.03∗ 1140 246.14∗
3 403 91 0.11∗ 427.91 1140 232.91
4 465 123 0.09∗ 451.83 1140∗ 233.90
5 481 144 0.09∗ 403.65 1140 218.54
6 297 67 0.10∗ 477.54 1140 328.88

Average 419∗ 110∗ 0.10∗ 430.41∗ 1130∗ 228.22∗

day N Non-perishable
NNP Q̄NP ĒNP Lmax

NP W̄NP
1 394 143 0.64 614.06 1140 127.76
2 473 142 0.66 585.63 1140 138.80
3 403 137 0.65 607.23 1140 142.55
4 465 168 0.61 599.11 1140 137.86
5 481 153 0.66∗ 591.96 1140 135.88
6 297 47 0.64∗ 617.23 1110 102.77

Average 419∗ 132 0.64∗ 602.54 1135 130.94

Table 6.3: Statistics on Battarra et al. [17] instances. Values marked with an asterisk are
corrected with respect to the original paper.

Battarra et al. [17] AILS Average AILS Best
M dist M dist # trips gap M gap dist M dist # trips gap M gap dist
83 34004 80.8 32212.8 164.2 -2.7% -5.3% 80 32296 164 -3.6% -5.0%
92 35725 84.8 35091.1 175.2 -7.8% -1.8% 84 34737 177 -8.7% -2.8%
75 33908 69.8 33058.5 152.8 -6.9% -2.5% 69 33173 152 -8.0% -2.2%
91 38680 84.8 37678.2 172.2 -6.8% -2.6% 84 38007 172 -7.7% -1.7%
94 38205 86.4 37058.6 187.2 -8.1% -3.0% 86 36775 188 -8.5% -3.7%
63 18985 56.2 18751.6 107.8 -10.8% -1.2% 55 19232 110 -12.7% 1.3%

Table 6.4: Results on Battarra et al. [17] instances
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Figure 6.3: Multi-trips of day 5 solution: different color represents a different commodity

Columns AILS Average report average results on the five runs, while columns AILS Best
report the best solution obtained. It can be noticed that better solutions are always obtained.
Fewer vehicles are needed to perform delivery on each day. In particular, the average gap of
saved vehicles goes from 2.7% for day 1, to 10.8% for day 6. Moreover, travelled distances
are always reduced even if less vehicles are used. The best solution found by AILS for day 5
is drawn in Figure 6.3.

Each row represents a vehicle and each rectangle a trip. Rectangles filled with different
colors, represent trips that serve a different commodity. The horizontal axis represents the
time. From the figure it can be noticed that most of the journeys are composed by more than
one trip and that trips assigned to the same vehicle actually deliver different commodities.

6.5.3 MTVRP versus VRP in fleet dimensioning problems

In this section we evaluate the possible benefit, at a fleet sizing level, of letting the vehicles
perform several trips. In order to conduct such analysis we run our algorithm AILS on
the well-known instances proposed by Solomon [196] and on those proposed by Gehring and
Homberger [82], both designed for the VRPTW, and respectively indicated as SLM and HMB
in the following. The 56 SLM instances are divided into 6 groups: C1, C2, R1, R2, RC1,
RC2. Customers are clustered in groups C1 and C2, while they are randomly located in R1
and R2. Groups RC1 and RC2 contain a mix of clustered and randomly located customers.
Working days are longer in groups C2, R2, RC2. HMB instances are divided into 5 families,
each including 60 instances with 200, 400, 600, 800 and 1000 customers respectively. For
each family, instances are constructed, as in Solomon [196], grouping instances based on
customer locations: groups C1, C2, R1, R2, RC1, RC2 are then formed with 10 instances
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each. Results obtained on SLM instances are reported in Section 6.5.3, while those on HMB
instances are reported in Section 6.5.3. Both families of instances have been addressed in
the literature with the objective of minimizing the fleet size first, and the travelled distance
second.

Solutions obtained on VRPTW instances allowing vehicles to perform multi-trips will be
referred to as Multi Trip VRPTW (MTVRPTW) solutions. The MMTVRP generalizes the
MTVRPTW. Hence, the latter can be heuristically solved using AILS.

Results on Solomon’s instances

Algorithm AILS is run five times on each of the SLM instance, with the objective of reducing
the number of vehicles taking advantage from the multi-trip possibility. Each run is stopped
after 10 minutes of computation. In three cases, we were able to find a solution where the
size of the fleet is decreased by one vehicle: customers in instances C103, C104 and C109 can
be served by 9 vehicles, while the best known VRPTW solution for these instances uses 10
vehicles. Results are reported in Table 6.5 for these three instances. Best known solutions of
SLM instances can be found on the dedicated page of Transportation Optimization Portal
(TOP) of Sintef web site [192]. Column Instance reports the instance name, columns Best

Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

C103 10 828.06 9 1072.32 29.5% 10
C104 10 824.78 9 937.646 13.7% 10
C104 10 828.94 9 958.105 15.6% 11

Table 6.5: Results on Solomon’s instances

known VRPTW report data related to VRPTW solutions, while columnsMTVRPTW report
data related to the solutions found by AILS. Columns dist indicate the travelled distance, %
dist the percentage increase of travelled distance of the MTVRP solution with respect to the
best known VRPTW solution. Finally column trips shows the number of trips performed
by the vehicles. Detailed solutions are reported in Appendix B.

Solutions for instances C103 and C104 are characterized by a vehicle that performs two
trips, while solution for C109 has two vehicles performing two trips. Travelled distances
grow by about 15% for instances C104 and C109, and 30% for instance C103.

Results on Gehring and Homberger’s instances

The AILS algorithm is also run five times on each of the 300 HMB instances. Each run
is stopped after 30 minutes of computation. Tables 6.6–6.10 report all the instances for
which AILS was able to reduce the fleet size. Column Instance indicates the instance name
that is made up by three fields: the instance group, the family that identifies the size and
the instance number: for example instance C1_2_3 is the third instance of the family of
instances with 200 customers and belongs to group C1 (clients are clustered). The other
column names are as in Section 6.5.3.
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Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

C1_2_3 18 2707.35 17 3277.13 21.0% 21
C1_2_4 18 2643.31 17 2935.30 11.0% 21
R1_2_2 18 4039.86 17 4942.63 22.3% 21
R1_2_3 18 3381.96 15 4228.01 25.0% 21
R1_2_4 18 3057.81 11 3765.33 23.1% 20
R1_2_5 18 4107.86 17 5617.44 36.7% 25
R1_2_6 18 3583.14 15 4610.35 28.7% 26
R1_2_7 18 3150.11 12 4227.69 34.2% 23
R1_2_8 18 2951.99 10 3497.76 18.5% 20
R1_2_9 18 3760.58 15 4884.75 29.9% 23
R1_2_10 18 3301.18 13 3946.04 19.5% 21
R2_2_4 4 1981.29 3 2504.05 26.4% 6
R2_2_8 4 1849.87 2 2378.44 28.6% 4
R2_2_9 4 3092.04 3 3509.99 13.5% 5
R2_2_10 4 2654.97 3 3041.22 14.5% 6
RC1_2_2 18 3249.05 15 4131.22 27.2% 22
RC1_2_3 18 3008.33 12 3691.10 22.7% 19
RC1_2_4 18 2852.62 9 3257.46 14.2% 20
RC1_2_5 18 3371.00 16 4286.53 27.2% 22
RC1_2_6 18 3324.80 16 4184.29 25.9% 22
RC1_2_7 18 3189.32 15 3848.66 20.7% 22
RC1_2_8 18 3083.93 14 3627.40 17.6% 22
RC1_2_9 18 3081.13 14 3657.52 18.7% 23
RC1_2_10 18 3000.30 14 3396.07 13.2% 20
RC2_2_4 4 2038.56 3 2648.15 29.9% 6
RC2_2_9 4 2175.04 3 2725.01 25.3% 5
RC2_2_10 4 2015.60 3 2417.22 19.9% 5

