Contribution to the interpretation of evolving communities in complex networks : Application to the study of social interactions

Résumé : Les réseaux complexes constituent un outil pratique pour modéliser les systèmes complexes réels. Pour cette raison, ils sont devenus très populaires au cours de la dernière décennie. De nombreux outils existent pour étudier les réseaux complexes. Parmi ceux-ci, la détection de la communauté est l’un des plus importants. Une communauté est grossièrement définie comme un groupe de nœuds plus densément connectés entre eux qu’avec le reste du réseau. Dans la littérature, cette définition intuitive a été formalisée de plusieurs différentes façons, ce qui a conduit à d’innombrables méthodes et variantes permettant de les détecter. Du point de vue applicatif, le sens des communautés est aussi important que leur détection. Cependant, bien que la tâche de détection de communautés en elle-même ait attiré énormément d’attention, le problème de leur interprétation n’a pas été sérieusement abordé jusqu’à présent. Dans cette thèse, nous voyons l’interprétation des communautés comme un problème indépendant du processus de leur détection, consistant à identifier les éléments leurs caractéristiques les plus typiques. Nous le décomposons en deux sous-problèmes : 1) trouver un moyen approprié pour représenter une communauté ; et 2) sélectionner de façon objective les parties les plus caractéristiques de cette représentation. Pour résoudre ces deux sous-problèmes, nous exploitons l’information encodée dans les réseaux dynamiques attribués. Nous proposons une nouvelle représentation des communautés sous la forme de séquences temporelles de descripteurs associés à chaque nœud individuellement. Ces descripteurs peuvent être des mesures topologiques et des attributs nodaux. Nous détectons ensuite les motifs séquentiels émergents dans cet ensemble de données, afin d’identifier les ceux qui sont les plus caractéristiques de la communauté. Nous effectuons une validation de notre procédé sur des réseaux attribués dynamiques générés artificiellement. A cette occasion, nous étudions son comportement relativement à des changements structurels de la structure de communautés, à des modifications des valeurs des attributs. Nous appliquons également notre procédé à deux systèmes du monde réel : un réseau de collaborations scientifiques issu de DBLP, et un réseau d’interactions sociales et musicales tiré du service LastFM. Nos résultats montrent que les communautés détectées ne sont pas complètement homogènes. Certaines communautés sont composées de petits groupes de nœuds qui ont tendance à évoluer ensemble au cours du temps, que ce soit en termes de propriétés individuelles ou collectives. Les anomalies détectées correspondent généralement à des profils typiques : nœuds mal placés par l’outil de détection de communautés, ou nœuds différant des tendances de leur communautés sur certains points, et/ou non-synchrones avec l’évolution de leur communauté, ou encore nœuds complètement différents.
Type de document :
Thèse
Other [cs.OH]. INSA de Lyon, 2014. English. <NNT : 2014ISAL0072>
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-01081028
Contributeur : Abes Star <>
Soumis le : jeudi 6 novembre 2014 - 17:02:08
Dernière modification le : mercredi 16 décembre 2015 - 01:06:50
Document(s) archivé(s) le : samedi 7 février 2015 - 11:16:35

Fichier

these.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01081028, version 1

Collections

Citation

Keziban Orman. Contribution to the interpretation of evolving communities in complex networks : Application to the study of social interactions. Other [cs.OH]. INSA de Lyon, 2014. English. <NNT : 2014ISAL0072>. <tel-01081028>

Partager

Métriques

Consultations de
la notice

186

Téléchargements du document

223