Table 6.6: Results on Gehring and Homberger’s instances with 200 customers
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Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

C1_4_4 36 6803.24 33 8296.59 22.0% 42
C1_4_10 36 6860.63 35 8514.54 24.1% 41
R1_4_2 36 8926.70 32 11681.60 30.9% 42
R1_4_3 36 7821.95 26 10506.60 34.3% 40
R1_4_4 36 7282.78 20 9078.26 24.7% 39
R1_4_5 36 9242.43 33 14067.10 52.2% 47
R1_4_6 36 8373.71 28 11532.10 37.7% 43
R1_4_7 36 7641.22 22 10451.70 36.8% 41
R1_4_8 36 7275.13 18 8779.20 20.7% 39
R1_4_9 36 8719.19 28 12314.80 41.2% 44
R1_4_10 36 8113.93 24 10373.20 27.8% 42
R2_4_3 8 5911.07 7 7965.91 34.8% 12
R2_4_4 8 4241.47 5 6561.51 54.7% 12
R2_4_5 8 7129.03 7 8693.30 21.9% 10
R2_4_6 8 6122.60 6 8075.53 31.9% 14
R2_4_7 8 5018.53 5 7165.41 42.8% 10
R2_4_8 8 4018.01 5 5772.93 43.7% 10
R2_4_9 8 6400.10 6 7945.18 24.1% 11
R2_4_10 8 5791.79 6 7174.28 23.9% 10
RC1_4_2 36 7905.66 31 10027.70 26.8% 42
RC1_4_3 36 7540.59 24 9746.32 29.3% 39
RC1_4_4 36 7310.35 20 8368.21 14.5% 38
RC1_4_5 36 8249.63 33 10464.00 26.8% 42
RC1_4_6 36 8177.80 33 10353.40 26.6% 40
RC1_4_7 36 7957.64 31 9771.01 22.8% 42
RC1_4_8 36 7760.23 29 9506.63 22.5% 43
RC1_4_9 36 7767.43 29 9308.95 19.8% 42
RC1_4_10 36 7609.21 28 9027.87 18.6% 41
RC2_4_4 8 3631.01 7 5514.25 51.9% 11
RC2_4_9 8 4551.80 7 6504.61 42.9% 10
RC2_4_10 8 4278.61 7 5522.47 29.1% 10

Table 6.7: Results on Gehring and Homberger’s instances with 400 customers
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Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

C1_6_4 56 13558.54 55 15337.70 13.1% 59
R1_6_2 54 18863.43 46 25477.80 35.1% 69
R1_6_3 54 17040.40 38 22610.40 32.7% 60
R1_6_4 54 15819.62 29 19476.10 23.1% 63
R1_6_5 54 19771.90 49 30653.40 55.0% 70
R1_6_6 54 18041.87 40 25101.10 39.1% 63
R1_6_7 54 16615.13 33 22322.90 34.4% 59
R1_6_8 54 15716.15 26 19472.60 23.9% 59
R1_6_9 54 18708.67 44 28504.40 52.4% 67
R1_6_10 54 17801.43 36 23102.50 29.8% 60
R2_6_3 11 11200.10 10 15744.50 40.6% 14
R2_6_4 11 8029.37 7 12836.30 59.9% 18
R2_6_5 11 15096.20 10 19611.70 29.9% 17
R2_6_6 11 12506.57 8 18026.20 44.1% 20
R2_6_7 11 10066.34 8 14549.90 44.5% 16
R2_6_8 11 7609.96 6 11996.60 57.6% 17
R2_6_9 11 13377.56 9 18267.40 36.6% 22
R2_6_10 11 12253.47 8 16440.00 34.2% 16
RC1_6_2 55 16044.93 43 21438.90 33.6% 66
RC1_6_3 55 15273.98 35 19443.70 27.3% 62
RC1_6_4 55 14839.61 26 18179.70 22.5% 58
RC1_6_5 55 16693.26 47 22649.50 35.7% 63
RC1_6_6 55 16632.03 45 22505.80 35.3% 66
RC1_6_7 55 16145.64 42 21582.70 33.7% 62
RC1_6_8 55 15978.70 40 20271.10 26.9% 60
RC1_6_9 55 15922.60 40 20323.30 27.6% 62
RC1_6_10 55 15740.26 38 19493.00 23.8% 61
RC2_6_4 11 7076.49 8 11202.30 58.3% 15
RC2_6_10 11 9078.64 10 12448.00 37.1% 14

Table 6.8: Results on Gehring and Homberger’s instances with 600 customers
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Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

R1_8_2 72 32598.51 63 45491.70 39.6% 91
R1_8_3 72 29506.45 49 40118.90 36.0% 82
R1_8_4 72 26838.04 36 34716.40 29.4% 75
R1_8_5 72 33861.43 69 59269.30 75.0% 89
R1_8_6 72 31154.87 53 44764.30 43.7% 78
R1_8_7 72 29010.78 44 39184.80 35.1% 77
R1_8_8 72 27766.11 35 35014.10 26.1% 76
R1_8_9 72 32629.99 61 54382.90 66.7% 92
R1_8_10 72 31187.35 49 43853.50 40.6% 83
R2_8_3 15 17741.68 11 28108.30 58.4% 26
R2_8_4 15 13219.06 10 23779.70 79.9% 34
R2_8_5 15 24285.89 13 33484.00 37.9% 24
R2_8_6 15 20480.79 11 31686.30 54.7% 25
R2_8_7 15 16697.82 10 25569.00 53.1% 26
R2_8_8 15 12748.16 8 21379.50 67.7% 28
R2_8_9 15 22402.79 11 33563.50 49.8% 29
R2_8_10 15 20459.29 10 31129.70 52.2% 34
RC1_8_2 72 29034.99 61 36158.60 24.5% 81
RC1_8_3 72 27905.64 51 34754.80 24.5% 80
RC1_8_4 72 27395.14 37 31756.40 15.9% 77
RC1_8_5 72 30277.12 66 40002.00 32.1% 87
RC1_8_6 72 30262.33 66 41289.30 36.4% 87
RC1_8_7 72 29862.44 59 38727.50 29.7% 82
RC1_8_8 72 29194.16 57 37558.50 28.7% 79
RC1_8_9 72 28978.35 56 35732.50 23.3% 78
RC1_8_10 72 28797.79 54 36338.50 26.2% 79
RC2_8_4 15 11006.56 14 19614.80 78.2% 29
RC2_8_9 15 15359.99 14 22229.50 44.7% 21
RC2_8_10 15 14454.62 13 20785.50 43.8% 23

Table 6.9: Results on Gehring and Homberger’s instances with 800 customers
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Instance Best known VRPTW MTVRPTW
M dist M dist % dist trips

R1_10_2 91 49105.21 79 68653.4 39.8% 118
R1_10_3 91 45237.29 61 60502.2 33.7% 105
R1_10_4 91 42787.19 46 55992.1 30.9% 96
R1_10_5 91 51830.36 87 84327.3 62.7% 111
R1_10_6 91 47849.05 66 66041.8 38.0% 106
R1_10_7 91 44435.5 55 58941.7 32.6% 100
R1_10_8 91 42485.38 44 53170.6 25.2% 99
R1_10_9 91 50490.49 79 80817 60.1% 113
R1_10_10 91 48294.71 66 71050.5 47.1% 101
R2_10_3 19 25053.8 15 40903.9 63.3% 33
R2_10_4 19 18039.77 12 34515.2 91.3% 44
R2_10_5 19 36335.72 18 55406.9 52.5% 33
R2_10_6 19 30223.14 15 45554 50.7% 30
R2_10_7 19 23381.36 13 39746.9 70.0% 41
R2_10_8 19 17598.63 11 30565.6 73.7% 38
R2_10_9 19 33131.99 14 49412.1 49.1% 40
R2_10_10 19 30598.69 13 43716.6 42.9% 32
RC1_10_2 90 44129.42 76 56448.8 27.9% 105
RC1_10_3 90 42487.54 61 52138.5 22.7% 99
RC1_10_4 90 41613.58 45 49299.6 18.5% 94
RC1_10_5 90 45564.81 84 65915.9 44.7% 114
RC1_10_6 90 45303.67 84 67271.4 48.5% 109
RC1_10_7 90 44903.8 74 62628.8 39.5% 104
RC1_10_8 90 44366.01 68 59091.4 33.2% 98
RC1_10_9 90 44280.84 69 58346.2 31.8% 99
RC1_10_10 90 43896.78 67 56352.6 28.4% 99
RC2_10_4 18 15747.13 16 26204.3 66.4% 29
RC2_10_8 18 23787.26 17 33226.6 39.7% 24
RC2_10_9 18 23116.15 17 33786.1 46.2% 29
RC2_10_10 18 22076.9 15 30592.7 38.6% 21

Table 6.10: Results on Gehring and Homberger’s instances with 1000 customers
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The values of the best known VRPTW solutions are collected from the dedicated page
of TOP of Sintef web site [193]. The fleet size is reduced for a total of 126 cases out of 300:
namely, 27 cases for instances with 200 customers, 31 for instances with 400 customers, 29
for instances with 600 and 800 customers, and 20 for instances with 1000 customers. It is
noticeable that for instances RC1_6_4, R1_8_8 and R1_10_8 less than half vehicles are
needed (26, 35 and 44 instead of 55, 72 and 91 respectively) while for instances R2_2_8,
RC1_2_4, R1_4_8, R1_8_4 and RC1_10_4 the size of the fleet is halved. It can be noticed
that in these (but not only) particular cases the vehicles used in the VRPTW solutions are
equal to

⌈∑N

i=1 Qi
Q

⌉
, meaning that there is no possibility to further reduce the fleet size

allowing one trip per vehicle.

Table 6.11 and Figure 6.4 give an insight on the fleet reduction reasons. Table 6.11
compares the best VRPTW solution and the MTVRPTW solution we found for instance
R1_2_8. Comparison has been proposed for instance R1_2_8 because of the important fleet
size reduction we obtain introducing the multi-trip aspect and because details of the best
known VRPTW solution are available in the dedicated page of TOP Sintef web site [193].
Columns Best known VRPTW solution report details of the best known VRP solution for
this instance, while columns MTVRPTW report details of the MTVRPTW solution we
found. Column v indicates the vehicle, column trip the trip, columns D, Tv, Tt, Q report
respectively the travelled distance, the travelled time of vehicle v, the travelled time of trip t,
and the quantity transported in the trip. Column TH usage reports the percentage of time in
which the vehicle travels with respect to the depot time window width (that is the planning
horizon TH), while columns Q usage report the loading factor. The last row indicates the
total travelled distance, and the average percentage of TH and Q usage.

It can be observed that in the VRPTW solution, only 64.7% of the time horizon is used
on average, while vehicles are on average almost full loaded . A first conclusion that can
be drawn from this information is that capacity constraints are more restrictive than time
constraints. Considering a fleet of vehicles with a larger capacity would be beneficial. A
second possibility would be to allow vehicles to perform multiple trips as depicted in the
MTVRPTW part of the table. This leads to a planning that on average exploits a larger
part of the time horizon (88% in the considered example) while using less vehicles. On the
contrary the loading factor decreases by 10%.

In Figure 6.4, each dot represents a solution for which the best known VRPTW solution
is detailed in TOP Sintef web site [193]. We then calculated the percentage of TH usage
of each of these solutions regardless of whether we were able to reduce the fleet with the
multi-trip possibility (these particular instances correspond to a point with a null abscissa).
Three observations can be deducted from the figure. First, when the VRPTW solution
averagely uses 90% or more of TH , the fleet size is not likely to be reduced even by allowing
multiple trips. On the contrary, when vehicles are used for less than 70% of TH , it is probably
beneficial to let vehicles be re-loaded and re-routed. Finally, when the journeys cover between
70% and 90% of the TH , the multi-trip aspect can or cannot be useful depending on the
particular instance. From this observation we can conclude the need of developing algorithms
that efficiently solve both the VRPTW and the MTVRPTW.
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Figure 6.4: Instances analysis fleet reduction on time usage

6.6 Conclusions

This paper studied the minimum multiple trip vehicle routing problem. It mainly differs from
the classical multi-trip VRP with time windows for the presence of incompatible commodities
that need to be delivered to customers and the strategic nature of the objective function that
requires the minimization of the fleet size. Moreover, some side constraints are present, such
as limit on journey and trip duration.

An effective iterated local search algorithm, called AILS is presented for this problem.
The algorithm outperforms results obtained by Battarra et al. [17] on real-world instances.

Further experiments were conducted on Solomon’s [196] and Gehring and
Homberger’s [82] instances for the VRPTW to evaluate the benefit of introducing the multi-
trip aspect in fleet sizing problems. The fleet is reduced 3 times out of 56 on Solomon’s
instances and 126 out of 300 on Gehring and Homberger’s instances. Interesting results were
obtained, showing that in particular cases (for instances RC1_6_4, R1_8_8 and R1_10_8)
less than half vehicles are needed to serve all the customers in a multi-trip context. The
detailed analysis of the results shows that in most of the cases the fleet can be reduced
because the available time horizon is not well exploited and vehicles are left unused at the
depot. Further analysis pointed out that when vehicles are used for a percentage that ranges
between 70% and 90% of the working day, benefits of the introduction of the multi-trip pos-
sibility are case-dependent. As a consequence, there is a clear need of developing algorithms
that can efficiently solve both the VRPTW and the MTVRPTW in order to get the most
convenient solution in each case, rather than algorithms dedicated to just one of the two
problems.
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Future research should fill this gap and be conducted in order to study schemes that
can propose competitive solutions for the MTVRP (resp. MTVRPTW), but being able to
produce high quality VRP (resp. VRPTW) solutions when performing several trips is not
convenient.
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Chapter 7

MODUM Vehicle Routing Problem

7.1 Introduction

The MODUM project aims at studying a mutualized delivery system based on a ring of
City Distribution Centers (CDC) strategically located in the outskirt of the city. Carriers
that need to supply clients, deliver goods to one of the available CDC rather than directly
at client location. A CDC is a logistic platform used to transfer goods from one vehicle to
another. Usually it is characterized by no stockage or short-storage period.

Different studies and projects have been carried out on the efficiency of such delivery
systems. In some cases the results were positive and the perspectives promising, other
projects failed. A success depends on several factors and actors. The CDC must be well
located: they should be close to the city center, but easy to reach for trucks that usually
arrive through highways. The whole system needs to be well dimensioned in order to be
able to receive all the goods, but being not too costly. Authorities need to impose and,
especially, to enforce limitation on city center access, in order to force trucks to stop at the
CDC instead of going up to the clients. On the other side, carriers ask for an efficient system:
the goods need to be at customers on time, making carriers saving possibly money and/or
time. Delivery to customers should be made by eco-friendly vehicles, that we will call vans,
in order to reduce air and noise pollution.

The MODUM project intends to evaluate such a delivery system, finding the key aspects
that can make the project successful if implemented. Moreover, it aims at developing a
decision-support tool based on discrete event simulation, that can help practitioners dimen-
sioning the system regarding the city it would be located.

The designed system operates during the work-day and trucks continuously deliver mer-
chandise to CDC. New requests are integrated into the current planning in an on-line fashion.
Unserved requests, or merchandise dropped off at the CDC one day in advance will be used
to constitute the initial van routing planning for the day after.

The goal of this chapter is to present the vehicle routing problem that is solved at each
step of the simulation tool. A delivery plan is initially made for each working day based
on the requests already present in the system. Then, the plan is updated in an on-line
fashion each time a new request is revealed. The simulation provides different performance
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indicators that are used to evaluate the system.

This chapter is organized as follows. In Section 7.2 the MODUM system is informally de-
scribed. A static version of the MODUM vehicle routing problem is described in Section 7.3,
while its on-line counterpart in Section 7.4. The simulator is described in Section 7.5 while
Section 7.5 concludes this chapter.

Note that the development of the simulator is out of the scope of this thesis. This
development was headed by another partner in the MODUM project. Furthermore, this
task was scheduled at the end of the project and it is not finished yet. Also, one important
assignment related to the use of the simulator was the design and collection of realistic data,
that were managed by a third partner. When writing this thesis, this task is not finished
neither.

For these reasons, the algorithms that are presented in this chapter are currently being
implemented and included in the simulator. Hence, the algorithms are not evaluated nor
used for experimental analysis. The goal of the chapter is rather to present the goal that
ultimately guided our work and the thinking about the design of the simulator, to which we
largely contributed.

7.2 MODUM system

The general scheme of the MODUM system is depicted in Figure 7.1.

Door

CDC

Client
Parking

Figure 7.1: MODUM project scheme

It considers both the inbound and the outbound flow of merchandise. We start by
describing the first. Trucks deliver merchandise to CDC (blue squares), from where vans
are used to accomplish final deliveries to customer locations indicated by red spots. Trucks
are supposed to enter the system (approach the city) from the doors (black circles). A door
represents the source of the merchandise and can be an airport, a port, a train station, an
industrial zone or a highway junction. The system considers the presence of parking lots
(green points) that can be used by vans.
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All the CDC are linked with a shuttle that circularly and regularly visits them (blue
arrows in Figure 7.1) and transfers merchandise from one CDC to another. For example, a
truck unloads merchandise at the CDC located at the north of the city center, and goods
need to be delivered in the south of the city. It could be convenient to use the shuttle to
displace the merchandise to a closer CDC, rather then send a van on the other side of the
city.

Once merchandise arrives at the right CDC it is transferred to vans in charge of accom-
plishing the final delivery to customers. Delivery trips originate at a certain CDC and end
at the same CDC, at another CDC or at a parking lot. Clients must be visited during their
time windows: waiting at customer location is not allowed. A vehicle can instead go to a
parking and wait there if it is beneficial.

Outbound flows work as follows. Goods are picked-up at client locations and sent toward
the doors passing through the CDC. Pickup trips always end at a certain CDC, but they
can start from the same CDC, another CDC or from a parking lot. In all cases, the van
is initially empty. Once the merchandise is at the CDC it can be moved to another more
convenient CDC by the shuttle or transferred into a truck and sent toward a door.

We suppose that trips are either pure delivery or pure pickup trips (i.e., only deliveries
or only pickups are performed all along the trip). When the distinction does not need to
be made, the world service will be used to indicate one of the two kind of trips. Each van
is assigned to a journey, i.e., to a set of service trips that the van itself has to perform in
sequence. Trips in the same journey must not overlap in time.

The system considers the possibility of renting free vans. In that case, a user can rent a
van, specifying the locations (CDC or parking lot) and the times at which he would like to
get and to return back the vehicle. This will be called free service.

Operationally, one can suppose that a carrier calls the operation center (OPC) and pro-
vides the information about which CDC and at what time it will reach it to drop off mer-
chandise. Moreover, it will specify the final destination of the goods. The OPC runs a quick
algorithm to evaluate the possibility of integrating the service in the current planning in
order to either accept or reject it. If the request is accepted, it has to be inserted in the
current delivery plan. All the CDC are considered as potential start points of the delivering
trips. If the best CDC is not the one where the truck has arrived, the shuttle is used to
move the goods to a more suitable one. This makes the goods available for being loaded in
a van and starting the final delivery potentially later than the exact time they entered the
system.

A planning is first created before the working day starts with all the known requests.
This planning is constructed by solving a static problem, introduced in the following section.
During the working day, new requests are inserted in the planning and a dynamic problem
is solved.

7.3 MODUM VRP: static version

In this section we formally introduce the static MODUM Vehicle Routing Problem (M-
VRP-S). The M-VRP-S can be defined on a complete directed graph G = (V,A), with
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V = I ∪ U ∪K, where

• I is the set of customers (zones to be serviced);

• U is the set of mutualized City Distribution Centers (CDC);

• K is the set of parking lots.

With each arc (i, j) in A is associated a travel distance Dij, and a travel time Tij,
indicating the time needed to reach vertex j from vertex i.

Three different requests can be addressed to the OPC: a delivery, a pickup and a free-
service request. Let us introduce the three following sets:

• ∆del is the set of requested deliveries;

• ∆col is the set of requested collections;

• ∆free is the set of free-service requests.

Each delivery request δ ∈ ∆del is defined by a vector of dimension 7. In particular

δ = (oriδ, Rδ, destδ, Eδ, Lδ, Sδ, Qδ),

where

• oriδ ∈ U is the CDC where goods become available for final distribution;

• Rδ is the date goods become available at oriδ;

• destδ ∈ I is the customer to which goods need to be delivered;

• Eδ is the earliest moment service can start at destδ;

• Lδ is the latest moment service can start at destδ;

• Sδ is the service time at customer at destδ;

• Qδ is the load of the requested delivery.

Requested collections δ ∈ ∆col are characterized as well by an analog 7 dimension vector

δ = (oriδ, dueδ, destδ, Eδ, Lδ, Sδ, Qδ)

where

• oriδ ∈ I represents the customer from where the merchandise has to be picked up;

• dueδ denotes the last possible arrival of goods at a certain CDC;

• destδ ∈ U is the CDC to which the merchandise needs to be delivered;
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• Eδ is the earliest moment service can start at oriδ;

• Lδ is the latest moment service can start at oriδ;

• Sδ is the service time at customer at oriδ;

• Qδ is the load of the requested to be picked-up.

Waiting is not possible at customer locations. Instead, vans are allowed to go to a parking
lot or CDC and wait.

Free-service requests δ ∈ ∆free are represented with a four dimension vector

δ = (oriδ, destδ, Rδ, dueδ),
where

• oriδ ∈ K ∪U is the parking or the CDC at which is picked up the free-service vehicle;

• destδ ∈ K ∪ U is the parking or the CDC at which it has to be left once the travel is
achieved;

• Rδ is the time the vehicle needs to be available at oriδ;

• dueδ specifies the time the vehicle needs to be returned at destδ.

A constant time SCDC is needed for loading or unloading operations at each CDC.

A fleet F , constituted by |F | identical vans, is considered. Each van has a capacity Q.
At the beginning of each working day, f initi vans are available at position i ∈ U ∪K. Vans
carry out a set of successive trips, where a trip takes one of the following forms:

• a delivery trip originates at a CDC, where the loading of goods requested by the
customers is performed; it then visits some customers and terminates at a CDC (not
necessarily the initial one) or at a parking lot;

• a collection trip starts either at a CDC or at a parking lot, visits customers and
terminates at a certain CDC, where the picked-up goods are unloaded;

• free-service trip.

Note that each vehicle is emptied at the end of a given trip. Moreover, we suppose that vans
do not perform pick-ups and deliveries in the same trip. Trips are limited by a maximal
traveled distance Dmax. When vans are electrical vehicles, this constraint models the limited
autonomy that this kind of vehicles usually have.

Tables and 7.1 and 7.2 below recapitulate notation.

The M-VRP-S calls for the determination of a set of trips (as previously defined) and an
assignment of each trip to a certain van, in order to minimize routing costs and such that:

• all the requests are satisfied;
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I set of customers (zones to be serviced);
U set of mutualized City Distribution Centers (CDC);
K set of parking lots involved in the self-service distribution system;
V vertices of the graph: V = I ∪ U ∪K;
A arcs of the graph: A = V × V ;
G graph: G = (V,A);

∆del set of requested deliveries;
∆col set of requested collections;

∆free set of free-service requests;
F set of vans;

Dij travel distance between i and j, where i, j ∈ V ;
Tij travel time between i and j, where i, j ∈ V ;

SCDC loading or unloading time at CDC;
Q vehicle capacity;

Dmax maximal traveled distance for a trip;
f initi number of vans available at the beginning of the day at location i for i ∈ U ∪K;

Table 7.1: General notation

δ = (oriδ, Rδ, destδ, Eδ, Lδ, Sδ, Qδ) delivery request (δ ∈ ∆del);
origin (CDC):oriδ, Rδ;
destination (customer): destδ, Eδ, Lδ, Sδ, Qδ;

δ = (oriδ, dueδ, destδ, Eδ, Lδ, Sδ, Qδ) collection request (δ ∈ ∆col);
origin (customer): oriδ, Eδ, Lδ, Sδ, Qδ;
destination (CDC): destδ, dueδ;

δ = (oriδ, destδ, Rδ, dueδ) free-service request (δ ∈ Dfree);
origin (CDC or parking): oriδ, Rδ;
destination (CDC or parking): destδ, dueδ.

Table 7.2: Notation for requests
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• the sum of the demands of customers in delivery and collection trips does not exceed
Q;

• the total travelled distance of each collection and delivery trip does not exceed Dmax;

• trips assigned to the same van do not overlap;

• vans arrive at customers located at destδ not before than Eδ and not later than Lδ;

• free-service trips are characterized by vans that arrive at oriδ not later than Rδ and at
destδ not later than dueδ ;

• requests satisfied by the same collection trip have the same destination CDC destδ;

• requests satisfied by the same delivery trip originate at the same CDC oriδ;

• collection trips do not arrive at the CDC to unload goods later than the minimum due
date associated with requests served in the trip;

• delivery trips do not leave from the starting CDC before the maximum release date
associated with requests served in the trip;

• vans arrive at the final CDC or parking lot not later than the system closure.

7.4 MODUM VRP: dynamic version

The system MODUM considers dynamic aspects. In particular, not all requests are known
at the beginning of the day and some of them occur during operations. The OPC receives
these requests and decides whether the system can satisfy them. In addition to previous
data, each request is characterized by an arrival time Rinf

δ . It indicates the time at which
the request becomes known to the OPC, and can be viewed as the time a carrier or a client
contacts the OPC to ask for a service.

The OPC should provide a quick answer about the possibility of the system to satisfy
the request. In order to achieve this, a quick re-optimization procedure is carried out each
time the OPC is called. In particular, one tries to insert the request in the current planning
including it in one of the existing trips. The procedure does not consider delivery trips that
have already started (that is, loading has started at a CDC) at the time the new information
arrives. For collection trips, new requests can be inserted in trips as long as it does not imply
a redirection of the vehicle: if the vehicle is heading towards a customer, it is not permitted
to insert a new request before visiting the customer itself.

The client receives a positive response if the re-optimization procedure finds a feasible
insertion of the request in the planning. In this case the request enters the system and
must be satisfied. If the re-optimization procedure returns a negative answer, the request is
rejected.
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7.5 Insights on the simulator

7.5.1 Client requests and instance requests

The OPC receives solicitations from clients that ask for a service represented by a request
δ̃, that we now call client requests. A client request concerns the actual MODUM system
or the simulator. The OPC carries out a re-optimization and decides to reject or to accept
δ̃. In the latter case, OPC produces an instance requests δ that is considered when solving
the vehicle routing problem. Instance requests constitute sets ∆del ∪ ∆col ∪ ∆free used for
the vehicle routing optimization. Client requests represent new requests entered by a user
of the system.

Client requests δ̃ are defined by the same set of characteristics as instance requests δ,
but some changes in the values are possible when generating δ from the corresponding δ̃, as
explained in the following. Data for client requests are indexed with car so as to distinguish
them from data from instance requests. New client requests are managed depending on their
type.

7.5.2 Handling of new client requests

Delivery requests

When a client asks for a new delivery request, at time Rinf
car , he has to select an entering

CDC, indicated by oricar, and to give complete information of the request, providing values
(oricar, Rcar, destcar, Ecar, Lcar, Scar, Qcar). Because of the shuttle system, the merchandise
can be moved to another CDC, indicated by u∗, from which the final delivery will start.
Hence u∗ can differ from oricar. More specifically, at time Rinf

car , that is when the client
request becomes known, every possible CDC is evaluated as starting point for the final
delivery. Depending on the result, u∗ is selected among one CDC, or the request δ̃ is rejected.

The evaluation and selection of u∗ is performed as follows. For each CDC u ∈ U ,
we first evaluate (considering current bookings in the shuttle system) the earliest possi-
ble arrival time to CDC u when departing from CDC oricar not earlier than time Rcar.
We then deduce the earliest possible departure time Ru from the CDC u for the sake
of final delivery. For each CDC u ∈ U , it thus provides a possible instance request
δ = (u,Ru, destcar, Ecar, Lcar, Scar, Qcar). The impact ∆u on the cost of the solution when
introducing the request is quickly computed. The CDC u minimizing ∆u is selected. In case
none of the CDC is convenient, the request is rejected.

Once a CDC is selected, the corresponding booking is carried out in the shuttle and a
new instance request δ, defined as δ = (u,Ru, destcar, Ecar, Lcar, Scar, Qcar), is generated.

Collection requests

An equivalent policy is proposed for collection requests. When a client asks for a new collec-
tion request, at time Rinf

car , it has to select any CDC for destcar and to give complete infor-
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mation for the request: (oricar, duecar, destcar, Ecar, Lcar, Scar, Qcar). Because of the shuttle
system, the CDC to which goods will be unloaded once collected is not necessarily destcar. At
time Rinf

car , that is when the carrier request becomes known, every possible CDC is evaluated.
Depending on the result, either a CDC is selected or the request is rejected.

The evaluation and selection of CDC is calculated as follows. For each CDC u ∈ U ,
we first evaluate (considering current bookings in the shuttle system) the latest possible
time dueu to depart from CDC u and reach CDC destcar on time for an outbound depar-
ture at time duecar. For each CDC u ∈ U , it thus provides a possible instance request
(oricar, dueu, u, Ecar, Lcar, Scar, Qcar). The impact ∆u on the cost of the solution of introduc-
ing the request is quickly computed. The CDC u minimizing ∆u is selected. In case none of
the CDC is convenient, the request is rejected.

Once a CDC is selected, the corresponding booking is carried out in the shuttle and a
new instance request δ, defined as δ = (oricar, dueu, u, Ecar, Lcar, Scar, Qcar), is generated.

Free-service requests

When a carrier asks for a new free-service, at time Rinf
car , it selects a set of acceptable parkings

to get the vehicle, with associated dates, and a set of acceptable parkings to leave the vehicle,
with associated dates. Every combination is evaluated by sending the corresponding instance
request to the optimization tool. The best combination is retained and the corresponding
instance request is generated. In the case none of the combination is convenient, the request
is rejected.

Note that the motivation for generating the instance request at time Rinf
car is twofold.

First, because of the rejection mechanism, it is important to ensure that a feasible solution
will exist when a request is accepted. Accepting the request and proceeding to the shuttle
booking (and thus selecting the CDC for the instance request) later would be possible but
more complex to handle. Second, the sooner the instance request, the more anticipation is
possible. The price to pay is a lack of flexibility in the selection of the CDC for the instance
request, which might have been postponed after time Rinf

car .

Note also that because of this policy, moves using the shuttles need not to be considered
in the vehicle routing model.

7.5.3 Capacities at CDC

Capacity constraints at CDC are not considered in the vehicle routing model. We sketch
here a possible framework for the simulation. Performance indicators could measure the use
of available spaces and evaluate the practical feasibility of the system. Three zones would
be defined in the CDC: a zone for the transfer among CDC, a storage area and the doors.
When arriving at the CDC, goods (for delivery) are located in the transfer area; they are
then transferred to their destination CDC. Once arriving at their destination CDC, they are
placed in the storage area. Then, they are moved to doors a constant time, called preparation
time, before the arrival of the vehicle. During this time plus the loading time, the door is
booked for the trip. For each of the three zones, a capacity constraint could be defined
(maximal quantity of goods for the first two zones, number of doors for the last one).

03/2014 EMSE-CMP Page 175



CHAPTER 7. MODUM VEHICLE ROUTING PROBLEM

7.5.4 Day structure

For each day H, the OPC is open, i.e., can be contacted, during a given time window and
manages all the new requests δ̃. Clients can contact the OPC during day H asking for a
service in day H+1. The solution that is constructed, then covers days H and H+1, i.e., for
each van, a two-days journey is determined. In particular, each van terminates its journey
of day H at a certain location that will be the starting location of the first trip in journey
H + 1. During the opening hours of the OPC, the online algorithm runs in order to manage
the new requests.

At the end of day H, i.e., when the OPC closes, the off-line algorithm is launched. It
optimizes the planning provided by the on-line algorithm for following day H + 1.

The choice of working with a two-days planning is useful in balancing the system. In
particular, vans terminates their journey on day H based on requests of day H + 1. Hence,
there is no need of an explicit repositioning strategy.

7.5.5 Result analysis

The system would be evaluated analyzing its behavior under different scenarios, character-
ized, for example, by a different number of CDC, by CDC with different locations, or by
different request acceptance policies; the type and the size of the used vans or the transit fre-
quency of the shuttle; the number of the parking lots and their location. The simulator will
generate different indicators that describe the behavior of the system under each scenario.
Analysis will be conducted comparing these indicators.

Such indicators can be the total cost of the system, the amount of CO2 emissions, the
number of violated time windows, the total tardiness (measured as the difference between
the late arrival at client location and the time window closing time), the number of used
vans, the average loading factor.

The analysis of the system will be done on realistic data (extracted by a project partner)
representative of the flows of merchandise in a medium-size city, as could be Lyon (France),
with about 800 customers involved.

7.6 Conclusions and perspectives

In this chapter we described the mutualized delivery system proposed in MODUM and we
formally introduced the rich routing problem that arises in this context. We gave an insight
of the simulator that is currently under development and that will be used to evaluate the
performances of such a system through the indicators that it will provide.

Once the simulator is finalized, different scenarios will be evaluated and the analysis
conducted on the results that are obtained.
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Chapter 8

Conclusions and perspectives

City logistics has become an important research topic in the last few years. Efficient delivery
systems are studied and new solutions are sought. Solutions that look for achieving economic
savings as well as respecting the environment, and creating pleasant cities by revitalizing
downtowns. In this context the MODUM project studies a new and efficient delivery system,
based on a ring of City Distribution Centers (CDC) located around the city.

A first contribution of the thesis is to analyze the movements of merchandise in the urban
context. The investigation highlights how urban good movements are performed by delivery
trips with several customer visits. This leaves space for the optimization of the planning
that can result in travelling time, travelling distance and pollution reductions.

Nevertheless, when dealing with urban systems, such an efficient delivery planning is not
easy to achieve. The metropolitan environment has peculiar characteristics as rush hours,
traffic jams, restriction policies, or other characteristics that are enhanced in this context,
as car accidents, that deeply affect the routing design and need to be taken into account.
Effective operations pass across the understanding of the urban environment.

This thesis contributes to this essential task with the analysis of works done by researchers
in the context of urban logistic and with their collection into a survey. Furthermore, from
these works we extrapolate the main characteristics that a routing problem should take into
account to produce an efficient delivery planning. We considered each characteristic in the
survey and proposed the related work. This gives an insight on the subject. The goal of the
work is to provide to future researchers a document that provides an overview on routing in
cities, and guides the reader toward further and more specific in-depth analysis.

One particular characteristic we detected in the previous phase, is the multi-trip aspect.
Delivery trips in city centers are often made by small and eco-friendly vehicles, called vans.
Autonomy or capacity limitation limits the length of the trip that, therefore, normally takes
less time than the working day. Vehicles can then be re-used several times, in order to exploit
the whole time horizon. The academic problem that arises is the Multi-Trip Vehicle Routing
Problem (MTVRP).

This modus operandi is common to city logistics systems: structural arrangement of
cities (due to medieval inheritance) and ecological motivations force practitioners to take
into account vans for final deliveries. However, the urban context is not the sole in which
multiple trips per day are considered. Supermarket supply, petrol station replenishment,
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garbage collection and livestock collection are few examples of routing applications in which
the multi-trip aspect has been considered. Moreover, recent works admit multiple trips per
vehicle in production scheduling problems and inventory routing problems.

Despite its practical interest, the MTVRP has not been intensively studied by researchers
and the literature is not as large as it probably would deserve. This thesis contributes in
filling this gap and proposes heuristic solution methods for the MTVRP, for the MTVRP
with Time Windows and Release Dates, and for the Multi Commodity MTVRP with Time
Windows. An additional contribution of this thesis in the multi-trip context is the gathering
of all the works done on the subject into a survey. It is the first complete survey on the
MTVRP. It shows the limit of exact algorithms, compares results and gives references to
classical benchmark of instances. Moreover, a section examines the works with a practical
interest or motivation. This part of the work should encourage other researchers to put their
efforts in this particular area of routing problems.

As already mentioned, we developed three algorithms for multi-trip routing problems.
We first developed a population-based algorithm for the MTVRP where chromosomes are
permutations of the customers, usually called giant-tour. A split procedure (based on the
work of Prins [166]) turns chromosomes into solutions. Moreover, we proposed a tailored
local search operator. To the best of our knowledge, to date, only operators peculiar to the
VRP has been used in the multi-trip context, with the only exception of basic relocations
and swaps of trips among vehicles. The operator we proposed combines classical moves for
the VRP that do not improve the current solution, and the swap of trips among different
vehicles, looking for a global improvement. This is the first step in developing dedicated
operators that exploit the particular structure of the problem. The results obtained are the
state-of-the-art on the classical benchmark of instances.

A second work introduced a new problem: the MTVRP with Time Windows and Release
Dates (MTVRPTWR). A release date is associated with each merchandise and it represents
the instant the merchandise itself becomes available for delivery at the depot. It models the
dependence of external and internal flows. External flows are trips made by heavy trucks
that bring (resp. pick up) merchandise to (resp. at) a CDC, while internal flows are trips
made by vans from a CDC to the customers or vice-versa. Conversations with practitioners
from private companies certified the practical interest of the problem, as well as the absence
of academic work on the subject.

We proposed a hybrid genetic algorithm for the MTVRPTWR. Giant-tours are turned
into solutions by means of a labelling procedure that generalizes the split procedure that
we introduced for the MTVRP. We created a set of instances for benchmark purposes. We
used the well-known Solomon’s instances as base instances. In particular, the same release
date is possibly associated with different customers: this simulates the arrival of a truck at
the depot. Different families of instances are introduced, each characterized by a different
average tightness of the release date with respect to the time window upper bound.

Contextually with the introduction of the MTVRPTWR, several directions are now
opened and left for future works. One is the development of exact methods. Even if exact
methods are unlikely to be efficient in solving real-size problems, they can be used to eval-
uate heuristic algorithms. A second and natural direction is the consideration of dynamic
aspects. The merchandise arrives at the depot through highway axes and urban streets.
Hence trucks can suffer delays due to unfavorable traffic conditions. Drivers can commu-
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nicate their delay to the operation center that can modify the release date and update the
planning accordingly. Dynamic aspects can be introduced even considering the possibility
that some trucks can notify their arrival during the working day. In both cases, the use
of new communicating technologies makes possible the link between truck drivers and the
operation center that coordinates the delivery operations. A third sub-class of problems that
can derive from the MTVRPTWR considers stochastic aspects. Stochastic travel times can
be considered at the internal flow level as well as at the external flow level. In the latter
case, uncertainty in travel times of roads traversed by trucks can be reflected into the release
dates.

The last variant of the MTVRP that we treated into the thesis, organizes the delivery
planning of incompatible commodities, namely, that cannot be transported in the same
vehicle at the same time. It has been called the Multi Commodity MTVRP with Time
Windows and first introduced by Battarra et al. [17]. The problem is strategical rather than
operational and the number of routed vehicles needs to be minimized. An Iterated Local
Search (ILS) is proposed for a set of instances arose in a real context. Results are the new
state-of-the-art for the problem: the fleet is reduced on all the instances with up to 10%.

In addition, an analysis is conducted on the potential benefit of allowing vehicles to
perform several trips and its impact in the fleet sizing. Since the Multi Commodity MTVRP
with Time Windows generalizes the MTVRP with Time Windows, we run our ILS on the
classic Solomon’s and Gehring and Homberger’s instances designed for the VRPTW and
with the objective of minimizing the fleet first and the traveled distance second. Results
showed that in some cases the fleet can be halved only letting vehicles to perform several
trips, while in others it is unlikely that the introduction of the multi-trip aspect can reduce
the number of used vehicles. Further analysis showed that the reason of the possible size
reduction is that the time horizon is not well exploited and vehicles are left unused at the
depot.

The contribution of this part of the work is not only from an algorithmic point of view,
with the development of an efficient procedure. The results obtained and their analysis
should make the reader aware of the importance of the multi-trip aspect in achieving efficient
delivery planning. Here, with the world efficient we do not only refer to the operational level,
but to the strategical level as well, where we look for the minimization of the fleet size and
the related costs.

Research directions that arise from this work and the analysis of the related results we
obtained is the interest in designing algorithms that efficiently solve both a VRP problem
and its multi-trip counterpart. The current common procedure is to evaluate algorithms
for multi-trip routing problems on tailored instances where the limited capacity of vehicles
forces them to perform several trips. Methods are not evaluated on instances that admit an
optimal VRP solution. Consequently, their ability of finding VRP solutions is not evaluated.
The analysis we conducted, showed that in some situations a MTVRP solution is required
to exploit efficiently the time horizon, in other cases a VRP solution is sufficient. From this,
the need of efficient algorithms for both problems.

The thesis terminates with a formal definition of the rich routing problem that arises
in the MODUM project and guided our work. The problem involves several depots and
parking lots used to park vans. Vans make several trips during the working day and make
both pickup and delivery services (although in separate trips). Trips start at a certain depot
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and terminate at the same or at another depot or even at a parking lot. Release dates
are associated with each merchandise to deliver, while due dates are associated with each
merchandise to pick up at customers.

As the design of the MODUM system inspired the introduction of the routing problems
with release dates, such systems can be the motivation for the introduction of routing problem
with due dates associated with the merchandise that needs to be picked-up at customers
and brought at the depot. While routing problems with release dates model pure delivery
problems, problems with due dates would model pure pickup problems and define another
practical interesting class of routing problems. A natural extension would then be the
consideration of both release and due dates into the same problem with the consequently
introduction of a third class as the intersection of the two.

At the time of concluding this thesis, the simulator in charge of evaluating the system
was under development. The objective is to evaluate the system operating in different sce-
narios. The evaluation will be based on different indicators as the cost of the system, the
amount of CO2 emissions, the number of violated time windows, the number of used vans,
the average loading factor. We did not consider time-dependent travel times, that usually
characterizes city centers and urban zones. Constant travel times are then used for a first
evaluation of the system. However, further research should consider time-dependent travel
times as well as stochastic travel times for a better representation of the metropolitan envi-
ronment. Furthermore, the MODUM system considers a shuttle that links all the depots and
moves merchandise from one depot to another one, for example, more suitable for the final
delivery. Future research can study the organization of the shuttle evaluating the possibility
of optimizing the schedule based on the exact demand rather than having a pre-scheduled
service. Each of the directions we listed can improve the system considered in MODUM
and enhance its functionality. We are optimistic that the simulation will demonstrate the
efficiency of the system on condition that the right tactical and strategical choices have been
made. Future work should be done into the amelioration of these systems that we strongly
believe are a concrete possibility for the construction of livable and people oriented cities.
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Appendix A

New feasible solution for CMT4_T 1
H_7

The procedure found a new feasible solution for problem CMT4_T 1
H_7 that is detailed in

Table A.1 where v, r, τr and lr indicate the vehicle, the route, its travelling time and its
load.

v r τr lr
1 1 152.00 195 0, 18, 60, 84, 114, 8, 46, 124, 47, 36, 143, 49, 64, 11, 126, 63, 90, 70, 101, 69, 0

2 1 150.42 200 0, 51, 103, 71, 65, 136, 35, 135, 34, 78, 121, 29, 24, 134, 25, 55, 130, 54, 0

3 1 97.33 200 0, 40, 73, 75, 56, 23, 67, 39, 139, 4, 110, 149, 26, 0
2 55.68 174 0, 53, 138, 12, 109, 80, 150, 68, 116, 76, 111, 27, 0

4 1 73.68 196 0, 50, 102, 33, 81, 9, 120, 129, 79, 3, 77, 28, 0
2 80.10 198 0, 146, 52, 106, 7, 82, 48, 123, 19, 107, 62, 148, 88, 127, 0

5 1 56.16 187 0, 96, 104, 99, 93, 85, 61, 5, 118, 89, 0
2 95.96 199 0, 132, 1, 122, 30, 20, 66, 128, 131, 32, 108, 10, 31, 0

6 1 89.36 200 0, 59, 98, 91, 16, 141, 86, 113, 17, 45, 125, 83, 0
2 64.60 156 0, 105, 21, 72, 74, 133, 22, 41, 145, 115, 2, 58, 0

7 1 36.35 130 0, 112, 147, 6, 94, 95, 117, 13, 0
2 116.94 200 0, 137, 87, 144, 57, 15, 43, 42, 142, 14, 38, 140, 44, 119, 100, 37, 92, 97, 0

Table A.1: New feasible solution for CMT4_T 1
H_7





Appendix B

Detailed results on Solomon instances

Tables B.1–B.3 report the detailed solutions on Solomon’s instances that use 9 vehicles when
multi usage of vehicles is allowed (instead of 10 vehicles as in the best known VRP solution).

C103
vehicle trip

1 0 65 63 62 74 0
0 84 97 100 99 96 95 98 0

2 0 7 12 14 16 15 19 18 34 29 24 0
3 0 13 17 8 10 11 9 6 4 2 1 3 5 0
4 0 67 55 54 53 56 58 64 68 66 69 61 72 0
5 0 81 78 76 71 70 73 77 79 80 82 83 90 0
6 0 20 25 27 37 38 39 36 52 50 49 47 0
7 0 32 33 31 35 30 28 26 23 22 21 0
8 0 43 42 41 40 44 46 45 48 51 60 59 57 0
9 0 87 86 85 92 93 94 88 89 91 75 0

dist 1072.32

Table B.1: Solution on C103 Solomon’s instances that makes use of 9 vehicles
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C104
vehicle trip

1 0 67 63 62 74 0
0 21 22 26 23 29 33 32 0

2 0 13 17 18 19 15 16 14 12 20 0
3 0 28 30 34 36 39 38 37 35 31 52 49 47 0
4 0 41 40 59 53 56 58 60 54 64 69 65 0
5 0 98 94 92 93 97 100 99 96 95 5 0
6 0 81 78 76 71 70 73 77 79 80 72 61 66 0
7 0 90 87 86 83 82 84 85 88 89 91 3 7 0
8 0 68 55 57 44 45 48 51 50 46 42 43 0
9 0 24 27 25 8 10 11 9 6 4 2 1 75 0

dist 937.65

Table B.2: Solution on C104 Solomon’s instances that makes use of 9 vehicles

C109
vehicle trip

1 0 57 55 54 53 56 58 60 59 0
0 26 23 22 21 0

2 0 43 42 41 0
0 67 62 74 72 61 64 68 66 69 0

3 0 25 27 32 31 40 44 46 45 48 51 50 47 0
4 0 13 17 18 19 15 16 14 12 0
5 0 20 24 29 33 35 37 38 39 36 34 52 49 0
6 0 3 98 96 95 94 92 93 97 100 99 0
7 0 63 81 78 76 71 70 73 77 79 80 0
8 0 65 90 87 86 83 82 84 85 88 89 91 75 0
9 0 5 7 8 10 28 30 11 9 6 4 2 1 0

dist 958.11

Table B.3: Solution on C109 Solomon’s instances that makes use of 9 vehicles

The first row indicates the instance name, while the last row reports the travelled distance.
Columns vehicle report the vehicle index, while columns trip detail the trips.

Page xvi EMSE-CMP Diego Cattaruzza



Bibliography

[1] E.-H. Aghezzaf, B. Raa, and H. Van Landeghem. Modeling inventory routing problems
in supply chains of high consumption products. European Journal of Operational
Research, 169(3):1048–1063, 2006.

[2] B.H. Ahn and J.Y. Shinm. Vehicle-routing with time windows and time-varying con-
gestion. Journal of Operational Research Society, 42(5):393–400, 1991.

[3] F. Alonso, M.J. Alvarez, and J.E. Beasley. A tabu search algorithm for the periodic ve-
hicle routing problem with multiple vehicle trips and accessibility restrictions. Journal
of Operational Research Society, 59(7):963–976, 2008.

[4] C. Ambrosini and J.L. Routhier. Objectives, methods and results of surveys carried
out in the field of urban freight transport: an international comparison. Transport
Reviews, 24(1):57–77, 2004.

[5] S. Anderson, J. Allen, and M. Browne. Urban logistics - how can it meet policy makers’
sustainability objectives? Journal of Transport Geography, 13(1):71–81, 2005.

[6] N. Ando and E. Taniguchi. Travel time reliability in vehicle routing and scheduling
with time windows. Networks and Spatial Economics, 6(3):293–311, 2006.

[7] C. Archetti, A.M. Campbell, and M.G. Speranza. Multi-commodity vs. single-
commodity routing. Technical report, Università di Brescia, 2013.

[8] A. Attanasio, J.F. Cordeau, G. Ghiani, and G. Laporte. Parallel tabu search heuristic
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3):377–387,
2004.

[9] P. Avella, M. Boccia, and A. Sforza. Solving a fuel delivery problem by heuristic and
exact approaches. European Journal of Operational Research, 152(1):170–179, 2004.

[10] N. Azi. Méthodes Exactes et Heuristiques pour le Problème de Tournées avec Fenêtres
de Temps et Réutilisation de Véhicules. PhD thesis, Université de Montréal, 2010.

[11] N. Azi, M. Gendreau, and J.-Y. Potvin. An exact algorithm for a single-vehicle routing
problem with time windows and multiple routes. European Journal of Operational
Research, 178(3):755–766, 2007.

[12] N. Azi, M. Gendreau, and J.-Y. Potvin. An exact algorithm for a vehicle routing
problem with time windows and multiple routes. European Journal of Operational
Research, 202(3):756–763, 2010.



BIBLIOGRAPHY

[13] N. Azi, M. Gendreau, and J.-Y. Potvin. A dynamic vehicle routing problem with
multiple delivery routes. Annals of Operations Research, 199(1):103–112, 2012.

[14] N. Azi, M. Gendreau, and J.-Y. Potvin. An adaptive large neighborhood search for
a vehicle routing problem with multiple routes. Computers & Operations Research,
41:167–173, 2014.

[15] R. Baldacci, A. Mingozzi, R. Roberti, and R. Wolfler Calvo. An exact algorithm for the
two-echelon capacitated vehicle routing problem. Operations Research, 61(2):298–314,
2013.

[16] M. Barkaoui and M. Gendreau. An adaptive evolutionary approach for the real-time
vehicle routing and dispatching. Computers & Operations Research, 40(7):1766–1776,
2013.

[17] M. Battarra, M. Monaci, and D. Vigo. An adaptive guidance approach for the heuristic
solution of a minimum multiple trip vehicle routing problem. Computers & Operations
Research, 36(11):3041–3050, 2009.

[18] H.B. Bendall and A.F. Stent. A scheduling model for a high speed containership
service: A hub and spoke short-sea application. International Journal of Maritime
Economics, 3:262–277, 2001.

[19] R. Bent and P. Van Hentenryck. Waiting and relocation strategies in online stochastic
vehicle routing. In Proceedings of the 20th international joint conference on Artificial
intelligence, pages 3041–3050, 2007.

[20] G. Berbeglia, J.F. Cordeau, and G. Laporte. Dynamic pickup and delivery problems.
European Journal of Operational Research, 202(1):8–15, 2010.

[21] L. Bertazzi, M. Savelsbergh, and M.G. Speranza. In The Vehicle Routing Problem -
Last Advances and New Challenges, Operations Research Computer Science Interfaces,
chapter Inventory Routing, pages 49–72. Springer, 2008.

[22] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Wȩglarz. In Handbook on Schedul-
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Abstract:

Transportation of merchandise in urban areas has become an important nowadays topic.
In fact, transportation is a vital activity for each city, but entail pollution, congestion,
accidents. City logistics aims at optimizing the whole urban logistics and transportation
process, taking into account environmental and social aspects. This thesis, that is part of
the MODUM project, finds its location in this area of research. In particular, MODUM aims
at studying a delivery system based on City Distribution Centers.

We first present a classification and an analysis of urban good movements and routing
problems peculiar to metropolitan areas. A second survey proposes a complete collection
of articles that has been done on the Multi Trip Vehicle Routing Problem (MTVRP). The
MTVRP is an extension of the Vehicle Routing Problem (VRP) where vehicles are allowed
to perform several trips.

We propose an efficient heuristic for the MTVRP that is, in a subsequent step,
adapted to a new routing problem, the MTVRP with Time Windows and Release Dates
(MTVRPTWR). It is a variant of the MTVRP where each customer is associated with a
time window and each merchandise is associated with a release date that represents the
instant it becomes available at the depot.

We, then, study a variant of the MTVRP where goods belong to different commodities
that cannot be transported at the same time by the same vehicle. An analysis is conducted
on the benefits of the multi-trip aspect in fleet dimensioning problems.

Finally we describe the complex routing problem that arises in MODUM and the simu-
lator that is developed to evaluate the performances of the system.
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Résumé:

Le transport de marchandises dans les zones urbaines est un sujet important de nos jours.
Le transport est une activité vitale pour les villes, mais implique pollution, congestion, ac-
cidents. La logistique urbaine vise à optimiser les processus logistiques et de transports
urbains en tenant compte des aspects environnementaux et sociaux. Cette thèse traite de
cette thématique et fait partie du projet MODUM.

MODUM vise à étudier un système de livraison basé sur des centres de distribution
urbains. Nous présentons une classification et une analyse des mouvements de marchandises
et des problèmes de tournées de véhicules (VRP) associés.

La deuxième partie propose une revue complète des travaux de recherche traitant des
problème VRP avec routes multiples (MTVRP). Le MTVRP est une extension du VRP où
les véhicules sont autorisés à effectuer plusieurs tournées. Nous proposons une heuristique
pour le MTVRP qui est par la suite adaptée pour un problème plus riche, le MTVRP avec
fenêtres de temps et dates de disponibilité. Il s’agit d’une variante du MTVRP où à chaque
client est associée une fenêtre de temps et à chaque marchandise une date de disponibilité
qui représente l’instant où elle devient disponible au dépôt.

Par la suite, nous étudions une variante du MTVRP où les marchandises sont classées
par types de produits qui ne peuvent pas être transportés dans le même véhicule. Une
analyse est effectuée pour montrer l’avantage des tournées multiples pour le problème de
dimensionnement des flottes.

Enfin, nous décrivons le problème de tournées qui se pose dans MODUM et le simulateur
qui est développé pour évaluation du système.


